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Overview
In this Supplementary Material we prove all the math-

ematical results from the main body of the paper, whose
proofs were left out. For the convenience of the reader,
we explain some concepts from applied algebraic geometry
that are helpful to understand the Supplementary Material
in Appendix A. Results that also appear in the main body of
the paper are restated and are given the same number. Ad-
ditional results not stated in the main body are numbered
independently.

In Appendix B, we prove the statements of Section 2.
We prove our results on compatibility for complete graphs
in Appendix C. In Appendix D we prove the cycle theorem.

A. Algebraic Geometry Preliminaries
For the proofs in Appendix C, it is helpful to understand

saturation and elimination of ideals. We refer the reader
to [2] for a detailed study of these topics. Consider a field
k and its polynomial ring k[x] = k[x1, . . . , xm]; the set of
all polynomials with coefficients in k. That k[x] is a ring
means that addition and multiplication of polynomials sat-
isfy a certain set of axioms that we don’t list here. An ideal
I of a ring R is an additive subgroup that is closed under
multiplication of elements in R.

Let f1, . . . , fs ∈ k[x] be polynomials. They generate an
ideal of k[x] as follows:

⟨f1, . . . , fs⟩ :=
{∑

gifi : gi ∈ k[x]
}
⊆ k[x]. (1)

From the geometric point of view, an ideal in a polynomial
ring defines a variety V as the zero set of all polynomials in
the ideal. In other words,

V(I) :=
{
x ∈ km : f(x) = 0 ∀f ∈ I

}
. (2)

The Zariski closure of a set U ⊆ km is the smallest variety
X that contains U . We write U for the Zariski closure of U .

The goal of saturation is to remove unwanted compo-
nents from a variety. Let I, J be ideals. The saturation of I

with respect to J is

I : J∞ :=
{
f ∈ k[x] :∀g ∈ J, ∃N ∈ N

such that fgN ∈ I
}
.

(3)

Theorem A.1 ([2, p. 203]). Let V(J),V(I) be two varieties
over any field k. Then

V(I) \ V(J) ⊆ V(I : J∞). (4)

The elimination of variables x1, . . . , xl from an ideal
I ⊆ k[x] is the intersection

I ∩ k[xl+1, . . . , xm]. (5)

Given (x1, . . . , xn) ∈ V(I), we have that (xl+1, . . . , xn) ∈
V(I ∩k[xl+1, . . . , xm]), because any f in Equation (5) also
lies in I . In this way, elimination of variables gives us con-
ditions on the projection of V(I) away from the first l coor-
dinates.

In Appendix C, we use the symbolic programming lan-
guage Macaulay2 [4] to symbolically saturate ideals and
eliminate variables in the ring Q[x]. In our study, all poly-
nomials have rational coefficients, i.e. are elements of Q[x].
However, our varieties lie in real space. For saturation and
elimination, it may matter in which ring the operations are
performed in. In Macaulay2 all such operations happen
inside Q[x], and we therefore prove the following lemma
for clarity.

Lemma A.2. Let I, J be ideals in R[x] generated by el-
ements of Q[x]. Write IQ, JQ ⊆ Q[x] for the ideals de-
fined as the intersections I ∩ Q[x], J ∩ Q[x], respectively.
If y ∈ Rm lies in V(I) \ V(J), then f(y) = 0 for every f in
the saturation IQ : J∞

Q performed inside the ring Q[x].

Hence saturation in Q[x] tell us something also for the
real numbers. The statement and proof works the same if
R[x] is replaced by C[x].



Proof. By Theorem A.1, y ∈ V(I : J∞). It suffices to
show that IQ : J∞

Q ⊆ I : J∞, since then we have V(I :
J∞) ⊆ V(IQ : J∞

Q ) over the real numbers. Let f ∈ IQ :
J∞
Q . Then f ∈ Q[x] and for every g ∈ JQ, there is an
N such that fgN ∈ IQ. Let g1, . . . , gk ∈ Q[x] generate
I and IQ. Let Ni denote an integer such that fgNi

i ∈ IQ.
Now take any g ∈ J . We can write g =

∑k
i=1 higi for

some hi ∈ R[x]. There is an integer N depending on k and
Ni such that each term of gN is divisible by some gNi

i and
fgN ∈ IQ. For such N , we can write gN =

∑k
i=1 h

′
ig

Ni
i

for some h′i ∈ R[x]. Then, since fgNi
i ∈ IQ, we must have

that fgN ∈ I . This shows that inclusion IQ : J∞
Q ⊆ I : J∞

and we are done.

In the main body of the text, the term rational map was
used, which we now define. A variety V is called irreducible
if it cannot be written as a union of two proper varieties,
meaning that for two subvarieties X,Y of V , the equality
V = X ∪ Y implies V = X or V = Y . A rational map f
between projective varieties X and Y , with X irreducible,
is defined on a Zariski open set of X , which is a set that can
be writtenX \Y for a proper subvariety Y ⊆ X . A rational
map between X and Y is written

f : X 99K Y. (6)

B. The Fundamental Action
Proposition 2.2. Let

{
F ij

}
and

{
Gij

}
be two sets of com-

patible fundamental matrices. They are equivalent under
fundamental action if and only if they have solutions whose
camera centers are equivalent under PGL4.

For the proof we need the following lemma:

Lemma B.1 ([5, Result 22.1]). Let P and P ′ be two camera
matrices with the same center. Then there existsH ∈ PGL3

such that P ′ = HP .

Proof of Proposition 2.2.
⇒) Let Gij = HT

i F
ijHj . If P1, . . . , Pn is a solution to{

F ij
}

, then by Proposition 2.1, H−1
1 P1, . . . ,H

−1
n Pn is a

solution toGij , which have the same centers as P1, . . . , Pn.
⇐) Let P1, . . . , Pn be a solution to

{
F ij

}
with centers

ci and P ′
1, . . . , P

′
n a solution to

{
Gij

}
with centers c′i such

that c′i = H−1ci for some H ∈ PGL4. By Lemma B.1,
there are Hi ∈ PGL3 such that P ′

i = HiPiH , since P ′
i and

PiH have the same centerH−1ci. Then by Proposition 2.1,{
F ij

}
and

{
Gij

}
are equivalent under fundamental action.

Lemma 2.5. Let
{
F ij

}
be set of compatible fundamental

matrices that include F si, F ij and F jt. We have esijt = 0
if and only if the centers cs, ci, cj and ct of any solution are
coplanar.

The back-projected line of an image point x for a camera
P is the line in P3 of all points that are projected by P to x.
This line contains the center of P .

Proof. Let P1, . . . , Pn be a solution to
{
F ij

}
. Let Li,s be

the back-projected line of esi and Lj,t the back-projected
line of etj . Then esiF

ijetj = 0 means precisely that the back-
projected linesLi,s andLj,t meet in a point. Therefore, Li,s

and Lj,t together span a plane unless they are the same line.
In either case, all centers lie in this span, since Li,s contains
ci and cs, and Lj,t contains cj and ct. The other direction
follows similarly.

C. Compatibility for Complete Graphs

C.1. K3

Proposition 3.4. Let F 12, F 13, F 23 be fundamental ma-
trices. There exist collinear cameras P1, P2, P3 such that
F ij = ψ(Pi, Pj) if and only if

e21 = e31, e12 = e32, e13 = e23, (7)

and

(F 21)T [e21]×F
13 = F 23. (8)

Remark C.1. When we in the proofs below write “it can be
verified that” or “it can be checked that” in relation to the
shape of fundamental matrices, we have checked this fact in
Macaulay2.

Proof. Recall that the epipole eij equals Pj(ker(Pi)). It fol-
lows that if a solution to F 12, F 13, F 23 consists of collinear
cameras, then Equation (7) must be satisfied. Conversely,
if Equation (7) is satisfied, any solution must consist of
collinear camera centers.

We begin by simplifying the problem using the funda-
mental action. Let

Hi =
[
eki xi yi

]
, (9)

for any k ̸= i and xi, yi ∈ R3 such that the determinant is
non-zero, meaning Hi is invertible. We get a new triple of
fundamental matrices

Gij = HT
i F

ijHj . (10)

Write hij for the epipoles of Gij . By the fact that H−1
j eij

spans kerGij we have hij = H−1
j eij (up to scaling). By

construction of Hj , we then have:

h21 = [1, 0, 0], h12 = [1, 0, 0], h13 = [1, 0, 0],

h31 = [1, 0, 0], h32 = [1, 0, 0], h23 = [1, 0, 0].
(11)



Since the epipoles span kernels of Gij , we conclude that
Gij take the following form

G12 =

0 0 0
0 a12 b12
0 c12 d12

 , G13 =

0 0 0
0 a13 b13
0 c13 d13

 ,
G23 =

0 0 0
0 a23 b23
0 c23 d23

 ,
(12)

for some aij , bij , cij , dij ∈ R making them rank-2.
We next find conditions on triplets of cameras P1, P2, P3

with collinear centers whose fundamental matrices are of
the form given by Equation (12). We may up to PGL4 ac-
tion assume that the center of P1 is [1, 0, 0, 0], the center of
P2 is [0, 1, 0, 0] and the center of P3 is [1, 1, 0, 0]. Fix P1 to
be

P1 =
[
0 1 0 0
0 0 1 0
0 0 0 1

]
. (13)

Using the fact that eij = Pj(kerPi), we find that P2 and P3

must take the following form:

P2 =
[
1 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

]
, P3 =

[
1 −1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

]
. (14)

One can check that the two right-most elements of the first
rows of P2 and P3 do not affect the fundamental matrices.
In particular, if Gij are compatible, then one solution must
be

P2 =
[
1 0 0 0
0 0 α1 α2
0 0 α3 α4

]
, P3 =

[
1 −1 0 0
0 0 β1 β2

0 0 β3 β4

]
, (15)

for αi and βi such that α1α4 − α2α3 ̸= 0 and β1β4 −
β2β3 ̸= 0. Given such cameras, the fundamental matrices
are calculated as

ψ(P1, P2) =
[
0 0 0
0 −α3 α1
0 −α4 α2

]
,

ψ(P1, P3) =
[ 0 0 0
0 −β3 β1

0 −β4 β2

]
,

ψ(P2, P3) =
[ 0 0 0
0 −α4β2+α2β4 α4β1−α2β3

0 α3β2−α1β4 −α3β1+α1β3

]
.

(16)

Define the ⋆ operator on 2× 2 matrices as[
v1 v2
v3 v4

]
⋆

[
w1 w2

w3 w4

]
:=

[
v3w1 − v1w3 v3w2 − v1w4

v4w1 − v2w3 v4w2 − v2w4

]
=

[
v3 v1
v4 v2

] [
w1 w2

−w3 −w4

]
.

(17)

Then, by Equation (16), Gij on the form Equation (16) are
compatible if and only if (up to scaling) we have[

a12 b12
c12 d12

]
⋆

[
a13 b13
c13 d13

]
=

[
a23 b23
c23 d23

]
.

(18)

By the construction of our fundamental action, we have

aij = [0, 1, 0]Gij [0, 1, 0]T = xTi F
ijxj ,

bij = [0, 1, 0]Gij [0, 0, 1]T = xTi F
ijyj ,

cij = [0, 0, 1]Gij [0, 1, 0]T = yTi F
ijxj ,

dij = [0, 0, 1]Gij [0, 0, 1]T = yTi F
ijyj .

(19)

In the below, and throughout this section, we skip the trans-
pose notation and write for instance xiF ijxj instead of
xTi F ijxj . We get[

x1F 12x2 x1F 12y2
y1F 12x2 y1F 12y2

]
⋆

[
x1F 13x3 x1F 13y3
y1F 13x3 y1F 13y3

]
=

[
x2F 23x3 x2F 23y3
y2F 23x3 y2F 23y3

]
.

(20)

However,[
xiF

ijxj xiF ijyj
yiF

ijxj yiF ijyj

]
=

[
xTi
yTi

]
F ij

[
xj yj

]
, (21)

and therefore,[
x1F

12x2 x1F
12y2

y1F
12x2 y1F

12y2

]
⋆

[
x1F 13x3 x1F 13y3

y1F 13x3 y1F 13y3

]
=

[
xT
2

yT
2

]
F 21

[
y1 x1

] [ xT1
−yT1

]
F 13

[
x3 y3

]
=

[
xT
2

yT
2

]
F 23

[
x3 y3

]
.

(22)

Since this holds for generic choices of x2, y2, x3, y3, we
conclude that, projectively,

F 21
[
y1 x1

] [ xT
1

−yT1

]
F 13 = F 23, (23)

for all x1, y1 such that [e21 x1 y1] is invertible. Further,[
y1 x1

] [ xT
1

−yT1

]
(24)

is skew-symmetric and equals [ℓ]× for ℓ = x1 × y1 ∈ R3.
Then choosing x1, y1 such that ℓ = e21, we have over the
real numbers that [e21 x1 y1] is full-rank. In other words,

F 21[e21]×F
13 = F 23 (25)

is a necessary and sufficient condition for compatibility.

Remark C.2. In the complex setting, it does not always
suffice to put ℓ = e21, because it could be the case that
(e21)

T e21 = 0. Then ℓ should be any vector such that
ℓT e21 ̸= 0.



C.2. K4

Remark C.3. Macaulay2 code for the elimination used
in the proofs of this section is attached.

Theorem 3.6 (Case 1). Let
{
F ij

}
be a sextuple of funda-

mental matrices such that the three epipoles in each image
do not lie on a line. Then

{
F ij

}
is compatible if and only if

the triple-wise conditions hold and

e4123e2134e3142e4231e1243e2341
=e3124e4132e2143e1234e3241e1342.

(26)

Proof. The triple-wise conditions are clearly necessary for
compatibility, so we assume that they are satisfied and prove
that in this case compatibility is equivalent to Equation (26)
being satisfied. We begin by simplifying the problem. Let

Hi =
[
eji e

k
i e

l
i

]
. (27)

This 3 × 3 matrix is of full-rank and takes the three coor-
dinate points to the three epipoles in the i-th image. Using
this as our fundamental action, we get a new sextuple of
fundamental matrices

Gij = HT
i F

ijHj . (28)

Since the fundamental action preserves compatibility, the
sextuple

{
Gij

}
is compatible if and only if

{
F ij

}
is. Note

that the epipoles of Gij , denoted by hij , are:

h21 = [1, 0, 0], h31 = [0, 1, 0], h41 = [0, 0, 1],

h12 = [1, 0, 0], h32 = [0, 1, 0], h42 = [0, 0, 1],

h13 = [1, 0, 0], h23 = [0, 1, 0], h43 = [0, 0, 1],

h14 = [1, 0, 0], h24 = [0, 1, 0], h34 = [0, 0, 1].

(29)

Moreover, since Gij satisfy the triple-wise conditions (we
assumed F ij did, and these are preserved under fundamen-
tal action), it follows that the six matrices must be on the
form:

G12 =

0 0 0
0 0 x12
0 y12 0

 , G13 =

0 0 x13
0 0 0
0 y13 0

 ,
G14 =

0 0 x14
0 y14 0
0 0 0

 , G23 =

 0 0 x23
0 0 0
y23 0 0

 ,
G24 =

 0 0 x24
y24 0 0
0 0 0

 , G34 =

 0 x34 0
y34 0 0
0 0 0

 .
(30)

The sextuple
{
Gij

}
is compatible if and only if there ex-

ists a reconstruction consisting of 4 cameras Pi. Since the
epipoles do not lie on a line, any such reconstruction must

have 4 linearly independent centers. We are free to choose
coordinates in P3 without affecting compatibility, so we
take the four camera centers (assuming cameras exist) to
be the four unit vectors. Furthermore, we know that the
epipoles satisfy

hji = Pi(ker(Pj)). (31)

So if
{
Gij

}
has a reconstruction {Pi}, it must be on the

form:

P1 =

[
0 α1

1 0 0

0 0 α2
1 0

0 0 0 α3
1

]
, P2 =

[
α1

2 0 0 0

0 0 α2
2 0

0 0 0 α3
2

]
,

P3 =

[
α1

3 0 0 0

0 α2
3 0 0

0 0 0 α3
3

]
, P4 =

[
α1

4 0 0 0

0 α2
4 0 0

0 0 α3
4 0

]
,

(32)

where αj
i are scalars. Since the fundamental matrices are

of rank-2 and the cameras are rank-3, all the αj
i , as well as

the xij and yij are non-zero. Computing the fundamental
matrices of these four cameras, and setting them equal to
the Gij , we get the following six equations:

x12α
2
1α

3
2 = y12α

3
1α

2
2, x13α

1
1α

3
3 = y13α

3
1α

2
3,

x14α
1
1α

3
4 = y14α

2
1α

2
4, x23α

1
2α

3
3 = y23α

3
2α

1
3,

x24α
1
2α

3
4 = y24α

2
2α

1
4, x34α

1
3α

2
4 = y34α

2
3α

1
4.

(33)

Eliminating the variables αj
i , we are left with a single poly-

nomial,

x12y13x14x23y24x34 − y12x13y14y23x24y34 = 0. (34)

This tells us that Equation (33) implies Equation (34), and
we are left to argue that if xij , yij are non-zero numbers
such that Equation (34) holds, then there are non-zero αj

i

such that Equation (33) holds. Note that we can assume
αj
1 = 1 by PGL4 action and that α1

i = 1 by scaling. Writ-
ing λij = xij/yij , we then aim to find non-zero αj

i such
that

λ12α
3
2 = α2

2, λ13α
3
3 = α2

3, λ14α
3
4 = α2

4,

λ23α
3
3 = α3

2, λ24α
3
4 = α2

2, λ34α
2
4 = α2

3.
(35)

It is clear that we can find non-zero αj
i that solve the first

five equations. However, this is enough because using
λ12λ14λ23λ34 = λ13λ24, the sixth equation λ34α2

4 = α2
3

is implied by the other five through substitution.
It follows that the set

{
Gij

}
is compatible if and only if

Equation (34) is satisfied. Finally, we can express the xij
and yij in terms of F ij and eji , for instance we have

x12 = (h31)
TG12h42

= (h31)
THT

1 F
12H2h

4
2

= (e31)
TF 12e42.

(36)



Making these substitutions for all the xij and yij , we get
Equation (26).

Theorem 3.8 (Case 2). Let
{
F ij

}
be a sextuple of funda-

mental matrices whose epipoles in each image are distinct
and lie on a line. Then

{
F ij

}
is compatible if and only if

the triple-wise conditions hold,

⟨F jkeik, F
jleil⟩⟨F kjeij , F

kleil⟩⟨F ljeij , F
lkeik⟩+

+∥F ljeij∥2∥F jkeik∥2∥F kleil∥2 = 0,
(37)

for all distinct i, j, k, l satisfying l > k > j, and for xi =
F ijelj with l > k > j, we have

−e
3
2F

24x4

x2F 24e14

x1F 12x2
x1F 12e32

+
e23F

34x4
x3F 34e14

x1F 13x3

x1F 13e23
+

−x3F
34x4

x3F 34e14
+
e23F

34x4
e21F

14x4
e21F

13x3
x1F 13e23

x1F 14x4

x3F 34e14
+

+
x2F 24x4

x2F 24e14
+
e13F

34x4
x3F 34e14

x2F
23x3

x2F 23e13
= 0.

(38)

Proof. Like in the previous proof, we begin by assuming
the triple-wise conditions are satisfied. The three epipoles
in each image lie on a line and therefore we fix a scaling
such that for each i we have eli = eji +e

k
i , where l > k > j.

Let

Hi =
[
eji e

k
i xi

]
. (39)

Note that (eji )
T xi and (eki )

T xi for xi in the statement are
both zero, soHi is of full-rank. Using this as our fundamen-
tal action, we get a new sextuple of fundamental matrices

Gij = HT
i F

ijHj . (40)

Since the fundamental action preserves compatibility, the
sextuple

{
Gij

}
is compatible if and only if

{
F ij

}
is. Note

that the epipoles of Gij are as follows:

h21 = [1, 0, 0], h31 = [0, 1, 0], h41 = [1, 1, 0],

h12 = [1, 0, 0], h32 = [0, 1, 0], h42 = [1, 1, 0],

h13 = [1, 0, 0], h23 = [0, 1, 0], h43 = [1, 1, 0],

h14 = [1, 0, 0], h24 = [0, 1, 0], h34 = [1, 1, 0].

(41)

With these epipoles and the fact that the Gij satisfy the
triple-wise conditions (we assumed F ij did, and these are
preserved under fundamental action), it follows that the six
matrices must be on the form:

G12 =
[
0 0 0
0 0 x12
0 y12 z12

]
, G13 =

[
0 0 x13
0 0 0
0 y13 z13

]
,

G14 =
[ 0 0 x14
0 0 −x14
0 y14 z14

]
, G23 =

[
0 0 x23
0 0 0

y23 0 z23

]
,

G24 =
[ 0 0 x24

0 0 −x24
y24 0 z24

]
, G34 =

[ 0 0 x34
0 0 −x34

y34 −y34 z34

]
.

(42)

The sextuple
{
Gij

}
is compatible if and only if there exists

a reconstruction consisting of 4 cameras Pi with centers that
lie in a plane, but no three collinear, since the three epipoles
are collinear in each image. We are free to choose coor-
dinates in P3 without changing the fundamental matrices,
so we take the four camera centers (assuming they exist)
to be [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [1, 1, 1, 0]. Fur-
thermore, by the definition of the epipole, we know that the
epipoles satisfy

hji = Pi(ker(Pj)). (43)

So if
{
Gij

}
has a reconstruction {Pi}, it must be on the

form:

P1 =

[
0 1 0 α1

1

0 0 1 α2
1

0 0 0 α3
1

]
, P2 =

[
1 0 0 α1

2

0 0 1 α2
2

0 0 0 α3
2

]
,

P3 =

[
1 0 0 α1

3

0 1 0 α2
3

0 0 0 α3
3

]
, P4 =

[
1 0 −1 α1

4

0 1 −1 α2
4

0 0 0 α3
4

]
,

(44)

where the αj
i are scalars. Since the fundamental matrices

are of rank 2 and the cameras of rank 3, the four scalars
α3
i , as well as all the xij and yij are non-zero. Computing

the fundamental matrices of these four cameras, and setting
them equal to theGij , we get the following set of equations:

x12
y12

= −α
3
1

α3
2

,
x13
y13

= −α
3
1

α3
3

,
x14
y14

= −α
3
1

α3
4

,

x23
y23

= −α
3
2

α3
3

,
x24
y24

= −α
3
2

α3
4

,
x34
y34

= −α
3
3

α3
4

,

(45)

and

z12
y12

=
α2
1 − α2

2

α3
2

,
z14
y14

=
α1
1 − α2

1 − α2
4

α3
4

,

z13
y13

=
α1
1 − α2

3

α3
3

,
z24
y24

=
α1
2 − α2

2 − α1
4

α3
4

,

z23
y23

=
α1
2 − α1

3

α3
3

,
z34
y34

=
α1
3 + α2

4 − α2
3 − α1

4

α3
4

.

(46)

Eliminating the αj
i from these equations gives us the fol-

lowing constraints:

xjkxklyjl + yjkyklxjl = 0 ∀j < k < l, (47)

and

x24
y24

z12
y12

− x34
y34

z13
y13

+
x34
y34

z23
y23

− z14
y14

+
z24
y24

− z34
y34

= 0.

(48)

As in the proof of Theorem 3.6, the fundamental matrices
are compatible if and only if Equations (47) and (48) are



satisfied. Let k be the smallest index satisfying k ̸= i, j,
then we can write

xij = eki F
ijxj ,

yij = xiF ijekj ,

zij = xiF
ijxj .

(49)

With the substitution xi = F ijelj in Equation (47), we get:

yjlxjkxkl + xjlyjkykl

=(xjF jleil)(e
i
jF

jkxk)(eikF
klxl)

+(eijF
jlxl)(xjF jkeik)(xkF

kleil)

=(eikF
kjF jleil)(e

i
jF

jkF kleil)(e
i
jF

jlF lkeik)+

+(eijF
jlF ljeij)(e

i
kF

kjF jkeik)(e
i
lF

lkF kleil),

=⟨F jkeik, F
jleil⟩⟨F kjeij , F

kleil⟩⟨F ljeij , F
lkeik⟩+

+∥F ljeij∥2∥F jkeik∥2∥F kleil∥2 = 0,

(50)

hence we arrive at Equation (37). In Equation (48), we use
Equation (47) to substitute

− 1

y14
=

x13x34
x14y13y34

(51)

and then plug in xi = F ijelj (we do this step to get a homo-
geneous equation in every fundamental matrix and epipole).
This gives us Equation (38).

Remark C.4. In the complex setting, we cannot always put
xi = F ijelj in Theorem 3.8, because there is no longer any
guarantee that this makes Hi invertible. For fixed complex
F ij , one can check if they are compatible in Case 2 instead
by choosing any xi that make Hi invertible. The same prin-
ciple applies in Case 3.

Theorem 3.10 (Case 3). Let
{
F ij

}
be a sextuple of funda-

mental matrices such that

e21 = e31 ̸= e41, e
1
2 = e32 ̸= e42, e

1
3 = e23 ̸= e43, (52)

and e14, e
2
4, e

3
4 are distinct and lie on a line. Then

{
F ij

}
is

compatible if and only if the triple-wise conditions hold,

⟨F 12e42, F
13e43⟩⟨F 21e41, F

23e43⟩⟨F 31e41, F
32e42⟩+

+∥F 12e42∥2∥F 23e43∥2∥F 31e41∥2 = 0,
(53)

and for xi = F ijelj with l > k > j, we have

e42F
23x3

x2F 23e43

x1F 12x2
x1F 12e42

+
x1F

13x3
x1F 13e43

− x2F 23x3
x2F 23e43

= 0. (54)

Proof. Like in the two previous proofs, we begin by assum-
ing the triple-wise conditions are satisfied, since we know

them to be necessary. Fix a scaling such that e34 = e14 + e24.
Let

Hi =
[
eji e

l
i xi

]
, H4 =

[
e14 e

2
4 x4

]
(55)

for i = 1, 2, 3 and l > k > j, and

Gij = HT
i F

ijHj . (56)

Let xi = F ijelj with l > k > j for i = 1, 2, 3. Since all
epipolar numbers are zero in this case, (eji )

T xi and (eli)
T xi

are both zero, Hi is of full-rank for i = 1, 2, 3. Let x4 be
such thatH4 is full-rank. The fundamental matricesGij are
compatible if and only if F ij are. Note that the epipoles of
Gij are:

h21 = [1, 0, 0], h31 = [1, 0, 0], h41 = [0, 1, 0],

h12 = [1, 0, 0], h32 = [1, 0, 0], h42 = [0, 1, 0],

h13 = [1, 0, 0], h23 = [1, 0, 0], h43 = [0, 1, 0],

h14 = [1, 0, 0], h24 = [0, 1, 0], h34 = [1, 1, 0].

(57)

With these epipoles and the fact that the Gij satisfy the
triple-wise conditions (preserved under fundamental ac-
tion), it follows that the six matrices must be on the form:

G12 =
[
0 0 0
0 0 x12
0 y12 z12

]
, G13 =

[
0 0 0
0 0 x13
0 y13 z13

]
,

G14 =
[
0 0 x14
0 0 0
0 y14 z14

]
, G23 =

[
0 0 0
0 0 x23
0 y23 z23

]
,

G24 =
[

0 0 x24
0 0 0

y24 0 z24

]
, G34 =

[
0 0 x34
0 0 0

y34 −y34 z34

]
.

(58)

We have seen in the proof of Proposition 3.4 that regarding
the triple G12, G13, G23, we must have (up to scale)

G23 =

0 0 0
0 0 −y12x13
0 x12y13 x12z13 − x13z12

 .
The sextuple

{
Gij

}
is compatible if and only if there exists

a reconstruction consisting of 4 cameras Pi with the centers
of P1, P2, P3 lying on a line that does not contain the center
of P4. To see this, note that the three epipoles in each image
are collinear, implying that any reconstruction must consist
of cameras with coplanar centers. Furthermore, since two
epipoles coincide in the first three images, the centers of
P1, P2, P3 must lie on a line. We are free to choose coordi-
nates in P3 without changing the fundamental matrices, so
we take the four camera centers (assuming they exist) to be
[1, 0, 0, 0], [0, 1, 0, 0], [1, 1, 0, 0], and [0, 0, 1, 0]. We recall
that the epipoles satisfy

hji = Pi(ker(Pj)). (59)



So if
{
Gij

}
has a reconstruction {Pi}, it must be on the

form:

P1 =

[
0 1 0 α1

1

0 0 β1 α2
1

0 0 0 α3
1

]
, P2 =

[
1 0 0 α1

2

0 0 β2 α2
2

0 0 0 α3
2

]
,

P3 =

[
1 −1 0 α1

3

0 0 β3 α2
3

0 0 0 α3
3

]
, P4 =

[
1 0 0 α1

4

0 1 0 α2
4

0 0 0 α3
4

]
.

(60)

where the βi, α
j
i are scalars. Since the fundamental matri-

ces are rank-2 and the cameras rank-3, the four scalars α3
i ,

as well as all the βi, xij and yij are non-zero. Computing
the fundamental matrices of these four cameras, and setting
them equal to the Gij , we get after elimination the follow-
ing two equations:

x12x23y13 + x13y12y23 = 0,
x23
y23

z12
y12

+
z13
y13

− z23
y23

= 0.
(61)

As in the proof of Theorem 3.6, the fundamental matrices
are compatible if and only if Equation (61) is satisfied. As
in Theorem 3.8, we can write Equation (61) in terms of xi,
the fundamental matrices and their epipoles. Indeed, we get

e41F
12x2

x1F 12e42

e42F
23x3

x2F 23e43
+
e41F

13x3
x1F 13e43

= 0, (62)

and

e42F
23x3

x2F 23e43

x1F 12x2
x1F 12e42

+
x1F

13x3
x1F 13e43

− x2F 23x3
x2F 23e43

= 0. (63)

Setting xi = F ijelj for i = 1, 2, 3 and l > k > j, Equa-
tions (62) and (63) become Equations (53) and (54), the
conditions of the statement.

C.3. Kn

Theorem 3.12. Let
{
F ij

}
be a complete set of

(
n
2

)
,

n ≥ 4, fundamental matrices such that the sextuple
F 12, F 13, F 14, F 23, F 24, F 34 is compatible with a solution
of cameras P1, P2, P3, P4 such that the line spanned by the
centers of P1, P2 do not contain the centers of P3, P4. If
each sextuple of fundamental matrices corresponding to in-
dices {1, 2, 3, i} and {1, 2, 4, i} for i ≥ 5 are compatible,
then

{
F ij

}
is compatible.

Moreover, if all epipoles in each image coincide, then
triple-wise compatibility implies that

{
F ij

}
is compatible.

The reconstruction in this case will be a set of cameras
whose centers all lie on a line.

Proof of Theorem 3.12. We start with the collinear case. As
in the proof of Proposition 3.4, it suffices to prove the state-
ment for fundamental matrices

Gij =

0 0 0
0 aij bij
0 cij dij

 . (64)

By the compatibility of
{
G1i, G1j , Gij

}
, we have by

Proposition 3.4 that

Gij =

0 0 0
0 c1ia1j − a1ic1j c1ib1j − a1id1j
0 d1ia1j − b1ic1j d1ib1j − b1id1j

 , (65)

for all i, j ̸= 1. It can be verified that the following cameras
Pi form a reconstruction of these fundamental matrices:

P1 =

0 1 0 0
0 0 1 0
0 0 0 1

 ,
Pi =

i 1 0 0
0 0 b1i d1i
0 0 −a1i −c1i

 ,∀i ̸= 1.

(66)

Hence the
(
n
2

)
-tuple is compatible whenever each triple is

compatible. We also observe that all cameras have a center
lying on the line [λ1, λ2, 0, 0].

Now assume that in some image, not all epipoles coin-
cide. We prove the theorem for the case n = 5 and note that
the principle extends to any n.

Consider the sextuple S1234 ={
F 12, F 13, F 14, F 23, F 24, F 34

}
. Let P1, P2, P3, P4

be a solution. Let P ′
1, P

′
2, P

′
3, P5 be a solution to

S1235 =
{
F 12, F 13, F 15, F 23, F 25, F 35

}
. By Lemma 1.2,

we have that P1, P2, P3 and P ′
1, P

′
2, P

′
3 differ by PGL4,

and we may therefore take them to be equal.
It remains to prove that F 45 is the fundamental matrix

of P4, P5. For this we note that either 1) P1, P2, P5 or
2) P1, P3, P5 are not collinear cameras, since P1, P2, P3

are not collinear. In the first case 1), consider the tu-
ple S1245 =

{
F 12, F 14, F 15, F 24, F 25, F 45

}
with solu-

tion P ′′
1 , P

′′
2 , P

′′
4 , P

′′
5 . By Lemma 1.2, the overlap between

S1235 and S1245 imply that we can via PGL4 action assume
P ′′
1 = P1, P

′′
2 = P2, P

′′
5 = P5, and the overlap between

S1234 and S1245 imply that we can also assume P ′′
4 = P4,

since P1, P2, P4 are not collinear. But since F 45 is the fun-
damental matrix of P ′′

4 , P
′′
5 we conclude that it is also the

fundamental matrix of P4, P5. In the second case 2) the
argument is analogous when we consider S1345 instead of
S1245.

Proposition 3.14. A compatible set of
(
n
2

)
fundamental ma-

trices has a unique solution unless all the epipoles in each
image are equal.

Proof. Since the set of fundamental matrices is compati-
ble, and the epipoles in each image are not all equal, we
know that there exists a reconstruction consisting of n cam-
eras, not all lying on a line. It follows from the Sylvester-
Gallai theorem [1, Chapter 11] that there will always be at
least two cameras P1, P2 such that the line spanned by their
camera centers does not contain any other camera centers.



By Lemma 1.2, a triple of compatible fundamental matrices
has a unique solution if the two epipoles in each image are
distinct, or equivalently if their reconstruction consists of
three non-collinear cameras. Up to projective transforma-
tion, we can uniquely recover P1, P2 from F 12, which fixes
coordinates in P3. All other cameras Pi are then uniquely
determined by the triple F 12, F 1i, F 2i. Since this uniquely
determines all cameras (up to global projective transforma-
tion), the fundamental matrices F ij can only have one so-
lution.

C.4. n-view matrices

We recall the following theorem from [3, 6].

Theorem 3.15. Let
{
F ij

}
be a complete set of

(
n
2

)
real

fundamental matrices, where n ≥ 3. Then
{
F ij

}
is com-

patible with a solution of real cameras whose centers are
not all collinear if and only if there exist non-zero scalars
λij = λji such that:

1. the m-view fundamental matrix F = (λijF
ij)ij is

rank-6 and has exactly three positive and three neg-
ative eigenvalues;

2. the 3× 3m and 3m× 3 block rows and block columns
of F are all of rank 3.

Further,
{
F ij

}
is compatible with a solution of real

cameras whose centers are all collinear if and only if there
exist non-zero scalars λij = λji such that:

1. the m-view fundamental matrix F = (λijF
ij)ij is

rank-4 and has exactly two positive and two negative
eigenvalues;

2. the 3× 3m and 3m× 3 block rows and block columns
of F are all of rank 2.

Theorem 3.16. In the collinear case of Theorem 3.15, the
eigenvalue condition can be dropped. In the non-collinear
case, the eigenvalue condition can be dropped if in each
image, no three epipoles lie on a line.

Proof of Theorem 3.16. The structure of the proof is as fol-
lows. We prove in detail the when n = 3 and sketch n = 4
for Case 1. The Macaulay2 code used in all these settings
is attached. Then, we use Theorem 3.12 to argue that the
general setting is implied by these case studies.

We start with n = 3 in the collinear setting. Let F ij be
three fundamental matrices for which there exists a scaling
λ such that  0 F 12 F 13

F 21 0 λF 23

F 31 λF 32 0

 (67)

is rank-4 and the 3 × 6 and 6 × 3 block rows and colums
are rank-2. Note that we don’t need to scale F 12 and F 21

or F 13 and F 31 in the same way, because scaling each row
and each column does not change the rank of the 3-view
matrix, so we may choose their scalings to be 1 without loss
of generality. By the latter condition, F 12 and F 13 must
have the same epipoles. We can say even more, namely that

e21 = e31, e12 = e32, e13 = e23. (68)

As in the proof of Proposition 3.4, this assumption allows
us to assume via fundamental action F ij take the form Gij

of Equation (12). We work in the polynomial ring R =
Q[aij , bij , cij , dij , λ], where 1 ≤ i < j ≤ 3 consider the
following 3-view matrix:

G(λ) :=

 0 G12 G13

G21 0 λG23

G31 λG32 0

 . (69)

The rank of G(λ) is at most 4 if and only if all 5 × 5 mi-
nors of G(λ) vanish and we therefore consider the ideal
Iminors in R defined by the 5 × 5 minors of G(λ). Since
we don’t want solutions with λ = 0 or rankGij < 2, we
saturate Iminors with respect to the ideals Iλ = ⟨λ⟩ and
Iij = ⟨aijdij − bijcij⟩. After this is done in Macaulay2,
we get a new ideal Irank in R with nine generators.

Write Gij′ for the matrices we get by removing the first
row and column from Gij . Recall that Gij on the form
Equation (12) are compatible if and only if they are rank-2
and up to scaling, G12′ ⋆ G13′ = G23′ , i.e. Equation (18)
holds. To get rid of the scale ambiguity, we divide both
sides of Equation (18), by, say, the top left entry. We get[

1 c12b13−a12d13

c12a13−a12c13
d12a13−b12c13
c12a13−a12c13

d12b13−b12d13

c12a13−a12c13

]

=

[
1 b23/a23

c23/a23 d23/a23

]
.

(70)

This equality gives us three polynomial equalities (after
clearing the denominators), and for each choice of entry
in the 2 × 2 matrices, we get another three equations. We
let Jred in R be the ideal generated by these twelve equa-
tions. It is not hard to check that rank-2 matrices Gij′ sat-
isfy Equation (18) (up to scale) if and only if they satisfy the
equations of Jred, and for brevity we leave the details to the
reader. Note that this ideal is reducible, as shown by the
command primaryDecomposition in Macaulay2.
One component consists of rank-deficient tuples Gij′ and
we call the other component J⋆. In particular, any tuple of
rank-2 matrices Gij′ satisfy Equation (18) (up to scale) if
and only if they satisfy the conditions of J⋆.

By Lemma A.2, if Gij are rank-2, on the form Equa-
tion (12), and there exists λ ̸= 0 with G(λ) rank-4,



then the entries of Gij satisfy the equations of Irank. In
Macaulay2 we see that the ideals Irank and J⋆ are equal.
It follows thatGij satisfy the equations of J⋆. By the above,
this implies thatGij are compatible, showing that the eigen-
value condition was not needed for compatibility.

For n = 3 in the non-collinear setting, we choose a fun-
damental action

H1 =
[
e21 e

3
1 x1

]
, H2 =

[
e12 e

3
2 x2

]
,

H3 =
[
e13 e

2
3 x3

]
,

(71)

for xi making Hi full-rank. Using this as our fundamental
action, we get a new sextuple of fundamental matrices

Gij = HT
i F

ijHj . (72)

The sextuple
{
Gij

}
is compatible if and only if

{
F ij

}
is.

Note that the epipoles of Gij , denoted by hij , are:

h21 = [1, 0, 0], h31 = [0, 1, 0],

h12 = [1, 0, 0], h32 = [0, 1, 0],

h13 = [1, 0, 0], h23 = [0, 1, 0].

(73)

The three matrices must be on the form:

G12 =
[
0 0 0
0 x12 y12

0 z12 w12

]
, G13 =

[ 0 x13 y13

0 0 0
0 y13 z13

]
,

G23 =
[
x23 0 y23

0 0 0
z23 0 w23

]
.

(74)

We work in the polynomial ring R =
Q[xij , yij , zij , wij , λ], where 1 ≤ i < j ≤ 3 consider the
following 3-view matrix:

G(λ) :=

 0 G12 G13

G21 0 λG23

G31 λG32 0

 . (75)

The corresponding Irank, defined analogously to the
collinear case, equals ⟨x12, x13, x23⟩. This means G(λ) be-
ing rank-6 for a λ ̸= 0 implies x12 = 0, x13 = 0, x23 = 0.

As in the proof of Theorem 3.6, if there is a solution
of cameras Pi with non-collinear centers to Equation (74),
then we may choose them to be

P1 =

[
0 α1

1 0 ∗
0 0 α2

1 ∗
0 0 0 α3

1

]
, P2 =

[
α1

2 0 0 ∗
0 0 α2

2 ∗
0 0 0 α3

2

]
,

P3 =

[
α1

3 0 0 ∗
0 α2

3 0 ∗
0 0 0 α3

3

]
,

(76)

where αj
i are non-zero scalars, and ∗ are some other (pos-

sible zero) scalars. Computing the fundamental matrices of
these four cameras, one can check that by the degrees of
freedom of the cameras established in Equation (76), any

triple of fundamental matrices on the form Equation (74)
with xij = 0 has a solution with cameras on the form Equa-
tion (76). It follows that if there is a non-zero scalar λ for
which Equation (75) is rank-6, then the triples of fundamen-
tal matrices Gij are compatible, which is sufficient.

In the setting of n = 4 in Case 1, we use the same ideas
and therefore only sketch the proofs. Start with a 4-view
matrix F that is rank-6 and with block rows and columns of
rank-3 as in Theorem 3.15. Then take any sub 3-view ma-
trix F′. It is at most rank-6. However, since the epipoles in
each image are all distinct, all its block rows and columns
must be rank-3. This is only possible if F′ is at least rank-6.
Now we can apply the above to see that the three fundamen-
tal matrices of this 3-view matrix are compatible. In other
words, we have triple-wise compatibility. Then we can
assume the fundamental matrices to be of the form Equa-
tion (30) and look at the ideal generated by the 7 × 7 mi-
nors given such matrices with indeterminate entries. Here
we scale G23, G24, G34 with λ1, λ2, λ3, respectively. After
saturation of λi and rank-deficienly loci, and after elimina-
tion of λi, we get in each case an ideal that we call Irank.
This ideal in each case describes the same conditions as the
ideal generated by Equation (34). This means that the rank
condition implies compatibility.

Now we move on to general values of n. First, in the
general collinear case, let F ij be fundamental matrices for
which there are scalars λij such that the n-view matrix
F = (λijF

ij) is rank-4 and whose 3 × 3n and 3n × 3
block rows and columns are rank-2. By Theorem 3.12, it
suffices to show triple-wise compatibility. Take any 3-view
submatrix F′. It is at most rank-4 and its block rows and
columns at most rank-2. But since the fundamental matri-
ces are rank-2, the block rows and columns must be at least
rank-2 and it follows that the 3-view matrix itself is at least
rank-4. Therefore triple-wise compatibility follows from an
earlier step of this proof. By similar logic, if the n-view
matrix F instead is rank-6 with block rows and columns of
rank 3, then this also applies for any sub 4-view matrix F′,
since we assumed that any three epipoles in each image do
not lie on a line. In particular, we are then in Case 1 and
by the above, we have quadruple-wise compatibility. By
Theorem 3.12, this suffices.

D. The Cycle Theorem
In order to prove the cycle theorem we need a lemma.

Lemma D.1. Let G be a connected graph and T any span-
ning tree subgraph. Then there is a sequence T i ⊆ G such
that

T = T 0 ⊆ · · · ⊆ T k = G, (77)

where T i+1 contains exactly one more edge than T i and
this edge is part of a cycle of T i+1.



Proof. We get T k−1 from T k by removing an edge of T k

that is not in T . We repeat this process until we reach T 0.
Assume that the edge removed from T i+1 is not part of a
cycle of T i+1. Then T i would have to be disconnected.
This implies that T cannot be connected, which is a contra-
diction.

Theorem 4.1. Let
{
F ij

}
be a set of fundamental matrices

with corresponding graph G.
{
F ij

}
is compatible if and

only if there are matrices Hi ∈ GL3 and scalars λij =
λji ̸= 0 such that Gij := λijH

T
i F

ijHj satisfy∑
(ij)∈E(C)

Gij = 0, for each directed cycle C of G. (78)

In particular, any set of 3 × 3 rank-2 matrices Gij satisfy-
ing the cycle condition Equation (78) are the fundamental
matrices of some set of cameras.

Proof. We proved direction ⇒ in the main body of the pa-
per.

⇐) We find a set of cameras Ci such that ψ(Ci, Cj)
equals Gij for every edge of G. Since F ij and Gij are
equivalent under fundamental action, this is enough. We
may without restriction assume that G is connected with m
nodes. Since Gij are skew-symmetric and rank-2, there are
non-zero gij ∈ R3 such that Gij = [gij ]×. The cycle con-
dition is then equivalent to∑

(ij)∈E(C)

gij = 0, for each directed cycle C of G. (79)

Let T be a spanning tree subgraph of G.
Fix i = 1 and let t(1) = 0 ∈ R3. To any node v in T ,

there is a unique path with no repeated vertices from 1 to v
in T , since T is a tree. Let σu,v = {u = i1, i2, . . . , ik = v}
denote the unique path between two vertices u, v of T . For
i > 1, define

t(v) :=
∑

(ij)∈σ1,v

gij . (80)

This gives us cameras Ci = [I|t(i)] for each i = 1, . . . ,m.
We must check that Gij = ψ(Ci, Cj) for every edge of G.
Recall that for cameras on this form, ψ(Ci, Cj) = [t(j) −
t(i)]×. If (ij) is an edge of T , then t(j) − t(i) = gij by
construction, which shows Gij = ψ(Ci, Cj). For (ij) that
are not edges of T , we proceed as follows. Consider the
sequence T i of Lemma D.1. We proceed via induction to
show that Gij = ψ(Ci, Cj) for every edge of T l for any
l. The base case T 0 = T is already done. Assume that
Ci satisfy Gij = ψ(Ci, Cj) for all edges of T l. In T l+1,
there is precisely one new edge (ij) and that edge is part of
a cycle C of T l+1. Using Equation (80), we get after some

cancellation for some vertex u of the cycle that

ψ(Ci, Cj) = [t(j) − t(i)]× (81)

=
∑

(st)∈σu,j

[gst]× −
∑

(st)∈σu,i

[gst]×. (82)

Since Gij are skew-symmetric by the conditions of the 2-
cycles, gji = −gij . Therefore we get

ψ(Ci, Cj) =
∑

(st)∈σi,j

[gst]×. (83)

However, by the cycle condition for the cycle C, this equals
[gij ]×, which shows Gij = ψ(Ci, Cj) for every edge in
T l+1 and completes the induction.
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