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ARROW-MANGASARIAN SUFFICIENT CONDITIONS
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Abstract

This paper shows a version of Arrow’s generalization of Mangasarian’s sufficient condi-
tions valid for controlled stochastic differential equations driven by semimartingales. The
infinite case is covered. An example is given.
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0 Introduction

This paper gives a verification theorem for optimality of a controlled stochastic differential
equation with semimartingale driving noise. We employ a version of Arrow’s generalization of
Mangasarian’s conditions (the sufficiency version of Pontryagin’s maximum principle) known
from deterministic control theory, first proved rigorously by Seierstad and Sydsater in [12].

Various necessity and sufficiency results are known in Markovian framework; references in-
clude Kushner [8], Bismut [3], Bensoussan [2], Haussmann [6], Peng [10], Cadenillas and
Haussmann [4] for necessary conditions for controlled diffusions, while Tang and Li [14] pro-
vide the same in a jump diffusion setting; see also Kabanov [7]. Sufficient conditions for
controlled jump diffusions are given by Framstad, Qksendal and Sulem [5]. This paper is an
extension to the semimartingale case. The generalization turns out to be straightforward, as
the product rule for differentiation works similarly; as for the transversality conditions, they
are as in the deterministic case.

What is not equally straightforward, is applying the theory. The result involves backward
stochastic differential equations (BSDEs). While the major research effort in the theory for
BSDEs has been dedicated to the Brownian or Wiener-Poisson Markov case, an early paper
by Antonelli [1] treats the semimartingale setting.

The outline of the paper is as follows: Section 1 gives the basic result, which is just what we
would expect from the Markovian set-up; in Section 2 we shall see why the usual generalizations
apply. Finally, Section 3 gives an example with an application to portfolio selection.
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1 The main result

Assume given a filtered probability space (2, &, {J}s>0, P) satisfying the usual conditions.
Our controlled system will be driven by an increasing process A, by an integer-valued ran-
dom measure M without fixed jump times and by an R"”-valued continuous local martingale
Z = (Z1,...,7Z,)" where, throughout the paper, the superscript «"» denotes matrix trans-
pose. We assume that the cross-variation matrix of Z and the predictable measure-valued
process Il associated to M are absolutely continuous with respect to dA, such that for a
suitable § : [0,7] — R"*™ with components 3;; and a suitable measure A, one has

d[Z;, Zj] = 3;dA, I1(dt,dz) = A(dz) dA(¢). (1)

We assume that the R%valued state variable X obeys the stochastic differential equation

dX(t) =b(t, X (¢),u(t)) dA(t) + Xn:ai(t, X (), ut)) dz;(t) + /n(t, X (t7),u(t), z) M(dt,dz)

(2)

where M is «compensated at small jumpsy, i.e. for a suitable truncation function y which
may be taken to have values in {0,1},dM = dM — x(2) A(dz) dA(t). In (2), both b and the o
are given measurable functions [0, 7] x R x U — R?, while 7 is a given measurable function
[0,7] x R? x U x & — R? for some mark space 5. The given set U is called the control
region and we are free to choose the value of u(¢,w) from U, subject to the requirement that
u is a predictable process and gives rise to a unique strong solution X (t) = X (¢) of (2) on
the time interval ¢ € [0, T]. Such controls are called admissible if in addition (5) below holds,
and also we have the following L? condition:

T n
[ [ X (o)t X @, u0)Bs+ [0, X (), ule), 9x() Md) W] < o0 (3

1,5=1

ensuring that the integrals with respect to the local martingales (i.e. Z and the «compensated
small jumps» part) indeed have zero mean. A controlled process X = X () satisfying (2) on
[0, T corresponding to u is called admissible if  is, in which case we shall refer to (u, X) as
an admissible pair. We note that we allow for U to be a set-valued function of ¢ and X.

Suppose we are given a performance criterion J(u) of the form
T
T = €[ [ 10, X (0, u0) A0 + 9(X (1) (4
0
where g and f are continuous. We shall agree that any u that violates
T
[ [ £ (6 X0, 0 dA0) + 4 (X ()] < o0 (5)
0

is not admissible, where y~ = max(0, —y). An admissible «* maximizing .J is called an opti-
mal control, and if we write X* = X(“*)(t), we call (u*, X*) an optimal pair.
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Denote by Ry the set of measurable functions r : = — R? so that the integral in (6) below
converges. Introduce the Hamiltonian H : [0,T] x R? x U x R? x R**% x R,:

H(t7‘r7v7p7%r(')) = f(t7m7v)+p'b(t7‘r7v)+ Z U]’(t,x,?]) qZﬁZ]

7,7=1
+ [ [ attav, 2+ (-t 0,0,2) +1(2) 21— 0] Ad2) (0
where ¢ = (q1,...,¢,) and «-» denotes the usual Euclidean inner product. Corresponding

to the admissible pair (u, X), the adjoint equation in the unknown adapted processes p(t),
q(t) = (q1(t), ..., q.(t)) and r(¢, z) is the backward stochastic differential equation

Aplt) =~ H (1, X (1), u(0) p0),4(0), (1, ) AAC) + iwf 4z + [ r.2) dr(a, )
- (7a)
p(T) = Vg(X(T)) (7h)

with the convention that 0 H/0z and Vg are allowed to be taken as supergradients if necessary.
With that convention, we have the following sufficient condition for optimality:

THEOREM 1.
Let (u*, X*) be an admissible pair and suppose there exists a solution p = p(t), ¢ = §(t),
7 = 7(t, z) of the corresponding adjoint equation (7), and such that

T n
E| /0 { D @)+ / Pt 2T (2, 2)x(2) A(d2) }dA(D)] < oo (8)

t,5=1

Moreover, suppose that

~

() = sup H (1,0, 3(0). (1), 70, ) (9)

exists and is concave, that g is concave and that almost surely,

~

H(X™(t)) = H(t, X*(t), uw™(1), p(t), 4(1), 7 (L, -)) (10)

on [0,T] (i.e, the supremum is attained, and by u*.) If also we have .J (u) < oo for all admissible
u # u*, then (u*, X*) is an optimal pair.

Proof. To simplify notation in the following, we shall let the «*» superscript signify evaluation
at (u*(t), X*(t7)); elsewhere, we evaluate at (u(t), X (¢7)) while in both cases, we evaluate at
t=,p(t7),4(t”) and #(¢~, ). Let (u, X) be an arbitrary admissible pair and consider J* — .J.
First, note that by concavity of g, we have for fixed y that ¢g(y) — g(z) > Vg(y) - (y — z) for
all z if Vg is a supergradient. Therefore,

g(X*(T)) - g(X(T)) > H(T) - (X*(T) — X(T)) for a.a. w. (11)
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Using (6) and (11), we have:

(f = f)dA() + g(X*(T)) = (X (T)]

= [ = 6 =+ (= X0 0= 0] A Jaa

L A(T) - (X*(T) - X(T))]. (12)

Now we use the product rule for differentiation on the latter term. Recall the differential
equations (2) and (7); by (3) and (8) (and polarization), the integrals with respect to the local
martingales vanish when we take expectation:

T
E05(1) - (0 (1) - X =] [ {5670 - (x =30 (O 4 Y (05 - )i

1,5=1

+/[((ﬁm-(X*—X+n*—n>—ﬁ-(X*—X))(l—m+f-<n*—n>x] A(dz)}dA]
(13)

Insert this into (12) and cancel terms, and we are left with

T
J(u*) = J(u) > E[/ (e — 1) - (x* = x). (%Ij) }da). (14)

Now by a convex analysis argument, optimality follows as in the deterministic case, cf. [13
p. 108]: recall that the «"» denotes the pointwise maximization wrt. the u variable, i.e. H < H
for any fixed . By assumption, that maximization is already performed when evaluating at
«*», so H* = H*. So the integrand is no less than H* — H — (X* — X) - (0H /dz)*. This
is convex in X by the assumed concavity of ﬁ, and is zero at the stationary point X = X*,
Thus the integrand is positive, and therefore J(u*) — .J(u) > 0 for all admissible u, hence (the
admissible) u* is optimal. O

2 Ramifications

2.1 Explicit w-dependence

It is straightforward to generalize the setting allowing for 3 to be predictable, and for explicit
w-dependence in the coefficients b, o;, 7 and X of the differential equation (2) and also in f and
U as long as for fixed z and u, b(-, z,u,-) : [0, T] x Q2 — R? is predictable, and similarly for the
other functions. The author chose not to include this w-dependence in the previous section
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for mainly three reasons; one, we would get an w-dependence in the adjoint equation (7),
which could cause confusion as the term «backward stochastic differential equation» usually
does not refer to this case; second, a theory for such equations is to the author’s knowledge
not developed; third, our use of the Ité6 formula does not & priori admit w-dependence in
the terminal value function g; though there exists a generalization to allow for explicit w-
dependence, see [11, Theorem V.18], this is essentially to a situation where g can be written
as a dA integral, which may be included in f. We note, though, that we may in principle
let T be a stopping time, which may however destroy the applicability. As an example, we
mention the case where T is a Poisson jump independent of everything else; then we have not
much hope for (7b) to hold (although this particular case may easily be reduced to a problem
with 7" nonrandom.)

2.2  Singular controls

In the Brownian case, the term «singular stochastic controly refers to control processes which
are singular to the time Lebesgue measure d¢, which in our setting generalizes to [Z, Z]. We
may adapt to this setting by Lebesgue decomposing A = >°..; A; and performing similar
decompositions in the coefficients and f — and also H. If the index set [ is infinite, we need
arguments to ensure convergence; however, a typical singular stochastic control problem is
posed as to finding a finite number of local time-esque reflections, which may be translated
into finding these finitely many A;’s.

2.3 Terminal-/transversality conditions

The extension to almost sure w-wise terminal-/transversality conditions is straightforward; as
in the deterministic case, transversality ensures (11). Furthermore, we note that we do not
need the almost sure inequality (11), as long as

Elg(X™(T)) — g(X(T))] = E[p(T) - (X™(T) = X(T))] (15)
which is the transversality condition which will grant the inequality in (12). The closing
argument of the below example is a guise of this generalization.

2.4 Uniqueness

Strict concavity of H or g — or strict inequality in (15) — is sufficient to grant that u* is
uniquely optimal, because we have assumed that J(u) < oo except possibly for u*. Strict
concavity may be weakened if X will with positive probability spend positive time on a set
on which strict concavity holds.

2.5 Catching up or overtaking with possibly infinite horizon
Let us modify the setup. Consider for each T’

T
Jr(u) = E[/f(t,X(t),u(t))dA(t)

(i.e. g = 0) and suppose that Jr € R for all T < T, and all admissible u. Now T (finite or
infinite) is our horizon; & priori, we would want to maximize .J, but this criterion may be too
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weak if J7 = +oo, which is now allowed. We can modify (7b) to get sufficient transversality
conditions for catching up or overtaking criteria:

THEOREM 2.

a) «Catching up» type criteria:
Assume that the hypothesis of Theorem 1 holds, except that in place of (7b) we assume
that for all sufficiently small € > 0, p satisfies

¢ > E[p(mn) - (X7(mn) = X(70))] (16)

for a sequence {1,} of stopping times 1, /*I". Then u* sporadically catches up with u in
the sense that
Jo (W) > Jr (u) — e (17)

If (16) holds for all large enough deterministic 7,, and all admissible u, then u* catches
up with any w in the usual sense.

b) «Overtakingy type criteria:
If we modify i) above by putting e = 0 in (16), then u* will (sporadically) overtake u
in the sense analogous to (17). If also (16) holds with strict inequality for e = 0 for any
admissible u, we have the uniqueness property that u* will strictly overtake any admissible
u # u* in the sense analogous to (17).

Proof. For each 7 = 7, we get a modified version of (12):

Jo(w) = Jo(w) = E[ [ (f7 = f)dA()

n

{H =) =50 =)= Y (7] = o)) - 0B

t,5=1

g

O\p\ O\ﬂ

[ [ = G = (X = X)) 0] M) faa

() - (X*(r) - X(r))] e (18)

To apply similar arguments as in the proof of Theorem 1, we merely need to note that the It
formula admits 7 random. O

3 An application to optimal portfolio selection

It is typically not easy to solve backward stochastic differential equations driven by a general
semimartingale, but in special cases we may find a solution more or less by guess. We shall
give an example with a portfolio choice problem in finance. Assume we have a market with
two investment opportunities, a safe «money market» Sy and a risky «stocky» S driven by a
real-valued martingale Z. They are assumed to evolve according to the geometric processes

dSo(t) = rSo(t) dA(#)
dSy(t) = S (1) (ndA(t) + o dZ(1)).
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where A = [7Z, 7] and where o > 0, u and r are constants. By discounting, we can and will
assume that » = 0. From these assets, we form a self-financing portfolio, so that wealth will
follow

dX (t) = u(t) X (1) (ndA(t) + o dZ(1)) (19)

where our control u(t) is the fraction of the wealth invested in the stock at time ¢. We assume
that the agent wants to maximize expected terminal utility of constant relative risk aversion
type, i.e. that f = 0 while ¢/(z) = 27~! for some constant v < 1. The Hamiltonian H then
takes the form

(P + oq)uX.

This is linear in v, so in order to have a finite solution we try ¢ = —pp/o and get the following

backward equation

dp(t) = —P(t)gdZ, p(T) = (X(T))'y—l

Solving for p(t) in terms of the initial value p(0), we get the Doleans exponential
u 2
p(t) = p(0) expl-L2(0) — L(4) a0,

Inspired by the geometric Brownian case, we try u(f) constant, so that X is a geometric
process and

X(T) = X(0) exp{uc Z(T) + (up — tu*a?)A(T)}.
Let us match terminal values:

Inp(0) = £2(7) = H(E)A(T) = (v = 1) [In X (0) + uo Z(T) + (upe — Sus?) A(T)]

ERY

so our candidate for the optimal strategy will be determined by the Z(T') coefficient:

w

u(t) = ——— 20

)= st (20)

i.e. just as in the case where 7 is standard Brownian motion. But then we face the following
problem: this u value will yield

Inp(0) = [(v= 1) In X (0) = $—=—(5)2]A(1)
— 7o
which is not Fg-measurable unless the particular value A(T) is non-random; in that case,
however, the generalization from the Brownian case (more or less) vanishes, as a continuous
martingale with bracket A (essentially) is a Brownian motion living on A (cf. e.g. [9, Section
3.4.B]), and the problem is no more than a time change of the Brownian case. However, we

note that the strategy (20) does not depend on the value of A(T). Therefore, we have the
following:

THEOREM 3.

Let for each each t G; be generated by &, and the single random variable A(T). Suppose that
with respect to the filtration {G;} we still have Z a martingale with bracket [Z, 7] = A. Then
the above example has optimal control given by (20).

Proof. The problem is solved under Gy, with the optimal control being F;-adapted. O

As we now allow for A(T) nondeterministic, this is a generalization of the Brownian setup.
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