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This article develops new techniques to classify critical configura-
tions for 3D scene reconstruction from images taken by unknown 
cameras. Generally, all information can be uniquely recovered if 
enough images and image points are provided, but there are cer-
tain cases where unique recovery is impossible; these are called 
critical configurations. In this paper, we use an algebraic approach 
to study the critical configurations for two projective cameras. We 
show that all critical configurations lie on quadric surfaces, and 
classify exactly which quadrics constitute a critical configuration. 
The paper also describes the relation between the different recon-
structions when unique reconstruction is impossible.
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access article under the CC BY license (http://
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1. Introduction

In computer vision, one of the main problems is that of structure from motion, where given a set of 
2-dimensional images the task is to reconstruct a scene in 3-space and find the camera positions in 
this scene. Over time, many techniques have been developed for solving these problems for varying 
camera models and under different assumptions on the space and image points Maybank (1993); 
Hartley and Zisserman (2004). In general, with enough images and enough points in each image, 
one can uniquely recover all information about the original scene. However, there are also some 
configurations of points and images where a unique recovery is never possible. These are called critical 
configurations.
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Much work has been done to understand critical configurations for various settings Buchanan 
(1988); Hartley (2000); Kahl et al. (2001); Hartley and Kahl (2002); Bertolini and Turrini (2007); Hart-
ley and Kahl (2007); Bertolini et al. (2020); Buchanan (1992), with results dating as far back as 1941 
Krames (1941). While interesting from a purely theoretical viewpoint, critical configurations also play 
a part in practical applications. Even though critical configurations are rare in real-life reconstruction 
problems when enough data is available (due to noise), it has been shown that as the configurations 
approach the critical ones, reconstruction algorithms tend to become less and less stable Luong and 
Faugeras (1994); Hartley and Kahl (2007); Bertolini et al. (2007).

Our new techniques confirm the main result of Hartley and Kahl (2007) for two cameras, and 
provide proofs for many unproven assertions in Hartley and Kahl (2007) (see Section 4). Moreover, 
they yield explicit maps between different critical configurations that have the same images (see 
Section 5). We also give a complete description of all critical configurations in the case of a single 
camera (see Section 3). Our companion paper Bråtelund (2021) uses the techniques developed in this 
article to correct the classification of Hartley and Kahl (2007) for three cameras. We plan to use these 
new techniques to classify critical configurations for any number of views, as well as using them 
in other, more complicated scenarios (e.g., cameras observing lines Breiding et al. (2022); Buchanan 
(1992), or rolling-shutter cameras Albl et al. (2016) in future work.

The main result of this paper is the classification of the critical configurations for two views in 
Theorem 4.11.

2. Background

We refer the reader to Hartley and Zisserman (2004) for the basics on computer vision and multi-
view geometry.

Let C denote the complex numbers, and let Pn denote the projective space over the vector space 
Cn+1. Projection from a point p ∈P 3 is a linear map

P : P 3 ��� P 2.

We refer to such a projection and its projection center p as a camera and its camera center (following 
established terminology, we use the words camera and view interchangeably). Following this theme, 
we refer to points in P 3 as space points and points in P 2 as image points. Similarly, P 2 will be referred 
to as an image.

Once a basis is chosen in P 3 and P 2, a camera can be represented by a 3 × 4 matrix of full rank 
called the camera matrix. The camera center is then given as the kernel of the matrix. For the most 
part, we make no distinction between a camera and its camera matrix, referring to both simply as 
cameras. We use the real projective pinhole camera model, meaning that we require a camera matrix to 
be of full rank and to have only real entries.

Remark 2.1. Throughout the paper, whenever we talk about cameras it is to be understood that a 
choice of basis has been made, both on the images and 3-space.

Since the map P is not defined at the camera center p, it is not a morphism. This problem can be 
mended by taking the blow-up. Let P̃ 3 be the blow-up of P 3 in the camera center of P . We then get 
the following diagram:

P̃ 3 P 2

P 3

P

π
P

where π denotes the blow-down of P̃ 3. This gives a morphism from P̃ 3 to P 2. For ease of notation, 
we retain the symbol P and the names camera and camera center, although one should note that in 
P̃ 3 the camera center is no longer a point, but an exceptional divisor.
2
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Definition 2.2. Given an n-tuple of cameras P = (P1, . . . , Pn), with camera centers p1, . . . , pn , let P̃ 3

denote the blow-up of P 3 in the n camera centers. We define the joint camera map to be the map

φ̃P = P1 × · · · × Pn : P̃ 3 → (P 2)n,

x �→ (P1(x), . . . , Pn(x)).

Remark 2.3. Throughout the paper, we assume that all camera centers are distinct.

This again gives a commutative diagram

P̃ 3 (P 2)n

P 3

φ̃P

π
φP

The reason we use the blow-up P̃ 3 rather P 3 is to turn the cameras (and hence the joint camera 
map) into morphisms rather than rational maps. This ensures that the image of the joint camera map 
is Zariski closed, turning it into a projective variety.

Definition 2.4. We denote the image of the joint camera map φ̃P as the multi-view variety of 
P1, . . . , Pn . The set of all homogeneous polynomials vanishing on Im(φ̃P) is an ideal that we denote 
as the multi-view ideal.

Notation. Most works on computer vision do not use the blow-up, defining cameras/the joint camera 
map as rational maps rather than morphisms. Hence, they tend to define the multi-view variety as 
the closure of the image rather than as the image itself. While our definition of the multi-view variety 
seems different, it is equivalent to that used in other works, like Agarwal et al. (2021).

Notation. While the multi-view variety is always irreducible, we use the term variety to also include 
reducible algebraic sets.

Definition 2.5. Given a set of points S ⊂ (P 2)n , a reconstruction of S is an n-tuple of cameras P =
(P1, . . . , Pn) and a set of points X ⊂ P̃ 3 such that S = φ̃P(X) where φ̃P is the joint camera map of 
the cameras P1, . . . , Pn .

Definition 2.6. Given a configuration of cameras and points (P1, . . . , Pn, X), we refer to φ̃P(X) ⊂ (P 2)n

as the images of (P1, . . . , Pn, X).

Given a set of image points S ⊂ (P 2)n as well as a reconstruction (P1, . . . , Pn, X) of S , note 
that any scaling, rotation, translation, or more generally, any real projective transformation of 
(P1, . . . , Pn, X) does not change the images, giving rise to a large family of reconstructions of S . 
However, we are not interested in differentiating between these reconstructions.

Definition 2.7. Given a set of points S ⊂ (P 2)n , let (P, X) and (Q, Y ) be two reconstructions of S , let X
and Y denote the blow-downs of X and Y respectively and let P ′

i and Q ′
i be the matrix representation 

of Pi and Q i respectively. The two reconstructions of S are considered equivalent if there exists an 
element A ∈ PGL(4), such that

A(X) = Y ,

P ′
i A−1 = Q ′

i , ∀i.
3
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From now on, whenever we talk about a configuration of cameras and points, it is to be under-
stood as unique up to such an isomorphism/action of PGL(4), and two configurations are considered 
different only if they are not isomorphic/do not lie in the same orbit under this group action. As such, 
we consider a reconstruction to be unique if it is unique up to action by PGL(4).

Definition 2.8. Given a configuration of cameras and points (P1, . . . , Pn, X), a conjugate configuration
is a configuration (Q 1, . . . , Q n, Y ), nonequivalent to the first, such that φ̃P(X) = φ̃Q(Y ). Pairs of points 
(x, y) ∈ X × Y are called conjugate points if φ̃P(x) = φ̃Q(y).

Definition 2.9. A configuration of cameras (P1, . . . , Pn) and points X ⊂ P̃ 3 is said to be a critical 
configuration if it has at least one conjugate configuration. A critical configuration (P1, . . . , Pn, X) is 
said to be maximal if there exists no critical configuration (P1, . . . , Pn, X ′) such that X � X ′ .

Hence, a configuration is critical if and only if the images it produces do not have a unique recon-
struction.

Remark 2.10. Various definitions of critical configurations exist. For instance, Krames (1941) considers 
the cone with two cameras on the same generator to be critical, while it fails to be critical by our 
definition. We use a definition similar to the one in Hartley and Kahl (2007), except we are working 
in P̃ 3. If one considers the blow-down, our definition matches the results in Hartley and Kahl (2007).

Definition 2.11. Let P and Q be two n-tuples of cameras, let P̃ 3
P and P̃ 3

Q denote the blow-up of P 3

in the camera centers of P and Q respectively. Projecting the fiber product

P̃ 3
P ×P2 P̃ 3

Q =
{
(x, y) ∈ P̃ 3

P × P̃ 3
Q | φ̃P(x) = φ̃Q(y)

}
to the first coordinate gives a variety, X . We call X the set of critical points of P with respect to Q .

This definition is motivated by the following fact:

Proposition 2.12. Let P and Q be two (different) n-tuples of cameras, and let X and Y be their respective sets 
of critical points. Then (P, X) is a critical configuration, with (Q, Y ) as its conjugate. Furthermore, (P, X) is 
maximal with respect to Q in the sense that if there exists a critical configuration (P, X ′) with X � X ′ then its 
conjugate consists of cameras different from Q.

Proof. It follows from Definition 2.11 that for each point x ∈ X , we have a conjugate point y ∈ Y . 
Hence the two configurations have the same images, so they are both critical configurations, conjugate 
to one another.

The (partial) maximality follows from the fact that if we add a point x0 to X that does not lie in 
the set of critical points, there is (by Definition 2.11) no point y0 ∈ P̃ 3

Q such that φ̃P(x0) = φ̃Q(y0). 
Hence (P, X) will no longer be critical. �

For two different pairs of cameras, the sets of critical points turn out to be the quadric surfaces 
S̃ P , ̃S Q described in Section 4.

The goal of this paper is to classify all maximal critical configurations for three cameras. The 
reason we focus primarily on the maximal ones is that every critical configuration is contained in 
a maximal one and (when working with more than one camera) the converse is true as well, any 
subconfiguration of a critical configuration is itself critical.

We conclude this section with a final, useful property of critical configurations, namely that the 
only property of the cameras we need to consider when exploring critical configurations is the posi-
tion of their camera centers (i.e. change of coordinates in the images does not affect criticality).
4
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Proposition 2.13 (Hartley and Kahl, 2007, Proposition 3.7). Let (P1, . . . , Pn) be n cameras with centers 
p1, . . . , pn, and let (P1, . . . , Pn, X) be a critical configuration.

If (P ′
1, . . . , P

′
n) is a set of cameras sharing the same camera centers, the configuration (P ′

1, . . . , P
′
n, X) is 

critical as well.

Proof. Since Pi and P ′
i share the same camera center and the camera center determines the map 

uniquely up to a choice of coordinates, there exists some Hi ∈ PGL(3) such that P ′
i = Hi Pi . Let 

(Q 1, . . . , Q n, Y ) be a conjugate to (P1, . . . , Pn, X). Then (H1 Q 1, . . . , Hn Q n, Y ) is a conjugate to 
(H1 P1, . . . , Hn Pn, X) = (P ′

1, . . . , P
′
n, X), so this configuration is critical as well. �

3. The one-view case

Reconstruction of a 3D-scene from the image of one projective camera is generally considered 
impossible, so most papers start with the two-view case. Still, for the sake of completeness, we give 
a summary of the critical configurations for one camera.

Let P be a camera, and let p be its camera center, we then have the joint camera map:

φ̃P : P̃ 3 → P 2

For any point x ∈P 2, the fiber over x is a line through p, so no point can be uniquely recovered. From 
this, one might assume that every configuration with one camera is critical. However, this is only the 
case if our configuration consists of sufficiently many points.

Theorem 3.1. A configuration of one point and one camera is never critical. A configuration of one camera and 
n > 1 points is critical if and only if the camera center along with the n points span a space of dimension less 
than n.

Proof. For the first part, note that up to a projective transformation, there exists only one configu-
ration of one point and one camera. In other words, any configuration of one point and one camera 
can be taken to any other such configuration by simply changing coordinates. By Definition 2.7 this 
makes them equivalent, which means that only one reconstruction exists.

The same turns out to be the case if the configuration is such that the camera center along with 
the n > 1 points span a space of dimension n. In P 3, one can never span a space of dimension 
greater than 3, so this implies that n ≤ 3. Furthermore, if the n points along with the camera center 
span a space of dimension n, then the points and camera center lie in general position. However, for 
n ≤ 4 points (fewer than 3 points + one camera center) there exists only one configuration (up to 
action with PGL(4)) where all points are in general position. This means (by Definition 2.7) that all 
reconstructions are equivalent.

Now it only remains to show that a configuration is critical if the camera center along with the 
n > 1 points span a space of dimension less than n. Indeed, if the points along with the camera 
center span a space of dimension less than n, the image points span a space of dimension m <
n − 1. Then there are at least two nonequivalent reconstructions; one reconstruction where the points 
span a space of dimension m not containing the camera center and one where they span a space of 
dimension m + 1 which contains the camera center. �
4. The two-view case

4.1. The multi-view ideal

We start the study of the case of two cameras P1 and P2 by understanding their multi-view 
variety. We assume, here and throughout the rest of the paper, that all cameras have distinct centers. 
The two cameras define the joint camera map:

φ̃P : P̃ 3 → P 2 × P 2.
5
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Proposition 4.1. For two cameras (P1, P2), the joint camera map ̃φP takes the line spanned by the two camera 
centers to a point, and is an embedding everywhere else.

Proof. For x = (x1, x2) ∈P 2 ×P 2, the preimage of x is given by

φ̃P
−1

(x) = l1 ∩ l2,

where li is the line P−1
i (x1). The line li passes through the camera center pi , so the intersection of the 

two lines is a single point unless they are both equal to the line spanned by the camera centers. �
This means that the multi-view variety Im(φ̃P ) is an irreducible singular 3-fold in P 2 × P 2. It is 

described by a single bilinear polynomial F P , which we call the fundamental form of P1, P2.
The fundamental form is well-studied in the literature and is often represented by a 3 × 3 matrix 

of rank 2 called the fundamental matrix. See (Hartley and Zisserman, 2004, section 9.2) for a geometric 
construction of the fundamental matrix. We use the construction in Agarwal et al. (2021) where the 
fundamental form is given as the determinant of a 6 × 6 matrix.

4.2. The multi-view variety

Proposition 4.2 (The fundamental form). (Hartley and Zisserman, 2004, Sections 9.2 and 17.1) For two cam-
eras P1, P2 , the multi-view variety Im(φ̃P) ⊂P 2 ×P 2 is the vanishing locus of a single, bilinear, rank 2 form 
F P , called the fundamental form (or fundamental matrix).

F P (x,y) = det

[
Pi x 0
P j 0 y

]
,

where x and y are the variables in the first and second image respectively.

Proof. By Proposition 4.1, the multi-view variety for two cameras is an irreducible, 3-fold. It follows 
that the multi-view ideal is generated by a single polynomial. Let (x, y) be a generic point in the 
multi-view variety, then there exists a point X ∈P 3 such that P1(X) = λ1x and P2(X) = λ2y, then

[
Pi x 0
P j 0 y

]⎡
⎣ X

−λ1
−λ2

⎤
⎦ = 0.

Since the matrix has a non-zero kernel, the determinant F P has to vanish on (x, y). Now we need 
only show that the determinant is irreducible to prove that F P (x, y) generates the multi-view ideal. 
Irreducibility follows from the fact that the polynomial is of rank 2 (a reducible polynomial is always 
of rank 1) which in turn follows from the fact that F P satisfies

F P (e2
P1

,−) = F P (−, e1
P2

) = 0, (1)

where

e j
Pi

= Pi(p j). � (2)

Remark 4.3. Recall that the entries in the camera matrix are real, this means that the fundamental 
form always has real coefficients.

Definition 4.4. The epipoles e j
Pi

are the image points we get by mapping the j-th camera center to 
the i-th image

e j
P = Pi(p j).
i

6
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The fundamental form satisfies

F P (e2
P1

,−) = F P (−, e1
P2

) = 0,

in other words, it vanishes in either epipole. This means that the fundamental form is of rank 2 (also 
follows from Im(φ̃P ) being singular), so for each pair of cameras, we get a bilinear form of rank 2. 
The following result states that the converse is also true, i.e. that any bilinear form of rank 2 is the 
fundamental form for some pair of cameras.

Theorem 4.5. There is a 1 : 1 correspondence between bilinear forms of rank two, and pairs of cameras P1, P2
(up to action by PGL(4)).

Proof. By Proposition 4.2, the fundamental form of two cameras is a real bilinear form of rank 2. The 
converse follows from Theorem 9.13. in Hartley and Zisserman (2004). �

With these results, we can move on to classifying all the critical configurations for two views. We 
start with a special type of critical configuration.

4.3. Trivial critical configurations

Definition 4.6. A configuration (P1, P2, X) is said to be a non-trivial critical configuration if it has a 
conjugate configuration (Q 1, Q 2, Y ) satisfying

F P 
= F Q .

Critical configurations not satisfying this property exist, they are called trivial. If (P1, P2, X) is a 
trivial critical configuration, then all its conjugates (Q 1, Q 2, Y ) have the same fundamental form as 
the cameras P1, P2. By Theorem 4.5 this means that, after a change of coordinates, Q 1 = P1 and 
Q 2 = P2. Since the cameras are the same, Proposition 4.1 tells us that the sets X and Y are equal, 
with the exception of any point lying on the line spanned by the two camera centers. It is a well-
known fact that no number of cameras can differentiate between points lying on a line containing all 
the camera centers, hence the name “trivial”.

The focus of this paper is the non-trivial critical configurations. A classification of the trivial critical 
configurations for any number of views can be found in Hartley and Kahl (2007) Section 4, or in 
Hartley and Zisserman (2004) Chapter 22.

4.4. Critical configurations for two views

Let us consider a non-trivial critical configuration (P1, P2, X). Since it is critical, there exists a 
conjugate configuration (Q 1, Q 2, Y ) giving the same images in P 2 × P 2. The two sets of cameras 
define two joint-camera maps φ̃P and φ̃Q .

P̃ 3 P̃ 3

P 2 × P 2

φ̃P φ̃Q

Now, since the configuration is critical, we have that φ̃P (X) = φ̃Q (Y ). As such, the two sets X
and Y both map (with their respective maps) into the intersection of the two multi-view varieties 
Im(φ̃P ) ∩ Im(φ̃Q ). Taking the preimage of this intersection under φ̃P , we get a variety S in P̃ 3 which 
needs to contain all the points in X . Moreover, if (P1, P2, X) is maximal, then X = S . As such, classify-
ing all non-trivial maximal critical configurations can be done by classifying all possible intersections 
between two multi-view varieties, and then examining what these intersections pull back to in P̃ 3 . 
7
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Fig. 1. All types of real ruled quadrics.

This is made even simpler by the fact that the pullback of Im(φ̃P ) ∩ Im(φ̃Q ) is just the variety we get 
by pulling back the fundamental form F Q (the fundamental form F P pulls back to the zero polyno-
mial).

The pullback of a bilinear form describes the strict (or proper) transform of a quadric surface1. It 
follows that X and Y lie on the strict transform of two quadric surfaces (quadrics) which we denote 
by S P and S Q respectively. Let S̃ P and S̃ Q denote their strict transforms. These quadrics are given by 
the following equations:

S P (x) = F Q (P1(x), P2(x)),

S Q (x) = F P (Q 1(x), Q 2(x)).
(3)

The two quadrics have the following properties:

Lemma 4.7 (Lemma 5.10 in Hartley and Kahl (2007)).

1. The quadric S P contains the camera centers p1, p2 .
2. The quadric S P is ruled (contains real lines).

Proof. The first item follows from the nature of the pullback, whereas the second is because we are 
working with forms of rank 2. Detailed proof is given in Hartley and Kahl (2007). �

There are only four quadrics containing lines (up to choice of coordinates), these are illustrated in 
Fig. 1.

The discussion so far can be summarized as follows:

Theorem 4.8 (Lemma 5.10 in Hartley and Kahl (2007)). Let (P1, P2, X) be a non-trivial critical configuration. 
Then there exists a ruled quadric S P passing through the camera centers p1, p2 , whose strict transform contains 
the points X.

Theorem 4.8 tells us that all non-trivial critical configurations have their points and camera centers 
lying on a ruled quadric. The converse, however, is not always true. For instance, we will soon see that 
cameras and camera centers all lying on a cone is not critical if the cone contains the line spanned 
by the two camera centers (see Fig. 2). Let us instead give a partial converse:

Lemma 4.9. Let (P1, P2, X) be a configuration of cameras and points such that X is contained in the strict 
transform S̃ P of a ruled quadric S P that passes through both the camera centers. Then for each real bilinear 
form F Q of rank 2 such that:

S P (x) = F Q (P1(x), P2(x)),

there exists a conjugate configuration to (P1, P2, X).

1 This is a surface over the complex numbers. The real points on this surface will generally also form a surface, but we will 
later see that there is one exception, namely when the surface is the union of two complex conjugate planes, and only their 
line of intersection is real
8



M. Bråtelund Journal of Symbolic Computation 120 (2024) 102226
Proof. Assume such a bilinear form F Q exists. By Theorem 4.5 there exists a pair of cameras (Q 1, Q 2)

such that F Q is their fundamental form. Since X lies on S̃ P , we have

φ̃P (X) ⊂ Im(φ̃Q ).

Then for every point x ∈ X we can find a point y such that

φ̃P (x) = φ̃Q (y).

Let Y be the set of these points y. Then (Q 1, Q 2, Y ) is a conjugate to (P1, P2, X). This can be repeated 
for each bilinear form of rank 2, giving unique conjugate configurations. �

The problem of determining which configurations are critical is now reduced to finding out which 
quadrics are the pullbacks of real bilinear forms of rank 2.

Let F denote the space of bilinear forms on P 2 ×P 2. Since all such forms can be represented by 
a 3 × 3 matrix (up to scaling) we have that F is isomorphic to P 8. The fundamental form F P of the 
pair (P1, P2) is an element in F.

Lemma 4.10. There is a 1 : 1 correspondence between the set of real quadrics in P 3 passing through p1, p2 , 
and the set of real lines in F passing through F P .

Proof. Let L ⊂ F be a line through F P , and let F0 
= F P be some point on L. Every point F ∈ L can be 
written as αF0 + β F P for some [α : β] ∈P 1. But then we have for F 
= F P :

F (P1(x), P2(x)) = αF0(P1(x), P2(x)) + β F P (P1(x), P2(x)),

= αF0(P1(x), P2(x)) + β · 0,

= F0(P1(x), P2(x)).

Hence, the equation F (P1(x), P2(x)) describes the same quadric for all points F 
= F P on L.
Next, a quadric S passing through p1 and p2 is fixed by a set of 7 points {x1, . . . , x7} on S in 

generic position. Demanding that a bilinear form pulls back to a quadric passing through a specific 
point is one linear constraint in F. So with seven generic points, there is exactly one line L through 
F P such that the forms on this line pull back to S . �

Using this 1 : 1 correspondence and Lemma 4.9, the problem has been reduced to determining 
which quadrics correspond to lines in F containing at least one viable form of rank 2. Let F2 denote 
the Zariski closure of the rank 2 locus. Since F2 is a hypersurface of degree 3, a generic line L will 
contain two forms of rank 2 in addition to F P . There are also other possibilities, listed in the tables 
below (the underlying computations for these tables can be found in the appendix.

We start with the cases where the line L corresponding to S P has a finite number of intersections 
with the rank 2 locus F2.

Intersection points S P

All three intersection points are distinct real points A smooth quadric, cameras not on a line
Two intersection points F P and F Q , L ∩ F2 has multiplicity 2 
at F P

A cone, two cameras not on a line, neither camera on a 
vertex

Two intersection points F P and F Q , L ∩ F2 has multiplicity 2 
at F Q

A smooth quadric, cameras lie on a line
9
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Fig. 2. Illustration of the blow-downs of the non-trivial critical configurations for two views. The two marked with crosses are 
not critical.

These are the cases where we have at least one real rank 2 form F ∈ L different from F P . There 
are, however, some cases where there are no viable forms:

Intersection points S P

The two other intersection points are complex conjugates A smooth non-ruled quadric
The two other intersection points are of rank 1 Union of two planes, cameras in different planes
The two intersection points are equal to F P A cone, both cameras on a line, neither camera at the 

vertex

In the case where L is contained in F2, all the forms on L are of rank 2 (with the possible exception 
of at most 2 that can be of rank 1). As such, rather than looking at where the intersections are, we 
look at the epipoles of the forms in L:

Epipoles S P

All forms have different epipoles Two planes, cameras lying in same plane
All forms share the same right epipole, the left epipoles trace 
a linea

Two planes, one camera on the intersection of the planes

All forms share the same right epipole, the left epipoles trace 
a conica

Cone, one camera at the vertex

All forms share the same right and left epipole Two (possibly complex) planes, both cameras lying on the 
intersection of the planes

All forms share the same right and left epipole AND the two 
rank one forms on L coincide

Double plane (as a set it is equal to a plane, but every 
point has multiplicity 2)

a The statement also holds if we swap “left” and “right”.

With this, we have a classification of all maximal critical configurations for two views:

Theorem 4.11. A configuration (P1, P2, X) is non-trivially critical if and only if there exists a real quadric S P

containing the camera centers p1, p2 and whose strict transform contains X, and S P is one of the quadrics in 
Table 1. (Illustrated in Fig. 2).

Recall that by Definition 2.7, we required two conjugate configurations to not be projectively equiv-
alent. Yet by Theorem 4.11, most critical configurations have conjugates that are of the same type. 
Now, while there is indeed some A ∈ PGL(4) taking any smooth quadric S P to any other smooth 
quadric S Q , we will soon see that the map taking a point in S P to its conjugate on S Q certainly does 
not lie in PGL(4). In the final section, we give a description of the map taking a point to its conjugate, 
to make it clear that it is not a projective transformation.
10
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Table 1
A list of all possible non-trivial critical configurations and their conjugates, as well as the number of 
conjugates for each configuration.

Quadric S P Conjugate quadric Conjugates

Smooth quadric, cameras not on a line Same 2
Smooth quadric, cameras on a line Cone, cameras not on a line 1
Cone, cameras not on a line Smooth quadric, cameras on a line 1
Cone, one camera at vertex, other one not Same ∞
Two planes, cameras in the same plane Same ∞
Two planes, one camera on the singular line Same ∞
Two planes, cameras on the singular line Same ∞
A double plane, cameras in the plane Same ∞

5. Maps between quadrics

5.1. Epipolar lines

Before we can describe the map taking a point to its conjugate, we need to point out a certain 
pair of lines on S P . Given two pairs of cameras (P1, P2) and (Q 1, Q 2), let S̃ P be the pullback of F Q

using φ̃P , and define

g̃2
P1

= P−1
1 (e2

Q 1
) = P−1

1 (Q 1(q2)), (4)

g̃1
P2

= P−1
2 (e1

Q 2
) = P−1

2 (Q 2(q1)). (5)

The blowdown of g̃2
P1

and g̃1
P2

are two lines on S P , we denote them by g j
Pi

. Since they are the 
pullback of the epipoles from the other set of cameras, so we call them epipolar lines.

Epipolar lines are key in understanding the relation between points on S̃ P and points on its con-
jugate S̃ Q . They also play an important role in the study of critical configurations for more than 2 
cameras, so let us give a brief analysis of these lines.

Lemma 5.1 (Lemma 5.10, Definition 5.11 in Hartley and Kahl (2007)).

1. The line g j
Pi

lies on S P and passes through pi .

2. Any point lying on both g j
Pi

and gi
P j

is a singular point on S P .

3. Any point in the singular locus of S P that lies on one of the lines also lies on the other.
4. If S P is the union of two planes, g j

Pi
and gi

P j
lie in the same plane.

The first two properties are taken from Lemma 5.10 in Hartley and Kahl (2007), the last two are 
neither stated nor proven in the paper. Nevertheless, the authors seem to have been aware of all four 
properties.

Proof.

1-2. See proof of Lemma 5.10 in Hartley and Kahl (2007).
3. For ease of reading, we use matrix notation. As such, S P , F Q , and Pi are represented by matrices 

of dimensions 4 ×4, 3 ×3 and 3 ×4 respectively. In particular, S P is represented by the symmetric
matrix P T

1 F Q P2 + P T
2 F T

Q P1.

If x0 ∈ g2
P1

lies in the singular locus of S P , then we have

S P x0 = (P T
1 F Q P2 + P T

2 F T
Q P1)x0,

= P T
1 F Q P2x0 + P T

2 F T
Q e2

Q 1
),

= P T
1 F Q P2x0.
11
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However, since x0 lies in the singular locus of S P , this expression is equal to zero. Since both the 
camera matrices are of full rank, the only way we can get zero is if x0 = p2 or if P2x0 = e1

Q 2
. In 

either case, it follows that x0 lies on g1
P2

as well.
4. Assume there exist cameras P1, P2, Q 1, Q 2 such that S P is the union of two planes and the 

epipolar lines g j
Pi

lie in different planes. When the quadric S P consists of two planes, one of the 
planes, which we denote by �, will (by Theorem 4.11) contain both camera centers. As such, the 
only way that the epipolar lines can lie in different planes is if one of the camera centers, say p2, 
lies on the intersection of the two planes and the other does not (if both lie on the intersection, 
then by 3., the epipolar lines must both be equal to the intersection of the two planes).
Recall that the quadric S P and its conjugate S Q (also two planes) are both pullbacks of the 
surface Im(φ̃P ) ∩ Im(φ̃Q ) ⊂ P 2 ×P 2. The map φ̃P takes the plane � to the product of two lines 
in P 2 × P 2. The line in the first image passes through the epipole e2

Q 1
, whereas the line in 

the second image does not pass through the epipole e1
Q 2

(this is because � contains one of the 
epipolar lines but not the other). The problem is now that neither of the planes on S Q can map 
to the product of these two lines, since any such plane would have to be both
(a) a plane passing through q2 but not through q1 (because in the second image, the line does 

not pass through e1
Q 2

) and
(b) a plane passing through both q1 and q2 (because the plane maps to a line in both images),
which gives us a contradiction. It follows that there are no P1, P2, Q 1, Q 2 such that S P is the 
union of two planes and the epipolar lines g j

Pi
lie in different planes, so whenever S P is the 

union of two planes, the epipolar lines lie in the same plane. �
Definition 5.2. Let S P be a quadric surface and let p1, p2 be two distinct points on S P . A pair of lines 
g2

P1
, g1

P2
is called permissible if g2

P1
, g1

P2
satisfy the four conditions in Lemma 5.1.

Proposition 5.3. Let P1, P2 be two cameras, and let S P be a quadric passing through their camera centers. 
The configuration (P1, P2, ̃S P ) is critical if and only if S P contains a permissible pair of lines. Furthermore, if 
p1, p2 do not both lie in the singular locus of S P , there is a 1:1 correspondence between permissible pairs of 
lines and configurations conjugate to (P1, P2, ̃S P ).

Proof. The first part can be proven by comparing the quadrics in Table 1 to the set of quadrics 
containing the required lines, and noting that they are the same. We leave this to the reader.

The second part is immediate for the three cases where there is a finite number of conjugates 
since the number of conjugates is equal to the number of pairs of epipolar lines and each conjugate 
comes with its unique choice of lines. For the remaining quadrics S P (cone and two planes), there 
exists a pencil of fundamental forms, where each F Q 
= F P satisfies

S P (x) = F Q (P1(x), P2(x)).

By the tables on pages 11 and 12, we get that each form in the pencil yields a different pair of 
lines as long as the camera centers do not both lie in the singular locus of S P . For F Q 
= F P , the 
lines are permissible, while for F P , the lines coincide (not permissible). Note also that on each of 
these quadrics, the set of permissible lines forms a set whose Zariski closure is also a pencil (the pair 
where the two lines coincide lie in the closure, but the pair itself is not permissible). We now have 
a map from the pencil of fundamental forms to the pencil of permissible lines. Since the map is not 
constant, it needs to be surjective, and since no two fundamental forms in the pencil share the same 
left and right kernel, it is also injective. Hence there is a 1:1 correspondence between permissible 
pairs of lines and configurations conjugate to (P1, P2, S P ). �
5.2. Maps between quadrics

Let us now have a closer look at the map ψ taking a point to its conjugate. Given two pairs of 
cameras P1, P2 and Q 1, Q 2 with camera centers p1, p2 and q1, q2 respectively, let the quadrics S P

and S Q and the epipolar lines g be defined as before (Equations (3), (4), and (5)). Let
12
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πP : P̃ 3
P → P 3

be the blow-up of P 3 in the two camera centers p1, p2 and let S̃ P denote the strict transform of S P , 
and similarly for Q . Define the incidence variety:

I = {
(x, y) ∈ S̃ P × S̃ Q | φ̃P (x) = φ̃Q (y)

}
,

where φ is the joint-camera map. If we can understand I , we will know the exact relation between 
points on one quadric and the other. We have the following the commutative diagram:

I ⊂ P̃ 3 × P̃ 3

S̃ P S̃ Q ⊂ P̃ 3

S P S Q ⊂ P 3

P 2 × P 2

π1 π2

πP

φ̃P

ψP
πQ

φ̃Q

ψQ

φP φQ

We study I by studying the fibers of the projection map π1. For any point x ∈ S̃ P , we have

π−1
1 (x) = l1 ∩ l2,

where li is the line Q −1
i (Pi(x)). We will rarely refer to this formula explicitly, but it is the foundation 

for the analysis of the fibers.

Lemma 5.4.

1. If S̃ P is smooth, the map π1 is an isomorphism.
2. The map ψP taking a point x ∈ S̃ P to its conjugate is a birational map, defined everywhere except the 

intersection g̃2
P1

∩ g̃1
P2

.
3. The quadric S P is singular if and only if the quadric S Q contains the line spanned by the camera centers 

q1, q2 .

4. For any point x ∈ g̃2
P1

or g̃1
P2

(but not both), the conjugate ψP (x) is a point on the exceptional divisor we 
get when blowing up q2 or q1 respectively. In particular, on the blow-down S P ⊂ P 3 , the conjugate to 
any point x ∈ g2

P1
or x ∈ g1

P2
(apart from the camera centers themselves) is the camera center q2 or q1

respectively.

Proof.

1. As long as x does not lie in g̃2
P1

∩ g̃1
P2

, the two lines li do not coincide, so the fiber π−1
1 (x) consists 

of a single point. By Lemma 5.1, any point lying on this intersection is a singular point on S P , so 
if S P is smooth, then g̃2

P1
and g̃1

P2
do not intersect. Then every fiber is a singleton, meaning that 

π1 is injective. Furthermore, for each point x ∈ S̃ P there is at least one point y ∈ S̃ Q such that 
φ̃P (x) = φ̃Q (y), so π1 is surjective as well.

2. As mentioned above, π−1
1 (x) is a singleton if x does not lie in g̃2

P1
∩ g̃1

P2
. If it does, on the other 

hand, the fiber is a line L ∈ I such that π2(L) is the strict transform of the line spanned by the 
camera centers q1, q2, so in this case the conjugate is not unique. Since the same is true for the 
map taking a point y ∈ S̃ Q to its conjugate, the map is birational.

3. If S P is singular, the epipolar line g2
P1

passes through some singular point x ∈ S̃ P (as do all other 
lines, see Fig. 1). By Lemma 5.1, the other epipolar line g1

P passes through the same point. Since 

2

13
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the two epipolar lines intersect, the quadric S̃ Q must contain the line spanned by the camera 
centers.
Conversely, if S Q contains the line spanned by the camera centers, the conjugate to any point on 
the strict transform of this line is the intersection g̃2

P1
∩ g̃1

P2
on S̃ P . By Lemma 5.1, the blow-down 

of these points are always singular points on S P .
4. Let x be a point lying on the epipolar line g̃2

P1
, but not on g̃1

P2
. We have P1(x) = e2

Q 1
and P2(x) 
=

e1
Q 2

. The conjugate to x is then

ψ(x) = l1 ∩ l2 = Q −1
1 (P1(x)) ∩ Q −1

2 (P2)(x).

The line l1 is here the line spanned by the camera centers q1, q2, while l2 is a different line, 
passing through q2. Their intersection must then be the camera center q2. The proof for the other 
epipolar line is the same. �

Remark 5.5. When the two pairs cameras P1, P2 and Q 1, Q 2 are known, one can explicitly com-
pute the map ψP as a rational function. For some representatives of a general point X ∈ S P and its 
conjugate ψP (X) ∈ S Q , we have

(
Q 1 P1 X 0
Q 2 0 P2 X

)
︸ ︷︷ ︸

A

·
⎛
⎝ψQ (X)

1
1

⎞
⎠ =

(
P1 Q 1ψQ (X) 0
P2 0 Q 2ψQ (X)

)
·
⎛
⎝ X

1
1

⎞
⎠ = 0.

Using the adjugate of A, we can get an expression for φQ as a rational function in the homogeneous 
coordinates of X .

Let us now give two results on how φP acts on the curves on S P :

Definition 5.6. Let S P be a smooth quadric or cone and let C P be a curve on S P . We say that C P is 
of type (a, b, c1, c2), where ci is the multiplicity of C P in the camera center pi and where a and b is:

• If S P is smooth, a is the number of times C P intersects a generic line in the same family as 
the epipolar lines g j

Pi
, and b is the number of times it intersects the lines in the other family, 

(meaning (a, b) is the bidegree of C P ).
• If S P is a cone, a is the number of times C P intersects each line outside of the vertex, and b the 

number of times it intersects each line.

Proposition 5.7 (Hartley and Kahl, 2007, Lemma 8.32). Let S P be a smooth quadric or a cone, and let C P ⊂ S P

be a curve of type (a, b, c1, c2), such that C P does not contain either of the epipolar lines. Then the conjugate 
curve C Q ⊂ S Q is of type (a, a + b − c1 − c2, a − c2, a − c1).

An illustration of how ψP acts on the lines on a quadric/cone can be found in Figs. 3 and 4.

Definition 5.8. Let S P be two planes with two camera centers not both lying on the intersection and 
let C P be a curve on S P . We say that C P is of type (a, b, c0, c1, c2), where a is the degree of the curve 
in the plane with the epipolar lines, b the degree of the curve in the other plane, c0 is the multiplicity 
of C P in the intersection of the epipolar lines g j

Pi
and c1, c2 is the multiplicity in the camera centers 

p1, p2 respectively.

Proposition 5.9. Let S P be two planes with two camera centers not both lying on the intersection, and let 
C P ⊂ S P be a curve of type (a, b, c0, c1, c2) such that C P does not contain either of the epipolar lines or the 
line spanned by the camera centers. Then the conjugate curve C Q ⊂ S Q is of type (2a − c0 − c1 − c2, b, a −
c1 − c2, a − c0 − c2, a − c0 − c1).
14
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The goal of the remainder of this section will be to give a rigorous proof of Lemma 8.32 in Hartley 
and Kahl (2007) and to generalize this result to also hold for singular quadrics (that is, to prove 
Propositions 5.7 and 5.9). While the method described in Remark 5.5 gives us an explicit expression 
for ψP , using this to prove Propositions 5.7 and 5.9 is somewhat difficult. We instead switch our 
approach to a more classical one, using intersection theory. The map ψP taking a point on S̃ P to its 
conjugate can be described by describing the pullback of the hyperplane sections of S̃ Q . For such 
hyperplane sections H , the pullbacks ψ−1

P (H) will be curves on S̃ P . Finding the class of ψ−1
P (H) in 

the Chow ring will give us the information we need about ψP . We refer the reader to Eisenbud and 
Harris (2016) (chapter 2 in particular) for the basics on intersection theory used in the rest of the 
section.

By Lemma 5.4, the map ψ is defined everywhere except the intersection of the two epipolar lines, 
so if we assume that they do not intersect, we get the diagram below:

P̃ 3
P ⊃ S̃ P S̃ Q ⊂ P̃ 3

Q

P 3 ⊃ S P S Q ⊂ P 3

πP

ψP

πQ

ψQ

If either pair of epipolar lines DO intersect, however (this happens whenever the quadrics are not 
smooth), then the map ψ is not a morphism, but rather a rational map as it is not defined on the 
intersection. This can be mended by first blowing up the intersection of the epipolar lines, let

πgP : P̃ 3 → P 3

denote this blow-up, and let πP , like before, be the blow-up in the two camera centers pi . Let S P be 
the strict transform of S P after the first blow-up, and let S̃ P be the strict transform of S P after the 
second. And similarly for Q . We then get the following diagram:

P̃ 3
P ⊃ S̃ P S̃ Q ⊂ P̃ 3

Q

P̃ 3 ⊃ S P S Q ⊂ P̃ 3

P 3 ⊃ S P S Q ⊂ P 3

ψP

πP

ψQ

πQ

πg P πg Q

We can now cover the different cases one by one, but first, let us give a result which will be 
helpful to determine the intersection multiplicities of curves on S̃ P :

Proposition 5.10 (Eisenbud and Harris, 2016, Proposition 2.19). Let S be a smooth projective surface and 
π : S̃ → S the blow-up of S at a point p; let E ∈ A1(S) be the class of the exceptional divisor.

1. A(̃S) = A(S) ⊕ZE as abelian groups.
2. π∗α · π∗β = π∗(αβ) for any α, β ∈ A1(S).
3. E · π∗α = 0 for any α ∈ A1(S).
4. E2 = −1.

5.2.1. Smooth quadric
We start by describing the map ψP in the case where the quadric S P is smooth, i.e. a hyperboloid 

of one sheet. Let L2 be the class of the total transform of a line in the same family as g j
Pi

, and let L1
be the class of the total transform of a line in the other family. Let Ei be the class of the exceptional 
divisor we get when blowing up pi .
15
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On S P , two lines from the same family do not intersect, whereas two lines in different families 
intersect once. By Proposition 5.10 (2) this is also the case on S̃ P , by (3) Li will not intersect Ei , and 
by (4), E2

i = −1. We get the following intersection multiplicity table:

· L1 L2 E1 E2

L1 0 1 0 0
L2 1 0 0 0
E1 0 0 -1 0
E2 0 0 0 -1

Next, let H Q be the pullback of a hyperplane section from the conjugate configuration S̃ Q . We 
want to find the class of H Q on S̃ P .

First, let us consider what the map ψP does to lines in each family. Let l be a generic curve in L2, 
in each image, Pi(l) is a line, furthermore, since l does not intersect g̃ j

P i
, Pi(l) is a line not passing 

through the epipole e j
Pi

∈ P 2. It follows that ψ(l) is a curve appearing as the intersection of S̃ Q and 
two planes (the preimages Q −1

i (Pi(l))), each passing through exactly one camera center. In other 
words: ψ(l) is a line, which means it intersects a generic hyperplane once. For a generic curve l′ in 
L1, Pi(l′) is a line passing through the epipole, hence ψ(l′) is a curve appearing as the intersection 
of S̃ Q and two planes, both passing through the camera centers, in other words, a conic curve. This 
means ψ(l′) will intersect a generic hyperplane twice.

Furthermore, by Lemma 5.4 (4), the lines g j
Pi

, belonging to the class L2 − Ei , map to camera centers 
on S Q . These will not intersect a generic hyperplane. Finally, H Q has self-intersection 2. This gives us 
the following equations:

H Q L2 = 1, H Q L1 = 2, H Q (L2 − Ei) = 0, H2
Q = 2.

Let H Q = α1L1 + α2L2 + α3 E1 + α4 E2. Using the intersection multiplicity table, we solve equations 
above for αi and get H Q = L1 + 2L2 − E1 − E2. In other words, the hyperplane sections on S̃ Q pull 
back to curves of bidegree (1, 2) passing through both camera centers.

5.2.2. Cone
Next, let S P be a cone. Since the two epipolar lines intersect in the vertex, we first blow up P 3 in 

the vertex of the cone and then in the camera centers (see diagram above). Let L be the class of the 
total transform (with the second blow-up) of the strict transform (with the first blow-up) of a line on 
S P , let E0 be the class of the exceptional divisor which is the blow-up of the vertex and let Ei be the 
class of the exceptional divisor we get when blowing up pi .

Since the cone is singular, we can not apply Proposition 5.10 to the first blow-up, we need a 
separate argument. Blowing up the vertex of the cone, and taking the strict transform of the lines 
from S P , we get curves L which no longer intersect one another, so L2 = 0, they do, however, intersect 
the exceptional divisor E0, so LE0 = 1. Moreover, a hyperplane section is of class H = 2L + E0, blowing 
up the cone, the resulting surface still has degree 2, so H2 = 2, it follows that E2

0 = −2. When we next 
blow up the two camera centers we are blowing up a smooth surface, so Proposition 5.10 applies, we 
get the following intersection multiplicity table:

· L E0 E1 E2

L 0 1 0 0
E0 1 -2 0 0
E1 0 0 -1 0
E2 0 0 0 -1

Again, let H Q be the pullback of a hyperplane from the conjugate configuration S̃ Q . By arguments 
similar to the smooth quadric case we get the following equations:
16
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H Q L = 1, H Q (L − Ei) = 0, H2
Q = 2.

Furthermore, if neither camera center on S P is on the vertex, the conjugate quadric S Q is a smooth 
quadric with both cameras lying on the same line, the preimage of this line (under ψP ) is E0, hence 
H Q E0 = 1. On the other hand, if one of the cameras, say p1, lies on the vertex, S Q is a cone and the 
strict transform E0 − E1 collapses to the vertex on S Q , meaning H Q (E0 − E1) = 0, so H Q E0 = 1 in 
this case also.

It follows that H Q = 3L + E0 − E1 − E2 in both cases.

5.2.3. Two planes, at most one camera center on the intersection
Let S P be the union of two planes with at most one camera center lying on the intersection. In this 

case, S Q is reducible as well and ψP takes the plane with the camera centers pi to the plane with the 
camera centers qi and the plane with no camera centers to the plane with no camera centers. As such 
we can consider the planes separately. The map ψP restricted to the plane with no camera centers is 
an isomorphism, so we need only consider how ψ acts on the plane with the camera centers.

Since the two epipolar lines g j
Pi

intersect in a point, we blow up this point, and then the camera 
centers to get a morphism ψP . Let L be the class of the total transform of a line in the plane contain-
ing the camera centers, let Ei be the class of the exceptional divisor we get when blowing up pi , and 
let E0 be the class of the exceptional divisor we get when blowing up the intersection of the epipolar 
lines. The plane is smooth, so by Proposition 5.10 we get the following intersection multiplicity table:

· L E0 E1 E2

L 1 0 0 0
E0 0 -1 0 0
E1 0 0 -1 0
E2 0 0 0 -1

Again, let H Q be the pullback of a hyperplane from the conjugate configuration S̃ Q . The strict 
transform of the line spanned by the two camera centers on S P is mapped to the intersection of 
the epipolar lines on S Q , similarly, the two epipolar lines map to camera centers. There are three 
corresponding lines on S Q whose strict transform maps to points on S P . Lastly, since we are working 
with a single plane, H Q has self-intersection 1 this time. This gives us the equations:

H Q (L − E1 − E2) = 0, H Q (L − E0 − E1) = 0, H Q (L − E0 − E2) = 0,

H Q Ei = 1, H2
Q = 1.

It follows that H Q = 2L − E0 − E1 − E2.

5.2.4. One or two planes, both cameras in singular locus
Finally, there is the case where S P (and hence S Q ) is either a double plane or two planes with 

both cameras lying on their intersection. In this case, the map ψP is not defined on the line spanned 
by the two camera centers p1, p2 as any point on this line is conjugate to any point on the line 
spanned by q1, q2. Outside this line, ψP acts simply as a linear transformation on each of the two 
(or one) planes. Note however that in the case of two planes the two linear transformations need not 
coincide on the intersection, for instance, two intersecting lines, one from each plane, might be taken 
to two disjoint lines.

Remark 5.11. In the case where S P is a double plane, ψP acts as a linear transformation on S P

outside the line spanned by the camera centers. As such, it is in many ways similar to the trivial 
critical configurations, although it is, by Definition 4.6, non-trivial.

With all these results in place, we can now prove Propositions 5.7 and 5.9. Recall that Defini-
tion 5.6 defines the type of a curve to be (a, b, c1, c2) where c1 and c2 is the multiplicity in each 
17
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Fig. 3. Illustration of the map taking a point to its conjugate. The smooth quadric has two conjugates (original in the middle), 
the left is the one we get if we take the lines in the “A” family to be the epipolar lines, whereas the one on the right is the 
one we get if we choose “B”. In both cases the lines in the family with the epipolar lines are preserved, whereas the lines in 
the other family are mapped to conic curves.

Fig. 4. Illustration of the map taking a point to its conjugate. The line spanned by the camera centers (right) maps to the vertex 
on the cone. The other lines in this family map to conics. Lines in the other family are preserved.

camera center, and where a and b is the number of times it intersects the epipolar lines and the 
other lines respectively (or in the case of a cone, the number of times it intersects a generic line 
outside the vertex, and the number of times it does so in total respectively). In other words, a curve 
of type (a, b, c1, c2) belongs to the class aL1 + bL2 − c1 E1 − c2 E2 on a smooth quadric, whereas on 
the cone, it belongs to the class (a + b)L + aE0 − c1 E1 − c2 E2.

Proof of Proposition 5.7. Let C P ⊂ S P be a curve of type (a, b, c1, c2) and let C Q ⊂ S Q be of type 
(a′, b′, c′

1, c
′
2). By Lemma 5.4 (4), the pullback of the camera center q2 ∈ S Q is the epipolar line g2

P1
, 

which belongs to the class L2 − E1. C P intersects this line a − c1 times. It follows that c′
2 = a − c1, 

similarly, c′
1 = a − c2.

Assume now that S P is smooth. A hyperplane section on S Q is of type (1, 1, 0, 0), we have shown 
above that the pullback of such a section is of type (1, 2, 1, 1) on S P . Certain hyperplane sections 
of S Q are reducible, reducing into two components of type (1, 0, 0, 0) and (0, 1, 0, 0), with each 
component moving in a pencil. Their pullback should do the same. The only way for a (1, 2, 1, 1)-
curve to reduce into two such components is as (0, 1, 0, 0) and (1, 1, 1, 1), since bidegree (0, 2) would 
mean it is reducible, and the bidegree (0, 1)-component passing through a camera center would mean 
it can not move. This means that the pullback of the (1, 0, 0, 0) component is of type (1, 1, 1, 1) (since 
this is the component intersecting the epipolar lines, it should correspond to the component through 
the camera centers on the other side), similarly, the pullback of the (0, 1, 0, 0)-component is of type 
18
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(0, 1, 0, 0). It follows that a′ = a and b′ = a +b − c1 − c2, meaning C Q is of type (a, a +b − c1 − c2, a −
c2, a − c1).

The proof in the case where S P is a cone follows a similar pattern: in this case, a hyperplane 
section (1, 1, 0, 0) on S Q pulls back to a curve in the class 3L + E0 − E1 − E2, that is, a curve of 
type (1, 2, 1, 1). Regardless of whether S Q is a cone or smooth quadric, there are (like in the previous 
case) hyperplane sections of S Q which reduce to two irreducible components, each free to move in a 
pencil. Similarly, their pullback must be reducible into two such components. The only way a curve 
in 3L + E0 − E1 − E2 reduces in such a way is as L and 2L + E0 − E1 − E2 since 3L and 2L would 
both be further reducible, and the curve in class L passing through a camera center would prevent it 
from moving. L is of type (0, 1, 0, 0) and 2L + E0 − E1 − E2 is of type (1, 1, 1, 1). Following the same 
argument as in the smooth quadric case, C Q is of type (a, a + b − c1 − c2, a − c2, a − c1) in this case 
also. �
Proof of Proposition 5.9. Let C P ⊂ S P be a curve of type (a, b, c0, c1, c2) and let C Q ⊂ S Q be of type 
(a′, b′, c′

0, c
′
1, c

′
2). By Lemma 5.4 (4) the pullback of the camera center q2 ∈ S Q is the epipolar line 

g2
P1

, which belongs to the class L − E0 − E1. C P intersects this line a − c0 − c1 times. It follows that 
c′

2 = a − c0 − c1, similarly, we get c′
1 = a − c0 − c2. Moreover, by Lemma 5.4 (3) the pullback of the 

intersection of the epipolar lines, is the lines spanned by the two camera centers (class L − E1 − E2), 
it follows that c′

0 = a − c1 − c2.
A generic line in the plane containing the camera centers on S Q pulls back to a curve in the class 

2L − E0 − E1 − E2 on S P , C P intersects this 2a − c0 − c1 − c2 times, it follows that a′ = 2a − c0 −
c1 − c2. Lastly, φP is an isomorhpism on the final plane, so b′ = b. This means that C Q is of type 
(2a − c0 − c1 − c2, b, a − c1 − c2, a − c0 − c2, a − c0 − c1). �
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Appendix A

A.1. Proof behind tables in Section 4.4

Let P1, P2 be two cameras with camera centers p1, p2, and fundamental form F P . Let F denote 
the space of bilinear forms on P 2 × P 2. By Lemma 4.10, there is an isomorphism between the set 
of quadrics passing through p1, p2, and lines L ⊂ F that pass through F P . The set of bilinear forms 
that are not of full rank is denoted by F2. There are several different ways a line l through F P can 
intersect F2, namely:
19
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When we have a finite number of intersections:

• Three distinct, real intersection points (one of which is F P ).
• Three distinct intersection points, two of which are complex conjugates.
• Two distinct intersection points of rank 2, F P has multiplicity 2.
• Two distinct intersection points of rank 2, the one that is not F P has multiplicity 2.
• Only one intersection point: F P with multiplicity 3.
• Two distinct intersection points, F P and one which has rank 1. The latter will have multiplicity 2.

Then there are the ones where L lies in F2; here we look at the kernels, and at the number of rank 1 
forms on L:

• Two distinct, real, rank 1 forms (implies all bilinear forms share the same left- and right kernel).
• Two distinct, complex, rank 1 forms (implies all bilinear forms share the same left- and right 

kernel).
• One form of rank 1, which has multiplicity 2 (implies all bilinear forms share the same left- and 

right kernel)
• One form of rank 1, which has multiplicity 1 (implies all bilinear forms share the same left- OR 

right kernel, but never both)
• No forms of rank 1, all bilinear forms share the same left- or right kernel
• No forms of rank 1, all bilinear forms have distinct kernels.

This gives us a total of 12 different configurations to check. For each of these, we want to know 
what kind of quadric/camera configuration it corresponds to in P 3.

Let PGL(3, R) be the projective general linear group of degree 3 (the group of real, invertible 
3 × 3 matrices up to scale). This group acts on F with an action that can be represented by matrix 
multiplication. Let PGL(3)F P be the subgroup of PGL(3) that fixes F P . This gives us a group that 
acts on the P 7 of lines passing through F P . This group will never take a line with one of the 12 
configurations above to a line with a different configuration. For instance, a real invertible matrix can 
not take three distinct real points, to anything other than three distinct real points. In particular, this 
means that the 12 configurations above all lie in distinct orbits under this group action.

Recall the isomorphism between the set of quadrics through p1, p2 and the set of lines through 
F P . It gives us a similar group action on the set of quadrics passing through the camera centers p1, p2, 
namely the subgroup of PGL(4) that fixes the two camera centers. Here too, the camera/quadric con-
figurations fall into 12 different orbits (not listed). Now we only need to check one representative 
from each orbit to find the exact correspondences.

By Proposition 2.13, the only property of the cameras that matters when considering critical con-
figurations is their center. Furthermore, one pair of distinct points in P 3 is no different from any 
other pair. This means that when we make computations for the two view case, we are free to pick 
any two cameras P1, P2 with distinct centers. We use

P1 =
⎡
⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦ , P2 =

⎡
⎣1 0 0 0

0 1 0 0
0 0 0 1

⎤
⎦ .

The fundamental matrix of these two cameras is

F P =
⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ .

Now we can go ahead and check the 12 possible configurations listed earlier. This will be done by 
picking a fundamental matrix F0 such that the line l spanned by F P and F0 intersects F2 the way we 
want and then checking what quadric it corresponds to. The full results are given in Table 2.
20
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Table 2
Possible intersections between l and F2, and their corresponding quadrics.

Matrix F0 Intersections between l and F2 Configuration in P 3⎡
⎣ 0 0 0

1 0 0
0 0 1

⎤
⎦ Three distinct, real intersection points, (one of 

which is F P )
Smooth ruled quadric, camera centers not on same 
line

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ Three distinct intersection points, two of which are 

complex conjugates.
Smooth, non-ruled quadric

⎡
⎣ 1 0 0

0 0 0
0 0 1

⎤
⎦ Two distinct intersection points, F P has 

multiplicity 2
A cone, cameras on different lines, no camera at 
vertex

⎡
⎣ 0 0 0

0 0 1
1 0 0

⎤
⎦ Two distinct intersection points, the one that is 

not F P has multiplicity 2
Smooth quadric, camera centers lie on the same 
line

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ Only one intersection point: F P with multiplicity 3 Cone, both cameras lie on the same line, neither 

lies at the vertex

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦ Two distinct intersection points, F P and one which 

has rank 1. The latter has multiplicity 2
Union of two planes, camera centers in different 
planes

⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦ l lies in F2, and contains two distinct, real, rank 1 

formsa
Union of two planes, camera centers lie on the 
intersection of the planes

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ l lies in F2, and contains two distinct, complex, 

rank 1 formsa
Union of two complex conjugate planes, both 
cameras on intersection.

⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ l lies in F2, and contains one form of rank 1, which 

has multiplicity 2a
A single plane with multiplicity 2

⎡
⎣ 0 0 1

0 0 0
0 0 0

⎤
⎦ l lies in F2, and contains one form of rank 1, which 

has multiplicity 1b
Union of two planes, one camera on the 
intersection

⎡
⎣ 1 0 1

1 1 0
0 0 0

⎤
⎦ l lies in F2, and contains no forms of rank 1, all 

bilinear forms share the same left or right kernel
Cone, one camera at the vertex

⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦ l lies in F2, and contains no forms of rank 1, all 

bilinear forms have distinct kernels.
Union of two planes, cameras in same plane, 
neither at the intersection

a This implies all bilinear forms share the same left and right kernel.
b This implies all bilinear forms share the same left or right kernel.
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