
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

Learning to program as empirical inquiry: using
a conversation perspective to explore student
programming processes

Kristina Litherland & Anders Kluge

To cite this article: Kristina Litherland & Anders Kluge (07 Dec 2023): Learning to program
as empirical inquiry: using a conversation perspective to explore student programming
processes, Computer Science Education, DOI: 10.1080/08993408.2023.2290410

To link to this article: https://doi.org/10.1080/08993408.2023.2290410

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 07 Dec 2023.

Submit your article to this journal

Article views: 175

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2023.2290410
https://doi.org/10.1080/08993408.2023.2290410
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2023.2290410
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2023.2290410
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2023.2290410&domain=pdf&date_stamp=07 Dec 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2023.2290410&domain=pdf&date_stamp=07 Dec 2023

Learning to program as empirical inquiry: using
a conversation perspective to explore student programming
processes
Kristina Litherland and Anders Kluge

Department of Education, University of Oslo, Oslo, Norway

ABSTRACT
Background and Context: We explore the potential for under
standing the processes involved in students’ programming based
on studying their behaviour and dialogue with each other and
“conversations” with their programs.
Objective: Our aim is to explore how a perspective of inquiry can
be used as a point of departure for insights into how students learn
to program.
Method: We completed a qualitative study situated in elective
computer science classes in an upper secondary school in
Norway. We collected data by video recording classroom interac
tions and used screen-recording software.
Findings: Our findings include how we consider programs as both
means and ends and reconsider the “error” in trial-and-error strate
gies, the role of error messages, and how programs are bound to
context and particular moments in time.
Implications: Our findings have implications for the ways we
understand programs as mediating tools in research and apply
them in the field of practice.

ARTICLE HISTORY
Received 5 July 2022
Accepted 29 November 2023

KEYWORDS
Computer science education;
empirical inquiry; JavaScript;
programming; sociocultural
perspective

1. Introduction

The topic of computer programming has gained increasing attention in academic
research and educational curricula worldwide (Bocconi et al., 2022), often attributed to
Wing’s (2006) highly influential paper on the power of learning under the umbrella term
of computational thinking. While the body of literature on programming in schools
concerns programming as a method for learning other school subjects (Papert, 1980)
and general problem-solving skills (Wing, 2006), much of the research in computer
science education primarily focuses on higher education, emphasizing programming as
a professional skill (e.g. Denning & Tedre, 2021), which may only to a limited extent be
transferable to school contexts. Programming is traditionally presented with the goal of
writing coded instructions that tell a computer how to perform certain tasks (Denning &
Tedre, 2021), and much of programming didactics emphasise the importance of

CONTACT Kristina Litherland kristina.litherland@iped.uio.no Department of Education, University of Oslo, Oslo,
Norway

COMPUTER SCIENCE EDUCATION
https://doi.org/10.1080/08993408.2023.2290410

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or
with their consent.

http://orcid.org/0000-0001-9694-1291
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2023.2290410&domain=pdf&date_stamp=2023-12-07

understanding basic programming concepts, such as variables, conditionals, and loops
(Lye & Koh, 2014).

In line with the Lye and Koh (2014), and the findings of Luxton-Reilly et al. (2018), there
is untapped potential for gaining insights into students’ programming processes, e.g. by
studying their actions, dialogue with one another and conversations with their compu
ters. Going beyond the concepts of programming in this way is not a new perspective.
Soloway (1986) showed that programming students should be taught more than “syntax
and semantics” (p. 858). Learning to program is, according to Soloway, “learning to
construct mechanisms and explanations” (p. 850). In a similar note, Du Boulay (1989)
described computers and programming as “a tool-building tool” (p. 285). Since then, work
such as the “The Block Model” (Schulte, 2008) represents a line of research where
programming concepts are treated as part of a larger context of code blocks and inter
relations that function to reach meaningful goals in a program. Work has also been done
on employing the SOLO taxonomy (Lister et al., 2006) where learning to program is
framed as moving towards higher levels of abstraction and higher levels of complexity
within these different levels of abstraction. Muller et al. (2007) found empirical support
that students performed better when instruction was pattern-oriented.

The proliferation of programming in schools since Wing’s influential paper has
prompted discussions on how curricula should adapt to cater to 21st-century learners
and contexts. This has led to the emergence of various approaches to learning and
teaching strategies and technologies such as block-based programming (Resnick et al.,
2009), “unplugged” programming (Bell et al., 2009), coding puzzles for learning (and
assessment) known as Parsons problems (Parsons & Haden, 2006), and the Predict-Run-
Investigate-Modify-Make framework (PRIMM) (Sentance et al., 2019).

Our point of departure is taken in a perspective of programming implying more than
applying programming concepts in problem solving and more than the result repre
sented by a “finished” program (see for example Bjerknes et al., 1991). To explore learners’
programming processes, we adopt a sociocultural perspective on learning, focusing on
learning processes in context (Vygotsky, 1980), mediation (Wertsch, 1998), and scaffolding
(Andersen et al., 2022). A considerable proportion of computer science education research
has favoured cognitive learning approaches (Sentance et al., 2019). By using
a sociocultural lens, we apply the perspective that externalization of knowledge through
participation in social practices precedes individualized internalized learning. According
to Vygotsky (1980) and Wertsch (1998), physical and symbolic tools mediate this process,
and the most important learning tool is the symbolic object of talk. We understand the
use of tools from a dialogic perspective, where we consider the “sequential unfolding of
activities in time” (Arnseth & Ludvigsen, 2006, p. 181). These activities include talk and
actions, the latter encompassing both interactions with digital and/or physical tools and
the use of gestures. We are inspired by the idea of empirical inquiry (Newell & Simon,
1976), where computing is viewed as a “conversation” between a human and a machine
(as described below).

To investigate this phenomenon, we have formulated the following research question:
How can empirical inquiry serve as a perspective for analyzing the activity of students
learning to program?

We utilise the perspective of empirical inquiry as an analytical lens to focus our
attention on specific aspects of the programming process and observe the students’

2 K. LITHERLAND AND A. KLUGE

actions, dialogue and conversations. We reserve “dialogue” for the exchange between
humans, and “conversations” to describe the exchange between humans and computers.
Our data consists of students working in pairs and individually.

The remainder of the paper is organised as follows. First, we present literature on
empirical inquiry and the field of learning to program. Then, we introduce our method,
followed by our results. Finally, we discuss the results and present our conclusions,
limitations, and directions for further work.

1.1. Empirical inquiry

In general terms, empirical inquiry is a method for investigating research questions through
the use of empirical data, as opposed to exploring such questions theoretically. However,
Newell and Simon (1976) presented a perspective on computer science as empirical inquiry,
building on the work of Simon (2019, first published in 1970), in which he argued for the
“sciences of the artificial”. Newell and Simon emphasised the use of computers as empirical
sources: “Actually constructing the [computing] machine poses a question to nature; and
we listen for the answer by observing the machine in operation and analyzing it by all
analytical and measurement means available” (1976, p. 114). By observing and analysing the
machines’ behaviour, researchers can extract answers and gain knowledge. Therefore,
computers (“the machines”) are not only solutions to problems; they can also be seen as
data from which we may learn. From this point of view, programs are not just a set of
instructions but also part of a process of questioning and interpretation.

In our study, we adopt an empirical inquiry perspective to explore the process of
learning to program. Our focus is not on defining computer science as a scientific field of
inquiry. Instead, we conceptualize student programming as an inquiry process including
conversation (von Hausswolff, 2021). We emphasize that programming is not merely
a physical tool but also a symbolic tool, serving as an object for conversation.
Programming is a process that involves many “hidden” mechanisms, e.g. in our case
how JavaScript is read by the computer and returned as a web page with which the
students can interact. Inquiry may be a perspective that can show how students learn
about the relationships between the code and the results it presents. Rather than viewing
programming as a series of one-shot instructions, we highlight how students understand
and utilize the feedback they receive from the computer during the programming
process. We focus on students’ talk, writing, and editing of code, as well as the execution
of the code as sources of empirical inquiry, as described in the method section.

Our perspective on empirical inquiry aligns with Dewey’s (1938) pioneering work on
inquiry as an educational method. Dewey argued that problems cannot be solved remain
ing detached from them. Instead, interaction with problems is essential for their resolution.
According to Schön (1992), Dewey emphasised the “inherently open-ended relationship
between the inquirer and the situation” (p. 122). In the context of programming, this
relationship can be seen in Papert’s (1980) notion of “microworlds” where students interact
within specific subject-related situations. Learning and discovery can, metaphorically, be
framed as a “conversation with the situation” (Schön, 1992, p. 125), a perspective that relates
to the concept of bricolage where the scientist builds knowledge on the interaction with
materials (Turkle & Papert, 1990). Pea (1986) claimed that many novice programmers hold
a misconception that computers have a “hidden mind” that can understand what the

COMPUTER SCIENCE EDUCATION 3

programmer is trying to program, the so-called “superbug”. We do not delve into the debate
on the existence of the superbug; rather, we examine how students explore and “converse”
with the program code in specific situations. Our perspective is therefore not on how the
student conceives that the computer understands them (i.e. Pea’s superbug), but on how
the student understands the program by conversing with it.

We build upon these contributions by providing empirical insights within a learning
context, utilising a broader understanding of inquiry inspired by Dewey (1938), and
extended by Schön (1992), as a framework for our analysis within a sociocultural learning
perspective. Our perspective considers computers as parts of conversations, with code
and code execution serving as integral components of the process. By adopting this
perspective, we enhance our understanding of how learning occurs in specific inquiry
situations.

1.2. Learning to program: processes, practices, strategies

In what activities do the students engage when they learn to program? Researchers
describe these activities using different terms: practices and strategies (Brennan &
Resnick, 2012), processes (Allsop, 2019), and execution of skills (Grover et al., 2015). Lye
and Koh (2014) suggested that the field of practices is under-investigated, Robins et al.
(2003) discussed the difference between knowledge and strategies in learning to program
and called for more work on how novice strategies emerge. Since then, work has been
carried out on supporting the development of programming processes of students,
including coding puzzles known as Parsons problems (Parsons & Haden, 2006) and the
PRIMM framework in which students are – among other activities – asked to read code
snippets and predict the results before they start coding on their own (Sentance et al.,
2019). The approaches are often based on developing and testing teacher interventions,
including tools for assessment (Weintrop et al., 2021). There seems to be less work on the
inductive exploration of what practices the students themselves develop and use, such as
trial and error strategies (Moskal & Wass, 2019) and debugging (Liu et al., 2017). Robins
(2019, p. 361) argues that more knowledge is needed on what differentiates “effective and
ineffective novices”.

Trial-and-error is reported as a common strategy among novice programmers, occa
sionally presented as the act of making seemingly random changes to a program (Moskal
& Wass, 2019) and as unwanted behaviour in classrooms (Hao et al., 2022). Some
researchers present trial and error as a meta-strategy for developing methods of debug
ging (Brennan & Resnick, 2012), which is the process of identifying and fixing problems in
a program. Debugging may be considered a separate process to that of programming (Liu
et al., 2017) and is sometimes framed as “moments of failure” (Dahn & DeLiema, 2020,
p. 363). In this study, debugging is seen as an important part of programming as it
concerns such questions as how errors in the program occur, where they are found, and
how students deal with them (McCauley et al., 2008). For instance, Liu et al. (2017) found
that debugging was a much more demanding task than the production of new code. We
aim to build on the idea in which the unfolding programming processes are taken as
a starting point for the analysis, focusing on trial and error and debugging activities.

4 K. LITHERLAND AND A. KLUGE

1.3. The role of dialogue and conversation in learning to program

In dialogic learning, researchers may focus on features of the exchange, such as the ways
participants take on shifting roles of listener and source in the learning process (Furberg &
Silseth, 2022).

Interactions in the context of learning to program can take place by means of different
mediating tools and between different types of actors. Tsan et al. (2018) found that there
are great differences in students’ dialogues while programming, and Jenkins (2017) found
that dialogical approaches are important in programming classrooms. Brennan and
Resnick (2012) include questioning as an important aspect of programming. In the view
of Brennan and Resnick, questioning implies that students are curious and ask questions
about the technologies they use in their lives, such as to “think about how anything is
programmed” (p. 11), as opposed to the programming being part of the questioning
process. Cutts et al. (2012) argue that natural language, computing talk, and code are all
parts of the “language” in programming, suggesting (implicitly) that coding is
a conversational process consisting of a language of several dimensions. Perrenet et al.
(2005) include program execution as part of this language.

One example of ways computers become part of the programming conversation is
through error messages. However, error messages sometimes cause frustration for begin
ner programmers, as the messages are rarely designed with the aim of assisting beginners
(Kohn, 2019). Learners are at the mercy of the message designers and have little or no
influence over what kind of information they can receive from predefined messages. Work
on specialised error messages for learners is underway, with promising results (Hermans,
2020), but the messages seem currently to remain a representation of the voice of the
coding environments’ designers, more than being a conversational partner for the
(novice) programmer.

From our perspective of empirical inquiry, there is potential to further the under
standing of the various processes involved in learning to program, especially with the
development of generative artificial intelligence systems although this is outside the
scope of this paper.

2. Method

This qualitative study involved the participation of secondary school students (aged 15
to 19) enrolled in elective computer science classes. The paper is based on data from
a larger design-based study (Barab & Squire, 2004), but the design-based aspects of
the study are outside the scope of this paper. Instead, we frame this paper as a case
study (Yin, 2018) where we focus on data from a single secondary school and iteration
in the research project. The study centred on the use of a web-based code editor
(Figure 1), emphasising its functionality for recording and playing screen recordings of
hands-on coding in JavaScript. An important feature of the editor is the presence of
the execution window, which makes code executions easily accessible as part of the
programming process. We applied a purposeful sampling technique (Patton, 2002)
where we focused on the students who worked on one of the several tasks we issued
during the project (described below). The data concerning this task consist of 2 hours
of video and 12 screen recordings (~2.5 hours). One teacher and nineteen students

COMPUTER SCIENCE EDUCATION 5

participated, some working alone, but most in pairs. We discarded approximately 20
minutes of screencast videos because of missing or bad quality audio. Data were
collected in 2020 before CoViD lockdown.

We chose to focus on these data for two reasons. First, this data material included two
full program development processes (two pairs of students’ video recorded for one hour
each), from reading the task description to finalising their self-produced screencast
recordings (explained below), providing us with a full depth view of their programming
processes. Second, the 12 screen recordings, where the students themselves presented
their code, provided us with a breadth of different student approaches to the task,
complementing the more in-depth, full process video material. Some students recorded
explanation screencasts at the end of the class, others recorded themselves as they were
programming. This gave us broader insights about approaches among most of the
students in the class, even when we did not have the infrastructure available to support
videotaping each student. The use of screencasts also has an ethical dimension, as more
students consented to submit self-recorded screencasts of which they were themselves in
control of, than those who consented to being videotaped in class throughout the class.
Further ethical aspects of the study are described in section 2.4.

From this dataset, we display four extracts that serve as micro cases or examples, with
the intention of showing the diversity of the approaches used (Yin, 2018). The extracts
derive from the two pairs of students we videotaped (pair 1: extract 1, pair 2: extracts 2
and 3), and one single student who submitted a screencast (extract 4). We do not suggest
that these extracts are representative of all students in introductory programming, but we
are confident that they represent the diversity within our case.

Figure 1. Screenshot of the code editor. Left: file directory; centre: code editor; right: output window;
bottom: playback timeline for recording and/or viewing screencasts.

6 K. LITHERLAND AND A. KLUGE

2.1. Student task

The data selected for this paper were collected at a single upper secondary school where
the students worked on a particular task of creating a virtual automated teller machine
(ATM). The students could use any resources or strategies to solve the task, which was
important for our research question of understanding the learning process.

The students we recorded were selected at random among the students in the class
who had consented to participate, and we had no prior knowledge of their level of
programming proficiency.

The ATM task comprised two parts. The first part involved developing a simple, virtual
ATM in JavaScript. More specifically, the goal of the task was to develop a script that
received input from the user (money withdrawn or deposited) and changed the user’s
fictional account balance based on this input. We provided the students with draft code
from which they were to develop their program. The draft code included a complete
HTML form to handle input from the user, a list of predefined JavaScript variables we
considered useful, and “empty” functions we expected the students to create (e.g.
showBalance and withdrawMoney). The purpose of the draft code was both to reduce
the time the students spent writing HTML code, allowing them to spend more time on the
JavaScript, and to assist them in designing the ATM code by providing some hints about
expected functions and variables. The second part of the task concerned recording an
audio-visual screencast (screen recording) where the students explained and demon
strated their codes, which they shared with the teacher for feedback and assessment
purposes. We encouraged the teacher to let the students work in pairs as this facilitated
collaboration and the use of natural language, which was central to our data collection,
but some students requested – and were allowed to – work individually.

2.2. Analysis framework

As mediational means, such as talk and physical tools, are central to understand learning
from our sociocultural learning perspective (Vygotsky, 1980), we developed a framework
where we consider four aspects of the conversations in the final, in-depth analysis of the
data: student talk, student action, code, and execution.

The first aspect we considered was the students’ talk, analogous to Cutts et al. (2012)
two dimensions of natural and computing language and the social plane of Sentance
et al. (2019). Both papers argue for the role of language as central to programming. Other
researchers have also emphasised the importance of talk and reflection as part of the
learning process in computing (Brennan & Resnick, 2012; Zakaria et al., 2022).

The literature on physical programming activities (sometimes known as makerspaces)
includes examples of considering students’ embodied actions as part of the learning
process (Kajamaa & Kumpulainen, 2020). We therefore included some contextual informa
tion, such as physical and digital gestures (actions), as part of the unit of analysis. Our main
emphasis was on the use of the body (sometimes with the assistance of physical tools
such as computers) to produce symbolic output (e.g. pointing, highlighting) that mediate
the learning process, as described by Vygotsky (1980). The things people do may be
labelled “actions”, but we refer here to specific types of action that are not directly reliant
upon oral talk or on writing code.

COMPUTER SCIENCE EDUCATION 7

Third, we considered the code produced by the students, equivalent to the code level
of Cutts et al. (2012) and the program level of Perrenet et al. (2005). Typically, the program
dimension involves writing code – that is, it is traditionally framed as creating instructions
for a computer, which are then executed (Denning & Tedre, 2021), and recording and
analysing code changes are important for understanding student learning processes
(Guenaga et al., 2021).

The execution of a program when a computer performs automated tasks correctly is
typically considered the end goal of the programming process (Denning & Tedre, 2021),
but it is also used as a tool for testing code in the search for technical bugs (McCauley
et al., 2008). That is, code executions can be part of the programming process that we
unpack in our analysis. In line with Perrenet et al. (2005), we refer to this as the execution
dimension.V

2.3. Data analysis

In the analysis, we used the perspective of understanding programming as a conversation
between a human and a computer, considering the four dimensions just presented. The
aim of the analysis was to gain insight into the exchanges involved, including the
computer as part of those conversations. In the first stage of analysis, we looked through
all the selected data (video and screen recordings) and used thematic coding (Braun &
Clarke, 2012) to create a “map” of the data.

After the mapping session, one hour of the most relevant screencasts and one hour of
the most relevant video data were transcribed in detail for a more fine-grained interaction
analysis (Jordan & Henderson, 1995). In the data extracts presented in the section 3, we
use the notion of events to divide the unfolding activities into meaningful units (Derry
et al., 2010). The extracts include the contributions of five students. For clarity purposes,
the talk, text, variable, and function names in the extracts from the original data material
were translated to English by the first author. The authors performed the analysis process
individually before meeting and discussing the results and arriving at a shared under
standing. This process was repeated several times over the course of two years. We
arranged a data workshop where we invited external researchers (not affiliated with the
study) to view the data, provide their interpretations, and (if relevant) dispute our
interpretations, and an early version of this work was presented as a poster paper at an
international conference (Litherland et al., 2021).

The analysis process led us to the development of several thematic codes, of which we
found four relevant to answering the research question. Codes excluded from this paper
include topics such as teacher interventions, the use of subject specific terminology, and
software specific functionality (i.e. the recording, re-recording, and playback of screen
casts within the code editor). In the results section, we present examples of the following
four codes: edit and test loops, observation, problem isolation, and validation. Finally, in
the discussion section, where we view our empirical data and codes in relation to former
research, we synthesise our findings into five major themes: programming as inquiry,
removing the error from trial and error, programming bound to context, error messages
as an indirect conversation, and programs as means and ends.

The aim of the analysis process was not to decide the frequency of use of different
programming approaches, but to identify and describe the diversity itself (Lemke, 2011).

8 K. LITHERLAND AND A. KLUGE

As such, we do not provide a quantitative analysis, but we did provide context for the
reader with short qualitative descriptions of whether we observed approaches more or
less frequently.

2.4. Research ethics

All the participants (teachers and students) signed a consent form prior to taking part in
the project and data collection. In addition, we applied ongoing consent, asking for
permission immediately prior to starting all the recordings and informing the participants
that we would stop recording any time at their request. The students who self-recorded
screencasts did this without our intervention and were free to decide when to record and
the content (within the border of the task). They were free to re-record or decide not to
submit the screencast if they wished. The research project was registered with the
Norwegian Centre for Research Data, an organisation that analyses research projects
that handle human research data and ensures that such data are legally collected and
handled. This work received support from the Regional Research Fund Viken under grant
number 284,976. The authors report there are no competing interests to declare. The
abbreviations used below to refer to individual participants were chosen at random, and
the participants shown in snapshots from the video data are drawn as silhouettes to
preserve anonymity.

3. Results

In this section, we present four selected episodes from our data material. The extracts
serve as examples of ways students converse with their computers through program
ming, each representing a code we developed through the analysis process: 1) edit and
test loops, 2) observation, 3) problem isolation, and 4) validation.

We present the extracts in tables of four columns. The first column holds the event and
actor references. The second column includes talk. The third column contains additional
information about actions or events from the videos/screen recordings. In the rightmost
column of the data extracts, the program code is displayed as light text on a dark
background, and the executed code is presented as dark text on a light background.
We also included some snapshots from the recordings both within and outside the table
extracts to show physical arrangements and actions of the participants, and many of the
program and execution snapshots include representations of actions, such as cursor and
caret placements. The student actors are marked using uppercase letters (e.g. B, G), and
the computer “actors” are represented specifically as (C).

3.1. Extract 1: edit and test loops

Context: In the first extract (Table 1), two students (B and G) were working together on the
ATM task. They were loosely following the structure of pair programming, sharing
a laptop computer with which B performed most of the direct interactions. In general,
G was the “co-pilot”, but they changed roles at will. Figure 2 shows the physical arrange
ment of the actors.

COMPUTER SCIENCE EDUCATION 9

Prior to the episode below, the students tested their deposit function: a function that
was supposed to 1) receive input from the user on how much money they were deposit
ing into their fictional bank account and 2) add the input number to the balance variable.
Instead of adding the test input 789 to the 20,000 balance (= 20,789), the program output
a balance of 20,000,789 as the two values were concatenated. The students agreed that
they needed the Number() function to solve the issue, which they correctly identified as
a data types issue. Simply put, Number() makes values that are strings (data type) into
numbers (data type). Applied to the correct value (inpDeposit.value), it would solve their
issue.

This extract was chosen to represent the edit and test loop behaviour we
observed in several students (often repeatedly, including the pair represented in
the extract), referred to in the literature more broadly as trial and error (Moskal &
Wass, 2019).

B asked G about the Number() function (event 1.1), but G replied (1.2) that she did not
remember how to use it. In event 1.1, B added the Number() function using the balance
and inputDeposit.value as parameters, commenting in event 1.3 that he would “just try
something”. This change resulted in the line of code being output as pure text (1.6),
causing him to laugh (1.7). B deleted the changes (1.8). Later (not included in the
transcript), the teacher helped them solve the problem by confirming that the program
treated a number as a string, adding the numbers together in sequence. The teacher
explained that the values from input fields are always strings. With this clarification, the
students solved the issue by using the Number() function on the inpDeposit.value.

In this example, we saw how the students rapidly changed the code and ran it to see
the result. The strategy did not solve the problem of the concatenated values. Although
the students touched upon changes that were close to a possible solution, they were not

Table 1. Edit and test loops. Includes data previously presented in (Litherland et al., 2021).
Event
(Actor) Talk Actions/comments Program/execution

1.1 (B) Okay. If we put Number()
outside here then?
How do you do that?

B moves the caret to where the variable
balance is the output and types
$Number() with the sum of the balance
and inpDeposit.value as parameters.

1.2 (G) I don’t remember any of
the Number() stuff.

1.3 (B) I’ll just try something. Clicks the execution button.
1.4 (C) Displays the deposit form.

1.5 (B) Enters 789 into the field and clicks the
Deposit money button.

1.6 (C) Displays the result of the deposit function.

1.7 (B) Yes, ha-ha, oops. Sees the line of code is output as text.
1.8 (B) Removes the changes made in 1.1.

10 K. LITHERLAND AND A. KLUGE

able to identify these changes as meaningful or learn from them beyond them not
providing the intended result. Their conceptual knowledge of data types and the
Number() function helped them towards a solution, but they were not successful at
applying this knowledge to the correct part of the code.

The students showed that they understood how the computer could serve as a form of
“conversational” partner in the programming process, as they made changes and sought
information from the program about how it would answer to those changes. However,
they struggled with formulating questions that would provide them with answers to
support the process further. The edits the students made were not “errors” or “mistakes”,
as asking questions does not imply failure.

3.2. Extract 2: observation

In the next extract (Table 2), students E and P were working on the withdrawal function of
their ATM. E was in charge of the typing, while P sat next to him following the code
development on his own laptop through the live screen sharing functionality in the code
editor. P did not make any code changes through the screen sharing but was passively
involved in the process by pointing his cursor, which was visible to E, and through E’s
many monologues, such as the one below. E experienced issues receiving input from the
user and decided to add a console logging function to trace the withdraw variable value.
Although E made some verbal utterances in the process, most of the important events
consisted of direct interactions with the code and the execution of the program.

We chose this extract to represent the act of tracing values through program execu
tion, a behaviour we found in several students.

Figure 2. Students G (left) and B (right) focusing their attention on parts of the code using digital and
physical gestures. The code is written in JavaScript.

COMPUTER SCIENCE EDUCATION 11

In event 2.1, E placed the console.log() call within the withdrawMoney function. E entered
a test input (2.3) and realised that the form was not logging anything. In event 2.6, he
explained that “it” (the problem of the missing log) was caused by an incorrect function
name. The form referred to the showBalance function when it was supposed to point to the
withdrawMoney function. After changing the function name (2.6) and testing the program
with various inputs (2.7–2.8), the console log returned 0 (2.9), meaning that the console log
code was run but did not receive the correct values from the user. Although not included in
the transcript, the student made frequent small changes to the code to try to fix the logging
but did not succeed, in a similar manner to that of students G and B in the previous extract.

Table 2. Observation.
Event
(Actor) Talk Actions/comments Program/execution

2.1 (E) Adds the console.log function to the
withdrawMoney function and
clicks to execute the code.

2.2 (C) Displays the withdrawal form.

2.3 (E) Enters 500 and clicks the Withdraw
money button.

2.4 (C) Nothing is logged to the console. [no console log appears]
2.5 (E) Oh, not even the console

log is working now . . .
Observes that nothing is logged to

the console. Executes the code
several times, receiving the same
result (no log). Scrolls through the
code.

2.6 (E) Ah, it [missing log] is
because I’ve written the
wrong name here.
Withdraw money . . .

Student points to and explains that
the withdraw event calls the
showBalance function. Corrects the
function name and executes the
code.

2.7 (C) Displays the withdrawal form.

2.8 (E) Enters different inputs, such as 50 and
500.

2.9 (C) Displays 0 on the console.

2.10 (E) Zero, ok? So now it’s zero.

12 K. LITHERLAND AND A. KLUGE

Student E actively supports the conversation process by making explicit the computer
responses using the console. Not only does this imply the recognition of the computer
“voice”, but also an active choice to make it heard. The aim of the task is not to display
values in the console. Instead, the console provides the student with empirical/observable
information about the program, which he uses to support the continued programming
process. The student practiced conversation with the situation, as he saw that there was
something the program could tell him that would help him in solving the problem. We
argue that framing this as “trial and error” greatly undermines the sophistication of the
process, as the student takes an active role in learning about his own code, using
empirical insights to continue the development process.

3.3. Extract 3: problem isolation

The next extract (Table 3) took place about one minute after the previous extract, and
E was still struggling to show the log. Running the code, he got an error message and saw
that the account balance was not printed in the output window as it had been before. In
fact, parts of the HTML form disappeared entirely, implying that some of his small changes
had serious consequences. P watched E working.

This extract was chosen to represent the process of temporarily decomposing pro
grams by deletion or commenting, which we observed in some variations among some of
the students.

P decided to ask E about the problem. E explained that the balance was not the
output (3.3) after his recent attempts at printing the withdrawal value. E decided
to highlight and delete three lines of code, which he suspected were the cause of
the balance not being the output (3.3). After deleting the code, he executed the
program, and the balance was returned to the output window (3.4). He undid the
code deletion, having confirmed his hypothesis that the error lay in one of the
three code lines he had deleted (3.6). P confirmed the same. P then pointed to
the second line that had been deleted and re-entered (3.10). E noticed the mis
placed backtick, told P to stop talking, removed the backtick, and ran the code,
observing the account balance printed in the output window (3.13) and his input
of 50 correctly logged to the console (3.14).

The significance of this extract lies on the way student E gained empirical information
about the program by actively deleting parts of it temporarily. This extract shows how student
E tried to gain access to the hidden mechanisms that were at play in the program he was
creating, employing help from both his partner (student P) and using the program itself as
a tool.

3.4. Extract 4: validation

The following extract (Table 4) is from a self-recorded screencast, where a student (M)
recorded his own screen and voice while programming to explain some of his thoughts
and actions while developing the ATM. The extract took place 11 minutes into the
screencast. Prior to the events described below, the student spent his time continuously
writing code without executing it. We included this extract to serve as an example of
a student who runs their code sparingly.

COMPUTER SCIENCE EDUCATION 13

This extract was chosen to represent the actions of the many students who used
program execution as a final task to validate the accuracy of their programs.

In event 4.1, the student explained that it was time to check the code for what he called
“formatting errors”. The JavaScript code consisted of about 30 lines at this time. He
pointed both his cursor and caret to the same line of code, indicating that he was reading

Table 3. Problem isolation.
Event
(Actor) Talk Actions/comments Program/execution

3.1 (P) Okay, what is the
problem?

3.2 (C) Shows no account balance value.

3.3 (E) Right now, it
won’t show the
balance.

Highlights the code and deletes it. Clicks the button to
execute the code.

3.4 (C) Shows a balance of 20,000.

3.5 (P) But now it shows
the balance.

Observes that the balance is shown.

3.6 (E) Adds the code back in, and both students look for
a potential error. E removes incorrect quotation
marks around the withdraw variable reference.

3.7 (P) But . . . You
have . . .

3.8 (E) Executes the code.
3.9 (C) Still does not produce an account balance.

3.10 (P) You know, here. P points his pointer (left arrow) to the end of
the second line that was temporarily deleted, which
contains a misplaced backtick. E (with his hands on
his own laptop) points to the same area with his
own pointer (right arrow) and places the caret
(middle arrow) on the line.

3.11 (E) Oh yeah, no . . .
Stop, stop,
stop.

Sees the misplaced backtick P pointed to and tells him
to stop pointing and/or talking. Removes the
backtick. Clicks the button to execute the code.

3.12 (C) Shows the balance (and the withdrawal form).

3.13 (E) There, okay. 50. Observes that the balance is shown. Enters an input of
50.

3.14 (C) Displays the value 50 in the console log and
a corresponding 50 in the transaction log.

3.15 (E) Okay, so it works.

14 K. LITHERLAND AND A. KLUGE

this line. Upon reading this, he claimed the code would work (4.3). M inserted a test input
into the deposit form (4.4), and the program returned an error message that M read aloud.
The message prompted him to check the names of the functions, resulting in the
renaming of one. He ran the code again, entering an amount to deposit, and confirmed
that the form now worked.

We would like to highlight several parts of this process. First, although not
explicitly part of the extract, it is important to note that this student (and several
others) rarely employed running code as a development or learning method. As
expressed by M, the code was first run when it was “supposed to work” (4.3).
M employed the same pattern when he later developed a transaction log for the
ATM (an optional “bonus” task). Second, we point to the student’s use of the error
message. The student understood the English error message, which directed him to
investigate specific parts of the code, suggesting that the process was a form of
“conversation” (Schön, 1992).

4. Discussion

In this section, we will present discuss and attempt to generalise our findings by compar
ing them with the findings and conceptual distinction reported in the literature. The
discussion is divided into separate subsections, each of which refers to a particular finding.
All the findings relate to the research question we proposed in section one: How can

Table 4. Validation.
Event
(Actor) Talk Actions/comments Program/execution

4.1 (M) Now we need to check
whether there are any
formatting errors.

Cursor and caret points to the
same line of code.

4.2 (M) No, there are none. Confirms there are no errors in
the line of code in focus.

4.3 (M) Okay, so now it’s supposed to
work.

4.4 (M) Deposit 100 Norwegian kroner. Tries to deposit 100.

4.5 (C)

4.6 (M) Account amount is not
a function . . .

Reads the message on the screen

4.7 Hmm . . . account update,
right. Here . . .

Updates the function name from
accountAmount to
accountUpdate.

4.8 (M) 100 Norwegian kroner . . .
Nice . . . and take out 100
kroner.

Deposits 100 several times and
withdraws 100 a few times.

(C) The account balance is updated
according to the input.

There, yes. Okay. So, it works.

COMPUTER SCIENCE EDUCATION 15

empirical inquiry serve as a perspective for analyzing the activity of students learning to
program individually and in pair programming? The extracts are activated and discussed
across the findings.

An overall finding is that all the students solved the ATM task adequately (or better).
While their final products differed in structure and, to some degree, in functionality, their
processes were more divergent. This is an important preliminary finding on which we
base the further discussion.

4.1. Programming as inquiry

One way to represent the various processes is to explicitly frame how the students and
converse with their programs through inquiry. Based on our empirical observations, we
find that this process takes place through four phases: 1) formulate a question, 2) ask the
question, 3) receive an answer, and 4) evaluate and give a response (formulate a new
question, i.e. return to phase 1). The questions, answers, and responses are interpretations
of human and computer actions, and is inspired byNewell and Simon’s (1976) ideas of
computer science as engaging in a conversation with a machine, in an analytical process.

We define the first step as the formulation of a question the student wants answered.
The student converse with the code in different ways, making modifications, such as
adding, removing, editing, or moving code. Each change in the program is a new con
struction of a question, and the student may run the program to “ask the question” and
observe the result. Sometimes, this step requires the student to add a test input, that is,
additional information needed to answer the question. The asking of the question
produces an output (answer), which the student may observe, reflect on, and respond
to or ignore.

In Table 5, we present an overview of some of the events in the extracts conceptualised
as a process of inquiry.

We identified two main types of questions: 1) confirmation and 2) information gather
ing. Student B asked confirmation-type questions, of which we provide one example. The
goal of confirmation questions is to confirm whether code changes are “correct” or
“incorrect” in relation to the problem at hand. In computing terminology, the answers
are Boolean (true or false), and possible responses involve either keeping the code
changes (when the answer is “correct”) or undoing them (when the answer is “incorrect”).
One characteristic of a confirmation question is that the answers do not lead to code
changes beyond the question itself, contrary to information-gathering questions. Since
student B’s question in event 1.5 received a negative answer – which the student
evaluated as an “oops” (1.7) – the student responded by rejecting the code change.

In the last extract, student M also used the execution of the program as a confirmation
process, but in a different manner. While he was not concerned with gathering informa
tion about how to fix an issue in the program, the purpose of the execution was to
confirm that the program worked as he expected. He received an answer from the
computer in the form of an error message, which made him evaluate a specific function
name. This is therefore a different type of confirmation, where the student made an
explicit prediction about what would happen when the program was executed. As the
predictions were not true, the student realised changes had to be made.

16 K. LITHERLAND AND A. KLUGE

Ta
bl

e
5.

 P
ro

gr
am

m
in

g
as

 in
qu

iry
.

Ex
tr

ac
t

Q
ue

st
io

n
(o

ur
 in

te
rp

re
ta

tio
n)

Ty
pe

 o
f

qu
es

tio
n

An
sw

er
Ty

pe
 o

f
an

sw
er

Ev
al

ua
tio

n
Ty

pe
 o

f
ev

al
ua

tio
n

Re
sp

on
se

Ty
pe

 o
f

re
sp

on
se

1
D

oe
s

th
e

co
m

pu
te

r
ad

d
th

e
nu

m
be

rs
 c

or
re

ct
ly

 w
he

n
th

e
su

m
 o

f t
he

 b
al

an
ce

 a
nd

 in
pD

ep
os

it.
va

lu
e

ar
e

m
ad

e
in

to
 a

 n
um

be
r?

Co
nfi

rm
at

io
n

N
o

Bo
ol

ea
n

D
oe

s
no

t a
dd

 th
e

nu
m

be
rs

co

rr
ec

tly

Co
nfi

rm
at

io
n

Re
m

ov
e

th
e

ch
an

ge
Ro

ll
ba

ck

2
W

ha
t

is
 t

he
 v

al
ue

 o
f t

he
 w

ith
dr

aw
al

 w
he

n
lo

gg
ed

 t
o

th
e

co
ns

ol
e?

In
fo

rm
at

io
n

ga
th

er
in

g
Th

e

va
lu

e
is

 n
ot

 a
n

ou
tp

ut
 in

 t
he

co

ns
ol

e

Q
ua

lit
at

iv
e

Th
e

co
ns

ol
e

lo
g

is
 n

ev
er

 c
al

le
d

Pr
ob

le
m

id

en
tifi

ca
tio

n
Co

rr
ec

t
th

e
fu

nc
tio

n
na

m
e

Fi
x

bu
g

2
W

ha
t

is
 t

he
 v

al
ue

 o
f t

he
 w

ith
dr

aw
al

 w
he

n
lo

gg
ed

 t
o

th
e

co
ns

ol
e?

In
fo

rm
at

io
n

ga
th

er
in

g
0

Q
ua

lit
at

iv
e

N
ot

hi
ng

 is

lo
gg

ed
Pr

ob
le

m

id
en

tifi
ca

tio
n

M
ak

e
sm

al
l c

ha
ng

es
 t

o
th

e
va

ria
bl

e
na

m
es

Tr
ia

l a
nd

er

ro
r

3
Is

 t
he

re
 a

n
er

ro
r

so
m

ew
he

re
 in

 t
he

se
 p

ar
tic

ul
ar

 t
hr

ee

lin
es

 o
f c

od
e

ca
us

in
g

m
y

H
TM

L
fo

rm
 t

o
di

sa
pp

ea
r?

In
fo

rm
at

io
n

ga
th

er
in

g
Ye

s
Bo

ol
ea

n
Se

ar
ch

 fo
r

er
ro

rs

in
 t

he
se

 t
hr

ee

lin
es

Pr
ob

le
m

is

ol
at

io
n

U
nd

o
th

e
de

le
tio

n
an

d
st

ud
y

th
e

th
re

e
lin

es

of
 c

od
e

Fo
cu

si
ng

at

te
nt

io
n

4
D

oe
s

th
is

 fu
nc

tio
n

w
or

k?
Co

nfi
rm

at
io

n
Er

ro
r

m
es

sa
ge

M
ed

ia
te

d
Ch

ec
k

th
e

fu
nc

tio
n

na
m

e

Pr
ob

le
m

id

en
tifi

ca
tio

n
Co

rr
ec

t
th

e
fu

nc
tio

n
na

m
e

Fi
x

bu
g

COMPUTER SCIENCE EDUCATION 17

Student E asked information-gathering questions. The purpose of these information-
gathering questions was not to produce “correct” code but to investigate the code itself.
The answer to the information-gathering question in event 3.3 was Boolean (like those of
the confirmation questions), but the response was different. The answer (“correct”)
prompted the student to undo the code change, which represents an opposite response
to that of positive answers to confirmation questions, which always involve keeping the
code changes. Student E got different answers to the same question asked in events 2.3
and 2.8. The answers were not Boolean but were of different qualities. The first answer,
which, in a sense, was no answer at all (nothing was logged in the console), provided
E with information. The missing log represented a meaningful answer that prompted the
student to look for and fix an error in a different part of the code. In event 2.8, however,
the student was not able to interpret and evaluate the answer given by the computer,
which caused him to enter a process of trial and error. The frequent changes differed
between being both useful and destructive, and the student was not able to distinguish
between them.

However, in the case of E, we saw that code changes were not only instructions for the
computer but also served an information seeking purpose for the student and were not
intended as part of the final instructions for the computer to follow. In professional
settings where the goal of programming is a digital product, temporary code changes
do not represent the same inherent value. Views of programming that emphasise for
mulating instructions for a computer (Denning & Tedre, 2021) do not capture the aspect
of the development process where programs are a temporary learning tool at a specific
point in time. Neither do approaches to research or assessment that rely on the analysis of
finished programs (Moreno-León et al., 2015), where such temporary code changes are no
longer present. The students we observed only occasionally made explicit predictions
(one example is found in event 4.3: “now it’s supposed to work”.), but it is possible that
predictions or hypotheses were made without being expressed. We find that the students
participated in a “low level” empirical inquiry, which is not a “capital S” Scientific process,
but an inquiry-as-learning process involving investigations of gathering information and
testing propositions of various degrees of refinement.

4.2. Removing the error from trial and error

Trial and error is a well-known strategy among novice programmers (Moskal & Wass,
2019). Using an empirical inquiry perspective allows us to divide trial and error into several
different, but related, processes based on the types of trials performed, the context of the
trials, and how the students interpret the results. Through empirical inquiry, some trial
and error-like activities can instead be framed as information seeking activities, as
opposed to a trial activity or (even more negatively framed) an “error making activity”.

For instance, we frame extract 1 as an “edit and test loop” and avoid negative terms,
such as “error”. From our perspective, the outputs students B and G received from the
computer were not “errors” but valid information about the state of the program. Rather
than performing random activities, they expressed ideas about what caused the conca
tenation issue and applied these ideas to various relevant parts of the code. Similarly,
student E’s temporary code changes do not represent “errors”, but a process of exploring
the program.

18 K. LITHERLAND AND A. KLUGE

4.3. Context bound programming

The process we exemplify in extract 2, where the student gives the computer a voice by
providing it with the means to “answer” through the console, may be understood as a two-way
conversation, where the student must provide information (e.g. which values should be
tracked when and where), receive information (e.g. understand which values are returned
when), and know how to act upon this information. The same applies to extract 3. While we do
not have access to the student’s perceived expectations, we derive from his actions that the
aim of running the code after deleting several lines of it was not to see a finished, functional
program. The aim was to receive information about the program in a particular and temporary
state (runtime situation).

Throughout our dataset, we found examples of students using temporary code changes
as a coding strategy, such as commenting out or removing code to isolate problems
(extract 3) and printing/logging variables (extract 2). Temporary code changes may be
counter-intuitive for a novice programmer. For instance, some temporary code changes,
such as commenting out code, may make the code less functional. From a dialogic per
spective, however, these actions are meaningfully bound to the specific points in time and
context. Viewing programming as a “conversation with the situation” (Schön, 1992) may
open up a conceptual space for students, where they can have these forms of momentary
conversations with their programs that make sense in a way that is lost in a pure end-
product-based perspective. Two channels of exchange, one towards humans and the other
towards the computer’s runtime environment extend the symbolic metaphor of commu
nication proposed by Newell and Simon (1976) toward symbols and materials (Schön, 1992).

4.4. Error messages as an indirect relationship

Student M received and reacted to a particular type of information about the program, namely
the error message received in event 4.5. The error message assisted the student in completing
the subtask of designing the deposit function, which malfunctioned because of a naming
error.

Although error messages may be important for the development process, as exempli
fied by student M, the messages can also be considered a mediated relationship between
the student and their program. The developers of code editors and/or programming
languages curate error messages. Thus, the potential of this type of relationship relies on
external actors. Error messages typically focus on syntactic errors, but as demonstrated in
extracts 1 and 2, there are many cases where students can benefit from information from
the computer without the presence of syntactic errors.

4.5. Programs as means and ends

To various degrees, students allow their computers to take on the role of a source in
the programming process (Furberg & Silseth, 2022), and this is especially clear in
extracts 2 and 3. Brennan and Resnick’s (2012) perspective of questioning “how
things work” is different to our perspective of questioning in empirical inquiry;
programs are not problems to be solved or figured out (a perspective with
a stronger presence in students such as student M), but sources of information as

COMPUTER SCIENCE EDUCATION 19

part of the learning process. Questioning therefore becomes a process of conversing
with programs in ways that provide valuable insights. Instead of asking questions
such as “How is this artefact programmed?” in introductory programming in schools,
we may shift to a focus on “What new insights can we make from interacting with
this program?” These types of questions can be seen from a bricolage perspective
(Turkle & Papert, 1990), where a painter does not necessarily ask how a piece of art
is to be created, but instead ask what will happen when they start adding layers of
paint on a canvas.

While students B and G expressed knowledge of the Number() function and demon
strated a willingness to explore the program empirically, they were not able to link the
semantics of this specific function to the particular situation they were in. Nevertheless,
the situation and activities they took part in may still have provided meaningful learning
outcomes, both concerning the programming process itself and about specific functions.

We suggest treating programs as both means and ends. From a sociocultural learning
perspective, the program – while still a goal – may also function as a mediating artefact
that supports learning. We argue that this may represent a possible explanation for why
many students experience programming as difficult (Luxton-Reilly et al., 2018), as learning
how to program may rely on skills concerning how to “converse” with programs.
According to Dewey, the inquiry process does not lead to a final point of resolution, but
to new problems. Focus on the final program and concepts of programming (Robins,
2019; Xie et al., 2019) may be important for the skill of programming, yet this study seeks
to extend the value of programming activities into a more comprehensive learning
process. Papert (1980) emphasised programming as a learning method – not a learning
outcome. To him, programming in schools was a means of learning about maths and
physics, not an end. We ask, why not both?

5. Conclusions

The perspective of empirical inquiry focuses on the process of programming. We identified
various patterns of programming that show how students display different ways of
interacting with their programs. Through activities of empirical inquiry, programming
becomes a process of learning with the aid of a computer and by acting, observing, and
analysing, extending the idea of programming as producing expected results based on
tasks provided by the teacher. Students display various approaches to these activities.
This has implications for our understanding of common strategies, such as trial-and-error
and assessment. We argue there may be a need to explore how programming practices
can be made an explicit part of curricula by treating them with the same care as domain
specific concepts, such as variables and loops.

We studied how the relationship between students and their programs is developed
through the interplay of multiple interactional levels: the students’ talk, actions, the
program code, and the executed programs. For instance, the students’ completed pro
grams do not provide a comprehensive picture of their learning processes, which may be
most important. We suggest that treating programming processes as a complex system
may extend our understanding of programming as a learning process, which we have
tried to demonstrate by example in this article.

20 K. LITHERLAND AND A. KLUGE

A general view of programming in context may be translated into a micro perspective
of each student’s own programs; there is potential to encourage students to consider how
their programs play a part in the further program development. The “conversation”
between human and machine goes beyond “telling the computer what to do“, as it
requires back-and-forth interaction of both passive and active exchange. A programmer
“talks” to computers but must be susceptible to what the computer returns.

5.1. Limitations and directions for future work

As the students participating in this study were part of elective courses in computing, they
do not represent the broader population of students now expected to learn programming
in schools as part of the movement started by Wing (2006). Our sample may display
different attitudes towards learning to program than students in general. However, we do
not suggest that this qualitative study is generalisable to this population. We wish to
make clear that the various inquiry patterns we present and discuss are suggestive, and
more work is needed before claims can be made regarding the spread and frequency of
inquiry types, best practices, or other normative conclusions.

We suggest continuing the effort to study programming as a process of inquiry in more
diverse empirical settings, for instance, by employing learning analytics tools and other
quantitative measures of student conversation, and combining such quantitative meth
ods with qualitative approaches (so-called mixed methods) to retain the student voice.
With the advance of physical computing in schools (Kajamaa & Kumpulainen, 2020), there
is a need to further our understanding of the role of physical objects and space in such
interaction. Furthermore, our observation methods did not make possible the empirical
study of students’ thoughts about what they were doing beyond what they themselves
found natural to share in the moment. Methods such as think-aloud protocols (Fonteyn
et al., 1993) could be one way to address this, or by the use of more structured pedagogic
approaches such as PRIMM (Sentance et al., 2019).

On a conceptual level, we suggest that more work is needed on viewing our findings in
relation to the contemporary discussions in the literature on computational thinking (e.g.
Denning and Tedre (2021)). Furthermore, while our work focused on the “conversation”
between individual students and their programs, there is a need for more work that
considers the complicated inquiry patterns that involve several people or computers, for
instance with the development of so-called chatbots and AI (OpenAI, 2022).

We argue for the need for strategies to take advantage of the opportunities and
address the challenges of using the perspective of empirical inquiry within the field of
practice. One direction could be to investigate how an empirical inquiry perspective
applies as a frame of reference for teaching and/or learning to program. This may raise
questions of how such a frame may influence pedagogical concerns, such as the design of
learning activities, goals, and assessments, including how to develop tasks and teaching
strategies that support students in utilising computers as a partner in the programming
process.

COMPUTER SCIENCE EDUCATION 21

Acknowledgments

The authors would like to thank Anders Mørch for feedback throughout the writing of this paper
and all the participating students and teachers.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Regional Research Fund Viken [284976].

Notes on contributors

Kristina Litherland (she/her) is a doctoral research fellow at the Department of Education, University
of Oslo. Her research interests include computer science education in various contexts, both formal
and informal. She has worked for several years in web development, holding a bachelor’s degree in
information technology and innovation, and has worked as a teacher educator at Oslo Metropolitan
University. She holds a master’s degree in pedagogy from the University of Oslo.

Anders Kluge (he/him) is a researcher in technology-enhanced learning at the Department of
Education, University of Oslo. His research is directed towards how technology can be designed
and used to stimulate productive learning processes. In particular, he is engaged in how to strike the
balance between user activity and theory presentation in rich digital representations and co-
creative processes. He holds a PhD from the Department of Informatics, University of Oslo.

ORCID

Kristina Litherland http://orcid.org/0000-0001-9694-1291

References

Allsop, Y. (2019). Assessing computational thinking process using a multiple evaluation approach.
International Journal of Child-Computer Interaction, 19, 30–55. https://doi.org/10.1016/j.ijcci.2018.
10.004

Andersen, R., Mørch, A. I., & Litherland, K. T. (2022). Collaborative learning with block-based
programming: Investigating human-centered artificial intelligence in education. Behaviour &
Information Technology, 41(9), 1830–1847. https://doi.org/10.1080/0144929X.2022.2083981

Arnseth, H. C., & Ludvigsen, S. (2006). Approaching institutional contexts: Systemic versus dialogic
research in CSCL. International Journal of Computer-Supported Collaborative Learning, 1(2),
167–185. https://doi.org/10.1007/s11412-006-8874-3

Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. Journal of the
Learning Sciences, 13(1), 1–14. https://doi.org/10.1207/s15327809jls1301_1

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School
students doing real computing without computers. The New Zealand Journal of Applied
Computing and Information Technology, 13(1), 20–29.

Bjerknes, G., Bratteteig, T., & Espeseth, T. (1991). Evolution of finished computer systems.
Scandinavian Journal of Information Systems, 3(1), 25–45.

22 K. LITHERLAND AND A. KLUGE

https://doi.org/10.1016/j.ijcci.2018.10.004
https://doi.org/10.1016/j.ijcci.2018.10.004
https://doi.org/10.1080/0144929X.2022.2083981
https://doi.org/10.1007/s11412-006-8874-3
https://doi.org/10.1207/s15327809jls1301_1

Bocconi, S., Chioccariello, A., Kampylis, P., Dagienė, V., Wastiau, P., Engelhardt, K. & Stupurienė, G.
(2022). Reviewing computational thinking in compulsory education: State of play and practices from
computing education. Publications Office of the European Union.

Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter,
D. Rindskopf, & K. J. Sher (Eds.), APA handbooks in psychology®. APA handbook of research methods
in psychology (Vol. 2, pp. 57–71). American Psychological Association.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and Assessing the development of
computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational
Research Association, Vol. 1, Vancouver, 13-17 April 2012, 25 p. http://scratched.gse.harvard.edu/
ct/files/AERA2012.pdf

Cutts, Q., Esper, S., Fecho, M., Foster, S. R., & Simon, B. (2012). The abstraction transition taxonomy:
Developing desired learning outcomes through the lens of situated cognition. In Proceedings of
the ninth annual international conference on International computing education research (ICER
’12). Association for Computing Machinery, New York, NY, USA, 63–70. https://doi.org/10.1145/
2361276.2361290

Dahn, M., & DeLiema, D. (2020). Dynamics of emotion, problem solving, and identity: Portraits of
three girl coders. Computer Science Education, 30(3), 362–389. https://doi.org/10.1080/08993408.
2020.1805286

Denning, P. J., & Tedre, M. (2021). Computational thinking: A disciplinary perspective. Informatics in
Education, 20(3), 361–390. https://doi.org/10.15388/infedu.2021.21

Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., Hall, R., Koschmann, T.,
Lemke, J. L., Sherin, M. G., & Sherin, B. L. (2010). Conducting video research in the learning
sciences: Guidance on selection, analysis, technology, and ethics. Journal of the Learning Sciences,
19(1), 3–53. https://doi.org/10.1080/10508400903452884

Dewey, J. (1938). Logic: The theory of inquiry. Henry Holt and Company.
Du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J. C. Spohrer (Eds.),

Studying the novice Programmer (pp. 283–300). Psychology Press.
Fonteyn, M. E., Kuipers, B., & Grobe, S. J. (1993). A description of think aloud method and protocol

analysis. Qualitative Health Research, 3(4), 430–441. https://doi.org/10.1177/
104973239300300403

Furberg, A., & Silseth, K. (2022). Invoking student resources in whole-class conversations in science
education: A sociocultural perspective. Journal of the Learning Sciences, 31(2), 278–316. https://
doi.org/10.1080/10508406.2021.1954521

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science
course for middle school students. Computer Science Education, 25(2), 199–237. https://doi.org/
10.1080/08993408.2015.1033142

Guenaga, M., Eguíluz, A., Garaizar, P., & Gibaja, J. (2021). How do students develop computational
thinking? Assessing early programmers in a maze-based online game. Computer Science
Education, 31(2), 259–289. https://doi.org/10.1080/08993408.2021.1903248

Hao, Q., Smith Iv, D. H., Ding, L., Ko, A., Ottaway, C., Wilson, J., Arakawa, K. H., Turcan, A., Poehlman, T.,
& Greer, T. (2022). Towards understanding the effective design of automated formative feedback
for programming assignments. Computer Science Education, 32(1), 105–127. https://doi.org/10.
1080/08993408.2020.1860408

Hermans, F. (2020). Hedy: A gradual language for programming Education. In Proceedings of the
2020 ACM Conference on International Computing Education Research (ICER ’20). Association for
Computing Machinery, New York, NY, USA, 259–270. https://doi.org/10.1145/3372782.3406262

Jenkins, C. W. (2017). Classroom talk and computational thinking. International Journal of Computer
Science Education in Schools, 1(4), 3–13. https://doi.org/10.21585/ijcses.v1i4.15

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the
Learning Sciences, 4(1), 39–103. https://doi.org/10.1207/s15327809jls0401_2

Kajamaa, A., & Kumpulainen, K. (2020). Students’ multimodal knowledge practices in a makerspace
learning environment. International Journal of Computer-Supported Collaborative Learning, 15(4),
411–444. https://doi.org/10.1007/s11412-020-09337-z

COMPUTER SCIENCE EDUCATION 23

http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1145/2361276.2361290
https://doi.org/10.1145/2361276.2361290
https://doi.org/10.1080/08993408.2020.1805286
https://doi.org/10.1080/08993408.2020.1805286
https://doi.org/10.15388/infedu.2021.21
https://doi.org/10.1080/10508400903452884
https://doi.org/10.1177/104973239300300403
https://doi.org/10.1177/104973239300300403
https://doi.org/10.1080/10508406.2021.1954521
https://doi.org/10.1080/10508406.2021.1954521
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/08993408.2021.1903248
https://doi.org/10.1080/08993408.2020.1860408
https://doi.org/10.1080/08993408.2020.1860408
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.21585/ijcses.v1i4.15
https://doi.org/10.1207/s15327809jls0401_2
https://doi.org/10.1007/s11412-020-09337-z

Kohn, T. (2019). The Error Behind The Message: Finding the Cause of Error Messages in Python. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
Association for Computing Machinery, New York, NY, USA, 524–530. https://doi.org/10.1145/
3287324.3287381

Lemke, J. L. (2011). Analyzing verbal data: Principles, methods, and problems. In B. Fraser, K. Tobin, &
C. McRobbie (Eds.), Second international handbook of science education (Vol. 24). Springer
International Handbooks of Education. https://doi.org/10.1007/978-1-4020-9041-7_94.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the
trees: Novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118–122. https://
doi.org/10.1145/1140123.1140157

Litherland, K., Kluge, A., & Mørch, A. I. (2021, September). Interactive screencasts as learning tools in
introductory programming. In European Conference on Technology Enhanced Learning (pp.
342–346). Cham: Springer International Publishing.

Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving behavior of 6–8 graders
in a debugging game. Computer Science Education, 27(1), 1–29. https://doi.org/10.1080/
08993408.2017.1308651

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J.,
Sheard, J., & Szabo, C. (2018). Introductory programming: A systematic literature review. In
Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2018 Companion). Association for Computing Machinery,
New York, NY, USA, 55–106. https://doi.org/10.1145/3293881.3295779

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://doi.org/10.
1016/j.chb.2014.09.012

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008).
Debugging: A review of the literature from an educational perspective. Computer Science
Education, 18(2), 67–92. https://doi.org/10.1080/08993400802114581

Moreno-León, J., Robles, G. & Román-González, M. (2015). Dr. Scratch: Automatic analysis of scratch
projects to assess and foster computational thinking. RED. Revista de Educación a Distancia, (46),
1–23.

Moskal, A. C. M., & Wass, R. (2019). Interpersonal process recall: A novel approach to illuminating
students’ software development processes. Computer Science Education, 29(1), 5–22. https://doi.
org/10.1080/08993408.2018.1542190

Muller, O., Ginat, D., & Haberman, B. (2007, June). Pattern-oriented instruction and its influence on
problem decomposition and solution construction. In Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer science education, Dundee, Scotland (pp.
151–155).

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search.
Communications of the ACM, 19(3), 113–126. https://doi.org/10.1145/360018.360022

OpenAI. (2022). ChatGpt: Optimizing Language Models for Dialogue. https://openai.com/blog/
chatgpt/

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic books.
Parsons, D., & Haden, P. (2006, January). Parson’s programming puzzles: A fun and effective learning

tool for first programming courses. In Proceedings of the 8th Australasian Conference on
Computing Education, Hobart, Australia (Vol. 52, pp. 157–163).

Patton, M. Q. (2002). Two decades of developments in qualitative inquiry: A personal, experiential
perspective. Qualitative Social Work, 1(3), 261–283. https://doi.org/10.1177/
1473325002001003636

Pea, R. D. (1986). Language-Independent conceptual “Bugs” in novice programming. Journal of
Educational Computing Research, 2(1), 25–36. https://doi.org/10.2190/689T-1R2A-X4W4-29J2

Perrenet, J., Groote, J. F., & Kaasenbrood, E. (2005). Exploring students’ understanding of the concept
of algorithm: Levels of abstraction. ACM SIGCSE Bulletin, 37(3), 64–68. https://doi.org/10.1145/
1151954.1067467

24 K. LITHERLAND AND A. KLUGE

https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1007/978-1-4020-9041-7_94
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1080/08993408.2017.1308651
https://doi.org/10.1080/08993408.2017.1308651
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993408.2018.1542190
https://doi.org/10.1080/08993408.2018.1542190
https://doi.org/10.1145/360018.360022
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.1177/1473325002001003636
https://doi.org/10.1177/1473325002001003636
https://doi.org/10.2190/689T-1R2A-X4W4-29J2
https://doi.org/10.1145/1151954.1067467
https://doi.org/10.1145/1151954.1067467

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all.
Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779

Robins, A. (2019). Novice programmers and introductory programming. In S. Fincher & A. Robins
(Eds.), The Cambridge Handbook of Computing Education Research (Cambridge Handbooks in
psychology (pp. 327–376). Cambridge University Press. https://doi.org/10.1017/9781108654555.
013

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and
discussion. Computer Science Education, 13(2), 137–172. https://doi.org/10.1076/csed.13.2.137.
14200

Schön, D. A. (1992). The theory of inquiry: Dewey’s legacy to Education. Curriculum Inquiry, 22(2),
119–139. https://doi.org/10.2307/1180029

Schulte, C. (2008). Block Model: An educational model of program comprehension as a tool for
a scholarly approach to teaching. In Proceedings of the fourth international workshop on comput
ing education research, Sydney, Australia (149–160).

Sentance, S., Waite, J., & Kallia, M. (2019). Teaching computer programming with PRIMM:
A sociocultural perspective. Computer Science Education, 29(2–3), 136–176. https://doi.org/10.
1080/08993408.2019.1608781

Simon, H. A. (2019). The Sciences of the artificial, reissue of the third edition with a new introduction by
John Laird. MIT press.

Soloway, E. (1986). Learning to program= learning to construct mechanisms and explanations.
Communications of the ACM, 29(9), 850–858. https://doi.org/10.1145/6592.6594

Tsan, J., Lynch, C. F., & Boyer, K. E. (2018). “Alright, what do we need?”: A study of young coders’
collaborative dialogue. International Journal of Child-Computer Interaction, 17, 61–71. https://doi.
org/10.1016/j.ijcci.2018.03.001

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices within the computer
culture. Signs: Journal of Women in Culture and Society, 16(1), 128–157. https://doi.org/10.1086/
494648

von Hausswolff, K. (2021). Practical thinking while learning to program – novices’ experiences and
hands-on encounters. Computer Science Education, 32(1), 128–152. https://doi.org/10.1080/
08993408.2021.1953295

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard
university press.

Weintrop, D., Wise Rutstein, D., Bienkowski, M., & McGee, S. (2021). Assessing computational
thinking: An overview of the field. Computer Science Education, 31(2), 113–116. https://doi.org/
10.1080/08993408.2021.1918380

Wertsch, J. V. (1998). Mind as action. Oxford university press.
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.

org/10.1145/1118178.1118215
Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., Tan, A. H., Hwa, L., Li, M., & Ko, A. J.

(2019). A theory of instruction for introductory programming skills. Computer Science Education,
29(2–3), 205–253. https://doi.org/10.1080/08993408.2019.1565235

Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed.). Sage.Zakaria.
Zakaria Z, Vandenberg J, Tsan J, Boulden D Cadieux, Lynch C F, Boyer K Elizabeth and Wiebe E N.

(2022). Two-Computer Pair Programming: Exploring a Feedback Intervention to improve
Collaborative Talk in Elementary Students. Computer Science Education, 32(1), 3–29. 10.1080/
08993408.2021.1877987

COMPUTER SCIENCE EDUCATION 25

https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.2307/1180029
https://doi.org/10.1080/08993408.2019.1608781
https://doi.org/10.1080/08993408.2019.1608781
https://doi.org/10.1145/6592.6594
https://doi.org/10.1016/j.ijcci.2018.03.001
https://doi.org/10.1016/j.ijcci.2018.03.001
https://doi.org/10.1086/494648
https://doi.org/10.1086/494648
https://doi.org/10.1080/08993408.2021.1953295
https://doi.org/10.1080/08993408.2021.1953295
https://doi.org/10.1080/08993408.2021.1918380
https://doi.org/10.1080/08993408.2021.1918380
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2021.1877987
https://doi.org/10.1080/08993408.2021.1877987

	Abstract
	1. Introduction
	1.1. Empirical inquiry
	1.2. Learning to program: processes, practices, strategies
	1.3. The role of dialogue and conversation in learning to program

	2. Method
	2.1. Student task
	2.2. Analysis framework
	2.3. Data analysis
	2.4. Research ethics

	3. Results
	3.1. Extract 1: edit and test loops
	3.2. Extract 2: observation
	3.3. Extract 3: problem isolation
	3.4. Extract 4: validation

	4. Discussion
	4.1. Programming as inquiry
	4.2. Removing the error from trial and error
	4.3. Context bound programming
	4.4. Error messages as an indirect relationship
	4.5. Programs as means and ends

	5. Conclusions
	5.1. Limitations and directions for future work

	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	References

