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ABSTRACT. We consider how cohomological invariants determined by
F,G can be used to shed some new light on the modular isomorphism
problem. In particular, we give a new class C of finite p-groups which

can be distinguished using F,G.

1. INTRODUCTION

In this paper G will always be a finite p-group. The problem whether (the
isomorphism class of ) GG is determined by its group algebra over the field of
p elements is usually referred to as the modular isomorphism problem.

There has been a lot of work done on this problem since Deskins first
considered it in 1954, see [5]. During this time we have gained a lot of
knowledge about F,G and some deep results have been obtained. One of the
strongest results is the fact that the restricted Lie algebra of GG is determined
by F,G, a result which is due to Quillen and Lazard, see [15] and [10].
However, the restricted Lie algebra does not provide enough information to
pin down the group G.

An account of the work on the modular isomorphism problem up to 1984
can be found in Sandling’s survey article, see [17]. And Sandling is also one
of the people who has recent results on this problem. To summarise, it has
been shown that the modular isomorphism problem has a positive solution
for

e abelian p-groups (Deskins 1956, see [6]),
e p-groups of order < p* (Passman 1965, see [14]),
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e groups of class 2 and exponent p (Passi and Sehgal 1972, see [13]),

e groups of order 2° (Makasikis 1976, faults rectified by Sandling 1984,
see [17]),

e metacyclic p-groups (completed by Sandling 1994, see [18]),
e groups of order p® (completed by Salim and Sandling 1994, see [16]),

e groups of order 26 (Wursthorn 1994, see [20]),

e groups of order 27 (Bleher, Kimmerle, Roggenkamp and Wursthorn
1997, see [3]).

So in order to solve the problem, one searches for classes of p-groups which
are recognisable from the information provided by the modular group alge-
bra, and where the individual groups are given by invariants also determined
by the modular group algebra. We see that the problem has been success-
fully answered for p-groups belonging to such classes where the invariants
determining the individual groups haven’t been too many.

However, if we consider p-groups in general, then the bigger the group, the
more invariants we will need. The cohomological invariants we will consider
are different from the ones people have used so far, in the sense that we
work in terms of a presentation for our group.

Our invariants are given by the Massey product structure on H'(G, F,)
and H*(G, F,). We introduce the part of this structure that we will concen-
trate on in section 2, and we link it to a presentation of G in section 3. In
section 4 we explain the Yoneda construction for these products, which in
section 5 will help us distinguish a new class C of p-groups using F,G.

To quote Sandling, he writes in his survey paper: “The hope has been
entertained that for a p-group, ZG determined via Massey products a certain
obstruction morphism in mod p cohomology, and thence G itself.” The
reference is to Laudal, see [9], my former supervisor. In this paper, we will
build on this idea, which in a more general setting comes from deformation
theory and a general method for constructing hulls of functors. We will tie
this method in with the “classical” theory of Massey products, as found in
the works of Massey, Kraines, and May, see [11], [8] and [12] respectively.

Relating our class of p-groups to Quillen and Lazard’s result on the re-
stricted Lie algebra, which tells us that we can distinguish p-groups on the
level of the commutator- and pth power-structure using I, G, our class C has
a generalised such structure, i.e. n-fold commutators, n > 2, and (powers
of p)th power-structure (analogous to calculating more terms in the Taylor
series of a function).
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2. PRELIMINARY RESULTS AND DEFINITIONS

To get a cohomological viewpoint on the modular isomorphism problem,

we are lead to studying the ordinary group cohomology of G with values in
F,.

Lemma 2.1. Let G and H be finite p-groups. If F,G ~ F,H then we have
H*(G,F,) = H"(H,F,) for all n > 0.

Proof. We define

H™(G,F,) = EXt%pG(va Fp).
We can think of an F,G-free resolution of F, as an F, H-free resolution of
F, and apply the Comparison Theorem. O

These cohomology groups are F,,-vectorspaces, and for the low-dimensional
cohomology groups we have some very useful interpretations, namely

Theorem 2.2. Let G be a finite p-group, d the minimal number of genera-
tors for G and t the minimal number of relations between these generators
in the corresponding free pro-p group. Then

(2.1) d = dimy, H' (G, F,);
(2.2) t = dimg, H*(G, F,).
Proof. See for example Serre, [19]. O

The next thing to observe about the graded vector space H*(G, ) is that
it carries an algebra structure, usually given by the cup product. However,
if we define the product structure using the Yoneda composition (splicing of
exact sequences), we get

Theorem 2.3. The cohomology ring H*(G, F,) is determined by F,G.

Proof. Whereas the definition of the cup product uses the diagonal map,
and therefore (7, the Yoneda composition only uses F,G. The result follows
from the fact that these two products are the same when we work over the
trivial module, see [1, page 53]. O

The algebra structure on the graded vector space H*(G,F,) is induced
from the product on the dual resolution (from where we calculate the coho-
mology). We will use the notation (—, —; 0) (from Laudal, see [9]) to denote
both the product between cochains and the induced product between coho-
mology classes.

The graded algebra H* (G, F,,) will be associative and graded-commutative,
whereas the dual resolution will only be associative and graded-commutative
up to homotopy as a differential graded algebra. The extra information we
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get from this fact is encoded in a very rich internal product structure called
Massey products (from the associativity) and Steenrod operations (from the
commutativity).

Because of theorem 2.2, we will concentrate on H'(G, F,) and H*(G, F,).
This is also the reason why we only consider Massey products and not
Steenrod operations, since Steenrod operations, save the Bockstein, don’t
do anything as operations from H'(G,F,) to H*(G,F,) (P° is the identity
operation, see [2, page 138]).

The construction of the Massey products on H*(G, F,) will be the same
over any resolution which is used to calculate H" (G, F,) for n > 0. Since
Hochschild cohomology for the group algebra is the same as group cohomol-
ogy when we work over the trivial module, i.e.

H"(G,F,) = HH"(F,G,F,), n >0,
we have that
Lemma 2.4. The Massey products on H*(G,F,) are determined by F,G.

We will give the definitions of Massey products as partially defined func-
tions on tuples of elements in H'(G, F,) into H*(G, F,). For the definitions
we will follow Kraines’ set-up, see [8], but we will have 1-s on the diagonal
in the defining systems, as Dwyer does, see [7]. We also follow Kraines’ sign
conventions. The 0 refers to the differential in a dual resolution for F,.

Definition 2.5. Let &,...,& € HY(G,F,) and let ¢1,...,¢s be cocycle
representatives of &1, ..., & respectively. A collection of 1-cochains

M:{m2]|1§2<.7§5+17(27])7£(175+1)}

is said to be a defining system for the cochain product (¢1, ..., ¢s;0) if

(2.3) miip1 = G; fori=1,...,s;
7—1
(2.4) 8mij = Z —<mik, mj; 0> forj#i+1.
k=i+1

The value of M, denoted v(M), is the 2-cocycle

S

v(M) = Z—<mlk, M s+1; 0).
k=2
We say that the s-fold (cochain) product (¢1,...,¢s;0) is defined if there
is a defining system for it. If it is defined then we define (¢1,...,¢s;0) to
be the set of cohomology classes v such that there exists an M with v(M)
representing v.
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Note that a defining system can be viewed as an (s4 1) x (s + 1)-matrix

1 myp o0 my,

0 1 o T mosq

. . . 1 Ms,s+1

0 -+ - 0 1
Lemma 2.6. The operation (¢4, ..., ¢s;0) depends only on the cohomology
classes of ¢, ..., ¢s.

Proof. See [8, page 432]. O

Hence we define a defining system for the s-fold Massey product (&1, .. .,&s;0)
to be a defining system for (¢4, ..., ¢s;0), and

<£17---7£5;0>: <¢17"'7¢s;0>

as subsets of H?(G, F,).

For particularly nice Massey products, we will always have a defining
system. These are called strictly defined Massey products, and are the
products we will be interested in:

Definition 2.7. We say that (&, ...,&s;0) is strictly defined if each
<5277€]70> fOT’ 1<j—-1<s5-2
is defined and contains only zero.

We note that the definition of a Massey product will not give us a unique
cohomology class, but rather a set of such classes. This means that we have
indeterminacy occurring naturally, which we need to deal with.

Definition 2.8. The indeterminacy of the Massey product (&1, ...,&s;0) is
defined by

In<517 s 75570> = {$ - y|$7y € <€17 c 75570>}

We now introduce some canonical groups U(s,r) which will be used in the
interpretation of the Massey product. Let U(s,r) be the group of upper
triangular (s+1) x (s+ 1)-matrices with elements from Z/p"*'Z and 1-s on
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the diagonal, i.e.

1 * *
0 1 * :
_ r41
Us,r)=< 1o 0 1 « || *€Z/p
0 --- 0 0 1

The elements {u;}?_; = {Is+1 + € 441}, will generate U(s,r).
Let 'y (G) denote the kth term in the lower central p-series for G defined
recursively by

(2.5) I'o(G) =G,

(2.6) [i(G) = [Tz (G), G).Ti-1 (G)P.

Then for r4+s = k+1, U1 (U(s, 1)) = Is4q and Uy (U(s, 7)) /T4 (U(s, 1)) ~
F, is generated by the element [- - - [uy, ug], ..., usl?" .

We will now consider the groups U(s,0). Then I's_;(U(s,0)) consists
of matrices which are identically zero except for 1-s on the diagonal and
elements from Z/pZ in the (1,s + 1)-entry. We are now in the situation
Dwyer considers in his paper, see [7, page 182], with U(R,n) = U(s,0) and
Z(R,n) = T's_1(U(s,0)). We give our version of Dwyer’s theorem 2.4 (the
change of sign appears since we use Kraines’ sign convention). This gives a
nice characterisation of a defining system which we will make use of.

Theorem 2.9. Let &y, ..., & be elements in H' (G, F,). There is a one-one
correspondence M<—¢pr between defining systems M for (&1,...,&;0)
and group homomorphisms

b G—=U(5,0) /T 1 (U(s,0))

which have &, .. .,&s on the superdiagonal (in the order given, i.e. the entry
(i,1+ 1) is &). Moreover, (£1,...,&5;0)a = 0 in H*(G,F,) if and only if

the dotted arrow exists in the following diagram.

U(s,0) —> U5, 0)/Tacs (U(5,0))

fo

Proof. See Dwyer, [7, page 185]. O

There is one more thing we need to introduce before we start putting
things together. Since we work in characteristic p, we would expect to get
some special p-fold products (and (power of p)-fold products), and indeed
we do:
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Let & € HY(G,F,). If we consider (&,&;,...,&;0), we may restrict the
defining system to get a restricted operation, see [8, page 440]. In character-
istic p the restricted product (&;,&;,...,&;;0) is the first such product that

N —’
P
can be non-zero. Moreover, it is defined as a single class of H?((, F,), i.e.
it has no indeterminacy.

Combining the fact that the Steenrod operations don’t do anything for

H'(G,F,) and H*(G, F,) with Kraines’ theorem 14 in [8] we have that

P

where 8 is the Bockstein operation associated to the short exact sequence

(2.8) 0 Z/pZ 7./p*Z —— T/ pZ 0.

Putting it the other way around, the Bockstein operation is a Massey prod-
uct. We will denote this operation by (—;1). The sign will not make a
difference for our purposes.

Now, if (&;1) is 0 as an element in H?*(G, F,), we can define (&;2), which
is a p?-fold restricted product etc.. In this way the restricted product is seen
to be a strictly defined Massey product:

Definition 2.10. We say that the product (&;;k) is defined for k > 1 if
(&;1) is defined and contains only zero for all | < k.

Kraines’ theorem 19 in [8] tells us that the p*-fold restricted product
(2.9) (=K H(G,F,) —> H3(G, F,)

has no indeterminacy and is equal to —fg, the Bockstein operation associ-
ated to the short exact sequence

(2.10) 0 — Z/pZ — L/p"H\Z —— Z/p*Z — 0.

We just need to note that Kraines assumes naturality and works with the
first and second cohomology groups for cyclic groups rather than a general
p-group G.

If we write the short exact sequences defining the various Bockstein maps
using our testgroups, we can formulate an analogous result to theorem 2.9.
It says that if (§;k) is defined and is non-zero, then we have a group
homomorphism from G into Z/p*Z and it cannot be lifted to Z/p*+'Z.
The proof will summarise the various information we have given on the re-
stricted product, and we will use this result in the next section. Observe

that U(1,r)/T.(U(1,7)) ~ Z/p"Z and that U(1,r) ~ Z/p"T'Z.
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Theorem 2.11. Let & € H'(G,F,). Then (&;r) is defined if and only if
there is a group homomorphism

¢ G—=U(L,1)/T.(U(1,1))

lifting ¢,y for r > 2 with ¢; = & In particular, (&;7) = 0 in H*(G, F,) if
and only if the dotted arrow exists in the following diagram.

U(l,r) —==U(1,r)/T(U(1,r))

Grer T

G

Proof. We observe that U(1,1)/I1(U(1,1)) ~ F,, H'(G,F,) ~ Hom(G, Fr)
and (&; 1) is always defined. By definition, (§;;2) is defined if (;;1) is 0. The
operation (—;1) is the Bockstein operation, which again is the connecting
homomorphism in the long-exact sequence arising from 2.8:

e WG, 2/p2) — H(G, 2/pZ) 2 1 (G, /) j

(—1)

L H*(G,Z/pZ) — H*(G,Z/p*Z) ———— - - -

So if (—;1) = 0, then by exactness we have an element ¢, € H' (G, Z/p’Z)

such that (-p)*(¢2) = &.
Now assume that (&; k) = 0 for & < r, then the maps

HY(G,Z/p*Z) — H?*(G,Z/pZ)

in the long-exact sequences sends ¢, to 0. If we intertwine the (r —1)st and
the rth long-exact sequences, we get the diagram

HY(G, Z/p~'Z)
M bro1m0
R
el
e WG 2B e WY (G 2 B e WA (G 2 pT) — -+

Eirr(€isr) Y
Z

H'(G,Z/pZ) H*(G,Z/p"L)

? ;

o
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from which we see that ¢, exists and lifts ¢,_; iff (;;7) is defined. In
particular, if (§;;7) = 0 then a(¢,) = 0 and by exactness there is an element
¢r+1 € HI(G7 Z/pr+1Z). 0

3. STRICTLY DEFINED MASSEY PRODUCTS AND GROUP RELATIONS

We have seen that F,G determines the Massey products on H*(G,F,),
and in particular the Massey products between HI(G,]FP) and HQ(G,]F‘p).
We will now put together the various results from section 2 and show how
we can relate strictly defined Massey products to relations in our group.

Going back to theorem 2.2, this tells us that we are dealing with a minimal
pro-p presentation for (G, i.e. a presentation of an abstract group where the
largest p-quotient is isomorphic to G.

Let {&,...,&} be a basis for H'(G,F,), let {n,...,m:} be a basis for
H?(G,F,) and let T* be the free pro-p group on a dual basis for HY (G, F,), i=
1,2. This was introduced by Laudal, see [9].

We know that HQ(G,FP) classifies group extensions of G by F,, and
so elements in H?(G,F,) will give us obstructions for lifting group homo-
morphisms. Using obstruction theory on the lower central p-series of T,
{Ti(T") }i>0, we get a structure theorem for pro-p groups:

Theorem 3.1. The obstructions give rise to a morphism between pro-p
groups

oc: T > T1!
and an isomorphism G ~ T'/(imog), where (imog) denotes the normal
closure of imog in T'.

Proof. See Laudal, [9, page 10]. O

The question we will address here is “How much of the obstruction mor-
phism is determined by F,G7”
Note that I'g(G) = G. We have the canonical maps

TV/Ti(TY) = G/Ti(G)

with m; being an isomorphism. The obstruction calculus determines the
kernels of the m;-s, starting with ¢+ = 1 and working upwards in such a
way that (imog) will include all the obstructions on each level. For finite
p-groups, this process will end after finitely many steps

If we pick an 7% and consider a basis for I'x(7")/Ty1 (T") using left-
normed commutators and pth powers, we have that Og(’l’];) can be expressed
on the form

(3.1) oc(n) =1 (H[ AN _fﬁpw(m,j))

k>1  ar
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where s+r=k+1,1<i<d,t=1,...,sand 0 < ¢(s,r,j) <p—1.
We will now show how we can determine the ¢(i, r, j)-s from F,G in the

two cases
(3.2) r=0,s>2,
(3.3) r>1,s=1.

For this, we concentrate on the strictly defined products
(3.4) (=, —,+++,—;0) (definition 2.7),
(=) (definition 2.10).
We have the following theorem linking (3.2) and (3.4).

Theorem 3.2. Let {&1,...,&i} and {n1,...,m} be a basis for H(G,F,)
and H*(G,F,) respectively and let

1
<€i17 .. 752570> - Zaﬂb
J=1

be a strictly defined Massey product. Then, referring to (3.1), (2,0, j) = «a;
where 1 = (i1,...,15), s > 2. Hence we get a correspondence between the
product (&;,, ..., &.;0) and the commutator [€F ..., &} ].

Proof. Consider U(s,0) and observe that U(s,0)/I';(U(s,0)) ~ F,. We have
(3.6) HY(G,F,) ®@r, U(s,0)/T'1(U(s,0)) ~ Mor (T, U(s,0)/T1(U(s,0)).

We will proceed by induction on s, so first let s =2 (s = 1 comes under
(3.3)). Then our product is the Yoneda composition which is always de-
fined. By (3.6), a morphism T'——=U(s,0)/T1(U(s,0)) will correspond to
elements in H' (G, F,), so pick &;,& € H'(G,F,) and consider the morphism

¢1§ Tl — U(Q,O)/Fl(U(QO))

110
&g — [0 10
00 1
100
& — [0 11
00 1

& 1 fori#1,2.
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From (3.1) we see that 11 (og(n})) = 0V j € {1,...,t}, which means that
the composition 17 o og is trivial, so we get a factorisation of ¥, via GG, and
hence a group homomorphism ¢, : G——=U(2,0)/I'1(U(2,0)).

By theorem 2.9 we have a defining system for (£1,&2; 0) since we will have
& and & on the superdiagonal. We note that in the base step, our product
is always defined, and the defining system is already uniquely determined.
Now, since T! is free, we have a lifting of ¥y to 1, : T'——=U(2,0), and
since ¥y 0 og is trivial we get that ¢y o og : T?*——I1'1(U(2,0)). We have
the diagram

—
—
—
-7 1112 ™
—
~
—
~ oG
3

77 e U/(2,0)/11(U(2,0))
7
G 1

What happens to og(n}) under the lifting 1,7 Well, from (3.1) and the

diagram above we see that

10 ¢(i,0,7)
balog(n;)) = {0 1 0
00 1

where ¢ = {1,2}. Moreover, by properties of the dual operator on finite
dimensional vector spaces,

(3.7) Pa(oG(n})) = nj (P2 00a).

Using (3.6) on 72 and U(2,0) ~ F,, we have that the map v 0 og gives us
an element in H?(G, F,). This will be the value of our defining system, since
it is constructed from %1, so

77;(<51752; 0> = C({17 2}7 07.7)

and therefore if (&1, &2;0) = Z;:l a;n;, ({1,2},4,0) = a;, which finishes the
base step.
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Now, let (&1, ...,&s; 0) be a strictly defined Massey product , s > 3, which
means (&;,...,§;0) =0 for 1 <k —i < s—2. Then, by induction, og(n})
.|, &) occurring.

have no commutators involving [---[£*,.

Using (3.6), we are lead to consider a morphism
Y1 TV — U(s,0)/T1(U(s,0))
¢ {uZ fori=1,...,s

1 otherwise.
As before, ¥ sends og(7}) to 1, and so it factors via G, giving
¢1: G——=U(s,0)/T1(U(s,0)).

Let 1, be the lifting from 7', which always exists. By assumption, all the
Yoneda compositions (§;,&;11;0) are trivial, and also note that [u;, ux] = 1
for k # i+ 1. Hence 1 also sends 0@(77;*) to 1, and so 4 factors via G to
give

¢ G——=U(s,0)/T'2(U(s,0)).

Again, the lifting 3 : T!'——=U(s,0)/T'3(U(s,0)) always exists. In general,
we get ¥, (og(n7)) = 1 for m < s — 1. This is because (§;,...,&;0) = 0
for 1 <k —12<s—2and all k-length commutators with wu;-s for £ < s —1
with index set of the u;-s in the commutator # {#,i+ 1,...,k} is 0. So for
strictly defined products, this set-up singles out the relation we want.

We continue getting ;-2 and ¢;-s till we get to U(s,0)/I's_1(U(s,0)).
The map 1s_1 factors via GG to give ¢5_1, but for the lifting 15, we now get

10 0 ¢(z,0,7)
0 1 0
Ps(oa(n5)) = 00 1 ) :
00 0 1 0
00 0 0 1

where ¢ = {1,...,s}. The map ¢s_y will, again by theorem 2.9, give a
defining system for (&1, ...,&;;0), and as for s = 2, the map

Pgyoo0g: T?——=T5_1(U(s,0))
gives us the value of the defining system, so using (3.7) for general s,
n7((€1y - €s50) = e({1, ..., 8},0,7)
and ¢({1,...,s},0,7) = «;, which finishes the induction. O

Similarly, we get a theorem linking (3.3) and (3.5):
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Theorem 3.3. Let {&1,...,&i} and {n1,...,m} be a basis for H'(G,F,)
and H*(G,F,) respectively and let

t
(Eiry = oy
i=1

for i=1,...,d. Then, referring to (3.1), c(1,r,j) = o;,, where i = (1,...,1)
N —

pT
and we consider the restricted product as mentioned in section 2. Hence we

get a correspondence between the product (&;;7) and the p-th power (€X)P.

Proof. Similar to the proof of theorem 3.2, using theorem 2.11 and the
groups U(1,r). a

4. MASSEY PRODUCTS AND EXTENSIONS

In this section we will see how we can get the formulas for the Massey
products by looking at extensions of modules. This can be viewed as the
Yoneda construction of Massey products for H' (G, F,) and H*(G, F,).

We will do this a bit more generally, so let A be an associative k-algebra
(for us k = F,, A = F,[G]) and let (V;)"_; be the family of the irreducible
A-modules (for us V; = F, for all 7). We will need to do some calculations
and for this we will use the Hochschild cocomplex C*(A, Homg(V;, V;),d).
We note that Homy (V;, V;) is an A-bimodule for ¢,j € {1,...,n}.

Recall that the n-cochains in the Hochschild cocomplex are defined by

C"(A,Homy(V;,V;)) = Homp (A ® - - - @ A, Homg(V;, V;))

and that the differential 4 is given by the formula
8" ¢(ar1 @ -+ ® apyr) (v;)

=a1¢(az @+ @ apny1)(vi) + Z(—l)icb(al ® - ® a1 @ @D pgr) (v;)
=1

H(=1)" (a1 @ -+ @ @) angr (v7)

for ¢ € C"(A,Homy(V;, V;)), a1,...,a,41 € A and v; € V.

We have seen that Massey products are well-defined on cohomology classes
so let &; € Extl (V;, V;). Since &;; is a 1-cocycle, it is also a derivation from
A to Homy (V;, V;). The derivation will be called ;.

Now take &5, € EXth(Vj, Vi) with the corresponding derivation #;;, and
consider the Yoneda composition of §;; and &;;. We want to check that this
is an element in Ext%(V;, V). We know that it corresponds to taking the
composition of &; and i, or equivalently, the composition of 9;; and 9z,

ie. (&;,&k;0)(a®b) = 1i;(a) ok (b) so (&;,&;%;0) has a representative in
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C?(A,Homg(V;, Vi) (we apologise for the two different k-s, but we feel the
use should be clear). Let a,b,c € A, then we can check that 6%(&;;, &x; 0) (a®
b® c)(v;) = 0 using the Hochschild differential, the bimodule structure and
Leibniz’ rule.

By starting with an extension

0 V; E;; Vi 0

and looking at the A-module structure on F;;, we get a derivation ;. The
module structure on F;; will be given by

(vj,vi)a = (vja +ij(a) (v), via).
We have seen that by adding an extension Fj; and splicing these short-
exact sequences we get an element in Ext%(V;, Vi) and the formula for the

cup product.
Now consider the following diagram.

&ij
0
Y
0 Vi - Eik v 0 &ik
7
f |
/
0 — F;; Eijk Vi 0
\
\ |
1111‘] N
0 Vi Fi Vi 0
0

Let us see what we need to have an A-module structure on E;;;: As a
k-vectorspace Fj; ~ (Vi x V;) x V;, and since Fj——Fj;;;, we know that
(vk, vj,0)a = (vga + Pjr(a)(v)), v;a, 0).

Consider (0,0, v;)a = (o, %;;(a)(v;), v;a) and put e = 2;;1(a)(v;). Does there
exist an element v;;; such that we get an A-module structure on F;;,? We
need that

(4.1) (0,0,v;)(@1az) = ((0,0,v;)ay)as
for aj,ay € A and v; € V;. The left hand side in (4.1) is
(¢ijk(a1a2)(vi)7 %’j(%%)(w), Ui(a1a2))7
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whereas the right hand side is

(Yijr(ar)(vi)az + Pix(az) (Yij(ar) (vi)), ij(ar) (vi)az, 0)
+(ix(a2) (viar), Yi;(az) (viar ), (viar)ag).

We see that the 3" coordinates are equal since V; is an A-module, and the
2nd coordinates are equal since 1;; is a derivation. This is typical for these
calculations; all coordinates except one will be equal by the construction in

the previous steps. If we consider the 15 coordinates, we get that
(Vijy ¥jk; 0) (a1, az) (vi) = =8 ijn(ar, az) (vi).
We conclude that an A-module structure on Fj;; is given by
(vk, v, vi)a = (vra + Pir(a) (v) + Yije(a) (vi), via + Pij(a) (vi), via)

where —51%]'1.3(@1, az) (vi) = Pij o Yjrlar, az) (v;).

Next, we draw the 3-dimensional diagram given on the next page. In this
diagram we have assumed that the product between &;; and £, is zero, i.e.
is 0 of 1;;z, so that we have a module structure on E;;z. Then we add a
third extension & (extending Vi by V;) and draw a wall of Vi-s, obtaining
the diagram.

The arrows — — > in the diagram draw the splice
0 Vi Ejk Vi 0
0 Vi —=Ejj —=V; —0

We have assumed that this splice is zero in Ext%(V;, V), and from the
diagram we can now explain what this means: Since we have a module
structure on Fj;i, the sequence “factors” via Fjjx:

Eij
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What conditions have to be satisfied for us to define an A-module struc-
ture on Fj;; (the middle entry in the diagram)?

V) S
E; 7 Eju
7 i}
4 U
Vi Vi :
/
/ %
/ 1
, i}
I}
/ 1
/ %
% \
Ei; Fijk Vi
! ’
/ I / /
| ’
Eii [ Eijr HH B
| I
| I
/
/ | / / /
1% a Vi - Vi
| ~
H
| A
/
| ~
I ,/H
| ol
[ et ’
| ,-/J
| ~
Y Q_,_//
Vi Eig, Vi
Ey Ei Ey
Vi ! Vi

As k-vectorspaces, we have Fj;i ~ (Vi x Vi x V;) x Vi, and to find the
module structure we only need to consider the “new” extensions we get in
our diagram, because all the other conditions are included in the previous
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steps.
We know that

(v1, vk, vj, 0)a = (via + Pri(a) (vi) + Yni(a) (v;), vea + Pjx(a) (v), vja, 0).
Consider
(0,0,0,v;)a = (o, %;jr(a)(vi), ¥ij(a)(vi), via)
and put & = 9;;51(a)(v;). Similar to F;;x, we now compare (0,0,0, v;)(a1az)
and ((0,0,0,v;)a;)as. The 4" coordinates are equal (V; is an A-module),
the 3™ coordinates are equal (1i; is a derivation, i.e. Fj; is an A-module)
and the 2" coordinates are equal (the cup product (£;;,&;x;0) is assumed

to be zero, i.e. FE;jx is an A-module). For the 1°° coordinates to be equal,
we need

it (arag)(vs)
=vi;k1(a1) (vi)ag + Pri(az) (Yijr(ar) (vs))
+ Yjwi(az) (Yij(ar) (vi)) + Yijri(az) (viar)

which implies

(4.2) Pri(az) (Pie(a1) (vi) + Yjn(aa) (Yij(ar) (vi) = =6 Pijrr(ar, az) (vs).

Conclusion: First of all, we see that we also need an A-module structure on
FE1, i.e. the product between £;; and & must be zero (the arrows - >
in the 3-dimensional diagram) and we have an element

¥;p € Homy (A, Hom(V;, V7))

such that §'¢;1 = —(&k, &5 0). Soif the products (&5, &jx; 0) and (E;x, Exr; 0)
are both zero, then we can define an A-module structure on Fj; by
(v, vg, V5, v5)a
=(via + ¢ri(a)(vr) + iwi (@) (v) + Pijr(a) (vi),
vka + k(@) (v)) + Pijr(a) (vi),
via + Pij(a) (i),

v;a)
where ;1 satisfies (4.2).
We recognise the formula in (4.2) as a defining system for the 3-fold

Massey product (&;;, &k, &5 0). This element in Ext%(V;, V)) is represented
by the arrows ~~= in the 3-dimensional diagram.
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Remark 4.1. Remember that 1-cocycles correspond to derivations; hence
whenever we have a ¥ with two subscripts, it is a derivation and therefore
a 1-cocycle. The 1h-s with more that two subscripts will be derivations when
we assume that the Massey product they correspond to is zero.

Now assume that we have an A-module structure on F£;;i;, and we want
to add an extension &, (extending V; by V,,,). We will make no attempt
at drawing a diagram for this situation, but ask the reader to picture a 3-
dimensional square spiral (i.e. we draw a cube of 3% V,,-s and draw arrows).
By similar calculations and notations as before we can consider what we
need to define an A-module structure on Fjj;1,,. This gives us a defining
system for the 4-fold Massey product (&;;, &k, ki, &im; 0) as in definition 2.5.

This procedure goes on to give us the formula for a general Massey product
as in the formula in definition 2.5. When we are building modules like this
we want a module structure on each step, and so the lower order products
involved need to be zero. Hence the Massey products we get here are strictly

defined.

Remark 4.2. The Yoneda construction can only be used for strictly defined
products, since in this situation we know that the product exists because we
have cochains to use. In other words, our defining systems are particularly
nice for these products.

We have shown that if our product is strictly defined, then we get a cer-
tain module structure. However, we don’t know whether we have the whole
Massey product structure. If we did, we would have been able to build the
whole module category.

5. THE crLass C
We now introduce the following class of finite p-groups.

Definition 5.1. Let C be the class of finite p-groups having a pro-p presen-
tation with relations on the form

i) a generator to some (power of p)th power,
i1) left-normed n-fold commutators for n > 2,
and/or 1it) products of i) and i7)

where if a certain (n — 1)-fold commutator y for n > 3 occurs, then we don’t
have a k-fold commutator, k > n, involving y occurring.

Using theorems 3.2 and 3.3, we see that the relations in the class C are
exactly those determined by strictly defined Massey products. Also note
that the class intersects non-trivially with all the classes for which it is
known that the modular isomorphism problem has a positive answer.
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Theorem 5.2. The class C is determined by F,G, i.e. if F,G ~ F,H then
G isin C if and only if H is in C.

Proof. The class C gives us exactly the p-groups having a pro-p presentation
coming from strictly defined Massey products. The Massey products, as we
have seen, live on the Hochschild cocomplex, which is determined by F,G.

Moreover, the fact whether a Massey product is strictly defined or not is
also determined by F, (& as this can be detected by considering the existence
of certain module-structures as we saw in section 4. O

For the question of distinguishing the individual groups in C using F,G,
we can introduce a procedure for writing down the strictly defined Massey
product structures, see [4]. We intend to come back to this procedure and
how to produce and study p-groups using this theory in another paper.
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