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Abstract

Machine learning models are outperforming humans on an increasing number of tasks. However,
development and implementation in hardware remains a smaller but pressing issue. In this project
we present a machine learning model based upon Generative Adversarial Networks and a base
encoder-decoder architecture similar to U-net, aimed at tackling larger defects in image sensors.
We show that our model can outperform a conventional median �lter on larger defects. Improving
PSNR by 10dB, and outperforming the �lter by 38% when scored on defective clusters of size
[7 × 7 − 12 × 12], using the SSIM metric. Furthermore, we present a custom objective function
to help guide machine learning models when tasked with solving smaller problems within larger
input spaces. We call this the latent loss objective and demonstrate comparative results with non-
latent implementations on a large dataset. The model is also developed with eventual hardware
implementation in mind, and we discuss the e�cacy and practicality of this.
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Chapter 1

Introduction

Machine learning as a subject has exploded over the least decade. Entering mainstream fascination
with the public release of the ChatGPT large language model. As a student of microelectronics I
was intrigued by the prospect of using machine learning models on previously impractical problems
within low-level hardware design. One of the ideas I came up with alongside my eventual thesis
advisor Johannes Sølhusvik was on defect correction in image sensors. Most image sensor produced
today usually have several defective pixels, which is not a problem as algorithms exist that blend
information from neighbouring pixels creating a fake datapoint of what should have been. This is
done as a low-level software implementation on the sensor. The problem is that when these defects
reach a certain size f.ex [1×3] pixels in a row, those handcrafted algorithms stop working well. We
wondered if a small and e�cient machine learning model could be used to better solve this issue.
It should be noted that we also planned on implementing the model on an FPGA. This turned out
to be too ambitious, and the hardware implementation has been relegated to a feasibility study
instead.

1.1 Objectives

� Train or develop a machine learning model to do defect correction in image sensors.

� Create real or synthetic training images to train the network.

� Implement the model on hardware to study the e�cacy of the idea.

1.2 Scope of Work

In this project I have developed generative adversarial machine learning models with new or
adapted objective functions based on state-of-the-art research. I have used tools like Pytorch,
Numpy, Scikit-learn, Pillow, and matplotlib to aid in model training and development. I have
also created a custom framework in Python to facilitate all training, development and prototyping
work.

A public epository of the source code has been uploaded to the github instance hosted by UiO
here.

The framework currently

� Implements custom functions to update the models during both training and validation.

� Implements custom objective functions like the Latent inpainting loss.

� Runs inference, aggregates PSNR and SSIM scores, and stores inference images

� Creates on the �y, custom synthetic image defects aimed at mimicking real image sensor
defective clusters, and can be interfaced to most image training datasets. The defects can
vary in size, shape, and type. There can also be a random variable number of defects present

10
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Chapter 1.2. SCOPE OF WORK

in the image, which is determined by user parameters. The defects themselves will also
randomly vary in amplitude, to better mimic non-linear pixel defects.

� Creates, stores, and visualizes model analytics and information for every trained model.

� Implements several loss functions and model types from previous research e�orts.

� Implements a custom script to blend and visualize graphs and data of di�erent models.

Anders Grinden Vestengen 11, CHAPTER 1. INTRODUCTION



Chapter 2

Scienti�c Background

2.1 Introduction to Neural Networks

As the basis for most modern machine learning methods, and certainly in the context of this work,
is the concept of the neural network. The objective of a neural network is to take some input
and produce an output that �ts the desired criteria. This can for example be sentences in one
language producing a translation into a di�erent language, or an old black and white picture from
before color photography comes out of the network as fully colorized. Networks can perform many
tasks and can be thought of in one sense as a large di�erentiable function that is 'tuned' through
training to produce a set of outputs. The types of network investigated in this paper are Supervised
networks, which mean they train only on pre-constructed samples which have a clear 'truth' that
the network can aim towards. When training is complete the network is used for inference, which
means it works just like when training, but now the neurons are static and there is no more learning
happening in the background.

2.2 The Neuron

The �rst notion of a neuron was introduced as a mathematical model in 1943 by Walter Pitts and
Warren McCulloch[26]. The idea then was to be able to study a system closely related to neurons
in the human brain. The model consists of one or several weighted inputs to a summing function,
and �nally a threshold or activation function which decides if the neuron should �re its output
based on the sum of inputs. This is meant to mimic a real neuron, which collects charges on its
input from other connected neurons and at a certain threshold would �re its own charge based
upon su�cient input charges.

2.3 The Multilayer Perceptron

The modern neural network however, didn't start to take shape until 1958 with the creation of
the Perceptron[26]. In this model several of the Pitts McCulloch neurons are strung together in
what's called a layer. The input connects to every neuron and the output in turn depends on every
neuron. When you combine several Perceptron layers together in sequence you get a neural network
2.1, a collection of layers of neurons. The neural network has an input layer and an output layer,
there are also several in-between layers called hidden layers. Between every layer are connections.
Networks are called 'densely connected' when every neuron of the previous layer is connected to
every neuron in the following layer. The in�uence of any neuron on the next is determined by its
weight, a 'learnable' parameter which means it will get updated through the training process.

Attached to every neuron is usually a bias which is there to guarantee some output from the
neuron at the beginning of training. Every neuron and associated weight gets a random value when
the network is �rst brought about before training. There are many ways to initialize these values,
some of which will be discussed later in this chapter, but the goal is to ensure that all neurons
�re something and so at the end of training the hopefully contribute to the network output in

12



Chapter 2.4. FORWARD PROPAGATION

some way. It can happen that a neuron is silenced through what's called the vanishing gradient
problem, a phenomenon where the training process updates a neurons value to be near-zero and
at that point the neuron might as well not exist at all.

Another concept to most fundamental neural networks is the bias term. This is a small,
�xed (it can also be set as a learnable parameter) addition to the layer term 2.2 which is there to
ensure the output of the neuron is not zero at the start of training. This is done to counteract
the phenomenon of vanishing gradients and dead neurons early at the early stages of training if
initialization of the neuron is set close to zero.

2.4 Forward propagation

ilk, Where k denotes neuron and l denotes layers (2.1)

I = ϕ(i), i =W(1)x+B(1) (2.2)

H = ϕ(h), h =W(l−1)h(l−1) +B(l−1) (2.3)

O = ϕ(o), o =W(l−1)h(l−1) +B(l−1) (2.4)

L = (O− y)2 (2.5)

During forward propagation the input signal travels from the input x as seen in 2.1, through
the layers and activation functions before �nally exiting the network. There are about as many
ways to arrange the output as there are di�erent problems for the network to solve, but for any
network con�gured for supervised learning there will be an output y' from the network, which is
intended to be as close to the 'ground truth' y as possible. The di�erence between y' and y is
what's known as the 'cost' or 'loss' and is the objective used to measure how well the network is
doing.

Figure 2.1: Illustration of the Multi Layer Perceptron with the intermediate components shown.
Activation functions ϕ1 to ϕ3 are omitted for clarity.

Anders Grinden Vestengen 13, CHAPTER 2. SCIENTIFIC BACKGROUND



Chapter 2.5. BACKPROPAGATION

2.5 Backpropagation

C =
1

2n

∑
x

||y(x)− aL(x)||2 (2.6)

δlj =
∂C

∂hl
j

(2.7)

δL = ∇HC ⊙ ϕ′(hl
j) (2.8)

δl = ((wl+1)T δl+1)⊙ ϕ′(hl) (2.9)

∂C

∂blj
= δlj (2.10)

∂C

∂wl
jk

= Hl−1
k δlj (2.11)

Backpropagation is the reverse of forward propagation, and after the network produces and
output from its training or inference input we use backpropagation to �gure out the gradients.
Gradients in this case represent how much each individual neuron in the network in�uenced the
�nal output. The following breakdown and notation is taken from [28, Ch. 2]. Consider a quadratic
loss function 2.6, to �nd the error in a given layer, as in the di�erence between the truth values in
the training data and the network output, can be represented as 2.7, which is the partial derivative
of the Loss function with respect to the given activation of a layer. Representing this in matrix
notation 2.8 we see the general error is given by the gradient of C with respect to the hidden layers
activation multiplied with the partial derivative of the activation function with respect to that
particular layer. From there functions for the error on individual biases 2.10 and weights 2.11 are
given. With these its possible to peel back the network activations of the previous training sample
and see every neurons in�uence and error compared to the target.

2.6 Gradient Optimization

Gradient optimization is an algorithm that takes the gradients procured by the backwards pass
along with the loss from the objective function (or loss function) and decides by how much the
weights and parameters of the network should change before the next iteration of training. Opti-
mization algorithms are usually concerned with minimizing the loss, but this can be changed with
a sign value [45, Sec. 12.3.1]. Adams is the a modern optimizer generally regarded as one of the
most robust and e�ective available [45, p. 12.10] . Adams is a popular algorithm combining several
of the best parts of previous e�orts into one uni�ed update rule[45, Sec. 12.10].

vt ← β1vt−1 + (1− β1)gt (2.12)

st ← β2st−1 + (1− β2)g
2
t (2.13)

v̂t =
vt

1− βt
1

, ŝt =
st

1− βt
2

(2.14)

g′t =
ηv̂t√
ŝt + ϵ

(2.15)

xt ← xt−1 − g′t (2.16)

Anders Grinden Vestengen 14, CHAPTER 2. SCIENTIFIC BACKGROUND



Chapter 2.7. ACTIVATION FUNCTIONS

The procedure starts with updating the two state vectors. Adam uses exponential weighted
moving averages to obtain an estimate of both momentums of the gradient (st,vt) 2.12. (β1, β2)
are parameters set before training begins. Next it normalizes these vectors 2.14 before updating
the gradients 2.15. The standard value for ϵ is 1 × 10−8 in the Pytorch Framework [31]. The
network weights are then updated according to 2.16

2.7 Activation functions

The representation of a layer without an activation function is given by h 2.3. h is an a�ne
function, meaning it can only represent other a�ne functions. This severely limits the potential of
the network to approach more complex representations, and is where adding non-linear activation
functions come in. Activation functions gives the network layer more complexity and stacking
multiple layers, each with their own non-linear activations, yields even more expressive models [45,
Sec 5.1.1.3].

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(-x)

(2.17)

ReLU(x+) = max(0, x) (2.18)

LeakyReLU(x+) = max(0, x) + λ ∗min(0, x) (2.19)

(a) Illustration of the Tanh activation function (b) Illustration of the ReLU activation functions

Three di�erent activation functions were used for this project, activation functions are usually
applied element-wise on the input tensor. The �rst is the Tanh function 2.17 which in an imple-
mentation of the hyperbolic tangent function. Next is the ReLU or recti�ed linear unit function
is simply 2.18, zeroing out any negative values that pass through the layer. Finally, LeakyReLU
2.19 is a deviation allowing some negative gradient through dependent on a parameter λ which is
de�ned before training.

2.8 Initialization

Initialization is the process of giving all parameters in the network a value. Initially it might
seem somewhat unnecessary to give these values much thought since they will immediately begin
changing once training starts, and that's true. However, these initial values have a huge impact on
the early parts of training a network and therefore on convergence. To understand this you simply
have to look back at the Backpropagation 2.5 chapter. Any update to a neuron is derived from
its original value and so very small initialization will make even smaller gradient updates during
training. This can cause the network to get stuck early in a shallow minimum. On the opposite
end of the spectrum large values for neurons might make the optimization take larger steps and

Anders Grinden Vestengen 15, CHAPTER 2. SCIENTIFIC BACKGROUND



Chapter 2.9. AUTOGRAD

overshoot a better solution. So the way in which the network is initialized matters a great deal.
This section will cover a few techniques that have been used during development on the project

A big problem in machine learning these days are maintaining stable updates for ever-increasing
network sizes. Recall in the Backpropagation2.5 section that the gradient of a neuron at the end
of the network might only depend on a few parameters, but the neurons in the �rst few layers de-
pends on a large chain of matrices and vectors of all the layers after. For larger networks unstable
gradient updates are a problem which can cause early stopping and poor convergence, GAN style
networks are especially prone to this and when they failed to converge its usually referred to as
mode collapse. Careful initialization of the network parameters are one of the tools to mitigate this
behavior and start the training in a better 'basin' of attraction to the optimal procedure according
to the original Xavier initialization paper[11, p. 1 par. 3]

N (µ, σ2) =
1

σ
√
2π

e−
1
2 (

z−µ
σ )2 (2.20)

The �rst initialization is the normal distribution. It samples values from the normal distribu-
tion function 2.20, usually with mean = 0.0 and std = 1.0.

U(−
√

6

nin + nout
,

√
6

nin + nout
) (2.21)

σ2 =
2

nin + nout
(2.22)

The second initialization scheme is commonly called Xavier initialization and draws values
from a uniform distribution U 2.21 with mean of zero and variance of 2.22, which both depend
on the number of input and output neurons in the given layer (nin, nout). Xavier Initialization is
meant to give the network a more stable launchpad from which to start training by maintaining
the variance of activations and back-propagated gradients throughout the network [11].

U(−
√

2

nin
,

√
2

nin
) (2.23)

The last initialization strategy is a variation of Xavier called 'Kaiming' or sometimes just 'He'
initialization. It was created because Xavier works poorly with popular and more recent activation
functions like ReLU because it assumes linear activations [16]. Kaiming initialization instead draws
from a uniform distribution U and then normalizes the values with 2.23. This yields better results
for networks employing ReLU or LeakyReLU functions [16, p. 5].

2.9 Autograd

Autograd is an automatic di�erentiation engine that comes with the PyTorch library[30]. It au-
tomates di�erentiation of gradients in the forward and backwards passes, which abstracts this
consideration away in practice when working with neural networks. The Autograd engine works
by using a DAG or directed acyclic graph of function objects to track every tensor and its operation
during the forward pass of the program. It then takes the information in the DAG and computes
gradients along the reverse order of the graph, similarly to backpropagation but in a dynamic way
and on a much larger scale.

2.10 Convolutional Layers

Convolutional networks or CNN's for short are neural networks characterized by their reliance
on convolutional layers to meet their designed objective. A convolutional layer is in essence a
convolutional kernel that have changeable values which can be trained just like the neurons in a
perceptron. By strict de�nition the convolutional layer is actually a cross-correlation operator, but
since the values of the kernel are learnable the convention is to discard this step[45, Ch. 7.1.3].

Anders Grinden Vestengen 16, CHAPTER 2. SCIENTIFIC BACKGROUND



Chapter 2.10. CONVOLUTIONAL LAYERS

It's also worth talking about what happens when the input has more than one dimension. For
projects like this one concerning images there are three color dimensions (alt. channels) in every
input image red, blue, and green. Together they constitute the full image, but this also means that
information about the image is spread among the color channels and to extract this there needs to
be a kernel for every channel of the input. It's also worth pointing out that the kernels of a given
layer are referred to interchangeably to as feature maps because the kernels are learned mappings
of their input[45, Ch. 7.1.4].

Convolutional layers also have several advantages over their counterparts in MLP's as the
layer is now spatially invariant[45, Ch. 7.1.1] since it doesn't matter how big or small the input
is (as long as it's at least as big as the kernel). An MLP mandates that the input always be the
same size as its input layer. For example in this project the standard training size of an image is
3x128x128. An MLP would require a one dimensional input array meaning the image would now
have �attened to the size 4.9 × 104 and connecting this to just one hidden layer of the same size
would mean the weight matrix connecting the two would have to be of size 104 × 104 = 108. In
Pytorch this single weight matrix would be 400 MB large, and that's just one weight matrix in
a two-layer perceptron, not even considering any output layers. By contrast the weight-matrix of
a 2-D convolutional layer with 3 input and output channels and a square kernel of size 4 would
need 0.000576 MB of space[32]. This should illuminate the immense impracticality that strictly
linear networks face. This is why convolutional networks can expand to much larger complexity
with respect to their layers and architectures without becoming relatively immense compared to
the linear example above. In fact, the complete network developed for this project is only 24 MB
when saved to �le.

Figure 2.3: Figure showing the cross correlation operation

[H]i,j,d =

∆∑
a=−∆

∆∑
b=−∆

∑
c

[V]a,b,c,d[X]i+a,j+b,c (2.24)

Figure 2.3 show's the cross correlation operation intuitively as a sliding windows across an
input. This aims to illustrate the operation captured in 2.24 where the output features H from
a single layer is the product of the layer kernels represented by V sliding over the input X. It's
also time to discuss how input and outputs work in these operations. You can image that for a
single input dimensions the kernel operation creates a single output dimension. If our input has
several dimensions like an image then we need a corresponding amount of kernels to complete the
cross-correlation operation[45, Ch.7.4.1]. The convention for cross-correlation is to then sum all
the outputs together to form a single output dimension. This may seem weird at �rst glance, after
all if were working on color images in a neural network why shouldn't we just let there be three
output channels, doesn't this just increase computation? And yes, but there are two key points
which make it a good option. The �rst is the fact that information is spread among the channels
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Chapter 2.11. GENERATIVE ADVERSARIAL NETWORKS

and adding them together condenses this information down into the one output, so information
from the whole image propagates through the network instead of channels descending through their
own kernels. The second reason is for �exibility. If we want a di�erent number of output channels
than inputs we don't necessarily want those outputs to be di�erent. If we export the three outputs
from the example above, but also decide we want four or six channels what should those extra
channels now be made up of? It would be an arbitrary selection of di�erent channels, and maybe
there are applications where this makes sense, but in general terms this is undesired. Instead, we
create a kernel tensor of the input size C×H×W for every output channel. This has the bene�t of
solving the problem previously mentioned, and is what the subscript d in [H]i,j,d represents. You
can now start to look at the 2.24 equation more intuitively. Every layer output [H] is made up
of the sum of the di�erence between [V] and [X]. First over the output dimensions d which sums
over the spacial dimensions (i, j) and input channels c. The subscript (a, b) represent the kernel
size ∆. Usually the kernel is square and so a and b are the same size.

Wout = [
Win + 2× padding − dilation× (kernelsize− 1)− 1

stride
+ 1] (2.25)

Equation 2.25 shows the e�ect padding, kernel size, dilation and stride have on their respective
spacial dimension W.

Finally, it's also worth talking about why there would be a need for multiple output channels,
what is the virtue of expanding the number of dimensions in a convolutional network? The answer
is that one can trade spacial resolution for feature maps[45, Ch. 7.4.1]. Expanding the number of
feature maps expands the dimensions and should allow the model to learn more complexity. It's
also worth noting that the 'why' of how machine learning algorithms learn is not known. Current
Machine learning algorithms are essentially black boxes[12, sect. 1] and while you can train and
then test a traditional algorithm on a set of data, you only get an output and not any idea of
why that output is. Still it is widely accepted that increasing feature maps allow convolutional
networks to reason with multiple features at a time[45, Ch. 7.4.4]. A good example of the power
from feature expansion is the original U-Net[35] which relied heavily on increasing feature channels
at the cost of spacial resolution in order to learn complex representations while only having access
to a smaller set of training data. The network delivered impressive results[35, Table 2] which gives
merit to the idea that expanding feature channels results in the model being able to learn more
complex representations.

2.11 Generative Adversarial Networks

Generative adversarial networks or GAN for short were introduced in a research paper in 2014
[13]. It's a neural network characterized by the fact that it consists of two networks working
against each other in a min/max game. The idea starts with your desired target. Say you want to
generate images of dogs, and so you'll start out with a training set of real dogs, this will be you
training distribution (ρdata). The �rst network which is usually referred to as the Generator takes
an input of random noise and outputs a tensor of the same dimensions as your images. Finally,
there is the adversarial part of the network called the Discriminator. Its job is to take the inputs
from the training images and the generator outputs and label them as either real or fake. Over
time the output distribution from the Generator (ρg) should move towards the distribution of the
training images. Theoretically there is a �nal state for the network if there is su�cient parametric
capacity [13, Sec. 3]. In this case (ρg = ρdata) there would be an equilibrium as the Discriminator
would no longer be able to distinguish the two distributions and classi�es the images at random
i.e. D(x) = 1

2 .

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.26)

min
G

max
D∈D

V (D,G) = Ex∼Pr
[D(x)]− Ex̄∼Pg

[D(x̃)] (2.27)

LcGAN (G,D) = E(x, y)[logD(x,y)] + E(x, z)[log(1−D(G(x,z)))] (2.28)
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LL1(G) = Ex, y, z[||y−G((x,z))||1] (2.29)

G∗ = argmin
G

max
D
LcGAN (G,D) + λLL1(G) (2.30)

GAN networks are hard to train [13][3][14]. One of the big problems with the original formula-
tion of the GAN objective function2.26 is that it can be prone to something called mode collapse[13,
Sec. 6], this is where the Generator �nds a very small subset of generated samples which work well
to fool the Discriminator and the two tend to get stuck wherein the Generator presents the same
few samples and the Discriminator accepts these as the optimal values. Another problem comes
when that the Discriminator manages to distinguish samples between the distributions too easily
and rejects fake samples with a high accuracy such that the Generator has little to go on in terms
of gradient updates. The Discriminator '�gures out' the Generator too fast before it has a chance
to evolve better samples and so the training collapses.

To mitigate this issue a di�erent objective function was proposed which is much better behaved
called Wasserstein GAN or WGAN[3]. The WGAN objective function 2.27 is constructed using
the Kantorovich-Rubenstein duality, where D is the set of 1-Lipschitz functions[14, Sec. 2.2], Pr

and Pg are the training and generator distributions respectively. The WGAN function is based on
what's called EM (earth-mover) or alternatively Wasserstein-1 distance. Intuitively this distance
is the optimal transport plan for 'moving' Pg closer to Pr [3, p. 4]. It should also be noted that
the Discriminator output is di�erent for WGAN objectives because it does not label true or fake
(1, 0), instead the output of the network is now unconstrained and is therefore called a critic. This
is done because the original Discriminator will quickly learn to distinguish either real or fake and
when it does the binary information becomes less useful, thus unconstrained outputs lead to better
gradient information as the samples are given a score rather than a label [3, p. 8].

Another GAN variant is called cGAN which learns a mapping from observed image x and
random noise vector z to desired output y, G : {x,z} → y [20, p. 3]. Although, in practice z varies
in representation, from outright being a sampled noise vector to sometimes just an abstraction
based upon layer regularization like Dropout [20, Sec. 3.1]. The objective function for cGAN 2.28
is similar to the original GAN function. Another addition is that cGAN's bene�t from adding a
second loss function like L1 [20, Sec. 3.1] to the Generator loss 2.29. It doesn't change anything
in regard to the Discriminator. The �nal objective function is then summarized as 2.30.

2.12 Skip Connections

F(x) := H(x)− x, F(x) + x (2.31)

Residual (or more commonly referred to as just 'skip') connections are a recasting of a network
layer (or layers) mapping i.e. If the network can be seen as a large di�erential function then there
is an ideal layer 'mapping' of parameters which should lead to it [45, Sec. 8.6.2]. Skip connections
recast this problem into a residual mapping, so instead of learning a mapping H, we seek to learn
the residual 2.31, where x is the input vector to the layer. This was originally developed to help
mitigate the 'degradation' problem, which is when a network becomes worse as more layers are
added and the cause is not over�tting. Recasting the formulation is not strictly better in theory,
but they do perform better in practice [15, Sec. 3]. Residual connections in short allows the
network to deepen without great penalty which is crucial for more complex architectures.

2.13 Loss Functions

Outside of the GAN objective functions there are two more fundamental loss functions used in
the project. The �rst is L1-loss 2.32 [33] which was also mentioned for cGAN networks 2.29. The
second is Mean squared error loss or MSE for short 2.33 [34]. They are used in conjunction with
the GAN loss to enforce pixel ground-truth.

l(x, y) = L = {l1, ..., lN}⊤, ln = |xn − yn| (2.32)
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l(x, y) = L = {l1, ..., lN}⊤, ln = (xn − yn)
2 (2.33)

2.14 Regularization techniques

σ(A) := max
h:h ̸=0

||Ah||2
||h||2

= max
||h||2≤1

||Ah||2 (2.34)

W̄SN (W ) :=
W

σ(W )
(2.35)

σ(W̄SN (W )) = 1 (2.36)

||f1 ⊙ f2||Lip ≤ ||f1||Lip · ||f2||Lip (2.37)

Regularization techniques are 'helper' functions or strategies employed at training time to
mitigate 'over�tting' which is when a network learns its training set too well and starts performing
worse when tasked to do the same thing new data. In essence the network now fails to do what
its been trained to do by performing too well during training. The method used for this project
is Spectral Normalization. Spectral Normalization is a weight normalization method designed to
stabilize training of GAN networks. It works by using the spectral norm of a given layer 2.34,
and then utilizing 2.35 and 2.36 given normalization at every layer to impose an upper bound of
||f ||Lip by 1 given the inequality 2.37, where fn are layers of network f [27, Sec. 2.1]. This helps
ensure Lipschitz continuity which crucially e�ect the performance of GAN networks [27, Sec. 2.0].

2.15 Attention mechanisms

Attention comes in many forms for machine learning algorithms, but in the context of this paper
we narrow the de�nition closer to the image and inpainting papers used for this project. A large
portion of current attention mechanisms borrow from the proposed transformer architecture by
Google [9]. This form of attention uses some kind of feature extractor like a simple linear neural
net or 1× 1 convolutional layer to extract features onto new mappings generally referred to as key
and value layers [45, Ch. 11]. Attention can be explained as a way for the network to �gure out
how much importance is given to any input feature when constructing an output feature. In the
book "Dive into deep learning" [45, Ch. 11], the attention mechanism is likened to a database.
Imagine you have a number of distinct values in this database, each with a corresponding key to
identify it. If you search for a given key you get the corresponding value and so on. Now imagine
that you perform an incomplete search with a partial key, and correspondingly the database gives
you a 'closest match'. This is how attention layers can be understood to work, and the attention
is how strict the search for a corresponding value, given an input. In this way attention layers
can be trained to either focus or disregard certain input features when constructing outputs based
on speci�c loss functions. The network can now learn long-term dependencies that convolutional
networks struggle with as they are bound by high-resolution but close neighboring focus given
the kernel-size, or long range but low resolution given deeper convolutional layers. Attention can
break this up and refocus features deemed important to the objective. Some examples are the
SAGAN [46] model which uses self-attention mechanisms to pick up long range dependencies for
image generation. In their own words previous convolutional networks might generate dogs with
realistically textured fur, but the same animal might not have clearly de�ned paws [46, Sec. 1].
DAM-GAN [8] created attention blocks that aimed to detect and correct 'fake' looking pixels from
a preceding 'coarse' inpainting network to better generate high-�delity features.
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Chapter 3

Methodology

3.1 Project Development

The thesis goal was to investigate machine learning applications on hardware, and speci�cally
defect correction in image sensors. Initially the project used an implementation made by my
supervisor Hemin Qadir, based upon the pix2pix [20] inpainting model created by Nvidia research.
After getting the model and training framework setup it was rebuilt to understand how the model
and training schemes worked, and an initial version of the current dataset class was created to
generate synthetic defects. However, while inpainting models like pi2pix had published impressive
results, it converged poorly on the defect regions 3.4. Therefore, several new prototypes were tested
before developing a new architecture with the additional goal of being easy to deploy on hardware.
Several new objective functions have also been developed to help train the network on this speci�c
problem. Below is a graph showing the evolution of the project.
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Chapter 3.2. GENERATOR ARCHITECTURE TYPE

Figure 3.1: Flowchart detailing the project evolution

3.2 Generator architecture type

The generator architecture itself is based upon the U-net style of autoencoder architecture, �rst
proposed in [35]. It is a fully convolutional network which means there are no linear layer types to
do prediction. It also has the key advantage of converging well on a small dataset [35]. However, It
should be mention that this is not an implementation the U-net architecture itself, but takes inspi-
ration from the overall Unet structure, speci�cally the up- and down-sample con�guration. This
generative network is also much smaller. The new architecture does not use maxpool, upsample,
or consecutive convolutional layers at the same spatial size. This is because it was found through
testing that it is not necessary. Furthermore, the model works without these non-learning layers
like maxpool and upsample for two reasons. The �rst is that maxpool can act like a regularizer
because it removes some of the information in the feature maps in order to scale down the spatial
size. Instead the model uses spectral normalization [27] and dropout [18] to enforce regularization.
For the transposed convolutions were chosen for the upsample layers and they can also increase
spatial size, but have the advantage that they are learnable parameters. This ties in to the �nal
overall architectural choice which is to change the skip-connections from concatenations of the
features across the architecture, and instead use residual [15] ones. In their paper they argue that
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the residual connections should allow the network to 'zero' activations that don't help the overall
training objective. This to be a very interesting idea as it should mean that for a hardware imple-
mentation of the network, the residual connections should allow it to be more aggressively pruned
6.2.1, because the network has hopefully learned to reduce neurons that don't contribute. The
other reason for using residual connections is for their stated performance. Skip connections are
also popular with other autoencoder style inpainters and generators because they allow the passage
of more spatial information beyond the bottleneck from the downsample- to the upsample-region
[8] [20] [38].

3.3 Attention

One of the missing pieces from the �nal model is the absence of any attention mechanism, which is
a prominent feature in many of the more recent image generation and inpainting papers reserached
for this project. Several were investigated, including Dynamic Attention Maps [8], Self-Attention
GAN [46], Contextual Attention [44], and Non-local networks [38]. However, they all work on
adding some kind of attention block, consisting of several convolutional layers. It was decided
that the size increase of these blocks to not be worth the additional quality. As an example
the proposed generator is about nine convolutional layers in total with 512 feature maps at the
deepest, while one block of self attention would require four 1x1 convolutional maps. That's close
to a 50% total size increase and the self attention generator uses two of these blocks. A non-local
block requires about the same. So, while there's no denying the impressive results, like Dynamic
attention maps achieving a 90% SSIM score on its recreated 64 × 64 pixel block on the Celeb-
A-HQ dataset [8, table. 1]. The trade-o� in size was found to be too much given the goal of
hardware implementation. There is also a practical limitation. Training these networks with two
self-attention blocks in the generator and discriminator required more than the 24 GB of GPU
RAM available. More prototyping would have required a compromise with the architecture or
training setup, or potentially even more time to develop a much smaller attention mechanism.

3.4 Generator

Figure 3.2: Defect Generator architecture. Credit to [1] for the visualizer

The 'Defect Generator' consists of only a few modules. Each module contains a convolutional or
transpose convolutional layer which also either halves or doubles the spatial size of the input. Each
module also has an activation function which is ReLU for all layers, even the output. ReLU is used
because of its performance 5.4c, and also because the generator is supposed to hallucinate pixels,
so it's convenient that the activation function outputs only positive values. Furthermore, the ReLU
activations will result in more 'zeroed' activations, which should help with sparsity compression
6. The generator uses Residual connections between the �rst three encoder and decoder blocks.
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The �nal output of the layer is the matrix addition of the residual input with the output of the
activation function of that layer. The idea for this is to hopefully increase the spatial information
carried through the network to hopefully aid in generation of high resolution features. It should also
reduce training error [15]. Furthermore, there is the previously mentioned argument for improved
hardware implementation, which is also a motivator in implementing this feature. The design goals
for the architecture, is for it to be as simple and small as possible. A simpler network should be
easier to implement in hardware, and given that the defect problem is a small part of the image
we are con�dent that simplicity will also mean a larger portion of the network can be removed or
more aggresively quantized. The question of hardware implementation is further investigated in
chapter 6.

3.5 Discriminator

Figure 3.3: Pixel Discriminator architecture. Credit to [1] for the visualizer

The discriminator is a 'Pixel' discriminator based originally on the discriminator proposed in [20],
but with some modi�cations. As the discriminator output needs to be uncapped for the WGAN
objective there is no output activation at the �nal layer, all other layers use LeakyReLU with a
parameter of 0.2. There is also no batchnorm due to the mapping problem discussed in [14]. [14]
[8] [44] all advocate a discriminator based on resnet with either a global (fully connected �nal
layer) or in addition to a local critique. It was found not to not work very well 5.3, and for this
application we argue that the large consistency checks that comes from a global discriminator, and
which most other inpainting papers put such emphasis on, are unnecessary because the defects
are so small. Instead, the best results came with keeping the original spatial size of the incoming
image while also expanding the feature space. The �nal output of the discriminator in this project
is instead an unconstrained critic for every pixel in the original image.
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3.6 Local Defect Loss

Figure 3.4: Image showing poor convergence towards defect correction with no local objec-
tive. From left to right is the the defect mask, center shows the defective image, and
to the right is the generator output.

Figure 3.5: WGAN pixel loss with no defect correction

(a) SSIM score of a WGAN trained with only global
L1-objective.(Higher is better)

(b) L1 loss curves for WGAN trained with only
global L1-objective. (Lower is better)

Testing revealed that a standard cGAN approach like [20] with a global adversarial loss and accom-
panying regularization term like L1 or L2 would have poor convergence on the defect patch 3.5a.
We struggled for a long time to reconcile this because of the impressive results inpainting models
have so far achieved, with respect to the large parts of the image they can reconstruct. It would
seem trivial then to adapt this for small-scale 'touch ups' like the ones considered for this project.
However, it turns out that global objectives alone struggle to teach the generator e�ectively, this is
especially evident in �gure 3.5b where there is a global L1-component and you can see the global
loss go down which signals an improvement, but around the defect patch its stationary or even
increasing. Its the same with the SSIM scores 3.5a. The reason for this could be that the defect
patch is so small both in terms of size but also in terms of the loss penalty it creates, and so
the model sees no gain when adjusting this region. To remedy this a second regularization term
was added for the defect area using the mask created by the dataset, and based on the L2 loss
[equation: 3.1], here (xlocal,ylocal) are the generated sample and ground truth respectively. This
expands the complete objective function with respect to the generator to equation 3.2, where G∗ is
the complete generator training objective, LWGAN (G,D) is the original adversarial objective 2.27,
and (LL1(G),LL1local(G)) are the global and local L1 objective alongside their scalar parameters
(λglobal, λlocal).

Anders Grinden Vestengen 25, CHAPTER 3. METHODOLOGY



Chapter 3.7. LATENT LOSS AND 'DUAL' ENCODER FEATURE

LL2local(xlocal,ylocal) = {l1, ..., lN}⊤, ln = (xn − yn)
2 (3.1)

G∗ = argmax
G

min
D
LcGAN (G,D) + λglobalLL1(G) + λlocalLL2local(G) (3.2)

Figure 3.6: WGAN pixel loss with defect correction

(a) SSIM score of a WGAN trained with both
global-L1 and defect L2. (Higher is better)

(b) L1 loss curves for WGAN trained with both
global-L1 and defect L2. (Lower is better)

There is a clear and marked improvement in the quality of both the loss curves and SSIM
scores with the added defect objective. You can also see what was discussed earlier about the
defect area, the loss is much smaller for this defect region. Figure 3.6b shows both losses unscaled
and their distance from ground truth.

3.7 Latent loss and 'Dual' Encoder Feature

Figure 3.7: Image shows a 'blurring' from the model prediction. From left to right is the
defective image and the generator output.

This is a new objective function and the motivation are based on the results above. The original
idea behind latent loss penalties was created for text-to-speech networks [22, p. 2] and suggested
to me by my supervisor Hemin. This was then adapted for a new idea where the same architecture
is �rst trained as an autoencoder, which means it seeks to produce the exact same output as the
given input. The assumption is that now the network has learned to recreate high �delity features
in the image and we can use this to teach an inpainter to do the same. Since both networks are the
same architectures it is easy to now implement this loss for the network, which simply examines
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the di�erences of their respective latent features compared to the autoencoder. It should also be
mentioned that 'latent features' in the context of this work is the 'bottleneck' layer in the generator
3.2. The goal is that the defect correction network learns to preserve the parts of the image not
directly associated with the defect. Intuitively this should result in a higher quality image. The
loss is then simply the distance between the two features, measured using either L1 2.32 or L2
2.33, there will be more emphasis on this in chapter 5.

There are two implementations of the latent loss featured in this project. The �rst is the
architecture gets trained as an autoencoder and is then used later as an objective for the same
architecture training on the inpainting task. The autoencoder will then simply do inference (static
output) and an L2 loss penalty will be applied to the di�erence of the latent space between the
autoencoder and inpainter for every training sample. The second implementation is a parallel
scheme called DualEncoder. Here one architecture is traind on both objectives at the same time.
The same architecture does two individual predictions, one with the ground truth image and one
on the defect image. An L2 loss is then applied to the di�erence between the two latent spaces and
the normal pixel loss as well as adversarial loss for both runs. Finally all gradients are summed
for backpropagation. The second implementation is slower to train, but should have the intuitive
advantage that the quality of the image could be higher since both objectives continue to train.

Algorithm 1 Latent Feature Loss Algorithm

GA Autoencoder, GI Inpainter, D Critic, L Latent Features,

y ← Ground truth image
ŷ ← Defected image
x, LA ← GA(y)
x̂, LI ← GI(ŷ)
pred[x̂]← D(GI(ŷ))

LLatent = LL1(LI , LA)
LPixel = LL1(ŷ, x̂)λpixel loss
LLocal pixel = LL1(ŷdefect, x̂defect)λlocal pixel loss
Ltotal = LGAN(pred[x̂]) + LPixel + LLocal pixel + LLatent

Algorithm 2 DualEncoder Algorithm

GD DualEncoder, D Critic, L Latent Features,

y ← Ground truth image
ŷ ← Defected image
x, LA ← GD(y)
x̂, LI ← GD(ŷ)
pred[x]← D(GD(y))
pred[x̂]← D(GD(ŷ))

LLatent = LL1(LG(I), LG(A))
LPixel = LL1(y, x)λpixel loss
LLocal pixel = LL2(ydefect, xdefect)λlocal pixel loss

Ltotal = LGAN(pred[x],pred[x̂]) + LPixel(x, y) + LPixel(x̂, y) + LLocal pixel(x̂, y) + LLatent

3.8 Generative Inpainter objective

A short updater for a purely generative inpainter has also been developed. In this case there is
no Discriminator and the training architecture is no longer a 'GAN' as there is no adversarial
component to the loss. This is meant as both experimentation, but also as a control to the results
of the GAN implementations.
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Algorithm 3 Generative Loss Algorithm

GI Inpainter

y ← Ground truth image
ŷ ← Defected image
x, LA ← GI(y)
x̂, LI ← GI(ŷ)

LLatent = LL1(LG(I), LG(A))
LPixel = LL1(y, x)λpixel loss
LLocal pixel = LL2(ydefect, xdefect)λlocal pixel loss

Ltotal = LPixel(x̂, y) + LPixel(x, y) + LLocal pixel(x̂, y) + LLatent

3.9 Early Stopping

This project does not contain an early stopping feature, which is often used to prevent the model
performance from degrading as it will eventually start to over�t on the training data. Instead a
crude quality metric was employed called the 'model score'. This is simply a score given to the
model at the end of every training epoch based on an evaluation of 500 samples. The 'model score'
is scalar sum of (PSNR + SSIM ∗ 100) for both the global image and defect area. A function
would compare the model score with the score at all other epochs and save the model if this result
was better previous ones. While this is not a perfect solution as training runs until completion,
even if model performance severely degraded hours before. It will save the best performing model
because over�tting models should score worse on the validation data. Below is a graph showing
the model score across epochs.

Figure 3.8: Figure showing a model score across training epochs.

3.10 Training Data

I use the Celeb-A [25] dataset for the project primarily because of its size and use in other inpainting
papers [44] [8]. The dataset also had key attributes important for this project which is a good
sample size (200K in total). Individual image size is almost always bigger than [256× 256], which
is important for cropping and integration into the dataset class developed. Furthermore, faces and
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clothes represent a di�cult challenge for the model to recreate. As discussed in [3.11] there are
many training sets which would probably work well. In fact integrating new training sets is trivial
as long as they are in the '.jpg' format and individual samples size is a minimum of [256 × 256].
This is because training data is an amalgamation of the synthetic defects alongside the image itself.
This means the same image can serve as a di�erent sample every time its drawn. An example of
the defects is shown below.
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3.11 Fitting the Training data (Dataset class)

Figure 3.9: Defect pattern samples

(a) Figure showing 50 defects implanted on a mask

(b) White defect
pattern

(c) White defect
pattern

(d) White defect
pattern

(e) Black defect
pattern

(f) Black defect
pattern

(g) Black defect
pattern
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Figure 3.10: picture of a damaged image sensor, credit: [23, Vera de Kok], license CC BY-SA 3.0

No model in the world will converge with any amount of success on bad data. As discussed in
2.11, the generator will attempt to move its distribution closer to the training distributions and
therefore the training data better be good. The �rst real challenge here is that to our knowledge
there exists no large dataset on image-sensor defects. There also seemed to be little point in trying
to engineer a defect on a real-world sensor as the number of images required, while 'smaller' in
terms of relative training requirements, are still much larger than what's practical to photograph.
Therefore, an algorithms was made that embeds random defects onto images using boolean masks.

Algorithm 4 Defect Generation Algorithm

n← N (num defects)
for i in range(n) do

d← N (Defect size range)
Defect-type← N (white, black)(bool)
y ← N [d, imageHeight− d]
x← N [d, ImageWidth− d]
mask← N (Defect-type(defect gradient))[d× d]
defective image← image(mask)[y, x]

end for

return defective image, mask

The algorithm 4 takes a random integer from a speci�ed range determined pre-training called
"Defect size", this determines the size of a square which is �lled with a boolean mask drawn from
random Gaussian noise. The mask is then imposed over a random set of coordinates within the
image creating the example in 3.11b.
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Figure 3.11: Defect implantation

(a) ground truth sample (b) Sample with defect (c) Cutout of the defect area

The Dataset algorithm can generate one or multiple defects of variable size, at random loca-
tions, and of di�erent types either white (hot) or black (dead) defects. The nature of the defects
will also vary in severity to mimic the real life nature of the sensor defect. It is well known that
pixel response and therefore pixel defects can change as a result of dark current and changes in
temperature [21], [41]. With this in mind the defects have a random variation in their intensity for
both dead and white defect to simulate abnormal but not completely saturated pixel responses.
This is meant to mimick the no-linearity of these defects. The bene�ts of this generative approach
is that it will work on any image multiple times and therefore a great number of high quality image
datasets become available. Another important point about the chosen training data is the consid-
eration of inductive bias. In a real world example it would be bene�cial for the model to make
good approximations given the bias of the image sensor itself, rather than learning representations
or 'quirks' from many di�erent sensors. The model should also learn to hallucinate pixels from
a large number of representations in the scene like clothing, faces, background, texture etc. The
project only accounts for the second consideration. Although, eventually there could be merit in
exploring the �rst.

During the conversion process the images are loaded using the PIL library and then converted
using a Pytorch function which scales the image values between [0, 1]. This is done for training
stability. The function also changes the datatype from integer to 32-bit �oats. This is to done to
increase precision during training. For outputs and inference of the models the RGB dimensions
of the image is converted to 8-bit integers ranging from[0, 255].

3.12 Training setup and parameters

This section will focus on most of the training parameters used for the project. Below in table 3.12
are the typical values for a given training run. λPixel loss will vary if it is an autoencoder (higher)
or inpainter (lower) being trained. λn_crit is the parameter for how many discriminator updates
per generator update, this is a method that's been used to help train GAN networks. We First
encountered it in [3], but there have been various implementation and update rules [14] [27] [46].
It was found through experimentation that between 1-2 works well, which is consistent with the
�ndings in [46] when they employed similar strategies using spectral norm in both networks and a
two tiered learning rule [17]. Eventually it settled on a learning rate of 0.0004 for the discriminator
and bound the generator rate to be half that to take advantage of [17]. This is a little aggressive
compared to most other update rules [14] [27] [44] [14], but again consistent with [46] when using
the same regularization schemes. The project uses the Adam optimizer with the same parameters
as [46] and [27] chose for image generation.
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Table 3.1: Table of training parameters

Parameters list
Name Typical value
λPixel loss 10− 100
λLocal pixel loss 100
λLatent loss 1
λn_crit 2
λlearning rateD 0.0004

λlearning rateG
λlearning rateD

2
Adamβ1 0
Adamβ2 0.999
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Chapter 4

Results

The results are presented in this chapter. It's important to note that all 'models' are the same
architecture, but trained with the di�erent objective functions previously de�ned. There will also
be speci�c information about what loss functions were used for each. The models are compared
across resolutions, defect characteristics, and against more common defect correction like a median
�lter. Afterwards there is a subjective comparison across di�erent inference images. Additionally,
images in the training and validation sets contain a decreasing amount of appropriate images as
the resolution increases. This means that results above [256 × 256] are somewhat skewed as the
dataset API will introduce black bars in order to 'produce' a sample at the desired resolution if
the image itself is smaller. These black bars will increase the PSNR and SSIM score higher than
they should be. For this reason the biggest quantitative results are presented at [512× 512].

4.1 Metrics Used

To assess the quality and the performance of the models the project uses two metrics. The �rst
is PSNR (Peak Signal To Noise Ratio), and the second is SSIM (Structural Similarity Index
Measure). These were chosen based on their use in other inpainting papers [42][24][8]. In addition,
they measure the image in two important way in relation to this work, which is the overall quality
measured by the PSNR, and the quality of the pixel reconstruction measured by the SSIM.

SSIM

SSIM was �rst proposed in 2004 [39] as a metric to more accurately gauge quality in similar
terms to humans. The metric scores a desired image against a reference image in a range of
[−1, 1], where -1 is complete dissimilarity and 1 is complete similarity. However, a review of the
SSIM suggested that negative values are present only when the input image is inverted [6, Note,
p. 4]. Since the application of the metric in this case ranges between 0 and 1 they are scaled
as a percentage for ease of comparison. Functionally, SSIM is computed by a sliding window
kernel. It aims to capture reconstruction by comparing several types of information between the
images, de�ned as luminance4.2, contrast4.3, and structure4.4. For color images the results are
summed and then divided by the channels. One downside to this metric is that the implementation
requires a minimum window of [7 × 7] which makes scoring defect corrections of smaller defects
more challenging. Therefore, most results are captured with defect regions at a minimum of [7×7].
Shown below are the three principal SSIM components, where x and y denote the test and reference
images. µ is the mean, σ2 is the variance, and σ the covariance.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c1)
(4.1)

luminance l(x, y) =
(2µxµy + c1)

(µ2
x + µ2

y + c1)
(4.2)
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contrast c(x, y) =
(2σxσy + c2)

(σ2
x + σ2

y + c2)
(4.3)

structure s(x, y) =
σxy +

c2
2

σxσy +
c2
2

(4.4)

c1 = (K1 · data-range)2

c2 = (K2 · data-ange)2

data-range = Max(image)−Min(image)

(4.5)

In addition, the values K1 and K2 are scalar parameters with default values of 0.01, and 0.03.
The image data-range is usually 1 as images are scaled between [0,1] within the framework.

PSNR

PSNR can be de�ned as a signal processing metric that compares a processed image to its source
[10]. Quantitatively it is the maximum possible value of the signal, inversely proportional to the
mean squared error, presented in a log scale. It is described by the equations below, where I and
K denote the original and processed images, respectively.

PSNR = 20log10(
MAX2

I√
MSE

) (4.6)

MSE =

m−1∑
i=0

n−1∑
j=o

[I(i, j)−K(i, j)]2 (4.7)

Furthermore, there results are split between global and defect areas to better compare re-
construction. All results are also averaged across 500 random samples to give an estimate of
generalized performance. The complete test set constitutes around 40K images.

4.2 Training and inference times

All training and inference were conducted using a single Nvidia RTX 4090 GPU. Since the archi-
tecture for all models are the same, the inference times are also the same.

Table 4.1: Table showing model inference times @ 128, 256, 512 and 1024 spatial resolution.

Inference times
Resolution 128 256 512 1024 unit
Time 23 27 37 76 mS

Table 4.2: Table showing model training times

Inference times
Name epochs time time per epoch (minutes)
Latent Inpainter 20 3 hours 14 minutes 9.7
Dual encoder 40 9 hours 23 minutes 14.0
Generative inpainter 40 3 hours 36 minutes 5.4
Reference inpainter 20 2 hours 58 minutes 8.9
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4.3 Latent Inpainter

The latent inpainter was trained using the latent loss objective presented in 3.7. First a model
using the same generator architecture 3.4 was trained as an auto encoder, meaning it was given
the original un-corrupted image with the objective of recreating it. The auto encoder was trained
for 20 epochs. Another instance of the same model architecture was then used to train the latent
inpainter, using the auto encoder's latent features 3.2 as a reference for the latent loss objective.
Below is the table denoting the models training parameters, and performance.

Table 4.3: Table showing the Latent inpainter training parameters

Parameters list
Name Value
epochs 20
batch size 16
Defect(s) black
Defect range 8− 8
Number of defects 1
λPixel loss 10
λLocal pixel loss 100
λLatent loss 1
n_crit 2
λlearning rateD 0.0004

λlearning rateG
λlearning rateD

2

Adamβ1 0
Adamβ2 0.999

Figure 4.1: Latent inpainter performance graphs

(a) Latent validation losses.
(b) Global and defect pixel validation
losses.

(c) Latent inpainter model score. (Higher
is better)
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Table 4.4: Table of latent inpainter metrics. All metrics are averages across 500 samples.

Latent inpainter score @ 128, 256, 512 image resolution
Metrics 128 256 512 unit
PSNR global ground truth 34.99 44.08 64.05 dB
PSNR global generated 38.71 38.62 37.36 dB
PSNR defect ground truth 11.01 15.24 38.84 dB
PSNR defect generated 31.41 33.19 42.55 dB
SSIM global ground truth 99.25 99.82 99.97 %
SSIM global generated 97.88 98.03 98.15 %
SSIM defect ground truth 11.09 15.89 40.57 %
SSIM defect generated 79.67 80.56 86.32 %

4.4 Dual Encoder

The dual encoder was trained using the alternative objective proposed in 3.7. This means that the
autoencoder and inpainter objectives were trained concurrently on the same generator instance.
Because of the increasing number of training objectives this objective also traines slower, in terms
of convergence per epoch and actual time to train 4.2. To equalize training size the dual encoder
was trained for 20 epochs or roughly 48 million samples. This is because the latent inpainter
implementation trained its auto encoder for 20 epochs, so the sum of training time is the same.

Table 4.5: Table showing the dual encoder training parameters

Parameters list
Name Value
epochs 40
batch size 16
Defect(s) black
Defect range 8− 8
Number of defects 1
λPixel loss 100
λLocal pixel loss 100
λLatent loss 1
n_crit 2
λlearning rateD 0.0004

λlearning rateG
λlearning rateD

2

Adamβ1 0
Adamβ2 0.999
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Figure 4.2: DualEncoder performance graphs

(a) Generator and discriminator validation
losses.

(b) Global and defect pixel validation
losses.

(c) Dual encoder inpainter model score.
(Higher is better)

Table 4.6: Table of dual encoder metrics. All metrics are averages across 500 samples.

Dual encoder score @ 128, 256, 512 image resolution
Metrics 128 256 512 unit
PSNR global ground truth 34.48 43.45 64.81 dB
PSNR global generated 45.46 46.13 45.81 dB
PSNR defect ground truth 10.49 14.01 40.10 dB
PSNR defect generated 31.81 32.93 43.89 dB
SSIM global ground truth 99.22 99.82 99.97 %
SSIM global generated 99.34 99.40 99.37 %
SSIM defect ground truth 10.52 15.71 42.23 %
SSIM defect generated 79.35 79.54 84.13 %

4.5 Generative Inpainter

The generative inpainter was trained using the objective from 3. It is meant as a controling result
to check the necessity of the adversarial objective. The generative inpainter also uses the local and
latent objectives, with the dual encoder style of implementation during training. Because of the
latent objective this model was also trained for 40 epochs. Because there is no need for adversarial
training (i.e WGAN) this model trains signi�cantly 4.2 faster than the other models in this project.
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Table 4.7: Table showing the Generative inpainter's training parameters

Parameters list
Name Value
epochs 40
batch size 16
Defect(s) black
Defect range 8− 8
Number of defects 1
λPixel loss 100
λLocal pixel loss 10
λLatent loss 10
n_crit 2
λlearning rateD 0.0004

λlearning rateG
λlearning rateD

2

Adamβ1 0
Adamβ2 0.999

Figure 4.3: Generative inpainter performance graphs

(a) Global and defect pixel validation
losses.

(b) Generative inpainter model score.
(Higher is better)

Table 4.8: Table of generative inpainter metrics. All metrics are averages across 500 samples.

Generative inpainter score @ 128, 256, 512 image resolution
Metrics 128 256 512 unit
PSNR global ground truth 35.21 44.37 63.29 dB
PSNR global generated 40.53 40.41 40.34 dB
PSNR defect ground truth 11.18 15.41 37.35 dB
PSNR defect generated 32.51 34.61 51.08 dB
SSIM global ground truth 99.25 99.83 99.97 %
SSIM global generated 98.69 98.54 98.59 %
SSIM defect ground truth 11.74 16.45 39.83 %
SSIM defect generated 84.64 83.79 87.56 %

4.6 Inpainter

The Inpainter network is trained without the latent objective to test its e�cacy. It has the same
objective functions as the Latent Inpainter and Dualencoder networks, except for the latent loss.
The network was trained for 20 epochs or roughly 24M training samples.
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Table 4.9: Table showing the Inpainter's training parameters

Parameters list
Name Value
epochs 20
batch size 16
Defect(s) black
Defect range 8− 8
Number of defects 1
λPixel loss 100
λLocal pixel loss 100
λLatent loss 0
n_crit 2
λlearning rateD 0.0004

λlearning rateG
λlearning rateD

2

Adamβ1 0
Adamβ2 0.999

Figure 4.4: Inpainter performance graphs

(a) Generator and discriminator validation
losses.

(b) Global and defect pixel validation
losses.

(c) Inpainter model score. (Higher is bet-
ter)
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Table 4.10: Table of inpainter metrics. All metrics are averages across 500 samples.

Inpainter score @ 128, 256, 512 image resolution
Metrics 128 256 512 unit
PSNR global ground truth 34.08 44.25 63.19 dB
PSNR global generated 43.38 44.35 45.09 dB
PSNR defect ground truth 10.05 15.30 37.47 dB
PSNR defect generated 29.68 31.62 40.78 dB
SSIM global ground truth 99.23 99.83 99.97 %
SSIM global generated 99.35 99.44 99.38 %
SSIM defect ground truth 9.73 16.92 39.65 %
SSIM defect generated 72.64 74.03 79.59 %

4.7 Comparing model performance

This section provides a comparative overview of the models scores against each other. Below is a
table showing the best model scores at any of the tested resolutions compared against eachother.

Table 4.11: Table comparing model performance. All metrics are averages across 500 samples.

Best comparative model score @ any resolution
Metrics Latent inpainter Dual encoder Generative Inpainter unit
PSNR global generated 38.71 46.13 40.53 45.09 dB
PSNR defect generated 42.55 43.89 51.08 40.78 dB
SSIM global generated 97.88 99.40 98.69 99.44 %
SSIM defect generated 86.32 84.13 87.13 79.59 %

Comparing all the models in the table above shows that both the Dual encoder and Generative
inpainter perform the best. The latent inpainter generally performs the worst, which might be due
to its autoencoder being locked after 20 epochs. This reinforces the idea from chapter 3.7, that
the theoretical ceiling of quality with the latent objective would perform better if the auto-encoder
part continues to train. Although, this idea could be explored further. In subjective terms it is
di�cult to tell the models a part from one another. Although, the �nal section in this chapter
aims to give some visual indications. Below is also a �gure showing some of the inferenced images
to give a visual aid alongside the quanti�able results, at this stage of training.
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Figure 4.5: DualEncoder inference results @ 256× 256

From left to right is the defect mask, in the center is the defective image, and to the right is
the generator output.

4.8 Dynamic defects and model generalization

Up until now all models have been trained with the dataset set to a �xed size of [8 × 8] and
a completely dead blackened pixel showing no response in the image. It's now interesting to
test the viability of the models outside their given scope to simulate defects the model may not
have been trained for. For the next round of results the models were tested using the previously
mentioned dynamic defects 3.11. Both black and white defects are enabled with a gradient for
both. Furthermore, there can now be up to three defects in an image and their bounding box can
vary from [7− 12] in size.

What seems to happen is that since the defects are such a small part of the image most of the
models score the same with respect to SSIM on the complete image. For global PSNR its worse and
most models seem to drop 3-7dB, which is signi�cant. The worst results come at the defect speci�c
scores. SSIM score drops by around 50% and PSNR plummets by around 13-16dB depending on
the model. What seems to happen is that all models have zeroed in on the characteristics of the
defect they've trained on, to the point where one could spot the shades of the dark but not quite
black defects corrected in the image. In other cases the models seemed to do a very good job when
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Table 4.12: Table comparing model performance of dynamic defects without training. All metrics
are averages across 500 samples.

Best comparative model score @ [256× 256] resolution with dynamic defects (no training)
Metrics Latent inpainter Dual encoder Generative Inpainter std. dev. unit
PSNR global generated 35.39 39.63 36.71 38.92 0.14 dB
PSNR defect generated 17.43 16.89 18.66 16.89 0.37 dB
SSIM global generated 97.68 99.09 98.24 99.12 0.06 %
SSIM defect generated 45.24 41.37 47.39 40.92 1.22 %

several and even variable black defects were present, suggesting that the model does to some extent
generalize well on the given problem. Where all models fail is with white pixels. This seems to be
so far from what they've converged toward that they ignore it along the rest of the image. Below
is a typical situation illustrating the results above.

Figure 4.6: Dual encoder inference image @ 256× 256 on dynamic defects with no prior training

From left to right is the defect mask, in the center is the defective image, and to the right is
the generator output.

To further investigate generalization and look at dynamic correction every model was retrained
for 5 epochs. The extra training time was again limited by practical contstraints. The below graph
shows the training for all models across the �ve epochs. They all climb up to about the same or
slightly below their previous metrics.
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Figure 4.7: Figure showing model scores across epochs of the di�erent models.

What's interesting is to see that they all seem to degrade after an additional epoch of training,
before �nally starting to �gure it out. There is another drop at the end, but this wouldn't be out
of the norm for later stages of training when they reach what seems to be the limit at a score of
around 250-265, and then start to slightly oscillate around what may be the performance peak.
Below is another comparison of inference results comparing performance after re-training.

Table 4.13: Table comparing model performance on dynamic defects after re-training. All metrics
are averages across 500 samples.

Best comparative model score @ [256× 256] resolution with dynamic defects (re-trained)
Metrics Latent inpainter Dual encoder Generative Inpainter unit
PSNR global generated 36.74 42.14 35.79 42.05 dB
PSNR defect generated 28.67 26.52 29.52 27.49 dB
SSIM global generated 96.61 98.96 95.49 98.85 %
SSIM defect generated 79.06 71.25 80.49 74.54 %

Again the generator models using the dual encoder scheme do better on the dynamic defects
as well. The latent inpainter scores the worst, even below the 'vanilla' inpainting model in most
metrics. Another thing to note, is that the generative inpainter scores considerabley higher on the
defected regions than on the global image. At the same time the GAN based dual encoder and
inpainter score better on the overall image. This leads to some suprising conclusions. In general the
dual encoder implementation of the latent loss works better. In addition, the Generative inpainter
works the best on local defects, but performs worse in overall quality. The regular inpainter does
well across the board, this indicates that the contribution of the latent loss is not big, or maybe
even positive. It may also be a case of the loss being poorly utilized, but that's for future research
to uncover. It is also prudent to reiterate that while training was set for 20 and 40 epochs, which
was limited by practical constraints. Therefore, some of the slower training models might have a
higher theoretical ceiling, especially for the dynamic defects. Although, this remains speculation.
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4.9 Comparing the model to a traditional correction �lter.

In order to compare the model performance with a more conventional correction methods, we
selected a median �lter. This is because median �lters are often used to detect and correct pixel
defects in image sensors [37][43]. For the comparison the 'median blur' �lter from the open source
opencv project was used. The median blur �lter calculates the median value of the pixels within
the chosen kernel area and replaces the central pixel. After some testing a kernel of size [3× 3] as
larger �lters gives the overall image an unrealistic drop in quality. Below is an image showing a
typical correction result from the median �lter, as well as the results compared against the dual
encoder model.

Figure 4.8: Image corrected using a median �lter @ 256× 256 resolution

From left to right is the defect mask, in the center is the defective image, and to the right is
the corrected output.

Table 4.14: Table comparing model performance against a median �lter operation

Model vs median �lter correction scores @ [256× 256] resolution with dynamic defects
Metrics Dual encoder median �lter unit
PSNR global generated 42.14 32.67 dB
PSNR defect generated 26.52 14.14 dB
SSIM global generated 98.96 93.31 %
SSIM defect generated 71.25 33.25 %

The dual encoder performs signi�cantly better than the �lter across all metrics, and especially
in the defect region. Overall PSNR is around 10dB higher for the model, and for defect correction
the model performs 38% better. There is probably a good argument for only running the median
�lter in the defect regions, as this would save computation time and increase overall quality.
However, The dual encoder would still outperform the �lter in this context. The model also has
the advantage of �exibility, as it can be re-trained and therefore deployed in di�erent stages of the
image sensor pipeline, as needed. Moreover, the model works well on the whole image for several
of the resolutions. With this in mind the model can use the entire image as input, which can give
the designers more �exibility in terms of hardware implementation.

4.10 Inference images and subjective comparison

Below are a few images from the inference runs intended to give some subjective measure of the
model performance. First is the complete image and then below is the original defect area, ground
truth defect, and �nally the various model predictions.
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Figure 4.9: Inference comparison 1

(a) Inference image 1

(b) original defect (c) ground truth (d) Dual encoder (e) Latent inpainter

(f) Generative (g) Inpainter
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Figure 4.10: Inference comparison 2

(a) Inference image 2

(b) original defect (c) ground truth (d) Dual encoder (e) Latent inpainter

(f) Generative (g) Inpainter
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Figure 4.11: Inference comparison 3

(a) Inference image 3

(b) original defect (c) ground truth (d) Dual encoder (e) Latent inpainter

(f) Generative (g) Inpainter
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Chapter 5

Discussion

5.1 CGAN to WGAN

Originally work started with the model proposed in [20] as a foundation, which used the CGAN
objective to calculate the adversarial loss. This proved very di�cult to train and make converge,
and this is not something unique to this project, GAN networks are notoriously hard to train and
often su�er from what's called mode collapse. This can happen if the generator falls into a small
subset of output samples which do very well at fooling the discriminator, but they aren't necessarily
good in terms of their quality. Another issue can happen is if the discriminator �gures out the
generator samples early in training and starts to reject all of them, in this case the GAN stops
learning as the generator never manages to fool the discriminator. Therefore, it was very exciting
to come across the the original WGAN paper [3] which stated that generated samples using this
objective had better diversity and that the objective function helps prevent mode collapse [3, p. 8,
Fig. 2]. There are other bene�ts to switching objective, including the fact that the discriminator
loss can be seen as a distance metric between the generated and target distributions. In addition,
the objective provides better gradients as the networks trains for longer which is di�erent from the
original GAN formulation because the Jenson-Shannon divergence of which the objective is built
upon will locally saturate and generate vanishing gradients [3, p. 8]. Furthermore, the WGAN
paper claims improved stability in the training process [3, p. 9]. It should also be noted that
the CGAN loss is using the alternate objective from [13] where the generator is instead trained to
maximize E[log(D(G(x)))].

Figure 5.1: CGAN and WGAN validation losses

(a) CGAN generator and discriminator validation
loss.

(b) WGAN generator and discriminator validation
loss.

To test the e�cacy of the two objectives the same architecture was trained on both. With the
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same additional L1 component, and without any form of regularization for 500K samples. The �rst
thing to notice is that both models seem to diverge in the sense that one side of the GAN posts
much larger losses than the other. For the CGAN losses it seems like the generator is successfully
fooling the discriminator the vast majority of the time, a more ideal curve here would see the
discriminator and generator losses converging, which would signal closer competition and possibly
a better training run. For the WGAN loss the Discriminator predictions are both uncapped and
with no regularizer, and so it increases substantially. However, even with the diverging predictions
you'll see in �gure 5.2 that the WGAN holds an impressive advantage over the CGAN. This result
alongside the experience of training large numbers of GAN networks for this project convinced us
that WGAN is the best objective function for this application.

Figure 5.2: Graph showing model score for WGAN and CGAN models. (Higher is better)

5.2 Generator Development

In terms of generator output the last layer should be adapted to the current task. Three di�erent
functions were tested based on their use in previous research. These were ReLU, Tanh, and �nally
an unrestricted output. Originally the generator used the Tanh function for outputs throughout
development because it was used for the generator architecture in [20].

Figure 5.3: Comparing generator last layer activation functions

(a) Generator validation loss comparison. (Lower
is better)

(b) Discriminator validation loss comparison
(Higher is better)
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The �rst thing to noticed is the fact that the ReLU output is more well behaved. While all
three are similar with respect to their discriminator losses the generator graphs are more interesting.
Since both networs try to maximize their respective output here, a Discriminator loss closer to 0
and a generator loss that's higher is better, but a large di�erence between them could mean that
the generator is more easily fooling the discriminator which is bad for training quality. Therefore,
the ReLU loss graphs looks better as it shows both networks in closer competition.

Figure 5.4: Comparing generator score with di�erent last layer activations

(a) Generator activation comparison
PSNR score. (Higher is better)

(b) Generator activation comparison SSIM
defect score. (Higher is better)

(c) Generator activation comparison model
score. (Higher is better)

I pulled three di�erent quality measures for this comparison, image PSNR, defect SSIM, and
overall model score. They all show ReLU either in close competition or outright outperforming the
other activations. It was especially surprised to see a +10% increase in SSIM defect score which
to me implies that ReLU could be very bene�cial once a network is fully trained.

5.3 Discriminator development

As mentioned in 3.5 there are a few considerations with respect to the output of the discriminator.
[8] noted that a global enforcement critic like the one from [14] will do better than a local one
for irregular hole masks. To test this two training runs where done, where the Discriminator
output layer was swapped. The �rst one is the one shown in 3.5 and the second run featured an
additional fully connected layer with a single unconstrained output which is similar to the one in
[14], thereby making it a global critic. The results are noted below and show �rst the generator
and discriminator loss curves. With the global discriminator the generator seems to quickly learn
to outsmart it. With the pixel discriminator the losses are much closer and are seen to converge
towards the end which signals better training. This is �nally con�rmed below in �gure 5.6 which
shows the model scores of the two di�erent training runs.
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Figure 5.5: Comparing local vs global discriminator outputs

(a) Global discriminator validation loss graphs (b) Pixel discriminator validation loss graphs.

Figure 5.6: Global and pixel discriminator model scores. (Higher is better)

5.4 Regularizations

Regularization techniques were carefully tested and chosen based on performance in other inpaint-
ing papers. Suppose you could also make the argument that the defects themselves are a form
of regularization as they're closely related to simply injecting noise in an image and tasking the
generator with removing that noise. The techniques were chosen because of their reported results
[27] [46] [18] [19]. In simple terms Batch normalization normalizes the batch of layer inputs (in this
project there's usually 16 images in a batch) which can improve training rates. Spectral normal-
ization is a regularization technique which is made to work more exclusively with WGAN based
objective functions. It controls the Lipschitz constant of the network by constraining the spectral
norm of each layer [27, Sec. 2]. In this way the Lipschitz constraint of the WGAN objective func-
tion is upheld, which should enable the network to converge in a good way. The �nal regularization
is Dropout which simply turns o� a random subset of neurons in a given layer. A more thorough
explanation of the techniques used in the �nal model can be found in section 2.14. To test their
e�cacy three WGAN networks were trained with one regularization at a time for 500K samples.
They were then compared to the same architecture with no regularization.

Anders Grinden Vestengen 52, CHAPTER 5. DISCUSSION



Chapter 5.4. REGULARIZATIONS

Figure 5.7: Comparing regularization techniques in a WGAN model

(a) graph comparing a WGAN Generator's pixel
loss with the di�erent regularization techniques.
(Lower is better)

(b) graph comparing a WGAN Generator's defect
pixel loss with the di�erent regularization tech-
niques. (Lower is better)

All networks were initialized using Kaiming 2.8 initialization and trained for 500K epochs
on the inpainting objective. Spectral normalization is meant to aid training of the networks, in
the original paper [27] they apply normalization to the Discriminator, but another paper found
it bene�cial to add SN to both parts of the GAN [46]. The regularizations have been adopted
to both networks based on their recommendation. In �gure 5.7 you can see that batchnorm
routinely underperforms while dropout and spectral norm perform around or better than the
vanilla con�guration.

Figure 5.8: Comparing Generator scores with di�erent regularizations.

(a) Generator comparing PSNR score.
(Higher is better)

(b) Generator comparing SSIM score.
(Higher is better)

(c) Generator comparing SSIM defect
score. (Higher is better)
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Going over the results shows the same trend as in the pixel loss 5.7 where vanilla and dropout
perform the best while spectral norm trails by around 2dB. This is consistent with a trend where
spectral normalization will give great results in terms of training stability and convergence, but has
a tendency to produce more 'blurry' images. This e�ect goes away when training for longer, say
around 3M samples. Batchnorm, again performs much worse than the others, coming in at around
a 3-4dB de�cit. Both normalization technique actually exhibit this blurring e�ect on the images,
but the blurring does not completely go away with batch normalization in the same way that it
does for spectral normalization. We hypothesize that this is because spectral norrmalization works
on the layer constraints, and so this goes away as the model converges and exhibits smaller losses.
However, Batchnorm keeps normalizing the input and therefore this blurring might 'move' with
the losses. It should be noted again that this is not stated as fact but speculation on our part.
WGAN Gradient Penalty [14] which is an improvement on the original Wasserstein objective, was
also considered as a regularization method. However, spectral normalization posted better results
when tested against GP. In addition, the method introduces additional training time from having
to do two discriminator runs each loop to calculate the gradient penalty term itself.

Figure 5.9: Comparing WGAN regularization losses

(a) Generator validation loss comparison. (b) Discriminator validation loss comparison

Finally, comparing validation losses for the di�erent regularization techniques. In terms of
the two normalization techniques, the stated bene�t is often training stability and convergence
[27] [19] and this holds for both Generator and Discriminator losses 5.9 which shows them both
behaving pretty well. The big o�ender here is instead dropout which causes enormous gradients
akin to mode collapse. It's interesting that dropout still performs better than batchnorm given
these results. This was one of the reasons for why a purely Generative or 'noGAN' model was
developed for the project, in order to investigate what e�ect the adversarial component had on
model performance. Especially, since dropout could perform so well while also seemingly induce
large instability to GAN training. Based on these results it was decided to move forward using
spectral normalization and dropout as the chosen regularization techniques.

5.5 Creating and evolving the dataset

Initially the algorithm [4] returned the defective image alongside the exact mask to compute the
L1-loss. However, during testing it was found that the model converged poorly on this objective.
Instead it was found to be much more bene�cial to return a boolean mask which was valued 1 at
all points in the defect-area and not just the defective-pixels. In this way the model was shown
the area it was meant to �x, both defect and original pixels. The masking approach also turned
out to be bene�cial for the dynamic defect training and inference, as new defects can now just be
added to the original mask using tensor slicing. Previously, a crude system would return metadata
of the defect size and location. The idea here was that when training it could dynamically vary
how much of the surrounding area outside the defect would be shown the generator. Experiments
were ran with [1×, 2×, 3×] time the loss regions, but this seemed to only d�use the correction
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instead of inpainting it. The metadata approach would also be much less elegant when working
with multiple defects as the amount of information would have to grow alongside the new defects,
and new functions to parse and select these areas would have to be developed.

A lot of care was also taken with respect to the speed and throughput of the defect-generation
and speed of the dataset-class. The big limiter of this project has been time as there is no shortage
of di�ering techniques, architectures or quirks of statistics to try for the sake of improvement. The
time it takes to train a model just to determine if a small feature or layer is better in some way
compared to a previus one. A fast dataset-class is imperative for this to function as any sample
will need to go through this possible bottleneck. Early in the project I employed di�erent libraries
which would need to convert the images between di�erent formats before becoming tensors and
training samples. Now the whole process is rewritten to employ only the Pytorch library and
o�oads data to GPU memory as early as possible.

Another bottleneck in regard to the dataset is the I/O throughput, or simply the act of loading
an image from the disk and into memory before processing. This can be a big culprit when it comes
to training time as the harddrive usually has the slowest transfer speed of the entire toolchain,
which goes [HDD → RAM → CPU → GPU-RAM]. This was especially evident early in the
project when trained on the university servers, and while they lacked fast harddrives they had
vast amounts of RAM. Therefore, an algorithm was created which would preprocess a number of
training samples into a Pytorch �le to be stored and when training commenced the dataset would
instead load this entire �le into RAM. 15-20K samples would take up about 25-30GB of RAM, and
since the servers had hundreds of gigabytes it could still leverage a large number of samples. It
was determined through testing on my personal machine that this would be an increase in sample-
rate of over ×7. The only drawback to this method is that it reduces training diversity because
defect and image are now pre-determined, and for every epoch the model would traverse all images
but �nd the same defects. In the 'normal' or previous mode a new defect would be generated
for every image and the model could not count on learning just one representation in the same
image. Unfortunately, it turned out not to matter, at least for the �nal parts of the projects when
trained locally. At that point it could leverage faster hard drives and the iteration time for forward
and backwards passes of the network ended up outweighing the time needed to fetch and process
samples.

5.6 Defect loss

The use of L1 or L2 loss on the defect pixels was determined experimentally. As with other
experiments discussed in this section two equal inpainting architectures were trained for 500K
samples and then compared, with the only di�erence being the defect pixel objective function.
The results are shown below and the L1 function actually increases SSIM and PSNR globally
compared to the L2 function, but it performs much worse in the defect region. The reason for this
could be because L2 punishes outliers more strictly than L1. At the same time the L2 loss won't
go all the way to 0 [2] and this could induce some blurriness which is where L1 seems to perform
better on a global scale.
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Figure 5.10: Comparing L1 vs L2 loss for defect correction

(a) L1 vs L2 inpainter model score. (Higher is bet-
ter)

(b) L1 vs L2 inpainter SSIM defect score (Higher is
better)

5.7 The Latent Feature Loss

During implementation it was necessary to �gure out which loss distance is best between the L1
and L2 metrics. The choice isn't arbitrary either as the L2 distance seems like a logical choice
because it more strictly enforces the di�erences between the two distances. However, [44] noted
that WGAN-GP and we believe by extension WGAN works well with the L1 distance metric.
It should be bene�cial for the di�erent objective functions to use similar metrics, and hopefully
this would then lead to better convergence. The test was run in the same way as previous ones
where each model was trained for 500K samples. First an autoencoder, then the same inpainting
architecture and paramaters swapping only the L1 and L2 metrics. The results show a small but
consistent di�erence in the output quality of the two networks where L1 distance scores better.

Figure 5.11: Comparing L1 vs L2 loss for the inpainting objective

(a) L1 vs L2 latent model score. (Higher is better)
(b) L1 vs L2 latent SSIM defect score (Higher is
better)
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Chapter 6

Hardware Study

6.1 The problem of edge DNN's

A big problem facing Deep Neural Networks (DNN) is the immense hardware, memory, and power
requirements both during training but also to a smaller degree for inference. Take this speci�c
project for example. To achieve good results we reported that some of our models would have to
be trained on around 20 epochs which equates to around 24 million training samples. This took
about 3 hours on a modern RTX-4090 GPU with 24GB of VRAM. The GPU alone consumed
about 250W while training, as reported by the 'nvidia-smi' tool. In fact the issue of deploying the
currently largest crop of models called Large Language Models (LLM) is a pressing issue [40]. Just
loading the GPT-175, which consists of 175 billion parameters takes 350GB of RAM requiring at
least �ve Nvidia A100 (80GB VRAM) GPU's [40]. There is also oppurtunity with regard to the
fact that most DNN's are somewhat resilient to errors resulted from reductions in precision of the
computation. In this way we can leverage techniques like approximate computing in order to make
gains in memory size, speed, and power [4].

Deploying most DNN's on smaller hardware is a challenge as most microcrontrollers have just
128KB of RAM and 1MB of �ash [4]. This means direct edge deployments of most DNN's on
microcontrollers are out of the question. Another important subject is the power requirements.
Its been reported that for hardware running DNN's, somewhere between 30 − 80% of the system
power draw comes from DRAM because memory movement dominates the system power usage [4].
Another large consumer of power is around the Multiply Accumulate (MAC) operations and data
processing [4]. Couple this with the fact that microcrontrollers are orders of magnitude slower
than popular GPU's and you soon exceed the power and timing constraints of most edge-device
budgets. If the embedded device also ran on battery then continous use could prove prohibitive.
In this chapter we aim to introduce some model compression schemes that seek to improve the
models speed, memory footprint, and computational compatability with smaller edge devices.

6.2 Solutions to DNN implementation

6.2.1 Pruning

Unstructured Pruning

Pruning is a model compression scheme that reduces model size by removing weights, neurons or
even full channels of features from the network based on their (lack of) activation towards a �nal
network prediction. As outlined in [36, Sec. V, A] there are several pruning algorithms. The
most common unstructured one is weight pruning. It follows a policy outlinining which layers
to consider, and what metric to follow when pruning i.e the norm or level of the given layer. The
policy can also include considerations of the energy and memory budgets. Weight pruning can
give speed ups in inference by ×4 and a reduction in memory usage by ×5− 10 [36]. Unstructured
pruning schemes have the advantage of being easier to implement, and they also require no extra
hardware considerations as they simply zero the chosen parts of the input.
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Structured Pruning

Structured pruning exists to adress limitations of the unstructured kind. These include the fact
that unstructured pruning create irregular sparsity in the weight matrices, and this can introduce
variable processing and waste execution time [36, Sec. V, B]. Take for example a weight matrix that
is pruned by some unstructured algorithm, there may now be several 'holes' in the matrix where
zero-multiplication operations now has to happen every time that weight matrix is used. This leaves
obvious room for improvement. The downside to structured sparsity algorithms is that they require
special hardware and software support to enable good implementation. Bayesian compression

is an example of a structured sparsity algorithm. It assumes that there exists hierarchical priors
within the activation layers of CNN's, and uses variation inference to approximate a distribution of
the weight posterior. This method can reduce parameter count by up to ×80 in unpruned models
[36]. Among others outlined are SIMD-aware weight pruning that was reported to provide up
to ×3.5 speedup and 88% reduction in model size [36].

6.2.2 Quantization

Quantization in machine learning is a model compression scheme which maps high precision 32-bit
�oating point model parameters down into smaller discrete integer spaces of 16/8/4/3/2 bit widths
by applying a function that can be either linear or non-linear. Where the di�erence between the
quantized value xq and the original value x is the quantization error eq 6.1 [7, p. 21]. Some
of the advantages that come with quantization is the fact that model storage needs are smaller
because data types are smaller, and computation is faster for the same reason as well as reducing
memory bottlenecks from moving the now smaller parameters between non-volatile memory and
low latency cache and/or registries during execution. Finally, quantization removes the need for a
�oating compute unit (FPU) [29, p. 2] which means model inference can run on more devices that
don't have FPU's, or in cases where the device would have to software emulate the �oating point
operations, creating signi�cant overhead.

eq = xq − x (6.1)

Linear quantization refers to the fact that the quantization intervals are evenly spaced. An
example of linear quantization is Fixed Point Encoding. It takes advantage of how �oating point
representations are stored to change the width of the fractional part of the number using a scaling
factor, essentially moving the decimal point towards a wanted accuracy. This also allows for
dynamic precision of di�erent layers, keeping it high for sections integral to the network output
and lowering precision more aggressively where appropriate [7, Sec. F, 0]. The gains of quantization
are large, for example [7, Sec. F, 0] reports that a MAC (Multiply accumulate) performed on an
8-bit �xed point number consumes about ×20 less energy than a MAC performed on a 32-bit
�oating point number. Moreover, the memory footprint is reported to shrink by×4 times in the
same circumstance. One way to perform linear quantization is by using the Ristretto framework
[7, Sec. F, 1]. It uses statistical analysis on the weights and activations to determine the scale
factor and bit width, and is further �ne-tuned using a re-training step. It was reported that the
framework can convert large and complex models to 8-bit inference with less than 1% accuracy
loss [7, Sec. F, 1]. One model also achived a ×7.6 speedup compared to its �oating point baseline
[7, Sec. F, 1]. In fact what is known as quantization-aware training can achieve up to ×8 times
higher model compression at the same accuracy compared to whole network �xed point encoding
without retraining [36, Sec. A, 1].

A non-linear quantization scheme is logarithmic quantization that approximates the dot prod-
uct between the weights and activations deriving 6.2 a log scale 6.3. This method was reported to
reduce the accuracy loss compared to linear quantization by ×10.3 at a bit width of size 3 on a
large model [7, Sec. F, 2].

w · x =

N∑
i=0

wixi ≃
N∑
i=0

wi2
x̃i =

N∑
i=0

wi ≪ x̃i (6.2)

x̃i = Int(log2(xi)) (6.3)
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The �nal quantization scheme covered here is the most extreme called binarized quantization.
This method maps the parameters to a single bit. This is reported to increase speeds by ×8.5− 19
and reduce memory by ×8 [36, Sec. V, A].

6.3 Considering the Defect GAN for hardware

First its important to talk about the choice of activation function in relation to hardware deploy-
ment. ReLU is popular with respect to hardware deployment because it zeroes negative values
from the layer and does no complex operations on the positive ones. This leaves more redundant
activations as sparse-matrices and therefore skipped through hardware optimization techniques [4].
Another paper reports that the number of zeroed activations happening in a network, or simply
termed network redundancy is somewhere between 50 − 70% [7], which explains the large gains
pruning algorithms can make in network compression. Once the pruning algorithm has �nished
we are left with another sparse matrix, which is converted using compression techniques that store
only the non-null elements for signi�cant memory savings [7].

The Defect GAN was trained with eventual hardware deployment in mind. For inference it
contains only two parts, convolutional blocks and ReLU activation functions. This should make
hardware deployment easier as there are no exotic layers or model quirks which would need custom
hardware implementations or considerations. The complete model has 5.78Mln model parameters
and a size of 22.1MB. With some of the reported methods introduced previosly we might be able
to reduce the model size by as much as ×35−49 times down to 450-650KB without losing accuracy
[36]. In fact the compression could be even better when considering the precision requirements of
the network. Since this is an inpainter and not a classi�er we believe the tolerance for accuracy
drop is actually larger as most research papers consider classi�er s, which naturally have a low
tolerance for error. The eventual drop in inpainting accuracy should manifest as deviating pixel
values. People are naturally sensitive to some color spaces, but less sensitive to others [5, Sec. 6]
and this could be further exploited to aggresively quantize corresponding feature maps. We believe
there also exists room for signi�cant pruning given the sameness of the network coupled with the
fact that more complex inpainting networks exist with smaller parameter sizes [44]. This could
mean that there exists large ine�ciencies in the network that can be identi�ed and removed with
pruning while maintaining performance.
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Chapter 7

Conclusion & Future Work

The goal of this project was originally to create an optimized machine learning algorithm for
hardware, and then implement it as a proof-of-concept on an FPGA platform. Unfortunately, the
scope of the work ended up being much larger than anticipated. It was assumed early on that
because there already exist a fair number of inpainting networks capable of doing inpainting, or
defacto correction of large missing portions in an image [44], that the development path for the
machine learning part would be small. However, what we found was that most networks converged
poorly on the objective and the eventual development of the network swallowed the majority of the
alloted project time. The focus of this work instead shifted towards developing custom a network
and objective functions to tackle the speci�c goal of correcting larger defect-cluster in image sensors.
The hardware implementation was eventually relegated to a feasibility and theoretical study.

A custom model, custom loss functions and theory, as well as a versatile defect generation
class have all been created speci�cally for this project. The model convincingly outperforms more
conventional defect correction �lter when testing 4.9. Achieving a +10dB increase in PSNR and
+38% increase in SSIM score on the defective pixel. In addition, the model scores up to 98.96% on
global SSIM, beating the �lter by close to 7% and approaching the underlying image noise. The
latent inpainting objective proved to be less of a factor than initially hypothesize, and some of the
variation in score might actually be due to training parameters, suggesting that the objective is
less useful in image application, or simply remains unoptimized for this task. The Dual encoder
implementation performed better, suggesting it could warrant futher exploration. There is also a
good argument based on the results for simply using a generative objective. This would reduce
training and prototyping time signi�cantly.

As far as future work is concerned there are a number of things I would have liked to study.
The �rst one is an actual hardware implementation. In chapter 6 several claims were made about
model size and expectations, but these are yet to be realized as anything more than a hypothesis.
Within the model architecture I would want to further explore developing light-weight attention
blocks in the network as texture in certain defect regions can vary and seem blurry. Further study
of architectural or objective measures to increase the generated quality in these areas would be
appropriate. As for the defects I would want to explore the use of color mapping and/or image
conversion functions to better mimic the look of the pixel defects before they reach the inpainter.
Right now the defects have a distinctly 'blocky' look to them, and the subject of studying non-
linear defect masks is an active topic [8]. A conversion function after the defect is generated could
potentially give them a 'smear' or more natural looking presentation closer to a real defect 3.10.
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