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Learning to program as empirical inquiry: using 
a conversation perspective to explore student programming 
processes
Kristina Litherland and Anders Kluge

Department of Education, University of Oslo, Oslo, Norway

ABSTRACT
Background and Context: We explore the potential for under
standing the processes involved in students’ programming based 
on studying their behaviour and dialogue with each other and 
“conversations” with their programs.
Objective: Our aim is to explore how a perspective of inquiry can 
be used as a point of departure for insights into how students learn 
to program.
Method: We completed a qualitative study situated in elective 
computer science classes in an upper secondary school in 
Norway. We collected data by video recording classroom interac
tions and used screen-recording software.
Findings: Our findings include how we consider programs as both 
means and ends and reconsider the “error” in trial-and-error strate
gies, the role of error messages, and how programs are bound to 
context and particular moments in time.
Implications: Our findings have implications for the ways we 
understand programs as mediating tools in research and apply 
them in the field of practice.

ARTICLE HISTORY 
Received 5 July 2022  
Accepted 29 November 2023 

KEYWORDS 
Computer science education; 
empirical inquiry; JavaScript; 
programming; sociocultural 
perspective

1. Introduction

The topic of computer programming has gained increasing attention in academic 
research and educational curricula worldwide (Bocconi et al., 2022), often attributed to 
Wing’s (2006) highly influential paper on the power of learning under the umbrella term 
of computational thinking. While the body of literature on programming in schools 
concerns programming as a method for learning other school subjects (Papert, 1980) 
and general problem-solving skills (Wing, 2006), much of the research in computer 
science education primarily focuses on higher education, emphasizing programming as 
a professional skill (e.g. Denning & Tedre, 2021), which may only to a limited extent be 
transferable to school contexts. Programming is traditionally presented with the goal of 
writing coded instructions that tell a computer how to perform certain tasks (Denning & 
Tedre, 2021), and much of programming didactics emphasise the importance of 
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understanding basic programming concepts, such as variables, conditionals, and loops 
(Lye & Koh, 2014).

In line with the Lye and Koh (2014), and the findings of Luxton-Reilly et al. (2018), there 
is untapped potential for gaining insights into students’ programming processes, e.g. by 
studying their actions, dialogue with one another and conversations with their compu
ters. Going beyond the concepts of programming in this way is not a new perspective. 
Soloway (1986) showed that programming students should be taught more than “syntax 
and semantics” (p. 858). Learning to program is, according to Soloway, “learning to 
construct mechanisms and explanations” (p. 850). In a similar note, Du Boulay (1989) 
described computers and programming as “a tool-building tool” (p. 285). Since then, work 
such as the “The Block Model” (Schulte, 2008) represents a line of research where 
programming concepts are treated as part of a larger context of code blocks and inter
relations that function to reach meaningful goals in a program. Work has also been done 
on employing the SOLO taxonomy (Lister et al., 2006) where learning to program is 
framed as moving towards higher levels of abstraction and higher levels of complexity 
within these different levels of abstraction. Muller et al. (2007) found empirical support 
that students performed better when instruction was pattern-oriented.

The proliferation of programming in schools since Wing’s influential paper has 
prompted discussions on how curricula should adapt to cater to 21st-century learners 
and contexts. This has led to the emergence of various approaches to learning and 
teaching strategies and technologies such as block-based programming (Resnick et al.,  
2009), “unplugged” programming (Bell et al., 2009), coding puzzles for learning (and 
assessment) known as Parsons problems (Parsons & Haden, 2006), and the Predict-Run- 
Investigate-Modify-Make framework (PRIMM) (Sentance et al., 2019).

Our point of departure is taken in a perspective of programming implying more than 
applying programming concepts in problem solving and more than the result repre
sented by a “finished” program (see for example Bjerknes et al., 1991). To explore learners’ 
programming processes, we adopt a sociocultural perspective on learning, focusing on 
learning processes in context (Vygotsky, 1980), mediation (Wertsch, 1998), and scaffolding 
(Andersen et al., 2022). A considerable proportion of computer science education research 
has favoured cognitive learning approaches (Sentance et al., 2019). By using 
a sociocultural lens, we apply the perspective that externalization of knowledge through 
participation in social practices precedes individualized internalized learning. According 
to Vygotsky (1980) and Wertsch (1998), physical and symbolic tools mediate this process, 
and the most important learning tool is the symbolic object of talk. We understand the 
use of tools from a dialogic perspective, where we consider the “sequential unfolding of 
activities in time” (Arnseth & Ludvigsen, 2006, p. 181). These activities include talk and 
actions, the latter encompassing both interactions with digital and/or physical tools and 
the use of gestures. We are inspired by the idea of empirical inquiry (Newell & Simon,  
1976), where computing is viewed as a “conversation” between a human and a machine 
(as described below).

To investigate this phenomenon, we have formulated the following research question: 
How can empirical inquiry serve as a perspective for analyzing the activity of students 
learning to program?

We utilise the perspective of empirical inquiry as an analytical lens to focus our 
attention on specific aspects of the programming process and observe the students’ 
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actions, dialogue and conversations. We reserve “dialogue” for the exchange between 
humans, and “conversations” to describe the exchange between humans and computers. 
Our data consists of students working in pairs and individually.

The remainder of the paper is organised as follows. First, we present literature on 
empirical inquiry and the field of learning to program. Then, we introduce our method, 
followed by our results. Finally, we discuss the results and present our conclusions, 
limitations, and directions for further work.

1.1. Empirical inquiry

In general terms, empirical inquiry is a method for investigating research questions through 
the use of empirical data, as opposed to exploring such questions theoretically. However, 
Newell and Simon (1976) presented a perspective on computer science as empirical inquiry, 
building on the work of Simon (2019, first published in 1970), in which he argued for the 
“sciences of the artificial”. Newell and Simon emphasised the use of computers as empirical 
sources: “Actually constructing the [computing] machine poses a question to nature; and 
we listen for the answer by observing the machine in operation and analyzing it by all 
analytical and measurement means available” (1976, p. 114). By observing and analysing the 
machines’ behaviour, researchers can extract answers and gain knowledge. Therefore, 
computers (“the machines”) are not only solutions to problems; they can also be seen as 
data from which we may learn. From this point of view, programs are not just a set of 
instructions but also part of a process of questioning and interpretation.

In our study, we adopt an empirical inquiry perspective to explore the process of 
learning to program. Our focus is not on defining computer science as a scientific field of 
inquiry. Instead, we conceptualize student programming as an inquiry process including 
conversation (von Hausswolff, 2021). We emphasize that programming is not merely 
a physical tool but also a symbolic tool, serving as an object for conversation. 
Programming is a process that involves many “hidden” mechanisms, e.g. in our case 
how JavaScript is read by the computer and returned as a web page with which the 
students can interact. Inquiry may be a perspective that can show how students learn 
about the relationships between the code and the results it presents. Rather than viewing 
programming as a series of one-shot instructions, we highlight how students understand 
and utilize the feedback they receive from the computer during the programming 
process. We focus on students’ talk, writing, and editing of code, as well as the execution 
of the code as sources of empirical inquiry, as described in the method section.

Our perspective on empirical inquiry aligns with Dewey’s (1938) pioneering work on 
inquiry as an educational method. Dewey argued that problems cannot be solved remain
ing detached from them. Instead, interaction with problems is essential for their resolution. 
According to Schön (1992), Dewey emphasised the “inherently open-ended relationship 
between the inquirer and the situation” (p. 122). In the context of programming, this 
relationship can be seen in Papert’s (1980) notion of “microworlds” where students interact 
within specific subject-related situations. Learning and discovery can, metaphorically, be 
framed as a “conversation with the situation” (Schön, 1992, p. 125), a perspective that relates 
to the concept of bricolage where the scientist builds knowledge on the interaction with 
materials (Turkle & Papert, 1990). Pea (1986) claimed that many novice programmers hold 
a misconception that computers have a “hidden mind” that can understand what the 
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programmer is trying to program, the so-called “superbug”. We do not delve into the debate 
on the existence of the superbug; rather, we examine how students explore and “converse” 
with the program code in specific situations. Our perspective is therefore not on how the 
student conceives that the computer understands them (i.e. Pea’s superbug), but on how 
the student understands the program by conversing with it.

We build upon these contributions by providing empirical insights within a learning 
context, utilising a broader understanding of inquiry inspired by Dewey (1938), and 
extended by Schön (1992), as a framework for our analysis within a sociocultural learning 
perspective. Our perspective considers computers as parts of conversations, with code 
and code execution serving as integral components of the process. By adopting this 
perspective, we enhance our understanding of how learning occurs in specific inquiry 
situations.

1.2. Learning to program: processes, practices, strategies

In what activities do the students engage when they learn to program? Researchers 
describe these activities using different terms: practices and strategies (Brennan & 
Resnick, 2012), processes (Allsop, 2019), and execution of skills (Grover et al., 2015). Lye 
and Koh (2014) suggested that the field of practices is under-investigated, Robins et al. 
(2003) discussed the difference between knowledge and strategies in learning to program 
and called for more work on how novice strategies emerge. Since then, work has been 
carried out on supporting the development of programming processes of students, 
including coding puzzles known as Parsons problems (Parsons & Haden, 2006) and the 
PRIMM framework in which students are – among other activities – asked to read code 
snippets and predict the results before they start coding on their own (Sentance et al.,  
2019). The approaches are often based on developing and testing teacher interventions, 
including tools for assessment (Weintrop et al., 2021). There seems to be less work on the 
inductive exploration of what practices the students themselves develop and use, such as 
trial and error strategies (Moskal & Wass, 2019) and debugging (Liu et al., 2017). Robins 
(2019, p. 361) argues that more knowledge is needed on what differentiates “effective and 
ineffective novices”.

Trial-and-error is reported as a common strategy among novice programmers, occa
sionally presented as the act of making seemingly random changes to a program (Moskal 
& Wass, 2019) and as unwanted behaviour in classrooms (Hao et al., 2022). Some 
researchers present trial and error as a meta-strategy for developing methods of debug
ging (Brennan & Resnick, 2012), which is the process of identifying and fixing problems in 
a program. Debugging may be considered a separate process to that of programming (Liu 
et al., 2017) and is sometimes framed as “moments of failure” (Dahn & DeLiema, 2020, 
p. 363). In this study, debugging is seen as an important part of programming as it 
concerns such questions as how errors in the program occur, where they are found, and 
how students deal with them (McCauley et al., 2008). For instance, Liu et al. (2017) found 
that debugging was a much more demanding task than the production of new code. We 
aim to build on the idea in which the unfolding programming processes are taken as 
a starting point for the analysis, focusing on trial and error and debugging activities.
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1.3. The role of dialogue and conversation in learning to program

In dialogic learning, researchers may focus on features of the exchange, such as the ways 
participants take on shifting roles of listener and source in the learning process (Furberg & 
Silseth, 2022).

Interactions in the context of learning to program can take place by means of different 
mediating tools and between different types of actors. Tsan et al. (2018) found that there 
are great differences in students’ dialogues while programming, and Jenkins (2017) found 
that dialogical approaches are important in programming classrooms. Brennan and 
Resnick (2012) include questioning as an important aspect of programming. In the view 
of Brennan and Resnick, questioning implies that students are curious and ask questions 
about the technologies they use in their lives, such as to “think about how anything is 
programmed” (p. 11), as opposed to the programming being part of the questioning 
process. Cutts et al. (2012) argue that natural language, computing talk, and code are all 
parts of the “language” in programming, suggesting (implicitly) that coding is 
a conversational process consisting of a language of several dimensions. Perrenet et al. 
(2005) include program execution as part of this language.

One example of ways computers become part of the programming conversation is 
through error messages. However, error messages sometimes cause frustration for begin
ner programmers, as the messages are rarely designed with the aim of assisting beginners 
(Kohn, 2019). Learners are at the mercy of the message designers and have little or no 
influence over what kind of information they can receive from predefined messages. Work 
on specialised error messages for learners is underway, with promising results (Hermans,  
2020), but the messages seem currently to remain a representation of the voice of the 
coding environments’ designers, more than being a conversational partner for the 
(novice) programmer.

From our perspective of empirical inquiry, there is potential to further the under
standing of the various processes involved in learning to program, especially with the 
development of generative artificial intelligence systems although this is outside the 
scope of this paper.

2. Method

This qualitative study involved the participation of secondary school students (aged 15 
to 19) enrolled in elective computer science classes. The paper is based on data from 
a larger design-based study (Barab & Squire, 2004), but the design-based aspects of 
the study are outside the scope of this paper. Instead, we frame this paper as a case 
study (Yin, 2018) where we focus on data from a single secondary school and iteration 
in the research project. The study centred on the use of a web-based code editor 
(Figure 1), emphasising its functionality for recording and playing screen recordings of 
hands-on coding in JavaScript. An important feature of the editor is the presence of 
the execution window, which makes code executions easily accessible as part of the 
programming process. We applied a purposeful sampling technique (Patton, 2002) 
where we focused on the students who worked on one of the several tasks we issued 
during the project (described below). The data concerning this task consist of 2 hours 
of video and 12 screen recordings (~2.5 hours). One teacher and nineteen students 
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participated, some working alone, but most in pairs. We discarded approximately 20  
minutes of screencast videos because of missing or bad quality audio. Data were 
collected in 2020 before CoViD lockdown.

We chose to focus on these data for two reasons. First, this data material included two 
full program development processes (two pairs of students’ video recorded for one hour 
each), from reading the task description to finalising their self-produced screencast 
recordings (explained below), providing us with a full depth view of their programming 
processes. Second, the 12 screen recordings, where the students themselves presented 
their code, provided us with a breadth of different student approaches to the task, 
complementing the more in-depth, full process video material. Some students recorded 
explanation screencasts at the end of the class, others recorded themselves as they were 
programming. This gave us broader insights about approaches among most of the 
students in the class, even when we did not have the infrastructure available to support 
videotaping each student. The use of screencasts also has an ethical dimension, as more 
students consented to submit self-recorded screencasts of which they were themselves in 
control of, than those who consented to being videotaped in class throughout the class. 
Further ethical aspects of the study are described in section 2.4.

From this dataset, we display four extracts that serve as micro cases or examples, with 
the intention of showing the diversity of the approaches used (Yin, 2018). The extracts 
derive from the two pairs of students we videotaped (pair 1: extract 1, pair 2: extracts 2 
and 3), and one single student who submitted a screencast (extract 4). We do not suggest 
that these extracts are representative of all students in introductory programming, but we 
are confident that they represent the diversity within our case.

Figure 1. Screenshot of the code editor. Left: file directory; centre: code editor; right: output window; 
bottom: playback timeline for recording and/or viewing screencasts.
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2.1. Student task

The data selected for this paper were collected at a single upper secondary school where 
the students worked on a particular task of creating a virtual automated teller machine 
(ATM). The students could use any resources or strategies to solve the task, which was 
important for our research question of understanding the learning process.

The students we recorded were selected at random among the students in the class 
who had consented to participate, and we had no prior knowledge of their level of 
programming proficiency.

The ATM task comprised two parts. The first part involved developing a simple, virtual 
ATM in JavaScript. More specifically, the goal of the task was to develop a script that 
received input from the user (money withdrawn or deposited) and changed the user’s 
fictional account balance based on this input. We provided the students with draft code 
from which they were to develop their program. The draft code included a complete 
HTML form to handle input from the user, a list of predefined JavaScript variables we 
considered useful, and “empty” functions we expected the students to create (e.g. 
showBalance and withdrawMoney). The purpose of the draft code was both to reduce 
the time the students spent writing HTML code, allowing them to spend more time on the 
JavaScript, and to assist them in designing the ATM code by providing some hints about 
expected functions and variables. The second part of the task concerned recording an 
audio-visual screencast (screen recording) where the students explained and demon
strated their codes, which they shared with the teacher for feedback and assessment 
purposes. We encouraged the teacher to let the students work in pairs as this facilitated 
collaboration and the use of natural language, which was central to our data collection, 
but some students requested – and were allowed to – work individually.

2.2. Analysis framework

As mediational means, such as talk and physical tools, are central to understand learning 
from our sociocultural learning perspective (Vygotsky, 1980), we developed a framework 
where we consider four aspects of the conversations in the final, in-depth analysis of the 
data: student talk, student action, code, and execution.

The first aspect we considered was the students’ talk, analogous to Cutts et al. (2012) 
two dimensions of natural and computing language and the social plane of Sentance 
et al. (2019). Both papers argue for the role of language as central to programming. Other 
researchers have also emphasised the importance of talk and reflection as part of the 
learning process in computing (Brennan & Resnick, 2012; Zakaria et al., 2022).

The literature on physical programming activities (sometimes known as makerspaces) 
includes examples of considering students’ embodied actions as part of the learning 
process (Kajamaa & Kumpulainen, 2020). We therefore included some contextual informa
tion, such as physical and digital gestures (actions), as part of the unit of analysis. Our main 
emphasis was on the use of the body (sometimes with the assistance of physical tools 
such as computers) to produce symbolic output (e.g. pointing, highlighting) that mediate 
the learning process, as described by Vygotsky (1980). The things people do may be 
labelled “actions”, but we refer here to specific types of action that are not directly reliant 
upon oral talk or on writing code.
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Third, we considered the code produced by the students, equivalent to the code level 
of Cutts et al. (2012) and the program level of Perrenet et al. (2005). Typically, the program 
dimension involves writing code – that is, it is traditionally framed as creating instructions 
for a computer, which are then executed (Denning & Tedre, 2021), and recording and 
analysing code changes are important for understanding student learning processes 
(Guenaga et al., 2021).

The execution of a program when a computer performs automated tasks correctly is 
typically considered the end goal of the programming process (Denning & Tedre, 2021), 
but it is also used as a tool for testing code in the search for technical bugs (McCauley 
et al., 2008). That is, code executions can be part of the programming process that we 
unpack in our analysis. In line with Perrenet et al. (2005), we refer to this as the execution 
dimension.V

2.3. Data analysis

In the analysis, we used the perspective of understanding programming as a conversation 
between a human and a computer, considering the four dimensions just presented. The 
aim of the analysis was to gain insight into the exchanges involved, including the 
computer as part of those conversations. In the first stage of analysis, we looked through 
all the selected data (video and screen recordings) and used thematic coding (Braun & 
Clarke, 2012) to create a “map” of the data.

After the mapping session, one hour of the most relevant screencasts and one hour of 
the most relevant video data were transcribed in detail for a more fine-grained interaction 
analysis (Jordan & Henderson, 1995). In the data extracts presented in the section 3, we 
use the notion of events to divide the unfolding activities into meaningful units (Derry 
et al., 2010). The extracts include the contributions of five students. For clarity purposes, 
the talk, text, variable, and function names in the extracts from the original data material 
were translated to English by the first author. The authors performed the analysis process 
individually before meeting and discussing the results and arriving at a shared under
standing. This process was repeated several times over the course of two years. We 
arranged a data workshop where we invited external researchers (not affiliated with the 
study) to view the data, provide their interpretations, and (if relevant) dispute our 
interpretations, and an early version of this work was presented as a poster paper at an 
international conference (Litherland et al., 2021).

The analysis process led us to the development of several thematic codes, of which we 
found four relevant to answering the research question. Codes excluded from this paper 
include topics such as teacher interventions, the use of subject specific terminology, and 
software specific functionality (i.e. the recording, re-recording, and playback of screen
casts within the code editor). In the results section, we present examples of the following 
four codes: edit and test loops, observation, problem isolation, and validation. Finally, in 
the discussion section, where we view our empirical data and codes in relation to former 
research, we synthesise our findings into five major themes: programming as inquiry, 
removing the error from trial and error, programming bound to context, error messages 
as an indirect conversation, and programs as means and ends.

The aim of the analysis process was not to decide the frequency of use of different 
programming approaches, but to identify and describe the diversity itself (Lemke, 2011). 
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As such, we do not provide a quantitative analysis, but we did provide context for the 
reader with short qualitative descriptions of whether we observed approaches more or 
less frequently.

2.4. Research ethics

All the participants (teachers and students) signed a consent form prior to taking part in 
the project and data collection. In addition, we applied ongoing consent, asking for 
permission immediately prior to starting all the recordings and informing the participants 
that we would stop recording any time at their request. The students who self-recorded 
screencasts did this without our intervention and were free to decide when to record and 
the content (within the border of the task). They were free to re-record or decide not to 
submit the screencast if they wished. The research project was registered with the 
Norwegian Centre for Research Data, an organisation that analyses research projects 
that handle human research data and ensures that such data are legally collected and 
handled. This work received support from the Regional Research Fund Viken under grant 
number 284,976. The authors report there are no competing interests to declare. The 
abbreviations used below to refer to individual participants were chosen at random, and 
the participants shown in snapshots from the video data are drawn as silhouettes to 
preserve anonymity.

3. Results

In this section, we present four selected episodes from our data material. The extracts 
serve as examples of ways students converse with their computers through program
ming, each representing a code we developed through the analysis process: 1) edit and 
test loops, 2) observation, 3) problem isolation, and 4) validation.

We present the extracts in tables of four columns. The first column holds the event and 
actor references. The second column includes talk. The third column contains additional 
information about actions or events from the videos/screen recordings. In the rightmost 
column of the data extracts, the program code is displayed as light text on a dark 
background, and the executed code is presented as dark text on a light background. 
We also included some snapshots from the recordings both within and outside the table 
extracts to show physical arrangements and actions of the participants, and many of the 
program and execution snapshots include representations of actions, such as cursor and 
caret placements. The student actors are marked using uppercase letters (e.g. B, G), and 
the computer “actors” are represented specifically as (C).

3.1. Extract 1: edit and test loops

Context: In the first extract (Table 1), two students (B and G) were working together on the 
ATM task. They were loosely following the structure of pair programming, sharing 
a laptop computer with which B performed most of the direct interactions. In general, 
G was the “co-pilot”, but they changed roles at will. Figure 2 shows the physical arrange
ment of the actors.
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Prior to the episode below, the students tested their deposit function: a function that 
was supposed to 1) receive input from the user on how much money they were deposit
ing into their fictional bank account and 2) add the input number to the balance variable. 
Instead of adding the test input 789 to the 20,000 balance ( = 20,789), the program output 
a balance of 20,000,789 as the two values were concatenated. The students agreed that 
they needed the Number() function to solve the issue, which they correctly identified as 
a data types issue. Simply put, Number() makes values that are strings (data type) into 
numbers (data type). Applied to the correct value (inpDeposit.value), it would solve their 
issue.

This extract was chosen to represent the edit and test loop behaviour we 
observed in several students (often repeatedly, including the pair represented in 
the extract), referred to in the literature more broadly as trial and error (Moskal & 
Wass, 2019).

B asked G about the Number() function (event 1.1), but G replied (1.2) that she did not 
remember how to use it. In event 1.1, B added the Number() function using the balance 
and inputDeposit.value as parameters, commenting in event 1.3 that he would “just try 
something”. This change resulted in the line of code being output as pure text (1.6), 
causing him to laugh (1.7). B deleted the changes (1.8). Later (not included in the 
transcript), the teacher helped them solve the problem by confirming that the program 
treated a number as a string, adding the numbers together in sequence. The teacher 
explained that the values from input fields are always strings. With this clarification, the 
students solved the issue by using the Number() function on the inpDeposit.value.

In this example, we saw how the students rapidly changed the code and ran it to see 
the result. The strategy did not solve the problem of the concatenated values. Although 
the students touched upon changes that were close to a possible solution, they were not 

Table 1. Edit and test loops. Includes data previously presented in (Litherland et al., 2021).
Event 
(Actor) Talk Actions/comments Program/execution

1.1 (B) Okay. If we put Number() 
outside here then? 
How do you do that?

B moves the caret to where the variable 
balance is the output and types 
$Number() with the sum of the balance 
and inpDeposit.value as parameters.

1.2 (G) I don’t remember any of 
the Number() stuff.

1.3 (B) I’ll just try something. Clicks the execution button.
1.4 (C) Displays the deposit form.

1.5 (B) Enters 789 into the field and clicks the 
Deposit money button.

1.6 (C) Displays the result of the deposit function.

1.7 (B) Yes, ha-ha, oops. Sees the line of code is output as text.
1.8 (B) Removes the changes made in 1.1.
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able to identify these changes as meaningful or learn from them beyond them not 
providing the intended result. Their conceptual knowledge of data types and the 
Number() function helped them towards a solution, but they were not successful at 
applying this knowledge to the correct part of the code.

The students showed that they understood how the computer could serve as a form of 
“conversational” partner in the programming process, as they made changes and sought 
information from the program about how it would answer to those changes. However, 
they struggled with formulating questions that would provide them with answers to 
support the process further. The edits the students made were not “errors” or “mistakes”, 
as asking questions does not imply failure.

3.2. Extract 2: observation

In the next extract (Table 2), students E and P were working on the withdrawal function of 
their ATM. E was in charge of the typing, while P sat next to him following the code 
development on his own laptop through the live screen sharing functionality in the code 
editor. P did not make any code changes through the screen sharing but was passively 
involved in the process by pointing his cursor, which was visible to E, and through E’s 
many monologues, such as the one below. E experienced issues receiving input from the 
user and decided to add a console logging function to trace the withdraw variable value. 
Although E made some verbal utterances in the process, most of the important events 
consisted of direct interactions with the code and the execution of the program.

We chose this extract to represent the act of tracing values through program execu
tion, a behaviour we found in several students.

Figure 2. Students G (left) and B (right) focusing their attention on parts of the code using digital and 
physical gestures. The code is written in JavaScript.
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In event 2.1, E placed the console.log() call within the withdrawMoney function. E entered 
a test input (2.3) and realised that the form was not logging anything. In event 2.6, he 
explained that “it” (the problem of the missing log) was caused by an incorrect function 
name. The form referred to the showBalance function when it was supposed to point to the 
withdrawMoney function. After changing the function name (2.6) and testing the program 
with various inputs (2.7–2.8), the console log returned 0 (2.9), meaning that the console log 
code was run but did not receive the correct values from the user. Although not included in 
the transcript, the student made frequent small changes to the code to try to fix the logging 
but did not succeed, in a similar manner to that of students G and B in the previous extract.

Table 2. Observation.
Event 
(Actor) Talk Actions/comments Program/execution

2.1 (E) Adds the console.log function to the 
withdrawMoney function and 
clicks to execute the code.

2.2 (C) Displays the withdrawal form.

2.3 (E) Enters 500 and clicks the Withdraw 
money button.

2.4 (C) Nothing is logged to the console. [no console log appears]
2.5 (E) Oh, not even the console 

log is working now . . .
Observes that nothing is logged to 

the console. Executes the code 
several times, receiving the same 
result (no log). Scrolls through the 
code.

2.6 (E) Ah, it [missing log] is 
because I’ve written the 
wrong name here. 
Withdraw money . . .

Student points to and explains that 
the withdraw event calls the 
showBalance function. Corrects the 
function name and executes the 
code.

2.7 (C) Displays the withdrawal form.

2.8 (E) Enters different inputs, such as 50 and 
500.

2.9 (C) Displays 0 on the console.

2.10 (E) Zero, ok? So now it’s zero.
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Student E actively supports the conversation process by making explicit the computer 
responses using the console. Not only does this imply the recognition of the computer 
“voice”, but also an active choice to make it heard. The aim of the task is not to display 
values in the console. Instead, the console provides the student with empirical/observable 
information about the program, which he uses to support the continued programming 
process. The student practiced conversation with the situation, as he saw that there was 
something the program could tell him that would help him in solving the problem. We 
argue that framing this as “trial and error” greatly undermines the sophistication of the 
process, as the student takes an active role in learning about his own code, using 
empirical insights to continue the development process.

3.3. Extract 3: problem isolation

The next extract (Table 3) took place about one minute after the previous extract, and 
E was still struggling to show the log. Running the code, he got an error message and saw 
that the account balance was not printed in the output window as it had been before. In 
fact, parts of the HTML form disappeared entirely, implying that some of his small changes 
had serious consequences. P watched E working.

This extract was chosen to represent the process of temporarily decomposing pro
grams by deletion or commenting, which we observed in some variations among some of 
the students.

P decided to ask E about the problem. E explained that the balance was not the 
output (3.3) after his recent attempts at printing the withdrawal value. E decided 
to highlight and delete three lines of code, which he suspected were the cause of 
the balance not being the output (3.3). After deleting the code, he executed the 
program, and the balance was returned to the output window (3.4). He undid the 
code deletion, having confirmed his hypothesis that the error lay in one of the 
three code lines he had deleted (3.6). P confirmed the same. P then pointed to 
the second line that had been deleted and re-entered (3.10). E noticed the mis
placed backtick, told P to stop talking, removed the backtick, and ran the code, 
observing the account balance printed in the output window (3.13) and his input 
of 50 correctly logged to the console (3.14).

The significance of this extract lies on the way student E gained empirical information 
about the program by actively deleting parts of it temporarily. This extract shows how student 
E tried to gain access to the hidden mechanisms that were at play in the program he was 
creating, employing help from both his partner (student P) and using the program itself as 
a tool.

3.4. Extract 4: validation

The following extract (Table 4) is from a self-recorded screencast, where a student (M) 
recorded his own screen and voice while programming to explain some of his thoughts 
and actions while developing the ATM. The extract took place 11 minutes into the 
screencast. Prior to the events described below, the student spent his time continuously 
writing code without executing it. We included this extract to serve as an example of 
a student who runs their code sparingly.
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This extract was chosen to represent the actions of the many students who used 
program execution as a final task to validate the accuracy of their programs.

In event 4.1, the student explained that it was time to check the code for what he called 
“formatting errors”. The JavaScript code consisted of about 30 lines at this time. He 
pointed both his cursor and caret to the same line of code, indicating that he was reading 

Table 3. Problem isolation.
Event 
(Actor) Talk Actions/comments Program/execution

3.1 (P) Okay, what is the 
problem?

3.2 (C) Shows no account balance value.

3.3 (E) Right now, it 
won’t show the 
balance.

Highlights the code and deletes it. Clicks the button to 
execute the code.

3.4 (C) Shows a balance of 20,000.

3.5 (P) But now it shows 
the balance.

Observes that the balance is shown.

3.6 (E) Adds the code back in, and both students look for 
a potential error. E removes incorrect quotation 
marks around the withdraw variable reference.

3.7 (P) But . . . You 
have . . .

3.8 (E) Executes the code.
3.9 (C) Still does not produce an account balance.

3.10 (P) You know, here. P points his pointer (left arrow) to the end of 
the second line that was temporarily deleted, which 
contains a misplaced backtick. E (with his hands on 
his own laptop) points to the same area with his 
own pointer (right arrow) and places the caret 
(middle arrow) on the line.

3.11 (E) Oh yeah, no . . . 
Stop, stop, 
stop.

Sees the misplaced backtick P pointed to and tells him 
to stop pointing and/or talking. Removes the 
backtick. Clicks the button to execute the code.

3.12 (C) Shows the balance (and the withdrawal form).

3.13 (E) There, okay. 50. Observes that the balance is shown. Enters an input of 
50.

3.14 (C) Displays the value 50 in the console log and 
a corresponding 50 in the transaction log.

3.15 (E) Okay, so it works.
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this line. Upon reading this, he claimed the code would work (4.3). M inserted a test input 
into the deposit form (4.4), and the program returned an error message that M read aloud. 
The message prompted him to check the names of the functions, resulting in the 
renaming of one. He ran the code again, entering an amount to deposit, and confirmed 
that the form now worked.

We would like to highlight several parts of this process. First, although not 
explicitly part of the extract, it is important to note that this student (and several 
others) rarely employed running code as a development or learning method. As 
expressed by M, the code was first run when it was “supposed to work” (4.3). 
M employed the same pattern when he later developed a transaction log for the 
ATM (an optional “bonus” task). Second, we point to the student’s use of the error 
message. The student understood the English error message, which directed him to 
investigate specific parts of the code, suggesting that the process was a form of 
“conversation” (Schön, 1992).

4. Discussion

In this section, we will present discuss and attempt to generalise our findings by compar
ing them with the findings and conceptual distinction reported in the literature. The 
discussion is divided into separate subsections, each of which refers to a particular finding. 
All the findings relate to the research question we proposed in section one: How can 

Table 4. Validation.
Event 
(Actor) Talk Actions/comments Program/execution

4.1 (M) Now we need to check 
whether there are any 
formatting errors.

Cursor and caret points to the 
same line of code.

4.2 (M) No, there are none. Confirms there are no errors in 
the line of code in focus.

4.3 (M) Okay, so now it’s supposed to 
work.

4.4 (M) Deposit 100 Norwegian kroner. Tries to deposit 100.

4.5 (C)

4.6 (M) Account amount is not 
a function . . .

Reads the message on the screen

4.7 Hmm . . . account update, 
right. Here . . .

Updates the function name from 
accountAmount to 
accountUpdate.

4.8 (M) 100 Norwegian kroner . . . 
Nice . . . and take out 100 
kroner.

Deposits 100 several times and 
withdraws 100 a few times.

(C) The account balance is updated 
according to the input.

There, yes. Okay. So, it works.
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empirical inquiry serve as a perspective for analyzing the activity of students learning to 
program individually and in pair programming? The extracts are activated and discussed 
across the findings.

An overall finding is that all the students solved the ATM task adequately (or better). 
While their final products differed in structure and, to some degree, in functionality, their 
processes were more divergent. This is an important preliminary finding on which we 
base the further discussion.

4.1. Programming as inquiry

One way to represent the various processes is to explicitly frame how the students and 
converse with their programs through inquiry. Based on our empirical observations, we 
find that this process takes place through four phases: 1) formulate a question, 2) ask the 
question, 3) receive an answer, and 4) evaluate and give a response (formulate a new 
question, i.e. return to phase 1). The questions, answers, and responses are interpretations 
of human and computer actions, and is inspired byNewell and Simon’s (1976) ideas of 
computer science as engaging in a conversation with a machine, in an analytical process.

We define the first step as the formulation of a question the student wants answered. 
The student converse with the code in different ways, making modifications, such as 
adding, removing, editing, or moving code. Each change in the program is a new con
struction of a question, and the student may run the program to “ask the question” and 
observe the result. Sometimes, this step requires the student to add a test input, that is, 
additional information needed to answer the question. The asking of the question 
produces an output (answer), which the student may observe, reflect on, and respond 
to or ignore.

In Table 5, we present an overview of some of the events in the extracts conceptualised 
as a process of inquiry.

We identified two main types of questions: 1) confirmation and 2) information gather
ing. Student B asked confirmation-type questions, of which we provide one example. The 
goal of confirmation questions is to confirm whether code changes are “correct” or 
“incorrect” in relation to the problem at hand. In computing terminology, the answers 
are Boolean (true or false), and possible responses involve either keeping the code 
changes (when the answer is “correct”) or undoing them (when the answer is “incorrect”). 
One characteristic of a confirmation question is that the answers do not lead to code 
changes beyond the question itself, contrary to information-gathering questions. Since 
student B’s question in event 1.5 received a negative answer – which the student 
evaluated as an “oops” (1.7) – the student responded by rejecting the code change.

In the last extract, student M also used the execution of the program as a confirmation 
process, but in a different manner. While he was not concerned with gathering informa
tion about how to fix an issue in the program, the purpose of the execution was to 
confirm that the program worked as he expected. He received an answer from the 
computer in the form of an error message, which made him evaluate a specific function 
name. This is therefore a different type of confirmation, where the student made an 
explicit prediction about what would happen when the program was executed. As the 
predictions were not true, the student realised changes had to be made.
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Student E asked information-gathering questions. The purpose of these information- 
gathering questions was not to produce “correct” code but to investigate the code itself. 
The answer to the information-gathering question in event 3.3 was Boolean (like those of 
the confirmation questions), but the response was different. The answer (“correct”) 
prompted the student to undo the code change, which represents an opposite response 
to that of positive answers to confirmation questions, which always involve keeping the 
code changes. Student E got different answers to the same question asked in events 2.3 
and 2.8. The answers were not Boolean but were of different qualities. The first answer, 
which, in a sense, was no answer at all (nothing was logged in the console), provided 
E with information. The missing log represented a meaningful answer that prompted the 
student to look for and fix an error in a different part of the code. In event 2.8, however, 
the student was not able to interpret and evaluate the answer given by the computer, 
which caused him to enter a process of trial and error. The frequent changes differed 
between being both useful and destructive, and the student was not able to distinguish 
between them.

However, in the case of E, we saw that code changes were not only instructions for the 
computer but also served an information seeking purpose for the student and were not 
intended as part of the final instructions for the computer to follow. In professional 
settings where the goal of programming is a digital product, temporary code changes 
do not represent the same inherent value. Views of programming that emphasise for
mulating instructions for a computer (Denning & Tedre, 2021) do not capture the aspect 
of the development process where programs are a temporary learning tool at a specific 
point in time. Neither do approaches to research or assessment that rely on the analysis of 
finished programs (Moreno-León et al., 2015), where such temporary code changes are no 
longer present. The students we observed only occasionally made explicit predictions 
(one example is found in event 4.3: “now it’s supposed to work”.), but it is possible that 
predictions or hypotheses were made without being expressed. We find that the students 
participated in a “low level” empirical inquiry, which is not a “capital S” Scientific process, 
but an inquiry-as-learning process involving investigations of gathering information and 
testing propositions of various degrees of refinement.

4.2. Removing the error from trial and error

Trial and error is a well-known strategy among novice programmers (Moskal & Wass,  
2019). Using an empirical inquiry perspective allows us to divide trial and error into several 
different, but related, processes based on the types of trials performed, the context of the 
trials, and how the students interpret the results. Through empirical inquiry, some trial 
and error-like activities can instead be framed as information seeking activities, as 
opposed to a trial activity or (even more negatively framed) an “error making activity”.

For instance, we frame extract 1 as an “edit and test loop” and avoid negative terms, 
such as “error”. From our perspective, the outputs students B and G received from the 
computer were not “errors” but valid information about the state of the program. Rather 
than performing random activities, they expressed ideas about what caused the conca
tenation issue and applied these ideas to various relevant parts of the code. Similarly, 
student E’s temporary code changes do not represent “errors”, but a process of exploring 
the program.
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4.3. Context bound programming

The process we exemplify in extract 2, where the student gives the computer a voice by 
providing it with the means to “answer” through the console, may be understood as a two-way 
conversation, where the student must provide information (e.g. which values should be 
tracked when and where), receive information (e.g. understand which values are returned 
when), and know how to act upon this information. The same applies to extract 3. While we do 
not have access to the student’s perceived expectations, we derive from his actions that the 
aim of running the code after deleting several lines of it was not to see a finished, functional 
program. The aim was to receive information about the program in a particular and temporary 
state (runtime situation).

Throughout our dataset, we found examples of students using temporary code changes 
as a coding strategy, such as commenting out or removing code to isolate problems 
(extract 3) and printing/logging variables (extract 2). Temporary code changes may be 
counter-intuitive for a novice programmer. For instance, some temporary code changes, 
such as commenting out code, may make the code less functional. From a dialogic per
spective, however, these actions are meaningfully bound to the specific points in time and 
context. Viewing programming as a “conversation with the situation” (Schön, 1992) may 
open up a conceptual space for students, where they can have these forms of momentary 
conversations with their programs that make sense in a way that is lost in a pure end- 
product-based perspective. Two channels of exchange, one towards humans and the other 
towards the computer’s runtime environment extend the symbolic metaphor of commu
nication proposed by Newell and Simon (1976) toward symbols and materials (Schön, 1992).

4.4. Error messages as an indirect relationship

Student M received and reacted to a particular type of information about the program, namely 
the error message received in event 4.5. The error message assisted the student in completing 
the subtask of designing the deposit function, which malfunctioned because of a naming 
error.

Although error messages may be important for the development process, as exempli
fied by student M, the messages can also be considered a mediated relationship between 
the student and their program. The developers of code editors and/or programming 
languages curate error messages. Thus, the potential of this type of relationship relies on 
external actors. Error messages typically focus on syntactic errors, but as demonstrated in 
extracts 1 and 2, there are many cases where students can benefit from information from 
the computer without the presence of syntactic errors.

4.5. Programs as means and ends

To various degrees, students allow their computers to take on the role of a source in 
the programming process (Furberg & Silseth, 2022), and this is especially clear in 
extracts 2 and 3. Brennan and Resnick’s (2012) perspective of questioning “how 
things work” is different to our perspective of questioning in empirical inquiry; 
programs are not problems to be solved or figured out (a perspective with 
a stronger presence in students such as student M), but sources of information as 
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part of the learning process. Questioning therefore becomes a process of conversing 
with programs in ways that provide valuable insights. Instead of asking questions 
such as “How is this artefact programmed?” in introductory programming in schools, 
we may shift to a focus on “What new insights can we make from interacting with 
this program?” These types of questions can be seen from a bricolage perspective 
(Turkle & Papert, 1990), where a painter does not necessarily ask how a piece of art 
is to be created, but instead ask what will happen when they start adding layers of 
paint on a canvas.

While students B and G expressed knowledge of the Number() function and demon
strated a willingness to explore the program empirically, they were not able to link the 
semantics of this specific function to the particular situation they were in. Nevertheless, 
the situation and activities they took part in may still have provided meaningful learning 
outcomes, both concerning the programming process itself and about specific functions.

We suggest treating programs as both means and ends. From a sociocultural learning 
perspective, the program – while still a goal – may also function as a mediating artefact 
that supports learning. We argue that this may represent a possible explanation for why 
many students experience programming as difficult (Luxton-Reilly et al., 2018), as learning 
how to program may rely on skills concerning how to “converse” with programs. 
According to Dewey, the inquiry process does not lead to a final point of resolution, but 
to new problems. Focus on the final program and concepts of programming (Robins,  
2019; Xie et al., 2019) may be important for the skill of programming, yet this study seeks 
to extend the value of programming activities into a more comprehensive learning 
process. Papert (1980) emphasised programming as a learning method – not a learning 
outcome. To him, programming in schools was a means of learning about maths and 
physics, not an end. We ask, why not both?

5. Conclusions

The perspective of empirical inquiry focuses on the process of programming. We identified 
various patterns of programming that show how students display different ways of 
interacting with their programs. Through activities of empirical inquiry, programming 
becomes a process of learning with the aid of a computer and by acting, observing, and 
analysing, extending the idea of programming as producing expected results based on 
tasks provided by the teacher. Students display various approaches to these activities. 
This has implications for our understanding of common strategies, such as trial-and-error 
and assessment. We argue there may be a need to explore how programming practices 
can be made an explicit part of curricula by treating them with the same care as domain 
specific concepts, such as variables and loops.

We studied how the relationship between students and their programs is developed 
through the interplay of multiple interactional levels: the students’ talk, actions, the 
program code, and the executed programs. For instance, the students’ completed pro
grams do not provide a comprehensive picture of their learning processes, which may be 
most important. We suggest that treating programming processes as a complex system 
may extend our understanding of programming as a learning process, which we have 
tried to demonstrate by example in this article.
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A general view of programming in context may be translated into a micro perspective 
of each student’s own programs; there is potential to encourage students to consider how 
their programs play a part in the further program development. The “conversation” 
between human and machine goes beyond “telling the computer what to do“, as it 
requires back-and-forth interaction of both passive and active exchange. A programmer 
“talks” to computers but must be susceptible to what the computer returns.

5.1. Limitations and directions for future work

As the students participating in this study were part of elective courses in computing, they 
do not represent the broader population of students now expected to learn programming 
in schools as part of the movement started by Wing (2006). Our sample may display 
different attitudes towards learning to program than students in general. However, we do 
not suggest that this qualitative study is generalisable to this population. We wish to 
make clear that the various inquiry patterns we present and discuss are suggestive, and 
more work is needed before claims can be made regarding the spread and frequency of 
inquiry types, best practices, or other normative conclusions.

We suggest continuing the effort to study programming as a process of inquiry in more 
diverse empirical settings, for instance, by employing learning analytics tools and other 
quantitative measures of student conversation, and combining such quantitative meth
ods with qualitative approaches (so-called mixed methods) to retain the student voice. 
With the advance of physical computing in schools (Kajamaa & Kumpulainen, 2020), there 
is a need to further our understanding of the role of physical objects and space in such 
interaction. Furthermore, our observation methods did not make possible the empirical 
study of students’ thoughts about what they were doing beyond what they themselves 
found natural to share in the moment. Methods such as think-aloud protocols (Fonteyn 
et al., 1993) could be one way to address this, or by the use of more structured pedagogic 
approaches such as PRIMM (Sentance et al., 2019).

On a conceptual level, we suggest that more work is needed on viewing our findings in 
relation to the contemporary discussions in the literature on computational thinking (e.g. 
Denning and Tedre (2021)). Furthermore, while our work focused on the “conversation” 
between individual students and their programs, there is a need for more work that 
considers the complicated inquiry patterns that involve several people or computers, for 
instance with the development of so-called chatbots and AI (OpenAI, 2022).

We argue for the need for strategies to take advantage of the opportunities and 
address the challenges of using the perspective of empirical inquiry within the field of 
practice. One direction could be to investigate how an empirical inquiry perspective 
applies as a frame of reference for teaching and/or learning to program. This may raise 
questions of how such a frame may influence pedagogical concerns, such as the design of 
learning activities, goals, and assessments, including how to develop tasks and teaching 
strategies that support students in utilising computers as a partner in the programming 
process.
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