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1
Introduction

This thesis deals with the numerical approximation of stochastic differential equations
driven by square integrable martingales, and which take values in an appropriate Hilbert
space. We also develop some applications to mathematical finance models.

This introduction contains a brief exposition of some methods for numerical approx-
imation of ordinary and partial differential equations, followed by an introduction to
numerical methods for stochastic differential equations. The approximation theories for
these two fields combine, together with the theory of Hilbert–space valued stochastic pro-
cesses, to produce the current ways of estimating solutions to stochastic partial differential
equations. In order to provide a self contained summary of the topic in hand, we also
include a presentation of Hilbert–space valued stochastic differential equations and their
integration theory.

In this work we combined Galerkin approximations with stochastic partial differential
equations driven by square–integrable martingales. Numerical methods and approxima-
tion schemes for Hilbert–space valued stochastic differential equations have been studied,
among others, in [2, 31, 32, 38, 42, 49, 56, 78, 105, 115] and the references therein. This
list does not claim to be exhaustive. Most of these articles consider space–time white
noise as the driving process.

Finally we give a short overview of the papers contained in this thesis, indicating the
main results.

1.1 Numerical approximation of differential equations

In the theory of ordinary differential equations (ODE’s) and partial differential equations
(PDE’s) different techniques to approximate equations have been studied thoroughly, were
emphasis is given to stability, consistency and convergence.

A discretization method transforms finding a solution to a differential equation into
a finite dimensional problem. Arguably, the most popular numerical methods for the
approximation of the solution of a PDE are: finite difference methods (FDM’s), finite
element methods (FEM’s) and spectral methods. FDM’s use fixed, equidistant grid points
to convert differential operators into discrete ones using neighboring points. They evaluate
candidates for a solution at these points. FDM’s can be subdivided in explicit and implicit
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2 CHAPTER 1. INTRODUCTION

schemes. The former are in general less stable, but simpler to implement. Among the
implicit ones, Crank–Nicolson schemes are known to be unconditionally stable. As a
drawback, at every step in time a system of equations has to be solved numerically. Due
to the fact that most FDM’s are defined over an equidistant mesh, they may not be
suitable for some problems. FEM’s and spectral methods approximate the candidate
functions in terms of linear combinations of linearly independent test (or basis) functions.
This approach does not require equidistant discretizations. Moreover these methods are
known to perform much better in terms of stability and convergence, especially if the
solution lacks smoothness. However, implementation is a more daunting task than in
the case of FDM’s. As an example, the backward difference for the first order derivative
of some suitable function u over the discretization a = x0 < x1 < . . . < xN = b with
xi = iΔx and [a, b] ⊂ R reads (∂u

∂x

)
i
≈ ui − ui−1

Δx
.

In contrast, to use a FEM for the same example one chooses a grid (not necessary equidis-
tant) and a family of finite element spaces. Each finite element space has a basis of piece-
wise polynomial shape functions. The FEM on an equidistant grid with piecewise linear
shape functions coincides with the FDM. In this sense FEM’s represent a generalization
of FDM’s.

The literature on numerical methods for PDE’s is vast. The FDM was introduced by
Thom (see [108]) in the 1920’s as the method of square to solve nonlinear hydrodynamic
equations. Soon after, the fundamental work of Courant, Friedrichs and Lewy (1928)
([35]) on the solution of physical problems with finite differences appeared. It had a great
impact on the further development of numerical methods and their stability analysis for
the approximation of partial differential equations. FDM’s for elliptic problems were first
studied in the 1930 work of Gerschgorin ([53]). During the 1950’s the work on time
dependent problems picked up and grew rapidly with the introduction of computers.
The first to study parabolic problems was, to the author’s knowledge, John (1952) in [71].
Furthermore the work of Friedrichs, Lax and Wendroff should be mentioned. For a general
introduction to finite differences we refer the reader to [45, 96].

The origins of the FEM can be traced back to the 1956 paper of Turner, Clough, Martin
and Topp ([111]). However, the variational formulation of a boundary value problem
originated much earlier. The work of Lord Raleigh ([95]), Ritz ([98]) and Galerkin ([50])
should be mentioned here. In the 1970’s FEM’s were applied to the approximation of
the solution of partial differential equations. See, among others, the works of Fujita &
Mizutani ([47]), Ushijima ([112]) and Zlámal ([120], [119],...) on parabolic PDE’s, and
those of Ciarlet ([33],...) and Nedoma ([84]). For an overview on FEM we refer the reader
to [34, 23] or the recent works [64, 109].

For time–dependent, initial–boundary value problems, approximation can be done in-
dependently for space and time. For the FDM the same technique (probably with different
accuracies) is used in both time and space; whereas for a FEM the equation is stated in
its weak form, which is then discretized in a finite dimensional space. For the approxi-
mation in time either a FEM or a finite difference method can be introduced. Different
stability results can be reached with varying methods, an Euler scheme is conditionally
stable while a Crank–Nicolson scheme performs with unconditional stability. However,
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only for certain PDE’s the best possible order of convergence can be achieved with a
FEM. Finite element methods for most parabolic equations converge with optimal rate
due to the smoothing effect of the second order differential operator. This is the case even
if the initial data is not smooth or if noise is added at certain points in time. For first
order hyperbolic equations the situation is quite different. Optimal convergence with a
Galerkin approximation is only attainable if the solution is smooth enough. To address
this issue, an additional diffusion term is added in the discretization of the variational
form, which leads to Petrov–Galerkin methods.

The list of methods provided above is not comprehensive. However, the methods
mentioned are among the most common. Collocation methods should not go unmentioned,
as well as spectral methods. In the latter one uses globally defined functions rather than
piecewise polynomials as approximating functions.

1.2 Numerical approximation of stochastic differen-

tial equations

Stochastic differential equations play a central role in financial mathematics. The bench-
mark model for stock prices is a geometric Brownian motion and numerous models for
fixed income markets are based on Ornstein–Uhlenbeck processes. The quest for stable
numerical methods arises somewhat naturally.

The approximation of stochastic differential equations (SDE’s) is a fairly well studied
topic (see [60, 65]). One should mention here especially the contributions of Talay ([93,
86, 106],...) and Platen ([74, 89],...). We give a brief introduction to approximation of
stochastic differential equations, where we restrict ourselves to the Brownian case. Fur
further reading on the topic, we refer to [66, 74, 24, 78] and the references therein.

The Euler-Maruyama approximation is one of the simpler discetization schemes for an
Itô–Process. Consider the real–valued process X(t) with t ∈ [0, T ] satisfying the stochastic
differential equation

dX(t) = a(X(t))dt + b(X(t))dW (t)

or in integral form

X(t) = X(0) +

∫ t

0

a(X(s))ds +

∫ t

0

b(X(s))dW (s). (1.2.1)

We introduce the (equidistant) time discretization via 0 = t0 < t1 < . . . < tn = T , where
k denotes the length of each interval [ti, ti+1] for i = 0, . . . , n − 1. The Euler-Maruyama
scheme then reads

Xn+1 = Xn + a(Xn)k + b(Xn)ΔW

where ΔW = W (tn+1) − W (tn) denotes the Brownian increment on [tn, tn+1].
It is shown in [74] that this scheme has convergence order of 0.5, in other words of

√
k.

The Euler-Maruyama scheme gives adequate numerical results if the drift and diffusion
coefficients are nearly constant, or if the noise is additive and a and b are smooth enough.
In general, however, the Euler–Maruyama scheme does not produce satisfactory results
and higher order schemes, as the Milstein scheme, should be used.
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The Milstein scheme has convergence order of 1 (or k). For Equation (1.2.1) it reads

X(t) = X(0) +

∫ t

0

a
(
X(0) +

∫ s

0

a(X(r))dr +

∫ s

0

b(X(r))dW (r))
)
ds

+

∫ t

0

b
(
X(0) +

∫ s

0

a(X(r))dr +

∫ s

0

b(X(r))dW (r)
)
dW (s)

= X(0) + a(X(0))

∫ t

0

ds + b(X(0))

∫ t

0

ds

+

∫ t

0

a
(∫ s

0

a(X(r))dr +

∫ s

0

b(X(r))dW (r)
)
ds

+

∫ t

0

b
(∫ s

0

a(X(r))dr +

∫ s

0

b(X(r))dW (r)
)
dW (s).

We further approximate X by a recursive procedure à la Picard–Lindelöf. The approxi-
mation of the dynamics above is given by

Xn+1 = Xn + a(Xn)k + b(Xn)k + a(X̂n)k + b(X̂n)ΔW

with
X̂n = a(Xn)k + b(Xn)ΔW.

Higher order schemes can be derived in the same manner.

1.3 Stochastic Integration with respect to Hilbert–

space valued processes

There are various approaches to the theory of stochastic partial differential equations
(SPDE) and their analysis. Some of them are the mild solution approach (see [37, 88]),
the variational approach (see [85, 77, 100, 57, 58]) and the martingale measure approach
(see [114]). We mainly use the first approach, which is equivalent to the semigroup
approach in PDE theory. We define SPDE’s in integral form, which requires integration
theory for Hilbert–space valued Itô integrals. Below we give an introduction to Hilbert–
space valued Lévy processes, since they play a central role in many applications, and they
are not as broadly known as their Brownian counterpart. However, for more generality,
we discuss the integration theory under the broader scope of Hilbert–space valued square
integrable martingales. Most of this section is based on [88]. For a further introduction
to Hilbert–space valued stochastic processes we refer the reader to [37, 30, 92, 28]. From
this point on (U, (·, ·)U) is a Hilbert space with corresponding Borel sigma algebra U , and
(Ω,F , (Ft),P) a filtered probability space satisfying the usual conditions.

Definition 1.3.1. A stochastic process (L = L(t), t ≥ 0) with values in U is called
Lévy-Process if the following conditions are satisfied

i The (U,U)-valued random variables L(t) − L(s) and L(v) − L(u) for all 0 ≤ u <
v < s < t < +∞ are independent
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ii L has stationary increments, i.e. the law L(L(t)−L(s)) of L(t)−L(s) depends only
on t − s for t > s

iii L(0) = 0

iv L is stochastically continuous, i.e. for every ε > 0 and 0 ≤ s < t: lims→t P (‖L(t) −
L(s)‖U > ε) = 0.

If we denote by μt the law of L(t), the family {μt} of measures form a convolution
semigroup of measures. Note that every Lévy-Process is also a Markov-Process.

Theorem 1.3.2. Every Lévy process has a càdlàg modification.

Definition 1.3.3. Let L(t−) := lims↑t L(s), then for t ≥ 0 ΔL(t) := L(t) − L(t−) is
called the process of the jumps of L.

Lévy processes can be built from Poisson and Wiener processes, so we mention some
basic properties of Poisson processes below. For a further discussion of Wiener processes
in Hilbert spaces we refer the reader to [37].

For a ∈ [0, +∞), P(a) denotes the Poisson distribution with parameter a, that is

P(a)(k) = (ak

k!
) exp(−a) for k = 0, 1, ....

Definition 1.3.4. A Poisson process with intensity a is a Lévy process π = (π(t), t ≥ 0)
such that π(t) has the Poisson distribution P(at), for every t ≥ 0.

Remark. The value π(t) is the number of events that have occurred before or at time t.

A Poisson process can be expressed as

π(t) =

{
0 if t < Z1

k if t ∈ [Z1 + · · · + Zk, Z1 + · · · + Zk+1),

where {Zn} is a sequence of independent, exponentially distributed random variables
with parameter a. Vice versa, for a given Poisson process, there exists a sequence {Zn}
of independent, exponentially distributed random variables such that the formula above
holds. It can be shown that if π is a Poisson process then it has only jump size 1 and
conversely any Z+–valued Lévy process with only jump size 1 is a Poisson process.

Since (see Theorem 1.3.9) all Lévy processes are built out of a deterministic part,
a Wiener process, a compound Poisson process and a compensated compound Poisson
process, we require the definition of a compound Poisson process in a Hilbert space.

Definition 1.3.5. A compound Poisson process with Lévy measure (jump intensity mea-
sure) ν is a càdlàg Lévy process L satisfying

P (L(t) ∈ Γ) = e−ν(U)t

∞∑
k=0

tk

k!
ν∗k(Γ), ∀t ≥ 0.

Here Γ ∈ B(U) and ν is a finite measure on the Hilbert space U , such that ν(0) = 0
(ν0 = δ0).
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For applications it is of considerable interest to construct a compound Poisson process,
when ν is given.

Theorem 1.3.6. Let ν be a finite measure with support on U \{0} and a = ν(U). If then
Z1, Z2, . . . are U–valued, iid random variables with law equal to a−1ν and (Π(t), t ≥ 0) is
a Poisson process with intensity a independent of Z1, Z2, . . . . Then

L(t) =

Π(t)∑
j=1

Zj (1.3.1)

is a compound Poisson process with jump measure ν.

The converse of the theorem above is true as well. Thus, for a given compound Poisson
process we can always find a sequence of random variables {Zi} and a Poisson process
Π as to express L as in equation (1.3.1). This yields a method to simulate a compound
poisson process.

Definition 1.3.7. The Poisson random measure corresponding to L is

π([0, t], Γ) := #{s ≤ t : ΔL(s) ∈ Γ} Γ ∈ B(U \ {0}),

and the compensated Poisson random measure is

π̂([0, t], Γ) := π([0, t], Γ) − tν(Γ), t ≥ 0, Γ ∈ B(U \ {0}).

One can show that (π([0, t], Γ), t ≥ 0) is a Poisson process with intensity ν(Γ) and that
the process (π̂([0, t], Γ), t ≥ 0) is a martingale with respect to the filtration generated by
π([0, s], Γ) for 0 ≤ s < t and Γ ∈ B(U \ {0}).

Proposition 1.3.8. Let L be a compound Poisson process with jump intensity measure
ν. If L is integrable, i.e.

∫
U
|y|Uν(dy) < ∞, its mean is given by

EL(t) = t

∫
U

yν(dy).

The compensated compound Poisson process L̂(t) := L(t) − EL(t), t ≥ 0, is square inte-
grable if

∫
U
|y|2Uν(dy) < ∞, and then the variance is given by

E|L̂(t)|2U = t

∫
U

|y|2Uν(dy),

and for all x, x̃ ∈ U

E(L̂(t), x)U(L̂(t), x̃)U = t

∫
U

(x, y)U(x̃, y)Uν(dy).
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With the above results in hand we can derive the Lévy–Khinchin–Formula, which
provides some insight on the construction of Lévy processes.

Assume L is a càdlàg Lévy process on U . We define the Lévy process with jump size
1, which is as stated before also a Poisson process, as

πA(t) :=
∑
s≤t

χA(ΔL(s)),

here t ≥ 0 and A is a Borel set separated from 0. The expectation of this process is

EπA(t) = t EπA(1) = tν(A)

where ν is a finite measure also separated from 0. We define the Lévy process LA as
follows:

LA(t) :=
∑
s≤t

χA(ΔL(s))ΔL(s).

Theorem 1.3.9. If ν is a jump measure corresponding to a Lévy process then∫
U

(|y|2U ∧ 1)ν(dy) < ∞. (1.3.2)

Every Lévy process has the following representation:

L(t) = at + W (t) +
∞∑

k=1

(LAk
(t) − t

∫
Ak

yν(dy)) + LA0(t) (1.3.3)

where A0 := {x : |x|U ≥ r0}, Ak := {x : rk ≤ |x|U < rk−1} and rk is a sequence
decreasing to 0. All processes here are independent and the series converges uniformly on
each bounded subinterval of [0,∞) P − a.s..

We can write the decomposition in a slightly different form:

L(t) = at + W (t) +
∞∑

n=1

Ln(t) + L0(t), t ≥ 0, (1.3.4)

here

Ln(t) := LAn(t) − t

∫
An

yν(dy)

are independent compensated compound Poisson processes, each having jump intensity
measure χ{rn+1≤|y|U<rn}(y)ν(dy). L0 is a compound Poisson process with jump intensity
measure χ{|y|U≥r0}(y)ν(dy). From the previous theorem we can directly derive the Lévy-
Khinchin formula:

Theorem 1.3.10. Let L+
1 (U) be the space of all nuclear, positive semi-definite operators

on U , and ν a non-negative measure concentrated on U \ {0} satisfying the integrability
condition in the decomposition. If a ∈ U and Q ∈ L+

1 (U), then there is a convolution
semigroup of measures {μt} such that∫

u

ei(x,y)U μt(dy) = e−tψ(x), (1.3.5)
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where

ψ(x) = −i(a, x)U +
1

2
(Qx, x)U +

∫
U

(1 − ei(x,y)U + χ{|y|U<1}(y)i(x, y)U)ν(dy). (1.3.6)

The reverse implication is true as well.

Definition 1.3.11. The measure ν above is called the Lévy measure or the jump intensity
measure of L or equivalent {μt}.

Suppose that L is a centered, integrable Lévy process, then L is a martingale with
respect to Ft. If we compute the covariance of a square integrable Lévy process, we get:

There exists a symmetric, non-negative and nuclear operator Q, such that, for all
t, s ≥ 0 and x, y ∈ U , we get for the covariance

E(L(t), x)U(L(s), y)U = t ∧ s(Qx, y)U ,

and if we assume 0 ≤ s < t

E(L(t), x)U(L(s), y)U = (Q(s)x, y)U .

As for the variance of L(t), we have

E‖L(t)‖2
U = t Tr(Q).

Since Q does not change with time it can be seen as the spatial covariance of L.

Theorem 1.3.12. A Lévy process on a Hilbert space is square integrable if and only if∫
U

|y|2Uν(dy) < ∞, (1.3.7)

additionally L admits the Lévy–Khinchin–Representation. If Q0 and Q1 are respectively
the covariance operators of the Wiener part and of the Jump part, then the covariance of
L is given by Q0 + Q1.

Remark. If L is a centered, square integrable Lévy-process with covariance operator Q,
then the processes |L(t)|2U − t Tr(Q) and L(t)⊗L(t)− tQ are U -valued and L1(U)-valued
martingales.

We can generalize these results to square integrable martingales. To this end we denote
the space of all càdlàg square integrable martingales on U with respect to Ft by M2(U).

Definition 1.3.13. Let M, N ∈ M2(U), we define 〈M, N〉 as the unique predictable
process for which

(Mt, Nt)U − 〈M, N〉t (1.3.8)

is a martingale.

By the Doob-Meyer Decomposition the angle bracket process always exists. Expres-
sion (1.3.8) is the generalization of |L(t)|2U − t Tr(Q) for the case of Lévy processes. We
introduce the operator angle bracket process subsequently to the following Lemma.
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Lemma 1.3.14. If M, N ∈ M2(U), then there exists a predictable process (q(s), s ≥ 0)
such that

〈M, N〉t =

∫ t

0

q(s)d(〈M, M〉s + 〈N, N〉s).

Theorem 1.3.15. Let M ∈ M2(U), then there exists a unique, right continuous process
(〈〈M, M〉〉t, t ≥ 0) taking values in L+

1 (U) such that 〈〈M, M〉〉0 = 0 and the process
(M(t) ⊗ M(t) − 〈〈M, M〉〉t, t ≥ 0) is an L1(U)–valued martingale. Moreover, there exists
a predictable L+

1 (U)-valued process (Qt, t ≥ 0) with

〈〈M, M〉〉t =

∫ t

0

Qsd〈M, M〉s.

The process Q is called the martingale covariance of M .

Consider the following class of martingales

C := {M ∈ M2(U) : ∃Q ∈ L+
1 such that ∀t ≥ s ≥ 0, 〈〈M, M〉〉t−〈〈M, M〉〉s ≤ (t−s)Q}.

Since Q ∈ L+
1 (U) there exists an orthonormal basis {en} of U consisting of eigenvectors of

Q. This yields the representation Qen = γnen, where γn is the eigenvalue corresponding
to en. The square root of Q is defined as

Q
1
2 x :=

∑
n

(x, en)Uγ
1
2
n en, x ∈ U.

Q− 1
2 is the pseudo inverse to Q

1
2 . Let us denote by (H, (·, ·)H) the Hilbert space defined by

H = Q
1
2 (U) endowed with the inner product (x, y)H = (Q− 1

2 x, Q− 1
2 y)U where x, y ∈ H.

Let LHS(H, H) refer to the space of all Hilbert-Schmidt operators from H to H.
We denote by Ŝ(U,H) the class of all simple processes with values in L(U,H). For
ϕ ∈ Ŝ(U,H) we define for all t ≥ 0

It(ϕ) :=
m−1∑
j=0

χBj
ϕj(M(tj+1 ∧ t) − M(tj ∧ t)).

For nonnegative numbers ti < ti+1 for i = 1, . . . , m − 1 and Bi ∈ Fti . We can prove for
simple processes the Itô–Isometry

E‖It(ϕ)‖2
H = E

∫ t

0

‖ϕ(s)Q
1/2
s ‖2

LHS(U,H)d〈M, M〉s
=: ‖ϕ‖2

t .

The completion of Ŝ with respect to ‖ · ‖T is denoted by L2
T (H) for T < ∞. We can

extend It to a continuous linear operator from (L2
T (H), ‖ · ‖T ) to L2(Ω.F ,P; H) and for

ϕ ∈ L2
T (H) E‖IT (ϕ)‖2

H = ‖ϕ‖2
T . Furthermore, (It(ϕ), t ∈ [0, T ]) is a square integrable

and mean–square continuous H–valued martingale.
If M ∈ C and let F[0,T ] denotes the σ–field of predictable sets in Ω × [0, T ], then we

have the following Proposition



10 CHAPTER 1. INTRODUCTION

Proposition 1.3.16. Let L2
H,T (H) = L2(Ω × [0, T ],F[0,T ],Pdt; LHS(H, H)) ⊆ L2

T be the
space of integrands, then for every X ∈ L2

H,T (H)

E|
∫ t

0

X(s) dM(s)|2H ≤ E

∫ t

0

‖X(s)‖2
LHS(H,H) ds. (1.3.9)

Integration with respect to a general Lévy processes L(t) = mt + M(t) + P (t) where
P is a (not necessarily square integrable) compound Poisson process is also possible. For
further details we refer to [88], Chapter 8.6.2.

1.4 An overview

In this section we give an overview of the papers that constitute the main body of this
work. Even though the first and fourth papers could have been grouped together, we
opted for a chronologically consistent ordering. The reasoning for this being that we
believe this provides a clearer view of how one paper motivated the subsequent one. We
conclude this section with a (non–comprehensive) list of further questions.

1.4.1 Hedging of spatial temperature risk with market-traded
futures

The aim of this paper is to define a synthetic temperature futures, i.e. a temperature
derivative composed of market–traded futures. This is done to provide (temperature) risk–
hedging tools for places where a market product is not readily available. The structure
of a synthetic temperature futures is given in Proposition 2.3.1. Here, a linear system
containing as data the underlying temperatures that generate currently traded assets is
solved. The solution to this system provides the best hedge in the mean–square sense. In
the Appendix we explicitly calculate an example using some popular temperature indices.

The second contribution of this paper is an algorithm that provides a fast way to
simulate temperature over a domain given temperature data on some fixed measuring
stations. The approximation of the driving random field cannot be done via finite differ-
ence approximation, since the problem does not allow for too many nodal points of the
approximation. Instead, a spline method is appropriate here.

1.4.2 A Finite Element Method for martingale–driven Stochas-
tic Partial Differential Equations

The main motivation behind this paper was the simulation of stochastic heat equations.
This was of interest to us since temperature is better described by a diffusion process.
In order to have a more general result we directly focus on stochastic partial differential
equations driven by square–integrable martingales. To approximate first parabolic and
then first order hyperbolic equations we use a Galerkin approximation in space and a
backward Euler approximation in time. We derive error estimates in mean–square sense
for: the semidiscrete parabolic case (Theorem 3.3.2); the corresponding fully discrete
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case (Theorem 3.3.4); the semidiscrete first order hyperbolic case (Theorem 3.4.1); the
corresponding fully discrete case (Theorem 3.4.2). It should be noted that while the
convergence results for the parabolic case are optimal (in the space approximation), such
is not the case in the hyperbolic setting.

1.4.3 Almost sure convergence of a Galerkin–Milstein Approx-
imation for Stochastic Partial Differential Equations

In a certain sense this paper extends the results of Section 3. We use a Galerkin approach
in space and a Crank–Nicolson Milstein scheme in time to approximate the infinite di-
mensional Zakai equation. The latter is related to the parabolic case mentioned above.
We prove almost sure convergence of the semidiscrete approximation in Theorem 4.4.1
and of the fully discrete approximation in Theorem 4.5.1. Mean–square convergence is
then a direct corollary. The Crank–Nicolson Milstein scheme converges faster than the
previously used Euler–Maruyama scheme, but of course it carries heavier computational
weight.

1.4.4 Forward dynamics in energy markets – an infinite dimen-
sional framework

In this paper we present an infinite dimensional model for forwards in energy markets.
We work within the Heath–Jarrow–Morton paradigm, in similar fashion to what is done
in interest rate theory. We define the notion of a flow forward, which captures the fact
that electricity is to be provided over a future time interval. Two infinite dimensional
approaches are presented. The first one derives the price of a flow forward from the
forward price; whereas the second one deals with flow forwards directly. For the no–
arbitrage condition of the direct approach we give a novel characterization of the structure
of the admissible forward prices.

As is the case for the fixed income theory, we deal with Hilbert–space valued first order
hyperbolic equations. Making use of the results contained in Section 3, we simulate as
an example a standard model for electricity forwards. To this end we employ a Petrov–
Galerkin method and consider a correlated NIG–Field as the source of randomness.

1.4.5 Notes on numerical aspects for Finite Element Methods
for Stochastic Partial Differential Equations

We were motivated to write this set of notes by the obstacles we had to overcome when
implementing the Finite Element Methods described above. For implementations one has
to deal with finite dimensional realizations of the driving noise. We use the eigenfunctions
of the covariance operator as a basis for the Hilbert space where the noise is defined. Since
the sequence of the corresponding eigenvalues decreases to 0, it is natural to truncate
the sequence of eigenfunctions. We provide a result on the convergence of the finite
dimensional realization of the infinite dimensional random field in Lemma 6.2.1.
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To showcase the methodology, we provide simulations on both parabolic and first order
hyperbolic problems. We give explicit details of the Finite Element Method, including
the shape functions.

1.4.6 Further questions

As it seems to always be the case with scientific research, more problems surfaced during
this work than were solved. We mention a few here.

The approach we chose via pathwise approximations is not the only possible choice.
There is an error we make when calculating the mean and the variance from simulations
by ”approximating” the probability space. One could think of methods that directly
approximate the law of the solution to the SPDE. Depending on the number of simulations
and the size of the problem computational time grows quite rapidly.

Another question is the approximation of the covariance operator. In our simulations
we approximate the eigenvalues and eigenfunctions of the covariance operator by a finite
dimensional matrix. Investigations on this error are not included here. One could think
of more sophisticated ways to truncate the sequence of eigenvalues and eigenfunctions.
This should be done for every kernel function separately.

In the second paper we calculate our estimates for functions in Ḣr, this could be
generalized to a larger class of functions, since there are examples where the solution to
the SPDE is not in Ḣr. It should be noted that one derives the same convergence results.

As briefly mentioned in the second paper, the Galerkin approximations might not
result in stable simulations. A further investigations in other methods for first–order
hyperbolic stochastic differential equations would be interesting.

A very challenging question is the solution of non–linear stochastic partial differential
equations. Solution theory is already very limited and in general non-existent . Numerical
approximations could provide, as they do in PDE theory, some insight on the behavior of
solutions.
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