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Abstract

An integral type representation and various extension theorems for mono-
tone linear operators in Lj,-spaces are considered in relation to market prices
modeling. In particular a characterization of the existence of a risk-neutral
probability measure is provided in terms of the given prices. An evaluation
of the density of the risk-neutral probability measure with respect to the un-
derlying applied one is also provided.
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0 Introduction.

According to the concept of “fair” market (market with “no arbitrage” - cf. [2], for
example), the prices are considered to satisty the equation

X, =E° (R X,/2,), t> s,

in the course of time, where X; is the price at time ¢ and E° is the expectation
with respect to the probability measure P° for the market events. The conditional
expectation is with respect to the o-algebra 2 of the events up to time s. The
discount factor R~! is due to the risk less return R > 0, in time ¢ for 1-unit of
capital invested in a certain “risk less” financial operation at time s. We can think
of X = X, as a possible future payoff at time ¢ for the capital z(X) = X, invested
at time s. In other terms x(X) can be considered as the price that must be paid at
time s in order to get the corresponding future gain X at time t. In particular it is

z(R) = 1.
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Let us set
B =2,
With the notation above, we have that the mapping X = z(X) given by
(0.1) 7(X) = E°(R'X/®B)
is a linear operator which is monotone, i.e.
(0.2) z(Xy) > 2(Xs) > 0,

for the elements X; > X5 > 0 in the domain of the operator. We remark that for a
linear operator, the domain of which is a linear sub-space of L,, the above property
is equivalent to

(0.3) HX)>0, X>0.
In fact, one has
.Z'(Xl) — .’,U(XQ) = .Z'(Xl — XQ) Z 0, X1 — X2 Z O, X2 Z 0.

Moreover the operator z in (0.1) is B-homogenous in the sense that its range
consists of all the B-measurable variables z(X) such that

(0.4) r(AX) = \x(X)

with respect to any B-measurable multiplicator A > 0.
Naturally, all achievable payoffs, X > 0, constitute a convex cone L and, there-
fore, we can look at the prices

(0.5) (X)), XelLt,

in the standard framework of the theory of linear operators on convex cones. Thus
we refer to 2 in (0.5) as the price operator. Note that having the linear operator
2(X), X € L*, on the convex cone L', we can always deal with its unique linear
extension, here denoted by the same symbol,

(0.6) z(X), X €L,
on the linear space

L=L"—-L"
consisting of all the differences

X:Xl—XQ, Xl,XQELJr.



This extension z(X), X € L, is defined by

(0.7) 2(X) = 2(X;y) — z(Xy).
With respect to the above extension we note that, in a market model where short-
selling is available, the negative value x = —|z| actually indicates a loan of price

Returning to the representation (0.1) of the price operator x, we stress that the
“true” probability P° for the future events of the market is unknown in practice.
Hence, in modeling the prices using the probability space

(Q7 Q'l’ P)’

we meet the problem of analysing the underlying applied probability measure P(A),
A € 2, in relation to some probability measure P°(A), A € 2, associated with the
market prices through the representation (0.1). For a variety of market models, the
very existence of an equivalent probability measure P°:

(0.8) P’~ P

is the subject of various versions of the “fundamental theorem of asset pricing” - cf.
[2], [9], for example. The probability measure P° is usually called risk-neutral or
martingale measure.

If we think of P° as the unknown true probability measure, then it is preferable
to use in the practice a probability measure P which is somehow “close” to P°. For
example, P can be chosen such that there exists a risk-neutral probability measure
P° with density

(0.9) flw) = %, w e N,

laying in some pre-considered upper and lower bounds M and m:
(0.10) 0O<m< f<M< .

See also [8], for example.

With the above motivation, we derive a series of results for ‘B-homogeneous
monotone linear operators in a separable L,-space

L, := L,(2,2, P), 1 <p< o0,
of the 2A-measurable random variables X = X (w), w € Q, with norm
IXII = (BIX[")Y?, X €Ly,

The notion of B-homogeneous - cf. (0.4) is related to the o-algebra 2B which is an
arbitrary sub-o-algebra of 2, i.e. B C 2.



The separable space L, = L, (2,2, P) is considered as a lattice, where the relation
“<” means the standard point-wise relation “< a.e.”. For the study of general
lattices we refer to [11]. In the lattice framework, we also use the stronger relation
“<” which means that, in addition to “<”, the strict point-wise relation “<” holds
on some sub-set of €2 of non-zero probability measure.

The representation of type (0.1) for the operator z defines its B-homogeneous
monotone linear extension via the right-hand side conditional expectation with re-
spect to PY.

Dealing with X € L,, we focus on the probability measure P° which is regular
in the sense that the conditional expectation

(0.11) E°(X/%B), X € L,
is well defined for all X € L, and represents the L,-space elements
E°(X/B) € L,

Accordingly, the very existence of P° with certain required properties is analysed
though the study of the corresponding B-homogeneous monotone linear extension

(X)), X € Ly,
of the operator z, initially defined on some convex sub-cone LT C L;, with
L;:{XEL,,: X >0}

or on some linear sub-space L C L, in L, = L,(Q, A, P).

The extensions of linear operators/functionals are an important object of study.
In functional analysis, classical examples are the Hahn-Banach extension theorem
and its monotone versions. For these and related topics we refer to [7], [10], and [11],
where, in particular, the following comments can be found (cf. [7], p. 72): “The
Hahn—Banach theorem is certainly one of the most fundamental results in modern
analysis, it is one of the best investigated individual theorems and the literature
about it covers thousands of pages. [...] It has been proved and reformulated count-
less times, and yet there is still demand for new versions which allow more effective
applications than before. And surprisingly, new and better versions are still found”.

In the present paper we suggest several new versions of extension theorems.
Among them we also treat the problem of the extension of a B-homogeneous oper-
ator in a way that preserves B-homogeneity.

The main results on the linear operators extension involve majorants
M(X), X € Ly,
which are themselves operators such that

(0.12) M(X) = M(|X|) >0



and, moreover, such that

(0.13) M(\X) = AM(X)

for any constant A > 0 and

(0.14) M(X; + X3) < M(Xy) + M(X5)

for any X7, X5 > 0. We shortly refer to this type of operators as sub-linear operators.
The monotone sub-linear operator M(X), X € L,, is characterized, in addition
to (0.12)-(0.14), by

(0.15) M(X)<M®Y), 0<X<Y.

Theorem 0.1. Any monotone sub-linear operator M(X), X € L,, is bounded
(continuous), i.e.

(0.16) MO < ClIX], X €L,

for some constant C' < <.

Proof. If the boundness (0.16) does not hold true, then there would be X, with
| X, =1 (n=1,2,...), such that

n?[M(Xn)| — 00, n— oo

Then for -
X=> n?X,>0

n=1

in L,, this would imply that
M(X)> M(n *X,)=n*M(X,) >0

and that
M) = 0| M(Xy)[| — 00, 1 — o,
which is absurd since M(X) € L,. O

Corollary 0.1. Any monotone linear operator x(X), X € Ly, is bounded (contin-
uous).

Proof. The monotone sub-linear operator
M(X) :=z(|X]), X € Ly,
is bounded and it is a majorant, i.e.

[z(X)| < M(X), X €L,



for the considered operator x. In fact it is
La(X) = 2(£X) < 2(|X])
for +X < |X|. Hence,
[e(X) < [MX)| < ClIX], X €L,

By this we end the proof. [

We apply these results to price modeling with respect to the problem of the
existence of the risk-neutral probability measure PY. For example, our results on
the sandwich preserving extension lead to certain criteria for the existence of P in

a pre-determined “neighbourhood” of the underlying applied probability measure P
- cf. (0.9) and (0.10).

1 Regular monotone operators.

Let L, = L,(£2,2, P) be as in Section 0. We consider an arbitrary B-homogenous
monotone linear operator x with

z(R) =1

for some B-measurable random variable R > 0 - c¢f. (0.1)-(0.4). We refer to this
operator as being regular if it is well defined on the whole space L, as

(1.1) L,5X = z(X)eL,(Q,%,P)

where B C 2 is the o-algebra involved in the definition of B-homogeneity. Cf.
(0.11).

Theorem 1.1. Any regular operator admits the representation (0.1):
z(X)=E°(R'X/B), X € Ly,

with respect to the probability measure P° such that
P = [ fop@), A,
A

where f € L,, with Ly = Ly(Q,2A, P), ¢ = p(1 —p)~" (i.e. L, is the dual space to
L,).
Proof. Thanks to Corollary 0.1, we have that the monotone linear operator x on

L, is continuous. For any arbitrary 8-measurable probability density g € L,: g > 0
a.e. and Eg =1, let us consider the well defined linear functional

(1.2) E°X = E(Rx(X)g), X €L,



which is continuous since X,, — X in L, implies that Rz(X,)g — Rx(X)g in L.
Equation (1.2) represents the expectation with respect to the probability measure

(1.3) P°(A) := E°14, Ae,
defined by (1.2) (14 being the indicator of the event A). We remark that
E°1 = E(Rz(1)g) =1,

for the B-homogeneous operator z(X), X € L,, with

(by the choice of R). Moreover we have that
E°(15[Rz(X)]) = E(Rz[1pRz(X)]g) = E(Rz(1pX)g) = E°(15X),
for any B € ‘B, since
z(1pRz(X)) = z(z(15X)R) = z(15X),
R being B-measurable. Thus
(1.4) Rz(X) = E°(X/®B), X € L.

This implies that the representation (0.1) holds true with respect to P°.
Taking the known representation of linear continuous functionals on an L,-space
into account, we have that

(1.5) E'X = B(Xf), X €L,

for f € L,, L, being the dual space to L, (i.e. ¢ =p(p —1)7'). Here f represents
the density of P° with respect to P:

PO(A) = Bl,f = / F@)P(dw), AcaL

This completes the proof. [

We remark that the 8-measurable probability density g: g > 0 a.e., chosen in
(1.2) is related to f as

(1.6) 9= E(f/B),

since for all B-measurable variables X in the L,-space we have that

E(Xf) = E(Rz(X)g) = E(Xz(R)g) = E(Xg)



by using (1.5). Thus, considering P° and P just on the o-algebra B C 2, we have

g(w) = Z)(gj)), w € Q,

as the corresponding density of P? with respect to P:
(1.7) PY(B) = / g(w)P(dw), BeB.
B

Then as a continuation of Theorem 1.1, we have the following result.

Theorem 1.2. A reqular operator admits the representation (0.1) in the following
equivalent form.:

(1.8) 2(X) = E(R*lx g/%), X €L,

Proof. The equalities

E°(13X) = E(13Xf) = E(pE(X f/B))

1 . 1
- E(lB[E(Xf/%) g]g) —F (1B[E(Xf/%) ;D’ Be®,
show that
E°(X/B) = E(Xf/B) ;, X € L,

And, since the product
1
E(Xf/B) - i E°(X/B) = Rz(X) € Ly,
is an element of L,, then we have that
1 f

This leads to formula (1.8). O

2 Holder equality.

Let us simplify formula (1.8) by writing “f” instead of “R~' f/g”, so that (1.8)
becomes

(2.1) 2(X)=E(Xf/B), XeL, (1<p<o).



Theorem 2.1. The linear operator of the form (2.1) is well defined on the whole
space L,, where it is bounded (continuous), if and only if the factor f belongs to the
dual space Ly, ¢ =p(1 —p)~', and

essup E(|f|?/B) < oc.

Remark. In fact the following Hélder equality holds true:

essup [E(|f]/B)]"", p>1,

p1L/p—
(2.2) sup [E|E(Xf/B)P] —{ limg oo essup [E(|f]98)]¢ = essup |f], p = 1.

[X1<1

Cf. [3]. In relation to the equality (2.2) we recall the (conditional) Hélder inequality:

Q=

(2:3) E(|Xf|/B) < [E(X|"/B)]?[E|f|!/B)]s.

(see, e.g., [6]). Relations (2.2) and (2.3) together justify the following property of
operators of the form (2.1)

(2:4) [2(X)| < CIE(IX]/B)]F, X €Ly,
where the minimal constant C' < oo for which (2.4) holds is the operator norm

(2.5) 2]l = sup [|[E(Xf/B)].

X1<1

Note that in the case where 9B is the trivial o-algebra, an operator of type (2.1) is
a linear functional on L, with the properties (2.2)-(2.4) having

sup |E(Xf)| = [E(|f|9)]s.

X<t

Proof of Theorem 2.1. For a linear continuous operator z(X), X € L,, in the
L,-space of the form (2.1), the expectation

E(z(X)) = E(E(X[/B)) = E(X[), XeL,
represents a linear continuous functional with its representative
fekL,

in the dual L, -space, ¢ = p(p — 1)~ . Thus we proceed with arguments that are
quite similar to those usually applied to linear continuous functionals - cf. [11], for
example. Considering the Hélder’s inequality (2.3) for 1 < p < oo, let us set

B =

¢ = [E(XI7/B)F, ¢ =[E(f|"/B).



Although the proof of (2.3) is known, we go here shortly through it in order to get
to our Holder equality (2.2). We see that

Xf=0, E(X[f|/B)=0
on the sub-set {£p = 0} C Q belonging to B. Hence we can focus on
= {¢¢ > 0}.

According to the known elementary inequality

(2.6) aB< P+ 1 (@820
p q

where the equality sign holds if and only if

o’ =B  qg=plp-1)",

we get
XA _1iXP 1
o Tp & q i
on QF, setting o = X 5= | f|e. The variables on both sides are integrable on the

g’
set QO (with respect to the underlying probability measure P), since

1
gp E(|X[7/B), &E(Iflq/%)
are integrable. Hence,
E(X/I/®B)  LE(XP/®)  E(/°%B)
€ - &r 1

on the set Q. This implies the Holder inequality (2.3), where the equality sign
holds if and only if

=1

i

RN
&

for almost all w € QF - cf. (2.6). The above condition (2.7) can be equivalently
characterized as follows:

(2.7)

(2.8) IX|=a|f|7Tae. or |f] =bX|TTae.

for some B-measurable variables a and b on the set QF. For this we just note that
condition (2.8) implies

| X" =a?[f]?, & =a"yf

10



from which we conclude that

X[P _ arlfle _ |fe

é‘p apgpq gpq

using (2.7). Now, taking

Y _ fat for f >0
L At for f <0,

into account, we have that
1
X| = |fl75
forq—1=(p—1)"} and
[ X[P=[f]"=|Xf|=XTF.
So, the equality in (2.3) holds in this case:
E(X[f/B)=[E(X["/B)]?[E(|f]/B)].

The multiplication by a $B-measurable function £ '1p with & = [E(| X P/ %)]% and
B C Q", B €, gives

E(§1Bf/%) - [E(|)§—(|p13/%)]l/q — 1z [E(|f|q/%)]”q_

Then it follows that for any arbitrary finite constant C' < Cj, with
Co := essup [E(|f[*/B)]4,
1
and B = {[E(\f|q/%)]5 > C}, we have that

p

p
3

E‘E(%lgf/%) > CPE(1p) = CPE|§1B

since 1p = E(\%lBV’/%). The above relation implies

sup ||[E(Xf/B)|=C

[XN<1

and, therefore,

sup |E(Xf/B)|| > Cy = essup[E(|f]7/B)].

Ix1<1
On the other hand, thanks to Holder inequality (2.3), we have

E(E(Xf/B)F) < E[E(X|"/B)[E(f|"/B)7] < CGEIX|?

11



which implies

sup |[E(Xf/B)| < Co.

X11<1

For 1 < p < oo, the proof is over.
It remains to consider the case p = 1. First of all we show that the limit in (2.2)
holds true. Let Cy = essup |f|, then

Co > |f| ae.
and we have
Co > [E(f"/B)) ac.
for all ¢,1 < ¢ < co. Hence,
Co > essup [E(|f]7/B)]s, and Co > Tim, o essup [E(|f|7/B)].

On the other hand, for any constant C' < Cjy, the set A = {|f| > C} is of positive
measure, i.e. P(A) > 0. Let

a=E(14/8B),
and consider the sets
B ={a>0} B, B¢ = {a = 0}.
We can see that P(B) > 0, since
0= FE(alg:) =E(E(141p:/B)) = P(AN B°)
and
P(B) > P(AnB)=P(A) > 0.

With P(B) > 0 and the point-wise convergence

lim a%(w) =1p(w), weQ,

g—o0
we have

lim P {a% > (1- 5)13} — P(B)

q—00

for any € > 0, so there is a set B. C B: P(B.) > 0, such that

> (1 —¢)lp,

e
SEE

12



with ¢ > ¢.. Consequently, for o = E(14/98) and
[fl = | f[1a = Cla,
we obtain
[B(If1/B)]+ > Cas > C(1~2)lp,
which shows that
T essup [B(|f]'/B))s > C.
for any C < Cp = essup |f|. This ends the proof of (2.2).

To conclude the proof of Theorem 2.1, it remains to show that Holder equality
holds also for p = 1. Obviously, for Cy = essup |f|, we have

E(E(Xf/B)]) < E(E(X[]/B)) < E[GE(|X]/B)] = GoE|X],
with E|X| = || X|| in the Ly-space, so

sup E|E(X[)/B| < essup [f].
I x)1<1

On the other hand, for any C' < Cj, let X = 1signf, where the set A = {|f| > C}
is of measure P(A) > 0; then

E(|E(Xf/B)]) = E(E(1alf]/B)) = CE[14] = C||X]||
Hence, for all X € Ly, we have

sup E(|E(Xf)/B])=C

Ix)<1
and therefore

sup E|E((Xf)/B)| = Co = essup |f],

[ X1<1

which ends the proof of Theorem 2.1. [

3 Majorant characterization.

According to the previous results, any 8-homogenous monotone linear operator x
on L, = L,(Q,%, P) admits a standard majorant of form

=

(3.1) M(X) = CIE(|X[P/B)l», X €L,
involving the constant C' - with the minimal constant

C ==l

13



as the operator norm - cf. (2.4). Namely, we have
(32) P < M(X),  Xel,

Since the operator x is monotone, the majorant condition (3.2) can be equivalently
given as

(3.3) z(X) < M(Y)
for X,Y € L, such that X <Y. Indeed, (3.2) implies

(X)) < M(X), (X)) <z(Y) < M(Y),
for X <Y and (3.3) with Y = | X]| justifies that

—2(X) = 2(—X) < M(Y) = M(X).

Theorem 3.1. For an arbitrary linear operator
L,5X = uz(X)eL,(Q,%,P),

and the standard magjorant of the form (3.1), the condition (3.3) implies that this
operator is monotone and B-homogenous.

Proof. For the linear operator z(X), X € L, on the linear space L, = L,(Q,2, P),
the condition (3.3) implies that

—z(X)=2(—X) < M(0)=0

for X > 0, that is 2(X) > 0. Thus the operator is monotone - cf. (0.2) and (0.3).
We recall that the considered operator x is B-homogenous, i.e.

(3.4) 2(AX) = \z(X)

for any B-measurable multiplicator A - cf. (0.4). Let us consider X > 0 and A = 1,
for B € B. According to (3.3),

with M as in (3.1) and we can see that

Hence, for the unit decomposition

1= 1
k

14



with the disjoint sets By € B: ), By = Q, (with ) meaning the disjoint union)

we obtain
D lga(X) = (Y 1p)2(X) = 2(X)
—2[(Y1m)X] = Y 2(1pX) = Y 15,2015, X)

which shows that
1Bk.’,U(1BkX) = 1Bk.’,E(X)

Therefore, (3.4) holds for X > 0 and for any simple multiplicator of the form
A= Z Clek
k

with the constant values
AMw) =cg, w € By,

on the partition sets By, € B: >, B, = Q.
Clearly, for any B-measurable multiplicator A such that AX € L,, there are appro-
priate simple A, such that

AMw) = lim A\, (w), w e Q,

n—oo

point-wise and

AX = lim )\, X

n—oo

in L,. Then, we can see that

r(AX) = lim z(\,X)

n—oo

in L,, since the monotone operator z(X), X € L,, is continuous. At the same time

lim z(\,X) = lim \,z(X) = Az(X)

n—oo n—oo

point-wise. Hence (3.4) holds true for all X > 0. Consequently it holds for all
X € L, since X = XT — X~ for

X1 :=sup(X,0), X~ :=sup(—X,0),
and
r(AX) =2(AXT) —2(0X7) = Mz(XT) — 2(X7)] = Mz(X).

This ends the proof. [J

15



Remark. The given proof holds with respect to any majorant
M(X)= M(X)) 20,  XeL,

which is B-homogenous in the sense that

(3.5) M(\X) = AM(X)

for any B-measurable multiplicator A > 0. Note that M (0) = 0.
With reference to (0.5)-(0.7) and (0.12)-(0.15), we consider the linear operator
z(X), X € L}, on the cone

Lf={XeL,: X>0},

and the monotone sub-linear majorant M(X), X € L. Then Theorem 3.1 can be
strengthened as follows.

Theorem 3.2. The majorant condition
(3.6) z(X) < M(Y)
for X,Y € L;r: X <Y, implies that the extension
(X)) =2(XT) —2(X7), X € Ly,

15 a B-homogenous monotone linear operator, which satisfies the extended majorant
condition (3.3).

Proof. For any X,Y € L,: X <Y, we have
X+ = sup(X,0) < sup(Y,0) = Y* < ||,
and
2(X) = 2(XT) - 2(X7) S 2(XF) < MXT) < MY™) < M([Y]) = M(Y).

Cf. Theorem 3.1. By this we end the proof. [

4 Monotone version of Hahn—Banach extension
theorem.

In the space L, = L,(2,, P), we consider linear operators and their majorants
having range in the sub-space L, (2,8, P) where B is an arbitrary o-algebra %8 C 2.
For a linear operator x:

L>X = z(X)eL,(Q,%8,P),

16



defined on an arbitrary linear sub-space
L CL,
let us introduce the majorant condition
(4.1) z(X) < M(Y)

for X € L, Y € L, : X <Y, which involves the monotone sub-linear operator
M(Y),YeL,(M(0)=0)-cf. (0.12)-(0.15) and (3.3).

Theorem 4.1. The linear operator z(X), X € L, admits its monotone linear
extension

L,5X = z(X)eL,(Q,%,P)

on the whole space L,, if and only if condition (4.1) holds for some monotone sub-
linear majorant. Moreover, the condition (4.1) implies the existence of the majorant
preserving extension:

(4.2) 2(X) < M(Y)

for X,)Y e L,: X <Y.

Proof. Note that the majorant condition (4.1) justifies that the initial operator z
is monotone on its initial domain L. If the operator x admits its monotone linear
extension x(X), X € L,, on the whole space L,, then the condition (4.1) holds for
the monotone sub-linear majorant

M(Y):=a(|Y]), Y €L,

For any monotone sub-linear majorant, with (4.1) in hands, we can proceed as
in the sequel in order to get the required extension z(X), X € L.
Let us look for a one-step extension

(4.3) 2(=X +AY?) = —(X) + A\’
on the linear sub-space of all elements
~X +Y°, X eL,)eR,

with an arbitrary element Y° € L,: Y ¢ L. Since we deal with a separable L,-
space, we can apply the least upper bound

a:= sup [—DC(X/) - M(Y/)]

_X/_Y/Syo
and the largest lower bound

b:= inf [o(X")+ M(Y")]

X//+Y//2Yo
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for X', X" € L and Y',Y" € L,. We remark that
a <b,
since
X' Y <Y < X"4+Y", X' - X"<Y' +Y",
and therefore
— (X)) —2(X") =2(- X' - X") < MY'+Y") < MY')+ MY")
which shows that
—z(X) = MY'") <z(X")+ MY")

in the definitions of @ and b. Let us consider any B-measurable element 2° € L,
such that

(4.4) a<a2®<b.
We shall show that
(=X +AY?) < M(Y), ~X 4+ Y <Y,

for the extension (4.3). Indeed, for A = 0, the above majorant condition holds. In
the case where A > 0 and

X - \Y'<y, -

we have

X Y
< —a(X) = A| —o(5) - M(3)] = M)
In the case where A > 0 and
—X + Y% <Y, §+§2Yo

we have
—2(X) + Az2? < —2(X) + b
Y

—2(X) + A[xé) +M(5)] = M),

Hence, M(Y), Y € L,, is a majorant both for the extension as well as for the initial
operator z(X), X € L - cf. (4.1).
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In a similar way, we can determine the next one-step extension, and going on,
with a countable number of steps, we are getting the majorant preserving extension
z(X), X € L° on a linear space LY C L, dense in Ly, i.e.

z(X) < M(Y)
for X € LYY € L,; X <Y. Consequently, we have
(X)) < M(X), XelL’

and this shows that the operator z(X), X € L?, is continuous due to the continuity
of the monotone majorant M. Cf. Theorem 0.1. Finally, by the continuity of x
and the density of L°, we extend the linear operator z(X), X € L° to the whole
L,-space.

Let us show that this final extension z(X), X € L,, satisfies the majorant
condition (4.2). For X <Y, considering

X = lim X,

n—oo

as the limit of X, € L° both in L, and point-wise for almost all w € Q, we can see
that the preserved majorant condition

z(X,) < M(Y,), Y, = sup(X,.Y),
implies

z(X) = lim z(X,) < lim M(Y,) = M(Y)

n—oo n—oo

for Y =lim,_. Y, in L,. We remark that
Y, = anAn -+ YlA%

where lim,, oo Xpla, = 0, lim, oo Y14 =Y for the w-sets A, = {X,, > Y’} with
lim, .o P(A,) = 0. As it was shown at the begining of the proof of Theorem 3.1,
the majorant condition (4.2) justifies that the extension x(X), X € L,, is monotone.
This ends the proof. [

Note, that the majorant condition (4.2) for the strictly monotone operator z(X),
X € L,, implies that

(4.5) mf[M(Y) — 2(X)] > 0

for X, Y € L, such that Y — X > Y?, for any arbitrary fixed element Y° > 0. In
fact we have

MY) —2(X) 2 2(Y) - 2(X) = 2(Y - X) > 2(Y”)
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with
(4.6) inf[M(Y) — z(X)] = z(Y?) > 0.
Given the above observation we can strethen Theorem 4.1 as follows.

Theorem 4.2. The linear operator z(X), X € L, admils a strictly monotone
extension x(X), X € Ly, if and only if

(4.7) inf[M(Y) —z(X)] >0
for X € L, Y € L, such that Y — X > Y, whatever Y° > 0 be.

Proof. According to (4.7), for a given Y, there is a certain monotone linear
extension zyo(X), X € Ly:

Tyo(Y?) > 0,

determined at the first step of extension as

l’yO(YO) = b
= i (= X) 4+ M)
= inf [M(Y) - 2(X)] > 0

- cf. (4.4). We note that this step is also applicable for Y° € L. Considering the
family of all extensions of the above form zyo(X), X € L,, we can see that these
operators are uniformly bounded, having their norm bounded by some constant C,
i.e.

||zyol| < C.
Indeed it is
zyo(X)[| < [IM(X)]| < CIX|l, X €Ly,
for
|zyo(X)| < M(X), X € L,.

The family of all uniformly bounded linear operators can be treated as a separable
metric space, with the metric

=1
Zk_ |2 (Xk) — 2" (Xp)ll,
k=1

involving a complete system Xy, k € N, of elements X, € L, ||Xx|| = 1. The
convergence with respect to the above metric, i.e. pu(z’,2”) — 0, is equivalent to the
point-wise convergence

||2'(X) —2"(X)|| — 0, for all X € L,.
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Hence, we can select certain operators
Tn(X) 1= 2y0(X), XeL, (neN)

which are dense in the set of all zyo(X), X € L,, and therefore, for whatever fixed
element Y > 0,

Ty, (Y0) — 2y0(Y?) > 0, m — 0,

for some subsequence n,,, m € N. And here, for Y° > 0 and z,,, (V%) > 0, it is
Tp,, (Y?) > 0 for all the sufficiently large n,,. Accordingly, we can determine the
strictly monotone extension by

(4.8) z(X) = icnxn(X), X e L,

with strictly positive constant coefficients ¢, > 0 such that

i ¢, = 1.
n=1

Whatever Y? > ( be, for the corresponding elements z,, (V") which are close enough
to the element zyo(Y") > 0 in L,, we have that z,,, (Y°) > 0 as well, thus we obtain

= Z cntn(Y?) >0
n=1

Note that the monotone linear extension (4.7) preserves the majorant:

|<ch|xn )| < M(X)

- cf. (3.2) and (3.3). By this, we end the proof. [
For a version of these results with respect to monotone linear operators on Banach
lattices see also [5].

5 Some versions of Konig sandwich theorem.

As in Section 4, we consider operators in the L,-space with range in the sub-space
Ly(§2,%, P). Let M be a monotone sub-linear operator M(X), X € L}, and let m
be a monotone super-linear operator m(X), X € L;, ie.

m(AX) = dm(X)
for any constant A > 0 and

m(X; + X3) > m(Xy) + m(Xy),
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on the cone
L;:{XGLI,: XEO}.

We consider M and m as the corresponding majorant and minorant for a monotone
linear operator z(X), X € L}, such that

(5.1) m(X) < z(X) < M(X), XelLf.
For the elements

Z+X"'<X'+Y
of the cone L, the condition (5.1) implies

m(Z) + z(X")

VAN

(7)) + z(X")
(Z+X")

(X' +Y)
(
(

T

VAN

= T

X') 4 z(Y)
X+ M),

VAN

x
and, in fact, the condition (5.1) is equivalent to the following sandwich relationship
(5.2) m(Z)+z(X") <z(X")+ M(Y)
for all L}-elements such that

Z+X"<X'+Y.

Having this in mind, for the monotone linear operator x(X), X € L™, defined
on some convex sub-cone

LT CL)
- cf. (0.5), we introduce the corresponding sandwich condition (5.2) as
(5.3) m(Z)+z(X") <z(X")+ M(Y)
for all X', X" € L* and Y, Z € L such that

7+ X"< X' +Y.

Theorem 5.1. The linear operator x(X), X € L*, admits a monotone linear
extension x(X), X € L, if and only if the sandwhich condition (5.3) holds for
some majorant and minorant. Moreover, (5.3) implies the existence of the sandwich
preserving extension x(X), X € L, which satisfies (5.2) as the extended sandwich.
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Proof. For this, we refer to [1] where the known Kénig theorem - cf. [7], is re-proven
in the operator case. Here we only recall the key of the proof. Let us consider the
new majorant

M(Y) = inf[z(X") + M(Y")]
defined by inf over X’ € L* and Y’ € L} such that
X +Y' >Y.

For the monotone linear operator z(X), X € L™, the operator ]/\\/[/(Y), Y € L;, is
sub-linear and monotone. Obviously,

(5.4) M(Y) < M(Y), YelL,
and
M(X)<z(X), XelL'
On the other hand, condition (5.3) says that
z(X) <z(X')+ M(Y"), X <X +Y'
and this implies that

M(X)>z(X), XelLt.

Hence, we have

(5.5) M(X) =z(X), X el
Also, let us take the new minorant

m(Z) = sup[m(Z’) + =(X")]
into account defined by sup over X’ € L™ and Z’ € L} such that

X'+72 <7Z

The operator m(Z), Z € L;’ , is a monotone super-linear operator. Obviously,
(5.6) m(Z) > m(Z), Z € L;,
and

m(X) > z(X), XelLt.
On the other hand, condition (5.3) says that

m(Z') + z(X') < z(X), 7'+ X' < X,
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and this implies

Hence, we have
(5.7) m(X) = z(X), XelLt.

Now, we have just to apply the following version of Konig sandwich theorem: there

is a monotone linear operator x(X), X € L;, which satisfies the sandwich condition

m(X) <z(X)<M(X), XelL

Thanks to (5.5)-(5.7), the above operator represents a monotone linear extension of
the initial operator z(X), X € L*, and here according to (5.4)-(5.6), we have

m(X) < z(X) < M(X), XelL,
- cf.(5.1) and (5.2). O

Corollary 5.1. The strictly monotone linear extension x(X), = € L;’, ezists if and

only if the sandwich condition (5.3) holds for some strictly positive minorant:

m(X) >0, X > 0.

We remind that the linear operator z(X), X € L;, admits its unique linear
extension on the whole space L, = L,($2, 2, P) via the formula

(5.8) (X)) =2(X") —2(X")

with
Xt =sup(X,0), X~ =sup(—X,0).

Ct. (0.5)- (0.7).

Theorem 5.2. The sandwich condition (5.3) with the B-homogeneous majorant
Justifies the existence of the B-homogeneous monotone linear extension x(X), X €
L,. Moreover the extension is of the form (2.1):

(5.9) x(X)=E(Xf/B), X e L;f.
with the factor f such that

(5.10) 0<m< f<M,

for the standard majorant and minorant:

(5.11) M(X) = E(XM/B), m(X)=E(Xm/¥), XecL
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defined by means of the corresponding elements m > 0 and M :

(5.12) essup [E(Mq/%)]% < o0.

Proof. We refer to Theorem 1.1, (2.2)-(2.3) and Theorem 3.2. Then it only remains
to note that the sandwich condition (5.1) is of the form:

E(Xm/®B) < E(Xf/B)< E(XM/B), XeL.
So it is
E(Xm) < E(Xf)<E(XM), XelLl,

and this implies condition (5.10). O
Obviously, the sandwich condition (5.3) with the standard majorant and mino-

rant of the type (5.10) is necessary for the existence of the monotone linear extension
z(X), X € L, of the form (2.1).

Corollary 5.2. The strictly monotone linear extension x(X), X € L, of the form
(2.1), exists if and only if the sandwich condition (5.3) holds for some standard

b/

majorant M and minorant m with

m>0 a.e..

6 Application to market prices modeling.

The following results link to the extension theorems of Section 4 and Section 5
with the prices modeling described in Section 0 (cf. (0.1)-(0.11)) for a multi period
market. In this case the o-algebra 8 is given by

B =2A; .
It consists of events preceding the time-period ¢:
t=1,...,T (TeN, T>1).
The probability space is (€2, 2(, P) with
A =Ap

and Ay is the trivial o-algebra.

Theorem 6.1. The reqular risk-neutral probability measure

P~ P
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exists if and only if, for every time-period t, the corresponding price operator (0.5):
z(X), X € L*, admits its reqular extension z(X), X € Ly, as a B-homogeneous
strictly monotone linear operator.

Proof. The representation (0.1) with respect to the equivalent probability measure
PY ~ P defines the strictly monotone extension z(X), X € L,. On the other hand,
having this type of regular extension z(X), X € L,, in hands, we can define the
corresponding probability measure P° in a sequence of steps as follows - cf. (1.1)-
(1.8). For t = 1, we define P° on the o-algebra 2l; as

(6.1) P°(A) := E(Rx(1y)), Aey,
getting P°(A) > 0 for all A € 2;, P(A) > 0, since Rz(14) > 0. And for every
following step ¢, having

(6.2) PO(A) /A foa(@)P(de),  Ae s,

on the o-algebra 2A;_; = B with the probability density
g=fi1>0 ae. (Eg=1),

we define

(6.3) PY(A) := E(Rx(1,)g), Aei,

on the o-algebra 2; - cf. (1.2)-(1.5). Clearly, formula (6.3) defines the eztension of
PY(A), A € ;_1, to the o-algebra 2, since (6.3) represents (6.2) for A € A;_1:
B(Ra(14)g) = E(Laa(R)g) = B(Lag).

And having the (6.3) density g > 0 a.e., we preserve the equivalence P° ~ P. In fact
for, PY(A) > 0 for all A € 2;, we have P(A) > 0, since Rz(14)g > 0. Clearly, for
the final t = T, we are getting the reqular risk-neutral probability measure P° ~ P
on the g-algebra A7 = 2. [

In addition, the following characterization of
(6.4) PO(A) = / F)P(dw), Ae,
A

can be given. Cf. also [4].

Theorem 6.2. In the well defined conditional expectations

(6.5) E°(X/%_1) = E(Xi/mt_l), X € Ly(Q,2, P)
t—1

the conditional probability densities

e

(6.6) P

f0:17 ft:E(f/Q[t)a tzl:"'aTa
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belong to L,-space, ¢ = p(1 —p)~ ', with
ft 1a
(6.7) essup | |——|"/A1 | < 0.
Ji-1

Proof. The proof just follows from (2.1)-(2.3). O

Thinking of PY as the “true” probability measure for the market future events,
it seems preferable to be sure that P is somehow close to the applied probability
measure P. In particular, the proximity of P to P can be valuated through the
conditional probability densities (6.6). Namely, P? is closer to P, if these densities
are closer to 1. In this line, for every time-period ¢, considering the corresponding
risk less return R and price operator x(X), X € LT, on the convex cone

LT C L;(Q,Qlt, P),
we have the following result.
Theorem 6.3. For the prices ©(X), X € L, conditioned by the sandwich
(6.8) ER'Zm/A 1)+ 2(X") <z(X')+ E(R'Y M/ 1)
with X', X" € L* and Y, Z € L} (2,2, P) such that
Z+X"<X'+Y,
the A;-measurable elements M;, m; € L, provide the lower and upper bounds:

(69) mtSLSMt, (t:]_,,T)

t—1
Proof. We just refer to Theorem 5.2. [

We note that through the bounds (6.9), the probability density (6.4) having the
form

oy
6.10 - _Jt
(6.10) f H i
can be evaluated as well:
T T
m:Hmt<f§HMt:M
t=1 t=1

- cf. (0.10).
The particular case of lower and upper bounds for the factor f given by positive
constants is considered in [1].
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