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Introduction. Let k be any field, most often assumed to be algebraically closed,
and consider a finitely generated k-algebra A. Let

Simp<oo(A) = U Simpy, (A)

be the set of (iso-classes of) finite dimensional simple right A-modules. An n-
dimensional simple A-module V' € Simp,,(A) defines a surjectiv homomorphism of
k-algebras, p : A — Endy(V), the kernel of which is a two-sided maximal ideal my,
of A. Let Mazr<s be the set of all such maximal ideals of A, for n > 1. To exclude
some strange and for our purposes non-interesting cases, we shall assume that A
has the following property:

Rad(A)*> := ﬂ m" =0

meMaz<oo(A),n>0

For want of a better name, we shall call such algebras geometric. It is easy to see
that any finitely generated left (or right) Noetherian k-algebra A is geometric. The
condition above is actually satisfied for most finitely generated k-algebras that we
have come across and, in particular, for the free k-algebra on d symbols, A = k <
X1, T, ..., Tq >, see the example (4.19) of [La 1].

We shall be concerned with the structure of the individual Sirmp,(A), n > 1, and
we shall construct natural completions Simpr(A), of the scheme Simp, (A), adding
indecomposable modules. We shall also see that the scheme of indecomposable two-
dimensional representations induces interesting correspondences for hypersurfaces,
and in particular for plane curves. The study of Indr(A) := Simpr(A)—Simp,(A)
may also throw light on the classical McKay correspondence. As a tool for studying
Simpr(A) we introduce the Jordan morphism, and corresponding generalizations of
the Deligne-Simpson problem. Finally we shall discuss to what extent the the family
{Simpy(A)}n>1 of schemes determine the globale structure of A. In particular, are
the K-groups (resp. the cyclic homology) of A determined by the K-groups, (resp.
the de Rham cohomology) of the different Simp,, (A)? Conversely, what can we
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2 OLAV ARNFINN LAUDAL

learn about the de Rham cohomology of Simp,,(A), knowing the cyclic cohomology
of A?

This paper is meant as an introduction to a more comprehensive study of non-
commutative plane curves, see [Jp-La-Sl].

Some general results. In [La 1] we introduced non-commutative deformations
of families of modules of non-commutative k-algebras, and the notion of swarm
of right modules (or more generally of objects in a k-linear abelian category).
Let a, denote the category of r-pointed not necessarily commutative k-algebras
R. The objects are the diagrams of k-algebras,

WS RS R

such that the composition of ¢ and p is the identity. Any such r-pointed k-algebra
R is isomorphic to a k-algebra of r x r-matrices (R; ;). The radical of R is the
bilateral ideal Rad(R) := kerp, such that R/Rad(R) ~ k™. The dual k-vectorspace
of Rad(R)/Rad(R)? is called the tangent space of R.

For r = 1, there is an obvious inclusion of categories

ngl

where [, as usual, denotes the category of commutative local artinian k-algebras
with residue field k.

Fix a not necessarily commutative k-algebra A and consider a right A-module
M. The ordinary deformation functor

Defy : I — Sets

is then defined. Assuming Eat'y(M, M) has finite k-dimension for i = 1,2, it is
well known, see [Sch], or [La 0], that Def,, has a noetherian prorepresenting hull
H, the formal moduli of M. Moreover, the tangent space of H is isomorphic to
ExtYyy (M, M), and H can be computed in terms of Exty (M, M), i = 1,2 and their
matric Massey products, see [La 0].

In the general case, consider a finite family V = {V;}!_; of right A-modules.

Assume that,
dimyExty (Vi, V}) < oc.

Any such family of A-modules will be called a swarm. Define a deformation functor,
Defy : a, — Sets

generalizing the functor Def,,; above. Given an object p: R = (R; ;) — k" of a,.,
consider the k-vectorspace and R-left module (R; j ®j Vj). p defines a k-linear and
left R-linear map,

p(R) : (Rij @k Vj) = i Vi,

inducing a homomorphism of R-endomorphism rings,

P(R) : (Rij @) Homp(V;, Vj)) — @iz Endy(Vi).
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The right A-module structure on the V/s is defined by a homomorphism of k-
algebras, n9 : A — @&]_; Endy(V;). Let

Defy(R) € Sets
be the isoclasses of homomorphisms of k-algebras,
n' A — (R j @k Homg(V;, Vy))
such that,

ﬁ(R> © 77/ = To,

where the equivalence relation is defined by inner automorphisms in the k-algebra
(Ri,; @ Homy(V;, Vj)). One easily proves that Defy has the same properties as
the ordinary deformation functor and we prove the following, see [La 1-2, (2.6)]:

Theorem 1. The functor Def), has a prorepresentable hull, i.e. an object H of
the category of pro-objects d, of a,., together with a versal family,

V = (H;; ®Vj) € lim Defy(H/m")

n>1
such that the corresponding morphism of functors on a,.,
p: Mor(H,—) — Defy

is smooth, and an isomorphism on the tangent level. Moreover, H is uniquely
determined by a set of matric Massey products of the form

Ext*(Vi, Vi) ®---® Ext*(V}, |, Vi) — Ext*(V;, V).

n—17

The right action of A on V defines a homomorphism of k-algebras,

n:A— O(V) = EndH(V) = (Hi!j X Homk(Vi,Vj)),

and the k-algebra O(V) acts on the family of A-modules V = {V;}, extending
the action of A. If dimiV; < oo, for all ¢ = 1,...,7, the operation of associating
(O(V),V) to (A, V) turns out to be a closure operation.

Moreover, we prove the crucial result,

A generalized Burnside theorem. Let A be a finite dimensional k-algebra, k
an algebraically closed field. Consider the family V = {V;}I_, of simple A-modules,
then

n:A-— OV)=(H;;® Homg(V;, Vj))

is an isomorphism.

We also proved that there exists, in the noncommutative deformation theory, an
obvious analogy to the notion of prorepresenting (modular) substratum Hy of the
formal moduli H. The tangent space of Hy is determined by a family of subspaces

Extg(Vi, Vy) C Baty(Vi,Vy),  i#]
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the elements of which should be called the almost split extensions (sequences) rel-
ative to the family V', and by a subspace,

To(A) C [ [ Bath(Vi, Vi)

which is the tangent space of the deformation functor of the full subcategory of
the category of A-modules generated by the family V = {V;}/_,, see [La 1]. If
V = {V;}_, is the set of all indecomposables of some artinian k-algebra A, we show
that the above notion of almost split sequence coincides with that of Auslander, see
[R].

Using this we consider, in [La 2], the general problem of classification of iterated
extensions of a family of modules V = {V;, }7_,, and the corresponding classifica-
tion of filtered modules with graded components in the family V', and extension
type given by a directed representation graph I', see under section Completion of
Simpy(A). The main result is the following, see [La 2. (4.7)], and :

Proposition 2. Let A be any k-algebra, V = {V;}/_, any swarm of A-modules,
i.e. such that,

dimy, Ezth(Vi,Vj) <oo foralli,j=1,...,r

(i): Consider an iterated extension E of V, with representation graph I'. Then
there exists a morphism of k-algebras

¢ H(V) — k[l
such that
E ~ k[[®4V

in the above sense.
(ii): The set of equivalence classes of iterated extensions of V with representation
graph I', is a quotient of the set of closed points of the affine algebraic scheme

A[l'l = Mor(H(V), k(L)

(iii): There is a versal family V[I'] of A-modules defined on A[l'], containing as
fibres all the isomorphism classes of iterated extensions of V with representation
graph I

To any, not necessarily finite, swarm ¢ C mod(A) of right-A-modules, we have
associated two associative k-algebras, see [La 1,3], O(l¢|,7), and a sub-quotient
Or(c), together with natural k-algebra homomorphisms,

n(lel) : A — O(le| )

and,
n(c) : A — Ox(c)
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with the property that the A-module structure on ¢ is extended to an O-module
structure in an optimal way. We then defined an affine non-commutative scheme of
right A-modules to be a swarm ¢ of right A-modules, such that n(c) is an isomor-
phism. In particular we considered, for finitely generated k-algebras, the swarm
Simp% . (A) consisting of the finite dimensional simple A-modules, and the generic
point A, together with all morphisms between them. The fact that this is a swarm,
i.e. that for all objects V;,V; € Simp<oo we have dimyExt!y(V;,V;) < oo, is easily
proved. We have in [La 1] proved the following result, (see (5.20), loc.cit. and
Lemma 2. above.)

Proposition 3. Let A be a geometric k-algebra, then the natural homomorphism,
n(Simp*(A4)) : A — O (SimpZL (4))
is an isomorphism, i.e. Simp% (A) is a scheme for A.

In particular, Simp% (k < x1,22,...,2q4 >), is a scheme for k < z1, 22, ..., 24 >.
To analyze the local structure of Simp,,(A), we need the following, see [La 2], §4:
Lemma 4. Let V = {V;},—1,., be a finite subset of Simp..(A), then the mor-
phisme of k-algebras,

A— OV) = (H,; ®r Homy(V;, V}))
is topologically surjective.
Proof. Since the simple modules V;, ¢ = 1,..,r are distinct, there is an obvious
surjection, 7 : A — [[,_,  Endy(V;). Put v = kerm, and consider for m > 2
the finite-dimensional k-algebra, B := A/t™. Clearly Simp(B) = V, so that by
the generalized Burnside theorem, see [La], §4, we find, B ~ OP(V) := (HfJ g
Homy(V;,V;)). Consider the commutative diagram,

A— (Hfj ®k Homy(V;,V;)) =: o0A(V)

|

B—————(H{%; ® Homy(V;, V})) —*——>0*(V) /rad™

where all morphisms are natural. In particular « exists since B = A/t™ maps
into O4(V)/rad™, and therefore induces the morphism a commuting with the rest
of the morphisms. Consequently « has to be surjective, and we have proved the
contention.

O

Localization and topology on Simp(A). Let s € A, and consider the open
subset D(s) = {V € Simp(A)| p(s) invertible in Endy(V)}. The Jacobson topology
on Simp(A) is the topology with basis {D(s)| s € A}. It is clear that the natural
morphism,
n:A— Oz(D(s))

maps s into an invertible element of O(D(s), 7). Therefore we may define the
localization Ay, of A, as the k-algebra generated in O(D(s), 7) by Or(D(s)) and
the inverse of n(s). This furnishes a general methode of localization with all the
properties one would wish. And in this way we also find a canonical (pre)sheaf, O
defined on Simp(A).
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Definition 5. When the k-algebra A is geometric, such that Simp*(A) is a scheme
for A, we shall refer to the presheaf O, defined above on the Jacobson topology, as
the structure presheaf of the scheme Simp(A).

In the next § we shall see that the Jacobson topology on Simp(A), restricted to
each Simp,(A) is the Zariski topology for a classical scheme-structure on
Simpy, (A).

Notice that, working on non-commutative invariant theory, one is led to believe
that the topology on Simp(A) should be saturated with respect to infinitesimal
incidence, i.e. should be such that ExtY(V,V’) # 0 implies V' is in the closure of
V. We shall come back to this later.

The algebraic (scheme) structure on Simp, (A). Recall that a standard n-
commutator relation in a k-algebra A is a relation of the type,

[a1, a2, ..., a,] := Z 5ign(0)ag(1)0g(2)+- 0o (2n) = 0
gEYon

where {aj,as,...,as,} is a subset of A. Let I(n) be the two-sided ideal of A gener-
ated by the subset,

{la1, az, .., a2y]| {a1,a2,...;a2,} C A}.
Consider the canonical homomorphism,
pn: A— A/I(n) =: A(n).
It is well known that any homomorphism of k-algebras,
p:A— Endg (k™) =: My(k)

factors through p,, see e.g. [Formanek].

Corollary 6. (i). Let V;,V; € Simp<,(A) and put v = my, Nmy,. Then we have,
for m > 2,
Baty(Vi, V) =~ Brtl jou(Vi, V)

(ii). Let V € Simp,,(A). Then,

Exty(V,V) =~ Baty ) (V,V)

Proof. (i) follows directely from Lemma 2. To see (ii), notice that Ext!y(V,V) =
HHY (A, Endy(V)) = Derg(A, Endg(V))/Triv = Derg(A(n), Endg(V))/Triv ~
E:ct}A(n)(V, V). The third equality follows from the fact that any derivation maps
a standard n-commutator relation into a sum of standard n-commutator relations.

O
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Example 7. Notice that, for distinct V;,V; € Simp<,(A), we may well have,

In fact, consider the matrix k-algebra,

_ ( Kl=] K]
A= (55 ),
and let n = 1. Then A(1) = k[z]@k[z]. Put V; = k[z]/(z)®(0),V; = (0)®k[z]/(z),

then it is easy to see that,
Exty(V;,V;) = k, Exty,(Vi,V;) = 0.

Lemma 8. Let B be a k-algebra, and let V' be a vectorspace of dimension n, such
that the k-algebra B ® Endy (V') satisfies the standard n-commutator-relations, i.e.
such that the ideal, I(n) C B® Endy(V') generated by the standard n-commutators
[€1, @2, .., x2y], x; € B® Endy(V), is zero. Then B is commutative.

Proof. In fact if by, by € B is such that [by, ba] # 0, then the obvious n-commutator,
b161,1b2€1,161,262,2---en—l,n - erl,lbl61,161,262,2---en—1,n

is different from 0. Here e; ; is the n x n matrix with all elements equal to 0, except
the one in the (i, j) position, where the element is equal to 1.

O

Lemma 9. If A is a finite type k-algebra, then any V € Simp, (A) is an A(n) :=
A/I,-module, and the corresponding formal moduli, H*") (V) is isomorphic to
HA(V)eo™ the commutativization of HA(V).

Proof. Consider the natural diagram of homomorphisms of k-algebras,

Il O(Simpl*(A), )
Z(A(n)) A(n) O(Simp;,(A), )

| l |

H(V)eom™ ——s H(V)“" @ Endy(V) <— (H; ; @ Homy(V;, Vj))

where Z(A(n)) is the center of A(n) := A/I,, V;,V; € Simp,(A), and H(V )™
is the commutativization of H(V'). Clearly there are natural morphisms of formal
moduli,
HA(V) _ HA(n) (V) _ HA(V)com _ HA(n)(V)com_
Since moreover
A(n) — HA(V) @ Endy(V)
is topologically surjective, we find using (Lemma 6), that 4 (V) is commutative.
But then the composition,
HA(n)(V) N HA(V)com N HA(n) (V)com,
is an isomorphism. Since by Corollary 4. the tangent spaces of HA(”)(V) and
H#(V) are isomorphic, the lemma is proved.

O
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Corollary 10. Let A = k < x1,..,xzq > be the free k-algebra on d symbols, and
let V' € Simp,,(A). Then

HAWV)m™ o HAM(V) = E[[t1, coos ta—1yn2 1]

This should be compared with the results of [Procesi 1.], see also [Formanek].
There are further examples, some based upon the calculation of Tord Romstad, see
[Romstad], showing that H* (V) is not commutative, even though V € Simp(A) =
Simp<a(A).

In general the natural morphism,

n(n): A(n) — H HAM™ (V) ® Endg, (V)

VeSimpy,(A)
is not an injection.
Example 11. In fact, let
kE k k
A=k k k
o 0 k

The ideal I(2) is generated by [e11, €1,2€2 262 3] = €1.3. So

k ok ok 00 k
A2)= |k k k|/|0 0 k| =DMk oMk).
o k k o 0 0

Hovever,
[I EH*®(V) @k Ende(V) = Ma(k),
VeSimpa(A)

therefore ker n(2) = My (k) = k.
Let O(n), be the image of A(n), then obviously,
om)y— [[ HO"(V)®k Ende(V)
VeSimpy, (A)

is injective and,
HOM (V) ~ HAM (V).

for every V'€ Simpy(A). Put B = [Ty csimp. (4) HAM(V). Let z; € Ayi =1,....d
be generators of A, and consider the images (z}, ) € B ®) Endy(k") of z; via the
injective homomorphism of k-algebras,

O(n) — B ® End(k™),

obtained by choosing bases in all V' € Simp,(A4). Now, B is commutative, so
the k-subalgebra C(n) C B generated by the elements {z),  }i=1, d; pg=1,.,n IS
commutative. We have an injection ,

O(n) — C(n) @ Endy (k™).
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and for all V € Simp,, (A) there is a natural projection,
C(n) @, Endy (k™) — HAM(V) @4 Endg, (V).
This defines a set theoretical map,
t: Simp,(A) — Simp(C(n)).

Since A(n) — HAM™ (V) ® Endy,(V) is topologically surjective, HAM (V) &,
End (V) is topologically generated by the images of z;. It follows that we have a
surjective homomorphism,

Covy(n) — HAM(V),
Categorical properties implies, as usual, that there is another natural morphism,

HAM(V) = Cyv)(n)

which composed with the former is an automorphism of H4() (V). Since

Cn)® Endg(k") S [  HO™(V) &k Endy (V).
VeSimpy (A)

It follows that for v € Simp(C(n)), corresponding to V € Simp,(A), the finite
dimensional k-algebra C(n)/m,? ®x Endy (k™) sits in a finite dimensional quotient
of,

H Ho(n) (V) Rk Endk,(V)

vev

where V' C Simp,,(A) is finite. However, by Lemma 4. the composition of the
morphisms,

A— O(n) — [] HO™(V) @k Endi(V)
vev

is topologically surjectiv. Therefore the morphism,
A — C(n)/m,?* @ Endy(k™)
is surjectiv, implying that the map
HA(”)(V) — C’t(v)(n),

is surjectiv, and consequently, HA™ (V) ~ C(n),.

Moreover ¢ is injective, so Simp,(A4) C Simp(C(n)). We have the following
theorem, see Chapter VIII, §2, of the book of C. Procesi, [Procesi 2.], where part
of this theorem is proved.
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Theorem 12. Let V € Simp,,(A), correspond to the point v € Spec(C(n)). Then
there exist a Zariski neighborhood U,, of v in Spec(C(n)) such that any v’ € U corre-
sponds to a point V' € Simp,,(A). Let U(n) be the open subscheme of Spec(C(n)),
the union of all U, for V€ Simpy,(A). O(n) defines a non-commutative structure
sheaf O(n) := Ogimp, (a) of Azumaya algebras on the topological space Simpy,(A)
(Jacobson topology). The center S(n) of O(n), defines a scheme structure on
Simpy, (A). Moreover, there is a morphism of schemes,

k:U(n) — Simp,(A),
Such that for any v € U(n),

S(n)w(w) = HAM(V)

Proof. Let p : A — Endi(V) be the surjective homomorphism of k-algebras,
defining V' € Simpp(A). Let, as above e; ; € Endi(V) be the elementary matri-
ces, and pick y; ; € A such that p(y; ;) = e;;. Let us denote by o the cyclical
permutation of the integers {1,2,...,n}, and put,

Sk = [yak(l),ak@)uyak(Q),ok@)ayak(Q),ok(S)"'yak(n),ak(n)]v §i= Z sk € A.
k=0,1,..,n—1

Clearly s € I(n - 1). Since [eo-k(l)’o-k(g),eo-k(Q)’a-k(z),eo-k(Q)yo-k(?))...eo.k(n)ya.k(n)] =
€ok(1),0k(n) € Endi(V), p(s) := 3 k01 n1P(sk) € Endi(V) is the matrix with
non-zero elements, equal to 1, only in the (¢%(1), 0¥ (n)) position, so the determinant
of p(s) must be +1 or -1. The determinant det(s) € C(n) is therefore nonzero at
the point v € Spec(C(n)) corresponding to V. Put U = D(det(s)) C Spec(C(n)),
and consider the localization O(n);sy € C(n){det(s)y @& Endi(V), the inclusion
following from general properties of the localization, see above. Now, any closed
point v’ € U corresponds to a m-dimensional representation of A, for which the
element s € I(n — 1) is invertible. But then this representation cannot have a
m < n dimensional quotient, so it must be simple.

Since s € I(n — 1), the localized k-algebra O(n)(s; does not have any simple
modules of dimension less than n, and no simple modules of dimension > n . In
fact, for any finite dimensional O(n)s;-module V', of dimension m, the image 3 of
s in Endi (V) must be invertible. However, the inverse $~! must be the image of
a polynomial (of degree m — 1) in s. Therefore, if V' is simple over O(n) 4, i.e. if
the homomorphism O(n)(s; — Endy(V) is surjective, V' must also be simple over
A. Since now s € I(n — 1), it follows that m > n. If m > n, we may construct,
in the same way as above an element in I(n) mapping into a nonzero element of
Endy (V). Since, by construction, I(n) = 0 in A(n), and therefore also in O(n) 4,
we have proved what we wanted. By a theorem of M.Artin, see [Artin], O(n)s
must be an Azumya algebra over its center, S(n)(s = Z(O(n)(s}). Therefore
O(n) defines a presheat O(n) on Simp,(A), of Azumaya algebras over its center
S(n) :== Z(O(n)). Clearly, any V € Simp,(A), corresponding to v € Spec(C(n))
maps to a point s := k(v) € Spec(O(n)). Since we know that,

HOM (V) o HAM (V)
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and since O(n) is, locally Azumaya, it is clear that,
S(n)s ~ HOMW (V) ~ HAM(V).

The rest is clear.

O
Moreover, Spec(C(n)) is, in a sense, a compactification of Simp,(A), and we
shall be able, using this embedding to study the degeneration processes that occur,
at infinity in Simpy(A).

Example 13. Let us check the case of A = k < 1,2 >, the free non-commutative
k-algebra on two symbols. First, let us compute Exty(V,V) for V € Simpa(A),
and find a basis {t},}°_,, represented by derivations 1; € Dery(A, Endi(V)),
i=1,2,3,4,5. This is easy, since we have the exact sequence,

0 — Homa(V1,Va) — Homy(Vh,V2) — Derg(A, Homy(Vh, V2))
— Ea:tfq(Vl, VQ) — 0
proving that, Ext! (V1, V) = Dery(A, Homy(V1,V2))/Triv, where T'riv is the sub-

vectorspace of trivial derivations. Pick V' € Simps(A) defined by the homomor-
phism A — M (k) mapping the generators x1,zy to the matrices

0 1 00
Xl = (0 0> =:é€1,2, X2 = (1 0) =!l€2,1-

Notice that
1 0 0 0
X1 Xy = (0 0) =i€1,1 = €1, Xo Xy = (0 1) =i€22 = €2,

and recall also that for any 2 X 2-matrix (apq) € Ma(k), e;(apq)e; = a; je; ;. The
trivial derivations are generated by the derivations {6 q}p q=1.2, defined by,

Op,q(Ti) = Ti€pq — €pqTi-

Clearly 61,1 + 622 = 0. Now, compute and show that the derivations 1;, i =
1,2,3,4,5, defined by,

Yi(xp) =0,fori =1,2,p=1, () =0,fori=4,5.p=2
by,
VY1(x2) = e1,1,9%2(22) = €12, Y3(21) = e1,2,%u(z1) = €21,95(71) = ez 1)

and by,
’¢3($2) =e€21
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form a basis for Exty,(V,V) = Dery(A, Endy(V))/Triv. Therefore H(V) =
k[[t1,t2,t3,t4,t5]], and the formal versal family V, is defined by the actions of

1, T, given by,
L 0 1 +t3 L tl t2
Xl'_<t5 ta )’XZ‘_<1+t3 0)'

One checks that there are polynomials of X1, X, which are equal to t;e, , modulo
the ideal (t1,..,t5)?> C H(V), for all i,p,q = 1,2. This proves that C(2), ~ H(V),
and that the composition,

A — A(2) — My(C(2)) € My(H(V)))

is topologically surjective.

Completions of Simp,(A). In the example above it is easy to see that elements
of the complement of Simp,(A) in the affine subscheme Spec(C(n)) may not be
represented by simple, nor indecomposable, representations. A decomposable rep-
resentation W will not, however, in general be deformable into a simple representa-
tion, since good deformations should conserve End4(W). Therefore, even though
we have termed Spec(C(n)) a compactification of Simp,,(A), it is a bad completion.
The missing points at infinity of Simp,(A), should be represented as indecompos-
able representations, with End4 (W) = k. Any such is an iterated extension of
simple representations {V;},=12 s, with representation graph I' (corresponding to
an extension type, see [La 2]), and i, dim(V;) = n. To simplify the notations
we shall write, |T'| := {Vi}i—1,2,.5. In [La 2] we treat the problem of classifying all
such, up to isomorphisms. Assume now that this problem is solved, i.e. that we
have identified the non-commutative scheme of indecomposable I'-representation,
call it Indp(A). Put Simpr(A) := Simpy,(A) U Indr(A). Now, repeat the basics
of the construction of Spec(C(n)) above. Consider for every open affine subscheme
D(s) C Simpr(A), the natural morphism,

A— lim O(em)
—
cCD(s)

¢ running through all finite subsets of D(s), and consider, in particular, its projec-
tion,
A— An H HAM (V)™ @ Endy (V).
VeD(s)

Put Bs(T) := [[yeps) HAM (VYeom Tet a; € Ayi = 1,...,d be generators of A,
and consider the images (¢, ) € By(n) ® Endg(k™) of ; via the homomorphism
of k-algebras,

A — By(I') ® M,(k),

obtained by choosing bases in all V' € Simpr(A). Notice that since V' no longer
is (necessarily) simple, we do not know that this map is topologically surjectiv.
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Now, Bs(T") is commutative, so the k-subalgebra C,(I") C B,(T") generated by the
elements {xéyq}izlwd; p.a=1,..,n 15 commutative. We have a morphism,

L(T) : A — Co(T) @k My (k) = M, (Ci(I)).

Moreover, these Cs(T") define a presheaf, C(T"), on the Jacobson topology of
Simpr(A). The rank n free Cs(I")-modules with the A-actions given by I4(I'), glue
together to form a locally free C(I')-Module £(I") on Simpr(A), and the morphisms
I(n) induce a morphism of sheaves of algebras,

I(T') : A — Ender)(E(T)).

As for every V € Simpr(A), Enda(V) = k, the commutator of A in HA(V)™ @y,
End,(V) is HA(V)c™, The morphism,

(V) : HA(V)™ — HH(A, H*(V)™ ®, Endy(V))
is therefore an isomorphism, and we may assume that the corresponding morphism,
¢:C(I') — HH°(A, Endery(E(I)))

is an isomorphism of sheaves. For all V' € D(s) C Simpr(A) there is a natural
projection,

R(D) : Cs(T) @k My (k) — HAM (V)" 0y Endy(V),
which, composed with I4(T") is the natural homomorphism,
A — HAM(V)" @) Endy, (V)
k defines a set theoretical map,
t: Simpr(A) — Spec(C(T)),
and a natural surjectiv homomorphism,
C(D)eqvy — HAM(V)eom.

Categorical properties implies, as usual, that there is another natural morphism,
L HAM(V) = C(D)sqvy,

which composed with the former is the obvious surjection, and such that the induced
composition,

A — HAM (V)™ @ Endy, (V) — C(D)yvy @k Endi(V),

is I(T'") formalized at ¢(V'). From this, and from the definition of C(T'), it follows
that ¢ is surjective, such that for every V' € Simpr(A) there is an isomorphism
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HAM) (V)eom ~ é(F)t(V). For V' € Simpr(A) there is also a natural commutative
diagram,

ZA(n) c(l)
A(n) Ender(E(T))

| |

HAM(V) @4 Endg(V) —=C(D)yv)(n) @k Endg(V)

Formally at a point V' € Simpr(A), we have therefore proved that the local, commu-
tative structure of Simpr(A) (as A or A(n)-module), and the corresponding local
structure of Spec(C(T")) at V, coincide. We have actually proved the following,

Theorem 14. The topological space Simpr(A), with the Jacobson topology, to-
gether with the sheaf of commutative k-algebras C(T") defines a scheme structure on
Simpr(A), containing an open subscheme, etale over Simp,(A). Moreover, there
is a morphism,

7w(T) : Simpr(A) — Spec(ZA(n)),

extending the natural morphism,

mo : Simp,, (A) — Spec(ZA(n)).

Proof. As in Theorem 12. we prove that if v = ¢(V), V € Simpr(A), then
there exists an open subscheme of Spec(C(T")) containing only indecomposables
with End (V) = k. The rest is clear.

O
These morphisms 7(I') are our candidates for the possibly different completions
of Simpn(A). Notice that for W € Spec(C(n)) — Simpy,(A), the formal moduli
HA(W) is not always prorepresenting, since Enda (W) # k when W is semisimple,
but not simple. The corresponding modular substratum will, locally, correspond

to the semisimple deformations of W, thus to a closed subscheme of Spec(C(n)) —
Simpn(A) C Spec(C(n)).

The McKay correspondence. Let us consider a special case, where a finite
group GG acts on a finite dimensional k-vectorspace, U. Put, Ay := Symy(U*),
and let A := O(Simp*(Ap — G)) be the k-algebra of observables of the A — G-
swarm of orbits of the G-action. Recall, see [La 3], §8, that ZA = A§, and that
the classical quotient scheme U/G (exist and) is isomorphic to Spec(A§). Let
{Vi};_, be the finite family of irreducible (simple) G-representations. Let I' be a
representation graph (defining an extension type) of dimension n, i.e. such that
IT| = {Vi,}5-1, >p—1 dim;V;, = n, and use Theorem 14. It says that there exist
a scheme Simpr(A) and a morphism,

7 : Simpr(A) — U/G = Spec(AS),
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extending the natural morphism,
o : Simpy(A) — Spec(AS).

If n > ordG + 1 the scheme Simp,(A) has to be empty, since any V € Simp,(A)
with support outside the origin in Spec(Ayp), correspond to a reduced orbit, and
so necessarily have length less or equal to the order of G, and any V' with support
in {0} is a simple G-representation with trivial A-action, so dim;V < |G|. Now,
suppose G acts freely on an open subset of Spec(A4y), and let T" be a representation
graph (corresponding to the extension type) of the regular representation of G.
Under which conditions is the morphism,

7 : Simpr(A) — Spec(A§),

a desingularization of the affine scheme Spec(A§)? If it is, is the representation
graph uniquely determined? We shall come back to these well known problems in
a later paper. However, to see how we may compute the morphism 7 let us here
consider two very simple examples:

1. Consider the group G = Z/(2), generated by 7, acting on U = k? by 7 = —id.
In this case Ag = k[z,y], and 7(z) = —z, 7(y) = —y, and A§ = k[z?, y? 2] is
the well known singularity. Clearly G has two simple (irreducible) representations
of dimension 1, V;, i = 0,1, where 7 acts as (—1)%, respectively, and the regular
representation, is the sum of these. The orbits of G in Spec(Ag) = A2, are either
of length 2, corresponding to a simple A-module of dimension 2, or is reduced to
the origin. Therefore the indecomposable A-modules of dimension 2, must all have
support at the origin. They must therefore be given by the indecomposables of
representation graph,

Voe——e V.

Now all such are given in terms of the following actions of x, y, 7 on the vectorspace

k2.
0,0 (0,0 (1,0
ox = (90)r = (90)o= (10, e
or
0,0 (0,0 (1,0
X =(00) = (1) 7= (0-1)
Compute,

Exty(V;, Vi) = HHY(A, Endy(V})) = Dery (A, Endy,(V;))/Triv.

It is easy to see that Extl(V;,V;) = k2, generated by the derivations, acting as

follows:
0,w _ ( 0,tw (0,0
6(T)_(0’0)76(y)_(1)’ 0)76(7-)_(0’0)

parametrized by v,w. The corresponding formal moduli, and formal miniversal
family are given by,

com __ - (0w ~ [ 0,tw+vw - (1,0
e =alalla = ($5)a= (") o= (5 )-
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This is easily seen by checking the relations, xy = yx,x7 = —72,y7 = —7y in A.

Notice that the formal miniversal family is algebraic, and that for w = 0 this
gives us indecomposable A-modules, while for w # 0 the corresponding A-module
is simple. Moreover, the map,

AS = k[z?, 92, xy] C k[v,w]

is given by,
2 =w, y* = (t+v)*w, zy = (v+t)w,
which proves that,
7(T) : Simpr(A) — Spec(A§)

is a desingularization of the affine scheme Spec(A§). In fact it is just the ordinary
desingularization of the A;-singularity A§ = k[z?,9%, zy], and T is just the cor-
responding Dynkin diagram. The exceptional fibre of 7 is obviously P!, given by
w = 0, and V,,, see above.

2. Consider now the group G = Z/(2), generated by 7, acting on U = k?

by 7 = (01’_01). In this case Ag = k[z,y], and 7(2) = z, 7(y) = —y, and

A§ = k[z,y?] is non-singular. G has the two simple (irreducible) representations
of dimension 1, V;, i = 0,1, where 7 acts as (—1)%, respectively, and the regular
representation, is the sum of these. The orbits of G in Spec(Ag) = A2, are either
of length 2, corresponding to a simple A-module of dimension 2, or is supported by
the z-axis. Therefore the non-simple indecomposable A-modules of dimension 2,
must all have support at the z-axis. They must be given by the indecomposables
with representation graph,
Voe——=e V).

Now all such are easily seen to be given by k[z,y]/(z — t,9?), identified with the
z-axis. A similar computation as above shows that,

7(T) : Simpr(A) — Spec(A§).

is an isomorphism.

The general problem posed above seems not to be very easy, although the story
is well known in case G C Sly(k), and there is a long list of papers on the subject,
see [B-K-R].

Now, consider for sy < 51 < n, Vq € Simps, (A4), Vo € Simp,,(A), the commu-
tative diagram,

Z(ln) — A(ln)
Z(Sl) A(81> Endk(Vl)
Z(s2) A(s2) End(Va).

Put p2 := pp1, and let ¢(V;) € Simp(Z(s;)) be the points corresponding to the
simple modules V.
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Lemma 15. In the situation above, if E:L‘th(n)(vi, V;) # 0 then
pi: Simp(Z(s;)) — Simp(Z(n)), i =1,2.

maps t(V;) to the same point.

Proof. Tf p1(t(V1)) # p2(¢(V2)), the two corresponding maximal ideals m;, i = 1,2,
of Z(n) will be distinct, the sum m; + my is then Z(n). However, m; annihilates
V;, therfore the sum will annihilate Ext! (V;, V;), which therefore must be zero.

O

Quantum correspondences of plane curves.
Let f € k < 21,29 >, and put A = k < x1,25 > /(f). Consider the algebraic
plane curve,

C := Simp1(A) = Spec(k|z1, x2]/(f)).
Put

T=e——>9
then there are two natural morphisms
pri : Indr(A) — Simp1(A), i = 1,2,
defining a correspondence,
i) :prlprgl :C --5C.

We shall be interested in computing ®, in general, or rather, we shall be concerned
with the domain of definition of ®, and its degree.
Clearly ps € ®(p;) if and only if

E((p1), k(p2)) := Extly (k(p1), k(p2)) # 0

since then

(k(p1) E((p1), k(p2))* )
0, k(p2)

will be an indecomposable A-module of dimension 2. Here k(p1), k(p2) are, of course
the two simple one-dimensional A-modules, corresponding to the points p1,ps € C.
Now, we have an exact sequence of Hochschild cohomology,

Homy,(k(p1), k(p2)) —¢ Dery (A, Homg(k(p1), k(p2)) — Emtk(k(pl), k(pa)) — 0.

The kernel of ¢ is Homa(k(p1), k(p2)), which is zero if p; # pa, so ¢ must be
injective, and therefore,

Exty(k(p1), k(p2)) = Derp(A, Homy(k(p1), k(p2)))/ k-

This implies that Ext! (k(p1), k(p2)) # 0 if and only if,

Jo(f :p1ip2) =0, Jy(f :p13p2) =0
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Here J,,(f : (x1,%2);(u1,u2)), ¢« = 1,2. are polynomials in two sets of non-
commuting variables, (z1,22) and (u1,u2), linear functions in f, and defined on
monomials mims such that

Jz,(mima) = Jp, (m1)ma(ur, ug) + ma(z1, v2)Je, (ma), Ju, () = 6; 5.

In particular, Ju, ([z1,72]) = uz + 72, Ju,([71,22]) = 21 + 1. Assume the two
equations,
Joi (f 1 (21, 22);5 (u1,u2)) =0, i =1,2.

admits solutions, x; = x;(u1,us), ¢ = 1,2, then put,

f o= flan(ur, u2), w2 (ur, uz)).

Clearly, the condition for the correspondence ® to be defined on an open subscheme
of the curve C| is that f(uy,us) = 0 on an open subscheme of C' = Z(f(uy,uz)).

The remarkable fact is that for any f € k < z1,29 >, we have the following
result,

Proposition 16. Put f, = f+q[z1,z2]. Then, for generic g, fq vanish on an open
subscheme of C.

This is equivalent to saying that for generic ¢, the morphisms
pri : Indr(A) — Simp1(A), i = 1,2,
are dominant and finite. We notice that if they are finite, they must be of degree
<(deg(f)-1)?

Non-commutative Maclaurin series..
Before we prove the Proposition, let us take a second look at the Maclaurin
expansion in classical calculus.

Definition 17. Let f € k < x1,25 > then, for any sequence I, = {iy,ia,...,%,}
with i, € {1,2} we define inductively,

J:L'il,a:.;w...,mir (f : (‘rli IQ); (u17u2)) =

JJMT (‘]9011790127---793ir_1 (f : (I17I2); (u17u2)) : (I17I2); (u17u2))

We shall call Jy; ... a;. (f : (x1,22); (u1,u2)) the non-commutative r’th deriva-
tive (Jacobian) of f with respect to ;,, Ty, ..., Ti,..

Now these derivatives are really very nice, in fact they have the properties of
divided powers,

Lemma 18. Let S(I,.) be the group of permutations of the sequence I,., then in
K[u1, us]

Z Jmi17l‘i2,...,1ir (f : (u17u2); (u17u2)>
(Ir)

0 d 7]

Oz, Oxr_1 Oz

—1/rlral( £, u2),
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where 11,19 are the numbers of, respectively 1 and 2’s in the sequence {i1,ia, ..., i, }

Proof. The formula is true for » = 1, by definition. Assume that it is true for all
monomials f of degree < n — 1, and consider f = m.z;, then, putting z; := z;, to
save space,

oy (mazi 2 (w1, 22); (U1, u2)) = Jo; (M (21, 22); (1, uz) )u; +m.di

Therefore,

> an g, (e (21, 22); (01, u2)) =

S(Ir)
Z i) wig,ys, (M1 (21, 22); (U1, u2) ) ui+
5(1r)
Z iy wigomsw, (m: (21, 22); (w1, u2))0i1
S(Ir)

By induction, this is equal to,

o 0 0 o 0 0
“ , — 1)yt -~
o, 0r. . 2 m)(u1, uz)u;+1/(rq 1).7“2.(81_7, T ..amm

1/rilra)( )(u1, U2)5z',1

which is easily seen to be equal to

o 0 0
—m.x;)(u1, uz)

c’h’r 8$r_1 - 81‘1

1/7‘1!7‘2!(

proving the theorem.

O
Therefore we have, formally, the following result,

Proposition 19. The Maclaurin ( or Taylor) series expansion in k[uy, us,x1, Z2]
of f € k < x1,29 > is the following formula:

J(@1,22) = f(ur,ua)+
D e g, (F 1 (un,ua); (g, u)) (0, — ) (w5, — wi,)onn (4, — i)

11,82 5000y0p

It is easy to see that this may be extended to a Taylor-series expansion in the
non-commutative polynomial k-algebra. In fact, introduce the following notation:

Definition 20. Let f € k < x1,22 >, and let {vi,v2} be new non-commuting
variables. Denote by,
Jo (f rz30,u) €k <z0,u>

the linear function in f, defined for f = x;, resp for f = mx;, by:
I, (l“j T U, u) = bi,jvi

o, (maj : zsv,u) = Jp, (M2 230, w)uy + 65 jmu;
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Proposition 21. For f € k < x1,25 >, and for some non-commuting variables
{v1,v2} we have, in k < u,v >, the following identity,
flur +v1,u2 +v2) = f(ur, u2)+
Z Jlil ,ZiQ,...7£L‘7;,,, (f : (u].? u2); (/Ulﬂ 'UQ); (ula u2))

01,8250 0ey

Now, let us prove Proposition 16. For f = f; + g[z1, 2] the equations,
Jrl(f . (xl,l'g); (’U,l,UQ)) = 0, ’L = 1,2

admits solutions, z; = x;(u1,u2), i = 1,2, in k[u1,uz]. Use the Maclaurin series
expansion of,
Jo, (f 2 (w1, 22); (ur,u2)) i = 1,2,

in k[[uy, ug]].
Then vi get,
T (f 2 (w1, 22)5 (ur,u2)) = Joy (f 5 (w1, u2); (1, u2))+
> T g, (1 (1, u2); (w1, 1)) (i, — tiy) .o (i, — ;)

11,82,y

Since
o, (F 2 (21 (ur, u2), wa(ua, uz)); (ug, uz)) = 0, i =1,2.

we find

Jl’il (f : (ula u2); (ul: UQ))(IM - ui1) =
- Z Jml,mg,---,ﬂﬁir (f = (w1, u2); (ur,u2)) (@i, — wiy ) (Tiy — uiz)"'(xir - uir)

11,8250yl

Using the Maclaurin series in the above Proposition, we obtain,

f= f($1(U17U2)7502(U1, Uz)) = f(U17U2)7

in k[[uy, us]].

It is easy to see that the above can be extended to any hypersurface, and so to
schemes in general. In fact, what we obtain is a kind of Abels addition theorem.
See forthcoming preprint, Oslo University.

The smooth locus of an affine non-commutative scheme.
Recall from [La] that a point V € Simp,(A) is called smooth (regular would
probably have been better), if the natural k-linear map,

K : Derp(A, A) — Exthy(V,V)

is surjective.
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Definition 22. Let V € Simp,,(A), then V is called formally smooth if,
HH?*(A,Endp(V)) =0

Problem: Does
HH?*(A,A) =0

imply that all V' € Simp,,(A) are (formally) smooth?

Let V € Simpy(A), and let v € Simp(Z(A)) be the point corresponding to V.
Denote by m, the corresponding maximal ideal of Z(A). Clearly Z(A) operate nat-
urally on the Hochschild cohomology, HH*(A, A), and the map  factors through,
HHY(A, A)/m,HH'(A, A), so that if V is smooth, we obtain a surjectiv k-linear
map,

ko : HH'Y(A,A)/m,HH' (A, A) — Ext}(V,V).

It follows that maxy csimp(a){dime HH* (A, A)/m,HH*(A, A)} is an upper bound
for the dimensions of the smooth locus of Simp,,(A) for all n > 1.

Clearly the definition of (formal) smoothness also works for any representation
V.

Proposition 23. IfV € Simp,(A) is smooth or formally smooth, then the corre-
sponding point v € Spec(C(n)) is also smooth.

Proof. Assume that V € Simp,(A) is formally smooth, then obviously the com-
pletion of the local ring of Simp,(A) at V is H(V)™, which since H(V') has no
obstructions and therefore must be the completion of the free non-commutative k-
algebra, is a formal power series algebra, and thus V' is a smooth point of Sirnp,, (4).
Now, assume V is smooth, and consider the natural commutative diagram,
Deri(A, A)

p

Der(A(n), A(n))

K \
A /

Derk(O(n){s}aO(n){s}) B

(e}

Derg(S(n),S(n)) ———— Dery(S(n), k(v)).

Notice that § is an isomorphism. This has been proved above. That p exists is
easily seen, since for any derivation § € Dery(A), and for any standard commutator
[x1, 22, ..., x2,] € I(n), we must have 6([z1, 2, ..., Z2,]) € I(n). Notice that the
kernel of the homomorphism, A(n) — O(n) is the image in A(n) of
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n= ﬂ mm.

meMaz,(A),m>1

Clearly any derivation will map an element of n into n, proving the existence
of k. A is defined by localization at the point v € Spec(C(n)), as in the proof of
Theorem 9. We may assume O(n)(s} is a matrix algebra M, (S(n)), and use the
fact that any derivation of a matrix algebra is given by a derivation of the centre
and an inner derivation, (HH?! is Morita invariant). The inner derivation will map
to zero in Ext!(V,V), and so the composition of a and € is surjective.

O
The converse is not true.

Some examples.
1. Let S be any commutative algebra, and denote by b C a C S two ideals of S.
Consider the k-algebra,

ai,1, 0412
A= {( | a;j € S, a1 — a2 €0,012,021 € bp.

az,1, 0a2.2

Clearly the centre of A = A(2) = 0(2), is S(2) = C(2) = S and a simple calculation
shows that,

A(l) = {(al’l’ (}1’2> | a/i,j (S b/ub, ) 75]7 61,1,&42’2 S S/bz,&l,l — 62’2 S a/bz} .

dg;1, G292

Then A(1) is the commutative k-algebra expressed by Nagata rings, i.e.

A(1) = ((S/6%)[(a/6)])[(b/ab)?].

Consider the subschemes V' (a) C V(b) C Spec(S). Then, Simpa(A) = Spec(S) —
V(b) and a simple calculation shows that Simp;(A) = Spec(A(1)) is a thickening
of the affine scheme Spec((S/62)[(a/b%)]). In the special case,

S =klt1,t2], a=(f,9),b=(f)

where f,g € S, correspond to two curves, V(f),V(g) that intersect in a finite
set U, one finds that Simpy(A) is an open affine subscheme of Spec(S), and that
Simp1(A) = Spec(A(1)) is the disjoint union of the curve V(f) with itself, amalga-
mated at the points of U. If both V() and V(g) are smooth, and intersect normally
at the points of U, then the embedding-dimension of Simp;(A) = Spec(A(1)) at a
point not in U, is 2, and at the points of U, 6!

2. Let in the above example, b = a = (t1,12), then Simpy(A) = Spec(s) —
{(0,0)}, therefore not affine, and Simp;(A) = Spec(A(1)) is a thick point situated
at the origin of the affine 2-space Spec(S).

3.Let us compute the Simpy(A) for the non-commutative cusp, i.e. for the k-
algebra,

A=k<zy>/(@®-y?).
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We first notice that the center Z(A) C A is the subalgebra of A generated by
t:= a3 =92 Put

uy = z?y, vy = ya’.
Then there is a surjective morphism,

kit 7 < u,v > /(uvu — vuv) — A(t™1)

mapping v to u; and v to v1. In fact, uiv; = 22 and viuv; = t3y, and finally
uiviuy = t3%y = viugvy. (The relations with the equation of Yang-Baxter, if any,
will have to be discovered.)
Now let us compute the Simp,, (A). It is clear that any surjectiv homomorphism
of k-algebras,
Py A— Endp(V)

will map Z(A) = k[t] into Z(End,(V)) = k, inducing a point v € Simp(k[t]) = Al.
This means that Simp, (A) is fibred over the affine line Spec(k[t]) = A'. Let
po(2)® = py(y)? = K(v)1, where 1 is the identity matrix, and where x(v) is a
parameter of the cusp. Then either v = origin =: 0 or we may assume x(v) # 0.
Consider now the diagram:

o <——

\
Endy(V)
/

klz]/(@® — k(v)) = k[y]/ (y* — K(v

Clearly, if k(v) # 0 the simple representations of A are fibered on the cusp with
fibres being the simple representations of U := k[z]/(2® — k(v)) * k[y]/(v? — k(v)),
isomorphic to the group algebra of the modular group Sl2(Z). Since the representa-
tion theory of Sl3(Z) is known, this shows, in principle, how to go about describing
the open subscheme of Simp,,(A) corresponding to x(v) # 0, for all n > 0.

We shall however have to work a little to find the fibre of Simp,,(A) corresponding
to the singular point of the cusp. When n = 2 it is clear that we have no choice,
but to fix the Jordan form of p,(y) equal to the Jordan form of

po(x) = <8 é)

Let I(py(z)) be the isotropy subgroup of the action of Gi,, (k) on M, (k), at p,(z).
Set theoretically, the fiber is then the double quotient,

I(po(2)\Gln (k) /I(po(x))

To find the scheme structure we may compute the formal moduli of the simple

module given by,
0 1 0 0
pu(z) = 0 0}/’ po(y) = 1 0)"

We compute and find the following,
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Example 24. Let A be the non-commutative cusp. Then

(i) Simp1(A) = Spec(k[z, y]/(«® - y?))

(i) Simpa(A) is fibered on the cusp minus the origin, with fiber E(t) = Uy /T?
where Us is an open subscheme of the 3-dimensional scheme of all pairs of 2-vectors,
with vector product equal 1, and T? is a two dimensional torus, acting naturally
on Us.

(iii) S(2) = k[t?, 3, u].

(iv) The fiber E(0)) over o is given by,

ﬁ(@:(g 1>,ﬁ<y>=(1iv _Ou)

parametrized by the k-algebra k[t,u,v]/(t*,u?, (1 + v)t), i.e. it is the open sub-
scheme of the double line parametrized by v, with the point v = —1 removed.
(v) In particular we find that E(0)) is a component of Simps(A).

The Jordan correspondence. As we have seen in the above example, the com-
putation of the structure of the different Simp,(A) for a given k-algebra A, is
naturally related to the problem of finding the possible Jordan forms for the action
of the generators {z;}¢ ; of A on a vector space of dimension n.

Notice that when A is the group algebra of the homotopy group of the p-pointed
Poincaré sphere this problem is, in some quarters, called the Deligne-Simpson prob-
lem, and is related to classical problems in monodromy theory, see e.g. [Katz],
[Kostov] and [Simpson].

We shall now see how this can be formulated in non-commutative algebraic
geometry, using the existence of a non-commutative moduli space for iso-classes of
endomorphisms, developed in [La 1], § 8. Let Endg(k™) = Spec(klx; ;]), and let
B := k[z; ;] and G := Gl,,(k). For each formal normal Jordan form of dimension n,
there is an orbite, such that the affine ring of its closure is a B — G-representation
pi + B — V. Corresponding to a family V = {V;}; of B — G-modules, there is
a deformation functor and a versal family of B — G-modules, V, together with a
homomorphism of B-modules,

p:B—V=(H;?V).

In all cases known to us, there is an algebraic k-algebra H' C (H; ;), and a universal
family defined on H’, inducing the formal one above. This H’, from now on called
End(n), is simply O(V*,7), the affine k-algebra of the non-commutative moduli
scheme End(n) of iso-classes of endomorphisms, see [La 2]. Here V* is the A — G-
swarm defined by the morphisms, p; : B — V;. There is a homomorphism of
k-algebras,

n:B— OV, )= (H;;® Homy(V;, Vj)).

inducing a homomorphism of k-algebras,
n: BY — End(n).

In [La 1] we have computed End(n) for n = 2 and in a forthcoming paper, see [Siq
2], Arvid Sigveland has computed End(n) for n = 3. There is, however, a problem
with this set up; the lack of an algebraic structure on the map,

M, (k) := Endy (k") — End(n).
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To overcome this, let us go back to the general theory for a while. Let A be
given, as above, and consider a swarm, ¢ C A —mod. Let V;,V; € |¢|. We shall
say that V; is above Vj, and write it V; > V; if Ext}(V;,V;) # 0. Given a point
V € |¢| we shall call the subset {V' € |¢|| V' > V'} the focal swarm of V, and the
subset {V’ € |¢|| V > V'} will be called the local swarm of V. In the case of the
swarm Simp(B — G), if V is an object, i.e. the affine algebra of the closure of an
orbit, there is a finite focal swarm Vy of V', corresponding to the orbits Simp(V;)
containing Simp(V) in their closure,i.e. to the set of points V; for which there is a
B — G-module homomorphism of V; onto V.

Now consider the left End(n) and right B-module V, and fix an element ¢ €
Simp(B). Then there exists a unique closed orbit Simp(V(q)) containing ¢, such
that ¢ € Simp(V') — Uy, <y Simp(Vj). Let V, := Vy (), and consider the commuta-
tive diagram,

)

1}
Vopk(q) —= v simpa—c)(Hij(V) ©V; ®B k(q))

i

q

H;;(V)®Vj)

HVCSzmp(B G

Here V runs through all finite subsets of Simp(B — G), and k(q) is the residue field
of the point ¢ € Simp(B). This induces an End(n)-module homomorphism,

(j:f/—»H(Vq)

Notice that the points, i.e. simple quotient modules, of the End(n)-module H(V,)
correspond precisely to the local swarm V,. Moreover, this defines a unique, alge-
braic, morphism, the Jordan morphism,

J i Endi (k") — {V C End(n)| V local swarm}.

Notice also that fI(Vq) is a left End(n) and a right B-module. Fixing ¢, any
element ¢ € Simp(End(n)), i.e. any Jordan form, therefore defines a simple B-
module, an element ¢(q) € Simp(B). In this way we obtain a local section of the
Gl,,(k)-orbit stratification of M, (k) parametrized by Simp(End(n)).

Now, assume given a k-algebra A, generated by the elements {z;}¥_,, and a
simple n-dimensional representation V' € Simp,, (A). Recall again the commutative
diagram,

C(n) ®k Endg(V)

| l

HO(V) &y, Endy (V) ~ Civy @k Endg, (V).
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Clearly, the element z; € A induces a homomorphism,
z;: B— C(n),
therefore a natural map,
X; : Simp, (A) — Simp(B) = M, (k).

Together we have proved the following,
Theorem 25. There exists a natural algebraic correspondence,
J(x1,29, ...y ) 2 Simpyp(A) — {V C End(n)| V local swarm}"

Let us compute J in the first non-trivial case, i.e. for n = 2. For this we first
need to compute the versal family, V), i.e. the action of B on V = H ® V. This
is easily done by using the k-linear and Gi(2)-invariant section of the morphism
B — V4 = B/(s1, s2), induced by fixing a k-basis for V7,

o n1 nz __, no
{xl,lml,QIQ,l = x1,11’0}0§no§1,0§n1,n2

mapping, multiplicatively, z11 to 1/2(z1,1 — x2,2), and z; ;,% # j to z; ;, see §10 of
[La 1]. We obtain,

V= (v o vy = (Mgt e )

where V, = k, subject to the relation in Hy o = k[s1, 2] < t1,t2 > kls],
t182 — 8oty — 2 -tas + s1t2 = 0,

with the k[z; ;]-action given by,

1® v 0 U 1®wvizs; O
0 1Quvy )7 — 0 0

if ¢ # j, and,

].®’U0 0 T o ].®’U(].T171—1/281 X Vg —1/2t1 X Vg
0 1wy )BT 0 —5® vy

)

1 ®’U0 0 - —1 ®U0£E171 - 1/281 ®’UO 71/2t1 ®50
0 1®uy ) 227 0 —5® va

Moreover, the (1,1)-term of the matrix,

1® vy 0 "
0 1®uvy )t
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for v1 = vox1,1, looks like,
—1 ®vox1,2%2,1 — 1/281 ® vox1,1 + S2 ® g
and the (1,2)-term has the form,
ta ® vy — 1/2tis @ vy — (51/2)* /(1 — (51/2))t1 ® wg,
The (1,1)-term of the matrix,x,

1®’Ul 0 T
0 1Quvy ) 722

1® V0x1,2%2,1 — 1/281 R vox1,1 — S2 ® Vg
and the (1,2)-term looks like,
—ty @vp + 1/2t15 @ vh + (51/2)%/(1 — (51/2))t1 @ v}
Here ], is the image of vg in V5. Notice that for s; = 2 these formulas are undefined.
Assume s; # 2, then J is defined, and in particular,
J(0) = ((0,0),0).

The (generalized Deligne-Simpson) problem we encountered above, is now the

following:

has the form,

Problem 26. Given a k-algebra A, finitely generated by the elements {x;}I_;,
characterize the image of the morphism,
J(x1, 22, ..., xy) + Simp,(A) — End(n)P.

In the case of the cusp above, it is easy to compute the image of J, whenn = 1,2,
and not so easy when n > 3.
A structure theorem for geometric k-algebras. Let A be a geometric algebra,
and assume moreover that I(n) = 0 thus, A ~ A(n), so that A does not have any
simple modules of dimension greater than n. Now, for any m < n, consider the
natural morphism,

A— I o*w)
VCSimpm (A)

where V runs through all finite subsets of Simp,, (A). Call the image D(m). Clearly
there is a natural surjectiv homomorphism,

D(m) —O(m)c  [[ H*™ & Endi(V),
VeSimpn, (A)
see Proposition 11. Let D(m), O(m), be corresponding (non-commutative) sheaves
on Simpy, (A). Consider the diagram,

K(n)

A(n) ———D(n)

0—> A(l) ——=D(1).

where K (m) is the kernel of the morphism A(m) — D(m). Clearly K(1) = 0.
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Theorem 27. For any geometric k-algebra with I(n) = 0, there is a sheaf of matrix
algebras D, defined on Simp, (A), and an injectiv homomorphism of k-algebras,

A— D,

where D is generated by matrices of the type,

* Dn—1) . ,
* * . D(1)

such that Simpy,(A) = Simp(D(m)).
Proof. This is now just another way of stating Proposition 1., i.e. saying that
A ~ O(Simp*(A)), since clearly O(Simp*(A)) C D.

O
The following simple consequence of the O-construction, is going to be rather
useful,

Corollary 28. Suppose the geometric k-algebra A satisfies the following condi-
tions,

(1) I(n)=0

(2) Exty(V,V') =0, if dimV < dimV'(resp. if dimV > dimV")

Then D is a sheaf of upper triangular (resp. lower triangular) matrices of the form,

D(n) * %
D= 0 Dn—1) .
0 0 . D)

Remark. The above condition (2) is very often satisfied, and in particular, it is sat-
isfied for the the coordinate k-algebras of affine subschemes of (non-commutative)
orbit spaces of the action of a (finite dimensional) reductive Lie group. In fact,
if the Lie group G acts on the affine scheme X = Spec(B) such that the (non-
commutative) orbit space, see [La 7] is an affine (non-commutative) k-algebra A,
then, for any local swarm V = {V1, V3, ..., V;.}, of B — G-modules, corresponding to
closed orbits Spec(Vy) D Spec(Vz) D ... D Spec(V;.), then

(3) Eatly (Vi,V;) =0, for all j <.

This implies that the corresponding formal moduli of V = {V1,Va,...,V,.} has the
form,

H171 * *
H(V)= 0 Hyp .
0 0 . H,.,
This again will imply that A will have the form,
A= 0 Snh-1)

0 0 . S0
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Here Simp(S(p)) is the (possibly non-commutative) subscheme of Simp(A) cor-
responding to the p-dimensional orbits. Let us prove (3) above. There are two
spectral sequences converging to Ext’_~(V;,V;), one given by

EYY = HP(G, Exth(V;, V;)),
the other with,
Eg,q = HH?(B,HY(G, Hom(V;, V}))).
If p+ q = 1, then the last one will be reduced to,

Ey't = HH(B, HY(G, Homy(Vi, V;))) = 0,
since G is reductive, and

Ey® = HHY(B, H(G, Homy(Vi, V;))) = 0,
since, obviously, H*(G, Homy(V;,V;)) = Homg(V;,V;) =0 for j < i.

A spectral sequence. Let the finitely generated k-algebra A be such that A ~
A(n). Then Simp,,(A) = 0, for m > n. To what extent will the globale scheme
structures of the Simp,(A) determine the globale structure of A, and vice versa?
In particular, is the cyclic homology of A determined by the de Rham cohomology
of the different Simp,(A), and conversely, what can we learn about the de Rham
cohomology of Simp,(A) knowing the cyclic cohomology of A? The first result in
this direction is the following trivial observation,

Lemma 29. Suppose, in the above situation, that the ideals J(m — 1) := I(m —
1)/I(m) C A(m), m > 1, are H-unital, then there existe a spectral sequence with,

E;’m = HC,(J(m - 1)),

converging to (abutting at) HC.(A).
Proof. See, e.g. [Loday]
O
Theorem 30. Let A satisfy the following conditions,

(1) I(n)=0
(2) Ext4(V,V') =0, if dimV < dimV'(resp. if dimV > dimV").
(3) Simpp,(A) = Spec(C(n)) is affine for m > 1.
Then,
A~TD

and there is a spectral sequence with,
By = HCp(C(m)),

converging to (abutting at) HC.(A). Moreover, if all Simp,,(A) are smooth affine
schemes, then
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HC,(C(m)) = @iz HY R (Simp (A)) @ (2 (A)/dﬂg;nllpm(A))

Simpm

Proof. Use the Lemma 23. If Simp,,(A) is affine for m > 1, it follows that the
map A(m) — C(m) ® M, is surjectiv. The problem is to show that I(m —1) maps
surjectively onto C(m) ® M,,. However, the image of I4(m — 1) in C(m) ® M,, is
ICm)®@Mm (1) which, obviously, is C(m) ® M,,, since C(m) ® M,, has no modules
of dimension strictely less then m. But then A ~ D. Now, A ~ D is triangular, and
the ideals J(m —1) := I(m —1)/I(m) C A(m) are obviously H-unital. Since cyclic
homology is Morita invariant, the result follows from, e.g. [Loday], see 2.2.12, and
Chapter 3.

O
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