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The Lambda-Cold Dark Matter (ΛCDM) model agrees with most of the cosmological

observations, but has some hindrances from observed data at smaller scales such as
galaxies. Recently, Berezhiani and Khoury proposed a new theory involving interacting

superfluid dark matter with three model parameters in,1 which explains galactic dynam-

ics with great accuracy. In the present work, we study the cosmological behaviour of this
model in the linear regime of cosmological perturbations. In particular, we compute both

analytically and numerically the matter linear growth factor and obtain new bounds for
the model parameters which are significantly stronger than previously found. These new

constraints come from the fact that structures within the superfluid dark matter frame-

work grow quicker than in ΛCDM, and quite rapidly when the DM-baryon interactions
are strong.
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1. Introduction

With the advent of precision cosmology and satellites like Planck and WMAP, we

have gained new insights about the evolution of the universe. Till date, Lambda-

Cold Dark Matter (ΛCDM) provides the best fit to these available data and has

been widely accepted as the standard model of cosmology.2 The hypothesis of CDM,

which are assumed to be collisionless non-relativistic particles, along with bary-

onic matter explains the CMB temperature anisotropy, matter power spectra, large

scale galaxy distributions and lensing data remarkably well. In fact, the abundance

of galaxy clusters and observed large scale structure formation history strongly

supports the collisionless CDM scenario as opposed to any alternative theories to

ΛCDM.3–5 However, at smaller scales, CDM faces a number of challenges that

need to be addressed.6 For example, the Baryonic Tully-Fisher relation and the
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corresponding tight correlation between the mass and dispersion velocity at the

high-mass end can not satisfactorily be explained by CDM halo which predicts a

larger scatter due to feedback processes in the galaxy.7 Apart from this, there is

another issue with the standard CDM picture in the galactic scale, known as the

cusp-core problem.8 The simulations of galactic halos with CDM produce a kink

(cusp) at the center of the galaxy, whereas observations of various galactic density

profile suggest a flat core. With improved observations of the faint dwarf galaxies

and substructures within the galaxies like Milky Way and Andromeda, new set of

discrepancies arise. While the missing satellite problem in dwarf galaxies9 has been

addressed to some extent, the Too Big To Fail Problem, arising from the predic-

tion of satellites that are too massive and too dense by ΛCDM, compared to those

observed, still remains unresolved.10,11

Due to the above unresolved issues, scientists have looked into other alternative

explanations through modifications of General Relativity (GR). Several models have

been proposed so far with the aim to explain existing data to the same degree of

accuracy as ΛCDM as well as overcome its drawbacks. Many of them have already

been ruled out or are highly constrained by the ongoing observations of gravitational

waves, but some theories like f(R), f(T ), f(G), Scalar-tensor-vector theories of

gravity etc. are still consistent with the data, and new observations are required to

falsify these theories.12–18 These theories are relativistic corrections of GR which

modify the dynamics of spacetime through the modified field equations. The theory

of Modified Newtonian Dynamics (MOND), on the other hand, is a modification

to the Newtonian force law that changes the dynamics of interaction between two

massive bodies in the non-relativistic limit.19,20 MOND was first proposed in 1983

by Milgrom to account for the flattened galaxy rotation curves near the edge of the

spiral galaxies like Milky Way. There is a universal acceleration scale a0 in MOND,

whose value is obtained as 10−8cm/s2. For accelerations much lower than this scale,

the Newtonian law is modified, and this explains the flat galaxy rotation curve data

for a large number of galaxies.21 Interestingly, the Baryonic Tully-Fisher relation

in galaxies can exactly be derived from MOND where M ∝ v4c . MOND can also

explain several other galactic observations like the planar structure of galaxies, low

merger rate etc.22 Thus, we see that MOND, with just one free parameter, is a very

well-behaved theory at the galactic scale. However, despite these successes, MOND

faces several challenges in extragalactic and cosmological scales. Proper relativistic

extension of MOND is not available.23 Hence it cannot be applied at cosmological

scales.

The effectiveness of MOND at small scales and success of ΛCDM at cosmological

scales are the main motivations for scientists to look for models which are CDM-

MOND hybrids i.e., theories that include usual cold dark matter as collisionless

particles at cosmological scales, but give rise to a MOND-like modified force law

at galactic scales such that they satisfy both sets of observations. This class of

models take into consideration the interacting dark matter-baryon picture where
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a MOND-like force is mediated through this new interaction term. Based on this

idea, many models have been proposed which can reproduce both CDM features as

well as MOND in their respective regime of validity.1,24–27

In this paper we shall focus on one such model proposed recently by Berezhi-

ani and Khoury,1 where CDM can form condensates at galactic scales depending

upon the surrounding temperature and can behave as superfluid. It has already

been shown by the authors that such model can explain a number of galactic scale

observations due to their MONDian behaviour, which normal CDM fails to ex-

plain.1,28–30 Although there are recent studies which suggest that the superfluid

DM model is disfavoured compared to a spherically symmetric CDM halo at galac-

tic scales as the superfluid DM overestimates the vertical acceleration which has

to be counterbalanced to match the observations.31,32 There are two free param-

eters in the theory which are assumed to be temperature dependent. It has been

argued that at cosmological scales, the theory behaves as usual CDM and thus the

background evolution and other cosmic histories remain unchanged as compared to

ΛCDM. Here, we study the cosmological evolution of the background as well as the

matter perturbations. We check whether the present model remains well-behaved

at cosmological scales as has been claimed by the authors and compare our results

with ΛCDM.

2. Dark Matter Superfluid-Overview

The central idea of this model is that CDM is made up of particles which undergo

phase transition below a particular critical temperature and becomes a superfluid.

This requires that the particle CDM needs to be strongly interacting below a partic-

ular temperature. The superfluid behaviour depends on the strength of interaction

and the mass of the particle. It has been shown in1 that in order to form a Bose-

Einstein Condensate (BEC) the following condition must be satisfied

m ≲
( ρ

v3

)1/4

(1)

where m and v corresponds to the mass and velocity of the particle respectively

and ρ is the density of the condensate. Assuming virialization of dark matter halo

at galactic scales, this gives an upper bound on the mass of the particle forming the

halo

m ≲ 2.3(1 + zvir)
3/8

(
M

1012h−1M⊙
)−1/4

eV (2)

Further assuming thermalization of CDM particles, one obtains the bound on in-

teraction cross section as

σ

m
≳ 52(1 + zvir)

−7/2
( m

eV

)4
(

M

1012h−1M⊙
)2/3

cm2g−1 (3)
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Using equipartition law, the critical temperature Tc of the CDM condensate can be

obtained as

Tc = 6.5

(
eV

m

)5/3

(1 + zvir)
2mK (4)

It has been argued in1 that the temperature of CDM at cosmological scales is

much below the critical temperature (O(10−28) for m ∼ eV) which implies that the

condensate behaves as a T ≈ 0 superfluid at cosmological scales.

The description of superfluid dark matter is given in terms of a low energy

effective theory with the Lagrangian of the form:

L =
2Λ(2m)3/2

3

(
θ̇ −mΦ− (∇θ)2

2m

)3/2

(5)

Let us now understand the motivation of choosing such a Lagrangian. Here, θ is

the phase of the wavefunction describing the superfluid phonon modes and Φ is the

gravitational potential in which the DM particle sits and is given by the standard

Newtonian potential in the usual non-relativistic case. This Lagrangian has a free

parameter Λ which defines the strength of the superfluid (i.e. defined by the number

of particles in the condensate state). The power of the Lagrangian is defined by the

choice of the equation of state (EoS), and a fractional power of 5/2 is indeed obtained

in superfluids formed by ultra cold atoms. In the case of CDM superfluid, the choice

of the power 3/2 in the Lagrangian is somewhat arbitrary, but motivated by the

fact that the superfluid DM should give rise to MOND-like dynamics at galactic

scales when baryons are also included. This also corresponds to an equation of state

P ∼ ρ3 which is suggestive of a dominant three-body interaction process. What

kind of particles can lead to such a superfluid with this particular EoS and the

physics of its formation has not been discussed earlier and is beyond the scope of

this paper. For our purpose, we shall assume the form of this Lagrangian to study

the characteristic features of the resultant superfluid DM model.

In the effective field theory formalism, the superfluid is described in terms of

interacting phonon modes. The phonon modes can be described by the scalar field

θ, which, at a constant chemical potential µ, can be expanded as,

θ = µt+ ϕ

where ϕ denotes the excitation of the phonon modes.

The DM superfluid couples to the baryons through the phonon modes via an

interaction given by the Lagrangian:

Lint = −α
Λ

MPl
θρb (6)

This kind of interaction ensures a MOND force. Here α is a dimensionless free

parameter, which sets the interaction strength of the interaction, and ρb is the

baryonic mass density.
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Thus, the complete Lagrangian for an interacting superfluid DM is given by,

L =
2Λ(2m)3/2

3

(
θ̇ −mΦ− (∇θ)2

2m

)3/2

− α
Λ

MPl
θρb (7)

It has been shown in1 that the MONDian acceleration arises as a special case of the

dynamics of the above Lagrangian. The validity of this model in solar system and

Bullet cluster has also been discussed there.

In the cosmological context, although the authors in1 discuss some general points

regarding the background behaviour and the equation of state of this new superfluid

dark matter, they do not shed much light on other important points such as growth

of perturbations and structure formation. In the next sections, we solely focus on

the cosmological aspects of this new theory.

3. Cosmological Solutions

In this section, we will study this theory in cosmological context. This is of particular

interest since the theory also needs to be consistent with the present cosmological

data.

3.1. Background Solutions

For the background cosmology, we have θ = θ(t). In the FLRW background with a

scale factor a, the equation of motion for θ can be derived from the action as,

d

dt

[
(2m)3/2a3θ̇1/2

]
= − α

MPl
a3ρb (8)

Assuming the evolution of baryons i.e. ρb ∝ 1/a3 as in standard ΛCDM, we get,

ρm = − αΛ

MPl
mρbt+

mΛC

a3
(9)

Here C is an integration constant which has to be determined from the present

DM density. The second term (ρdust) corresponds to the dust like evolution. The

form of the density is similar to those obtained in dynamical space-time theories as

discussed in.33–35 For the second term to dominate (such that ρm behaves as dust),

it can be shown that one needs to satisfy the following constraint:

αΛρb
MPlρdust

mt0 ≤ 1 (10)

where t0 is the present age of the universe.
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Bounds on the model parameters:

• From the EoS- Equation of state for the DM superfluid (assuming negli-

gible interaction) is given by,

w =
ρ2dust

12Λ2m6
(11)

For DM to behave as dust at the background level, Λ should be bounded

from below,

Λ ≫ 0.1
( m

eV

)−3

eV (12)

• From coupling to baryons- From (10) and (12), and assuming a constant

baryon-to-DM ratio (ρdust/ρb = 6), we get,

α ≪ 2.4× 10−4
( m

eV

)2

(13)

These bounds are different from the bounds obtained for galaxies, as discussed

in.1,28

3.2. Perturbations

Study of linear perturbation theory in the context of ΛCDM has been an important

step towards understanding the evolution of the universe. CMB spectra carries

information about the inhomogeneities present in the early universe. Hence, any

cosmological model needs to satisfy the CMB data to a high degree of accuracy.

This requires analysing the matter power spectrum resulting from the initial density

perturbations. In this section, we examine the growth of cosmological perturbations

in DM superfluid model at linear order.

The Lagrangian of the theory in an FLRW matter dominated universe is given

as,

L = c1

(
θ̇ − (∇θ)2

2m
−mΦ

)3/2

− c2ρbθ (14)

where c1, c2 are constants expressed as,

c1 =
2Λ(2m)3/2

3

c2 = α
Λ

MPl
(15)

Here, θ(x, t) = θ̄(t) + δθ(x, t) is a scalar field which is a fucntion of both space and

time.

We can find the Euler-Lagrange equation from the above equation as:

d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= 0 (16)
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This gives us the background equation of motion as shown in the previous subsection

as well as the first order perturbation equation of the dark matter density. But this

single governing equation is inadequate to obtain the complete numerical solution

which requires a complete set of differential equations.

In order to get the full set of perturbation equations, we start with the fluid

equations that govern the dynamics of the dark matter superfluid. The fluid equa-

tions, namely the continuity equation and the Navier-Stokes equation can be derived

using the Hamiltonian formalism, as described in.36 In,36 the authors work out the

fluid equations for an interacting two-component BEC dark matter. Here in this

work, we follow the same prescription for a superfluid dark matter which interacts

with the baryonic matter. The corresponding Lagrangian is given by (14).

From the Lagrangian, we get the conjugate momentum as,

Πθ =
∂L
∂θ̇

= Λ(2m)3/2
[
θ̇ −mΦ− (∇θ)2

2m

]1/2
(17)

The Hamiltonian H describing the superfluid can be obtained as,

H = Πθ θ̇ − L (18)

Since, θ̇ = mΦ+ (∇θ)2

2m +
Π2

θ

Λ2(2m)3 from (17), we get the Hamiltonian H as follows,

H =
Π3

θ

3Λ2(2m)3
+

(
mΦ+

(∇θ)2

2m

)
Πθ +

αΛ

Mpl
ρbθ (19)

3.2.1. Hamilton’s equation of motion

The Hamilton’s equations of motion are :

θ̇ =
∂H

∂Πθ
(20)

and

Π̇θ = −∂H

∂θ
(21)

For this model, the two equations become, respectively,

θ̇ =
Π2

θ

Λ2(2m)3
+mΦ+

(∇θ)2

2m
(22)

and

Π̇θ =
1

m
∇ · (Πθ∇θ)− αΛ

Mpl
ρb (23)
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3.2.2. Fluid equations

In order to get the fluid equations from the above Hamilton’s equations of motion, we

identify the terms as corresponding hydrodynamical variables. We define the mass

density term (as the co-efficient of Φ in the Hamiltonian) and the four-velocity of

the fluid, u⃗ as

ρm = mΠθ, u⃗ = −∇θ

m
. (24)

Using the above definitions, we get the fluid equations from equation (23) and (22)

as follow,

ρ̇m +∇ · (ρmu⃗) = −αΛm

Mpl
ρb (25)

˙⃗u+ (u⃗ · ∇)u⃗ = −ρm∇ρm
4Λ2m6

−∇Φ (26)

These are the two fluid equations: Continuity equation and Navier-Stokes equa-

tion.

Now, the Poisson’s equation can be written as

∇2Φ = 4πG(ρ̄+ δρ) (27)

Integrating twice and substituting the background density using Friedmann equa-

tions, we get the potential as:

Φ = −1

2
(Ḣ +H2)l2 + ϕ (28)

where l is the proper distance defined as l⃗ = a(t)x⃗ and ϕ is the potential due to

inhomogeneities.

Similarly, the four-velocity u⃗ can be split into two parts, Hubble flow and a

peculiar velocity v⃗ as follows:

u⃗ = Hl⃗ + v⃗ (29)

Expressing everything in comoving co-ordinates x⃗ and using ∇l =
1

a(t)∇x, we

get,

ρ̇m + 3Hρm +
1

a
∇ · (ρmv⃗) = −αΛm

Mpl
ρb (30)

and

˙⃗v +Hv⃗ +
1

a
(v⃗ · ∇)v⃗ = − ρm∇ρm

4aΛ2m6
− ∇ϕ

a
(31)

These are the two fluid equations of motion that we shall use for the rest of our

calculations.
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3.2.3. Evolution of perturbations

The total DM density ρm and the baryonic density ρb can be split into two parts:

background and perturbation:

ρm = ρ̄m + δρm, ρb = ρ̄b + δρb

respectively.

We define, the relative density perturbations for these two components as,

δm =
δρm

ρ̄m + ρ̄b
and δb =

δρb
ρ̄m + ρ̄b

.

In the linear perturbation regime, we treat δρm, δρb and v⃗ to be small, and hence,

neglect the higher orders of these terms. Perturbing the two fluid equations in the

linear regime gives:

δ̇m +
ρ̄m
aρ̄

∇ · v⃗ = −αΛm

Mpl
δb (32)

and

˙⃗v +Hv⃗ = − ρ̄m∇δρm
4aΛ2m6

− 1

a
∇ϕ (33)

By using the above equations along with the Poisson’s equation and assuming ρ̄m ∼
ρ̄, we get the evolution equation for δm as follows:

δ̈m + 2Hδ̇m − ρ̄mδm
2M2

pl

− ρ̄2m∇2δm
4a2Λ2m6

= −αΛmδ̇b
Mpl

− 2H
αΛmδb
Mpl

+
ρ̄bδb
2M2

pl

(34)

This is a second order differential equation. The coefficient of the spatial derivative

∇2 gives the square of the sound speed cs. Thus, we get,

c2s =
ρ̄2m

4Λ2m6
(35)

Below in Fig. 1, we show the plot for c2s vs the redshift z for m = 1 eV and Λ = 500

eV. We take the time evolution of the background density ρ̄m as

ρ̄m =
0.4(1 + z)3

(1 + 1000)3
(36)

where the value of ρ̄m at equality (z = 1000) is set as 0.4 eV4 (36). As evident from

the plot, the sound speed is very small (compared to the speed of light c = 1).

3.3. Analytical Solution

We now have the perturbation equations (32) and (33) supplemented by the Poisson

equation. In the absence of baryons, we recover the usual evolution of CDM as a

non-relativistic fluid. This can be seen as follows.
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Fig. 1. Plot for c2s vs z. As can be seen, the sound speed is very small compared to the speed of

light (c = 1 in this case) at all times.

Without baryons:

In the absence of baryons, i.e. by setting ρ̄b = 0 and δρb = 0 in equations (32) and

(33), we obtain a set of equations as follows:

δ̇m +
1

a
∇ · v⃗ = 0 (37)

and

˙⃗v +Hv⃗ = − ρ̄m∇δρm
4aΛ2m6

− 1

a
∇ϕ (38)

For Λ ≫ 1, i.e, when the sound speed cs is taken to be very small, the above set

of equations reduce to the usual perturbation evolution equations in a ΛCDM model

in the matter-dominated regime.37 Thus, in the absence of baryons, usual CDM like

evolution is recovered at the background level as well as for the perturbations. This

can also be seen from the second order differential equation governing the evolution.

From equation (34), in the absence of baryons, we obtain,

δ̈m + 2Hδ̇m − ρ̄mδm
2M2

pl

− ρ̄2m∇2δm
4a2Λ2m6

= 0 (39)

As expected, the above equation is the usual evolution equation for CDM in a

flat ΛCDM universe, with a small sound speed given by (35). Since the sound speed
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is very small, for all practical purposes, this term can be neglected and we end up

with the following second order differential equation:

δ̈m + 2Hδ̇m − ρ̄mδm
2M2

pl

= 0 (40)

This is the evolution equation of non-relativistic CDM in the ΛCDM model.38 The

growing solution of this equation is the usual CDM like evolution, which is δ ∝ a

for a matter dominated universe.37,38 In the absence of baryons, the superfluid dark

matter thus behaves exactly like CDM and the growth of perturbations follow the

ΛCDM-like evolution.

With baryons:

We now investigate how the perturbations evolve when both baryons and baryonic

interactions with superfluid dark matter is present. A complete solution is to be

found numerically for different values of the model parameters. This will be pur-

sued in the next section. For now, we try to find the generic nature of the DM

perturbations growth with some basic assumptions regarding the baryonic density

evolution and the interaction strength between baryons and the superfluid. We as-

sume that the baryon perturbation δb follows the same rate of growth as in ΛCDM

i.e. at late times δb ∝ a as obtained from the observed power spectrum. We now

consider equation (34) which is the single second order evolution equation. We are

only interested in the temporal behaviour of δm. With the assumption that c2s ≪ 1,

equation (34) can be analytically solved for two limiting cases. For the first case

when the interaction strength is negligible, one can set α = 0. With this condition,

the only remaining term in the RHS of (34) is the last term. The resulting equation

has a power law solution of the form δ ∝ t2/3 ∝ a in the matter dominated era.

This is the usual CDM-like behaviour as expected when the interaction strength

is negligible. The other limiting case solution can be obtained by setting a very

strong interaction strength i.e. by taking a large enough α such that the first two

terms in the RHS of (34) become dominant. In this case, the solution for the matter

dominated universe comes out to be of the form

δm ∝ t5/3 ∝ a5/2 (41)

The time evolution of The DM perturbation growth in the two cases is thus

captured by the following form:

δm ∝ a for no interaction (42)

δm ∝ a5/2 for strong interaction (43)

Important distinct features arise when we look at the time evolution of δm for

each mode. During the matter dominated era, δm grows as a in ΛCDM whereas

in this model, it grows as a5/2 i.e. at a much faster rate compared to ΛCDM.
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Fig. 2. Growth of δm with respect to z. The red solid line represents the growth for ΛCDM and

the black dashed line corresponds to the growth for superfluid for α = 10−6. The growth in case of
superfluid DM is dominated by the term proportional to a5/2 and is higher compared to ΛCDM.

The higher the value of α, i.e. the stronger the superfluid DM-baryonic interaction, the steeper is

the growth rate (as will be discussed in the next section).

For convenience, we write the evolution of δm in terms of the redshift:

δm ∝ 1

(1 + z)5/2
(44)

Fig. 2 shows the nature of growth in both the models (red solid curve represent-

ing ΛCDM, black dashed curve representing superfluid DM).

A proper way to find the full solution for the perturbed quantities is to solve

coupled differential equations using a numerical approach. In the next section we

solve the perturbation equations numerically in the linear regime and look for any

possible deviations from ΛCDM.

4. Numerical Solution

In order to obtain the solutions for δm, we rewrite equations (32) and (33) in the

Fourier domain in physical co-ordinate as,

δ̇m +
ρ̄m
ρ̄

(ikv) = −αΛm

Mpl
δb (45)
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and

ikv̇ + ikHv =
k2ρ̄mρ̄δm
4Λ2m6

+
a2

2M2
pl

(
δρm + δρb +

3iaHρ̄v

k

)
(46)

To solve the above equations, we write them in terms of redshift,

−H(1 + z)
dδm
dz

+
ρ̄m
ρ̄

(ikv) = −αΛm

Mpl
δb (47)

and

−ikH(1 + z)
dv

dz
+ ikHv =

k2ρ̄mρ̄δm
4Λ2m6

+
ρ̄

2M2
pl(1 + z)2

(
δm + δb +

3iHv

k(1 + z)

)
(48)

Parameters and initial conditions:

The model parameters involved are m, Λ and α. We take m = 1 eV and Λ = 500

eV while keeping the parameter α as free parameter which is varied to check where

the model deviates from flat ΛCDM.

We integrate the perturbation equations using the following initial conditions at

the epoch of equality z = 1000: We set δb(z = 1000) = δm(z = 1000) = 10−5 and

H(z = 1000) = m = 1 eV.

Since ρ̄m ≫ ρ̄b, we assume ρ̄ = ρ̄m + ρ̄b ≈ ρ̄m as given in (36).

The initial value of v at z = 1000 is chosen to be around 1. For the time evolution

of the background density and Hubble parameter, we take the usual ΛCDM evolu-

tion of these quantities in matter-dominated era, i.e. ρ̄m ∝ 1/a3 and H ∝ 1/a3/2.

Furthermore, we take δb ∝ a. We keep the wavenumber k fixed at 0.0001 eV, al-

though the nature remains same for larger values of k.

Figure 3 shows the evolution of the DM density perturbation δm with respect

to the redshift z for different values of α = 10−8, 10−7, 10−6, 10−4 and also for

ΛCDM corresponding to α = 0,Λ → ∞. As expected, the smaller the value of α,

the closer the resemblance with ΛCDM-like evolution. As we see in Fig. 3, the plot

for α = 10−8 coincides with ΛCDM. When α is large enough, the growth is very

steep. This is because a large enough α implies large interaction strength between

the superfluid phonons and baryons, ensuring that structure formation takes place

at an earlier epoch as compared to ΛCDM.

In Figure 4, we plot the relative differences between the perturbation growth

in ΛCDM model and superfluid DM model for different values of α in terms of

δsuperfluid/δΛCDM. As expected, the ratio is very high at a lower redshift. As we

go to higher redshifts, the ratio tends to 1 i.e., they eventually agree with ΛCDM

at very high redshifts and matches exactly at z = 1000 where we set our initial

conditions. The ΛCDM model corresponds to α = 0. For α = 10−8, the deviation

from ΛCDM at low redshift goes up to 0.13% at z = 0.01. The larger the value of

α, the higher is the ratio, implying a stronger deviation from ΛCDM at low enough

redshifts. As α is increased to 10−7, the deviation from ΛCDM becomes much larger

(∼ 62%).
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Fig. 3. Plot for δm vs z for different values of α as obtained numerically. The different curves

correspond to different α as shown in the figure. The curve corresponding to α = 10−8 coincides

with ΛCDM. For higher values of α, the deviation from ΛCDM increases gradually. The growth
rate at a given redshift is maximum for α = 10−4 for the cases considered here.
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Fig. 4. Plot for δsuperfluid/δΛCDM vs z for different values of α. For an exact coincidence with

ΛCDM, this ratio should be 1. Values > 1 signify larger deviation from ΛCDM. For α = 10−8,
the ratio is almost nearly 1 showing a deviation only up to 0.13% at z = 0. For α = 10−7, the

deviation increases up to 62% at the same redshift.
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Fig. 5. Plot for |δk|2 vs k at z = 0. This is the matter power spectrum up to a constant factor.

The plot reaffirms our previous results. In general the power increase approximately linearly with
k. However, for large enough α, it becomes relatively flatter.

We can also plot the matter power spectrum P (k) as a function of k at z = 0.

The matter power spectrum P (k) ∝ |δm(k)|2. In Fig. 5, we plot |δm(k)|2 vs. k which

shows how the power varies for different values of α. As shown in the figure, the

power spectrum for α = 10−8 matches with the ΛCDM prediction. As can be seen,

the power increases for larger values of α at a given value of k. This is because the

perturbation growth is stronger for large α as discussed earlier.

5. Results and Discussions

The superfluid dark matter model is a very promising and newly emerging model of

cosmology combining together the rich physics of condensed matter, particle physics

and cosmology. In view of its success in explaining a number of observations within

the galaxies where ΛCDM fails to provide a satisfactory explanation, this model

can be said to offer a greater understanding of the universe. In their earlier works,

Khoury and his collaborators have investigated the implications of this model at

galactic scales. However, a complete study of cosmological implications have not

been performed earlier. In this paper, we have tried to investigate, both analytically

and numerically, whether the predicted cosmology of the model tallies well with the

observations and how different the predictions are from that of ΛCDM. In the

realm of non-relativistic low energy effective theory of superfluid, the background

cosmology agrees with the predictions of ΛCDM, and this gives a constraint on the
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two model parameters α and Λ which turn out to be different than their galactic

scale constraints. This result has also been discussed in.1 At the level of first order

perturbation, we find that the above constraints lead to a cosmology which differ

significantly from ΛCDM. In particular, our analytical results suggests that the

growth of density perturbations of dark matter superfluid roughly goes as a5/2,

which is much higher compared to the ΛCDM picture (δm ∝ a). This might be due

to the strong interaction between superfluid phonons and baryonic matter. This

behaviour has also been verified from the numerical solutions. For the numerical

calculations, in particular, we have kept two of the model parameters m and Λ fixed

at 1 eV and 500 eV respectively. This gives an upper bound on the third parameter:

α ≤ 10−8 corresponding to just 0.13% deviation from ΛCDM. This is different

from the value quoted in.1 The bound obtained in,1 for m = 1 eV, is α ≤ 10−4,

which, even though predicts the correct background evolution, strongly deviates

from ΛCDM in the context of perturbation growth in the present epoch. This can

be seen in Figs. 3, 4 and 5. In our analysis, we have assumed the baryonic component

to follow standard dust evolution (∝ 1
a3 ). In the absence of baryons, however, this

model successfully reproduces the usual non-relativistic CDM evolution as obtained

in case of a flat matter dominated ΛCDM universe, both at the background as well

as first order perturbation level.

A more complete analysis of the perturbation growth should rely on the proper

relativistic extension of the theory, which has not been attempted in this paper.

Some relativistic models have been discussed in the original paper,1 however a

rigorous analysis is still lacking. We hope to address the same in a future work. Our

work looks into the solution in the linear regime where perturbations are taken to be

small. In future, we plan to extend our analysis to the non-linear regime and study

the structure formation through spherical collapse. It would also be interesting to

see how well this model predicts the CMB or the halo mass function.
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