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Abstract

We prove a verification theorem for a class of singular control problems which model
optimal harvesting with density-dependent prices or optimal dividend policy with capital-
dependent utilities. The result is applied to solve explicitly some examples of such optimal
harvesting/optimal dividend problems.

1 Introduction

Price dependence on population size can occur in any of the following ways mentioned below:
Small population size may lead to a significant increase in the price of the affected species.
For instance, the black rhino population, which is hunted for its horn, has decreased to near
extinction. The result of this is that the restocking price of the black rhino has increased to
such high levels that most game reserves which were in the past natural habitats for the black
rhino cannot afford the current stocking prices. The wildebeest population, on the other hand,
is so large in most game reserves that its hunting license price is cheap. Another way in which
population density affects the price of the species is the quality of the individual members. For
instance in places where wildlife movement is restricted the quality of the environment (and
indeed the quality of the animals) depends on population size. Availability of quality vegetation
and water depends on whether the game reserve’s carrying capacity has been exceeded or not.
Restricting animal movement has the disadvantage of allowing for inbreeding and subsequently
to weaker species that are prone to suffer from genetically acquired diseases and defects, such
as small size etc. The value of the animals is therefore reduced considerably.

Although high population density may lead to lower prices, it plays a very important role on
the survival of the species. For instance Wildebeest and Zebra are not fast animals (in terms of
running away from predators). If they did not live in colonies of densily populated areas, they
would become extinct. Because of the large population in a given colony, these animals are able
to reproduce and maintain their population at health levels.

1 Department of Economics, Economic Mathematics and Statistics, Turku School of Economics and Business
Administration, FIN-20500 Turku, Finland, e-mail: luis.alvarez@tukk.fi

2 Department of Mathematics, University of Botswana, B.P. 0022 Gaborone, Botswana,
e-mail: lungu@mopipi.ub.bw

3 Department of Mathematics, University of Oslo, Box 1053 Blindern, N–0316 Oslo, Norway,
e-mail: oksendal@math.uio.no

4 Norwegian School of Economics and Business Administration, Helleveien 30, N–5045 Bergen, Norway

1



In this paper we consider the problem of optimal harvesting from a collection of interacting
populations (described by a coupled system of stochastic differential equations) when the price
per unit for each population is allowed to depend on the sizes of the populations.

2 The main result

We now describe our model in detail. This presentation follows [LØ2] closely. Consider n
populations whose sizes or densities X1(t), . . . , Xn(t) at time t are described by a system of n
stochastic differential equations of the form

dXi(t) = bi(t, X(t))dt +
m∑

j=1

σij(t, X(t))dBj(t); 0 ≤ s ≤ t ≤ T(2.1)

Xi(s) = xi ∈ R ; 1 ≤ i ≤ n ,(2.2)

where B(t) = (B1(t), . . . , Bm(t)); t ≥ 0, ω ∈ Ω is m-dimensional Brownian motion and the
differentials (i.e. the corresponding integrals) are interpreted in the Itô sense. We assume that
b = (b1, . . . , bn) : R1+n → Rn and σ = (σij) 1≤i≤n

1≤j≤m
: R1+n → Rn×m are given continuous

functions. We also assume that the terminal time T = T (ω) has the form

T (ω) = inf
{
t > s; (t, X(t)) �∈ S

}
(2.3)

where S ⊂ R1+n is a given set. For simplicity we will assume in this paper that

S = (0,∞) × U

where U is an open, connected set in Rn. We may interprete U as the survival set and T is the
time of extinction or simply the closing/terminal time.

We now introduce a harvesting strategy for this family of populations:
A harvesting strategy γ is a stochastic process γ(t) = γ(t, ω) = (γ1(t, ω), . . . , γn(t, ω) ∈ Rn

with the following properties:

For each t ≥ s γ(t, ·) is measurable with respect to the σ-algebra Ft generated by(2.4)
{B(s, ·); s ≤ t}. In other words: γ(t) is Ft-adapted.

γi(t, ω) is non-decreasing with respect to t, for a.a. ω ∈ Ω and all i = 1, . . . , n(2.5)

t → γ(t, ω) is right-continuous, for a.a. ω(2.6)

γ(s, ω) = 0 for a.a. ω .(2.7)

Component number i of γ(t, ω), γi(t, ω), represents the total amount harvested from population
number i up to time t.

If we apply a harvesting strategy γ to our family X(t) = (X1(t), . . . , Xn(t)) of populations
the harvested family X(γ)(t) will satisfy the n-dimensional stochastic differential equation{

dX(γ)(t) = b(t, X(γ)(t))dt + σ(t, X(γ)(t))dB(t) − dγ(t) ; s ≤ t ≤ T

X(γ)(s−) = x = (x1, . . . , xn) ∈ Rn
(2.8)
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We let Γ denote the set of all harvesting strategies γ such that the corresponding system (2.7)
has a unique strong solution X(γ)(t) which does not explode in the time interval [s,∞] and such
that X(γ)(T ) ∈ S̄.

Since we do not exclude immediate harvesting at time t = s it is necessary to distinguish
between X(γ)(s) and X(γ)(s−) : X(γ)(s−) is the state right before harvesting starts at time t = s,
while

X(γ)(s) = X(γ)(s−) − ∆γ

is the state immediately after, if γ consists of an immediate harvest of size ∆γ at t = s.
Suppose that the price per unit of population number i, when harvested at time t and when

the current size/density of the vector X(γ)(t) of populations is ξ = (ξ1, . . . , ξn) ∈ Rn, is given
by

πi(t, ξ) ; (t, ξ) ∈ S , 1 ≤ i ≤ n ,(2.9)

where the πi : S → R; 1 ≤ i ≤ n, are lower bounded continuous functions. We call such prices
density-dependent since they depend on ξ. The total expected discounted utility harvested from
time s to time T is given by

J (γ)(s, x) = Es,x
[ ∫
[s,T ]

π(t, X(γ)(t−)) · dγ(t)
]

(2.10)

where π = (π1, . . . , πn), π · dγ =
n∑

i=1
πidγi and Es,x denotes the expectation with respect to the

probability law Qs,x of the time-state process

Y s,x(t) = Y γ,s,x(t) = (t, X(γ)(t)) ; t ≥ s(2.11)

assuming that Y s,x(s−) = x.
The optimal harvesting problem is to find the value function Φ(s, x) and an optimal harvesting

strategy γ∗ ∈ Γ such that

Φ(s, x) = sup
γ∈Γ

J (γ)(s, x) = J (γ∗)(s, x) .(2.12)

This problem differs from the problems considered in [A1], [A3], [AS], [LØ1] and [LØ2] in that
the prices πi(t, ξ) are allowed to be density-dependent. This allows for more realistic models.
For example, it is usually the case that if a type of fish, say population number i, becomes more
scarce, the price per unit of this fish increases. Conversely, if a type of fish becomes abundant
then the price per unit goes down. Thus in this case the price πi(t, ξ) = πi(t, ξ1, . . . , ξn) is a
nonincreasing function of ξi. One can also have situations where πi(t, ξ) depends on all the
other population densities ξ1, . . . , ξn in a similar way.

It turns out that if we allow the prices to be density-dependent, a number of new – and
perhaps surprising – phenomena occurs. The purpose of this paper is not to give a complete
discussion of the situation, but consider some illustrative examples.
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Remark Note that we can also give the problem (2.12) an economic interpretation: We can
regard Xi(t) as the value at time t of an economic quantity or asset and we can let γi(t) represent
the total amount paid in dividends from asset number i up to time t. Then S can be interpreted
as the solvency set, T as the time of bankruptcy and πi(t, ξ) as the utility rate of dividends
from asset number i at the state (t, ξ). Then (2.12) becomes the problem of finding the optimal
stream of dividends. This interpretation is used in [JS] (in the density-independent utility case).
See also [LØ2].

In the following H0 denotes the interior of a set H, H̄ denotes its closure.
If G ⊂ Rk is an open set we let C2(G) denote the set of real valued twice continuously

differentiable functions on G. We let C2
0 (G) denote the set of functions in C2(G) with compact

support in G.
If we do not apply any harvesting, then the corresponding time-state population process

Y (t) = (t, X(t)), with X(t) given by (2.1)–(2.2), is an Itô diffusion whose generator coincides
on C2

0 (R1+n) with the partial differential operator L given by

Lg(s, x) =
∂g

∂s
(s, x) +

n∑
i=1

bi(s, x)
∂g

∂xi
(s, x) + 1

2

n∑
i,j=1

(σσT )ij(s, x)
∂2g

∂s∂x
(2.13)

for all functions g ∈ C2(S).
The following result is a generalization to the multi-dimensional case of Theorem 1 in [A2]

and a generalization to density-dependent prices of Theorem 2.1 in [LØ2]. For completeness we
give the proof.

Theorem 2.1. Assume that

πi(t, ξ) is nonincresing with respect to ξ1, . . . , ξn, for all t and all i = 1, 2, . . . , n .(2.14)

a) Suppose ϕ ≥ 0 is a function in C2(S) satisfying the following conditions

(i) ∂ϕ
∂xi

(t, x) ≥ πi(t, x) for all (t, x) ∈ S, i = 1, 2, . . . , n

(ii) Lϕ(t, x) ≤ 0 for all (t, x) ∈ S.

Then

ϕ(s, x) ≥ Φ(s, x) for all (s, x) ∈ S .(2.15)

b) Define the nonintervention region D by

D =
{

(t, x) ∈ S;
∂ϕ

∂xi
(t, x) > πi(t, x) for all i = 1, . . . , n

}
.(2.16)

Suppose that, in addition to (i) and (ii) above,

(iii) Lϕ(t, x) = 0 for all (t, x) ∈ D

and that there exists a harvesting strategy γ̂ ∈ Γ such that the following, (iv)–(vii), hold:

(iv) X(γ̂)(t) ∈ D̄ for all t ∈ [s, T ]
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(v)
( ∂ϕ

∂xi
(t, X(γ̂)(t)) − πi(t, X(γ̂)(t))

)
· dγ̂

(c)
i (t) = 0 (i.e. γ̂

(c)
i increases only when ∂ϕ

∂xi
= πi);

1 ≤ i ≤ n

and

(vi) ϕ(tk, X(γ̂)(tk)) − ϕ(tk, X(γ̂)(t−k )) = −πi(tk, X(γ̂)(t−k )) · ∆γ̂(tk)

at all jumping times tk ∈ [s, T ) of γ̂(t), where

∆γ̂(tk) = γ̂(tk) − γ̂(t−k )

and

(vii) Es,x
[
ϕ(TR, X(γ̂)(TR))

]
→ 0 as R → ∞

where

TR = T ∧ R ∧ inf
{
t > s; |X(γ̂)(t)| ≥ R

}
; R > 0 .

Then

ϕ(s, x) = Φ(s, x) for all (s, x) ∈ S(2.17)

and

γ∗ := γ̂ is an optimal harvesting strategy.

Proof. a) Choose γ ∈ Γ and (s, x) ∈ S. Then by Itô’s formula for semimartingales (the Doléans-
Dade-Meyer formula) [P, Th. II.7.33] we have

Es,x[ϕ(TR, X(γ)(TR))] = Es,x[ϕ(s, X(γ)(s))]

+Es,x
[ TR∫

s

∂ϕ

∂t
(t, X(γ)(t))dt +

∫
(s,TR]

n∑
i=1

∂ϕ

∂xi
(t, X(γ)(t−))dX

(γ)
i (t)

+
n∑

i,j=1

TR∫
s

1
2(σσT )ij(t, X(γ)(t))

∂2ϕ

∂xi∂xj
(t, X(γ)(t))dt

+
∑

s<tk≤TR

{
ϕ(tk, X(γ)(tk)) − ϕ(tk, X(γ)(t−k )) −

n∑
i=1

∂ϕ

∂xi
(tk, X(γ)(t−k ))∆X

(γ)
i (tk)

}]
,(2.18)

where the sum is taken over all jumping times tk ∈ (s, TR] of γ(t) and

∆X
(γ)
i (tk) = X

(γ)
i (tk) − X

(γ)
i (t−k ) .

Let γ(c)(t) denote the continuous part of γ(t), i.e.

γ(c)(t) = γ(t) −
∑

s≤tk≤t

∆γ(tk) .
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Then, since ∆X
(γ)
i (tk) = −∆γi(tk) we see that (2.18) can be written

Es,x[ϕ(TR, X(γ)(TR))] = ϕ(s, x)

+Es,x
[ TR∫

s

{∂ϕ

∂t
+

n∑
i=1

bi
∂ϕ

∂xi
+ 1

2

n∑
i,j=1

(σσT )ij
∂2ϕ

∂xi∂xj

}
(t, X(γ)(t))dt

]

−Es,x
[ TR∫

s

n∑
i=1

∂ϕ

∂xi
(t, X(γ)(t))dγ

(c)
i (t)

]
+ Es,x

[ ∑
s≤tk≤TR

∆ϕ(tk, X(γ)(tk))
]

(2.19)

where

∆ϕ(tk, X(γ)(tk)) = ϕ(tk, X(γ)(tk)) − ϕ(tk, X(γ)(t−k )) .

Therefore

ϕ(s, x) = Es,x[ϕ(TR, X(γ)(TR))] − Es,x
[ TR∫

s

Lϕ(t, X(γ)(t))dt
]

+Es,x
[ TR∫

s

n∑
i=1

∂ϕ

∂xi
(t, X(γ)(t))dγ

(c)
i (t)

]
−Es,x

[ ∑
s≤tk≤TR

∆ϕ(tk, X(γ)(tk))
]
.(2.20)

Let y = y(r); 0 ≤ r ≤ 1 be a smooth curve in U from X(γ)(tk) to X(γ)(t−k ) = X(γ)(tk) + ∆γ(tk).
Then

−∆ϕ(tk, X(γ)(tk)) =

1∫
o

∇ϕ(tk, y(r))dy(r) .(2.21)

We may assume that

dyi(r) ≥ 0 for all i, r .

Now suppose that (i) and (ii) hold. Then by (2.20) and (2.21) we have

ϕ(s, x) ≥ Es,x
[ TR∫

s

n∑
i=1

πi(t, X(γ)(t))dγ
(c)
i (t)

]

+ Es,x
[ ∑

s≤tk≤TR

( 1∫
0

n∑
i=1

πi(tk, y(r))dyi(r)
)]

(2.22)

Since we have assumed that πi(t, ξ) is nonincreasing with respect to ξ1, . . . , ξn we have

πi(tk, X(γ)(t−k )) ≤ πi(tk, y(r)) ≤ πi(tk, X(γ)(tk))
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for all i, k and r ∈ [0, 1]. Hence

1∫
0

πi(tk, y(r))dyi(r) ≥ π(t :k, X(γ)(t−k )) · ∆γi(tk) .(2.23)

Combined with (2.22) this gives

ϕ(s, x) ≥ Es,x
[ TR∫

0

π(t, X(γ)(t))dγ(c)(t) +
∑

s≤tk≤T

π(tk, X(γ)(t−k )) · ∆γ(tk)
]

= Es,x
[ ∫
[s,TR]

π(t, X(γ)(t−))dγ(t)
]
.(2.24)

Letting R → ∞ we obtain ϕ(s, x) ≥ J (γ)(s, x). Since γ ∈ Γ was arbitrary we conclude that
(2.15) holds. Hence a) is proved.

b) Next, suppose that (iii)–(vii) also hold. Then if we apply the argument above to γ = γ̂ we
get in (2.20) the following:

ϕ(s, x) = Es,x[ϕ(TR, X(γ̂)(TR))]

+ Es,x
[ TR∫

0

π(t, X(γ̂)(t)) · dγ̂(c)(t) +
∑

s≤tk≤TR

π(tk, X(γ̂)(t−k )) · ∆γ̂(tk)
]

= Es,x[ϕ(TR, X(γ̂)(TR))] + Es,x
[ ∫
[s,TR]

π(t, X(γ̂)(t)) · dγ̂(t)
]

−→ J (γ̂)(s, x) as R → ∞ .

Hence ϕ(s, x) = J (γ̂)(s, x) ≤ Φ(s, x). Combining this with (2.14) from a) we get the conclusion
(2.16) of part b). This completes the proof of Theorem 2.1.

If we specialize to the 1-dimensional case with just one population X(γ)(t) given by{
dX(γ)(t) = b(t, X(γ)(t))dt + σ(t, X(γ)(t))dB(t) − dγ(t) ; t ≥ s

X(γ)(s−) = x ∈ R
(2.25)

then Theorem 2.1a) gets the form (see also [A2, Lemma 1])

Corollary 2.2. Assume that

ξ → π(t, ξ); ξ ∈ R is nonincreasing for all t ∈ [0, T ](2.26)

ϕ(t, x) ≥ 0 is a function in C2(S) such that(2.27)

∂ϕ

∂x
(t, x) ≥ π(t, x) for all (t, x) ∈ S(2.28)
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and

Lϕ(t, x) ≤ 0 for all ( t, x) ∈ S .(2.29)

Then

ϕ(s, x) ≥ Φ(s, x) for all (s, x) ∈ S .(2.30)

3 Examples

In this section we apply Theorem 2.1 or Corollary 2.2 to some special cases.

Example 3.1. Suppose X(γ)(t) is given by{
dX(γ)(t) = µ dt + σ dB(t) − dγ(t) ; t ≥ s

X(γ)(s) = x > 0
(3.1)

where µ > 0 and σ �= 0 are constants.
We want to maximize the total discounted value of the harvest, given by

J (γ)(s, x) = Es,x
[ ∫
[s,T )

e−ρtg(X(γ)(t−))dγ(t)
]

(3.2)

where g : R → R is a given nonincreasing function (the density-dependent price) and

T = inf
{
t > s;X(γ)(t) ≤ 0

}
(3.3)

is the time of extinction, i.e. S = {(t, x);x > 0}. The case with g constant was solved in [JS].
Then it is optimal to do nothing if the population is below a certain treshold x∗ > 0 and then
harvest according to local time of the downward reflected process X̄(t) at X̄(t) = x∗.

Now consider the case when

g(x) = x−1/2, i.e. π(t, x) = e−ρtx−1/2; x > 0 .(3.4)

Then the price increases as the population size x decreases, so (2.24) holds. Suppose we apply the
“take the money and run”-strategy

◦
γ. This strategy empties the whole population immediately.

It can be described by

◦
γ (s) = X(s−) = x .(3.5)

Such a strategy gives the harvest value

J (
◦
γ)(s, x) = e−ρsx−1/2x = e−ρs√x ; x > 0 .(3.6)

However, it is unlikely that this is the best strategy because it does not take into account that
the price increases as the population size goes down. So we try the following “chattering policy”,
denoted by γ̃ = γ̃(m,η), where m is a fixed natural number and η > 0:
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At the times

tk =
(
s +

k

m
η
)
∧ T ; k = 1, 2, . . . , m(3.7)

we harvest an amount ∆γ̃(tk) which is the fraction 1
m of the current population. This gives the

expected harvest value

J (γ̃(m,η))(s, x) = Es,x
[ m∑

k=1

e−ρtk
[
(X(γ̃)(t−k ))+

]−1/2
]
∆γ̃(tk) ,(3.8)

where we have used the notation

x+ = max(x, 0) ; x ∈ R .

This can be written

J (γ̃(m,η))(s, x) = Es,x
[ m∑

k=1

e−ρtk
[
(x − γ̃(t−k ))+

]−1/2
]
∆γ̃(tk) .(3.9)

Now let η → 0. Then all the tk’s converge to s and we get

J (γ̃(m,0))(s, x) : = lim
η→0

J (γ̃(m,η))(s, x) = e−ρs
m∑

k=1

(
x − k

m
x
)−1/2 1

m
x

= e−ρs
m∑

k=1

h(xk)∆xk ,(3.10)

where h(y) = (x − y)−1/2, xk = k
mx and ∆xk = xk+1 − xk = x

m .
Now if ε > 0 is given we can find a natural number m such that

∣∣∣ x∫
0

(x − y)−1/2dy −
m∑

k=1

h(xk)∆xk

∣∣∣ < ε .(3.11)

Therefore, by choosing m and η properly we can obtain that

∣∣∣J (γ̃(m,η))(s, x) − e−ρs

x∫
0

(x − y)−1/2dy
∣∣∣ < ε .(3.12)

We conclude that

sup
γ

J (γ)(s, x) ≤ e−ρs

x∫
0

(x − y)−1/2dy = e−ρs2
√

x .(3.13)

We call this “chattering policy” of applying γ̃m,η) in the limit as η → 0 and m → ∞ the policy
of immediate chattering down to 0. (This limit does not exist as a strategy in Γ.) From (3.13)
we conclude that

Φ(s, x) ≥ 2e−ρs√x .(3.14)
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On the other hand, let us check if the function

ϕ(s, x) := 2e−ρs√x(3.15)

satisfies the conditions (2.26)–(2.28) of Corollary 2.2: Condition (2.26) holds trivially, and since

∂ϕ

∂x
(s, x) = e−ρsx−1/2 = π(s, x) , (2.27) holds .

Now

L =
∂

∂s
+ µ

∂

∂x
+ 1

2σ2 ∂2

∂x2

and therefore

Lϕ(s, x) = 2e−ρs
[
− ρx1/2 + µ · 1

2x−1/2 + 1
2σ2 1

2(−1
2)x−3/2

]
= −2ρe−ρsx−3/2

[
x2 − µ

2ρ
x +

σ2

8ρ

]
.

So (2.28) holds if µ2 ≤ 2ρσ2. By Corollary 2.2 we conclude that ϕ = Φ in this case.

We have proved part a) of the following result:

Theorem 3.2. Let X(γ)(t) and T be given by (3.1) and (3.3), respectively.

a) Assume that

µ2 ≤ 2ρσ2 .(3.16)

Then

Φ(s, x) := sup
γ∈Γ

Es,x
[ ∫
[s,T )

e−ρt{X(γ)(t−)}−1/2dγ(t)
]

= 2e−ρs√x .

This value is achieved in the limit if we apply the strategy γ̃(m,η) above with η → 0 and m → ∞,
i.e. by applying the policy of immediate chattering down to 0.

b) Assume that

µ2 > 2ρσ2(3.17)

Then the value function has the form

Φ(s, x) =

{
e−ρsC(eλ1x − eλ2x) ; 0 ≤ x < x∗

e−ρs(2
√

x − 2
√

x∗ + A) ; x∗ ≤ x
(3.18)

for some constants C > 0, A > 0 and x∗ > 0, where

λ1 = σ−2
[
− µ +

√
µ2 + 2ρσ2

]
> 0 , λ2 = σ−2

[
− µ −

√
µ2 + 2ρσ2

]
< 0 .(3.19)

The corresponding optimal policy is the following:

If x > x∗ it is optimal to apply immediate chattering from x down to x∗.(3.20)

if 0 < x < x∗ it is optimal to apply the harvesting equal to the local time of(3.21)
the downward reflected process X̄(t) at x∗.
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Proof of b). First note that if we apply the policy of immediate chattering from x down to x∗,
where 0 < x∗ < x, then the value of the harvested quantity is

e−ρs

x−x∗∫
0

(x − y)−1/2dy = e−ρs

x∫
x∗

u−1/2du = 2e−ρs
(√

x −
√

x∗ )
.(3.22)

This follows by the argument (3.7)–(3.12) above.
To verify (3.18)–(3.21) note that λ1, λ2 are the roots of the quadratic equation

−ρ + µλ + 1
2σ2λ2 = 0 .(3.23)

Hence, with ϕ(s, x) defined to be the right hand side of (3.18) we have

Lϕ(s, x) = 0 for x < x∗(3.24)

and

ϕ(s, 0) = 0 .(3.25)

We now require that ϕ is C2 at x = x∗. This gives the 3 equations

C(eλ1x∗ − eλ2x∗
) = A(3.26)

C(λ1e
λ1x∗ − λ2e

λ2x∗
) = (x∗)−1/2(3.27)

C(λ2
1e

λ1x∗ − λ2
2e

λ2x∗
) = −1

2(x∗)−3/2(3.28)

Dividing (3.27) by (3.28) we get the equation

λ1e
λ1x∗ − λ2e

λ2x∗

λ2
1e

λ1x∗ − λ2
2e

λ2x∗ = −2x∗ .(3.29)

Since the left hand side of (3.29) goes to (λ1 + λ2)−1 < 0 as x∗ → 0+ and goes to λ−1
1 > 0

as x∗ → ∞ we see by the intermediate value theorem that there exists x∗ > 0 satisfying this
equation.

With this value of x∗ we define C by (3.27) and then we define A by (3.26). Then we have
proved the existence of a solution C > 0, A > 0, x∗ > 0 of the system (3.26)–(3.28). With this
choice of C, A, x∗ the function ϕ(s, x) becomes a C2 function and one can verify that ϕ satisfies
conditions (i), (ii) of Theorem 2.1 (the details are left to the reader). Hence

ϕ(s, x) ≥ Φ(s, x) for all s, x .(3.30)

Moreover, the nonintervention region D given by (2.16) is seen to be

D = {(s, x); 0 < x < x∗} .

Hence by (3.24) we know that (iii) holds.
Moreover, if x ≤ x∗ it is well-known that the local time γ̂ at x∗ of the downward reflected

process X̄(t) at x∗ satisfies (iv)–(vi). (See e.g. [LØ1] for more details.) And (vii) follows
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from (3.25). By Theorem 2.1 b) we conclude that if x ≤ x∗ then γ∗ := γ̂ is optimal and
ϕ(s, x) = Φ(s, x). Finally, if x > x∗ then it follows by (3.22) that immediate chattering from x
down to x∗ gives the value 2e−ρs

(√
x −

√
x∗ )

+ Φ(s, x∗). Hence

Φ(s, x) ≥ 2e−ρs
(√

x −
√

x∗ )
+ Φ(s, x∗) for x > x∗ .

Combined with (3.30) this proves taht

ϕ(s, x) = Φ(s, x) for all s, x

and the proof of b) is complete.

Example 3.3. The Brownian motion example is perhaps not so good in biology contexts, since
Brownian motion is a poor model for population growth. Instead, let us consider a standard
model for a population (in the sense that it can be generated from a classic birth-death-process),
like the logistic diffusion considered in [AS]. That is, let us consider the problem

Φ(0, x) = V (x) := sup
γ∈Γ

Ex

∫
[0,T )

e−ρtX−1/2(t−)dγ(t)(3.31)

subject to

dX(t) = µX(t)(1 − K−1X(t))dt + σX(t)dB(t) − dγ(t), X(0−) = x > 0 ,(3.32)

where µ > 0, K−1 > 0, and σ > 0 are known constants, B(t) denotes a Brownian motion
in R, and T = inf{t ≥ 0 : X(t) ≤ 0} denotes the extinction time. We define the mapping
H : R+ �→ R+ as

H(x) =

x∫
0

y−1/2dy = 2
√

x .(3.33)

The generator A of X(t) is given by

A = 1
2σ2x2 d2

dx2
+ µx(1 − K−1x)

d

dx

and we find that

G(x) := ((A − ρ)H)(x) =
√

x
[
µ − 2ρ − σ2/4 − µK−1x

]
.(3.34)

Thus, if µ ≤ 2ρ + σ2/4 then by the same argument as in Example 3.2 we see that the optimal
policy is immediate chattering down to 0. We then have T = 0, and the value reads as

V (x) = 2
√

x .(3.35)

However, if µ > 2ρ+σ2/4, then we see that the mapping G(x) satisfies the conditions of Theorem
2 in [A2] and, therefore we find that there is a unique threshold x∗ satisfying the condition

x∗ψ′′(x∗) + 1
2ψ′(x∗) = 0 ,(3.36)
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where ψ(x) denotes the increasing fundamental solution of the ordinary differential equation

((A−ρ)u)(x) = 0, that is, ψ(x) = xθM(θ, 2θ+ 2µ
σ2 , 2µK−1

σ2 x), where θ = 1
2−

µ
σ2 +

√
(1
2 − µ

σ2 )2 + 2r
σ2 ,

and M denotes the confluent hypergeometric function. In this case, the value reads as

V (x) =

{
2(
√

x −
√

x∗) +
√

x∗(µ(1 − K−1x∗) − σ2/4)/r, x ≥ x∗

ψ(x)√
x∗ψ′(x∗)

, x < x∗.
(3.37)

Especially, the value is a solution of the variational inequality

min{((ρ − A)V )(x), V ′(x) − x−1/2} = 0.

We summarize this as follows:

Theorem 3.4. a) Assume that

µ ≤ 2ρ + σ2/4 .(3.38)

Then the value function V (x) of problem (3.31) is

V (x) = 2
√

x .(3.39)

This value is obtained by immediate chattering down to 0.

b) Assume that

µ > 2ρ + σ2/4 .(3.40)

Then V (x) is given by (3.37). The corresponding optimal policy is immediate chattering from
x down to x∗ if x > x∗, and local time at x∗ of the downward reflected process X̄(t) at x∗ if
x < x∗, where x∗ is given by (3.36).
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