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Abstract

We study a controlled stochastic system whose state X(t) at time t is described by
a stochastic differential equation driven by Lévy processes with filtration {Ft}t∈[0,T ].
The system is anticipating, in the sense that the coefficients are assumed to be adapted
to a filtration {Gt}t≥0, where Ft ⊆ Gt for all t ∈ [0, T ]. The corresponding anticipating
stochastic differential equation is interpreted in the sense of forward integrals, which
are the natural generalization of the semimartingale integrals.

The admissible controls are assumed to be adapted to a filtration {Et}t∈[0,T ], such
that Et ⊆ Ft for all t ∈ [0, T ]. The general problem is to maximize a given performance
functional of this system over all admissible controls. This is a partial observation
stochastic control problem in an anticipating environment. Examples of applications
include stochastic volatity models in finance, insider influenced financial markets and
stochastic control of systems with delayed noise effects.

Some specific cases from finance, involving optimal portfolio with logarithmic utility,
are solved explicitly.
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1 Introduction

Let B(t) = (B1(t), . . . , Bm(t)) and η(t) = (η1(t), . . . , η`(t)) be (independent) m-dimensional
Brownian motion and `-dimensional Lévy process, respectively, on a filtered probability space
(Ω,F , {Ft}t≥0, P ). Assume that E[η2(t)] < ∞ (where E denotes expectation with respect to
P ) and let Ñ(dt, dz) = (Ñ1(dt, dz1), . . . , Ñ`(dt, dz`)), z = (z1, . . . , z`), be the corresponding
compensated Poisson random measure.

Let {Et}t≥0 and {Gt}t≥0 be two filtrations such that

(1.1) Et ⊆ Ft ⊆ Gt ⊆ F for all t ≥ 0.

We consider a controlled stochastic system whose state X(u)(t) = X(t) = (X1(t), . . . , Xn(t))
at time t ∈ [0, T ] is described by a stochastic differential equation of the form

dX(t) = b(t,X(t), u(t), ω)dt + σ(t,X(t), u(t), ω)d−B(t)

+

∫
R`

θ(t,X(t), u(t), z, ω)Ñ(d−t, dz); X(0) = x ∈ Rn,

i.e.

X(t) = X(0) +

t∫
0

b(s, X(s), u(s), ω)ds +

t∫
0

σ(s, X(s), u(s), ω)d−B(s)

+

t∫
0

∫
R`

θ(s, X(s−), u(s−), z, ω)Ñ(d−s, dz),(1.2)

where b : [0, T ]× Rn ×K × Ω → Rn, σ : [0, T ]× Rn ×K × Ω → Rn×m and θ : [0, T ]× Rn ×
K × R` × Ω → Rn×` are given functions, K ⊂ Rk is a given set of admissible control values
and our control process u(t) = u(t, ω) ∈ K is assumed to be adapted to the filtration {Et}t≥0.

We assume that for each given x ∈ Rn, v ∈ K and z ∈ R` the random variables

(1.3) b(t, x, v, ·), σ(t, v, v, ·) and θ(t, x, v, z, ·) are Gt-measurable.

In other words, b, σ and θ are assumed to be adapted to the filtration {Gt}t≥0. Since B(t) and
η(t) need not be semimartingales with respect to {Gt}t≥0, the last two integrals in (1.2) are
anticipating stochastic integrals. We choose to interpret these integrals as forward integrals
(denoted by d−B(t) and Ñ(d−t, dz), respectively), because this is what the integrals would
be identical to if we happen to be in a semimartingale context. (See Lemma 2.8b) and
Lemma 3.8.)

Let f : [0, T ] × Rn ×K → R and g : Rn → R be given functions and let AE be a given
set of admissible controls contained in the set of Et-adapted processes u(t) such that (1.2)
has a strong Gt-adaped solution X(t) = X(u)(t) and such that

(1.4) J (u)(x) = Ex
[ T∫

0

f(t,X(t), u(t))dt + g(X(T ))
]
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converges. We consider the following problem of partial observation control in an anticipating
environment:

Problem 1.1 Find Φ(x) and u∗ ∈ AE such that

(1.5) Φ(x) = sup
u∈AE

J (u)(x) = J (u∗)(x).

This type of problem appears in many situations. We give 3 examples from mathematical
finance:

Example 1.2 (Stochastic volatility models)
Suppose we have a market with one risky investment possibility (e.g. a stock), whose price
S1(t) at time t is described by a stochastic differential equation of the form

(1.6) dS1(t) = S1(t
−)

[
µ(t)dt + σ(t)d−B(t) +

∫
R

θ(t, z)Ñ(d−t, dz)
]
,

where B and Ñ are 1-dimensional (for simplicity). In general stochastic volatility models the
coefficient σ(t) = σ(t, ω) need not be Ft-adapted, but can possibly be influenced by other
noises as well. So the σ-algebra Gt generated by {σ(s, ·); s ≤ t} may be bigger than Ft. The
same may apply to θ(t, z) = θ(t, z, ω) and to µ(t) = µ(t, ω).

Suppose the market also has a risk free investment possibility, where the price S0(t) at
time t is described by

(1.7) dS0(t) = ρ(t)S0(t)dt; S0(0) = 1

where ρ(t) = ρ(t, ω) is another Gt-adapted process. A portfolio π(t) = π(t, ω) in this market
is an Et-adapted process giving the fraction of the total wealth X(t) of an agent invested in
the risky asset at time t. The dynamics of the wealth process X(t) = X(π)(t) corresponding
to the portfolio π is then found as follows:

dX(t) = X(t−)
[
(ρ(t) + (µ(t)− ρ(t))π(t))dt + π(t)σ(t)d−B(t)

+ π(t)

∫
R

θ(t, z)Ñ(d−t, dz
]
; X(0) = x > 0.(1.8)

The requirement that π(t) be Et-adapted models the situation that the agent only has partial
information (less than Ft) to her disposal when making the portfolio decisions. The optimal
portfolio problem of the agent is to find Φ(x) and π∗ ∈ AE such that

(1.9) Φ(x) = sup
π∈AE

Ex[U(X(π)(T ))],

where U : R → [−∞,∞) is a given utility function.
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Example 1.3 (Insider influenced markets)
Consider again the market (1.6)–(1.7). If there are large investors in the market and these
investors have inside information, this means that they have access to a larger filtration
Gt ⊃ Ft when making their decisions. This leads to a price dynamics where the coefficients
ρ(t), µ(t), σ(t) and θ(t, z) are Gt-measurable and not necessarily Ft-measurable. A partially
informed investor in this market will again face a problem of the form (1.8)–(1.9).

Example 1.4 (Markets with delayed effects from the noise)
Suppose we have a market with no jumps (θ = 0) and with stock prices S1(t), . . . , SN(t)
given by

(1.10) d−Si(t) = Si(t)
[
µi(t)dt +

N∑
j=1

σij(t)d
−Bj(t− δi)

]
; 1 ≤ i ≤ N.

As before B(t) = (B1(t), . . . , BN(t)) is an N -dimensional Brownian motion with filtration
Ft. We asume that µi(t) and σij(t) are Ft-adapted. However, in this model we allow for a
delay δi ≥ 0 in the effect on Si(·) of the noise coming from B(·). Moreover, for some of the
stocks the effect of the same underlying noise may come later than for others, so the δi’s
need not be the same.

Integrating (1.10) we get

Si(t) = Si(0) +

t∫
0

Si(s)µi(s)ds +
N∑

j=1

t∫
0

Si(s)σij(s)d
−Bj(s− δi)

= Si(0) +

t−δi∫
−δi

Si(r + δi)µi(r + δi)dr +
N∑

j=1

t−δi∫
−δi

Si(r + δi)σij(r + δi)d
−Bj(r).(1.11)

Define

(1.12) S̃i(t) = Si(t + δi); −δi ≤ t; 1 ≤ i ≤ N.

Then (1.11) can be written

S̃i(t) = Si(0) +

t∫
−δi

S̃i(r)µi(r + δi)dr +
N∑

j=1

t∫
−δi

S̃i(r)σij(r + δi)d
−Bj(r)

= S̃i(0) +

t∫
0

S̃i(r)µi(r + δi)dr +
N∑

j=1

t∫
0

S̃i(r)σij(r + δi)d
−Bj(r).(1.13)

Or, equivalently,

(1.14) dS̃i(t) = S̃i(t)
[
µ̃i(t)dt +

N∑
j=1

σ̃ij(t)d
−Bj(t)

]
; S̃i(0) = Si(δ); 1 ≤ i ≤ N

4



where µ̃i(t) = µi(t + δi), σ̃ij(t) = σij(t + δi); i ≤ i, j ≤ N .
Note that this is a price equation of the same type as in (1.6) (Example 1.2), where the

coefficients µ̃i(t), σ̃ij(t) are adapted to the filtration

Gt := Ft+δ ,

where
δ = max(δ1, . . . , δN).

Again we may now consider an optimal portfolio problem of the form (1.9), where the
information available to the agent is modelled by some given filtration Et ⊆ Ft.

The purpose of this paper is to give an explicit solution of the problem type described in
Example 1.2 in the logarithmic utility case, i.e. when

(1.15) U(x) = log x; x > 0.

For simplicity we will split the discussion into two cases:

(i) The continuous case (σ 6= 0, θ = 0)
(ii) The pure jump case (σ = 0, θ 6= 0)

2 The continuous case (θ = 0)

Referring to Examples 1.2 and 1.3 we now study the market M(E ,G) given by

(bond price) dS0(t) = ρ(t)S0(t)dt; S0(0) = 1(2.1)

(stock price) dS1(t) = S1(t)[µ(t)dt + σ(t)d−B(t)]; S1(0) > 0(2.2)

where we assume that ρ(t), µ(t) and σ(t) satisfy the following conditions:

ρ(t), µ(t), σ(t) are Gt-adapted (see (1.3))(2.3)

E
[ T∫

0

{|ρ(t)|+ |µ(t)|+ σ2(t)}dt
]

< ∞(2.4)

σ(t) is Malliavin differentiable and Dt+σ(t) = lim
s→t+

Dsσ(t) exists(2.5)

for a.a. t ∈ [0, T ] where Ds denotes the Malliavin derivative at s

(see Definition 2.5 below).

Equation (2.2) has a unique Gt-adapted solution S1(t); t ∈ [0, T ](2.6)

As before {Et}t∈[0,T ] and {Gt}t∈[0,T ] are given filtrations such that

(2.7) Et ⊆ Ft ⊆ Gt ⊆ F for all t ∈ [0, T ].
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Definition 2.1 The set AE of admissible portfolios consists of all processes π(t) satisfying
the following conditions:

π(t) is Et-adapted(2.8)

π(t)σ(t) is Skorohod integrable and caglad (i.e. left continuous with(2.9)

existing right hand side limit)

E
[ T∫

0

|π(t)Dt+σ(t)|dt
]

< ∞(2.10)

E
[ T∫

0

|µ(t)− ρ(t)| · |π(t)|dt
]

< ∞.(2.11)

Referring to Example 1.2 we study the following partial observation optimal portfolio
problem:

Problem 2.2 Find Φ(x) and π∗ ∈ AE such that

(2.12) Φ(x) = sup
π∈AE

Ex[log(X(π)(T ))] = Ex[log(X(π∗)(T ))]

where X(π)(t) = X(t) is given by X(0) = x > 0 and

(2.13) dX(t) = X(t)[(ρ(t) + (µ(t)− ρ(t))π(t))dt + π(t)σ(t)d−B(t)].

The function Φ ≤ ∞ is called the value function and π∗ (if it exists) is called an optimal
portfolio for Problem 2.2.

Before solving Problem 2.2 we review for the convenience of the reader some basic math-
ematical background. We refer to [NP], [N] and [Ø] for more details.

Let λ denote Lebesgue measure on [0, T ] and let L2(λn) be the space of all deterministic
functions f : [0, T ]n → R such that

‖f‖L2(λn) =

∫
[0,T ]n

f 2(x)dλ(x) =

∫
[0,T ]n

f 2(x1, . . . , xn)dx1 . . . dxn < ∞.

If f is a real function on [0, T ]n we define its symmetrization f̃ by

f̃(t1, . . . , tn) =
1

n!

∑
α

f(tα1 , . . . , tαn)

where the sum is taken over all permutations α of {1, 2, . . . , n}. We say that f is symmetric
if f̃ = f and we let L̃2(λn) denote the set of all symmetric functions in L2(λn). Put

Sn = {(t1, . . . , tn) ∈ [0, T ]n; 0 ≤ t1 ≤ · · · ≤ tn ≤ T}.
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If f ∈ L2(Sn) we define its n-fold iterated integral with respect to B(·) by

Jn(f) =

T∫
0

tn∫
0

· · ·
t2∫

0

f(t1, . . . , tn)dB(t1) . . . dB(tn)

and if f ∈ L̃2(λn) we define

In(f) :=

∫
[0,T ]n

f(t1, . . . , tn)dB⊗n(t) := n!Jn(f).

We can now formulate the Wiener-Itô chaos expansion theorem:

Theorem 2.3 Every FT -measurable random variable F ∈ L2(P ) can be written

F = E[F ] +
∞∑

n=1

In(fn) :=
∞∑

n=0

In(fn)

for a unique sequence of deterministic functions fn ∈ L̃2(λn). Moreover, we have the isometry

(2.14) E[F 2] = (E[F ])2 +
∞∑

n=1

n!‖fn‖2
L2(λn).

This expansion is useful for the definition of Skorohod integrals and Malliavin derivatives:
Let φ(t, ω) : [0, T ]× Ω → R be a measurable process such that

E[φ2(t, ·)] < ∞

and
φ(t, ·) is FT -measurable for all t ∈ [0, T ].

Let

φ(t, ω) =
∞∑

n=0

In(fn(·, t))

be the chaos expansion of φ(t, ·) and let f̃(t1, . . . , tn, tn+1) be the symmetrization of f(t1, . . . ,
tn, t) with respect to the n + 1 variables t1, . . . , tn, tn+1 = t.

Definition 2.4 Suppose that

(2.15)
∞∑

n=0

(n + 1)!‖f̃n‖2
L2(λn+1) < ∞.

Then we define the Skorohod integral of φ with respect to B(·) by

T∫
0

φ(t, ω)δB(t) =
∞∑

n=0

In+1(f̃n).
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Note that by (2.14) we have

(2.16) E
[( T∫

0

φ(t, ω)δB(t)
)2]

=
∞∑

n=0

(n + 1)!‖f̃n‖2
L2(λn+1) < ∞,

so the Skorohod integral belongs to L2(P ) when defined. Moreover,

(2.17) E
[ T∫

0

φ(t, ω)δB(t)
]

= 0.

One can show that the Skorohod integral is an extension of the Itô integral, in the sense that
if φ(t, ω) is Ft-adapted and Skorohod integrable then

T∫
0

φ(t, ω)δB(t) =

T∫
0

φ(t, ω)dB(t).

Definition 2.5 Let F ∈ L2(P ) be FT -measurable, with the expansion

F =
∞∑

n=0

In(fn); fn ∈ L̃2(λn).

We say that F is Malliavin differentiable and write F ∈ D1,2 if

(2.18) ‖F‖2
D1,2

:= (E[F ])2 +
∞∑

n=1

n n!‖fn‖2
L2(λn) < ∞.

If F ∈ D1,2 we define the Malliavin derivative of F at t ∈ [0, T ] by

DtF =
∞∑

n=1

n In−1(fn(·, t)),

where In−1(fn(·, t)) is the n−1 iterated integral of f(t1, . . . , tn−1, t) as a function of the n−1
first variables t1, . . . , tn−1.

Since

(2.19) E
[ T∫

0

(DtF )2dt
]

=
∞∑

n=1

n n!‖fn‖2
L2(λn)

we see that if (2.18) holds then DtF exists for a.a. t ∈ [0, T ].
The Malliavin derivative Dt satisfies the usual chain rule. For example, we have:

8



Lemma 2.6 Let f ∈ C1(R) with bounded derivatives and let F ∈ D1,2. Then f(F ) ∈ D1,2

and

(2.20) Dt(f(F )) = f ′(F ) ·DtF.

Next we recall the definition of forward integrals with respect to B(·). We refer to [NP],
[RV1] and [RV2] for more information about these integrals.

Definition 2.7 Let φ : [0, T ]×Ω → R be a measurable process, not necessarily Ft-adapted.
Then we define the forward integral of φ with respect to B(·) by

(2.21)

T∫
0

φ(t)d−B(t) = lim
ε→0

T∫
0

φ(t)
B(t + ε)−B(t)

ε
dt,

if the limit exists in probability.

By using a stochastic Fubini theorem we obtain the following more suggestive description
of the forward integral:

Lemma 2.8 a) Let φ : [0, T ]× Ω → R be forward integrable and caglad. Then

(2.22)

T∫
0

φ(t)d−B(t) = lim
∆t→0

N−1∑
j=0

φ(tj)(B(tj+1)−B(tj))

(limit in probability), where 0 = t0 < t1 < · · · < tN = T is a partition of [0, T ] and
∆t = tj+1 − tj for all j = 0, . . . , N − 1.

b) Suppose in addition that B(t) is a semimartingale with respect to Gt, and that φ(t) is
Gt-measurable for all t ∈ [0, T ]. Then

T∫
0

φ(t)d−B(t) =

T∫
0

φ(t)dB(t),

where the integral on the right is the usual (semimartingale) Itô integral.

Proof. This well-known result follows by the same argument as in [BØ, (2.2) and Corollary
2.5]. �

A proof of the following basic relation between the forward integral and the Skorohod
integral can be found in [BØ, Lemma 2.2]:
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Lemma 2.9 Suppose φ : [0, T ] × Ω → R is Skorohod integrable and caglad. Moreover,
assume that

Dt+φ(t) := lim
s→t+

Dsφ(t)

exists for a.a. t ∈ [0, T ] and
T∫

0

|Dt+φ(t)|dt < ∞.

Then the forward integral of φ exists and

(2.23)

T∫
0

φ(t)d−B(t) =

T∫
0

φ(t)δB(t) +

T∫
0

Dt+φ(t)dt.

Since Skorohod integrals have expectation 0 (see (2.17)) we deduce from Lemma 2.9 the
following

Corollary 2.10 Let φ be as in Lemma 2.9. Then

(2.24) E
[ T∫

0

φ(t)d−B(t)
]

= E
[ T∫

0

Dt+φ(t)dt
]
,

provided that the expectations exist.

We also need the following Itô formula for forward integrals:

Theorem 2.11 ([RV2]) Let X(t) be a stochastic process of the form

X(t) = X(0) +

t∫
0

α(s)ds +

t∫
0

γ(s)d−B(s).

Let f ∈ C1,2(R2) and define
Y (t) = f(t,X(t)).

Then

Y (t) = Y (0) +

t∫
0

∂f

∂s
(s, X(s))ds +

t∫
0

∂f

∂x
(s, X(s))d−X(s)

+ 1
2

t∫
0

∂2f

∂x2
(s, X(s))γ2(s)ds,(2.25)

where
d−X(s) = α(s)ds + γ(s)d−B(s).
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We now proceed to solve Problem 2.2:
Applying Theorem 2.11 to the forward equation (2.13) we get the (unique) solution

X(π)(T ) = x exp
{ T∫

0

(ρ(t) + (µ(t)− ρ(t))π(t)

− 1
2
π2(t)σ2(t))dt +

T∫
0

π(t)σ(t)d−B(t)
}

.(2.26)

Hence, using (2.24),

E[ log X(π)(T )]− log x =

= E
[ T∫

0

(ρ(t) + (µ(t)− ρ(t))π(t)− 1
2
π2(t)σ2(t))dt +

T∫
0

π(t)σ(t)d−B(t)
]

= E
[ T∫

0

{ρ(t) + (µ(t)− ρ(t))π(t)− 1
2
π2(t)σ2(t) + Dt+(π(t)σ(t))}dt

]
.(2.27)

Since π(t) is Et-measurable and Et ⊆ Ft we have

(2.28) Dsπ(t) = 0 for all s > t.

Therefore, by the chain rule for the Malliavin derivative

Dt+(π(t)σ(t)) = σ(t)Dt+π(t) + π(t)Dt+σ(t) = π(t)Dt+σ(t),

which substituted into (2.27) gives

(2.29) E
[
log X(π)(T )

]
− log x = E

[ T∫
0

{ρ(s) + β(s)π(s)− 1
2
σ2(s)π2(s)}ds

]
,

where

(2.30) β(s) := µ(s)− ρ(s) + Ds+σ(s).

Equation (2.31) can also be written

(2.31) E
[
log X(π)(T )

]
− log x = E

[ T∫
0

{ρ̂(s) + β̂(s)π(s)− 1
2
σ̂2(s)π2(s)}ds

]
,

where
ρ̂(s) = E[ρ(s)|Es]
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and similarly for σ̂, β̂, σ̂2. We can now maximise poinwise for each s with respect to π under
the integral sign. We obtain:

π∗(s)σ̂2(s) = β̂(s).

Summarizing the above we get the following result:

Theorem 2.12 a) Suppose that σ(t) 6= 0 for a.a. (t, ω) and

(2.32) E
[ T∫

0

β̂2(s)

σ̂2(s)
ds

]
< ∞ ,

where β(s) is defined in (2.29). Then the value function Φ of Problem 2.2 is

Φ(x) = log x + E
[ T∫

0

{
ρ(s) +

β(s)β̂(s)

σ̂2(s)
− σ2(s)

2

( β̂(s)

σ̂2(s)

)2}
ds

]
.

It is also equal to

(2.33) Φ(x) = log x + E
[ T∫

0

{
ρ(s) +

β̂(s)2

2σ̂2(s)

}
ds

]
< ∞.

b) Suppose that σ(t) 6= 0 for a.a. (t, ω) and that

(2.34) π̂(s) :=
β̂(s)

σ̂2(s)
∈ AE .

Then π∗(s) := π̂(s) is an optimal control for Problem 2.2.

c) Suppose there exists an optimal portfolio π∗ ∈ AE for Problem 2.2. Then

(2.35) π∗(s)σ̂2(s) = β̂(s).

Corollary 2.13 a) Suppose

(2.36) σ(s) is Fs-measurable for all s ∈ [0, T ].

Then

(2.37) Ds+σ(s) = 0 for all s ∈ [0, T ]

and hence

(2.38) β(s) = µ(s)− ρ(s).
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This gives, under the conditions of Theorem 2.12,

(2.39) π∗(s) =
µ̂(s)− ρ̂(s)

σ̂2(s)

b) In particular, if we assume that

(2.40) Et = Ft = Gt for all t ∈ [0, T ]

then we get the well-known result

(2.41) π∗(s) =
µ(s)− ρ(s)

σ2(s)

and

(2.42) Φ(x) = log x + E
[ T∫

0

{
ρ(s) + 1

2

(µ(s)− ρ(s)

σ(s)

)2}
ds

]
,

provided that

(2.43) E
[ T∫

0

(µ(s)− ρ(s)

σ(s)

)2

ds
]

< ∞.

Example 2.14 (Delayed noise effect)
Suppose Et = Ft and Gt = Ft+δ for some δ > 0. Let µ(s) and ρ(s) be bounded Fs+δ-
measurable and choose

σ(s) = exp(B(s + δ)); s ∈ [0, T ].

(See Example 1.4). Then Ds+σ(s) = σ(s) and hence the corresponding optimal portfolio is,
by Theorem 2.12,

(2.44) π∗δ (s) =
E[µ(s)− ρ(s) + σ(s)|Fs]

E[σ2(s)|Fs]
for δ > 0.

On the other hand, if Et = Ft = Gt (corresponding to δ = 0) then Ds+σ(s) = 0 and we know
by Corollary 2.13 that the optimal portfolio is

(2.45) π∗0(s) =
µ(s)− ρ(s)

σ2(s)
.

Comparing (2.44) and (2.45) we see that, perhaps surprisingly,

(2.46) lim
δ→0+

π∗δ (s) 6= π∗0(s).
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Similarly, if the corresponding value functions are denoted by Φδ(s) and Φ0(x), respectively,
we get

(2.47) lim
δ→0+

Φδ(x) = log x + E
[ T∫

0

{
ρ(s) + 1

2

(µ(s)− ρ(s)

σ(s)
+ 1

)2}
ds

]
6= Φ0(x).

We conclude that any positive delay δ in the information, no matter how small, has a
substantial effect on the optimal control and the value function.

3 The pure jump case (σ = 0)

Referring to Example 1.2 we now consider the market N (E ,G) given by

(bond price) dS0(t) = ρ(t)S0(t)dt; S0(0) = 1(3.1)

(stock price) dS1(t) = S1(t
−)[µ(t)dt +

∫
R

θ(t, z)Ñ(d−t, dz)]; S1(0) > 0(3.2)

where we assume that ρ(t), µ(t) and θ(t, z) satisfy the following conditions:

ρ(t), µ(t) and θ(t, z) are Gt - measurable, for all t ∈ [0, T ], z ∈ R(3.3)

θ(t, z) is bounded and Malliavin differentiable and Dt+,zθ(t, z) := lim
s→t+

Ds,zσ(t, z)(3.4)

exists for a.a. t, z and is bounded, where Ds,z denotes the Malliavin derivative

at s, z (see Definition 3.5)

E[
T∫
0

{|ρ(s)|+ |µ(s)|+
∫
R

(|θ(s, z)|+ |Ds+,zθ(s, z)|)ν(dz)}ds] < ∞, where ν is(3.5)

the Lévy measure of η(·), so that Ñ(dt, dz) = N(dt, dz)− ν(dz)dt

The equation (3.2) has a unique Gt-adapted solution S1(t); t ∈ [0, T ](3.6)

As before {Et}t∈[0,T ] and {Gt}t∈[0,T ] are given filtrations such that

(3.7) Et ⊆ Ft ⊆ Gt ⊆ F for all t ∈ [0, T ]

Definition 3.1 The set AE of admissible portfolios consists of all processes π(t) satisfying

14



the following conditions:

π(t) is Et-adapted(3.8)

π(t)θ(t, z) is Skorohod integrable with respect to Ñ(·, ·)(3.9)

(see Definition 3.4) and caglad.

π(t)θ(t, z) > −1 + ε for a.a. t, z (where ε > 0 may depend on π), and(3.10)

E[

T∫
0

∫
R

| log (1 + π(s)θ(s, z))|ν(dz)dt] < ∞

π(t)(θ(t, z) + Dt+,zθ(t, z)) > −1 + ε for a.a. t, z (where ε > 0 may depend(3.11)

on π), and

E
[ T∫

0

∫
R

| log(1 + π(t)(θ(t, z) + Dt+,zθ(t, z)))|ν(dz)dt
]

< ∞ .

Problem 3.2 Find Φ(x) and π∗ ∈ AE such that

(3.12) Φ(x) = sup
π∈AE

Ex[log X(π)(T )] = Ex[log(X(π∗)(T ))]

where X(π)(t) = X(t) is given by X(0) = x > 0 and

(3.13) dX(t) = X(t−)
[
(ρ(t) + (µ(t)− ρ(t))π(t))dt + π(t)

∫
R

θ(t, z)Ñ(d−t, dz)
]
.

The function Φ ≤ ∞ is called the value function and π∗ (if it exists) is called an optimal
portfolio for Problem 3.2.

Before studying Problem 3.2 more closely we review some mathematical background
about Malliavin calculus and anticipating calculus for jump diffusions. For proof and details
we refer to [DMØP1]. See also [DMØP2] for other, related applications.

First we recall the chaos expansion in terms of iterated integrals with respect to the
compensated Poisson random measure Ñ(dt, dz), originally due to [I]. (See also [L].)

Let λ denote Lebesgue measure on [0, T ] and let L2((λ × ν)n) be the space of all deter-
ministic functions f : ([0, T ]× R)n → R such that

‖f‖2
L2((λ×ν)n) :=

∫
([0,T ]×R)n

f 2(t1, z1, . . . , tn, zn)dt1ν(dz1) . . . dtnν(dzn) < ∞ .

If f is a real function on ([0, T ] × R)n we define its symmetrization f̃ with respect to the
variables (t1, z1), . . . , (tn, zn) by

f̃(t1, z1, . . . , tn, zn) =
1

n!

∑
σ

f(tσ1 , zσ1 , . . . tσn , zσn)
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where the sum is taken over all permutations σ of {1, . . . , n}. We say that f is symmetric if
f̃ = f and we let L̃2((λ×ν)n) denote the set of all symmetric functions in L2((λ×ν)n). Put

Gn = {(t1, z1, . . . , tn, zn); 0 ≤ t1 ≤ · · · ≤ tn ≤ T and zi ∈ R, i = 1, . . . , n}

and let L2(Gn) be the set of functions g : Gn → R such that

‖g‖2
L2(Gn) :=

∫
Gn

g2(t1, z1, . . . , tn, zn)dt1ν(dz1) . . . dtnν(dzn) < ∞ .

Note that
‖f‖2

L2((λ×ν)n) = n!‖f‖2
L2(Gn); f ∈ L̃2((λ× ν)n).

If f ∈ L2(Gn) we define its n-fold iterated integral with respect to Ñ(·, ·) by

Jn(f) =

T∫
0

∫
R

· · ·
t2∫

0

∫
R

f(t1, z1, . . . , tn, zn)Ñ(dt1, dz1) . . . Ñ(dtn, dzn)

and if f ∈ L̃2((λ× ν)n) we define

In(f) :=

∫
([0,T ]×R)n

f(t1, z1, . . . , tn, zn)Ñ⊗n(dt, dz) := n!Jn(f).

Then we have the following chaos expansion theorem:

Theorem 3.3 ([I], [L]) Every FT -measurable random variable F ∈ L2(P ) can be written

(3.14) F = E[F ] +
∞∑

n=1

In(fn) :=
∞∑

n=0

In(fn)

for a unique sequence of deterministic functions fn ∈ L̃2((λ × ν)n). Moreover, we have the
isometry

(3.15) E[F 2] = (E[F ])2 +
∞∑

n=1

n!‖fn‖2
L2((λ×ν)n).

Using this expansion theorem we can now define Skorohod integration and Malliavin
differentiation as follows:

Definition 3.4 Let φ(t, z, ω) : [0, T ]× R× Ω → R be a random field such that

E[φ2(t, z)] < ∞
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and
φ(t, z, ·) is FT -measurable, for all (t, z) ∈ [0, T ]× R.

Let

φ(t, z) =
∞∑

n=0

In(fn(·, t, z))

be the chaos expasion of φ(t, z, ·), as given by Theorem 3.3. Let f̃n(t1, z1, . . . , tn, zn, tn+1, zn+1)
be the symmetrization of fn(t1, z1, . . . , tn, zn, t, z) as a function of the n+1 variables (t1, z1),
(t2, z2), . . . (tn, zn) and (tn+1, zn+1) = (t, z). Suppose that

(3.16)
∞∑

n=0

(n + 1)!‖f̃n‖2
L2((λ×ν)n) < ∞ .

Then the Skorohod integral of φ with respect to Ñ is defined by

(3.17)

T∫
0

∫
R

φ(t, z)Ñ(δt, dz) =
∞∑

n=0

In+1(f̃n).

Note that

(3.18) E
[( T∫

0

∫
R

φ(t, z)Ñ(δt, dz)
)2]

=
∞∑

n=0

(n + 1)!‖f̃n‖2
L2((λ×ν)n)

so the Skorohod integral of φ belongs to L2(P ) if it exists. Moreover,

(3.19) E
[ T∫

0

∫
R

φ(t, z)Ñ(δt, dz)
]

= 0.

The Skorohod integral with respect to a Poisson random measure was first constructed
by Y. Kabanov [K1], [K2]. It is is an extension of the Itô integral in the sense that if φ(t, z)
is assumed to be Ft-measurable for all (t, z) ∈ [0, T ]× R, then the two integrals coincide:

(3.20)

T∫
0

∫
R

φ(t, z)Ñ(δt, dz) =

T∫
0

∫
R

φ(t, z)Ñ(dt, dz).

(See also [DØP, Prop. 3.2].)

Definition 3.5 Let F ∈ L2(P ) be FT -measurable, with the expansion

F =
∞∑

n=0

In(fn); fn ∈ L̃2((λ× ν)n).
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Suppose F ∈ D1,2, i.e.

(3.21) ‖F‖2
D1,2

:= (E[F ])2 +
∞∑

n=1

n n!‖fn‖2
L2((λ×ν)n) < ∞ .

Then we define the Malliavin derivative (or stochastic derivative) of F at (t, z) ∈ [0, T ]×R
by

(3.22) Dt,zF :=
∞∑

n=1

n In−1(fn(·, t, z)),

where In−1(fn(·, t, z)) means that we perform the n − 1 iterated integral with respect to the
first n− 1 variable pairs (t1, z1), . . . , (tn−1, zn−1) and put (tn, zn) = (t, z).

Using the isometry

(3.23) E
[ T∫

0

∫
R

(Dt,zF )2ν(dz)dt
]

=
∞∑

n=1

n n!‖fn‖2
L2((λ×ν)n) < ∞,

we see that if (3.22) holds, then Dt,zF exists for a.a. (t, z) ∈ [0, T ]×R with respect to λ× ν.
In the pure jump case the Malliavin derivative D = Dt,z is a difference operator, in the

sense that it satisfies the following product rule

(3.24) D(F ·G) = F ·DG + G ·DF + DF ·DG,

if both F and G are Malliavin differentiable random variables. (See [DØP, Lemma 3.9] and
[L].)

From this we get the following result:

Lemma 3.6 Let f : R → R be continuous and let F be a Malliavin differentiable random
variable. Then, with D = Dt,z,

(3.25) D(f(F )) = f(F + DF )− f(F ).

Proof. By (3.24) we get that

D(F 2) = 2F ·DF + DF ·DF = (F + DF )2 − F 2

and by induction
D(F n) = (F + DF )n − F n.

Hence (3.25) holds for all polynomials f and hence for all continuous functions f with
compact support, by the Weierstrass approximation theorem. The result then follows by a
limit argument, using the closedness of Dt,z. �

We now turn to the definition of a forward integral with respect to Ñ(·, ·). (Compare
with Definition 2.7.)
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Definition 3.7 ([DMØP1]) The forward integral of a random field φ(t, z) = φ(t, z, ω)
with respect to Ñ(·, ·) is defined by

(3.26)

T∫
0

∫
R

φ(t, z, ω)Ñ(d−t, dz) = lim
m→∞

T∫
0

∫
Km

φ(t, z)Ñ(dt, dz)

if the limit exists in probability. Here {Km}∞m=1 is an increasing sequence of compact sets in
R \ {0} such that

(3.27) R \ {0} =
∞⋃

m=1

Km and ν(Km) < ∞ for all m.

Just as in the continuous case (Lemma 2.8) we have

Lemma 3.8 Suppose that t → φ(t, z, ω) is caglad for a.a. z, ω with respect to ν × P and
that φ(t, z, ·) is Gt-measurable for all t ∈ [0, T ] and a.a. z with respect to ν. Moreover,
assume that η(t) is a semimartingale with respect to Gt. Then if φ is forward integrable with
respect to Ñ we have

(3.28)

T∫
0

∫
R

φ(t, z, ω)Ñ(d−t, dz) =

T∫
0

∫
R

φ(t, z, ω)Ñ(dt, dz),

where the integral on the right is the usual semimartingale integral.

Here is a relation between forward integrals and Skorohod integrals (compare with Lemma
2.9):

Lemma 3.9 ([DMØP1, Lemma 4.3])
If the forward integral of φ exists in L2(P ) then

T∫
0

∫
R

φ(t, z)Ñ(d−t, dz)

=

T∫
0

∫
R

Dt+,zφ(t, z)ν(dz)dt +

T∫
0

∫
R

(φ(t, z) + Dt+,zφ(t, z))Ñ(δt, dz),(3.29)

provided that
Dt+,zφ(t, z) = lim

s→t+
Ds,zφ(t, z)

exists and is integrable with respect to λ× ν.
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Lemma 3.10 Let φ be as in Lemma 3.9. Then

(3.30) E
[ T∫

0

∫
R

φ(t, z)Ñ(d−t, dz)
]

= E
[ T∫

0

∫
R

Dt+,zφ(t, z)ν(dz)dt
]
,

provided the integrals exist.

Finally we state an Itô formula for forward integrals with respect to Ñ(·, ·) (compare
with Theorem 2.11):

Theorem 3.11 ([DMØP1]) Let X(t) be a process of the form

(3.31) X(t) = x +

t∫
0

α(s)ds +

t∫
0

∫
R

θ(s, z)Ñ(d−s, dz)

and let f ∈ C2(R). Then

f(X(t)) = f(x) +

t∫
0

f ′(X(s))α(s)ds

+

t∫
0

∫
R

{f(X(s−) + θ(s, z))− f(X(s−))− f ′(X(s−))θ(s, z)}ν(dz)dt

+

t∫
0

∫
R

{f(X(s−) + θ(s, z))− f(X(s−))}Ñ(d−s, dz).(3.32)

provided that at least one of the integrals converges.

We now have the necessary mathematical machinery for solving Problem 3.2. First note
that if we apply the Itô formula for forward integrals (Theorem 3.11), we get that the solution
of equation (3.13) is given by

X(t) = x exp
[ t∫

0

{ρ(s) + (µ(s)− ρ(s))π(s)

+

∫
R

[log(1 + π(s)θ(s, z))− π(s)θ(s, z)]ν(dz)}ds

+

t∫
0

∫
R

log(1 + π(s)θ(s, z))Ñ(d−s, dz)
]
.(3.33)
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(See e.g. Example 1.2.2 in [ØS].) Hence, using Lemma 3.10 we get

E
[
log

X(T )

x

]
= E

[ T∫
0

{
ρ(s) + (µ(s)− ρ(s))π(s)

+

∫
R

[log(1 + π(s)θ(s, z))− π(s)θ(s, z)]ν(dz)
}

ds

+

T∫
0

∫
R

log(1 + π(s)θ(s, z))Ñ(d−s, dz)
]

(3.34)

= E
[ T∫

0

{
ρ(s) + (µ(s)− ρ(s))π(s) +

∫
R

[log(1 + π(s)θ(s, z))− π(s)θ(s, z)

+ Ds+,z log(1 + π(s)θ(s, z))]ν(dz)
}

ds
]

=: F (π).(3.35)

By Lemma 3.6 we get

Ds+,z log(1 + π(s)θ(s, z))

= log(1 + π(s)θ(s, z) + Ds+,z(π(s)θ(s, z)))− log(1 + π(s)θ(s, z))

= log(1 + π(s)(θ(s, z) + Ds+,zθ(s, z))− log(1 + π(s)θ(s, z))

= log
(
1 +

π(s)Ds+,zθ(s, z)

1 + π(s)θ(s, z)

)
(3.36)

Substituted into (3.35) this gives

F (π) := E
[ T∫

0

{
ρ(s) + (µ(s)− ρ(s))π(s)

+

∫
R

[log(1 + π(s)(θ(s, z) + Ds+,zθ(s, z)))− π(s)θ(s, z)]ν(ds)
}

ds
]
.(3.37)

We want to maximize the function

π → F (π); π ∈ AE .

Suppose that an optimal π∗ ∈ AE exists. Then for all bounded η ∈ AE there exists δ > 0
such that π∗ + rη ∈ AE for r ∈ (−δ, δ) and the function

f(r) := F (π∗ + rη); r ∈ (−δ, δ)
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is maximal for r = 0. Therefore

0 =f ′(0) = E
[ T∫

0

{
(µ(s)− ρ(s))η(s)

+

∫
R

[(1 + π∗(s)θ̃(s, z))−1θ̃(s, z)η(s)− θ(s, z)η(s)]ν(dz)
}

ds
]

(3.38)

where we have put

(3.39) θ̃(s, z) = θ(s, z) + Ds+,zθ(s, z).

Hence

T∫
0

E
[{

µ(s)− ρ(s) +

∫
R

[(1 + π∗(s)θ̃(s, z))−1θ̃(s, z)− θ(s, z)]ν(dz)
}

η(s)
]
ds = 0.

Since for each s the random variables η(s); η ∈ AE , generate the whole σ-algebra Es, we
conclude that, for all s ∈ [0, T ],

(3.40) E
[{

µ(s)− ρ(s) +

∫
R

[(1 + π∗(s)θ̃(s, z))−1θ̃(s, z)− θ(s, z)]ν(dz)
}∣∣Es

]
= 0.

This proves part a) of the following result:

Theorem 3.12 a) Suppose there exists an optimal portfolio π∗ ∈ AE for Problem 3.2. Then
y = π∗(s) satisfies the equation

E
[ ∫

R

θ(s, z) + Ds+,zθ(s, z)

1 + y(θ(s, z) + Ds+,zθ(s, z))
ν(dz)

∣∣Es

]
= E

[{
ρ(s)− µ(s) +

∫
R

θ(s, z)ν(dz)
}∣∣Es

]
; s ∈ [0, T ].(3.41)

b) Suppose

(3.42) θ(s, z) + Ds+,zθ(s, z) ≥ 0 for a.a. s, z

and that for all s there exists a solution

y =: π̂(s)

of equation (3.41). Suppose
π̂(s) ∈ AE .

Then π̂ is an optimal portfolio for Problem 3.2.
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Proof of b): If (3.42) holds, then the function F (π) given by (3.37) is concave. �

Example 3.13 (The Poisson process) Suppose η(t) is a compensated Poisson process.
Then the Lévy meassure ν(dz) is the point mass at z = 1 and (3.41) gets the form

(3.43) E
[ θ̃(s)

1 + yθ̃(s)

∣∣Es

]
= E[ρ(s)− µ(s) + θ(s, 1)|Es]

where

(3.44) θ̃(s) = θ(s, 1) + Ds+,1θ(s, 1).

Assume in addition that

(3.45) θ̃(s) is Es-measurable.

Then (3.43) has the solution

(3.46) y = π̂(s) = π∗(s) = E[ρ(s)− µ(s) + θ(s, 1)|Es]
−1 − (θ̃(s))−1,

provided that

(3.47) E[ρ(s)− µ(s) + θ(s, 1)|Es] 6= 0 and θ̃(s) 6= 0; s ∈ [0, T ].

Corollary 3.14 (Complete information case) Supppose

Et = Ft = Gt for all t ∈ [0, T ]

and that there exists an optimal portfolio π∗ ∈ AE for Problem 3.2. Then y = π∗(s) solves
the equation

(3.48)

∫
R

θ(s, z)

1 + yθ(s, z)
ν(dz) = ρ(s)− µ(s) +

∫
R

θ(s, z)ν(dz).

In the special case of Markovian coefficients this result could have been obtained by
dynamic programming.
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