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Abstract

In this thesis we investigate the difficulties associated with the prediction of
the behavior of turbulent flow in straight and helically coiled pipes, due to
their prevalence in real world scenarios. To simulate the turbulent flow, we
used Computational Fluid Dynamics with Large Eddy Simulation turbulence
models. Due to the requirements on the mesh from the numerical code and
turbulence models, we investigated which strategy for meshing of pipes provided
the most accurate result, as well as the parameters of importance in mesh
creation. To reduce the computational time needed for these simulations we
compared the accuracy between coarse meshes with wall models accounting
for small-scale phenomena, to meshes with a higher resolution where all scales
of motion are resolved. Furthermore, we studied the effect the choice of
turbulence model had on the development of turbulence in pipes. The results
were compared to data from literature to examine the difference in accuracy
between the techniques. The results from the aforementioned investigations
were extrapolated to helically coiled pipes, where three different configurations
were used to identify characteristics of turbulent flow within such geometries.
We used fully turbulent flow from the results of the pipe simulations to insert
accurate data to the inlet of the coils. The results showed a shift of the location
of highest velocity towards the outer-wall, with a low velocity region appear-
ing at the inner-wall. A spanwise pressure gradient was observed, inducing
a centrifugal force on the flow, which caused secondary flow phenomena to occur.

We found that the central meshing parameter for straight- and helically
coiled pipes was the skewness of the cells, and that a mesh with uniform size
and shape is important towards the walls. Using wall models on a coarse
mesh, gave satisfying results for a straight pipe, but may cause inaccuracies
in more complex flow scenarios in the case of a helical coil. Moreover, the
requirement of grid resolution from a straight- to helically coiled pipe seems
to be non-transferable due to the increased complexity of the distribution and
diffusion of turbulent kinetic energy.
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CHAPTER 1

Introduction

In both engineering and science, the motion and properties of fluids is an
important subject. In science, research into the mathematical formulation and
physical interpretation of fluid motion can be applied to a variety of fields.
From large off-shore wind parks, to the flow of blood in arteries. Furthermore,
being able to capture accurately how a fluid behaves, is crucial for making
design decisions in engineering, as the fluid can be the source of failure and
also give insight into the efficiency of the design.

A central aspect to fluid flow in many real world applications, is the
chaotic motion of turbulence. The irregular and highly complex fluid motion in
turbulent flow presents a challenge for the predictability of fluid flows as well
as the accuracy of measurements and computer simulations. Turbulence often
occurs in high velocity scenarios where smooth laminar flow breaks down due
to increased shear stress within the fluid, or due to obstacles in the flow field.
Turbulent flow features favorable characteristics such as increased mass and
heat transfer, as well as enhanced mixing of the fluid, which further increases
the need for predictability. These are favourable properties in a variety of
industrial applications such as chemical reactors and heat exchangers. One
such heat exchanger configuration which has interesting effects on turbulent
flow is helically coiled pipe heat exchangers.

Helically coiled pipes are used in a variety of applications, from medical
to nuclear-engineering, as outlined in the extensive report by Vashisth et al.
[1]. They are commonly used as both external, and internal heat exchangers
for pipes, tanks, and components in nuclear reactors. The compact structure
of a helical coiled heat exchanger makes it a suitable choice for applications
where space is limited, exemplified in Figure 1.1. Furthermore, it features a
much higher heat transfer coefficient than straight pipe heat exchangers [2].
This is due to the secondary flow induced by the centrifugal force induced by
the fluid moving through the helix, which causes the fluid to mix in a more
efficient matter compared to a straight pipe. These secondary flows are called
Prandtl’s secondary flow of the first kind, which superimpose counter-rotating
Dean vortices, first presented by W.R Dean in 1927 [3]. One other notable
property of helically coiled pipes is the laminarization of turbulent flow. This
was first shown experimentally in helical coils by Taylor in 1929[4], where it was
shown that turbulent flow entering a helix becomes laminar, and that the flow
in a helix stays laminar for a much higher Reynolds number than in a straight
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(a) Internal heat exchanger (b) External heat exchanger

Figure 1.1: Simplified helical heat exchangers for a tank. (a) shows an internal
configuration, and (b) shows an external configuration.

pipe [5] [4] [6]. Furthermore, Viswanath et. al. [5] showed that turbulent flow
entering a coil can become laminar inside the coil, while becoming turbulent
again downstream of a straight pipe outlet. This effect can be seen in Figure 1.2
where the dye injected in the top of the coil quickly diffuses, which indicates a
turbulent flow, however when injecting a secondary dye at the fourth coil, the
dye does not diffuse which indicates laminar flow. Viswanath et. al. [5] noted
that further downstream of the outlet, which is not pictured, the dye diffuses,
indicating that the flow has become turbulent.

Figure 1.2: Picture of the experiment indicating laminarization in helically
coiled pipes from Viswanath et. al.[5]. The dye injection at the top of the
coil quickly diffuses due to the turbulent flow, while the dye injection half
way through the coil does not diffusive before the straight pipe outlet section,
indicating laminar flow within the coil.

To study the turbulent motion within a helical coil or a straight pipe, experi-
ments and/or numerical simulations of fluid motion, called Computational Fluid
Dynamics (CFD), can be used. There have been numerous studies done on
turbulent flow in helical coils [5] [7] [6] and curved pipes [8] [9], but most have
been done experimentally. There are however also studies done numerically
[7] [10] [11], but they have either been performed using Reynolds Averaged
Navier-Stokes (RANS) turbulence models [7] [10], which are known to not be
robust for geometries with complex flow and turbulent decay [12] [13], or Direct
Numerical Simulation (DNS) [11] which can be prohibitively computationally
expensive.
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The chaotic motion of turbulent flow is hard to capture numerically, thus
have many mathematical models and techniques been developed for CFD.
Turbulent periodic flows in simplistic geometries such as a channel or a
backwards-facing step, are often used as a benchmark for testing and comparing
data in numerical simulations. This is especially apparent by the geometries
used in NASA’s "Turbulence Modelling Resource database" [14] and the pre-
valence of the channel geometry in literature. Pipes, although simplistic in
their design, are often not included in these studies, as the meshing techniques
involved may be more labour heavy, since many numerical codes perform
better on hexahedral cells which, depending on the code and numerical method
used, may not be able to account for the added numerical diffusion due to the
malformed cells in the pipe. This is due to the complexity of maintaining the
shape of a hexahedral cell, while not losing the curved wall of the pipe. As
pipes are directly applicable to real world geometries, it is of interest to see if
a high grade of accuracy on these types of geometries can be reached using a
Large Eddy Simulation (LES) turbulence model, while keeping the cell count low.

There have been performed studies on pipe-meshes for turbulent flows, most
notably from Martins et. al. [15] who performed a parametric study on 92
different meshes, from Ballesteros et. al. [16] who use three different types
of pipe meshes to validate against experimental data and from Hernandez et.
al. [17] who investigate the accuracy of three types of hexahedral meshes for
pipes. It is however important to note that these studies all use the Finite
Volume Method (FVM), as the form of meshing techniques vary widely between
numerical techniques and solvers. The common theme for pipe meshes created
for FVM is the splitting of the mesh into five separate parts, one being the core
of the pipe and the remaining four being created identical to form the outer
part of the pipe. There are many different ways to form this geometry, with
the most common having a rectangular cuboid as the core, often referred to as
a butterfly or O-grid type mesh as seen in Figure 1.3a [16] [17]. This type of
hexahedral mesh was shown to give the most accurate result when compared
to a polar, H-grid and unstructured grid using FVM [17]. Meshes created for
the spectral element method seem to often split the geometry into many more
parts [18] [19] as seen in Figure 1.3b where the mesh is split up into 12 parts.
Whereas meshes using the finite element method only use tetrahedral cells split
into one region for the viscous sub-layer and one for the inner-region, as in the
case of Yamamoto [11] depicted in Figure 1.3c.
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(a) Hexahedral O-grid Mesh.
(b) A quarter of the 12-part hexahedral
mesh from El Khoury et. al. [19]

(c) Pure tetrahedral mesh from Yamamoto [11]

Figure 1.3: Different types of pipe meshes. (a) shows a typical O-grid mesh
with five divisions with only hexahedral cells, (b) shows the pure hexahedral
mesh from El Khoury et. al. [19] which has 12 divisions, and (c) shows the
pure tetrahedral mesh from Yamamoto [11].

The optimal mesh geometry for a pipe using FVM is still not well documented
in literature. Employing more contemporary techniques such as automatic
generation and taking inspiration for meshes used in other numerical methods,
could give insight into the characteristics of an improved mesh geometry, building
on the findings from Hernandez et. al. [17], however for use with LES models,
where uniformity of cell size is a central metric for accuracy.

In this thesis we will investigate how we can optimize LES simulations in
complex flow scenarios, considering factors such as mesh strategy and resolution,
wall modeling accuracy, and the impact of complex geometries. We will use
the FVM based framework OpenFOAM (Open-source Field Operation And
Manipulation) from ESI Group [20] to first look at three different pipe mesh
geometries; one classical O-grid, one automatically generated and lastly a new
one which has a rounder central cuboid than the classic O-grid. We will look
at which mesh parameters have the most effect on the accuracy and their
ability to maintain cell uniform. The mesh that performs best out of the
three, will then be used for further study of the trade off between accuracy and
computational cost of coarse meshes created for simulations with wall models
and meshes without wall models that features a refinement region towards the
wall. Furthermore, we will compare two prevalent LES models to compare the
difference in performance for a geometry enclosed in walls such as pipes. The
results will be compared against DNS data generated with the finite element
method from Yamamoto [11], and DNS data generated with the spectral element

4



method from El Khoury et. al. The results from the best performing mesh
configuration will then be used as input data to simulate fully turbulent flow
within three different helically coiled pipes. We will investigate the effect the
geometry has on the turbulence within the coil, the effect of the centrifugal force
and the Dean vortices and other secondary flow phenomena. The findings will
be compared with literature where the same characteristics have been correlated
with the performance of helically coiled heat exchangers.
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CHAPTER 2

Theory of fluid mechanics and
turbulence modelling

2.1 Governing theory of fluid mechanics

The Navier-Stokes equation Equation (2.1) is the equation used to describe the
characteristics of fluid flow along with the continuity equation Equation (2.2).

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − dp

dxi
+ µ

∂2ui

∂xj∂xj
+ ρgi, (2.1)

∂ui

∂xi
= 0. (2.2)

Here ρ is the density, ui is a component of the velocity vector u⃗, t is time, gi

is the component of the body-force vector g⃗ which represents the acceleration
due to gravity or other external forces, p is the pressure and µ is the dynamic
viscosity coefficient.

The individual terms in Equation (2.1) are often referred to separately,
from left to right, as the transient term, the convective term, the pressure
gradient, the viscous term, and the bodyforces. If the fluid is incompressible
(i.e. constant density is assumed) and it is unaffected by external forces, we can
rewrite Equation (2.1) by dividing by the density and removing the external
body forces term to get the incompressible Navier-Stokes equation

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
. (2.3)

Here ν is the kinematic viscosity.

2.2 Turbulence modelling

One of the main areas of research in the fluid dynamics field, is the modelling
of turbulence. It emerges out of the need to find ways to handle the non-
linearity in the convection term in Equation (2.1) mathematically. Turbulence
modelling can be split into three main categories; RANS, DNS, and LES. As
seen in Figure 2.1, these three different methods give increasing resolution of
the turbulent structures when simulating a turbulent jet. While there exist
many more, such as Unsteady Reynolds Averaged Navier-Stokes Equations
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2.2. Turbulence modelling

and Detached Eddy Simulations, these three are the most prevalent ones and
represent the fundamental ideas on which most models are based.

Figure 2.1: Comparison of RANS, LES, and DNS from [21], showing the visual
fidelity of the result.

The RANS models are based on Reynolds Averaging [22] of Equation (2.1)
[13], where the transported quantity is split into its temporal mean and temporal
fluctuating components such that the apparent stresses, called Reynolds stresses,
from the fluctuating velocity components becomes the only term that requires
approximation from a mathematical model. These mathematical models vary
between applications.

DNS on the other hand, solves the Navier-Stokes equations directly, without
using any turbulence models [13]. DNS requires a very refined computational
domain, such that all the motions of the fluid are solved down to the smallest
scale. This makes DNS unfeasible for moderate to high Reynolds number
applications [23].

LES turbulence modelling is the midpoint between the two former methods
in terms of computational cost and accuracy. In LES turbulence modelling,
a filter is used to filter out turbulent eddies of a certain size. The filtering
process can either be explicit or implicit, with the latter being the most widely
used due to the reduced complexity. In implicit filtering the cutoff width is
calculated from a characteristic length of a computational cell. Typically as the
cubic root of the volume or the maximum cartesian displacement. The eddies
large enough to be resolved by the grid are calculated directly as in DNS, while
the eddies that get filtered out are calculated with different LES turbulence
models. The models account for the additional diffusion in the flow field due to
the transfer of energy from the resolved to the unresolved eddies. As a general
requirement, a mesh for LES should be sufficiently fine enough as to at least

7



2.2. Turbulence modelling

capture 80% of the energy-cascade [23], while the remaining 20% is accounted
for by a LES turbulence model.

Large eddy simulation

There are two methods of filtering in LES; Explicit filtering and implicit filtering.
Explicit filtering is often used to derive the LES equations [24], while implicit
filtering arises naturally in a computational domain where the eddies are smaller
than the cell size. Implicit filtering[25] is the most commonly used technique in
FVM codes for turbulence models where only one level of filtering is required.
The cutoff width ∆ = 3

√
Vcell raises naturally due to the formulation of the

fluxes when using FVM [26]. Filtering of a transported quantity ϕi gives

ϕi = ϕ̄i + ϕ′, (2.4)

where ϕ̄i is the resolved part and ϕ′ is the unresolved part. Implicit filtering of
the Navier-Stokes equations gives

∂ūi

∂t
+ ūj

∂ūi

∂xj
= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi

∂xj∂xj
+ ∂τij

∂xj
, (2.5)

∂ūi

∂xi
= 0, (2.6)

where
τij = uiuj − ūiūj , (2.7)

is the Sub-Grid scale Stresses (SGS) from the interactions of the unresolved
eddies that are filtered out. While these can be separated into resolved,
unresolved and cross-scale stresses [27], they are usually lumped together
in CFD codes using FVM [13]. The SGS tensor τij is modelled using the
Boussinesq eddy viscosity hypothesis[28] as

τij = −2νtS̄ij + 1
3τiiδij , (2.8)

where νt is the turbulent kinematic viscosity and S̄ij is the strain-rate tensor.
In numerical codes, the transfer of the kinetic energy from the resolved scale
to the sub-grid scale is introduced by the turbulent kinematic viscosity νt. To
model νt we are going to use the Smagorinsky model [29] and the Wall Adapting
Local Eddy-viscosity (WALE) model [30].

The Smagorinsky turbulence model

The Smagorinsky turbulence model was first proposed by Joseph Smagorinsky
in 1963 [29], and serves today as a basis for many SGS models. Smagorinsky
conceived the model to be used to model the relation between the large and
small scales in meteorological flows such as cyclones. The model assumes that
the eddies are isotropic, such that they can be represented with a characteristic
length l0 and velocity U0 to get the correct units for the kinematic viscosity as
m2s−1. Smagorinsky proposed this length to be a fraction of the filter size such
that l0 represents the size of an unresolved eddy that has the same amount

8



2.2. Turbulence modelling

of turbulent kinetic energy as if we were to take an average of the turbulent
kinetic energy of all the unresolved eddies in one cell. As this eddy is smaller
than the cell size, it is multiplied by a constant Cs ∈ ⟨0, 1⟩. This gives

l0 = Cs∆, (2.9)

where Cs is the Smagorinsky constant and ∆ is the filter size. The characteristic
velocity is calculated by the magnitude of the filtered strain rate tensor S̄ij
multiplied by

√
2, due to the result of the magnitude of the strain rate tensor,

such that the characteristic velocity is accounted for in all directions

U0 = Cs∆
√

2|S̄ij | = Cs∆
√

2S̄ijS̄ij . (2.10)

We then get the equation for the turbulent kinematic viscosity νt as

νt = (Cs∆)2
√

2S̄ijS̄ij . (2.11)

The value of Cs was first shown by Lilly analytically to be Cs ≈ 0.173[31], but
has since then changed to many different values depending on the author of the
paper[23] or the version of the CFD Software used.

The Wall Adapting Local Eddy-viscosity turbulence model

The WALE turbulence model [30] was chosen as the best turbulence model
for this thesis as it was conceived as an improvement over the Smagorinsky
[29] model for wall-bounded flows and was also shown to work well with the
employed wall-model library [32]. Since the Smagorinsky model estimates the
eddy-viscosity νt based on the local strain rate, νt is non-zero whenever there
is a velocity gradient present, but this should not be the case near walls where
the turbulent fluctuations are damped, causing νt to be zero. The WALE
model counteracts this by defining an operator L made up of both the rotation
tensor Ω̄i,j and the strain tensor S̄ij such that viscosity goes to zero at the
wall. This operator is constructed such that it is easily evaluated on any type
of computational grid.
In WALE, νt is modelled by

νt = (Cw∆)2 L. (2.12)

Here

C2
w = C2

s

⟨
√

2
(
S̄ijS̄ij

)3/2⟩
[S̄ijS̄ijL]

, (2.13)

where Cw is a model constant, Cs is the Smagorinsky constant [29] and

L =
(
W d

ijW d
ij

)3/2(
S̄ijS̄ij

)5/2 +
(
W d

ijW d
ij

)5/4 . (2.14)

Here W d
ij is the tensor

W d
ij = S̄ikS̄kj + Ω̄ikΩ̄kj − 1

3δij

[
S̄mnS̄mn − Ω̄mnΩ̄mn

]
. (2.15)
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2.2. Turbulence modelling

Turbulent kinetic energy in large eddy simulation

The turbulent kinetic energy (TKE) is a central parameter in LES. It is used
to calculate how much of the energy spectrum is captured, and thus can be
used to judge the validity of a LES simulation, as νt is essentially a parameter
to represent the transfer of energy from the resolved field, to the unresolved
field. Furthermore, an equation for the unresolved TKE is used to close the
last term on the right-hand side in Equation (2.7) as it is still unaccounted for.
The unresolved TKE can be calculated from τii recognizing that

ksgs = 1
2τii = 1

2(uiui − ūiūi). (2.16)

Additionally, the calculation of νt in CFD codes which has multiple turbulence
models are usually done with a one-equation eddy viscosity model [33]

νt = Ck∆
√

ksgs, (2.17)

where Ck is a constant, such that we can rewrite Equation (2.7) as

τij = −2Ck∆
√

ksgsS̄ij + 2
3ksgsδij , (2.18)

thus the model is closed if ksgs can be calculated.
The calculation of ksgs depends on the turbulence model used, as

Equation (2.17) must be correctly represented by its respective models. In the
Smagorinsky model, ksgs is calculated by an assumption of local equilibrium,
arriving at the equation for incompressible flows

ksqs = Ck

Cϵ
∆2|S̄ij |, (2.19)

where Cϵ is a constant. For the WALE model, ksgs is calculated by

ksgs =
(

C2
w∆
Ck

)2 [ (W d
ijW d

ij)3(
(S̄ijS̄ij)5/2 + (W d

ijW d
ij)5/4

)2

]
, (2.20)

thus giving the same equation as in Section 2.2. To calculate the mean total
TKE ktot we first split it into its resolved and unresolved part respectively. The
resolved part of the TKE kres is calculated by performing Reynolds averaging
on resolved velocity field such that

ūi
′′ = ⟨ūi⟩ − ūi, (2.21)

where ūi
′′ is the time-fluctuating component of the resolved velocity and ⟨ūi⟩

is the mean resolved velocity in time. By taking the mean of the fluctuating
component we can calculate the resolved TKE by

kres = 1
2 ⟨ūi

′′⟩2, (2.22)

and thus we get the total TKE as

ktot = kres + ksgs = 1
2 ⟨ūi

′′⟩2 + ⟨ksgs⟩. (2.23)
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2.3. Dimensionless numbers

Previously mentioned, the resolution of the mesh for implicit LES is
important as the filter width should reflect the remaining unresolved eddies.
Looking at the energy spectrum in wave number space for different turbulence
methods in Figure 2.2, we can see that for LES to accurately capture the flow
field, the amount of modelled TKE (ksgs), which is the area marked with "LES",
should be kept in the dissipation range to ensure that the model is not overly
diffusive.

Figure 2.2: Energy spectrum in wavenumber space for RANS, LES and DNS
[34]. The TKE is calculated by the integral of the curve, such that the area
under the curve represents the amount calculated.

2.3 Dimensionless numbers

The shear Reynolds number

In wall-bounded flows, such as pipes and channels, the viscous stress close to the
wall is dominant and is important to model accurately [23]. The most common
parameter used to describe its effect on the flow, and as a global parameter for
comparison in literature, is the shear Reynolds number

Reτ = uτ δ

ν
. (2.24)

Here uτ =
√

τw

ρ , where τw is the wall shear stress, is the shear velocity and δ is
the length scale, i.e. δ = R for a pipe. As the viscous length scale is δv = ν/uτ

[23], the shear Reynolds number describes the ratio of the lengthscale to that
of the viscous lengthscale.

The Dean number

The Dean number is a dimensionless number used to describe the secondary
flow in helical and curved pipes [3] which induces vortices called Dean vortices

De = Re

√
D

2Rc
. (2.25)

Here Re is the Reynolds number, D is the diameter of the pipe and Rc is the
radius of the coil.
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2.4. Numerical implementation

2.4 Numerical implementation

The Finite Volume Method in OpenFOAM

FVM is a way to discretize partial differential equations by splitting up the
computational domain into small control volumes and integrating over them
to get equations for the fluxes into and out of the control volume using Gauss
divergence theorem, which states that the a volume integral of the divergence
of a vector is equal to the sum of the fluxes on the volume [13]. From [35],
when this method is applied to Equation (2.1) and Equation (2.2), we get the
semi-discretized momentum equation

∫ t+∆t

t

(∂ui

∂t

)
P

VP +
∑

f

S⃗ · (u⃗ui)f + (∇p)P VP −
∑

f

νf S⃗ · (∇ui)f

 dt

=
∫ t+∆t

t

(SuVP + SpVP uiP )dt, (2.26)

and the discretized continuity equation∑
f

S⃗ · (u⃗ui)f = 0, (2.27)

where ui is the transported velocity, VP is the volume of the current cell P , S⃗ is
the face-area vector, and the right hand side of the equation is the source-terms.
Equation (2.26) is "semi-discretized" due to the first term being a temporal
derivative. It can be discretized by using a second order scheme the Backward
Differencing in time u such as the implicit second order accurate backward
scheme[35]

∂ui

∂t
=

3
2 un

i − 2un−1
i + 1

2 un−2
i

∆t
(2.28)

Here the index n represents the timestep. All transported quantities (exemplified
by ui in Equation (2.26)), can be spatially discretized by using different
numerical schemes such as the conservative second order central differencing
scheme

uw = uW + (xw − xW ) uP − uW

(xP − xW ) . (2.29)

Capital letters represents a cell-center while lower case represents a cell-face in
an one dimensional mesh, as depicted in Figure 2.3.

Figure 2.3: Diagram of a one dimensional mesh.

To solve the system of equations from Equation (2.26) through Equation (2.29),
the Pressure implicit with splitting of operator (PISO) [36] algorithm can be
used. The linear systems to be solved is set up by first defining Equation (2.26)

12



2.4. Numerical implementation

as a set of algebraic equations M [u⃗] [37] using the discretization schemes such
that

M [u⃗] = −∇p (2.30)

here
M [u⃗] = Au⃗ − H, (2.31)

where A and H is the diagonal and off-diagonal contributions of M [u⃗]
respectively. This gives the momentum correction equation

u⃗ = H
A

− 1
A

∇p. (2.32)

The volumetric flux (ϕ) corrector equation is given by

ϕ =
(

H
A

)
f

· S⃗ −
(

1
A

)
f

S⃗ · ∇pf . (2.33)

Substituting Equation (2.33) into Equation (2.27) we get the pressure equation

∇ ·

[(
1
A

)
f

∇p

]
= ∇ ·

(
H
A

)
f

. (2.34)

In OpenFOAM, PISO [36] is implemented as follows;

1. Initial values of ui, p and ϕ

2. Start of timestep

3. Apply boundary conditions

4. Solve the momentum equation in Equation (2.30)

5. Build A and H with the new u⃗

6. Solve the equation for the volumetric flux Equation (2.33)

7. Solve the pressure equation Equation (2.34)

8. Repeat steps 6 and 7 for the prescribed number of non-orthogonal
correction loops

9. Calculate a final momentum correction equation Equation (2.32)

10. Repeat from step 5 for the prescribed number of corrector loops

11. Advance timestep
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2.5. Wall-treatment in large eddy simulation

2.5 Wall-treatment in large eddy simulation

The concept of LES can be split up into many sub-categories, of which the
three overarching ones according to Pope [23], are LES with near-wall resolution
(WRLES), LES with near-wall modelling (WMLES), and very-large-LES. The
two former are the focus in this thesis. In WRLES the whole grid is fine enough
to resolve 80% of the energy spectrum, leading to regions of refinement towards
the wall in the inner layer Figure 2.4 where there is more turbulent kinetic
energy. On the other hand, in WMLES the grid resolution is fine enough to
resolve 80% of the energy spectrum away from the wall such that refinement
regions towards the wall are replaced by wall-models.

Figure 2.4: Plot of a turbulent boundary layer plotted with Law of the wall[38].

In industrial applications with moderate to high Reynolds number WRLES
is less feasible as the viscous length scale δv decreases with the the increase of
the Reynolds number as δv/δ = Re−0.88 where δ is the length scale of the flow
[23]. Chapman [39] estimated that the required grid resolution in the near-wall
region increases as Re1.76 for WRLES since it scales with δv. Newer findings
suggests that this increase is higher such that the resolution scales as Re17/9

[40]. WMLES on the other hand scales only with δ which again scales with the
grid spacing and filter width, making it independent of the Reynolds number
[23].

In LES, particularly using FVM, the requirement of a hexahedral grid with
somewhat uniform wall-units spacing increases the necessary cell count when
using an O-grid mesh. Wall-units, namely x+, y+ and z+, are a measure of
distance in viscous length scales as seen in Equation (2.38). To get around
these requirements, wall-modelling can be used. WMLES has much less strict
requirements for the geometry as it does not require a large amount of cells
in the boundary layer [23], which is beneficial for geometries enclosed in walls.
Cells can, and should, also be kept as isotropic is possible throughout the
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2.5. Wall-treatment in large eddy simulation

boundary layer. This reduces the cell count such that a much more coarse
grid can be used compared to DNS. In this thesis we are going to investigate
the difference in accuracy and cell count, between WMLES and WRLES in
OpenFOAM.

Wall-modelling

The creation of a single function used to represent the velocity profile in turbulent
boundary layers is a widely researched field [41]. It is based on dimensional
analysis of the flow field near a smooth impermeable surface which gives

⟨uz⟩
uτ

= f
(uτ y

ν

)
, (2.35)

and consequently
−⟨uzuy⟩

u2
τ

= g
(uτ y

ν

)
. (2.36)

Here ⟨uz⟩ is the time-averaged velocity of a stable turbulent flow in the z-
direction such that

⟨uz⟩ = uk+1
z − uk

z

∆t
, (2.37)

where k is the timestep index, and ∆t is the length of the timestep. uτ y/ν can
be represented as y+ and ⟨uz⟩/uτ as u+. This relation is valid for the inner-layer
in Figure 2.4. Due to the Reynolds stresses being negligible close to the surface,
for y+ < 3 according to Bradshaw and Huang [41] although Spalding [42] gives
a more comprehensive summary of the various validity ranges found in the
literature, integration of the viscous stress law τ = µ d⟨uz⟩

dy gives ⟨uz⟩ = τwy/µ,
leading Equation (2.35) to take the linear form

⟨uz⟩+ = y+. (2.38)

Differentiating and subsequently integration of Equation (2.35) gives the well
known logarithmic law of the wall, depicted as "log law" in Figure 2.4.

⟨uz⟩+ = 1
κ

ln
(
y+)+ C. (2.39)

Here κ is the von Kármán constant, and C is a constant. However,
Equation (2.39) poses problems for no-slip walls as it is undefined for y+ = 0,
as well as giving a non-zero profile at the boundary layer as seen in Figure 2.4
where the unmarked blue line represents the profile of a laminar boundary layer.
To improve on Equation (2.39), Spalding [42] presented a single equation for
the velocity profile as

y+ = ⟨uz⟩+ + e−κB

[
eκ⟨uz⟩+

− 1 − κ⟨uz⟩+ − 1
2(κ⟨uz⟩+)2 − 1

6(κ⟨uz⟩+)3
]

.

(2.40)
Here B is a constant. This equation has been showed to give more accurate
results for pipe- and flat-plate flow [43]. Therefore, the chosen wall model in
this thesis is Spalding’s algebraic law of the wall.

15



2.5. Wall-treatment in large eddy simulation

In OpenFOAM there is no extensive framework for wall-modelling in LES,
but due to it being open-source there exists a community made library for
OpenFOAM created by Timofey Mukha (https://github.com/timofeymukha/
libWallModelledLES) which can be compiled locally and is easy to use. The
package consists of multiple wall-modelling methods, as well as good docu-
mented results and best practices [32]. In the following section we will explain
how the employed wall model works with dominant flow in the z-direction.

The wall-model algorithm works by initially sampling values of the time-
averaged filtered velocity ⟨ūzP ⟩ and νP in the cell-center P in the LES-domain,
some wall-normal distance h from the wall-face, as illustrated in Figure 2.5.

Figure 2.5: Illustration of the wall model implementation from Mukha et.
al.[32].

These values are then used in the non-linear algebraic equation Equation (2.40)
to obtain values for ⟨ū+

z ⟩, by using the Newton-Raphson method to find the
roots

⟨uz⟩+
n+1 = ⟨uz⟩+

n − y+(⟨uz⟩+
n )

y+′(⟨uz⟩+
n )

. (2.41)

Here n is the iteration index. The wall shear stress τ̄w on the adjacent
wall face can then be calculated using the relation in the viscous sublayer
in Equation (2.38) such that

τ̄w =
(

ν⟨u+
z ⟩

y

)2

. (2.42)

This value for τ̄w is then used to find νt on the same wall face with

νt = τ̄w

(⟨ūzP ⟩/∆y)2 − ν. (2.43)

The wall function is defined as a boundary condition for νt on the wall patch,
while the sampling point is defined as a wall normal distance in an extra field
entry as a scalar h, making it applicable for any geometry.

Wall-resolved

LES without the use of wall-modelling techniques, requires the resolution of
the grid in the boundary layer to be fine enough to capture 80% of the TKE
from the smaller eddies near the wall such that viscous region is resolved, since
the peaks of important quantities like the Reynolds stress anisotropy is within
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2.5. Wall-treatment in large eddy simulation

the region 1 < y+ ≤ 20 [23]. y+ ≤ 1 is desired, with a gradual growth rate
GR to the outer domain of 1 ≤ GR ≤ 1.2. The growth rate is the increase in
cell height where for GR = 1.2 the height of each cell is 20% higher than the
preceding one, as illustrated in Figure 2.6.

Figure 2.6: Illustration of a resolved boundary layer mesh near the wall showing
the increase in cell height.

This poses a problem in circular geometries with a hexahedral mesh, as it
increases the aspect ratio of the cell requiring the mesh to be refined to the
point where it reaches DNS resolution near the wall, causing a trade off between
a high number of cells to keep uniformity and the correct filter size in the
transition region. For low Reynolds number flows in particular, the boundary
layer stretches further into the geometry, and as such, more attention to the
growth of the cell size is required due to the larger range of eddies. On the other
hand, for high Reynolds number flows the boundary layer shrinks in height
and thus the difference in cell size between the boundary layer and the outer
layer increases drastically. Due to the decrease of the viscous length scale, a
much higher resolution is required. This in turn requires a smaller timestep
for a stable and accurate simulation, due to the requirement that the Courant
number

Co = ui
∆t

∆xi
(2.44)

should be Co < 1 to achieve a stable simulation, and to resolve the time scale
for the dissipation of the small scales near the wall. Due to this increased
resolution requirement in time and space, WRLES in high Reynolds number
flows is still unfeasible for industrial applications due to the high computational
cost, as outlined by NASA in "CFD vision 2030 study: a path to revolutionary
computational aerosciences" [44].
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CHAPTER 3

Methods of meshing and
simulation

The creation of meshes in CFD can often be the most labour-heavy part of a
simulation, but the process is usually omitted from the final thesis and/or paper.
There is therefore little research or reasoning behind the different techniques
used for meshing pipes. To create a good hexahedral mesh in a circular geometry,
the cross-section should be split into different axisymmetric geometries such
that manual edge refinement can be applied. In this chapter we will first go
through some central meshing parameters, then the meshing techniques and
meshes used for simulating periodic turbulent flow in a pipe, before lastly going
through the meshes and geometrical parameters for turbulent flow in a helically
coiled pipe. The simulation setup will be explained at the end of each respective
geometry section.

3.1 Mesh-quality parameters

When creating the mesh, parameters such as non-orthogonality and skewness
should be taken into consideration as to not add too much numerical diffusion
or instabilities to the solution [35] [45].

Non-Orthogonality

The non-orthogonality NO of a mesh is a measurement of how much the angle
of the face-normal vector S⃗ deviates from the cell-center to cell-center vector ∆⃗.
Here P is the current cell-center, E is the adjacent cell-center, f is the center of
the face between the two cells, and k⃗ is the deviation vector between S⃗ and ∆⃗.

P E
S⃗

k⃗

∆⃗f

Figure 3.1: Diagram of the face-area vector.
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3.1. Mesh-quality parameters

Non-orthogonality is calculated by

NO = cos−1

(
∆⃗ · S⃗

|∆⃗||S⃗|

)
. (3.1)

Having a high non-orthogonality when using hexahedral cells (NO > 30◦) in
LES simulations is undesirable, as it increases the number of non-orthogonal
correction loops needed in solution algorithms for explicit calculation of k⃗ to
counteract the loss of accuracy and added numerical diffusion when calculating
the velocity gradient in the diffusion term in Equation (2.26) [13]. In an O-grid
type mesh, it is necessary to sacrifice orthogonal quality in some areas of the
mesh to ensure a smooth transition from the outer to the inner region. This
does not pose too much of a problem if the average non-orthogonality is kept
sufficiently low (NO < 20◦).

Skewness

The skewness SN of a mesh is the deviation vector between the center point
on a cellface and point on the face where the distance vector between the cell
centers intersects the face.

SN =
P⃗ f − S⃗·P⃗ f

S⃗·P⃗ E
∗ P⃗E

|P⃗ f − S⃗·P⃗ f

S⃗·P⃗ E
∗ P⃗E|

, (3.2)

using Figure 3.1 as reference, P⃗ f is the vector between the the current cell
center and the center of the face of the adjacent cell and P⃗E is the vector
between cell centers P and E. Due to the fact that the calculated quantity varies
at best linearly between cells when using FVM [46], and is taken as the average
value in the center node of the face, a mesh with high skewness (SN > 1) would
add too much numerical diffusion for the solution too be accurate. As seen
in both Equation (3.2) and Equation (3.1), the numerical diffusion added by
meshing errors disappears as the cells approach perfect rectangular cuboids [35]
[46].

Resolution

The resolution requirement of the mesh in LES is in-between the required
resolution for a RANS and DNS, as mentioned in Section 2.2. As the goal of
the LES is to resolve at least 80% of the energy spectrum, a parameter for
estimating the quality of the mesh is by the ratio of the resolved turbulent
kinetic energy kres to the total turbulent kinetic energy ktot. This can be
calculated as a scalar field η by

η = kres

ktot
. (3.3)
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3.2. Creation of mesh geometry for pipes

3.2 Creation of mesh geometry for pipes

Meshing strategies

We used three different mesh strategies to compare the accuracy and applicability
for LES simulations. One classic O-grid mesh depicted in Figure 3.2a, one
bell-curve type depicted in Figure 3.2b which was automatically created with a
commercial software without dividing the geometry, and finally, we propose a
new type of pipe mesh rarely seen in FVM literature depicted in Figure 3.2c
with a resolved boundary layer and without a resolved boundary layer depicted
in Figure 3.2d.

(a) Classic O-Grid (b) Bell-curve O-grid

(c) Wall-resolved mesh (d) wall-modelled mesh

Figure 3.2: Cross sectional view of 4 different mesh types. (a) shows a classic
O-grid mesh, (b) shows a automatically generated bell-curve O-grid, and (c)
and (d) show the new meshes created with resolved and unresolved boundary
layer respectively.

To create the new meshes we split the geometry into five parts. The boundary
layer was split into four regions, while the core region was created by four arcs
with their center outside of the core region as depicted in Figure 3.3. By
adjusting the radius of each of the arcs ri, the core can be adjusted to give a
more cubic shape if needed. This depends on the refinement parameter Na. The
most notable difference between this mesh and the other meshes in Figure 3.2,
is that the corners of the inner regions cause minimal distortion of the boundary
layer, which for low Reynolds numbers spans almost the entire radius of the
pipe.
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3.2. Creation of mesh geometry for pipes

Figure 3.3: Schematic of the extruded profile for the new mesh. Here Na is
the number of the divisions in the azimuthal direction and Ni and Nm is the
number of divisions between the turbulent boundary layer and the middle of
the pipe. R is the radius of the pipe, while r is the radius to the refinement
region near the wall.

Meshes used for validation

We settled on four different meshes to use for comparing against the DNS
data from Yamamoto [11] and El Khoury et. al. [19]. We created two meshes
for wall-modelling and two for wall-resolved simulations with two refinement
levels for each as depicted in Figure 3.4. The data for these meshes are shown
in Table 3.1. The nomenclature used for the four different meshes will be
represented by an abbreviation of the technique used, WM for WMLES and
WR for WRLES, and a final character will be added to represent the level
of refinement, C and F for coarse and fine respectively. WM-C denotes the
coarsest mesh used with wall models and is depicted in Figure 3.4a, WM-F
denotes a mesh with a higher resolution used with wall models, depicted in
Figure 3.4b. WR-C denotes the coarsest mesh used with a resolved boundary
layer as depicted in Figure 3.4c and WR-F denotes the mesh with the highest
resolution used with a resolved boundary layer depicted in Figure 3.4d. WM-C
and WR-C feature the same refinement in the azimuthal direction, but they
are created for WMLES and WRLES respectively. As seen in Figure 3.4, we
found that the core-region of the mesh has to be re-designed based on the
resolution of the mesh as the non-orthogonality and skewness in the corners
increase drastically with the resolution in the azimuthal direction, i.e. as Na in
Figure 3.3 is increased, if the core-region is not expanded.
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3.3. Simulation setup for periodic turbulent flow in a pipe

(a) The WM-C mesh (b) The WM-F mesh

(c) The WR-C mesh (d) The WR-F mesh

Figure 3.4: Cross-sectional view of the meshes used for comparing results from
WR- and WMLES to DNS data. (a) and (b) show the two different refinement
levels used for WMLES, while (c) and (d) show the two refinement levels used
for WRLES.

Case ncells NOmax NOavg SN y+

WM-C 93960 56.1 9.2 0.6 10.4
WM-F 172800 51 9.1 0.6 10.8
WR-C 139320 56.1 7.5 0.6 0.6
WR-F 421950 62.9 9.4 0.6 0.6

Table 3.1: Mesh parameters of the meshes used for comparing results from WR-
and WMLES to DNS data. ncells denotes the number of hexahedral cells in the
mesh, NOmax and NOavg the maximum and average non-orthogonality, SN
the skewness, and y+ is the height of the first cell in wall units

3.3 Simulation setup for periodic turbulent flow in a pipe

To develop a fully turbulent flow we performed a perturbation with a laminar flow
profile in the z-direction, and waves in the azimuthal direction using a modified
perturbation utility for pipes which can be found on github(https://github.com/
Jacobhudt/CFD-Tools/tree/master/OpenFOAM/perturbJ/OFv2106). We found
that, in agreement with Yamamoto [11], the perturbations were mesh-dependent
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3.3. Simulation setup for periodic turbulent flow in a pipe

and as such using interpolation between identical geometries can be beneficial
over performing many iterations of perturbations for each mesh to ensure the
development of turbulence.

To get fully developed flow in the pipe, we utilized cyclic boundary conditions
such that the master-side boundary B is mapped to the slave-side boundary A.
Due to the symmetrical features of a pure hexahedral mesh, no interpolation
between the patches were needed.

Figure 3.5: Side-view of the schematic for the periodic pipe.

We aimed to reach a fully developed turbulent flow with Reτ = 180 and
Reb = 5300 to compare the results with [19] and [11]. In OpenFOAM, periodic
flow is driven with a function called "meanVelocityForce" which applies a pressure
gradient force to drive the flow based a user-specified bulk velocity Ub0 .

dp

dz
= âp(|Ub0 | − ˆ|Ub|), (3.4)

where ap is the diagonal coefficient matrix [45] and the hat .̂ denotes the
volume-averaged calculated quantities. The pressure gradient is calculated and
updated each timestep. OpenFOAM prints the calculated pressure gradient
each timestep, and since we have the relation

dp

dz
= 2u2

τ

R
, (3.5)

from Yamamoto[11] the convergence of the global flow quantity Reτ can be
monitored during the run as

Reτ = R

ν

√
R

2
dp

dz
. (3.6)

We ran in total eight different simulations of the periodic pipe; six with
the WALE turbulence models on the meshes in Figure 3.4, Figure 3.2b and
Figure 3.2a, two with the Smagorinsky model on Figure 3.4a and Figure 3.4c.
We ran all the simulations using the PISO-algorithm [36] with three inner
correction loops and three correction loops for non-orthogonality. The boundary
conditions for the pipe are outlined in Table 3.2. The boundary conditions at
the wall was set to the no-slip condition (i.e. zero velocity at the boundary
face) for the velocity, and zero gradient for the pressure and, νt except for the
wall modelled cases where the boundary condition was set to Spalding’s Law of
the wall, explained in Section 2.5.
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3.3. Simulation setup for periodic turbulent flow in a pipe

Variable Inlet (A)Outlet (B) Wall
u⃗ Cyclic Cyclic No-Slip
p Cyclic Cyclic Zero gradient
νt Cyclic Cyclic Spalding’s Law of the wall / Zero gradient

Table 3.2: Boundary conditions for the periodic pipe. Spalding’s Law of the
wall was used for the wall-modelled simulations, while zero gradient was used
for the wall-resolved simulations.

The numerical schemes used are outlined in Table 3.3. Central difference was
used to discretize both the gradient and divergence terms due to it being second
order accurate and non-diffusive, while the temporal term was discretized with
a second order backward scheme. A full corrector was applied to the laplacian
in order to reduced any errors induced by areas with high non-orthogonality.

Term Scheme
temporal backward
gradient linear
divergence linear
laplacian corrected

Table 3.3: Numerical schemes for the periodic pipe. The temporal term is
discretized with a second order backwards differencing scheme, and both the
gradient and divergence were discretized by second order linear interpolation
i.e. central differencing. The laplacian scheme is corrected using multiple
non-orthogonality correction loops.
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3.4. Meshing of helically coiled pipes.

3.4 Meshing of helically coiled pipes.

To simulate turbulent flow in helically coiled pipes, we swept the cross-section
depicted in Figure 3.3 along a helical path according to three of the specifications
from Yamamoto [11]. The geometry was made using Autodesk Fusion 360,
which has a coil-generator built in, giving the user a good starting point for
sweeping of different profiles. We made some design changes at the outlet, as the
CAD employed by Yamamoto reportedly were limited in that the outlet could
not be extended in the normal direction of the coils cross section. Furthermore,
we chose to refrain from using an extended pipe at the beginning of the pipe
and we instead incorporated a small jointing area for C1, which facilitated a
smooth and controlled transition at the inlet. In the schematic of C3 Figure 3.6,

Figure 3.6: Schematic of the longest coil, C3. The top left picture shows a
side-view of the coil and the length of the straight outlet section, the top right
picture shows a cross-sectional view of the coil with the measurement points for
the pitch and the total height. The bottom picture shows a top-view of the coil
where the radius of the coil Rc is the distance from the center point of the coil
to the center point of the cross-section.

one can see the different geometrical parameters summarized in Table 3.4. The
pitch P , which is the distance between the center point of the coiled pipe to the
centerpoint in the proceeding revolution, depicted in Figure 3.6, is used with
the radius of the coil Rc, which is the distance from the center of the coil to
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3.4. Meshing of helically coiled pipes.

the centerline of the coiled pipe, to calculate both the curvature

κ = Rc

R2
c + P 2

4π2

, (3.7)

and the torsion
τ = P

2π(R2
c + P 2

4π2 )
. (3.8)

In Table 3.4 Rc, P , κ and τ are nondimensionalized by the radius of the
pipe R. The torsion and curvature of a helix were highlighted as important
parameters by Yamamoto [11] due to their applicability in Biofluid mechanics
as the geometry of cerebral arteries can be classified by similar parameters.
These parameters are also used in literature for characterization of helical coils
and similar curved geometry.

Case nrev Rc P κ τ ncells

C1 1 3 10 0.260 0.191 346 608
C2 2 3 5 0.311 0.105 550 188
C3 3 3 3.33 0.323 0.0572 744 372

Table 3.4: Geometrical data for the helical coils normalized with the radius of
the pipe R. nrev is the number of revolutions of the coil, Rc is the radius of the
coil, P is the pitch, κ is the curvature, τ is the torsion and ncells is the number
of cells.

The construction of the three meshes used in this study followed a systematic
approach involving face-matching the inlet to the outlet and subsequently
performing a sweeping operation across the entire computational domain using
hexahedral cells. This mesh generation technique aimed to ensure geometric
conformity and consistency throughout the domain. The resulting meshes,
depicted in Figure 3.7, exhibit distinct characteristics that are crucial for
capturing the intricate flow phenomena within helically coiled pipes using LES
turbulence models with a FVM code. The face-matching facilitated the creation
of well-matched inlet and outlet boundaries as well as a consistent cross-section
in line with Figure 3.6, enabling a smooth and continuous flow transition
throughout the computational domain based on the results from the mesh study
in Section 3.2. The subsequent sweeping operation, performed using hexahedral
cells, facilitated the creation of structured meshes with regular cell shapes.
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3.5. Simulation setup for the helically coiled pipes

(a) C1 (b) C2

(c) C3

Figure 3.7: The three helical coil geometries used in the simulations.

3.5 Simulation setup for the helically coiled pipes

The simulation setup consisted of mapping the velocity and other relevant
flow data obtained from the inlet section of the WM-C mesh, as illustrated
in Figure 3.5, once a fully developed flow state was achieved. At each time
step, the data was sampled, leveraging the equal-faced configuration of the
meshes, thus obviating the need for interpolation between the two faces. In
OpenFOAM, this particular type of boundary condition, wherein sampled data
is mapped or interpolated to the boundary at each time step, is defined as
the boundary condition "timeVaryingMappedFixedValue". The pressure at the
outlet was set to zero. All boundary conditions are summarized in Table 3.5. To
accurately account for the flow characteristics near the walls, wall models were
employed based on the insights obtained from the pipe simulations in Section 3.2.
This enhanced the computational efficiency and alleviated the computational
burden associated with resolving the near-wall boundary layer which would
have drastically increased the cell count. The simulations were run with the
PISO-algorithm [36] using three corrector loops and three non-orthogonality
corrector loops.
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3.5. Simulation setup for the helically coiled pipes

Variable Inlet Outlet Wall
u⃗ Mapped value Zero gradient No-Slip
p Zero gradient Fixed value: 0 Pa Zero gradient
νt Mapped value Zero gradient Spalding’s Law of the wall

Table 3.5: Boundary conditions for the three coil configurations. Spalding’s
Law of the wall was used for wall, the pressure at the outlet was set to zero,
and the sampled data from the WM-C mesh was used as the Inlet condition.

The numerical schemes used for the three coils are outlined in Table 3.3.
The pipe and the coils were discretized with the same numerical schemes,
with central differencing for the gradient and divergence terms, second order
backward for the temporal term and a fully corrected scheme for the laplacian
term.

Term Scheme
temporal backward
gradient linear
divergence linear
laplacian corrected

Table 3.6: Numerical schemes for the three coils. The temporal term is
discretized with a second order backwards differencing scheme, and both the
gradient and divergence were discretized by second order linear interpolation
i.e. central differencing. The laplacian scheme is corrected using multiple
non-orthogonality correction loops.
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CHAPTER 4

Results and discussion

In this chapter we will go through the results in three different sections. Firstly,
we will present and discuss the results from the mesh study performed, and
which features affect the solution, by examining the time-averaged wall shear
stress. Secondly we will look at the results from the simulations of the four
different cases summarized in Section 3.2. Here, we will see the effect using
the WALE or Smagorinsky model has on the solution, how the wall modelled
and resolved meshes compares to the DNS data, and how well they resolve
turbulent structures along the wall. Lastly, we will examine the result from the
simulation done on the three different helically coiled pipes. How the velocity
field and pressure distribution differs to that of a straight pipe, the effect the
induced spanwise pressure gradient has on the flow, how the turbulent kinetic
energy is affected in a helical coil and how it correlates with the torsion and
curvature, as well as the appearance of Dean vortices in both the mean and the
instantaneous flow.

4.1 Impact of mesh strategy on the solution

In this section, our primary focus will be on the examination of mesh-induced
errors and the profound influence of mesh strategy on the numerical solution.
Particular attention will be directed towards the bell-type mesh illustrated in
Figure 3.2b, and the WM-C mesh depicted in Figure 3.4a. By examining the
temporal mean of the results, we seek to gain comprehensive insights into the
inherent challenges and advantages associated with each configuration, thereby
shedding light on the impact of mesh selection on the accuracy and robustness
of the computational results when using FVM for LES.

Streaks in the wall shear stress

The limitations and discrepancies in various meshing techniques for low Reynolds
number flows become particularly apparent on the estimation of wall shear
stress. This disparity is particularly noticeable when comparing the outcomes
obtained from the bell-curve type mesh, which is generated automatically by
a commercial meshing software, against those from the WM-C mesh, due to
the difference in uniformity in the boundary layer. It should be noted that the
reported wall shear stress is in effect divided by the density and thus has the
units m2/s2.
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4.1. Impact of mesh strategy on the solution

In Figure 4.1a, distinct streaks can be observed in the distribution of the
time-averaged wall shear-stress, exhibiting a clear adherence to the geometric
features of the mesh. Thin streaks align with the corners of the inner cuboid,
while wider streaks align with the sides of the cuboid. Conversely, Figure 4.2
displays a wall shear stress pattern that lacks any discernible adherence to the
geometrical aspects of the mesh. It is noteworthy that similar streaks are not
observed in the conventional O-grid, which can be found in Appendix A.

(a) Streaks in the time-averaged wall shear
stress in the bell-curve pipe mesh.

(b) Close up picture of the the wall shear
stress in the bell-curve mesh illustrating
the geometric specific pattern.

Figure 4.1: Streaks in the time-averaged wall shear stress in the bell-curve mesh.
(a) shows that the streaks in the whole domain, while (b) shows a close-up of
the streaks which aling with the corner of the inner cuboid.

Figure 4.2: Streaks in the time-averaged wall shear stress in the WM-C mesh.
The streaks have a randomly distributed pattern of streaks of the wall shear
stress.
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4.1. Impact of mesh strategy on the solution

Looking at the mean values of the time-averaged wall shear stress in Table 4.1,
where the analytical value is calculated from a shear Reynolds number of
Reτ = 180, we see that the bell-curve shows better performance than that of
the O-grid which has the highest error over all. Both WR-C and WM-C showed
improved performance over the two aforementioned meshes.

Case τw [m2/s2] Error[%]
Analytic 0.002916 −
Bell-curve 0.002506 14.05
O-grid 0.002349 19.44
WR-C 0.002535 13.04
WM-C 0.002974 2.05

Table 4.1: The domain-averaged values of the time-averaged wall shear stress in
five different meshes. The analytical value is calculated from the target shear
Reynolds number Reτ = 180, with the error reported in absolute percentage.
The bell-curve shows a more accurate prediction when looking at the mean
value than the O-grid, which hides the local inaccuracies in the bell-curve from
the visual representation.

The uneven distribution of the turbulent kinetic energy

To further emphasize the impact of the chosen mesh strategy we will briefly
look at the distribution of time-averaged TKE in all four meshes to see the
impact of non-uniform cells in the boundary layer. The TKE was sampled along
the red and yellow line depicted in Figure 4.3.

Figure 4.3: Lines used for sampling the TKE in bell-curve, O-grid, WR-C and
WM-C meshes.

Presented in Figure 4.4, we see that the TKE in the bell-curve and O-grid is
impacted by the deformed boundary layer, hinted to by the results from the
wall shear stress, while WM-C and WR-C are impacted to a much less extent.
The TKE in the bell-curve, depicted in Figure 4.4a, and the O-grid, depicted in
Figure 4.4b, are underestimated in the area of the mesh stretching from the
corner of the inner cuboid, while WM-C and WR-C show an even distribution
of TKE.
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4.1. Impact of mesh strategy on the solution

(a) TKE in the O-grid mesh (b) TKE in the bell-curve mesh

(c) TKE in the WR-C mesh (d) TKE in the WM-C mesh

Figure 4.4: Sampled TKE in the four different meshes. The dashed line (- -)
is the sampled TKE from the wall to center of the pipe through the corner of
the central cuboid, while the filled line (-) shows the the TKE sampled along a
line from the wall to the center of the pipe through the middle of a side of the
central cuboid. Both the bell-curve (a) and the O-grid (b) show reduced TKE
due to the non-uniformity of the boundary layer.
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4.1. Impact of mesh strategy on the solution

Skewness and non-orthogonality

Upon further inspection of the skewness and non-orthogonality, we gain further
insight into which of the mesh-quality parameters effected the solution. Looking
at the skewness value of the meshes in a cross-section of the pipe in Figure 4.5,
shows that the region of high skewness in the bell-curve mesh, depicted in
Figure 4.5a, is located in streaks which follow the corner of the inner cuboid
towards the wall. The skewness in the WM-C mesh, depicted in Figure 4.5b,
shows high values at the cells in the corners of the inner cuboid, while streaks
of low skewness extends from the corners towards the wall. Lastly, the skewness
in the O-grid, depicted in Figure 4.5c, shows similar behavior to that of the
WM-C mesh, where there are regions of high skewness at the corners of the
inner cuboid, with streaks with low skewness stretching towards the wall.

(a) Skewness in the bell-curve type mesh. (b) Skewness in the WM-C mesh.

(c) Skewness in the O-grid mesh.

Figure 4.5: Skewness in three different meshes scaled by the same range. (a)
shows the increased skewness in the bell-curve mesh extending from the inner
cuboid, (b) and (c) show the reduced skewness in WM-C mesh classic O-grid
mesh respectively.
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4.1. Impact of mesh strategy on the solution

The values of the non-orthogonality in the bell-curve, WM-C and O-grid
mesh is depicted in Figure 3.1, in a cross-section of the pipe. The bell-curve
shows overall to exhibited low values for the non-orthogonality although cells
with higher non-orthogonality are located outside the corners of the inner cuboid
which extends towards the wall. In the WM-C mesh, depicted in Figure 4.6b,
we see high values of non-orthogonality within the corners of the inner cuboid,
extending towards the center of the pipe. A similar pattern can be observed in
the non-orthogonality of the O-grid, where there is high non-orthogonality in
the corners of the inner cuboid which extend towards the center of the pipe.

(a) Non-orthogonality in the bell mesh. (b) Non-orthogonality in the WM-C mesh.

(c) Non-orthogonality in the O-grid mesh.

Figure 4.6: Non-orthogonality in three different meshes scaled by the same range.
(a) shows that the overall non-orthogonality is lower than in the proceeding
configurations, while it has higher non-orthogonality in the boundary layer. (b)
and (c) show that the non-orthogonality is reduced in the boundary layer while
it is far greater in the inner cuboid compared to (a).
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4.1. Impact of mesh strategy on the solution

Discussion of the impact of mesh geometry on the solution

Comparing the results from the wall shear stress in Figure 4.1 and Figure 4.2,
we saw that the bell-curve exhibited geometric specific streaks in the wall
shear stress, while the wall shear stress in both the O-grid (Appendix A)
and the WM-C mesh showed a random distribution of the streaks, which
aligns with the expected behavior. This phenomenon can be attributed to
the low Reynolds number characterizing the flow within the pipe, resulting
in an extended boundary layer that spans a considerable portion of the pipe
radius. Consequently, achieving uniformity in the boundary layer becomes
crucial. Illustrated in Figure 4.4, it appears that bell-curve and O-grid meshes
may not offer an optimal geometry for these specific flow conditions, as the
TKE was underpredicted in the cells stretching out from the corner of the inner
cuboid. Distortion of the boundary was present in both cases, while the uniform
boundary layer of WM-C and WR-C shows good agreement between the two
sampled regions.

Considering this behavior, it was deemed essential to visually inspect the
wall shear stress rather than solely relying on the average values reported by
the OpenFOAM at each time step, which were used to monitor the friction
Reynolds number Reτ in Equation (3.6). This approach was adopted due to
the imposed pressure gradient enforced by OpenFOAM, as the reported average
value, while accurate, has the potential to conceal these unphysical results. This
is outlined in Table 4.1, where the bell-curve showed improved performance
over the O-grid when looking at the average value of the time-averaged wall
shear stress. By visually examining the wall shear stress distribution, a more
comprehensive assessment of the simulation accuracy can be attained, providing
valuable insights into potential irregularities or inaccuracies in the flow solution
even though the mean value implicates better performance.

When further inspecting the skewness and non-orthogonality, as elaborated
upon in Section 3.2, it becomes apparent that the streaks observed in Figure 4.1
can be attributed to the high skewness values within the boundary layer. In
Figure 4.5a, the region characterized by the highest skewness extends from
the corner of the inner cuboid towards the wall, thereby aligning with the
streaks evident in the wall shear stress distribution. Conversely, in Figure
Figure 4.5b and Figure 4.5c, the most pronounced skewness values are confined
to the corners of the inner cuboid, accompanied by streaks of cells exhibiting
approximately a three fold reduction in skewness that extend outward towards
the wall.

The non-orthogonality shows again that there is a distortion in the cells
stretching outwards from the inner cuboid, depicted in Figure 4.6a. However,
the non-orthogonality overall is much lower than what it is in the employed
mesh in Figure 4.6b and in the O-grid in Figure 4.6c, which could effect the
accuracy of the simulation within the inner region in these meshes compared
to Figure 4.6a. Nonetheless, the increased non-orthogonality in the boundary
layer in the bell-curve mesh compared to the two other meshes may also
be a contributing factor to the observed streaks following the geometrical
features of the mesh, as the other two do not feature any discernable values of
non-orthogonality outside the inner cuboid.
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4.1. Impact of mesh strategy on the solution

The skewness and non-orthogonality mainly affects the solution in the
form of diffusion as elaborated upon in Section 3.2. Numerical diffusion from
high non-orthogonality can be reduced by using the extra correction loops
available in OpenFOAM for the PISO-algorithm [36] as it only raises as an
error in the diffusion term in Equation (2.26) [35]. The error from the skewness
on the other hand, affects each of the face integrals [35] as the value of the
transported quantity has to be interpolated from the value of the face to the
cell centers. Since skewness is a measure of the deviation between the location
of the face center and the calculated to position, it has to be corrected using
specialized numerical schemes which are sparsely documented and should be
instead corrected on a mesh-level.
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4.2. Results for periodic turbulent flow in a pipe

4.2 Results for periodic turbulent flow in a pipe

In this section, we will analyze the results obtained from the simulations
conducted on the pipe geometries outlined in Table 3.1 and visualized in Figure
3.4. The primary objective is to compare the accuracy of the wall treatment at
low Reynolds numbers and examine their agreement with the high-fidelity DNS
data reported by Yamamoto [11] and El. Khoury et. al. [19]. Additionally,
we will conduct a brief comparison of the performance of the widely used
Smagorinsky model and the improved WALE model in transitional flow.

Comparison of Smagorinsky and WALE

To quantify the difference in performance of these two models on transitional
flow, we ran four simulation; two on WM-C and two on WR-C. As previously
mentioned in Section 2.2, the Smagorinsky model has been noted to exhibit
over-diffusive tendencies in certain geometrical configurations [30]. Hence, it
was of interest to look at how each model handles transitional flow scenarios,
particularly during the transition from laminar to turbulent flow using perturbed
velocity profiles. In Figure 4.7 the mean and instantaneous velocity profile of
the velocity after 350,000 timesteps is depicted. In both simulations ran with
Smagorinsky (plotted with the red line) using WR- and WMLES we can see
that both the instantaneous and mean velocity profile overlap, exhibiting a
parabolic profile, which is a characteristic of laminar flow. The simulations ran
with the WALE model (plotted with the black line) on the other hand, show
a flat mean velocity profile, and a jagged instantaneous velocity profile which
indicates turbulent flow. The figure shows that the Smagorinsky model appears
more dissipative than the WALE model.

(a) WALE and Smagorinsky in the WR-C
mesh.

(b) WALE and Smagorinsky in the WM-C
mesh.

Figure 4.7: Velocity profiles of the mean (-) and the instantaneous (- -) colored
by black for WALE, and red for Smagorinsky. (a) shows the velocity in the
WR-C mesh after 350,000 timesteps, while (b) shows the velocity in the WM-C
mesh. In both (a) and (b) the perturbations in the Smagorinsky diffused out,
leaving an overlapping laminar profile for the mean and instantaneous velocity.
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4.2. Results for periodic turbulent flow in a pipe

Global flow quantities

The computed global flow quantities, namely Reτ and uτ /Ub, are reported along
with their corresponding errors, which are expressed as the absolute percentage
deviations from the target values obtained from El Khoury et al. [19].

In Table 4.2 we see that, when using the shear Reynolds number as a
metric for examining the performance, the WM-C mesh shows the lowest error
and increasing resolution leads to an increase in error, as is evident from
the increase in error in WM-F. When the mesh resolution is increased using
a resolved boundary layer, there is a subsequent decrease in the error. In
the wall-modelled simulations, the target value is overpredicted, while it is
underpredicted in the wall-resolved simulations.

Case Reτ [−] Error[%]
El Khoury et. al 180 −
WM-C 181.84 1.02
WM-F 186.13 3.41
WR-C 167.85 6.75
WR-F 174.30 3.17

Table 4.2: Absolute error in percentage in the shear Reynolds number in the
four different simulations when compared to the target value from El Khoury
et. al. [19]. The simulations with wall models show an overprediction of the
target value, while the resolved simulations show an underprediction. WM-C is
overall the most accurate using this metric.

Looking at the error in the value obtained for the normalized shear velocity,
we see similar behavior to that of the result from the shear Reynolds number.
This is due to the fact that the shear Reynolds number is a function of the
shear velocity, seen in Equation (2.24). The error increases when the resolution
is increased for meshes using wall modelling, and the error decreases with the
increase of resolution in meshes using a resolved boundary layer. The WM-C
mesh also exhibited the lowest error in this metric.

Case uτ /Ub[−] Error[%]
Khoury et. al 0.0683 −
WM-C 0.0693 1.46
WM-F 0.0709 3.81
WR-C 0.0635 7.03
WR-F 0.0659 3.55

Table 4.3: Absolute error in percentage in the normalized shear velocity in the
four different simulations when compared to the target value from El Khoury
et. al. [19]. The simulations with wall models show an overprediction of the
target value, while the resolved simulations show an underprediction. WM-C is
overall the most accurate using this metric.
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4.2. Results for periodic turbulent flow in a pipe

Mean statistics

This section presents an extensive analysis of mean statistics in the four different
cases, comparing the results with those obtained by Yamamoto [11] and El
Khoury et. al. [19]. The statistical quantities are plotted in a logarithmic-
linear representation, with the wall-normal distance presented in wall units
(1 − r)+ on the x-axis. The wall-modeled data are depicted using dots and
lines to better visualize the coarser resolution in the boundary layer of the
wall-modelled simulations compared to the wall-resolved ones. The velocity
profiles are normalized to u+

i = ui/uτ , where i = z, t, r, and the Reynolds stress
is normalized as < uzur >+=< uzur > /u2

τ . Lastly we will briefly examine the
overall mean- and fluctuating velocity profiles.

The normalized mean axial velocity profile in Figure 4.8 shows the difference
in the results for the normalized axial velocity in the boundary layer of the
pipe. The plot is split into three different regions; The Viscous Sublayer, the
Buffer Region and the Log-law region, in accordance with the plot of a turbulent
layer in Figure 2.4. The Viscous Sublayer is the region where there is a linear
relationship between the quantities such that u+

z = (1 − r)+. The log-law region
is the region where the velocity profile is logarithmic and the buffer region is
the overlap region between the two.

Looking at the results for the simulations done with wall models, we see
that both levels of refinement deviate from the target data in the buffer region,
while WM-C shows an accurate representation in the log-law region, WM-F
shows an underprediction in both regions. The two wall-resolved simulations
overpredict the result half-way through the buffer region and in the log-law
region, but show a good agreement with the target data in the viscous sublayer.
The increase in resolution from WR-C to WR-F leads to less overprediction of
the result.

Figure 4.8: The profile of the mean normalized axial velocity four different
simulations plotted against the results from El Khoury et. al. [19] and
Yamamoto [11]. The horizontal dotted lines represent the three different regions
in the turbulent boundary layer. The simulations using wall-models show
good agreement with the DNS data in the log-law region, while the resolved
simulations overpredict the profile.
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4.2. Results for periodic turbulent flow in a pipe

In Figure 4.9 we see the profiles of three components of the mean root mean
square (RMS) velocity, which is the mean of the fluctuating component of the
Reynolds averaged velocity (see Equation (2.21)), and the only non-vanishing
Reynolds stress in cylindrical coordinates. In the axial RMS velocity, depicted
in Figure 4.9a, we can see that WM-C and WM-F underpredicts the value in
the first cell, while the proceeding data shows good agreement with the target
data from El Khoury et. al. [19]. WM-F shows a greater underprediction than
WM-C at the beginning, while it shows a more accurate result after the two
first points. WR-C overpredicts the peak of the velocity with the increase in
resolution in WR-F shows an increase in accuracy, being closer to the data from
El Khoury et. al. than that of Yamamoto[11].

In the radial RMS velocity, depicted in Figure 4.9c, we see that all four
simulations underpredict the target data. For this result WM-F is closer to the
target value than WM-C, which is in turn in agreement with Yamamoto [11].
The increased resolution from WR-C to WR-F increases the accuracy, with
WR-F being closer to the target value than the other three and Yamamoto [11].

The result for the tangential RMS velocity is shown in Figure 4.9c. Here,
WM-F overpredicts the target value at the beginning, while adhering well after
the peak. WM-C is accurate in the first few cells, while it underpredicts the
peak value of the velocity. Once again, the increased resolution from WR-C to
WR-F gives a more accurate result, while its still being underpredicted. Both
WM-C, WM-F and WR-F performed better than Yamamoto [11]. For the only
non-vanishing Reynolds stress plotted in Figure 4.9d, we see that both the wall
modelled simulations perform equally. WR-C underpredicts the data from El
Khoury et. al. [19], while WR-F slightly overpredicts it.
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4.2. Results for periodic turbulent flow in a pipe

(a) Profile of the axial RMS velocity. (b) Profile of the radial RMS velocity.

(c) Profile of the tangential RMS velocity.
(d) Profile of the only non-vanishing Reyn-
olds stress.

Figure 4.9: Velocity profiles of the RMS velocities and the non-vanishing
Reynolds stress in the four different simulations plotted against the results
from El Khoury et. al. [19] and Yamamoto [11]. The simulations done with
wall-models show better adherence to the DNS data from El Khoury et. al. [19]
than the data from Yamamoto [11] and the WR-C simulation.

The profile of the magnitude of the mean and mean RMS velocity of the
pipes is plotted, along with the data from Yamamoto in Figure 4.10, normalized
with the bulk velocity of the pipe. The mean velocities in Figure 4.10a shows
good agreement to that of Yamamoto [11], with no large deviations from each
other. In the plot of the RMS velocity in Figure 4.10b, all four simulations
overpredict the values compared to that of Yamamoto [11], with the wall
modelled simulations resulting in a more parabolic profile than that of the wall
resolved ones.
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4.2. Results for periodic turbulent flow in a pipe

(a) Mean velocity profile. (b) RMS velocity profile

Figure 4.10: Normalized mean velocity profiles of the pipe with the (a) showing
the mean velocity and (b) the root-mean square of the velocity. Both quantities
are normalized by the bulk velocity and plotted with the data from Yamamoto
[11]. The mean velocity profile in (a) shows good agreement to the data from
Yamamoto [11], with no discernible differences between the four simulations.
The RMS velocity profile shows that the profiles were overpredicted when
compared to Yamamoto, and that the simulations using wall models create a
more parabolic profile than that of the WR-F mesh.

Turbulent structures near the wall

In CFD, a sufficiently large computational domain, such that all the turbulent
structures are captured is crucial. In conventional simulations, i.e. non-periodic
on an arbitrary geometry, the inlet and outlet are often extended by a factor
of the characteristic length scale. For circular cross-sections this would be the
radius R. The extension is usually between 10R to 20R depending on the
problem at hand. This can help with divergence as it helps the flow develop a
more fully developed profile before entering and exiting the domain. In periodic
geometries where the goal is to artificially create infinitely long pipes or channels
as to create fully developed turbulent flows, it is important to ensure that the
length of the domain is sufficient to capture the long turbulent structures along
the walls, as these are the main sources of the TKE exchange from the boundary
layer to the outer flow, and gives the characteristic logarithmic flow-profile in
Figure 2.4 [47]. To visualize these turbulence structures we used the λ2-criterion
(see Appendix B) to generate iso-surfaces of turbulent structures along the wall.
Figure 4.11a shows these structures along the wall in the WM-C mesh colored
by the magnitude of the vorticity. There are some long structures visible, but
due to the low resolution it is difficult to further analyze this result.
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4.2. Results for periodic turbulent flow in a pipe

(a) Vortices near the wall in WM-C visualized with the λ2-criterion.

(b) Vortices near the wall in WR-F visualized with the λ2-criterion.

Figure 4.11: Vortices near the wall in WM-C and WR-F. In (a) The poor
resolution is due to the low resolution of the mesh. From this result, the length
of the pipe seemed to be sufficient to capture long turbulent structures along
the wall. In (b) the higher resolution of the mesh gives greater insight into
the small overlapping "Q-events" produced by the slow moving velocity streaks
along the wall.

The velocity streaks corresponding to the structures depicted in Figure 4.11b,
are shown in Figure 4.12. We chose to plot the velocity with a color scale
exhibiting greater contrast between the values. Here we can see slow moving
velocity streaks which span the length of the pipe.

Figure 4.12: Velocity streaks near the wall in the same timestep as Figure 4.11b.
The velocity is colored by a scale with greater contrast to better visualize the
pattern of the velocity streaks near the wall.
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4.2. Results for periodic turbulent flow in a pipe

Discussion and comparison against literature of the results from
periodic turbulent flow in a pipe.

When studying the effects the choice of turbulence model had on the flow, we
found that the employment of the Smagorinsky model led to rapid dissipation
of spanwise perturbations, resulting in a notable diffusion of turbulence, while
the WALE model demonstrated a more proficient handling of the transitional
flow. After approximately 350,000 timesteps, it was evident that all non-
streamwise velocities were entirely diffused out, leaving only a laminar profile in
the streamwise direction, as depicted in Figure 4.7. The diffusive characteristics
of the Smagorinsky model stem from its fundamental assumption that the
subgrid-scale eddy viscosity νt is directly proportional to the local strain rate.
Consequently, this formulation results in a non-zero viscosity at the wall, leading
to an excessive damping of velocity within the boundary layer. In the context of
turbulent and transitional flow, this excessive diffusion becomes problematic as
it causes an overestimation of energy transfer down the energy cascade, which
is represented by the modeled νt. The consequence of this overprediction is a
pronounced damping of the turbulent motion in the flow near the wall, impeding
the natural development of fully turbulent flow. This effect may be additionally
pronounced for the performed simulation due to the low shear Reynolds number.
Feldmann and Avila [48] found that the laminarization of turbulence in a pipe
was very sensitive to the value of the Smagorinsky constant Cs for Reτ = 180.
They found that the flow would laminarize for Cs ≥ 0.12, while the optimal
value for Cs approached the theoretical value for isotropic turbulence as Reτ

increased. Sensitivity analysis of the Smagorinsky constant was omitted for this
thesis and was chosen as the default in OpenFOAM where Cs = 0.167.

In contrast, the WALE model exhibits significantly reduced diffusivity,
thereby enabling the flow to evolve into a fully turbulent state more accur-
ately. The WALE model better captures the complex interactions between the
turbulent eddies, mitigating the issue of overestimating the energy transfer.
Consequently, the WALE model provides a more favorable representation of
turbulent and transitional flows by facilitating a smoother and more realistic
transition to fully turbulent behavior. As a result, the WALE model proves to
be a valuable alternative for this particular geometry, addressing the shortcom-
ings of the Smagorinsky model and offering improved accuracy in simulating
turbulent flow in a pipe. The significance of adopting appropriate turbulence
models, such as WALE, becomes evident in scenarios where preserving the
realistic flow dynamics is crucial for obtaining reliable and insightful simulation
results.

Looking at the results from the global flow quantities, we saw that the
utilization of wall models demonstrates superior accuracy in estimating the
global flow quantities compared to the resolved boundary layer approach.
Surprisingly, the coarsest mesh, WM-C, consisting of 93,960 cells, exhibits the
most favorable outcome, with an error as low as 1.02% for Reτ . In contrast,
the WR-F mesh, consisting of 421,950 cells and employing a resolved boundary
layer, yields a significantly higher error of 3.17%, surpassing WM-C by over
three times. Turning attention to the results of the normalized shear velocity,
presented in Table 4.3, WM-C consistently outperforms other meshes with
an error of 1.46%, whereas WR-F exhibits a relatively higher error of 3.55%,
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approximately 2.4 times greater. A noteworthy observation from both Table 4.2
and Table 4.3, is that meshes utilizing wall models tend to overpredict the target
values, whereas meshes with resolved boundary layers tend to underpredict
them. The exact reasons underlying these discrepancies are not immediately
evident. However, it is plausible that because the calculation of wall shear
stress for wall models involves sampling a cell within the computational domain,
which is subsequently applied as a Dirichlet boundary condition on the wall
patch to compute νt [32], and as such the value for νt is calculated separately
from the turbulence model, which we outlined in Section 2.5. Conversely, in the
cases with resolved boundary layers, the value for νt at the wall is calculated by
the employed turbulence model. These differences in the treatment of wall shear
stress estimation may contribute to the observed variations in the accuracy of
the predicted flow quantities.

Upon examining the mean axial velocity profile in Figure 4.8, it becomes
evident that WM-C performs remarkably well in the Log-law region, out-
performing WM-F and WR-F which both have a higher resolution. This
behavior aligns with the expectations derived from WMLES, as a higher
resolution may not be beneficial as long as the overall resolution is sufficient
to meet the criterion of capturing 80% of the energy spectrum [32]. Not
surprisingly, WR-F outperforms the other three cases in the buffer region
due to the high resolution. As mentioned, mesh resolution in WRLES scales
as Re17/9, implying that higher-resolution wall-resolved meshes should yield
more accurate profiles if the criterion of the resolution of the energy spec-
trum is met. This expectation holds true for WR-C and WR-F, as their
increased resolution leads to improved accuracy, although WR-F is not en-
tirely meeting the formal requirement of Re17/9. Interestingly, using WMLES
and WRLES causes under- and overprediction respectively. This holds for
both levels of refinement. It should be noted however, that the DNS data
from Yamamoto seems to capture the profile in Figure 4.8 marginally better
than our simulations. Due to WR-F featuring similar cell count as Yamamoto
and using an LES model, we excepted an increase in accuracy when using WR-F.

The RMS statistics and the only non-vanishing Reynolds stress in Figure 4.9,
show similar characteristics as previously discussed. However, increasing
resolution from WM-C to WM-F results in underprediction in the beginning
of the Buffer Region in the axial RMS velocity in Figure 4.9a, while it results
in overprediction in the radial and tangential RMS velocity in Figure 4.9b
and Figure 4.9c respectively. Interestingly, the effect of increased resolution
for wall modelling on the only non-vanishing Reynolds stress in Figure 4.9d
appears to be negligible. The loss of accuracy in buffer regions when employing
wall models was expected due to WMLES’s assumption of a significant scale
difference between the outer and inner layers, such that averaging of variables
can be performed [49] [32]. Although typically necessitating a high Reynolds
number and a coarse mesh to maintain this assumption [49], our adherence to
best practices outlined by Mukha et al. [32] adopted to low Reynolds numbers
where we placed the first cell-center within the buffer region as to prioritize the
conservation of the geometrical features of the geometry, yields accurate results
in the outer/Log-Law region, when compared to the DNS data from El Khoury
et. al. [19] and Yamamoto [11]. Nonetheless, the inaccuracies in the WMLES
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simulations are most apparent in the axial velocity profile in Figure 4.8 and
the RMS of velocity in Figure 4.9a. One potential cause for this could be the
heightened susceptibility of velocity signals to aliasing errors due to the first
cell’s location and its intensity, relative to the radial and tangential velocities
[49], particularly when the first cell center is at y+ < 50, with the wall distance
in the wall-parallel direction is sufficiently coarse. This is evident in the profiles
of RMS of velocity in Figure 4.9a, Figure 4.9b, and Figure 4.9c, where errors
are pronounced in the first cell center in Figure 4.9a. However, the subsequent
points tend to adhere well to the profile from El Khoury et al.[19]. Remarkably,
despite having only about one-fifth of the cells, the profile from WM-C, from
the second point onward in Figure 4.9a, Figure 4.9b, and Figure 4.9c, adheres
better to the profile from El Khoury et al. [19] compared to the profile from
Yamamoto [11]. Furthermore, the profiles of the radial and tangential RMS
velocity in Figure 4.9b and Figure 4.9c demonstrate negligible deviations in the
first few cell centers for WM-C, with the overall profiles adhering well to the
data from El Khoury et al. [19], considering the coarse mesh size.

In regards to Reynolds stresses, WM-C, WM-F and WR-C all underpredict
the only non-vanishing Reynolds stress ⟨uzur⟩+ in Figure 4.9d, while WR-F
exhibits a profile closely resembling the reference DNS data. The inaccuracies
in the Reynolds stress can be linked to the inaccuracies in the axial and
radial velocity components, depicted in Figure 4.9a and Figure 4.9b. Since
the Reynolds stress is a product of these components, any inaccuracies therein
would compound, leading to further discrepancies in the predicted Reynolds
stress profile.

In the results from the mean and RMS velocity profile, depicted in Fig-
ure 4.10, we see good agreement between the data from Yamamoto [11] and the
four analyzed cases. The overprediction in profile of the mean RMS velocity,
may be caused by an underprediction of the data in Yamamoto’s case, as all
normalized components of the RMS velocity in Figure 4.9 is closer to the DNS
data from El Khoury et. al. [19] in WM-C, WM-F and WR-F. There was no
available data from El Khoury et. al. [19] for these two profiles, making a
realiabe comparison difficult.

We created our pipe based on the study done by Yamamoto [11], to be able
to perform an accurate comparative study although the length of the domain is
short as it is on the lower end of the scale of best practices from the engineering
world, and is shorter than what is found in literature, as summarized by El
Khoury et. al. [19]. Nevertheless, we found that, as can be seen in Figure 4.11a
and Figure 4.11b, the length seemed sufficiently long to resolve these structures.
While there seems to be long structures in Figure 4.11b, there are smaller
overlapping turbulent structures that are hard too see from a picture. In the
literature, these wall-normal motions have traditionally been agreed upon as the
main driving force behind the creation of velocity streaks [50] but as reported
by Chernyshenko and Baig [50], new findings show that the main cause of the
slow moving velocity streaks near the wall may indeed not be due to the wall-
normal motions depicted in Figure 4.11a and Figure 4.11b, but rather through
a combination of the mean velocity profile induced lift-up, the mean shear
and the viscous diffusion. Nevertheless Jeon et. al. [51] showed a relationship
between the velocity streaks and these wall-normal turbulent structures where
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long velocity streaks produced smaller overlapping "Q-events", which are vortex
structures responsible for the transfer of TKE between the TBL and the outer
regions of the flow, when visualized with the λ2-criterion. The velocity streaks
depicted in Figure 4.12 showed that there were streaks of low velocity towards
the wall, which spans the length of the pipe. This is in line with the findings
from Yamamoto [11], which explain the under-resolved data in Figure 4.9b
and Figure 4.9c. Presumably, the pipe length is insufficient to capture the
streak instabilities which are responsible for the exchange of TKE between the
flow directions [51]. Since the pipe length is too short to accurately calculate
the turbulent intensity, the transfer of momentum through turbulent kinetic
energy from u+

z to u+
r and u+

t is underpredicted. This transfer of momentum is
important in periodic flows, where the flow is driven by a momentum source in
one direction.
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4.3 Results for turbulent flow in helically coiled pipes

The simulations for the helically coiled pipes were performed, as mentioned, by
mapping the fully developed flow from the outlet of WM-C to the inlet of the
coils. To examine the results we cut evenly spaced slices normal to the flow
direction in each coil, as depicted in Figure 4.13. Since the coils are increasing in
length, the number of slices will also increase so that we get the same reference
points in the three different cases.

(a) Slices in C1. (b) Slices in C2.

(c) Slices in C3.

Figure 4.13: Illustration of the location of the slices used for analysis in the
three different coil configurations. To emphasize the location of these slices,
they were plotted with the time-averaged velocity magnitude.
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Velocity field

To examine the velocity in each of the slices we used the Turbulucid package
(https://github.com/timofeymukha/turbulucid). The velocity plotted is the mean
velocity normalized by the bulk velocity Ub of the WM-C pipe.

(a) Mean velocity field in C1. (b) Mean velocity field in C2.

(c) Mean velocity field in C3.

Figure 4.14: Visualization of the mean velocity field in the three coils. (a) shows
that C1 is too short for a stable secondary flow profile to develop, (b) shows
that a stable secondary flow profile is established after two revolutions and (c)
shows the stable secondary flow profile after two turns.

It is unfortunately evident that C1 coil became deformed in the creation of
the geometry. We found that this was a shortcoming in the CAD program used.
When profiles are swept along a helical path, there is a chance that it might
deform. Nonetheless, the deformation is not deemed great enough to exclude
the simulation from the examination.
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The evolution of the velocity fields in Figure 4.14 exhibit some interesting
characteristics. Most notably, the evolution of a stable secondary flow profile
as seen in Figure 4.14c after Slice 6. As this slice is located right before the
coil reaches two revolutions, it is not present in Figure 4.14a, and quickly
disappears in Figure 4.14b as the flow exits the coil into the straight pipe outlet
section. This secondary flow profile is due to the centrifugal force within the
flow in helical coils, which has been well documented [3] [52], and is known
as Prandtl’s secondary flow of the first kind. It induces a return motion
towards the wall on the inside of the coil [52]. This is due to the interaction
of the pressure gradient and viscous forces inducing a centrifugal force across
the cross-section, which moves the high velocity-area of a cross section to-
wards the outer wall of the coil [53]. This effect is present in any cross-section,
and thus the miss-shaped cross-section of C1 was deemed applicable for analysis.

The breakdown of the secondary flow is depicted in Figure 4.15 by streamlines
colored by the time-averaged normalized velocity magnitude. The low velocity
at the inner wall separates at the entrance of the outlet region. We can see that
the secondary flow in the coil breaks down when entering the straight section,
such that the streamlines become parallel with the wall.

Figure 4.15: Streamlines of the breakdown of the secondary flow in C3 colored
with the normalized mean velocity. As the secondary flow at the inner wall
breaks down.
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When sampling the velocity profile in C3 from the slices in Figure 4.14c in
the vertical and horizontal direction, keeping the inner wall of the coil at the
left-hand side throughout the geometry, we can see that the velocity profile
in the horizontal direction quickly indicates a return-motion behavior. The
velocity keeps decreasing towards the inner wall, while the velocity increases
towards the outer wall. As the fluid enters the straight-pipe outlet in slice
12, the velocity decrease and increase becomes greater between slices. Similar
behavior can be see in the vertical velocity profile, although to a lesser degree
since, as depicted in Figure 4.14c, the velocity is the greatest towards the outer
wall.

Figure 4.16: Time-averaged horizontal and vertical velocity profiles in C3
normalized with Ub. The velocity is plotted so that the left side shows the
velocity at the inner wall of the pipe and the right side shows the velocity at
the inner wall. The sampled lines are depicted in (A). The top plot (B) shows
the vertical velocity profiles, sampled along the filled line (-), while the bottom
plot (C) shows the horizontal velocity profile sampled along the dashed line
(- -). The horizontal velocity shows that as the fluid flows through the coil, the
velocity gradually increases at the outer wall, and decreases at the inner wall.
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Pressure

In this subsection, measurements of the pressure are performed using the
presented slices, which are subsequently used for sampling the horizontal
pressure gradient within each cross-section. Depicted on the left-hand side in
Figure 4.17 one can see that a spanwise pressure gradient is present across the
cross-section. The pressure is peaking at the location of where the secondary
flow develops. Looking at the difference in pressure sampled along the same
line as in Figure 4.16. In the horizontal direction, we can see a pressure drop
across the cross-section as well as a gradual decrease in overall pressure in
the slices as the flow travels through the coil. The pressure is normalized by
the area-averaged pressure of the inlet such that p0 = 1

A

∫
pdA. The pressure

gradient across the sample-line seems to stabilize to a constant value at Slice 3,
before it decreases sharply when to flow enters the straight outlet section.

Figure 4.17: Pressure distribution in C3. The slices on the left-hand side (A)
show the pressure in the sampled slices. The top plot on the right-hand side
(B) show the decrease in the normalized pressure sampled along a horizontal
line in the cross-sections depicted on the left. The orientation is such that the
left side of the plot is towards the inner wall, while the right side is towards
the outer wall. The overall pressure in the slice decreases as the fluid moves
through the coil, reaching zero at the straight pipe section. The plot at the
bottom right (C) shows the gradient of the pressure in the horizontal direction.
The gradient reaches a stable value after one revolution.
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These same characteristics can be observed also in C1 and C2, depicted in
Figure 4.18, although there is a quicker drop in pressure due to the shorter
length of the coil. Notably, the stabilized pressure gradient in C2 differs little
from the pressure gradient in C3. The measurement of the pressure gradient
in C1 however, does not reach a stable value due to the coil only having one
revolution.

(a) The pressure across a horizontal line
in each of the sample slices, in C1

(b) The pressure gradient across a hori-
zontal line in each of the sample slices, in
C1

(c) The pressure across a horizontal line in
each of the sample slices, in C2

(d) The pressure gradient across a hori-
zontal line in each of the sample slices, in
C2

Figure 4.18: Measurements of the spanwise pressure and pressure gradient in
C1 and C2. (a) and (b) show that in C1, the coil was too short to give an
accurate measurement of the pressure and the pressure gradient. (c) and (d)
on the other hand, show that the pressure gradient reaches a stable value after
one revolution in C2, in line with the findings in C3. The spanwise pressure
gradient also shows similar characteristics to C3.
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Turbulent kinetic energy

Examining the TKE in C1,C2, and C3 depicted in Figure 4.19, it is evident that
as the fluid flows through the coil, the TKE diffuses, and when it enters the
outlet-section we can see an increase in TKE again, indicating a transition to
turbulent flow. The increase of TKE in the outlet-section seems to depend on
the number of turns in the coil, as the TKE in the outlet-section of C3 is lower
than C2, which in turn is lower than C1. The peak of TKE is seemingly located
halfway through the first revolution, after which there is a decrease in TKE
until the flow enters the straight outlet section. In each of the slices within the
coil, the peak of the TKE is located along the outer wall of the coil, while the
TKE at the inner wall is shifted towards the inner region of the cross-section.

(a) TKE in C1. (b) TKE in C2.

(c) TKE in C3.

Figure 4.19: TKE in C1, C2, and C3 plotted such that all three figures share
the same scale. The TKE in C1 in (a) exhibits different characteristics than
the TKE in C2 and C3 due to the malformed geometry. (b) and (c) show that
the TKE diffuses as the fluid moves through the coil, and increases again in the
straight pipe outlet, which is inline with the findings from Viswanath et. al. [5].

Aforementioned, in LES the aim is to resolve 80% of the energy spectrum to
accurately capture the fluid motion. For geometries where there is an increase
and a subsequent decrease in TKE, more consideration may go into grid creation
than for a geometry with easily indistinguishable energy-regions such as a pipe
or a channel. To evaluate the resolution of the grid, we used the ratio of the
resolved TKE to the total TKE η from Equation (3.3), depicted in Figure 4.20.
We can see that as the fluid flows through the coil, less and less of the energy
spectra is resolved. This leads to an underprediction of the TKE in the coil, as
in some areas the percentage of the resolved energy goes down to 40% of the
total TKE. The resolution seems sufficient in the due to the decrease in TKE
in the middle of the coil.
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Figure 4.20: Captured energy spectra in C3. Due to the shifting of the location
of the maximum velocity towards the outer wall and consequently the shifting
of high TKE areas, the resolution of the mesh is not sufficient to capture 80%
of the energy spectrum, leading to increased artificial diffusion.

We further investigate this effect by measuring the TKE throughout the
coil and comparing it to DNS data, as presented in Figure 4.21. Here the TKE
is measured by performing an areal integral, such that k =

∫
A

kdA, which is
normalized with the area integral of the TKE at the inlet. The x-axis represents
the slice index. Upon inspection, it is possible to see that the overall TKE is
underpredicted in C1, C2, and C3 compared to the DNS data from Yamamoto
[11]. The result in Figure 4.21b shows similar characteristics as Figure 4.21a,
with the peak of the TKE located right after the first turn in the coil and an
increase in TKE at the straight outlet section. The amount of TKE within the
coil is seemingly dependent on the curvature and torsion, with C1 exhibiting
the most TKE, while the difference between the amount of TKE in C2 and C3
being lower. C2 and C3 exhibit similar rates of diffusion of TKE, while this
rate is difficult to quantify for C1 due to a lower amount of sampling points,
due to its shorter size.
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(a) TKE from Yamamoto[11]. (b) TKE in C1, C2 and C3.

Figure 4.21: Comparison of normalized TKE in C1, C2, and C3 to the DNS
data from Yamamoto [11]. The three horizontal dotted lines represent each
turn of the coil. It can be seen that the overall TKE is underestimated in each
of the coils compared to similar coil geometries from Yamamoto [11].

Dean vortices

For flows in curved geometries, secondary flows are superposed on the flow due
to the centrifugal force exerted on the main flow. The expected flow pattern
is two counter-rotating vortices at opposing sides of the cross-section, such
that the low velocity flow from the interior side of the coil flow towards the
higher velocity at the outside wall, where the there is an increased centrifugal
force which again causes a return motion to the interior wall as depicted in
Figure 4.22.

Figure 4.22: Schematic of two counter-rotating Dean vortices in the cross-section
of a curved pipe [3].
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Visualization of the mean Dean vortices in C3 using Line Integral Convultion
(LIC) is presented in Figure 4.23, overlayed with the mean velocity magnitude.
Evidently, the turbulent eddies from the inlet are dissipated into two main Dean
vortices already in Slice 3 which is right after the location of the maximum TKE
and is located in 3/4 of the first revolution. Although, four vortices appear
again in Slice 4. Furthermore, The symmetry of the Dean vortices is not kept
throughout the domain, as the center of the lower vortex is not stationary in
relation to the upper vortex.

Figure 4.23: Line Integral Convolution (LIC) of the mean velocity in C3, showing
the evolution of dean vortices throughout the coil.
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By further examination of the instantaneous Dean vortices in Slice 13,
where the flow exits the coil, we can see that, although the mean velocity field
indicates two vortices, multiple vortices with varying strength and location
appear at what appears to be random time-intervals. In Figure 4.24 the bottom
plot shows the vortices from the mean velocity field using LIC and the planar
velocity vectors normalized with the bulk velocity, the two upper plots are from
random time steps. It is evident that the number of vortices in the mean flow,
is not representative of the number of instantaneous vortices. The upper-left
plot shows four vortices, two on the upper-half close to the wall and two on
the lower-half close to the wall. The upper-right plot once more shows four
vortices. Two of these are located symmetrically on the upper- and lower-half.
Additionally there is two counter-rotating vortices located along the horizontal
centerline, at the location of the maximum mean velocity in the main flow.

Figure 4.24: Surface plots done using LIC and surface vectors of two
instantaneous velocity profiles on the top, and the mean flow on the bottom. The
instantaneous velocity shows the appearance of multiple vortices not captured
by the mean velocity.

58



4.3. Results for turbulent flow in helically coiled pipes

Discussion and comparison against litterature of the results for
turbulent flow in helically coiled pipes

In the velocity field of the coil, presented as sampled slices, we saw that the
peak of the velocity moved towards the outer wall. When the fluid reached the
end of the coil where it enters a straight outlet section, it separates from the
wall possibly due to the decrease of the pressure in the straight section. As
there is no spanwise pressure gradient present, due to the geometry shifting
to a straight pipe, the effect of the induced centrifugal force disappears. This
causes the secondary flow to break down, as the high-velocity towards the wall
slowly moves towards the center of the pipe, where it is expected to stabilize
after a certain length. We suspect that a further increase of the length of the
outlet section will give greater insight into this behavior, as the flow would have
more time to stabilize.

In the streamlines at the outlet of C3 in Figure 4.15, we observed a sep-
aration of the flow along the inner wall in the pipe when it entered the coil,
which may be due to the increase of wall shear stress at the outer wall from
the sharp change in curvature when the geometry is no longer being effected
by a centrifugal force. Furthermore, we saw that the streamlines gave greater
insight into the development of the flow in the coil. As indicated by the velocity
fields in Figure 4.14, the fluid flows from the outer wall into the inner wall, in
a stable twisting motion. This flow characteristic is favorable in engineering
applications, as helically coiled pipes are deemed as a better candidate for heat
transfer than straight pipes due to not only the larger surfaces area of heat
transfer through diffusion, but also due to convection of temperature caused by
the secondary motion in the coil.

The pressure in the coil is expected to decrease as the fluid flows through
it. Mentioned by Kumar in [53], one of the main drawbacks of using helically
coiled heat exchangers is the increased pressure difference over the coil (from
the inlet to the outlet) compared to a straight pipe heat exchanger, which
increases the required pump power to drive the flow at a favorable flow rate.
Even though pressure-measurements from an incompressible simulation have
no direct physical relation, we observed that the pressure difference between
the inlet and the outlet of the coils increased with the length of the coil.

Although the pressure in itself cannot be related to physical phenomena,
the pressure gradient can. Seen in Figure 4.13c, the pressure gradient across
the cross-section is what is causing the secondary motion of the flow. Usually,
the centrifugal force exerted on the flow in helically coiled pipes is expressed as
being balanced by the pressure gradient [54] [53], while in fact it is the pressure
gradient induced by the fluid constantly hitting the wall which is balanced by
a centrifugal force. In accordance with the previously discussed centrifugal
force, the pressure gradient across a cross-section should be expected to be
constant within the coil as it is directly proportional to the centrifugal force
exerted on a coil of a specific curvature. We saw that, in Figure 4.17 and
Figure 4.18, the value of the pressure gradient became constant in C3 and C2
after one revolution, although the curvature and torsion of these geometries
are different. This further strengthens the possibility that the centrifugal force
exerted on the flow arises mainly due to the curvature of the coil and thus
curvature seems to be the parameter of significance for helically coiled pipes.
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However, this is not a surprising result as the centrifugal force is directly a
function of the curvature. This was also observed by Hüttl and Freidrich
[55], Ciofalo et. al. [56] and Yamamoto [11]. Ciofalo et. al. [56] found that
increased curvature led to a significant increase of heat transfer rates as well
as frictional losses, where as increased torsion did not have an significant
impact on these quantities. These are favorable geometrical characteristics
for a heat exchanger, as one needs only to increase the radii of the coils to
increase heat transfer rates. This makes helically coiled heat exchangers ideal
for internal and external heat exchanger of finite height, as depicted in Figure 1.1.

The TKE was found to not reach the criterion from Pope [23], wherein
a LES simulation should resolve 80% of the energy spectrum. We visualized
this using the ratio of resolved and modelled TKE, depicted in Equation (3.3).
This under-resolution increases the diffusion, as νt is overestimated, while the
resolved TKE is underestimated. The under-resolution of the grid caused
inaccuracies in the TKE when comparing the findings to that of the DNS data
from Yamamoto [11], although the location of the peak of the TKE and an
increase in TKE in the straight outlet section exhibited similar behavior. The
sharp increase in TKE in the straight pipe outlet section in C1 and C2 depicted
in Figure 4.21b can be attributed to not only the findings from Viswanath
et. al. [5], but also that here the grid size is sufficient to resolve 80% of the
energy spectrum, as it is in the periodic pipe in Section 4.2. The underlying
phenomenon seemingly responsible for this behavior, is the shifting of the
high-energy region from the walls of the domain towards the inner region of the
coil where there is a peak of the resolved TKE in Slice 1 and 2. This increases
the necessity for a higher resolution in the middle of the domain where the
smaller eddies are located. Illustration of this behavior can be understood by
examination of the underlying reason for a formal high resolution requirement
in LES. The criterion relies on that the smaller eddies within the flow should be
sufficiently resolved, typically located along the wall as depicted in Figure 4.25.
Here the smaller eddies are located along the wall, and hence the grid is refined

Figure 4.25: Resolution requirement due to the eddy size, borrowed from Lozano
et. al. [57]

towards to wall. However, since wall modelling is used in the simulation of
the coils, which circumvents the need for near-wall resolution, and there is a
high-energy region within the coil away from the walls, a higher resolution is
needed to accurately represent the size of the eddies within the low-energy
region similarly to what is depicted in Figure 4.25. This is counter-intuitive
when the classical resolution scaling for WMLES, estimated purely based on
the Reynolds number, is used to asses sufficient grid resolution. Furthermore,
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due to the fundamental assumptions of wall models, as presented in Section 2.5,
where a single function representing the boundary layer of the whole domain
is obtained and thus an equilibrium is assumed. The flow is assumed to be
parallel to the wall, not affected by pressure gradients and without acceleration.
This assumption may not hold for geometries such as helical coils due to the
secondary flows and subsequently a spanwise pressure gradient. This may cause
unknown discrepancies in the result, as summarized by Larsson and Kawai [58].

The underresolution of TKE may indicate that the use of wall models and
a corresponding coarse mesh resolution in a domain where the location of the
peak of TKE is away from the wall in some regions, may lead to increased
diffusion. Further examination of this result can be done by looking at the
implementation of νt in OpenFOAM (see Equation (2.17)) and the transport
equation of the resolved kinetic energy

Dkres

Dt
− ∂

∂xj

[
ūi

(
2(ν + νt)S̄ij − τ r

ij − p̄

ρ
δij

)]
= −ϵf − Pr, (4.1)

where ϵf is the viscous dissipation of the kinetic energy in the resolved field

ϵf = 2(ν + νt)S̄ijS̄ij , (4.2)

and Pr is the rate of production of the unresolved kinetic energy

Pr = −τ r
ijS̄ij , (4.3)

such that Pr represents the rate of transfer of energy from the resolved to the
unresolved scale [23]. τ r

ij is the residual stress tensor

τ r
ij = −2νtS̄ij . (4.4)

As evident by the sign of ϵf and Pr for eddy viscosity models as νt > 0, there is
no backscatter (transfer of energy between the resolved and unresolved scale),
thus they both appears as sinks in Equation (4.1). For situations where ksgs is
more than 20% of the total TKE, the energy of the resolved eddies kres in the
coil, dissipates faster than expected due to the overestimation of νt, as evident
from Equation (2.17), when the grid resolution is not sufficient. In a geometry
such as a helical coil where there is diffusion of turbulence, a fine enough grid
to resolve the eddies at the point where there is a maxmimum of TKE may be
beneficial to use for the whole domain due to the unconventional distribution of
TKE. How much the solution is impacted by underresolution in implicit filtering,
can be represented by looking at a plot of the energy spectrum, where the
numerical error introduced by implicit LES is emphasized. In Figure 4.26 the
area under the curve to the left of the dashed vertical line represents the resolved
TKE, while the area under the curve on the right represents the unresolved
TKE. kc is analogous to the gridsize when recalling that the characteristic size
of all the eddies within a cell is represented by a mean, which we chose to
be ∆ = 3

√
Vcell, whereas kc is the wavenumber of the largest unresolved eddy.

The figure is borrowed from Bull and Jameson [59], where they showed that
implicit filtering in LES may cause a steeper drop off in the resolved TKE due
to numerical errors. This is presented as the area between the dashed parabolic
line and the dashed vertical line, labelled "num. error". Additionally, recalling
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Figure 4.26: Energy of the turbulent eddies plotted over the wavenumber. kc

representes the cutoff-wavenumber i.e. the wavenumber of the smallest resolved
eddy [59].

that a LES simulation should capture atleast 80% of the energy spectrum, when
the captured energy is as low as 40%, as depicted in some areas in Figure 4.20,
the resolved TKE will be heavily underpredicted when factoring in numerical
errors.

It should be noted however, that the resolution of the grid may not be the
cause of these descrepancies. Instead, it could be contributed to the validity
of using the WALE model in such a complicated flow scenario. There is no
sensitivity study done on the effects the model constants, Cw and Ck, have on
the result and that imbalance in energy comes from the fact that the calculation
of ksgs is not valid in such a scenario, leading to an overestimation of νt, which
reduces the amount of resolved TKE in the domain. The original authors of
the WALE model reported that; "In the case of a laminar flow with a more
complex 3D velocity gradient, there is no evidence that the WALE model (or
any other SGS model) will give a reasonable answer." [30] (p. 198)

Eventhough we observed descrepancies in the solution, the effect off the
torsion and curvature on the turbulence is still possible to interpret from the
differences in the solution between the three geometries. The torsion has been
shown to be the geometric parameter that enhances turbulence in coils as
it increases, while the curvature suppresses it [11] [60] [8]. The difference in
curvature and torsion between the coils, seen in Table 3.4, can be calculated by
their difference in percentage seen in Table 4.4. Here the decrease in torsion is
reflected in the decrease in the TKE from Figure 4.21b, where there is a large
difference between the TKE in C1 and C3. The small difference between C2
and C3 in the curvature, and the larger difference between C1 and C2, are in
line with the similar rates of diffusion.
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Cases κ [%] τ [%]
C1 − C2 19.6 −45.0
C2 − C3 3.8 −45.6
C1 − C3 24.2 −70.6

Table 4.4: Difference in curvature κ and torsion τ in percentage between C1, C2,
and C3. Negative percentage indicates a decrease while a positive percentage
represents increase. The increase of curvature is greater between C1 and C2,
than between C2 and C3, while the decrease in torsion between C1 and C3 is
greater than that of C2 and C3.

The Dean vorticies observed in the coils can be characterized by the Dean
number De from Equation (2.25), such that a baseline for their effect can be
stipulated for a particular geometry. For a coil with Re = 5300 and Rc = 3R
we get De ≈ 3060. From an extensive experimental study of flow in a 90◦ bent
pipe, Kalpaki [9] found that the most significant parameter for the Dean number
was the curvature ratio D/Rc for 2.7 × 104 ≤ Re ≤ 8.7 × 104. Nashine et. al.
[61] found that an increase in the Dean number is favorable for heat transfer in
helical coils, which is in contradiction with the findings in Section 4.3 where the
dissipation of the TKE was found to be correlated to the curvature. Due to the
favorable effect turbulence has on convected heat transfer due to the mixing
of the fluid, there seems to be a missing relation between the TKE, Nusselt
number (the ratio of the convective to the conducting heat transfer), curvature,
and torsion. This is further backed up by the findings and summarization from
Ferng et. al. [62], where a strong correlation between the Nusselt number [63]
and the Dean number was found. Furthermore, Ferng et. al. [62] additionally
showed that there is also a correlation between the pitch, and therefore the
torsion of the coil and the Nusselt number which obscures the relation of
curvature and torsion to the efficiency of a helically coiled heat exchanger. It
could be stipulated that, since the Dean number is independent of the torsion,
the structured Dean vortices are more beneficial for heat transfer than that of
turbulent flow. This is however out of the scope of this thesis.

Yamamoto [11] found that the Dean vortices had a destabilizational effect on
the flow, causing the smaller eddies to dissipate. Consequently, the amount of
fluctuation in the velocity field will reduce and thus the TKE will be reduced. It
was reported that, due to the increase of rotation in the flowfield when the fluid
first enters the pipe caused by the imbalance of the centrifugal force and the
pressure gradient, there will be an increase in TKE along the first bend of the
coil. These simulation where done using finite element method on meshes where
the cell count was approximately one order higher. It is therefore interesting to
see if we succeeded in capturing similar flow features to that of Yamamoto [11].
As can be seen in Figure 4.23, the expected symmetry of the Dean vortices
is not present in the whole domain. This may be due to the critical value
for the Reynolds number as presented by Dean [3], where the relatively high
Reynolds number for a coil where Rc = 3R struggles to relaminarize the flow.
The behavior of Dean vortices in turbulent flow is not as extensively studied,
therefore litterature on wether the Dean vortices stay symmetrical and vary
in time is unanswered [64]. We found no literature on this behavior of Dean

63



4.3. Results for turbulent flow in helically coiled pipes

vortices in helically coiled pipes, but it is well documented in bent and toriodal
pipes where it is referred to as swirl switching [64] [65] [66]. In the literature
on bent pipes, the turbulent flow has been generated either with a periodic
pipe [64], as employed in this thesis, or using a Divergence-Free Synthetic Eddy
Method [65] [67]. Hufnagel et. al. [65] summarized that the effect of using
a Divergence-Free Synthetic Eddy Method boundary condition for the inlet
as opposed to the traditional method of recycled turbulence, had no effect on
the appearance of swirl switching, whereas earlier studies found that it was
directly a consequence of the long velocity streaks in the periodic pipe, shown in
Figure 4.12. Swirl switching was attributed to a large three-dimensional wave
caused by the bend in the pipe. Tunstall and Harvey[66] found that this is
caused by the shedding of the shearlayer close to the inner wall. The continuous
bend of a coil, although less steep than that of Tunstall and Harvey [66] may
cause small eddies to appear in the instantaneous flow due to the shedding of
the shear layer, whereas the intensity and irregularity of these eddies cause
them not to be visible when performing a time average of the flow. Our findings
showed that examination of instantaneous velocities may exhibit more, although
weaker vortices. These vortices appeared at irregular intervals with varying size
and location.
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CHAPTER 5

Conclusion and future work

5.1 Conclusion

In this thesis we have investigated how LES simulations can be optimized in
complex flow scenarios. A variety of factor have been considered, such as a
comparison between the classic Smaroginsky model and the improved WALE
model, the accuracy of wall modelling in LES at a low Reynolds number, and
the resolution requirement for LES in complex flow.

Firstly, much time was spent optimizing the mesh geometry for the pipe for
use with LES turbulence models. We utilized two different industry-standard
meshes and proposed a third one as an improvement. The literature on meshes
for turbulent flow in pipes proved lacking, as the process of meshing is often
not reported, despite their significance and the fact that they may make up a
majority of the work associated with a simulation. We conducted a detailed
examination of what constitutes an optimal mesh used in FVM codes. Different
geometrical parameters and their effect were discussed, where we found that of
the parameters investigated, the skewness of the cells in the boundary layer
seemed to affect the solution negatively. Errors due to skewness in meshes
cannot be circumvented using simple numerical techniques, and as such are
prone to a simulation being reduced to the "GIGO" (Garbage in, garbage out)
phenomenon. The mesh we proposed as a solution to the high skewness in the
boundary layer showed reduced skewness, while the non-orthogonality in the
central region were much higher in the corners than that of the preceding two.
This increased non-orthogonality showed not to be crucial for the accuracy, as
it can be reduced using extra inner loops in the PISO algorithm. When the
skewness in the boundary layer was high, it led to discrepancies in the solution,
resulting in an increase in wall shear stress in specific areas. Consequently,
streaks of wall shear stress were observed to align with the geometric features
of the mesh rather than occurring randomly. This observation indicated
discrepancies in other variables, such as the TKE.

Upon investigation of the performance of two different LES models on
the transitional flow in the pipe, we found that the overly diffusive nature of
the classical Smagorinsky caused the spanwise perturbations to be diffused
out, rather than driving the evolution of fully turbulent flow. The improved
WALE on the hand quickly became turbulent and was chosen to be the best
of the two without performing a sensitivity analysis of the Smagorinsky constant.
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The simulations conducted to estimate the accuracy of WMLES in a pipe
at a low Reynolds number included two different resolution of the meshes for
both WMLES and WRLES. These were compared to the results from similar
simulations conducted using DNS with two different numerical techniques. Not
surprisingly, the effect of raising the resolution in a wall modelled mesh where
the criteria of resolved energy is met, is not necessarily favorable, as backed up
by the findings in the literature. The wall-resolved simulation however, showed
an increase in accuracy when the resolution was drastically increased, reaching
that of the DNS data. The results from our LES simulations showed superior
accuracy over the DNS comparison data in both wall-modelling cases, as well
as with the wall-resolved mesh which had approximately the same number of
cells used in the comparison data.

Due to sufficient accuracy from the coarsest wall-modelled mesh, WM-C,
it was used to sample inlet data for the helically coiled pipes. The effect this
had on the result in the helically coiled pipes was not measured, however, the
flow exhibited expected features. We observed secondary flow phenomenon as
well as a decrease of turbulence through the coil, and an increase in turbulence
in the outlet section. We performed measurements of the velocity field and
pressure gradient which showed that a constant centrifugal force acted on the
coil due to the constant curvature for a given geometry. Furthermore, increased
torsion were shown to have an impact on the production of turbulence while
the curvature had an effect on the rate of dissipation.

We observed that when performing LES simulations of a coil, the mesh
requirement is higher than that of the periodic pipe used for inlet data. As
the turbulence dissipated throughout the coil, finer mesh may be required to
continuously resolve 80% of the energy spectrum. This gave an inaccurate
estimation of the turbulence in the coil in comparison with DNS data.

Inspection of secondary flow phenomenon within the analyzed coil geometries
revealed the existence of both Prandtl’s secondary flow of the first kind and
Dean vortices. We showed that the former was a crucial feature for the mixing
of the fluid within the coil, as low-velocity fluid were constantly transported
from the inside-wall of the coil to the high-velocity outer wall. Upon comparison
against literature, this effect was emphasized as a favorable feature for convected
heat-transfer.

Dean vortices were created due to the aforementioned flow feature. These
appeared as two counter-rotating vortices towards the top- and bottom-wall of
the cross section. The location of these vortices in the mean flow were placed
at different locations depending on how far the flow had traveled throughout
the coil. They sometimes appeared asymmetric within a cross-section such that
one could be towards the wall while the other would appear in the middle of
its respective side of the cross-section. Inspection of the instantaneous velocity
showed that taking the mean of turbulent flow in coils, may not accurately
represent the flow behavior, as we saw that more vortices appeared, with varying
strength and location, at random intervals. Their effect on the dampening of
the turbulence was evident, although the phenomenon of increased turbulence
when entering a straight pipe may be caused by the instantaneous instabilities.
Moreover, we saw the appearance of a separation point of the flow when it
entered the straight pipe, which may further amplify the increase in turbulence.
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5.2 Future work

In the investigations conducted in this thesis there is much room for improve-
ment and additional work to be done. First of all, the meshes created for the
pipe, although done by testing a large number of different configurations, may
be further improved upon by constructing a mesh similar to that of El Khoury
et. al. [19], where the cross-section is separated into 12 regions instead of
five. This may lead to further reduction of the skewness and non-orthogonality
in the mesh and thus increased accuracy, although at an increased cost to
labour, which may not be feasible outside of research purposes. There should
also be conducted investigations of different meshing methods than a pure
hexahedral domain. In recent years, polyhedral meshes have gained popularity
due to their computational efficiency. They have shown to be on par with pure
hexahedral meshes using LES models, while greatly reducing the computational
cost [68] [69]. They also exhibit lower skewness and non-orthogonality due
to their geometric shape. Polyhedral meshes are however, more common in
commercial solvers, as the existence of open-source meshing algorithms are
hard to come by. Furthermore, the pipe itself should be extended greatly so
that all of the slow-moving velocity structures are captured sufficiently. More
research should also go into testing out more LES models, such as the static
Sigma model [70] which has shown to feature improved accuracy over the more
computationally involved Dynamic Smagorinsky model [71]. We saw a big
difference in performance when using the static Smagorinsky model, without
finetuning of the Smagorinsky constant, which indicate that employment of
dynamic models may perform better.

During the creation of the helical coil geometries, we found that the extru-
sion of the employed cross-section profile proved difficult. Since all five sections
had to be extruded along a helical path, the sharp twisting angle of C1 caused
deformation in the cross-section. Creation of further meshes should therefore
be done using a different meshing technique or by utilizing a commercial CAD
program that has tighter tolerances and more advanced algorithms for geometry
creation. Moreover, the use of hexahedral cells in twisting geometry may not
be the optimal choice due to the varying direction of the flow, as shown by the
appearance of secondary flow features. Polyhedral meshes may be well suited
to this since the geometry of one cell allows for more flexibility of flow direction
than that of a hexahedral cell.

We performed the simulations on the coils using wall-modelling which may
not be a good choice for this kind of geometry were the boundary layer is not
strictly adhering to the characteristics of anisotropic flow. Additionally, the
Dean vortices appeared to be close to the wall where wall-modelling were used
meaning that since the wall-models may not capture these flows accurately
they may have induced inaccuracies on their location and intensity. Further
simulations with wall-resolved meshes should be performed to ensure accuracy.

Aforementioned, the mesh resolution in the coils were insufficient due to the
decay of turbulence within the coil. This presents a challenge when deciding
whether to perform a simulation on a coarse mesh, which has the required
resolution but is labor-intensive to refine through multiple iterations, or to
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maintain a static cell size within the coil. The latter option is preferable if
the size of the cells in the coil can be kept constant. One solution to this may
be to utilize the Divergence-Free Synthetic Eddy Method boundary condition
[67] with an additional extended inlet pipe instead of a periodic domain such
that the process is more streamlined. This is especially important for coils
with a larger curvature and/or more revolutions due to the effect this has on
the dissipation of the turbulence. There should also be performed additional
simulations with different LES models to establish possible performance issues
when using WALE in such a complicated flow scenario.

Furthermore, the increase in turbulence in the straight pipe outlet creates
an unstable flow profile at the boundary. Re-introduction of turbulence was
shown experimentally by Viswanath et. al. [5], and should be accounted for in
the simulation by further extending the outlet such that a stable profile can
develop. Hufnagel et. al. [65] performed simulations with a bent pipe where
an outlet length of 15D was deemed to be sufficient, whereas ours was only 5D
long.
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APPENDIX A

Wall shear stress in the O-grid pipe
mesh

Figure A.1: Wall shear stress from Figure 3.2a.
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APPENDIX B

λ2 criterion

The λ2 criterion was first proposed by Jeong and Hussain[72] in 1995 as a way
to visualize the vorticial motions of turbulence in turbulent flow. The coherent
structures (CS) within turbulent flow is of interest for analysis due to their
physical significance for convection of quantities.

The λ2 criterion is defined as follows;

• The velocity gradient tensor is split into its symmetric and anti-symmetric
parts such that

∂ui

∂xj
= 1

2( ∂ui

∂xj
+ ∂uj

∂xi
) + 1

2( ∂ui

∂xj
− ∂uj

∂xi
) = Sij + Ωij . (B.1)

• Then, by using the Q-definition which is a measure of the amount of
rotation compared to strain in the flow we can write that

Q = 1
2(||Ωij ||2 + ||Sij ||2) = −1

2(λ1 + λ2 + λ3), (B.2)

where the eigenvalues of S2
ij + Ω2

ij are λ1 ≥ λ2 ≥ λ3 for Q ≥ 0.

• For incompressible flows, the value for λ2 is then used to calculate the
cubic equation

λ3 − Qijλ − Rij = 0, (B.3)

where Qij = 1
2 ( ∂ui

∂xi
)2 and R = det( ∂ui

∂xj
) are two invariants of the velocity

gradient tensor.

Using the λ2 criterion it is possible to set a single threshold to visualize CS,
compared to the sensitive parameter for the Q-criterion, as a single value for
λ2 is sufficient to visualize a wide range of structures that satisfies the above
criterions.
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