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Abstract

The resources in a system should be utilized efficiently to obtain relevant

information. Approximate computing allows trading a reduction in

accuracy for efficiency gains. However, approximate computing is

generally concerned with the accuracy and optimization of a single layer,

while a system spans several layers. A system approach to approximate

computing is needed. A taxonomy is presented that adheres to this

principle. The taxonomy classifies approximate computing based on the

fundamental components of computing. The techniques are categorized

by four classes: precision, memory, iterative and error.

A system for detecting objects using the Sobel filter is used to evaluate

the taxonomy. The Sobel filter is made approximate by 49 approaches,

using both techniques that operate alone or in unison. The simulations

are conducted using high level synthesis tools.

The results show that a local reduction in accuracy does not necessarily

propagate through the system, and that less accurate intermediary func-

tionality is advantageous for certain input characteristics. Meaning that

significant resource savings can be obtained without reducing the overall

system performance.
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Chapter 1

Introduction

There is, in any computational system, a finite amount of resources

available. These resources should be utilized efficiently to obtain relevant

information from data at lowest cost. In order to acquire relevant

information, it may not be beneficial to process raw data at full capacity.

Techniques to extract information at a lower cost are needed. Hence, the

introduction of Approximate Computing (AC).

AC is generally defined as a paradigm that trade efficiency gains for a

reduction in output accuracy[1]. Where efficiency primarily refer to either

reduced resource usage, increased computation speed or lower energy

consumption. Output accuracy can refer to a plethora of metrics, such

as: PSNR (peak signal-to-noise ratio), pixel correctness, relative difference,

clustering accuracy and mean centriod distance, correct/incorrect decision

ratio, and others [2]. The relevant information is the set of possible

messages the system is designed to output [3]. Information can not be

relevant without context, and it is the context that determines the objective

of a system, i.e. the input and output relation. For example when the

context is to determine if a picture depicts a person or not, then the relevant

information the system communicates out is a simple yes/no, the messages

can be represented by a single bit. If it is also desired to know the number

of people in the picture then the relevant information requires more bits to

represent all possible messages. The accuracy is concerned with whether

or not the messages the system outputs are correct for the input. If the

system always communicates ’yes’ when there is a person depicted in the

input image, and correspondingly ’no’ when there is not, then the output is

fully accurate. If the system only occasionally communicates messages that

are correct for the input, then the system is less accurate. Output accuracy

is thus, an estimate to quantify the correctness of the messages a system
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outputs.

The functionality within a system can be divided into sub-systems. And,

the sub-systems can be divided into sub-sub-systems and so on. On its

own each sub-system is given some input and produces some output with

a given accuracy. If these sub-system are set to operate with lower accuracy,

meaning they produce less accurate intermediary results, and by doing so

require less resources – while the system communicates the same relevant

information – then, the system at large has not become approximate, even

though the sub-systems have. Until the accuracy of the overall system is

affected and loss of information occurs, the intermediary accuracy is partly

redundant. And, if there is redundancy then the resources are not used

efficiently. Consequently, it is not the objective to reduce the accuracy,

rather it is the opposite. To retain as much accuracy as possible while

increasing the efficiency. The catch being that after an optimal encoding

is reached the only way to further increase the efficiency is to reduce the

accuracy. Thus, a succinct description of AC is:

Techniques that increase the efficiency of a computation at the cost of
reduced accuracy.

It is the crucial initial step in every AC technique to uncover approx-

imable variables and operations [2]. Introducing AC to a system is a mat-

ter of examining the sub-functionality and in turn incorporate suitable AC

techniques. However, AC has not been explored to a great extent in the

context of large systems. The focus within AC is on the contained approxi-

mate functionality, seen out of context from a larger system. In [4] Agrawal,

Choi, Gopalakrishnan et al. state that ”AC is primarily concerned with op-

timizing a single layer in the stack” [p. 1]. They propose that combining

several techniques spawning multiple levels makes AC viable for a broader

range of systems then what it is currently used for.

In [1] a classification based on domain is presented. The categories be-

ing: approximate instruction processing, approximate communication, ap-

proximate cloud computing and approximate hardware systems. The in-

tent of the classification is to provide an ”easy reference of current re-

search trends”[1, p. 622]. Three classifications are presented in [2]. The

first is based on implementation approach, the second categorizes by re-

search field, and the third is based on the type of processing unit/com-

ponent and memory technology used, and optimization objective. Based

on the abstraction layer, AC can also be categorized into architecture, soft-

ware or hardware techniques [5][6][7]. In [8] Moreau, Miguel, Wyse et
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al. also propose a taxonomy of general purpose AC techniques. The axis

they use for classification being visibility, determinism, and coarseness.

The terms meaning, respectively: correctability of the approximation ef-

fects, reproducibility of the approximate results, and control over the effi-

ciency–accuracy tradeoffs. However, it is not given that the effect of the

intermediary accuracy on the overall system performance is known be-

forehand. As the system functionality unfolds incrementally into new sub-

systems it is desired to detect the different types of approximable regions

and to distinguish what techniques are applicable. Clearly, none of the

classifications today adhere to this specific need.

With the focus shifted away from the small contained components and

onto integrating AC for larger, more complex systems, a new classification

is needed. That instead of looking at approximate computing techniques

first, then determining their capabilities, and lastly, propose suitable appli-

cations for the technique, does the opposite. Start with the overall system,

determine the internal capabilities, and then chose the applicable AC tech-

niques. A classification that aids in uncovering approximable variables and

operations, and connects these approximable regions with suitable tech-

niques.

The Sobel filter, often referred to as the Sobel operator, is a convolution

kernel used in image processing for edge detection. Within the field of

AC it is used primarily as a benchmark for either approximate multipliers,

as in the WOAxC framework presented in [9] by Ma, Thapa, Wang et al.,
or for approximate adders [10] [11]. In [12] Ndour, Jost, Molnos et al.
benchmark using the Sobel filter for a variable bit-width approximation

technique based on load size configuration. The Sobel filter is also used

to benchmark in software based AC approaches, such as for the loop

perforation (skipping iterations in a loop) and shift techniques presented

in [13] by Aponte-Moreno, Pedraza and Restrepo-Calle. The Sobel filter is

a suitable candidate to test such a classification on, due to its extensive

usage within AC. Additionally, both low level techniques (approximate

multipliers/adders) and high level techniques (loop perforation) have been

used on the filter. It already exhibits the behavior needed to implement AC

techniques spanning multiple levels, though the techniques have not been

tested in unison.

An architecture well suited for AC is an FPGA. It allows access to the

hardware, which means it is possible to fully define the precision at each
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computational step and decide the arithmetic used. Furthermore, FPGAs

are well suited for image processing tasks, which is used quite extensively

to benchmark AC [1][2][9].

As previously mentioned, AC is applied at the hardware level or

the software level, or architecture level, and include techniques that

use approximate adders, multiplexers or logic circuits, imprecise/faulty

hardware, voltage scaling, precision scaling, memoization, task skipping,

approximate compilers and several more [1], [2].

AC techniques at the hardware level are usually made for ASIC-based

systems[14]. This includes, among others, the use of approximate adders

[15]–[17], multipliers [18], [19] or voltage scaling [20]. However, there is a

shift towards more FPGA oriented designs. In [14] Prabakaran, Rehman,

Hanif et al. propose a design methodology suited for building approximate

adders for FPGAs. There is also FPGA specific multipliers [21], [22], and

frameworks [23], [24]. Another common implementation on FPGAs are

trigonometric approximation functions [25]–[27].

Reducing the precision is a common way to design AC techniques [28].

In [29] Roldao-Lopes, Shahzad, Constantinides et al. present a mantissa bit-

width scaling technique. It changes the working precision of the mantissa

and the number of conjugate gradient iterations to achieve performance

gains and is implemented on FPGA. Whereas, Lee, Gaffar, Cheung et al.
[30] use a fixed point precision optimization technique. The method is

based on a static scaling approach for fixed-point arithmetic and an FPGA

is used to carry out and test the design.

Both Lee and Gerstlauer [28], and Nguyen, Menard and Sentieys [31]

present methods for dynamic precision scaling. In [28] Lee and Gerstlauer

use the statistical analysis of noise to create a method for dynamic precision

scaling. It reduces design time since it calculates the optimal word length

at runtime, instead of relying on simulations. In [31] Nguyen, Menard and

Sentieys use a fixed-point specification that dynamically changes based on

the signal to noise ratio (SNR).

In [32] Tian, Zhang, Wang et al. propose a technique for dynamic

precision scaling using memory access. Precision scaling usually target on-

chip computations, however, it could just as well be done for the off-chip

memory. A memory access controller is presented for dynamic precision

scaling.
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1.1 Aim of thesis

The aim of this thesis is to propose a taxonomy that cater to the idea of

integrating AC into larger systems. With the presupposed notion that any

large system is to be divided into smaller components applicable for AC.

Since the classification aims to put the system first, and AC techniques

second, it must hold true for any computation system to be useful.

An important aspect of this thesis is to evaluate the classification. And, to

this extent explore how the classes of the taxonomy interact, i.e. to explore

if they hold distinct properties and how the properties relate. To test the

classification the Sobel filter is chosen as the benchmark system. For this

purpose a context is presented, with the objective to detect aerial vehicles

(AV). The system is designed with two principal sub-systems, the Sobel

filter and the detection algorithm. The edges produced by the Sobel filter is

used as the input to the detection algorithm. The functionality within the

Sobel filter will be made available for AC. And, the intermediary output

accuracy of the filter will be compared to the overall system accuracy.

To allow for a wide range of applicable AC techniques the filter is hard-

ware accelerated with an FPGA. The hardware acceleration is performed

using modern high level synthesis (HLS) tools, and the system is simu-

lated for six detection cases with varying environments.

Research Question I When does a computation system become approximate?

There is no guarantee that the intermediary accuracy reduction intro-

duced by the AC techniques propagate through the system and impact the

overall system performance. Also, for an image processing task there is a

possibility that certain approximations aid the system in reducing noise or

favorably differentiate pixel intensity.

Research Question II Does an approximate computing taxonomy exist that
adheres to a system approach?

The desired taxonomy is one that: makes it easier uncover approximable

regions, and that aids in selecting suitable AC techniques. For a system

approach it is the objective of the system and the overall performance that

holds importance. The functionality of the internal components are sec-

ondary.

5



1.2 Outline of thesis

In the next chapter the relevant theoretical background about information

theory, approximate computing and the Sobel filter is presented. Chapter 3

presents the taxonomy, and goes through the simulator setup and explains

the implementation details. In chapter 4, the experiments and results are

presented along with an analysis of the results. A discussion about the

results obtained from the experiments is conducted in chapter 5. The

validity of the simulator and the research questions are discussed as well.

A conclusion is presented in chapter 6 along with suggestions for further

work.
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Chapter 2

Background

This chapter explains the theory and concepts used in this thesis. A section

on information is presented first. Then, the theory behind the Sobel filter

is presented. Lastly, a general outline of AC and relevant techniques are

described.

2.1 Information

Information is a term that bear many meanings. However, when it comes

to computing it is the definition presented in what is called Information

Theory that holds relevance. To be more precise, it is the model presented

by C. E. Shannon in A mathematical theory of communication[3]. Wherein he

states:

The fundamental problem of communication is that of repro-

ducing at one point either exactly or approximately a message

selected at another point. Frequently the messages have mean-
ing; that is they refer to or are correlated according to some sys-

tem with certain physical or conceptual entities. These seman-

tic aspects of communication are irrelevant to the engineering

problem. The significant aspect is that the actual message is one

selected from a set of possible messages. The system must be de-

signed to operate for each possible selection, not just the one

which will actually be chosen since this is unknown at the time

of design. [3, p. 379]

Information is thus defined by probability, or as Weaver explains it as ”a

measure of one’s freedom of choice when one selects a message” [33, p. 4].

The quantity of information produced can be expressed by the uncertainty,
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or entropy, of the outcome. This representation of information is devoid

of meaning. A message that contains a lot of meaning or one that is a

random sequence of gibberish may be equal in terms of the information

they hold. It is the characteristics of the information source that dictate the

amount of information. The formula that Shannon reached (See Equation

2.1) was one that ”summed the probabilities with a logarithmic weighting”

[34, p. 1]. Where H is a measure of the entropy and pi is the probability of

each outcome.

H = −∑ pi log pi (2.1)

With a logarithmic base 2 this quantity can be represented by binary digits,

also known as bits. A binary digit has two states and can be thought of

as representing a yes or no question. With the probability of each possible

message in mind, how can one construct a scheme such that, on average,

the number of yes/no questions asked is minimized? This is the essential

question when it comes to coding the messages.

As it turns out, the optimal coding is reached when the average bits

needed per symbol is equal to that of the entropy H. The goal being

to obtain the least bits per symbol. Consider the example provided by

Shannon where there is four symbols A, B, C, D with probabilities 1
2 , 1

4 , 1
8 , 1

8 ,

each successive choice being independent. The entropy is 7
4 bits per symbol

given by:

H = −(1
2

log
1
2
+

1
4

log
1
4
+ 2× 1

8
log

1
8
) =

7
4

(2.2)

Intuitively one may see that these four symbols conform well to a fixed two

bit representation. Presumably with A, B, C, D represented by the binary

numbers 00, 01, 10, 11, respectively. However, this encoding does not reach

the limiting value of 7
4 bits per symbol on average. The less intuitive yet

better approach is to use the following code:
A 0

B 10

C 110

D 111
For a sufficiently long sequence N the average number of bits used to

encode each symbol will be:

N[1× 1
2
+ 2× 1

4
+ 3(

1
8
+

1
8
)] =

7
4

N (2.3)

This is same as the entropy of the source. Therefore an optimal encoding.

More often than not an ideal situation like this is impossible to attain

directly. Nevertheless, any source can be coded ideally. The way to do
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this is by using block coding. The idea is to consider groups of symbols and

assign codewords to these groups [35]. The probabilities associated with

different groups as well as the increased flexibility in codeword lengths

makes it possible to create an ideal coding scheme, given sufficiently large

blocks. There are, unfortunately, some practical limitations when it comes

to using large block sizes. One must consider the complexity of operations

needed by the encoder and the decoder.

In the model presented by Shannon information is always context based

and located within the realm of communication. Take a sequence of

symbols out of the system and it conveys no information. It is just a

placeholder. Still, what if the ensemble of possible messages is unknown?

What is say, the ”information in a book” [36, p. 10], and should it be viewed

as ”an element in the set of all possible books”? Clearly, a measure of

information that is independent of the context is needed as well. This

theory of information is called Kolmogorov complexity and describes the

information in individual objects by themselves. The idea being that the

entropy is the minimum number of bits needed to reconstruct a particular

object [37]. These two notions of information are not contradictory, in fact

they supplement each other.

2.2 Sobel filter

The Sobel operator is a well defined edge detection algorithm [9]. First

concieved by Irwin Sobel in 1968, at the time under the name An Isotropic
3x3 Image Gradient Operator [38]. The purpose of the operator was to ”define

the magnitude of the directional derivative estimate” [38, p. 1] for a point

in a cartesian grid. For a 3x3 image the central gradient is the sum of the

8 directional derivative vectors. Where the magnitude of the directional

derivate vector for a given neighbour is defined in equation 2.4.

|g| =< density di f f erence > / < distance to neighbor > (2.4)

However, the neighbours group into antipodal pairs, as seen from

equation 2.5.
a b c
d e f
g h i

 =


a

i




c

g




b

h


 d f

 (2.5)

And, the vector summing within each pair causes all the center values to
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cancel eachother out. The resulting vector sum is seen from equation 2.6.

G = (c− g)/4 · [1, 1]

+(a− i)/4 · [−1, 1]

+(b− h)/2 · [0, 1]

+( f − d)/2 · [1, 0]

(2.6)

In hardware a divide by 4 is the same as a double right shift. A shift is

done in the routing and . Unfortounatly, this procedure loses low order

bits. Instead of dividing, it can be convenient to scale the vector by 4,

which translates to a double left shift, with no bits lost in the process. The

function can then be expressed as the weighting functions for the x and y
components found in equation 2.7.

Dx =


−1 0 1

−2 0 2

−1 0 1

 Dy =


1 2 1

0 0 0

−1 −2 −1

 (2.7)

In image processing these two 3x3 kernels are convolved with an image

to compute the derivatives for the vertical and horizontal changes[39]. The

gradient magnitude is then found using equation 2.8.

G =
√

D2
x + D2

y (2.8)

It is also possible to compute the gradient’s direction using the computa-

tionally expensive atan2 function using equation 2.9.

Θ = atan2(Gy, Gx) (2.9)

An example of the Sobel filter is shown in Figure 2.1. Before the

derivatives are computed the image is converted to grayscale. Clear lines

are found around the outline of the person and at the brink of the horizon,

and indicate a sudden change in intensity.
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Figure 2.1: The image to the right show the gradient magnitude after the
Sobel filter has been applied. The image to the left show the original image
before the transformation. (Nasjonalmuseet [40])

2.3 Approximate computing

AC is an umbrella for techniques that deal with inexact computing.

Conventionally the field deals with approximate hardware, and specifically

circuits[14]. However, the focus has shifted on to FPGAs as well [41].

Approximate software has also become a versatile field, and include

approximate algorithms, frameworks and compilers[1].

The need for AC stem from several factors. One is that AC is inherent for

any system that samples from a continuous domain into a discrete domain

[2]. Another key aspect is that many applications are error resilient [1].

Working with full precision is redundant. Optimization of a system may

also outweigh the reduction in accuracy. To sum it up, Mittal states it

eloquently:

For many complex problems, an exact solution may not

be known, while an inexact solution may be efficient and

sufficient. [2, p. 4]

2.3.1 Precision scaling

A common way to make a system approximate is to use precision scaling,

thereby truncating the least significant bits (LSB) [29]. The LSB have a

smaller significance than the higher order bits. Removing these low order

bits may only have a miner impact on the obtained accuracy [2].

In [30] Lee, Gaffar, Cheung et al. use a fixed point precision optimization

technique that achieve a reduction in the area and the latency by up to 26%

and 12%, respectively. The method is a static precision scaling approach

for fixed-point arithmetic called MiniBit. The fractional components of
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the fixed point number are truncated using static analysis based on affine

arithmetic. An FPGA is used to carry out and test the design.

2.3.2 CORDIC algorithm

The COordinate Rotation DIgital Compute (CORDIC) algorithm is an

iterative approach that typically increase precision by one bit per iteration.

The original implementation was presented by Volder in 1959 [42]. It is an

”iterative method of performing vector rotations by arbitrary angles using

only shifts and adds” [25]. Since all trigonometric functions can be derived

from functions using vector rotation, it proves very useful. The CORDIC

algorithm is used to compute the gradients direction for the Sobel filter

given in equation 2.9.

Starting from the general rotation transform the CORDIC algorithm can

be derived:

x′ = x cos θ − y sin θ (2.10)

y′ = y cos θ + x sin θ (2.11)

A rewrite of the equations can be done using the trigonometric property of

sin θ/ cos θ = tan θ:

x′ = cos θ[x− y tan θ] (2.12)

y′ = cos θ[y + x tan θ] (2.13)

Next the rotation angles are restricted so that tan θ = ±2−i, and only

iterative rotations are allowed. Multiplication is a costly operation.

However, multiplication by a 2−i can be implemented by a simple shift.

xi+1 = cos(arctan ±2−i)[xi − yi di 2−i] (2.14)

yi+1 = cos(arctan ±2−i)[yi + xi di 2−i] (2.15)

The rotate direction di = ±1 decides the rotation direction based on

the value of accumulated angles zi, such that di = −1 if zi < 0, else

+1. For the term cos(arctan ±2−i) note that the cosine is symmetric

cos(arctan +2−i) = cos(arctan −2−i) and becomes:

Ki = cos(arctan 2−i) = 1/
√

1 + 2−2i (2.16)

Ki from equation 2.16 is the magnitude or scale constant can be removed

from the iterative equations and computed offline.
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xi+1 = xi − yi di 2−i (2.17)

yi+1 = yi + xi di 2−i (2.18)

zi+1 = zi − di arctan(2−1) (2.19)

The arc tangent values are pre-computed. In order to compensate the

gain given by Ki, the result has to scale with the reciprocal value of the

gain.

An = ∏
n

K−1
i = ∏

n

√
1 + 2−2i (2.20)

In [25] Andraka presents a survey of CORDIC algorithms. The focus

being on FPGA implementation. The following computation modes are

covered: sine and cosine, Polar to Rectangular transformation, arc tangent,

vector magnitude, cartesian to polar transformation, inverse CORDIC

functions, arcsine and arccosine, extension to linear functions, extension

to hyperbolic functions. In [26] they present an implementation of a

modified CORDIC algorithm. The pre-calculated arctangent angles are

instead replaced with an approximation based on Taylor series expansion.

Wave generation is used to test the design on a Spartan XC3S500E Xilinx

FPGA device. The results show that the design saves ROM space and

power consumption at the cost of reduced accuracy.

2.3.3 Loop perforation

Loop perforation is a high level AC technique that skips iterations of a

loop. In [43] Sidiroglou-Douskos, Misailovic, Hoffmann et al. presents a

loop perforation technique where loops are transformed to execute a subset

of their iterations. By finding the critical parts of a loop the remaining parts

can be tuned such that it creates an approximate results.
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Chapter 3

Methods and implementation

This chapter describes the proposed novel taxonomy and the simulation

model used to test it. The implementation details and the techniques used

are presented along with key design choices.

3.1 A novel taxonomy for approximate computing

techniques

AC techniques can generally be categorized as operating at the software-

level or at the hardware-level [44]. It can also be convenient to categorize

the techniques based on application area, or by what type of device or

component the technique is designed for [1][2]. However, neither of these

approaches account for the intrinsic nature of approximate computing. Is

there some fundamental way that approximate computing works? Well,

the accuracy of the outcome is what determines the approximation level.

Where accuracy refers to how close the approximated value is to the

correct value. When it comes to computing there are two ways the

accuracy can be reduced: (1) by changing the data or data structure of

the inputs, or (2) by modifying the algorithm employed. In other words;

Approximation techniques can operate directly on the data or on the

methods that transform the data for a given computation.

Changing the data structure to allow for AC is, primarily, that of

changing the precision of the data. Precision is the measure of detail,

i.e. the number of digits or bits used to represent a value. Precision

can also be dealt with indirectly. That is, for an application that uses

lookup in memory instead of computing at run time, the precision must
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be determined in the pre-processing. While still being dependent on

the precision, rearrangement of the data can also affect the accuracy and

efficiency of a system. The discretization level of the lookup table (LUT), i.e.

the sample range, infers a precision constraint on the indexing operation.

A LUT with 10 samples can not be accessed at index 20. The input value

must therefore be scaled, or a hash function can be used to compute the

slot. The data structure approach can be divided into two subcategories: (1)

techniques that directly reduce the precision of the data, and (2) memory

based approximation techniques that depend on both precision and data

arrangement.

An algorithm is ”a set of guidelines that describe how to perform a

task” [45, p. 1]. In essence, it describes the transformation of the data.

When it comes to approximate computing there are two ways to reduce the

accuracy at the algorithm level: Using algorithms that iteratively increase

the accuracy of the outcome, or by means of incorporating errors into the

instruction set.

It must be noted that the accuracy is related to the correct value and

that this correct value must be defined somewhere. Thus, approximate

computing techniques are not approximate by themselves. Without

relation to a measure of accuracy they are only computations, determined

by some input and a method of transformation.

To summarize, the classification of approximate computing techniques

boils down to the question: Where does the alteration occur that makes it

approximate? The answer being either in the data structure, as a change in

precision or the memory, or at the algorithm level, as incorporation of error

or use of iterative techniques. Based on this a classification for approximate

computing techniques is presented in Table 3.1. The techniques need not

be exclusive to one domain, yet the idea is that components can be broken

down into the different subcategories.
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Table 3.1: Classification of approximate computing techniques.

Description Example of techniques
D

at
a

st
ru

ct
ur

e Precision

Techniques that directly
reduce the precision of
the data that is to
processed.

Mantissa bit-width scaling: [29]*,
Fixed point precision
optimization: [30], Dynamic
precision scaling: [28] [31],
Memory access dynamic
precision: [32]**

Memory

Concerned with the
precision and
discretization level of
pre-computed values that
are used in the
computations and the
data organization to
create approximate
results.

LUT allocation based on kernel
input-output relationship: [46] ,
Data block organization: [32]**,
Memory processing in DRAM:
[47] [48], Load value
approximation: [49], LUT
optimization of KCM: [50]

A
lg

or
it

hm

Iterative

Algorithms that
iteratively increase the
accuracy of the outcome.
Can be tuned for
different levels of
approximation.

CORDIC/Trigonometric
functions: [42] [26] [27], Conjugate
Gradient parallel solver: [29]*,
Minimal residual algorithm for
FPGA: [51], Dynamic optimization
of iterative methods: ApproxIt
Framework [52] and MIPAC
Framework [53]

Error

Techniques that
incorporate error in the
instruction set of an
algorithm or change the
model used. The result
may have lower accuracy.

Loop perforation: [43],
Approximate Full Adder Cells:
[15] [16], Reconfigurable Adder:
[17] , Inaccurate 2x2 multiplier:
[18], FPGA specific approximate
adders: [41] [14], FPGA specific
multipliers: [21] [54] , FPGA
specific constant coefficient
multipliers: [19] [22], ACCEPT
compiler framework: [23], Voltage
overscaling: [20], Neural
accelerators: SNNAP Framework
[24]

*The technique presented by Roldao-Lopes, Shahzad, Constantinides et al. use both Mantissa bit-width
scaling (Precision) and a Conjugate Gradient parallel solver (Iterative).
**Tian, Zhang, Wang et al. present a technique that combine memory access for dynamic precision
(Precision) and data block organization (Memory).
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3.2 Model Description

The purpose of this model is to present a simulator where a system

approach to approximate computing is applied. With the overall intent

that this will provide a sufficient test environment for the taxonomy, and

that the comparison of AC techniques applied separately or in combination

will give new insight into the field when the results are examined higher in

the system hierarchy.

The system chosen is one where the objective is to detect certain AVs

from an image feed, in particular the detection of planes and helicopters.

To do this, contours of possible detection objects are extracted and ranked

according to a set of rudimentary shape criteria. In order to extract the

contours the detection algorithm needs to find the edges in the image.

The Sobel operator is used for this purpose, and provides the detection

algorithm with an approximation of the gradient magnitudes. To properly

extract a closed contour the detection algorithm also uses the gradients

direction to walk around the outline of an object.

The system can be split into two distinct sub-systems, the detection

algorithm and the Sobel filter. It is only the Sobel filter that will be made

available for AC techniques. The internal operations of the detection

algorithm are considered fixed, thus the only way to change the output

is to provide a different input. An input, which in turn is determined by

the Sobel filter.

This system is placed in a testbench that provides the image feed for six

test cases and validate the results. A correct detection is considered valid

only when the highest ranked closed contour matches the global output

provided by the testbench.

3.2.1 Object detection using contour extraction

The input the detection algorithm take is one direction image and one mag-

nitude image, both images being 16 bit single channel images. The repre-

sentation of angles in the direction image must be in the range from -180◦

to 180◦, and the magnitude intensity must be in the range from 0 to 65535.

The transformation outputs a contour image along with the position and

size of the contours, which are ranked by the best detection fit. Figure 3.1

show an example of a correct detection of an AV together with the second

and third highest ranked contours.
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(a) Original image. (b) Gradient magnitude.

(c) Contour image with the three highest ranked contours marked.

Figure 3.1: A helicopter is detected by the the system. The contour is
extracted and the position marked by a red rectangle. The noise from the trees
produce detections and two contours of lesser rank are marked by the blue
and the green rectangles.

The structure of the object detection algorithm is loosely defined by three

main steps:

1. Apply a threshold to the gradient image that only saves the high

intensity edges, and use a kernel to exclude noise.

2. Then, for each possible contour do an edge walk on the threshold

image using the gradient direction.

3. Determine if the closed contour fits the shape criteria, and if it does,

rank it accordingly.
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Gradient threshold

The first step towards extracting the contours is determining which edges

to keep. Thus, a threshold is put on the intensity of each pixel in the

gradient magnitude image. The threshold value is chosen as the squared

average of the mean of the image, and is found using equation 3.1. This is

an arbitrary value, that combined over the six cases give a threshold value

of approximately 960.

Squared average mean =

(
c

∑
1

f

∑
1

m−1

∑
0

n−1

∑
0

g(i, j)
1

mnc f

)2

(3.1)

g represents the matrix data of the image frame.

f represents the frame count in each case.

c represents the number of cases.

m represents the numbers of pixel rows and i represents the row index.

n represents the number of pixel columns and j represents the column

index.

With the obtained edge image the algorithm finds the next possible seed

point to start a contour walk. The seeds are only valid if the pixel is part of

a 3 by 3 kernel where all individual pixels are above the threshold. This is

done to reduce noise by excluding pixels that are not part of a refined edge.

Contour walk

When a valid seed point is found the contour walk starts. The walking

process steps one pixel to the ’right’ and one pixel to the ’left’ for each

iteration. The idea is that when they meet again after having walked the

outline of an object a closed contour has been found.

The gradients direction is used for choosing the next pixel for the right

and left walk. For a single step the left and right walk can only go to one

of the eight neighbouring pixels. Since the gradients direction is a good

approximation of the normal to the edge it can be used to force the left and

right walk to always step in the correct direction. When choosing the next

pixel for the left walk the neighbouring pixels are checked in a counter-

clockwise manner until a valid pixel is found. It first checks if the pixel to

the left of the normal is valid, and like a clock with eight ticks goes around

until it finds a valid pixel. The process is the same for the right walk, with

the distinction that it first checks to the right of the normal and goes in a

clockwise manner.
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Listing 3.1: Contour walk – Left step

for each i in image rows

for each j in image columns

if ( all neighbors to pixel(i,j) > threshold )

while n < max step count

Direction = Angle image(i,j)

Starting neighbor = Angle-to-position(Direction)

for each neighbor to pixel(i,j)

K = Starting neighbor

if K > threshold

Next pixel = K position

break

K = K - 1

if K < 0

K = 8

(i,j) ← Next pixel (i,j)

Angle-to-position function : input Direction

if Direction == 0

return relative position(bottom,left)

if Direction > 0 AND Direction < 45

return relative position(middle,left)

if Direction < 0 AND Direction > -45

return relative position(bottom,left)

***Do for all 16 possible positions***

When a pixel is determined to be on the left or right side of the normal the

center of the pixel used as the reference point. Thus there are eight options

when the direction points exactly at a pixel center and eight options when

the direction points between the center of two pixels. This means that the

walk has 16 distinct states for choosing the starting pixel at each step. The

pseudocode for the left contour walk is given in Listing 3.1.

Only closed contours are found using this technique, lines and other

open contours are discarded since the gradients direction prohibit back-

tracking on the same edge. However, this means that sharp corners open

for infinite looping between the same two pixels. To account for this a loop

breaking mechanism is employed. The walk stores the position history of

the previous pixel and refers to this when a new pixel is chosen. If the pre-

vious pixel position matches the new position a flag is raised. At the next

step the walk skips the two first positions. The reason a skip factor of two

is used instead of one, is because the next position could point right back at
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the loop sequence. With a skip factor of two this scenario becomes highly

unlikely. The next pixel chosen could be one layer below the outline edge.

This proves unproblematic as the walk will correct itself on the next step.

It always pushes towards the outline. The mechanism does not account for

loops with three or more steps involved.

The walk concludes when the left and right process step onto the same

pixel, or if they step onto two pixels that coincide after the initial step. The

other way the walk concludes is if either the left or right walk reach the

starting seed after ten steps. These two conditions for termination give

closed contours, and the shape is passed to the next phase, the criteria

checking and ranking. The walk can also terminate without having found

a closed contour when the step count exceeds the stepping limit, which is

set to two times the image width.

Contour shape criteria

After a contour has been extracted by the edge walking process it is

submitted to three shape criteria to determine if it should be discarded or

put in the ranking list.

The first criterion is a squareness test. The contour walk keeps a history

of the x- and y-axis minimum and maximum positions. In turn, this gives

the width and height of the shape. The criterion is listed in equation 3.2. If

the length of the width and height is within 30% of each other the shape

is considered too square, and is discarded. The shape of the AVs that

the system tries to detect has certain properties. One being that the ratio

between the two visible principal axes are above 30% when the orientation

is close to the image. This means that at orientations close to 45◦ in either

quadrant a viable contour can be discarded. The benefit of the criterion is

that a substantial amount of image artifacts are within this range, and are

removed from the ranking. Figure 3.2 show image artifacts removed by the

criterion. Without the criterion these artifacts would have been put into the

ranking list.

Pass ¬ w
h
< 1.3 ∧ h

w
< 1.3 (3.2)

w represents the contour width.

h represents the contour height.

The second criterion is a test for removing lines. The criterion is listed in

equation 3.3. If the ratio between the width and height is above 5 or below
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Figure 3.2: Image artifacts removed by the squareness test.

1/5, the shape is considered too long and is discarded. This test faces the

opposite problem of the squareness test. Lines and artifacts that should be

discarded can be kept if they are oriented favorably.

Pass ¬ w
h
> 5 ∨ w

h
<

1
5

(3.3)

w represents the contour width.

h represents the contour height.

The third criterion is a size check of the circumference. The walk stores

the step count. With the assumption that each step increases the length

of the contour with two pixel distances, the step count can be used as a

measure of the circumference. The criterion is listed in equation 3.4. The

circumference must be above 41 pixel neighbor distances, i.e. that the step

count has over 20 steps.

Pass ⇐ n > 20 (3.4)

n represents the step count.

When the shape passes the criteria it is ranked according to the size of the

area it occupies. The shape with the largest area, given by the width times

the height, is deemed the best fit. The list incrementally keeps track of the

size hierarchy and the center position of the contour area. The reason area is

used instead of circumference for the ranking, is because of the assumption

that the step count always steps two pixel distances. This need not be the

case. When a looping sequence occurs where one of the walk directions
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get stuck, the other walk process might still reach it or the starting point.

Thereby producing a false circumference that is larger then the true outline.

It is also a problem that noise and image artifacts create fractured outlines

that produce a high step count while still being contained within a small

area. Using the area for the ranking absolves these issues to a high degree.

3.2.2 Sobel filter

The task for the Sobel filter is to produce the gradient and direction images

that the detection algorithm take as input. The Sobel filter takes a single

channel image and computes the image gradients x and y derivatives using

two three by three kernels. Then the derivatives are used to compute the

gradients magnitude and direction. The Sobel filter module can be divided

into three main steps:

1. Create a window of three by three neighbouring pixels.

2. Use the window and perform the convolution for the x and y
derivatives.

Dx =


−1 0 1

−2 0 2

−1 0 1

 Dy =


1 2 1

0 0 0

−1 −2 −1


3. Then compute the magnitude G =

√
D2

x + D2
y and the direction

θ = atan2(Dy, Dx).

To allow for a wide range of AC techniques to be implemented the filter is

hardware accelerated for a system-on-chip with programmable logic. The

exact model being a Zynq-7000 evaluation board with part number xc7z045
and package option ffg900-2. The acceleration is performed using HLS with

Vitis HLS. The filter behavior is implemented in C and synthesized to a

hardware circuit. Identical timing constraints are applied on the design

variants. Using HLS greatly reduces the development time compared to

development at the register transfer level (RTL).

3.2.3 Hardware acceleration of the Sobel filter

When an image is sent to an FPGA it will typically be transferred in a raster-

scan manner that streams data pixel by pixel [55]. This streaming process

is shown in Figure 3.3.
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Figure 3.3: Raster scan streaming of pixel data. The process goes pixel by
pixel across each line before stepping down to read the pixels at the next line.
(Xilinx [55])

Implementing the Sobel filter in a hardware efficient way is primarily

done by maximizing the flow of data and avoiding re-reads. In short

the FPGA prefers data samples which continuously flows through the

implementation. An image consist of several parameters which determines

the memory space it occupies. For any image there is width and height, the

number channels and the pixel depth. The required memory can be found:

Memory = Width× Height× Channels× Pixel Depth (3.5)

If the intermediary images for the x and y derivatives, as well as the

gradient magnitude and direction are to be stored on the device the

filter might require an inordinate amount of resources. This not needed.

The limiting factor for reducing the intermediary storage is primarily

determined by the kernel height and the image width.

When an image is streamed through the Sobel filter module a window of

three by three neighbouring pixels is used to compute the derivatives. Since

the pixels are read in a streaming manner a line buffer is implemented. It

stores the two previous lines. When a new sample is read another sample

is pushed out and the current column is shifted one line down.

The window also updates as new samples are read in. A key point is

that the window reads the new sample value and a new column from the
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← From line buffer
← From line buffer
← New sample

1

1

2

2

21

← From line buffer
← From line buffer
← New sample

←− The columns shift to the left.

A sample is read in to the line buffer.

1

The next sample is read in.

2

Figure 3.4: The window reading in a new sample and a column from the line
buffer. When the next sample is read in the columns shift to the left. When the
line buffer reads in a new sample the columns are shifted down.

line buffer before the line buffer is updated. The process of updating the

window and line buffer is shown in Figure 3.4. This process creates a delay

from the first read in to a window can be streamed out. Which is due to the

fact that a full window is not obtained until a sample has been read into the

bottom right position. The number of samples needed is the width of the

image plus the number of kernel columns to the right of the center pixel.

For this implementation the edge pixels are clamped to zero. By doing so

no overhead is created for filling in values outside the bounds of the image.

An advantage that comes with hardware acceleration is that the data

width can be controlled at every step. The input data width is set to eight

bits and represent a pixel intensity in the range from 0 to 255. When the

derivatives are computed the precision must be increased to retain the

full range of possible results. In a software approach the results would

normally be put into a 16 bit image. However, only an increase by three bits

is needed, since the derivative values are in the range from -1020 to 1020.

Both the gradients magnitude and direction can be represented accurately

at a bit width of 11, given that they are represented as whole numbers. The

magnitude values are in the range from 0 to 1442 which can be represented

by 11 bits as unsigned integers. The angle representation of the gradients
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direction is in the range from -180 to 180. In this implementation the

fractional components of the magnitude and angle representation are cut

off. This is done because the detection algorithm operates on integers,

and because a precision scheme without fractions is considered sufficiently

accurate.

There are four data transformations occurring in the Sobel filter module.

The convolution for the x derivative, the convolution for the y derivative,

the computation of the gradient magnitude and the computation of the

gradient direction. The convolution operations run in parallel, and consist

of three steps plus an initialization phase that also keeps track of the

pixel count. The steps are as follows: (1) the window is read in, (2) the

convolution is performed concurrently for each element and summed, and

finally, (3) the derivative is streamed out.

The computation of the gradient magnitude and direction is also run in

parallel. The magnitude is found using equation 2.8. The multiplication

and summing of the derivatives are unproblematic. However, finding the

square root requires using an internal HLS function, the fixed point square

root function. Due to limitations in the simulation software the input for

the fixed point square root function is cast to floats. Meaning they now have

a width of 32 bits. This adds overhead to the magnitude computation.

For the gradient direction the angles are computed using the 2-argument

arctangent, know as the atan2 function. The CORDIC algorithm is

employed to perform this computation, and the precision is set to nine

rotations. Which gives a margin of error of approximately 0.05 degrees.

The implementation is based on the approach proposed by Xilinx [56]. The

angle representation is chosen such that at each iteration the tan(angle) is

equal to n right shits, where n stands for the iteration count. The CORDIC

algorithm uses a LUT for the pre-computed angles that correspond to these

shift values.

The filter has added read in and read out functionality that use AXI

memory mapped interfaces. This handles the initialization and termination

of each frame, and the pixel sampling count from each frame. However,

the actual memory is not located in the hardware, but handled by the

testbench. The system schematic with the data flow through the internal

modules of the Sobel filter is shown in Figure 3.5. As can be seen from

the figure, pre-processing and post-processing of the image data is also

performed by the testbench. These two operations are added to scale the

data if needed.
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Testbench

Sobel filter

Pre-processing

image data
Input image feed

Frame 1280x800 (8 bits)

Read in

Pixel 8 bits

Update

window

Window 3x3

Compute Dx Compute Dy

Derivatives 11 bits

Compute G

Gradient 11 bits

Compute θ

Angle 11 bits

Read out 1

Frame 1280x800

(11 bits)

Read out 2

Frame 1280x800

(11 bits)Post processing

Gradient image (16 bits)

Angle image (16 bits)
Object

detection

algorithm
Publish

Figure 3.5: The testbench and Sobel filter program flow. The data
representation and precision between functions is indicated by the dotted
lines.

The following sections describe the techniques proposed for the system for

the different classes. Starting with techniques that are categorized within

precision, then memory, next iterative, and finally error inducing.
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3.2.4 Precision

Two precision scaling techniques are implemented on the Sobel filter, one

for the input and on for the intermediary derivative results. The precision

scaling impose the precision scheme throughout the Sobel filter. Meaning

that changing the input precision dictate the precision of the output. The

post-processing must therefore be scaled accordingly. Thereby insuring

that the data representation is correct before the data is passed on to the

detection algorithm.

Precision scaling of the pixel input

Precision scaling of the input pixel depth is carried out by truncation of the

LSB. This is a scalable technique and several approaches are tested for the

technique. The precision scaling is performed with a reduction in precision

from seven bits to a single bit. Each reduction in precision set the required

bit width for the subsequent intermediary outputs and the final output.

Due to the nature of the data transformations the precision of these outputs

are always three bits wider than the input.

Precision scaling of the intermediary derivative output

Precision scaling of the intermediary derivative output is also carried out

by means of truncation of the LSB. This technique is scalable as well and

approaches using from ten to three bits are tested on the filter.

3.2.5 Memory

This Sobel filter implementation does not use a LUT for any of the

primary sub-modules. It is only within the CORDIC algorithm that pre-

calculated values are used for the incremental addition or subtraction of

angles. Even though it would be possible to approximate this LUT, the

CORDIC algorithm is in itself an AC technique. Averting from nesting

techniques within each other, there is another function which could benefit

from computing with memory. That is the computation of the gradient

magnitude. The magnitude is computed by first squaring the x and y
derivatives and then adding them together. Then, the square root of this

value is computed. Instead a LUT approach is implemented, that takes

two slot values and returns the magnitude directly.
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Lookup table for gradient magnitude

Since the range of values are from -1020 to 1020 the absolute value for

each input is found before indexing the LUT. The derivatives use two’s

compliment, thus only the most significant bit (MSB) needs to be checked.

If the number is negative the corresponding absolute value is found by a

logic NOT and a left shift.

Implementing a LUT that has 1021 by 1021 indexing slots and returns

a value with a width of 11 bits requires a memory of 11444400 bits. This

is a large LUT. In comparison the line buffer use 20480 bits. In fact, the

HLS tool is not able to properly synthesize a table of that size. Instead of

using 1020 by 1020 indices the LUT is reduced to a discretization of 128

by 128, occupying a memory of 180224 bits. The derivatives must now

be scaled before indexing the LUT. Conveniently the discretization of the

LUT correspond to a seven bit representation. The derivative values are

therefore shifted three times to the right before the indexing operation.

Modified lookup table for gradient magnitude

If a LUT is made that has 1021 by 1021 slots yet a return value with a bit

width of one, then the memory requirement is reduced to 1042441 bits. The

gradient magnitude is only used by a threshold function. The single bit

return value is therefore made to represent magnitudes above or below

the threshold. This is a set value, and corresponds to 960 in the 16 bit

representation, or for the 11 bit representation:

t = 960× 211 − 1
216 − 1

= 29.9858 ≈ 30

The LUT can be reduced further. The magnitude will always be above

the threshold value if either of the derivative values are 30 or above. Instead

of using a 1021 by 1021 LUT it is reduced to a 30 by 30 LUT. This adds two

compares to the design, which are needed to determine whether to index

the LUT or to set the value directly. The pseudocode for the technique is

given in Listing 3.2 The approach uses a LUT which occupies a memory of

900 bits, and is only indexed if both the x and y derivatives are below 30.

3.2.6 Iterative

The only measure needed to integrate an iterative AC technique is to

change the CORDIC algorithm.
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Listing 3.2: LUT 30 by 30 pseudocode

if (x[MSB]==0)

x = NOT(x<<1) //Shift and NOT to change signedness

if (y[MSB]==0)

y = NOT(y<<1) //Shift and NOT to change signedness

G = if (x >= 30 OR y >= 30) then 1 else LUT(x[0:6],y[0:6])

Reduced CORDIC rotation steps

Making the CORDIC algorithm less precise is done by reducing the number

of rotation steps. To further reduce the resource usage, the internal LUT for

the angles is scaled down to match the current iteration count as well. This

is a scalable technique and is tested for approximate approaches ranging

from five to one rotation.

3.2.7 Error

Three error inducing techniques are introduced to the system. All three

techniques operate on different sections of the system. Loop perforation is

used on the overall streaming loop and reduce the number of pixels that are

sampled from the image. A kernel reduction approach is implemented that

change the calculation of the x and y derivative. Resulting in a smaller line

buffer and removing the read in delay for the window updating module.

An approach that completely replace the CORDIC algorithm and the way

the angles are computed is presented as well.

Loop Perforation

The read in and read out functionality allow for different sampling rates,

than simply reading in the full frame. Instead of going through all the

pixels, a loop perforation technique is implemented that skips every second

column of the image. Thereby reducing the sampling count by 50%. This

technique uses the read in function to skip the samples. The read out

function fills inn the missing values. This is done by extending the results

of one column to two columns for the final output. This techniques has two

approaches. The first is as described above, with no further functionality

added. The second approach is a scaled loop perforation technique.

Using the loop perforation technique changes the distance from the

center to its neighbors. The new weighing distances for the Sobel filter
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is given in equation 3.6.

Original =


√

2 1
√

2

1 c 1√
2 1

√
2

 New =


√

3 1
√

3

2 c 2√
3 1

√
3

 (3.6)

Using these new distances create complexity for the convolution operation.

However, this is approximate computing, and the implementation need not

be exact. The y derivative see less change than the x derivative, and is set

to operate as before. Whereas the weighing distance for the x derivative is

approximately twice as long. For the scaled approach the y derivative is

kept as is, while the x derivative value is halved using a right shift. The

new convolution kernels for the scaled approach are found in equation 3.7.

Dx =


−0.5 0 0.5

−1 0 1

−0.5 0 0.5

 Dy =


1 2 1

0 0 0

−1 −2 −1

 (3.7)

Kernel reduction

The kernel reduction method does not sample for the last row of the Sobel

filter kernel. The second row is instead expanded to represent the third row

as seen in equation 3.8.

Original =


a b c
d e f
g h i

 New =


a b c
d e f
d e f

 (3.8)

This method also changes the distances from the center to the neighbouring

positions. The method is therefore split into two approaches, one that

operates as is, and another that scales the output. A way to look at this

reduction is that the y derivative now finds the gradient between the b and

original e position for the given kernel. To avoid overhead the sum of the

new weighing distances is set to be approximately half of the original in the

y-direction. This gives a scaled approach where the y derivative is doubled.

Which is done using a left shift for the intermediary output. And, where

no scaling is performed on the x derivative. The new convolution kernels

for the scaled approach are found in equation 3.9.

Dx =


−1 0 1

−2 0 2

−1 0 1

 Dy =


2 4 2

0 0 0

−2 −4 −2

 (3.9)
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Reduction of angle representation to 16 states

The detection algorithm has 16 states for choosing the starting pixel at each

step. The normal of the edge can point exactly at a pixel center or between

two. This means that the representation of angles found when computing

the gradient direction can be set to directly produce these 16 states. This is

done using a set of compares. The pseudocode for the technique is given

in Listing 3.3. First a zero check is performed on both derivatives. If either

is zero the value is set to the corresponding angle of either -90, 0, 90 or 180

degrees. If not, then the quadrant is found by comparing the MSB of the

derivatives. The absolute value of any negative value is found using a NOT

and a left shift. For the four quadrants the angle is found by a compare to

be: between 0 and 45 degrees, exactly 45 degrees, or between 45 and 90

degrees. This is a minimal approach to finding the angles that by nesting

three compares finds the 16 states used by the detection algorithm.

Listing 3.3: Angle representation to 16 states

if (x!=0 AND y!=0 )

if (x[MSB]==0 AND y[MSB]==0)

if (x > y) Angle = 22

else if(x < y) Angle = 67

else Angle = 45

else if (x[MSB]==0 AND y[MSB]==1)

y = NOT(y<<1) //Shift and NOT to change signedness

if (x > y) Angle = -22

else if(x < y) Angle = -67

else Angle = -45

else if (x[MSB]==1 AND y[MSB]==0)

x = NOT(x<<1) //Shift and NOT to change signedness

if (x < y) Angle = 112

else if(x > y) Angle = 157

else Angle = 135

else if (x[MSB]==1 AND y[MSB]==1)

if (x > y) Angle = -122

else if(x < y) Angle = -157

else Angle = -135

else if (x==0 AND y== 0) Angle = 0

else if (x == 0) Angle = y[MSB] == 0 ? 90 : -90

else if (y == 0) Angle = x[MSB] == 0 ? 0 : 180

3.2.8 Combined approaches

Certain techniques can be implemented simultaneously without any

further adaption of the system. Others, need added functionality to interact
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properly. Since the precision reduction techniques regulate the precision

scheme of the system, they are not affected by other techniques. The

CORDIC algorithm, loop perforation, kernel reduction and angle reduction

techniques are unaffected by the precision and representation of data

outside their functionality. The LUT does, however, rely on the precision

and representation to function correctly and must be scaled, or changed

appropriately, to fit the current data flow.

Whenever the precision changes so does the LUT. If the precision is

reduced then the LUT must scale the return values to accommodate this.

For the modified LUT the pre-computed values must be computed again

and the compares must be set for the precision. If the precision is reduced

by two bits then the threshold value becomes 30/4 = 7.5. The return values

of the LUT are one if the magnitude of the indexing values are above 7.5.

An example of the altered LUT pseudocode for a two bit reduction is shown

in Listing 3.4.

Listing 3.4: LUT 8 by 8 indexing slots

if (x[MSB]==0)

x = NOT(x<<1) //Shift and NOT to change signedness

if (y[MSB]==0)

y = NOT(y<<1) //Shift and NOT to change signedness

G = if (x >= 8 OR y >= 8) then 1 else LUT(x[0:4],y[0:4])

LUT[8][8] = {

{0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 1},

{0, 0, 0, 0, 0, 0, 0, 1},

{0, 0, 0, 0, 0, 0, 1, 1},

{0, 0, 0, 0, 0, 1, 1, 1},

{0, 0, 0, 1, 1, 1, 1, 1}}
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Chapter 4

Experiments and results

This chapter presents the simulation experiments, the results and analysis.

First the different detection cases used in the simulation experiments are

presented. Key properties and to what extent they represent edge cases

for the system is given. Then the simulation results for the unaltered sys-

tem is provided. Next the results and analysis for the single method im-

plementations is presented. Following this the results and analysis of the

combined techniques is given. Lastly, a comparison of both combined and

single method approaches is presented, along with an analysis of the corre-

lation between the intermediary accuracy reduction compared to the over-

all system performance.

The system without any integrated AC techniques will from here on out

be referred to as the Reference system. The resource usage and performance

metrics from this system will be used as the benchmark for comparing the

AC techniques.

4.1 Evaluation metrics and detection cases

This section describes the detection cases and the metrics used to evaluate

the results.

The acceleration is performed using HLS with Vitis HLS. The filter behavior

is implemented in C and synthesized to a hardware circuit. Identical timing

constraints are applied on the design variants.

There was, however, some limitations on performing the RTL/C co-

simulation. The time it takes to process a single frame for the co-simulation

is in the range from 500-560 seconds. With multi-threading using ten
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cores on an i7-9750H CPU 2.60GHz × 12. That means running all 49

approaches for six detection cases with 500 frames would take a minimum

of 20416 hours, or around two years and four months to complete.

Instead, only a sample from each detection case is used to validate that

the RTL implementation performs as expected. The overall detection

performance is found using C simulation. An important consideration that

was made when choosing this, is that all AC techniques implemented are

deterministic. Meaning that the output can always be traced back to the

input, and that no techniques rely on timing violations or other stochastic

variables.

The image feed provided read in the first 500 frames for all the cases. This

is done to make the weighing of each case equal. The cases samples every

20th frame. Meaning each case consist of 25 image samples. The videos are

filmed using a Phantom Miro 320 High speed camera with a 400-600 mm

zoom lens. The videos are captured outside in daylight with 20 km meteo-

rological visibility. Which is the sensor limit.

The accuracy of the system is determined by the rate of correct detections,

and is referred to as the system performance. The system performance is

measured by the testbench. A correct detection is made only if the center

of the shape is within a region specified by the testbench. This region is

verified as containing the desired AV by visual inspection. The overall

system performance is the average of the combined system performance

for all the cases.

The design is pipelined and uses the dataflow pragma to ensure the

highest possible streaming rate. No constraints are put on the techniques

and the HLS tool is free to make suitable implementation changes. Which

means it can utilize all of the available resource primitives. This makes

is harder to compare the resource usage for the implementations. The

advantage is that the latency and throughput is accurately portrayed.

The resource usage by the design is given in the amount of Block RAM

components (BRAM), digital signal processing blocks (DSP), flip-flops (FF)

and LUTs used. The iteration latency for the sub-functions is presented as

well. This measure refers to how many clock cycles the function uses to

start the streaming loop, read in a sample, perform the transformation and

then write a sample out. The throughput (TP) is given in frames per second

(FPS) and is found using equation 4.1. For reference a single frame holds a

data size of 1.02 MB. The clock period is set to 100 MHz for all approaches.
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FPS =

(
System latency
Clock period

)−1

(4.1)

AC is suitable for error resilient applications [1]. The reason applications

are error resilient is in part due the difficulty of quantifying the accuracy of

the results. It is desired to compare the accuracy of the intermediary results

to the system performance. However, a metric must be chosen to do so.

Quantifying the accuracy for image degradation is a common problem

in AC [2]. In [12] the Structural Similarity Index is used to quantify the

accuracy reduction. In [9] they use peak-signal-to-noise ratio (PSNR) to

quantify the accuracy. PSNR is usually expressed in the logarithmic decibel

scale. The PSNR is calculated from equation 4.3.

MSE =
1

mn

m−1

∑
0

n−1

∑
0
|| f (i, j)− g(i, j)||2 (4.2)

PSNR = 20log10

(
Max f√

MSE

)
(4.3)

f represents the matrix data of the original image.

g represents the matrix data of the degraded image.

m represents the numbers of pixel rows and i represents the row index.

n represents the number of pixel columns and j represents the column

index.

Max f is the maximum signal value in the original image.

A more direct approach is to use the error distance. This is done in

[11] to compare between approximate adders applied to the Sobel filter.

Error distance is chosen as the metric to represent the accuracy of the

intermediary results. In image processing terms error distance becomes

the average pixel difference (APD). The APD is found by using equation

4.4.

APD =
1

mn

m−1

∑
0

n−1

∑
0
|| f (i, j)− g(i, j)|| (4.4)

f represents the matrix data of the original image.

g represents the matrix data of the degraded image.

m represents the numbers of pixel rows and i represents the row index.

n represents the number of pixel columns and j represents the column

index.
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The testbench keeps track of the difference for the intermediary results

between the reference system and AC approaches.

4.1.1 Case 1 – No detection objects

The first case the system is tested for, is one without a viable object to detect.

The image feed still contain noise and some image artifacts. An image from

the feed is shown in Figure 4.1. The system passes the test if the ranking

list is empty.

(a) Original image. (b) Gradient magnitude.

Figure 4.1: The original image and gradient magnitude image for the first
case.

4.1.2 Case 2 – High background noise

The second case has a high degree of background noise. And, the AV that

is to be detected, at times overlap with regions where the background noise

produce edges. The detection algorithm does not have any procedures for

separating shapes. This case propose a challenge for the system. The AV

that is to be detected as well as the outline of a cloud can be seen in Figure

4.2.

(a) Original image. (b) Gradient magnitude.

Figure 4.2: The original image and gradient magnitude image for the second
case. The images are cropped to the content.
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4.1.3 Case 3 – Low contrast

In the third case there is low contrast between the AV and the background.

An unaltered image from the feed and the resulting contour image with

detection markers is shown in Figure 4.3

(a) Original image. (b) Contour image.

Figure 4.3: The original image and the contour image for the third case. The
images are cropped to the area containing the AV. The only shape extracted is
that of the plane. This is a correct detection by the system.

4.1.4 Case 4 – Multiple objects

Detection case four provide an image feed with two objects, one AV and a

bird. The detection is considered valid if the highest ranked shape is for

the AV. A situation where the bird is given the highest ranking instead if

the AV is shown in Figure 4.4.

4.1.5 Case 5 – Large object

In the fifth case there is only a single large AV. The background noise is

minimal and the contrast is high. This is an ideal detection environment.

An example from the image feed and resulting contour image is shown in

Figure 4.5.

38



(a) Original image.

(b) Gradient magnitude. (c) Contour image.

Figure 4.4: The image feed provided in the fourth case. The resulting
gradient magnitude image and the contour image with detection markers is
also shown. The highest ranked shape is given to the bird. A correct detection
is not made. The gradient magnitude and contour images are cropped to
content.

(a) Original image. (b) Contour image.

Figure 4.5: The original image and the obtained contour image with detection
markers for the fifth case. The system correctly detects the AV.
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4.1.6 Case 6 – Large object and foreground noise

Case six present an environment where a high contrast AV is to be detected

with a substantial amount of foreground noise. The image feed include

trees that at times cover up over a third of the image. In Figure 4.6 two

image samples from the feed is shown.

(a) Early. (b) Late.

Figure 4.6: Two samples from the sixth detection case. The AV gets closer to
the foreground noise over time and the area covered by the foreground noise
increases.

4.2 Reference System

The overall detection performance for the reference system is 90.56%

correct detections. The case by case detection performance is for cases one

to six: 100%, 60%, 96.67%, 96.67%, 100% and 90% detection correctness,

respectively. Unsurprisingly, the system performs poorly when the object

that is to be detected overlaps with regions with high intensity change in

the background noise. This can be seen for the second case when the plane

passes over the outline of the clouds. An example of this overlapping is

shown in Figure 4.7.

The resource usage for the reference system is presented in Table 4.1. The

delay in the Update window function, primarily caused by the buffering,

is 1285 cycles. Since 1281 samples must be read in before a full window can

be streamed out, the remaining four cycles account for the processing time

need to update the window and the line buffer. Thus, the functionality in

function use only four cycles. Computing the magnitude produce iteration

latency of 15 cycles and computing the direction use 17 cycles. Other than

reducing the buffer count, it is these two functions that create the longest

delays in the system. Using the most cycles to perform their respective

transformations.
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Figure 4.7: Gradient magnitude image from the second detection case. The
plane passes over a region with high intensity change in the background noise.
The system does not report a valid detection.

The function computing the magnitude use two DSP blocks, 600 FF and

1255 LUTs. The Compute θ function use one DSP blocks, 1548 FF and

3486 LUTs. It is these two functions that use the most resources as well,

together with the window buffering, which utilizes two BRAM. The read

in and read out functions use the least amount of resources, 24/43 FF and

86/77 LUTs, respectively. These functions only provide the pixel loop that

iteratively fetch pixels from memory and passes it to the stream. With the

difference that the read out function writes the transformed samples back

into a memory mapped location. Computing the derivatives use 183/182

FF and 307/298 LUTs for the x and y derivatives, respectively. No DSP

blocks are needed and the iteration latency is four cycles.

Table 4.1: Latency and resource estimates for the reference system.

Modules TP IL BRAM DSP FF LUT

& Functions (FPS) (Cycles) (Amount) (Amount) (Amount) (Amount)

Top function 97.532 2 3 3683 6443

Read in 2 - - 24 86

Update window 1285 2 - 169 241

Compute Dx 4 - - 183 307

Compute Dy 4 - - 182 298

Compute G 15 - 2 600 1255

Compute θ 17 - 1 1548 3486

Read out 1 2 - - 43 77

Read out 2 2 - - 43 77
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4.3 Single technique approaches

The single technique approaches are examined in detail. Both the changes

in the sub-functions and the resulting intermediary images are presented

when required.

4.3.1 Precision scaling techniques

Figure 4.8 show the detection performance when using precision scaling

for the input pixel depth. The expected outcome would be that the

performance deteriorate step by step as the precision is lowered, as seen in

[32], [11] and [29]. And, that the magnitude of error increases as the relative

size of the truncation removes a larger, and larger portion of the data. At

least, that is the expected outcome when the performance is reviewed at the

same stack level. This is not the case when the performance is examined

higher in the system hierarchy.

Figure 4.8: Detection correctness when using precision scaling for the input
pixel depth. The reference system uses 8 bits for the input pixel depth.

The system performance is generally lower further to the right in the plot.

Yet, on a case by case basis the results from the previous higher precision

approach does not give a good indication of the current performance. Nor
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does the deterioration of the system performance follow any apparent

function.

Increased performance is seen for the 6 bit approach. It obtains equal or

better performance than the reference system across all cases. The most

surprising results is for the single bit approach. Which show a higher

detection correctness for the second case than the reference system, and

the 6 bit approach.

A reason behind the varying performance is that whenever a bit is

truncated from the pixel data, the difference in intensity can both increase

and decrease. What determines this is the bit representation of the

numbers. For an example, two numbers and the difference between them:

the first number being 255 with a logarithmic base 2 representation of

111111112. Take the second number to be 128 = 100000002. Initially

the difference is 127 = 11111112. At each step the LSB is truncated and

the result is scaled back to the original 8 bit representation. For the first

truncation the difference becomes 126 = 11111102 after scaling. Then the

difference becomes 124 = 11111002, then 120 = 11110002, and for the last

truncation, leaving only the MSB, the difference becomes 0. The opposite it

possible as well. Take the numbers 128 = 100000002 and 127 = 011111112.

The difference between them is initially one. As the LSB are truncated the

difference increases, until only one bit is left. Scaled back to the 8 bits

representation, the difference becomes 000000012 << 7 = 100000002 =

128.

Precision scaling before computing the derivatives can therefore have a

large impact on the edges produced. If this reduces the noise and highlight

the outline of the objects, or if it highlights the noise and hides the object, is

not given.

As for the second case with an input bit width of one, the performance

indicate that the truncation is favorable. This can be verified by examining

the sampling images produced by the testbench. Figure 4.9 show the

gradient image for the 1 bit approach when the AV overlaps the edge of the

cloud. All the noise is gone and only the outline of the AV remains, making

the detection and ranking a trivial matter. This is also what happens for

the fifth case, and to an extent for the sixth case using 3 bits. For the 3 bit

approach the foreground noise is not gone. Yet a crisp outline of the AV is

produced and all background noise has been removed, as can be seen from

Figure 4.10.

The resource usage for at the input precision scaling approaches and the

43



(a) Reference system.

(b) Precision scaling 1 bit.

Figure 4.9: Gradient magnitude image of the second detection case. Precision
scaling to 1 bit removes the noise completely.

affected sub-modules is shown in Table 4.2. Here the reduced resource

usage follows the reduction in precision. Which is the expected outcome.

Certain discrepancies are found, such as the angle computation using more

resources for the 2 bit approach than the 3 bit approach. However, the exact

selection of resource primitives made by the HLS tool is not examined in

detail here. The primary resource saving is that all approaches use one less

DSP block for the Compute G function. Going from five to four bits also

reduces the system latency, as the two convolution operations use one less

clock cycle.

Figure 4.10: Gradient magnitude image for detection case six with a 3 bit
input.
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Table 4.2: Latency and resource estimates for precision scaling of the input
pixel depth.

Modules TP IL BRAM DSP FF LUT
& Functions (FPS) (Cycles) (Amount) (Amount) (Amount) (Amount)

Reference system
8 bits 97.532 2 3 3683 6443
7 bits 97.532 2 2 3657 6485

Update window 1285 2 - 160 241
Compute Dx 4 - - 176 302
Compute Dy 4 - - 175 293
Compute G 14 - 1 599 1315
Compute θ 17 - 1 1546 3478

6 bits 97.532 2 2 3574 6437
Update window 1285 2 - 151 241
Compute Dx 4 - - 169 297
Compute Dy 4 - - 168 288
Compute G 14 - 1 589 1299
Compute θ 17 - 1 1496 3456

5 bits 97.532 2 2 3582 6433
Update window 1285 2 - 142 241
Compute Dx 4 - - 162 292
Compute Dy 4 - - 161 283
Compute G 14 - 1 579 1287
Compute θ 17 - 1 1537 3474

4 bits 97.532 2 2 3336 6314
Update window 1285 2 - 133 241
Compute Dx 3 - - 77 266
Compute Dy 3 - - 76 257
Compute G 14 - 1 569 1273
Compute θ 17 - 1 1480 3421

3 bits 97.532 2 2 3295 6286
Update window 1285 2 - 124 241
Compute Dx 3 - - 73 263
Compute Dy 3 - - 72 254
Compute G 14 - 1 559 1266
Compute θ 17 - 1 1466 3406

2 bits 97.532 2 2 3321 6283
Update window 1285 2 - 115 241
Compute Dx 3 - - 69 260
Compute Dy 3 - - 68 251
Compute G 14 - 1 549 1256
Compute θ 17 - 1 1519 3419

1 bit 97.532 2 2 3286 6242
Update window 1285 2 - 106 241
Compute Dx 3 - - 64 252
Compute Dy 3 - - 63 240
Compute G 14 - 1 539 1249
Compute θ 17 - 1 1513 3404
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Figure 4.11 show the system performance for the approaches that use

precision scaling for the intermediary derivative output. Compared

to precision scaling of the input, this method show consistency as the

precision is lowered. Going from the reference system, which uses 11

bits, the performance gradually increases until it reaches 9 bits. At 9 bits

the overall system performance is at 92.78%, being 2.22% higher than the

reference system. After this the performance start decreasing, and the

performance falls drastically when going from 7 to 6 bits.

Figure 4.11: Precision scaling of the intermediary derivative output. The
reference system uses 11 bits to represent the derivatives.

The 8 bit approach achieves greater overall system performance, 91.11%

detections compared to the reference system at 90.56%. However, as

opposed to the two previous truncations, the the case by case performance

is not greater than or equal to the reference system. For the fourth case the

performance drops to 90% correct detections, whereas the reference system

achieves 96.7%.

The resource usage for at the precision scaling of the intermediary

derivative output and the affected sub-modules is shown in Table 4.3.

Once again the reduction in precision follows the reduced resource usage.

Precision scaling of the intermediary derivative results frees a DSP block
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in the Compute G function. This happens already at the first truncation.

The iteration latency is also lowered for the Compute G function, going

from 15 cycles to 14 cycles. The Update θ function uses more resources for

the 3, 4 and 5 bit approach than the 6 bit approach. From 6 to 5 bit in the

intermediary output corresponds to going from 3 to 2 bit at the input. As

was seen a prior the same increase in resource usage happened then. This

indicate that the HLS tool change the CORDIC algorithm implementation

when going from a six to five bit input.

Table 4.3: Latency and resource estimates for precision scaling of the
derivative intermediary output.

Modules TP IL BRAM DSP FF LUT
& Functions (FPS) (Cycles) (Amount) (Amount) (Amount) (Amount)

Reference system
11 bits 97.532 2 3 3683 6443

Compute G 15 - 2 600 1255
Compute θ 17 - 1 1548 3486

10 bits 97.532 2 2 3680 6495
Compute G 14 - 1 599 1315
Compute θ 17 - 1 1546 3478

9 bits 97.532 2 2 3620 6457
Compute G 14 - 1 589 1299
Compute θ 17 - 1 1496 3456

8 bits 97.532 2 2 3651 6463
Compute G 14 - 1 579 1287
Compute θ 17 - 1 1537 3474

7 bits 97.532 2 2 3584 6396
Compute G 14 - 1 569 1273
Compute θ 17 - 1 1480 3421

6 bits 97.532 2 2 3560 6374
Compute G 14 - 1 559 1266
Compute θ 17 - 1 1466 3406

5 bit 97.532 2 2 3603 6377
Compute G 14 - 1 549 1256
Compute θ 17 - 1 1519 3419

4 bits 97.532 2 2 3587 6355
Compute G 14 - 1 539 1249
Compute θ 17 - 1 1513 3404

3 bits 97.532 2 2 3571 6330
Compute G 14 - 1 529 1241
Compute θ 17 - 1 1507 3387
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4.3.2 Iterative techniques

Figure 4.12: Detection correctness for the CORDIC algorithm with reduced
rotation steps. The reference system uses nine rotation steps.

Table 4.4 show the latency and resource estimates for the CORDIC

algorithm at varying iteration depth. With two rotation steps the required

number of LUTs is effectively halved, using only 55% of the reference

system, the required amount of flip-flops being 61% and the BRAM and

DSP remaining unchanged. The iteration latency also decreases as the

iteration count is lowered, which is to be expected. The delay is reduced

from 17 to eight cycles for both the single rotation and two rotation

approach.

Using two rotation steps does not effect the overall detection perfor-

mance, as can be seen from Figure 4.12. This being the case with three and

five rotations as well. However, at four rotations the detection performance

drops significantly to 80%. Thus being outperformed at all other iteration

steps, even those with a lower rotation count. This seems counter intuitive

at first. However, the CORDIC algorithm has some inherent properties that

are uncovered when using four rotations.

The five first steps of CORDIC algorithm are : 45◦, 26.56◦, 14.03◦, 7.12◦,

3.57◦. At four rotations the final angle is within the range from −2.71◦ to
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92.71◦ at steps of 7.12◦. The representation of angles is used to determine

what pixel to walk to next. For the detection algorithm the direction can

be divided into 16 distinct states. Either the direction points exactly to one

of the eight neighbouring pixels or in between the two. At four rotations

when the correct angle is close to 0◦ or 90◦ the algorithm will overstep the

bounds of the quadrant. Which in turn gives a possible error magnitude of

two steps for the pixel walk. At a higher rotation level it corrects itself, and

at a lower it is not possible to overstep the edge of the quadrant.

Table 4.4: Latency and resource estimates for the CORDIC algorithm with
reduced rotation steps.

Modules TP IL BRAM DSP FF LUT
& Functions (FPS) (Cycles) (Amount) (Amount) (Amount) (Amount)

Reference system
9 rotations 97.532 2 3 3683 6443

Compute θ 17 - 1 1548 3486

5 rotations 97.532 2 3 3024 4726
Compute θ 12 - 1 889 1769

4 rotations 97.532 2 3 2835 4354
Compute θ 10 - 1 700 1397

3 rotations 97.532 2 3 2594 3943
Compute θ 9 - 1 459 986

2 rotations 97.532 2 3 2262 3564
Compute θ 8 - 1 127 607

1 rotation 97.532 2 3 2217 3406
Compute θ 8 - 1 82 449

4.3.3 Memory techniques

The resource usage for the two LUT based techniques are presented in

Table 4.5. Using lookup in memory instead of computing the values

at runtime reduces the iteration latency for the Compute G function

significantly, going from 17 cycles to four. The larger 128 by 128 LUT uses

eleven BRAM, whereas the modified 30 by 30 LUT can be implemented

in the logic and use no BRAM. Both approaches remove the need for DSP

blocks for the Compute G function.
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Table 4.5: Latency and resource estimates for the LUT approaches.

Modules TP IL BRAM DSP FF LUT
& Functions (FPS) (Cycles) (Amount) (Amount) (Amount) (Amount)

Reference system 97.532 2 3 3683 6443
Compute G 15 - 2 600 1255

128x128 LUT 97.532 13 1 3123 5321
Compute G 4 11 - 42 139

30x30 LUT – 1 bit 97.532 2 1 3136 5378
Compute G 4 - - 55 196

The performance for the LUT based approaches are found in Figure 4.13.

The 128 by 128 LUT has decreased overall performance, with a correct

detection rate of 86.67%. The 30 by 30 LUT show the same detection

performance as the reference system, at 90.56% correct detections. That

the 128 by 128 LUT produce less accurate results than the 30 by 30 LUT is

as expected. The smaller LUT has added functionality and uses the exact

value representation that corresponds to the detection algorithm. Whereas

the larger LUT provide correct values only at certain steps. That being

when the input exactly match the discretization level. No interpolation

scheme is implemented to mitigate this margin of error either.

4.3.4 Error techniques

The system performance for the error inducing techniques are presented in

Figure 4.13. Loop perforation reduces the system performance for both the

un-scaled and scaled approach, with a performance of 87.78% and 64.44%

respectively. The Kernel reduction approaches show some interesting

behavior. The scaled approach outperforms the reference system across

all cases and make correct detections 96.67% of the time. The system

performance for the un-scaled approach is 83.35%, yet for cases 2 and 3

the kernel reduction obtains higher detection correctness than the reference

system.

Examining the intermediary images give some indication as to why the

scaled approach outperforms the un-scaled kernel reduction approach.

Figure 4.14 show the gradient magnitude images for case 4 for both

approaches. The outline of the un-scaled approach is too thin to pass the

kernel that finds suitable seed points. It needs an edge piece with at least 3

by 3 valid pixels.
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Figure 4.13: Detection performance for the memory and error inducing
techniques.

(a) Gradient magnitude
scaled approach.

(b) Gradient magnitude
un-scaled approach.

Figure 4.14: The gradient magnitude images for case 4 using scaled and
un-scaled kernel reduction. The cropped image content show that the object
outline becomes too thin if the y derivative is not scaled. The scaled approach
produces a correct detection, while the un-scaled approach fails to extract the
shape.

The kernel reduction approaches perform well for the second case.

The gradient magnitude image is shown in Figure 4.15. The noise and

undesired edges produced by the clouds are gone leaving only the outline

of the AV. The image frame is the same as presented earlier, where the plane
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overlaps the edge of the cloud. This did not produce a valid detection for

the reference system, yet it does here.

(a) Reference system.

(b) Scaled kernel reduction.

Figure 4.15: Gradient magnitude image for the second detection case. The
noise is gone when using the scaled kernel reduction technique.

The reduced angle representation to 16 states perform as expected. It

does not differ from the reference system.

The latency and resource estimates for the approaches are presented

in in Table 4.6. Loop perforation increases the throughput significantly.

Going from 97.532 FPS to 195.059 FPS. The iteration latency for the Update

window function is also halved, going from 1285 cycles to 645 cycles. The

approaches does not incur any significant resource savings. However, there

are some routing changes and the approaches use FF 16 less and 17 LUTs

more than the reference system.

The kernel reduction approaches greatly improves the iteration latency

for the Update window function, going from 1285 to 5 cycles. It completely

removes the buffering delay, except for storing one previous sample. These

approaches also halves the BRAM usage. Which is an expensive resource.

The FF requirement in the Update window function is also reduced to 124,

as opposed to 169 FF for the reference system.

The angle to 16 state representation reduces the resource requirement

and iteration latency for the Compute θ function. The approach use 57 FF

and 318 LUTs for the function and removes the need for a DSP block. The

iteration latency is only three cycles.
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Table 4.6: Latency and resource estimates for the error inducing techniques.

Modules TP IL BRAM DSP FF LUT
& Functions (FPS) (Cycles) (Amount) (Amount) (Amount) (Amount)

Reference system 97.532 2 3 3683 6443
Update window 1285 2 - 169 241
Compute Dx 4 - - 183 307
Compute Dy 4 - - 182 298
Compute G 15 - 2 600 1255
Compute θ 17 - 1 1548 3486
Read out 1 2 - - 43 77
Read out 2 2 - - 43 77

Loop perforation 50% &
Loop Perforation 50%
scaled 195.059 2 3 3667 6457

Update window 645 2 - 165 237
Compute Dx 4 - - 181 303
Compute Dy 4 - - 180 294
Compute G 15 - 2 599 1253
Compute θ 17 - 1 1545 3478
Read out 1 2 - - 41 95
Read out 2 2 - - 41 95

Kernel reduction 97.654 1 3 3636 6436
Update window 5 1 - 124 240
Compute Dx 4 - - 183 307
Compute Dy 4 - - 182 298
Compute G 15 - 2 600 1255
Compute θ 17 - 1 1546 3480

Kernel reduction scaled 97.654 1 3 3626 6435
Update window 5 1 - 124 240
Compute Dx 4 - - 183 307
Compute Dy 4 - - 172 297
Compute G 15 - 2 600 1255
Compute θ 17 - 1 1546 3480

Angle 16 states 97.532 2 2 2192 3275
Compute θ 3 - - 57 318
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4.4 Combined techniques

For the combined techniques the resource savings is not examined in detail.

The approaches incur savings throughout the system and consistently

affect several of the sub-functions. The approaches are combinations of

techniques that are already examined in detail. The reduction in resources

follows the reduction found for the single technique approaches to a high

degree, and accumulates as they are combined. However, there are some

reduction in resources that can not be traced back directly.

Another aspect that must be taken into consideration is the effect on the

iteration latency, and thereby the throughput. Techniques that reduce the

iteration latency for one sub-function, only propagate through the system

and increase the throughput if the function incur the highest delay. The

Compute G and Compute θ functions run in parallel. The techniques that

reduce the iteration latency within either, without affecting the other, do

not necessarily see a change in the throughput. When a combination of

techniques reduce the delay in both, the throughput increases more than

what can be seen from the accumulated gain.

The focus in this section is on the system performance and how combing

techniques affect it. The combined techniques amount to 21 distinct

approaches. An overview of the combined techniques is found in Table

4.7. The approaches are named after the techniques they utilize. The full

overview of the saved resources can be found in the last section of this

chapter in Table 4.9.

4.4.1 Precision scaling and iterative techniques

Looking at the system performance there are some things to keep in mind,

such as: Is the performance decided by the lowest denominator? Or, is

there an accumulation of error? And, if so, how does the error accumulate?

To explore this five approaches are tested that combine the CORDIC

reduced rotation and precision scaling of the input. Both techniques can

scale the approximation level. The plot for the detection correctness is seen

in Figure 4.16. The approach that use the CORDIC at two or more rotations

are only affected by the performance change given by the precision

scaling. However, for the approaches using the single rotation CORDIC

the combined performance changes. The combined outcome is more than

the accumulated error added and more than lowest denominator.
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Table 4.7: Overview of combined techniques

Name Description

In7 · C3 Precision scaling of the input to 7 bits and CORDIC with 3 rotations.

In7 · C2 Precision scaling of the input to 7 bits and CORDIC with 2 rotations.

In7 · C1 Precision scaling of the input to 7 bits and CORDIC with 1 rotation.

In6 · C2 Precision scaling of the input to 6 bits and CORDIC with 2 rotations.

In6 · C1 Precision scaling of the input to 6 bits and CORDIC with 1 rotation.

In6 · Im7
Precision scaling of the input to 6 bits and precision scaling of the
intermediary derivative to 7 bits.

GL30 · C2 Gradient LUT 30 by 30 and CORDIC with 2 rotations.

Im9 · GL30 · C2
precision scaling of the intermediary derivative to 9 bits, gradient LUT
30 by 30 and CORDIC with 2 rotations.

Im9 · GL30 ·
Ang16

precision scaling of the intermediary derivative to 9 bits, gradient LUT
30 by 30 and the angle representation to 16 states.

GL30 · KRS ·
Ang16

Gradient LUT 30 by 30, kernel reduction scaled and the angle
representation to 16 states.

GL30 · C2 · LP50
Gradient LUT 30 by 30, CORDIC with 2 rotations and loop perforation
by 50%.

GL30 · C2 · LP50 ·
KR

Gradient LUT 30 by 30, CORDIC with 2 rotations, loop perforation by
50% and kernel reduction.

Im9 · GL30 · C2 ·
KR

Precision scaling of the intermediary derivative to 9 bits, gradient LUT
30 by 30, CORDIC with 2 rotations and kernel reduction.

GL30 · C2 ·
LP50S · KRS

Gradient LUT 30 by 30, CORDIC with 2 rotations, loop perforation by
50% scaled and kernel reduction scaled.

C2 · LP50S · KRS
CORDIC with 2 rotations, loop perforation by 50% scaled and kernel
reduction scaled.

GL30 · LP50 ·
KRS · Ang16

Gradient LUT 30 by 30, loop perforation by 50%, kernel reduction
scaled and the angle representation to 16 states.

Im9 · C2 · LP50
Precision scaling of the intermediary derivative to 9 bits, CORDIC 2
rotations and loop perforation %.

Im9 · GL30 · C2 ·
LP50

Precision scaling of the intermediary derivative to 9 bits, gradient LUT
30 by 30, CORDIC 2 rotations and loop perforation 50%.

Im9 · GL30 · C2 ·
LP50 · KR

Precision scaling of the intermediary derivative to 9 bits, gradient LUT
30 by 30, CORDIC 2 rotations, loop perforation 50% and kernel
reduction.

Im9 · GL30 · KRS
· Ang16

Precision scaling of the intermediary derivative to 9 bits, gradient LUT
30 by 30, kernel reduction scaled and the angle representation to 16
states.

Im9 · GL30 · LP50
· KRS · Ang16

Precision scaling of the intermediary derivative to 9 bits, gradient LUT
30 by 30, loop perforation 50% scaled, kernel reduction scaled and the
angle representation to 16 states.
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Both the precision scaling to 7 bits and CORDIC using one rotation

reduce the performance by 90.56− 89.45 = 1, 11%. The combined approach

obtains a performance of 87.78%. Which differs from the reduction the

accumulated error gives at 88.34%. For the 6 bit input the performance

increases. The combined performance with the CORDIDC at one rotation

is at 88.88% correct detections. Again, this is neither determined by the

lowest denominator nor the accumulated value.

4.4.2 Performance characteristics of combined techniques

It is clear that the performance characteristic affect how the combined

approaches interact. Based on observations from the single technique

approaches the performance characteristics fall into five distinct groups:

1. Techniques that reduce the overall performance, thus making the

system approximate. Where the case by case performance is either

equal or lower compared to the reference system. The techniques

or combination of techniques that fall into this group are fully

approximate. Techniques with this performance characteristics are

referred to as approximate.

2. Techniques that reduce the overall system performance, but show

higher performance than the reference system for one or more

detection case. Techniques that show this performance characteristic

are referred to as semi-approximate.

3. Techniques that do not impact the detection performance. Meaning

that the system has still not become approximate. Thereby operating

with redundancy.

4. Techniques with increased overall performance. Where the case by

case performance need not be greater than or equal to the reference

system. The only criteria is that the average performance is higher.

These techniques have an enhanced performance characteristic.

5. Techniques where the overall system performance has increased

and the performance for all cases are equal to or greater than the

reference system. A Pareto optimal system performance is achieved

compared to the reference system. Techniques with this performance

characteristic are referred to as having a Pareto optimal characteristic.
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Figure 4.16: CORDIC algorithm with reduced rotation steps and precision
scaling of the input pixel depth.

Figure 4.17: Combined techniques with high overall system performance.
The average detection correctness being equal or greater than the reference
system.
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Figure 4.18: Combined techniques with reduced overall system performance.
The techniques are either semi-approximate or approximate.

Figure 4.19: Combined techniques with greatly reduced system performance.
All techniques are approximate. The range of the y-axis is set from 0 to 65 %.
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Figure 4.17 show approaches that perform better or equal to the reference

system. Thus having Enhanced, Pareto optimal or a Redundancy perfor-

mance characteristic. Approaches with approximate or semi-approximate

characteristics are shown in Figure 4.18. In Figure 4.19 approaches with sig-

nificant reduction in system performance are shown. Where all techniques

have an approximate performance characteristic.

The precision scaling techniques showed the largest increase in perfor-

mance for the input at 6 bits and the derivatives at 9 bits. The precision

scheme of the system expands the derivatives by three bits. Scaling the

input by two bits down to 6 bits, scales the derivative output down to 9

bits. However, there is no loss of information when finding the derivative

values, the width is simply determined by the necessary precision scheme.

Is the performance increase caused by the 9 bit representation or is this a

property when reducing the derivative representation by two bits?

To test this a two bit reduction is used on both the input and the deriva-

tive. Meaning that the derivative output is set to 7 bit, i.e. two bits lower

than the required precision scheme. The approach (In6 · Im7 Figure 4.17)

obtains a system performance of 90.56%. It seems that the positive effect

of the input precision scaling is mitigated by the precision scaling of the

derivative. This points towards a 9 bit representation being favorable.

Combining techniques with a redundancy characteristic did not impact

the performance. As was seen when combining the reduced CORDIC

rotations and precision scaling. Does this extend to an approach that uses

two or more techniques with a redundancy characteristics?

A combined approach using the gradient LUT 30 by 30 and the CORDIC

at two rotations (GL30 · C2) is shown in Figure 4.17. Both techniques have

a redundancy performance characteristic. It is observed that the combined

performance has a redundancy characteristic as well. When expanding the

approach to use precision scaling of the input (Im9 · GL30 · C2 Figure 4.17),

the performance becomes the same as for the precision scaling approach

alone. Replacing the CORDIC algorithm with the angle to 16 states does

not affect the system performance either (Im9 · GL30 · Ang16 Figure 4.17).

When this approach is expanded to also include the kernel reduction

(Im9 · GL30 · C2 · KR Figure 4.18) the performance drops to 81.11%. For

the scaled kernel reduction (Im9 · GL30 · KRS · Ang16 Figure 4.19) it

deteriorates even more. The system performance becomes 5.57%. This is
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also the case when the approach is expanded to use the loop perforation

(Im9 · GL30 · C2 · LP50 Figure 4.19). Which obtains a performance of

21.11%.

4.4.3 Unaccounted resource savings

There are four approaches that completely removes the need for BRAM

components. The line buffer is instead implemented using FF and LUTs.

The approaches and the resulting resource usage of FF and LUTs is given

in Table 4.8.

Table 4.8: Resource estimates for techniques without BRAM

Techniques FF LUT

Reference system 3683 6443

GL30 · C2 · LP50 · KR 7130 5668

GL30 · C2 · LP50S · KRS 7120 5667

C2 · LP50S · KRS 7665 6726

Im9 · GL30 · C2 · LP50 · KR 7034 5594

4.4.4 Observations on generality

There are some overarching trends. One is that no enhanced or Pareto

optimal characteristic is obtained when loop perforation is involved.

Another is that loop perforation combined with precision scaling severely

deteriorates the performance.

Techniques that by themselves had no loss in accuracy, being in the

enhanced or Pareto optimal performance characteristic groups, become

approximate when combined. As is the case when combining kernel

reduction and precision scaling. Any combination that is based on

techniques with semi-approximate or approximate characteristic ends up

with a semi-approximate or approximate characteristic.

To summarize this, it is observed that only techniques that affect

performance change the overall performance when combined. And, that

techniques with a redundancy performance characteristic do not change

the overall performance when combined. This indicate that techniques

with a redundancy performance characteristic can be combined freely,

without worrying about the resulting performance.
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4.5 Correlation

When the Sobel filer is used as a testbench for AC it is usually the

intermediary results, the gradient image and direction image, that is

examined. Different metrics of degradation in image quality are used

to measure the accuracy. Here the results are viewed at a higher level.

However, the intermediary degradation in image quality is still accounted

for. This means that it the accuracy of the intermediary results can be

examined in relation to the overall performance. The metric used to

represent the accuracy of the intermediary results is the APD.

The relation is examined in four plots. The tendency can be verified by

visual inspection by dividing the plots into four quadrants: the left-bottom,

right-bottom, left-top and right-top regions. The data almost always fit into

three of the quadrants, leaving one empty. Using this crude estimation the

general left-right and up-down relation can be determined.

In Figure 4.20 the APD for the gradient magnitude image is plotted

against the system performance. When the APD increases the likelihood

of obtaining a correct detection decreases. This is as expected, and indicate

that the accuracy loss for the intermediary gradient image can be used to

estimate the overall accuracy. In Figure 4.21 the APD for the gradient mag-

nitude image is plotted against the correlation to the reference system. The

likelihood of a high correlation in detections is still higher when the APD

is low. However, compared to the system performance the result are more

spread out. And, certain outliers obfuscate the plot.

In Figure 4.22 the angle difference is plotted against the system perfor-

mance. The likelihood of obtaining a correct detection is higher if the differ-

ence is low. However, there is no guarantee that the performance decrease.

The quadrant with no cases is the left-bottom one. This indicate that tech-

niques which greatly reduces the intermediary accuracy of the gradient di-

rection still have high chance of obtaining high overall accuracy. In Figure

4.21 the angle difference is plotted against the correlation to the reference

system. The plot corresponds to high degree with the plot against the sys-

tem performance.
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Figure 4.20: The average pixel difference for the gradient image plotted
against the correct detection.

Figure 4.21: The average pixel difference for the gradient image plotted
against the detection correlation to the reference system.
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Figure 4.22: The average angle difference plotted against detection correct-
ness.

Figure 4.23: The average angle difference plotted against the detection
correlation to the reference system.
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A last plot is include that show the correspondence between correct

detections and the correlation to the reference system. The results are

shown in Figure 4.24. It is observed that a high correlation is always

obtained when the overall system performance is high. However, it is

possible to have an approach that obtains a high correlation that does not

show a satisfactory system performance. This means that the correlation

to the reference system can not be used as a viable measure for the system

performance.

Figure 4.24: The detection correlation to the reference system plotted against
the correct detection.

4.6 Comparison

A comparison of all the implemented techniques is presented in Table

4.9. The table uses the performance characteristics to differentiate the

techniques, and indicate the group association by color coding of the

rows. The groups are the same as presented earlier: Approximate, Semi-

approximate, Redundancy, Enhanced and Pareto optimal performance

characteristics.

The table is divided in five. The first four parts show the single technique

approaches and divide by the class affiliation. The last part show the

combined techniques. The overall system performance is included. And,
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is presented as the performance gain relative to the reference system. The

relative performance gain (RPG) is given by equation 4.5.

RPG =


PRS−PAT

PRS
· 100, if PRS < PAT

PAT−PRS
PRS

· 100, if PRS > PAT

0, if PRS = PAT

(4.5)

PRS represent the system performance for the reference system.

PAT represent the performance for the AC technique in question.

The throughput gain for each approach is given in frames per seconds

and is found using equation 4.6. The FPS estimate was found a prior using

equation 4.1.

FPS gain = FPSAT − FPSRS (4.6)

FPSRS represent the throughput in FPS for the reference system.

FPSAT represent the throughput in FPS for the AC technique in question.

The amount of resources (BRAM, DSP, FF and LUT) used is given as

the amount saved in comparison to the reference system. The table use a

color coding of the values to indicate positive and negative trends. For the

resource usage positive savings are coded in green and indicate a reduction

in resource usage. While negative trends are coded in red and indicate an

increase in resource usage. The RPG is also color coded. However, the RPG

show a positive trend when there is an increase in system performance, and

a negative trend when the performance decreases.

For the combined techniques certain approaches that are of particular in-

terest are underlined. To distinguish between them, these approaches are

also given an annotation using roman numerals.

For the precision scaling the performance deteriorates and the resource

usage decreases on a general basis as the approximation level is increased.

The memory techniques completely absolves the need for DSP blocks in the

sub-functions they affect. The techniques reduce the iteration latency down

to what is presumably the minimum. However, the throughput remains

unchanged as the latency bottleneck is found in the Compute θ function,

that is unaltered.

The iterative approaches reduce the iteration count for the CORDO

algorithm. The effect on performance is not seen until a single rotation
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is used. That is excluding the four rotation approach. The resources saved

scales nicely with the reduced rotation count and substantial savings are

attained without affecting the performance.

The error inducing techniques does not show any common trends. This

is not surprising. The techniques operates at different functions and at

different levels in the system.

It is the loop perforation and kernel reduction approaches that produce

the best results for throughput and iteration latency. However, it is not

possible to obtain a performance characteristic that is optimal or Pareto

optimal when combining these techniques.

The approach with the overall highest system performance is for the

scaled kernel reduction. Combining this technique with the gradient LUT

30 by 30 and the angle to 16 states gives the best resource reduction without

becoming approximate. The approach is given annotation I. The resulting

system performance is 5.52% higher than the reference system. It uses half

the amount of BRAM, no DSP blocks and reduces the FF and LUTs by

56.77% and 65.64% respectively. The throughput gain is at 0.123 FPS.

The expansion of this approach to also use loop perforation is given

annotation III. It is 3.68% less accurate than the reference system and has

an approximate performance characteristic. The resource usage is halved

or more for all resource primitives, and no DSP blocks are utilized. The

system (III) use 513293 cycles less than the reference system to output a

full frame. The throughput is increased from 98 FPS to 195 FPS. This is the

highest observed throughput. There is another combined technique that

achieves the same result. That is when expanding the approach to also use

precision scaling for the intermediary derivative. The approach is given

annotation IV. However, this combination of techniques (IV) greatly reduce

the system performance. The approach is 92.62% less accurate than the

reference system.

Certain combinations of loop perforation and kernel reduction absolves

the need for BRAM. The approach that achieves the highest system

performance without BRAM is given annotation II. The FF requirement is

93.3% more than the reference system and the performance is 16.55% lower.
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Table 4.9: Comparison of techniques and classes.

Class affiliation

Techniques

(Abbreviation)

Performance (rel. %)

TP (FPS gain)

BRAM
DSP FF LUT

Reference system 90.56 97.53 2 3 3683 6443

Pr
ec

is
io

n

Input 7 bits In7 -1.23% - 0% -33% -0.71% +0.65%
Input 6 bits In6 +1.23% - 0% -33% -2.96% -0.09%
Input 5 bits In5 -20.86% - 0% -33% -2.74% -0.16%
Input 4 bits In4 -65.03% 9.51E-5 0% -33% -9.42% -2.00%
Input 3 bits In3 -63.20% 9.51E-5 0% -33% -10.53% -2.44%
Input 2 bits In2 -64.42% 9.51E-5 0% -33% -9.83% -2.48%
Input 1 bit In1 -46.01% 9.51E-5 0% -33% -10.78% -3.12%
Intermediary 10 bits Im10 +1.23% - 0% -33% -0.08% +0.81%
Intermediary 9 bits Im9 +2.45% - 0% -33% -1.71% +0.22%
Intermediary 8 bits Im8 +0.61% - 0% -33% -0.87% +0.31%
Intermediary 7 bits Im7 -7.98% - 0% -33% -2.69% -0.73%
Intermediary 6 bits Im6 -81.59% - 0% -33% -3.34% -1.07%
Intermediary 5 bits Im5 -82.21% - 0% -33% -2.17% -1.02%
Intermediary 4 bits Im4 -82.21% - 0% -33% -2.61% -1.37%
Intermediary 3 bits Im3 -99.38% - 0% -33% -3.04% -1.75%

M
em

or
y Gradient LUT 128 GL128 -4.30% - +550% -67% -15.20% -17.41%

Gradient LUT 30 GL30 0% - 0% -67% -14.85% -16.53%

It
er

at
iv

e

CORDIC 5 rotations C5 0% 1.90E-4 0% 0% -17.89% -26.65%
CORDIC 4 rotations C4 -11.66% 1.90E-4 0% 0% -23.02% -32.42%
CORDIC 3 rotations C3 0% 1.90E-4 0% 0% -29.57% -38.80%
CORDIC 2 rotations C2 0% 1.90E-4 0% 0% -38.58% -44.68%
CORDIC 1 rotation C1 -1.23% 1.90E-4 0% 0% -39.80% -47.14%

Er
ro

r

Loop perforation 50% LP50 -3.07% 9.753E1 0% 0% -0.43% +0.22%
LP50 scaled LP50S -28.84% 9.753E1 0% 0% -0.71% +0.65%
Kernel reduction KR -7.96% 1.22E-1 -50% 0% -1.28% -0.11%
Kernel reduction scaled KRS +6.75% 1.22E-1 -50% 0% -1.55% -0.12%
Angle 16 states Ang16 0% 1.90E-4 0% -33% -40.48% -49.17%

C
om

bi
ne

d

In7 · C3 -1.23% 2.85E-4 0% -33% -30.25% -38.10%
In7 · C2 -1.23% 2.85E-4 0% -33% -39.26% -43.99%
In7 · C1 -3.07% 2.85E-4 0% -33% -40.48% -46.44%
In6 · C2 +1.23% 2.85E-4 0% -33% -40.24% -44.62%
In6 · C1 -1.86% 2.85E-4 0% -33% -41.41% -47.00%
In6 · Im7 0% - 0% -33% -3.94% -1.04%
GL30 · C2 0% 8.56E-4 0% -67% -53.43% -61.21%
Im9 · GL30 · C2 +2.45% 8.56E-4 0% -67% -53.92% -62.05%
Im9 · GL30 · Ang16 +2.45% 1.24E-3 0% -100% -55.80% -66.54%

IGL30 · KRS · Ang16 +5.52% 1.23E-1 -50% -100% -56.77% -65.64%
GL30 · C2 · LP50 -4.30% 9.753E1 0% -67% -44.58% -54.03%
GL30 · C2 · LP50 · KR -34.36% 9.777E1 -100% -67% +93.6% -12.03%
Im9 · GL30 · C2 · KR -10.44% 1.23E-1 -50% -67% -55.15% -62.07%

IIGL30 · C2 · LP50S · KRS -16.55% 9.777E1 -100% -67% +93.3% -12.04%
C2 · LP50S · KRS -17.81% 9.777E1 -100% 0% +108% +4.39%

IIIGL30 · LP50 · KRS · Ang16 -3.68% 9.778E1 -50% -100% -57.10% -65.33%
Im9 · C2 · LP50 -76.69% 9.753E1 0% -33% -32.26% -37.44%
Im9 · GL30 · C2 · LP50 -76.69% 9.753E1 0% -67% -47.19% -55.18%
Im9 · GL30 · C2 · LP50 · KR -82.82% 9.777E1 -100% -67% + 91% -13.18%
Im9 · GL30 · KRS · Ang16 -93.85% 1.23E-1 -50% -100% -57.97% -66.79%

IVIm9 · GL30 · LP50 · KRS · Ang16 -92.62% 9.778E1 -50% -100% -58.29% -66.48%
Performance characteristics: Approximate Semi-approximate

Redundancy Enhanced Pareto optimal
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Chapter 5

Discussion

This chapter conducts a discussion regarding the analysis presented in the

previous chapter, and evaluates the research goals. Remarks on the validity

of the results and the simulator is presented as well.

The evaluation metrics. When the effects of the approximations are

examined higher in the system hierarchy preconceptions of performance

falls short. The emergent behavior does not correlate with the degradation

in intermediary image quality at all times. This was seen in Figure 4.24.

Where the correlation to the reference system did not indicate a viable

measure for the system performance. In Figure 4.20 and Figure 4.22 the

detection correctness was plotted against the intermediary degradation in

accuracy for the gradient and direction images, respectively. The likelihood

of obtaining a high detection rate is higher when the reduction in the

intermediary accuracy is low. However, it is not given that a small

degradation in image quality results in high system performance.

The metric used to determine the intermediary accuracy is crude. There

are other more sophisticated metrics, such as the PSNR or the structural

similarity index. If there is a metric of the intermediary quality that gives

a better indication of how the loss in accuracy propagates through the sys-

tem. Then, these observations would be made obsolete.

Implementation constraints. The HLS tool was not given any constraints

regarding the use of resource primitives. The HLS tool interpret functional-

ity and transform the behavior into timed RTL implementations. A conse-

quence of this is that the details of the implementations are unknown to the

designer. If it is desired to have full control of the implementation details

then a HLS approach is obsolete.
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The interpreter may not be able to realize an optimum solution for each

implementation of the AC techniques. A way to mitigate this is to limit the

design to FF and LUTs. Which makes the comparison easier as well. How-

ever, this might skew the results and favor certain techniques, as some tech-

niques may benefit more than others. Also, for a real world application,

putting artificial constraints on the design is unwanted. The objective of

the system and the overall performance is of importance, not the internal

mechanisms. This is essentially what a system approach to AC is meant

to do, put the system first and the AC second. Consequently, the design

choices must favor the objective and performance over comparability.

Validity of the simulator. Since the system is simulated there are design

aspects that have not been taken into consideration. If the Sobel filter

where to be exported and implemented on an FPGA it would require added

functionality. A design choice must be made whether the images are read in

to a memory mapped location or not. Or, if the samples are to be streamed

in directly. The storage choices greatly affect the resource savings from the

precision scaling. If the images are stored then each bit truncated saves

1280× 800 = 1024000 bits in storage per image.

The resources used and the timing estimates are only given as estimates.

The results are therefore reliant on the validity of the HLS tool. The actual

routing and latency in the system is only attained when the system is run

on the FPGA.

Another aspect of consideration is the level of optimization done before

AC techniques are applied. The Sobel filter implementation was not fully

optimized before being introduced to AC techniques. This can increase

the gap in resource savings between the reference system and the AC ap-

proaches. However, finding a fully optimized system is a demanding en-

deavor in itself.

The optimal system encoding. Some of the approaches incur increased

performance and substantial savings in relation to the reference system.

However, they are not optimal. They just so happened to be the highest

performing approaches of those tested. A full search towards an optimal

encoding of the system was not conducted. Doing this for the techniques

presented would require testing thousands of combinations and turns into

a multi-objective optimization problem.

The techniques that operate whit a redundancy performance characteris-
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tic never incur performance degradation. Even when combined. Whereas

techniques that by themselves have an enhanced or Pareto optimal char-

acteristic, can deteriorate the performance when combined. If this obser-

vation holds true for all combination, then the number of possible combi-

nations needed for testing decreases. The techniques with a redundancy

characteristic can be applied afterwards, without consideration to the per-

formance.

Performance characteristics. A reason the performance characteristics are

of interest is because they highlight the effect of the input characteristics.

In how the pixel intensity distribution and the contrast to the AV affect the

results. That for some approaches this gives a favorable outcome. This is

what is seen when the approaches have an enhanced, Pareto optimal or

semi-approximate performance characteristic. It points to one of the major

issues any general purpose system faces. How to optimize the system

when certain optimizations are only applicable for a given input?

Cognitive computing is a paradigm that can solve this issue. A cognitive

computing system is not faced with the problem of finding a general solu-

tion for all inputs. It can change its processing to accommodate the input.

If, it possible to ascertain what optimization that make the system approx-

imate for the different input characteristics. Then, the system can simply

adapt its processing capabilities such that it always operates with the low-

est resource usage. Even if it is possible to find a general purpose system

that is fully accurate for the full input range, the cognitive computing sys-

tem could outperform it in resources saved.

Generality of the results. Is this a closed system or does this prove general

trends applicable to all systems? In short the answer is no. To adequately

answer this requires testing on a larger body of systems. Yet there are

some observed trends that are presumed to be general. The first is that

any technique that does not alter the performance can be implemented

freely. That does not mean that the CORDIC algorithm with 2 rotations

can be freely implemented on any system. It refers to the fact that once

the performance characteristic of a technique is uncovered it can be used to

drive design of combined approaches.

Another general trend is regarding the data representation. The system

approach to AC uncovers some properties that are only apparent when the

accuracy is examined higher in the system hierarchy. One of these proper-
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ties is the relation between accuracy, precision and representation. When

the precision is lowered the intermediary accuracy deteriorates. In gen-

eral this increases the likelihood of a reduced overall system performance.

However, when the data representation is altered the intermediary accu-

racy deteriorates without reducing the system performance. The output

of a sub-system is examined as the input to another system. The repre-

sentation needed in the system that takes the input is what determines the

representation in the sub-system.

This is actually just a re-formulation of the one of the core principles in

information theory. Of course data should be encoded so that it uses the

least amount of bits to represent the information quantity. However, it is

not always clear how this is to be done in a larger system and when trans-

formation of data occurs.

Validity of the taxonomy. For the validity of the taxonomy it must be con-

sidered if there are AC techniques that can not be classified. Are there any

problematic techniques that at first look does not fit into any of the cate-

gories? Elision relaxation (relaxed inter task communication correctness)

and voltage over-scaling (overclocking) are hard to classify at first glance.

However, that is only due to these techniques being viewed outside of the

computational description. Describing a transformation of data at a high

level is not concerned with the clock frequency nor the scheduling. Once

this is viewed as part of the system description classifying the techniques

pose no problem. Both techniques create error in the system, and as such

falls in under the error inducing category.

Research Question I When does a computation system become approximate?

There are two ways to approach this. Either the system becomes

approximate whenever the accuracy is lower than the designated reference

system. Or any system that is not fully accurate as described by the global

accuracy is approximate. It is not certain that for a given input a system

has a metric for the global accuracy. Thus it is natural to use the reference

system as the measure of accuracy. If the global measure is used instead

then all approaches are approximate, even the reference system.

In the simulator used here all approaches that have an approximate or

semi-approximate performance characteristic are approximate, while the

rest operate with full accuracy. The accuracy gain is redundant as the
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system is only required to operate at the accuracy set by the reference

system.

For the iterative and precision scaling techniques the point where the

system becomes approximate can be determined. The CORDIC algorithm

becomes approximate when going from two to one rotation. That is

excluding the special case when using four rotations.

For the bit-narrowing of the derivative the approximation point is when

going from eight to seven bits. The input bit-narrowing has a performance

dip at the first truncation. However, the performance recovers on the next

truncation and it is not until a five bit representation that the performance

stays consistently low.

Research Question II Does an approximate computing taxonomy exist that
adheres to a system approach?

The comparison in Table 4.9 show how AC techniques from the different

classes can be combined. It is clear that the combined approaches has the

potential to reduce the resource usage and increase the throughput far more

than any single technique. Thus, the taxonomy aids in the design of AC for

larger systems, and adheres to the system approach.

An interesting question that appears when several AC techniques are im-

plemented in the same system is: At what point does incorporating error

or changing the system for performance gains turn it into something else?

If reducing an algorithm turns it into some other known algorithm, at what

point did it cease to be ”approximated” and turned into something else?

For the system approach and applying the taxonomy this is irrelevant. All

internal functionality is trivial, as long as the objective of the system is ob-

tained.
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Chapter 6

Conclusion

The main goal of the thesis was to propose a taxonomy that adheres

to a system approach for AC. A novel taxonomy was proposed that

view a computation system by its key components, and uncovers where

approximations can occur. That being either in the data structure or in

the transformation of data. The proposed taxonomy classifies AC into

four categories: precision, memory, iterative and error techniques. The

taxonomy was tested for a system approach to AC on the Sobel filter.

Where the Sobel filter in turn was put in the context of a larger object

detection system.

The effect of AC when viewed higher in the system hierarchy was

examined. It is found that the reduction in intermediary accuracy does

not indicate a reduction in the overall system performance. The system

was tested with a combination of AC techniques applied. The combined

techniques showed greatly improved resource and throughput estimates

compared to the single technique implementations.

The system does not necessarily become approximate even though AC

techniques have been applied. Significant resource savings can be attained

without reducing the final accuracy. For a small reduction in the final

accuracy the throughput can be more than doubled while still obtaining

considerable resource savings.

6.1 Further work

Physical implementation on hardware. A natural next step is to test the

system on actual hardware. This would give the proper timing estimates.

It also has the potential to uncover limitations that are otherwise unac-

counted for.
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Applying the taxonomy to other systems. The taxonomy was only tested

for a single system. This makes it hard to determine general trends. Using

a system approach for AC on other problems has the potential to uncover

properties that are hidden in this system. And, it would be useful to vali-

date or discredit the results found here.

Finding the optimal encoding. It was shown that the system could be im-

proved both in regards to performance and the resource usage. The full

width of possible combinations was not tested. Furthermore, only a se-

lection of AC techniques was applied. The optimal encoding is therefor

unaccounted for.

AC for cognitive computing systems. Cognitive computing is a field

where approximate computing techniques hold great promise, for two pri-

mary reasons. The first is pointed out in [4] by Agrawal, Choi, Gopalakr-

ishnan et al., wherein they state that ”cognitive applications continue to be

executed on general-purpose ... platforms that are highly precise”[4, p. 1].

Thus, they are operating on unnecessary high precision to begin with. The

other reason AC is of interest, is because it provides a way to enable dif-

ferent modes of operation. Within the fields of cognitive radar and cognitive
radio a key component is the ability to adapt so that the system does not

waste resources running a process that is more computationally expensive

than it needs to be [57][58][59]. Efficient resource usage is central for cog-

nitive systems and AC holds the key to enable adaptive processing for any

processing task in the cognitive system.

Axiomatic scheme for computational components. The proposed taxon-

omy adheres to a system approach for AC. However, the taxonomy is less a

classification of techniques and more a division of computing into its prin-

cipal components. For the highest abstraction level this is either data or

the transformation of data. Where these components in turn are applicable

to certain AC techniques. A natural continuation of the taxonomy is there-

for to extend it to an axiomatic scheme that is universal to all computations.
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