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Summaries

Summary

The large-scale structure of the cosmos holds much information about the
components and laws of nature that govern our Universe. As it stands, the
Λ-cold-dark matter (ΛCDM) model, where the Universe contains dark energy,
dark matter, and ordinary matter, and gravity is described by the theory of
general relativity, recreates our cosmological observations with high accuracy
when implemented in simulations. Although this indicates that the model fits
reality well, the recent increase in observational data has revealed some parameter
tensions and has also yet to uncover the mysteries of the dark sector. In light of
this, extending our simulations to include more details has become important,
to better gauge the agreement between the observed Universe and the simulated
one. In addition, exploring models outside of the standard model of the Universe,
to offer alternatives to the dark sector, continues to be meaningful, so long as
its nature remains elusive. In this thesis work, I have investigated a small, yet
connected, portion of both categories.

Neutrino particles were originally thought to be massless, but have since
the change of the millennium been known to harbour a small, non-zero, mass.
However, neutrinos were relativistic particles early on in the history of the
Universe, and became non-relativistic sometime in the matter-dominated era,
after recombination. Because of this behaviour, neutrinos contribute to structure
formation in a unique way. Below a certain scale, depending on the neutrino
masses, the neutrino particles cannot be gravitationally bound and will free-
stream out of gravitational potential wells. This results in a suppression of
structure growth on non-linear scales. The amount of suppression depends on
the neutrino masses, which up to the present time are unknown. Particle
physics experiments provide upper and lower mass bounds, but they are
not yet determined exactly. Cosmological observations, due to the neutrino
impact on structure formation, can be used to put further constraints on the
sum of the neutrino masses, however, the bound will always depend on the
chosen cosmological model. Neutrinos have often been ignored in cosmological
simulations due to their low total mass and therefore small impact. However,
as the precision of observations continues to improve, the suppression in the
matter power spectrum due to massive neutrinos can be measured directly
within expected error estimates. This makes it important to include neutrinos
in our numerical simulations, to capture their effect on small-scale structures.
A part of this thesis work thus included incorporating massive neutrinos into
the well-known RAMSES cosmological N -body simulation, resulting in the code
ANUBIS. This was compared to other codes including the impact of massive
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neutrinos in a Euclid Consortium code comparison project, making up the first
paper of this thesis and contributing to the goal of adding more details to our
ΛCDM simulations.

It is possible that not everything can be understood by increasing our ΛCDM
simulation details. Although the ΛCDM model and general relativity seem to
explain our Universe well, there is still a possibility that this is not our final
Universe model. One popular beyond-ΛCDM model category is f(R)-modified
gravity. Here, the framework of general relativity is extended by a function of the
Ricci scalar in the gravitational action, which can be constructed to produce an
expansion history similar to that of ΛCDM. In these models, the f(R) extension
can take the role of the cosmological constant, Λ, eliminating the need for
dark energy through a modification of gravity. Interestingly, this leads to an
enhancement of gravity, which increases clustering on scales similar to the ones
suppressed by massive neutrinos. This means that the f(R)-modified gravity
theories and massive neutrinos have degenerate observables, and therefore that
the sum of the neutrino masses and the parameter determining the strength of
the modification to gravity depend on each other. Because of this, it is therefore
important to include massive neutrinos in f(R) simulations when trying to put
constraints on the modifications to gravity allowed by observations, and ideally,
we should find a way to break this degeneracy. As a part of this thesis work,
we have therefore merged the ANUBIS code with an already existing modified
gravity RAMSES-based code, ISIS, creating the code ANUBISIS, which includes
both massive neutrinos and modified gravity.

Investigating cosmologies with massive neutrinos and f(R)-modified gravity
theories, both simultaneously and individually, is important in order to
disentangle the effects of the two from each other. One promising avenue for
doing so is cosmic voids, which are large underdense regions in the cosmic web,
sensitive to both massive neutrinos and modified gravity. During this thesis work,
for the second paper, we used simulations from ANUBISIS to investigate how
well voids can extract cosmological information in the settings of f(R) gravity,
massive neutrinos, and their combination. We did this in order to understand
if the current void modelling techniques are accurate enough to separate the
various scenarios, which is important if we want to use voids to break the
neutrino-f(R) degeneracy. This required some specific information, like halo and
void catalogues, which is why it was convenient to work with detailed N -body
simulations where this can be extracted. Sometimes, however, we are primarily
interested in some of the main clustering statistics of various cosmologies, like the
matter power spectrum. In these cases, it can be inconvenient to perform time
and resource-consuming full N -body simulations, and luckily, emulators already
exist for several cosmological models. The emulators themselves, however, are
typically created from a large set of detailed simulations and are therefore not
easily extended to new cosmologies. For the third paper, also in the light of
exploring modified gravity in comparison to ΛCDM, we therefore developed a
full pipeline for creating a power spectrum ratio emulator for beyond-ΛCDM
versus ΛCDM models, functioning entirely without the need for supercomputers.
It uses approximate methods to perform a suite of simulations, and machine
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learning to construct the emulator through neural network training. We named
the pipeline Sesame, as it opens up the opportunity for anyone to create an
emulator without the time and resources required to run full, detailed N -body
simulations.

All in all, this thesis work is an exploration of how extensions to the ΛCDM
model affect large-scale structure probes, like the matter power spectrum and the
void-galaxy cross-correlation function, and sheds light on why it is important to
investigate and disentangle degenerate components for future precision cosmology.
Left behind are the N -body codes ANUBIS and ANUBISIS, and the emulator
pipeline, Sesame, allowing further exploration of beyond-ΛCDM models in the
time to come.
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Sammendrag

Den kosmiske storskalastrukturen inneholder mye informasjon om komponentene
og naturlovene som styrer universet. Λ-kald-mørk-materie-modellen (Λ-cold-
dark-matter; ΛCDM), hvor universet inneholder mørk energi, mørk materie og
vanlig materie, og tyngdekraften er beskrevet av den generelle relativitetsteorien,
kan gjenskape observasjonene våre svært nøyaktig når den implementeres i
kosmologiske simuleringer. Selv om dette tyder på at modellen beskriver
virkeligheten godt, har den nylige økningen i mengden observasjonell data avslørt
gnisninger for noen kosmologiske parameterverdier. I tillegg har vi fremdeles
ikke løst mysteriet rundt mørk materie og mørk energi. I lys av dette har
det blitt viktig å utvide simuleringene våre slik at de inneholder flere detaljer,
for å bedre kunne vurdere hvor godt det virkelige og det simulerte universet
stemmer overens. Så lenge mørk materie og mørk energi forblir ukjente, er det i
tillegg også interessant å undersøke alternative universmodeller, som har andre
forklaringer på de mørke komponentene av universet. I denne avhandlingen har
jeg undersøkt et lite, men overlappende, område av begge disse kategoriene.

Originalt trodde man at nøytrinopartikler var masseløse. Senere, rundt år
2000, ble det oppdaget at nøytrinoer faktisk har en liten, ikke-neglisjerbar, masse.
Nøytrinoer var likevel relativistiske partikler i det tidlige universet, og ble først
ikke-relativistiske i den materiedominerte tidsepoken, etter at rekombinasjon
hadde funnet sted. På grunn av denne oppførselen, bidrar nøytrinoer til
strukturdannelse på en unik måte. Under en viss størrelsesorden, avhengig av de
ulike nøytrinomassene, kan ikke nøytrinopartiklene bli gravitasjonelt bundet og
vil strømme fritt ut av gravitasjonsbrønner. Dette fører til en undertrykkelse av
strukturvekst for ikke-lineære størrelsesordener. Hvor mye veksten blir undertrykt
avhenger av nøytrinomassene, som så langt er ukjente. Eksperimenter innen
partikkelfysikk har funnet nedre og øvre grenser på nøytrinomassene, men de er
fremdeles ikke nøyaktig fastslått. Kosmologiske observasjoner kan også bli brukt
til å sette grenser på summen av nøytrinomassene, på grunn av måten nøytrinoene
påvirker strukturformasjon på, men vil alltid avhenge av den valgte kosmologiske
modellen. Nøytrinoer har ofte blitt ignorert i kosmologiske simuleringer på grunn
av partiklenes lave masse, og derav beskjedne påvirkning. Nå som detaljnivået i
kosmologiske observasjoner har økt, kan nøytrinoenes påvirkning på de vanligste
statistiske observablene måles direkte innenfor forventede feilmarginer. På grunn
av dette er det nå viktig å inkludere massive nøytrinoer i numeriske simuleringer,
for å få med deres undertrykkelse av strukturformasjon for små størrelsesordener.
Som en del av dette Ph.D.-arbeidet har vi derfor inkludert massive nøytrinoer i
den kjente N -legeme-koden RAMSES. Dette resulterte i koden ANUBIS, som ble
sammenlignet med andre lignende koder i et Euclid-konsortium-prosjekt. Dette
utgjør den første artikkelen i avhandlingen, og bidrar til målet om å inkludere
flere detaljer i allerede eksisterende ΛCDM-simuleringer.

Selv om ΛCDM-modellen og generell relativitetsteori ser ut til å beskrive
universet godt, er det fremdeles en mulighet for at dette ikke er den endelige
måten å beskrive universet vårt på. Dette betyr at inkludering av flere detaljer i
ΛCDM-simuleringer ikke nødvendigvis kan hjelpe oss å beskrive alle observasjoner.
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En populær alternativ universmodell er f(R)-modifisert tyngdekraft, hvor
generell-relativitets-rammeverket blir utvidet med en funksjon av Ricci-skalaren
i gravitasjonsvirkningen. Denne funksjonen kan bli laget slik at det oppnås en
univershistorie som ligner den i ΛCDM, og f(R) kan til og med ta rollen til
den kosmologiske konstanten, Λ, slik at effekten av mørk energi oppnås gjennom
modifisert tyngdekraft. Dette fører til en forsterkning av tyngdekraften, som
igjen øker strukturformasjon på størrelsesordener lignende de som blir undertrykt
av massive nøytrinoer. Dette betyr at f(R)-teorier og massive nøytrinopartikler
har degenererte observabler, og dermed at summen av nøytrinomassene og
parameteren som beskriver styrken av den modifiserte tyngdekraften avhenger av
hverandre. På grunn av dette er det derfor viktig å inkludere massive nøytrinoer
i f(R)-simuleringer når vi prøver å estimere den tillatte mengden modifisert
tyngdekraft basert på observasjoner. Ideelt sett ønsker vi å finne en måte å bryte
denne degenerasjonen på. Som en del av dette Ph.D.-arbeidet har vi derfor slått
sammen ANUBIS-koden vår med en allerede eksisterende RAMSES-basert kode,
ISIS, som inneholder modifisert tyngdekraft. Dette resulterte i koden ANUBISIS,
som da inneholder både massive nøytrinoer og modifisert tyngdekraft.

Det er viktig å undersøke kosmologier med massive nøytrinoer og f(R)-
modifisert tyngdekraft både samtidig og individuelt for å prøve å skille deres
påvirkning på strukturdannelse fra hverandre. En lovende måte å gjøre
dette på er gjennom å studere kosmiske hulrom. Dette er store områder i
den kosmiske nettverkstrukturen som har under gjennomsnittlig tetthet og er
sensitive til både massive nøytrinoer og modifisert tyngdekraft. For å studere
dette videre brukte vi simuleringer fra ANUBISIS for å undersøke hvor godt
den nåværende hulromsmodelleringen kan hente ut kosmologisk informasjon
fra ulike settinger med f(R)-tyngdekraft, massive nøytrinoer og begge deler
samtidig. Dette gjorde vi for å finne ut av om den nåværende modelleringen
er nøyaktig nok til å skille de ulike scenarioene fra hverandre. Undersøkelsen
resulterte i den andre artikkelen som er en del av denne avhandlingen, og er
en viktig del av prosessen for å eventuelt kunne bruke kosmiske hulrom til
å bryte degenerasjonen mellom modifisert tyngdekraft og massive nøytrinoer.
Dette krevde spesifik informasjon, som for eksempel kataloger av mørk materie
haloer og kosmiske hulrom, som gjorde det beleilig å jobbe med detaljerte N -
legeme-simuleringer hvor man kan hente ut denne dataen. I andre situasjoner,
derimot, er man ofte bare interessert i noen av hovedobservablene for ulike
kosmologier, som for eksempel effekspektrumet. I disse tilfellene er det ikke
lengre nyttig å utføre tid- og ressurskrevende simuleringer. Heldigvis finnes det
emulatorer for disse observablene for ulike kosmologiske modeller, men disse
krever likevel ofte detaljerte simuleringer for å konstrueres og kan ikke lett
utvides til nye kosmologiske modeller. På grunn av dette, og for å videre utforske
alternative universmodeller, utviklet vi en pipeline for å lage en emulator som
estimerer forholdet mellom effekspektrumet for en alternativ universmodell og
ΛCDM-modellen, helt uten bruken av superdatamaskiner. Pipelinen bruker
tilnærmingsmetoder til å utføre en rekke simuleringer, og maskinlæring, i form at
et nevralt nettverk, til å lage emulatoren. Dette resulterte i den tredje artikkelen
i denne Ph.D.-avhandlingen og selve pipelinen, Sesame, navngitt for mulighetene
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den åpner opp for andre til å lage sin egen emulator uten tilgang til store
beregningsressurser.

Alt i alt er denne avhandlingen en utforskning av utvidelser av ΛCDM-
modellen og hvordan disse påvirker vanlige statistiske observabler. I tillegg
belyser den temaet om degenererte parametre og hvorfor det er viktig å skille
disse fra hverandre for framtidig presisjonskosmologi. Vi etterlater oss N -legeme-
kodene ANUBIS og ANUBISIS, og emulator-pipelinen, Sesame, som alle bidrar
til muligheten for videre utforskning av alternative universmodeller i tiden som
kommer.
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Preface

Describing the world that we live in, from deep beneath the sea to high above the
clouds, has long been a calling for humanity. In early times, we studied patterns
here on Earth; the movement of animals, the changing of seasons, the ebb and
flow of the sea, and the positions of celestial objects. We used the knowledge
to get food, navigate, and evolve, but also as a way to understand the world
through legends, songs, and beliefs. Now, the pursuit of knowledge lives on,
perhaps more than ever, as we try to understand and describe everything from
tiny elemental particles to the vast architecture of the Universe. This thesis is a
part of the continued quest to study our world and it looks outwards toward the
larger structures of our Universe and how they came to be.

It all starts, as it must, with Chapter 1, where I first take you through
a brief history of our Universe, from its birth to the present time. I follow
up by introducing the framework of our current standard model of cosmology,
focusing on the growth of structure - from tiny density perturbations to the
giant formations we observe today. By the end of the chapter, I point out some
questions that are currently left unanswered, setting the stage for the main topic
of my thesis work, the subjects of massive neutrinos and modified gravity. I
proceed, in Chapter 2, by introducing said matters individually, first addressing
the nature of massive neutrino particles and their impact on cosmology, and
then the essence of f(R)-modified gravity, and its influence. Although they
are quite different, on one side particles of the standard model, and on the
other an extension of the general relativity framework, they have similar, yet
opposite, ways of affecting cosmological structure formation, resulting in several
degenerate observables where their individual effects are hard to disentangle.
This leads us to Chapter 3, where I introduce the main observables used in my
thesis work, to investigate the above-mentioned situation. However, this thesis
work has not involved directly observed data from telescopes and satellites, but
rather data from cosmological N -body simulations, where we can better study
the direct effects of our chosen cosmological parameters. A general introduction
to this topic, along with a more specific description of the codes employed for
this work, is therefore found in Chapter 4. Finally, Chapter 5, the last chapter
of this thesis, summarises each of the papers going into the thesis and concludes
the work as a whole. Following this, the three papers of the thesis can be found
in their entirety, in writing order.

This thesis is submitted in partial fulfilment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the Institute of Theoretical Astrophysics under the supervision
of professor Øystein Elgarøy and associate professor Hans A. Winther. This work
was supported by the Norwegian Research Council through grant 144838, focusing
on Norwegian participation in Euclid. Some of the research was performed as a
part of the Euclid Consortium and this thesis thus contains Euclid Consortium
material. In addition, some of the computations performed for this thesis
work depended on resources provided by UNINETT Sigma2 – the National
Infrastructure for High-Performance Computing and Data Storage in Norway.
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Chapter 1

The standard model of cosmology
In this chapter, I will set the stage for modern cosmology and introduce the
building blocks needed for the foundation of this thesis work. This review is
mainly based on Dodelson and Schmidt, 2020.

1.1 The history of our Universe

The Λ-cold-dark-matter (ΛCDM) model is today generally accepted as the
standard model of cosmology. It describes the past, present, and future evolution
of our Universe, along with its energy content. In this model, the Universe is
made out of baryonic matter (∼ 5%), dark matter (∼ 25%), and dark energy
(∼ 70%) (Planck Collaboration et al., 2020b), the latter of which today drives
an accelerated expansion of the Universe. But how did we get here, and where
did it all start? In the ΛCDM model, the history of our Universe goes a little
something like this (Baumann, 2022):

☆ First, approximately 13.8 billion years ago, there was the Big Bang. This
marked the beginning of our Universe, and how everything spread out today
was once concentrated in a region of vanishing volume.

☆ Closely following, it is theorised that there was a brief period of inflation.
Here, the Universe expanded exponentially and grew about 1026 orders of
magnitude in just a fraction of a second. Once inflation ended, around 10−32

seconds after the Big Bang, the inflation scalar field decayed into the elemental
particles of the standard model, with relativistic velocities. Fluctuations in
the inflation field were then carried over to the density field, leaving small
density perturbations as seeds for future structure formation. At this point in
time, the energy density of radiation dominated the Universe and everything
existed in one big hot soup.

☆ The Universe continued to expand, although noticeably slower than during
inflation, and the Universe gradually cooled with the expansion. In the first
few microseconds after the Big Bang, the first particles (like protons and
neutrons) were formed, and in the next couple of minutes, the atomic nuclei
of the lightest elements (mostly hydrogen and helium). However, it was still
too hot for the electrons to combine with the nuclei to create atoms.

☆ After some time, approximately 50 000 years, the energy density of radiation
became lower than that of matter, and we entered an era of matter domination.

☆ At one point, some hundred thousand years after the Big Bang, the Universe
had expanded and cooled enough for electrons to be captured and neutral
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1. The standard model of cosmology

hydrogen to be formed. This is known as the epoch of recombination. The free
electrons had previously scattered light, making the Universe opaque. During
recombination, this process became less and less frequent and the photons
eventually decoupled around 380 000 years after the Big Bang, making the
Universe transparent. This process left behind a stream of photons capturing a
freeze-frame of the density fluctuations present in the matter at the given time,
known as the cosmic microwave background (CMB). This light is observable
today and contains a wealth of information about our Universe that is actively
studied in its own research field.

☆ The Universe kept on expanding at the same time as the small overdensities
in the matter field steadily grew. First, dark matter clumped together and
then baryonic matter fell into the gravitational wells created by the dark
matter. This was a gloomy period in the evolution of our Universe, known as
the dark ages - a time before stars existed.

☆ After around 200 million years, matter had contracted enough to start forming
the first stars. The light produced by them started to slowly reionise the
Universe, breaking up the atoms in the hydrogen gas surrounding the first
stars. At the same time, structures continued to grow and the first galaxies
appeared.

☆ Around 1 billion years after the Big Bang, stars and galaxies had reionised
most of the hydrogen gas (Planck Collaboration et al., 2020a). Still, the
Universe as a whole remained largely transparent.

☆ Recently, about 9 billion years after the Big Bang, we entered the era of dark
energy domination, resulting in an accelerated expansion of the Universe.

☆ Today, the growth of structure has led to an intricate large-scale formation,
known as the cosmic web, made up of halos, walls, filaments, and voids.

This concludes the broad overview of the evolutionary traits of our Universe.
In Fig. 1.1, the history of the Universe is illustrated, highlighting some of the
points above. With this information at hand, it is time to delve into some more
concrete details of the ΛCDM model.

1.2 General relativity

In the ΛCDM model, gravity is described by the theory of general relativity
(GR), first proposed by Albert Einstein in November 1915. In this theory, the
geometry of space and the energy content of the Universe are related through
the Einstein field equations (EFEs);

Gµν +Λgµν = κTµν . (1.1)

Here, Gµν is the Einstein tensor, given by

Gµν = Rµν −
1
2

gµνR, (1.2)
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Figure 1.1: Timeline depicting the evolution of the ΛCDM Universe. Credit:
NASA/WMAP Science Team - modified by Cherkash.

where Rµν and R = gµνRµν are the Ricci tensor and scalar respectively, defined
by

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓβ

µν − Γα
βνΓβ

µα. (1.3)

The comma denotes a derivative with respect to x, so that Γα
µν,α = ∂Γα

µν/∂xα,
and

Γµ
αβ =

gµν

2
[

∂gαν

∂xβ
+

∂gβν

∂xα
+

∂gαβ

∂xν
] (1.4)

are known as the Christoffel symbols. gµν is the metric tensor, which relates
space-time coordinates, xµ = (t, xi), to the invariant distance between them,
known as the line-element,

ds2
= gµνdxµdxν . (1.5)

The metric describes curved space-time, and by doing so, incorporates gravity into
the formalism itself. In the following, we will use the metric signature (−1, 1, 1, 1).
The only parameter left over on the left-hand side of Eq. (1.1) is now Λ, which is
the cosmological constant. This is often viewed as the energy density of vacuum,

3



1. The standard model of cosmology

and it is the term responsible for an accelerated expansion of the Universe1. On
the right-hand side of Eq. (1.1), we find Einstein’s gravitational constant, given
by κ = 8πG/c4, with c the speed of light (which is typically set to c = 1) and
G, Newton’s gravitational constant, together with Tµν , the energy-momentum
tensor. The latter contains information about the content of the Universe in
terms of density and flux of energy and momentum. In order for energy and
momentum to be conserved in this theory, we therefore need

∇µT µ
ν ≡

∂T µ
ν

∂xµ
+ Γµ

αµT α
ν − Γα

µνT µ
α = 0, (1.6)

where ∇µ is called the covariant derivative. This leads to the GR versions of the
continuity and Euler equations. In this way, Eq. (1.1) describes the interplay
between space-time on the left-hand side and the energy and matter content of
the Universe on the right-hand side. But where do these equations come from?

Generally, when we want to study the dynamics of a system, we can look at
the action of that system. The action is defined as a mathematical functional
that takes the Lagrangian density, L, of the system we want to study as an
argument, integrated over space and time:

S = ∫ L
√
−g d4x, (1.7)

where L is a function of the fields in the system and their derivatives, along
with the space-time coordinates, and g is the determinant of the metric tensor.
In GR, we have the Einstein-Hilbert action with a cosmological constant and
matter fields (Ishak, 2018), given by

S = ∫ (
R − 2Λ
16πG

+Lm)
√
−g d4x. (1.8)

Here, the parameters are the same as above, in addition to Lm; the matter
Lagrangian density. The EFEs can be obtained through the principle of least
action, by requiring that δS = 0 when varying the action with respect to the
metric, gµν .

From Newtonian physics, we know that an object in motion will move in a
straight line unless it is disturbed by any external forces. In the curved space-
time of GR, we instead say that an object in free-fall moves along a geodesic,
the shortest path between two points. The equation of motion of a particle, the
geodesic equation, can again be found through the principle of least action, with
the action

S = ∫ ds, (1.9)

where ds is the line-element as defined in Eq. (1.5). This process requires the
introduction of a parameter, λ, which monotonically increases along the path of

1This term can be found on either side of the equation. On the left-hand side, it is seen as
a property of space-time resulting in an accelerated expansion, while on the right-hand side it
is seen as the energy density of vacuum, which is a constituent of the Universe.
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The growth of structure

the particle, and results in the geodesic equation
d2xµ

dλ2 + Γµ
αβ

dxα

dλ

dxβ

dλ
= 0, (1.10)

when demanding δS = 0 when varying the action with respect to λ. Here, Γµ
αβ

are the Christoffel symbols and λ is typically taken to be the particle’s proper
time, τ . Equation (1.10) is thus the path taken by a particle in free-fall in curved
space-time - the equivalent of the familiar “straight path” motion of objects.

1.3 The growth of structure

A part of our current comprehension of the Universe comes from observing the
large-scale structure (LSS). Knowledge about how overdensities grew throughout
universal history and formed the structures we see today is essential when it
comes to our understanding of how the Universe works. In this section, I will
take you through a brief explanation of how the tiny overdensities left over
after the inflationary epoch grew into large overdensities, capable of hosting or
becoming planets, stars, and galaxies.

1.3.1 The smooth Universe

Before looking at structure growth, we need a quick overview of how the Universe
behaves. A spatially flat, homogeneous, isotropic, and expanding universe can be
described through the Friedmann–Lemaître–Robertson–Walker (FLRW) metric,
given by

gµν =

⎛
⎜
⎜
⎜
⎝

−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

⎞
⎟
⎟
⎟
⎠

, (1.11)

or, equivalently,
ds2
= −dt2

+ a2
(t)δijdxidxj , (1.12)

where a(t) is known as the scale factor, incorporating all time dependence
of the metric, δij is the Kronecker delta function, and xi = xi

physical/a(t) are
comoving coordinates. In this smooth, isotropic background universe, the energy-
momentum tensor takes the simple form

Tµν = (ρ + P )uµuν − Pgµν , (1.13)
equal to that of a perfect fluid. Here, ρ is the energy density, P the pressure,
and uµ the four-velocity of the fluid. Pulling this through the full machinery of
Eq. (1.1), we obtain the Friedmann equations

(
ȧ

a
)

2
=

8πG

3
ρ̄, (1.14)

ä

a
= −

4πG

3
(ρ̄ + 3P̄ ), (1.15)
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1. The standard model of cosmology

where the dot denotes the derivative with respect to time and ρ̄ and P̄ are the
total energy density and pressure of the background universe. Equation (1.14) is
often known as the Friedmann equation, although in a slightly different form. In
order to get there, we first have to take a look at how the evolution of different
components of the Universe depends on the scale factor. This can be done
through the ν = 0 component of Eq. (1.6), which for the energy-momentum
tensor of Eq. (1.13) gives

∂ρ̄

∂t
+

ȧ

a
(3ρ̄ + 3P̄ ) = 0. (1.16)

Defining the equation of state parameter, w, as w = P /ρ, we can use the
knowledge that matter (m) has w = 0, radiation (r) or relativistic particles has
w = 1/3, and a cosmological constant (Λ) has w = −1 to find2

ρ̄m ∝ a−3, ρ̄r ∝ a−4, and ρ̄Λ ∝ a0. (1.17)

In the case of massive neutrino particles (ν), which are relativistic at early times
and later become non-relativistic, they will switch from ρ̄ν ∝ a−4 to ρ̄ν ∝ a−3.

Moving forward, it is convenient to define the density parameters

Ωi0 =
ρ̄i0
ρcr0

, (1.18)

where i denotes the various components (i = m, r, Λ) and “0” indicates the values
today. The parameter

ρcr0 =
3H2

0
8πG

(1.19)

is known as the critical density - the total energy density needed for the Universe
to be flat. Here, H0 is the present value of the Hubble parameter, H = ȧ/a.
With this definition, we now have ∑Ωi0 = 1. Applying all this knowledge, and
defining a(t0) = 1, the Friedmann equation (Eq. 1.14) can be rewritten as

H2
=H2

0(Ωm0a−3
+Ωr0a−4

+ΩΛ0), (1.20)

where Ωm is the total matter, containing both baryons and cold dark matter,
Ωm = Ωb +Ωcdm. At the present day, the massive neutrinos also belong to the
total matter density parameter, and their energy budget is taken from the cold
dark matter component. This form of the Friedmann equation clearly showcases
the evolution of the different components of our Universe and how they dominate
in different cosmological eras.

1.3.2 Linear growth

The Universe is more complex than the smooth case presented above. After
inflation, small fluctuations in the density field were present throughout the

2Assuming that w is time-independent.
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The growth of structure

Universe, slowly evolving over time. This complicates the picture, and we need
to extend our framework in order to understand how overdensities grew as time
went by.

First of all, the energy-momentum tensor can no longer be described by
the simple perfect fluid case. Instead, we can construct it by looking at the
particle ensembles of the various species populating our Universe. A particle
ensemble can be described by a distribution function, f(x, p, t), which represents
the behaviour of a collection of particles in a statistical sense. In this way, we
do not have to keep track of individual particles, and we can focus on their
collective properties. If we ignore particle interactions, we know that the number
of particles must be conserved, meaning that

df

dt
=

∂f

∂t
+

∂f

∂xi
⋅
dxi

dt
+

∂f

∂p

dp

dt
+

∂f

∂p̂i
⋅
dp̂i

dt
= 0, (1.21)

where the momentum dependence has been separated into the magnitude and
unit vector components, pi = pp̂i. This equation is known as the Boltzmann
equation of the particle ensemble. Now, if we also include particle interactions, a
collision term, C[f], must be added to the Boltzmann equation,

df

dt
= C[f]. (1.22)

This takes care of interactions like scattering, pair creation, annihilation, and
particle decay. The various particle (and radiation) species populating the
Universe will have different Boltzmann equations which need to be calculated
individually3.

This framework is general. Applying it to the smooth and expanding universe
of Sect. 1.3.1 would lead to the energy-momentum tensor seen in Eq. (1.13).
But we are not interested in a smooth universe anymore. Now we want to see
how perturbations in the density field affect space-time and vice-versa. We also
want to know how perturbations in the density field grow over time to form the
structures we observe today. Let us introduce some scalar perturbations to our
Universe. First, for the properties of the constituents of the Universe, we will
look at

ρ = ρ̄ + δρ and P = P̄ + δP, (1.23)

where the δ’s are deviations from the background values, marked with a bar.
Secondly, we also want to introduce scalar perturbations to the metric. In
general, the perturbed metric can be given as (Baumann, 2022)

ds2
= −(1 + 2A)dt2

+ 2a(t)Bidxidt + a2
(t)(δij + hij)dxidxj , (1.24)

3This will not be included here (there is a loose understanding that this should be done
by everyone at least once, and I have already paid my dues), but can be found in works like
Dodelson and Schmidt, 2020.
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1. The standard model of cosmology

where A, Bi, and hij are scalar, vector, and tensor perturbations respectively4.
If we only include scalar perturbations, and use the Newtonian gauge, we get

ds2
= −(1 + 2Ψ)dt + a2

(t)(1 + 2Φ)δijdxidxj , (1.25)

where Ψ and Φ are scalar perturbations that are functions of time and
space. Moving forward, we will assume that all perturbations are small
(δρ, δP, Ψ, Φ ≪ 1), and also that the bulk velocity of dark matter is small
(u ≪ 1), so that we can drop terms that are second-order or higher in these
parameters, and thereby obtain a linear approximation. This works well in the
early Universe and also on large scales at the present time.

So, everything has now changed. To simplify (and shorten) this section, we
will focus on dark matter moving forward, as this is the main ingredient needed
to understand the growth of structure. Specific details for baryonic matter,
radiation, and neutrinos can be found in Dodelson and Schmidt, 2020. Without
going into too much detail, the Boltzmann equation depends on the geodesic
equation, which has now changed due to the perturbed metric. Taking all of this
into account, the left-hand side of the Boltzmann equation, for massive particles,
is now given by5

df

dt
=

∂f

∂t
+

p

E

p̂i

a

∂f

∂xi
− p

∂f

∂p
(H + Φ̇ + E

ap
p̂i ∂Ψ

∂xi
), (1.26)

with E2 = p2 +m2 and m the mass of the particle. For radiation, we have the
same equation, only for E2 = p2. Luckily for us, as we are focusing on dark
matter, the right-hand side of the Boltzmann equation is zero, as dark matter
does not interact (or, if so, interacts very weakly) with the other constituents
of the Universe. In addition, dark matter is non-relativistic, meaning that we
can neglect higher orders of p. Using this information, we can take the zeroth
moment of Eq. (1.26), which will lead us to a generalisation of the continuity
equation6. If we then only look at the evolution of the perturbations, we get

∂δcdm
∂t

+
1
a

∂ui
cdm

∂xi
+ 3Φ̇ = 0, (1.27)

where δcdm = δρcdm/ρ̄cdm and ui
cdm is the bulk velocity of dark matter. We follow

up by taking the first moment of Eq. (1.26), which gives a generalised version of
the Euler equation. Again, ignoring the background components, we get

∂ui
cdm

∂t
+Hui

cdm +
1
a

∂Ψ
∂xi
= 0. (1.28)

4The vector and tensor perturbations can further be rewritten into scalar, vector, and
tensor components, resulting in a total 10 degrees of freedom of the metric, divided into four
scalar, two vector, and two tensor degrees of freedom.

5The right-hand side, which contains the collision terms, will distinguish the different
species.

6Taking the n-th moment of Eq. (1.26) means multiplying it by a velocity factor to the
n-th power and integrating over the phase-space volume. This is a way to extract the overall
behaviour of the underlying particles described by the distribution function, f .
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The growth of structure

It is convenient to move these two equations to Fourier space (δk(k) =

∫ eik⋅xδ(x)d3x, where k is the comoving wavenumber of the perturbation) and
switch to conformal time, dη = dt/a, so that

δ′cdm + ikucdm + 3Φ′ = 0, (1.29)

u′cdm +
a′

a
ucdm + ikΨ = 0. (1.30)

Here, the apostrophe denotes the derivative with respect to conformal time. In
this form, we see that the Fourier modes are independent of each other.

Equations (1.29) and (1.30) govern the evolution of dark matter perturbations
and their velocity. However, to fully understand them, we must also learn about
Φ and Ψ. For this, we need to have a look at the Einstein equations, again to
linear order in perturbations. For the left-hand side, since we have a new metric,
the Christoffel symbols, Ricci tensor, and Ricci scalar needs to be recalculated
to include Φ and Ψ. For the right-hand side, the energy-momentum tensor must
be constructed from the relevant particle ensembles. Looking at the temporal
part of the EFEs, only including first-order terms, we get

k2Φ + 3a′

a
(Φ′ −Ψa′

a
) = 4πGa2ρ̄cdmδcdm (1.31)

for conformal time and in Fourier space. This equation is our version of the
regular Poisson equation, ∇2ϕ = 4πGρ, where ϕ is the gravitational potential.
Looking at the spatial part of the EFEs instead gives

Φ = −Ψ, (1.32)

if we neglect anisotropic stress7. And with that, we have the two needed
constraint equations for Φ and Ψ.

Now, how a perturbation behaves depends on its mode and in which era of the
Universe it is developing. In addition, baryonic and dark matter perturbations
grow differently during some time periods. This is easier to get a grasp of if
we look at the Newtonian approximation of what we did above, meaning no
perturbations to space-time, for total matter. In that case, the linear continuity,
Euler, and Poisson equations may be derived and combined to form

δ̈m + 2Hδ̇m = δm(4πGρ̄m − k2c2
s), (1.33)

in Fourier space, where the derivative is with respect to time, t. The term
including cs, the speed of sound, originates from pressure perturbations as
δPm = c2

sδρm = c2
sρ̄mδm. Solving for δm in equation Eq. (1.33) will give us

information about how overdensities in the matter field grow. However, one

7This is a contribution to the energy-momentum tensor from the quadrupole of the
temperature perturbations to the distribution functions for relativistic species. It is mainly
neutrinos that contribute to this component.
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1. The standard model of cosmology

of the conditions that can be derived from it8 actually tells us that not all
overdensities do, in fact, grow. Only perturbations larger than

λ > cs

√
π

Gρ̄ m
, (1.34)

where λ = 2π/k, will grow. This threshold is known as the Jeans length (λJ),
and perturbations shorter than this value will only oscillate around ρ̄m. With
this knowledge in mind, we will, for the final part of this section, focus on
perturbations much larger than the Jeans length. Still, also in this case, the
growth of the perturbations depends on their modes. The particle horizon tells
us the furthest distance over which there can be causal contact at some time
t, which increases with time. Now, how a perturbation grows depends on if it
is inside or outside the horizon, and also if we are in the radiation, matter, or
dark energy-dominated era. In the radiation-dominated era, the behaviour of
δm outside the horizon is determined by the metric perturbations, which are
governed by Eqs. (1.31) and (1.32). Had we included radiation in our short
review, there would have been a term on the right-hand side of Eq. (1.31)
proportional to ρ̄r, which would dominate in this era. Requiring that the metric
perturbations remain constant for perturbations outside of the horizon then
results in δm ∝ a2 for modes outside the horizon in the radiation-dominated
era. As the particle horizon grows with time, perturbations will start entering
the horizon as time goes by. Inside the horizon, Eq. (1.33) determines the
evolution of δm. Combining it with the Friedmann equation (Eq. 1.20) to find
that a∝ t1/2 during radiation domination and assuming ρ̄r ≫ ρ̄m, we find that
δm ∝ log a inside the horizon. This means that the Universe is expanding faster
than the perturbations can grow during this period. If we then move on to
the matter-dominated era, and follow the same procedure for the behaviour of
δm inside the horizon, we find that a ∝ t2/3 from the Friedmann equation by
assuming that Ωm = 1. Keeping this assumption, Eq. (1.33) gives δm ∝ a for
a perturbation inside the horizon during matter domination. From this, it is
clear that the perturbations that enter the horizon during radiation domination
are suppressed compared to the ones entering during matter domination. This
“stalling” of growth is known as the Meszaros effect (Meszaros, 1974)9.

What we have not taken into account so far is that baryons and cold dark
matter are different. Before recombination, baryons and photons are coupled
together in a baryon-photon relativistic fluid, where the radiation pressure
hinders the baryonic perturbations from growing. Dark matter, on the other
hand, is not affected by this radiation pressure, and can freely grow as described
above. Recombination happens at z ∼ 1100, while matter-radiation equality
happens at z ∼ 3400. This means that had we only had baryons, they would

8By looking at the static case, ȧ = 0.
9The relation between δ and a depends on the choice of coordinates/gauge during the

calculation. In this simple description using words, I have glazed over the use of a gauge-
invariant density perturbation formulation. Details of this can be found in e.g. Baumann,
2022.
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first start growing during matter domination, as δb ∝ a. If they then started
from fluctuations of the order of the anisotropies observed in the CMB (Planck
Collaboration et al., 2020a,b), δb ∼ 10−5, and grew from a = 1

1+z
∼ 10−3 until

today at a = 1, that is only a growth of a factor 1000, leaving them at δb ∼ 10−2.
This does not coincide with the non-linear structures we observe today, in the
form of stars and galaxies. This means that, for us to be here and observe
the structures we see today, the growth of dark matter perturbations before
recombination and the creation of gravitational wells for the baryonic matter to
fall into, is absolutely essential.

That dramatic note carries us over to yet another dramatic note. Recently
(z ∼ 0.4), the Universe has no longer been dominated by matter. We have
now entered an era of dark energy domination, leading to an accelerated
expansion of the Universe, which naturally has consequences for the growth of
perturbations. Coming back to the Friedmann equation again (Eq. 1.20), we now
have a∝ eH0

√
ΩΛt which when inserted into Eq. (1.33) gives δm ∼ constant under

the assumption that matter still dominates the contribution to the gravitational
potential.

1.3.3 Non-linear growth

So far, everything we have gone through has been in regard to linear perturbations,
ignoring any higher-order contributions. This works up to a certain point (δ ∼ 1),
but as I mentioned, we are today surrounded by non-linear structures. This is a
bit more complicated to describe mathematically, but it can be approximated to
a certain degree. One approach is to extend the framework of the previous section
by treating the matter density and velocity non-linearly. Another well-known
description of non-linear collapse is the spherical top-hat model (Dodelson and
Schmidt, 2020; Gunn and Gott, 1972; Peebles, 1980). However, if we want to
capture the full effects, numerical simulations are the way to go. As the latter
has been vital for this thesis work, it gets its own stage number in Chapter 4.
For now, let us simply set the stage by having a quick look at the two other
approaches.

The first approach is a way of following our linear density perturbations
into the non-linear regime through the Boltzmann equation (Eq. 1.26) and
Eq. (1.31). Treating all components non-linearly would be very complex. Luckily,
perturbations to the FLRW metric remain small also in the late Universe,
meaning that we can continue to treat them linearly. In addition, if we keep to
scales large enough for baryonic physics to remain unimportant, while at the
same time small enough to enter the non-linear regime, we can treat cold dark
matter and baryons together as one cold, collisionless matter component. We
can then write Eq. (1.31) as

−k2Ψ = 4πGa2ρ̄mδm, (1.35)

where only the first term on the left-hand side has been kept, as it is the dominant
one at the relevant scales. This shows that Ψ(k) ∝ δ(k)/k2, meaning that Ψ
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remains small even as δm becomes large at small scales (large k). Because of
this, it is sufficient to use the Newtonian limit to describe the gravitational
potential, i.e. the regular Poisson equation. Previously, we found equations
describing the evolution of our overdensity, in the linear case, by taking the
zeroth and first moments of Eq. (1.26). Now we need a version of this Boltzmann
equation that does not assume small matter perturbations, but it can remain
non-relativistic. We can also continue to assume small metric perturbations.
With these assumptions we get

dfm
dt
=

∂fm
∂t
+

∂fm
∂xi

pi

ma
−

∂fm
∂pi
(Hpi

+
m

a

∂Ψ
∂xi
) = 0, (1.36)

known as the Vlasov equation. This set of equations (Eqs. 1.35 and 1.36) is
known as the Vlasov-Poisson system and is valid when matter perturbations start
evolving non-linearly. It can be expanded further using perturbation theory or
be solved numerically. The latter is often incorporated into N -body simulations
(see Ch. 4), which allow us to study the formation of structure in the Universe.

The second approach mentioned above, the spherical top-hat model, or just
the spherical collapse model, instead estimates which overdensities will collapse
and form dark matter halos. These are important tracers of the LSS of our
Universe, but can only be directly identified in simulations. Observationally,
we can use tracers, such as galaxy clusters, or gravitational lensing to estimate
the mass of dark matter halos. Still, modelling how overdensities collapse
and virialise into halos gives us insight into the non-linear growth of structure.
The simplest way to do so is by considering the collapse of a spherical region
with uniform density. The mass contained within this sphere is then given
by M = 4πρ̄m(1 + δm)R

3/3, where ρ̄m is the background matter density of the
Universe at the given time and R is the physical radius of the sphere. Assuming
a flat FLRW universe containing only matter10, the spherical region in question
should obey Eq. (1.15), which under our assumptions then becomes

R̈ = −
GM

R2 (1.37)

in physical coordinates. If we integrate this equation we get

1
2

Ṙ2
−

GM

R
= E, (1.38)

where the integration constant, E, corresponds to the energy of a spherical
shell of radius R. In order for the overdensity to be gravitationally bound and
decouple from the background expansion, we need E < 0. The solution is then
given by

R =
Rta
2
(1 − cos θ), (1.39)

10Also known as an Einstein-de Sitter universe, which is quite accurate in the thick of the
matter-dominated era.
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Figure 1.2: Spherical collapse solution. Expansion followed by the turn-around
and collapse of an overdense region.

t =
tta
π
(θ − sin θ). (1.40)

Here, Rta is the radius at the turn-around time, tta, and θ ∈ [0, 2π]. The two first
parameters are related through π2R3

ta/(8t2
ta) = GM . The solution is illustrated

in Fig. 1.2. In words instead of symbols, we have an overdense region which
at first expands with the Universe until it reaches some maximum size, where
it turns around (at θ = π) and starts collapsing. At θ = 2π it has completely
collapsed, and R = 0. Using this solution and comparing the density within the
spherical region with the background, we find that the overdensity behaves as

δm =
9
2
(θ − sin θ)2

(1 − cos θ)3
− 1 (1.41)

in the spherical collapse model. Before looking at this further, let us have a
quick look at linear theory again. During matter domination, we found in the
previous section that δm ∝ a∝ t2/3. If we Taylor expand Eq. (1.41) to first order,
we get δm = (3/20)(6π)2/3(t/tta)

2/3, which recovers the linear proportionality.
Inserting the time of total collapse we get a value δlin

m ≈ 1.686. This means
that, in linear theory, overdensities with δm > δlin

m can be considered collapsed
objects. In our non-linear spherical collapse theory, on the other hand, the time
of total collapse gives R = 0 and δm →∞, which would mean the formation of a
black hole. However, in reality, the collapse of overdense regions is not perfectly
spherical, and also pressure becomes important, meaning that there will be more
complicated dynamics at play. This results in an equilibrium state being reached
at some finite radius, the process of which is known as virialisation. The virial
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theorem says that for a virialised system, we have

K = −
1
2

U, (1.42)

where K is the kinetic energy and U is the gravitational energy. From the
conservation of energy, it can be shown that this happens at R = Rta/2, where
the overdensity has a value δvir

m ≈ 178. This means that in our non-linear spherical
collapse model, an overdensity δm > δvir

m can be considered as a collapsed system.
This specific threshold, rounded up to δm = 200, is often used as a criterion in
numerical simulations to identify dark matter halos.

With that, I conclude this review on the growth of structure, all the way from
tiny perturbations to virialised halos. These were the building blocks with which
the very foundation of my thesis work was built. From now on, the content of
this thesis will be more directly related to the work done in Papers I, II, and III,
but let us first round off this chapter with a few open questions.

1.4 Unanswered questions

The ΛCDM model overall describes our Universe exceptionally well. There are,
however, some big questions still left unanswered. Whether or not some of the
explanations will lie outside the ΛCDM model is yet unknown, but the scientific
community eagerly works towards the common goal of obtaining answers. In
this section, I will briefly address some questions that are key components of the
work performed for this thesis.

What is dark matter?

It was earlier stated that in the ΛCDM model, the Universe is made up of
baryonic matter, dark matter, and dark energy. Baryonic matter is the regular
matter that we are familiar with. In astronomy, it is defined as matter made out
of protons, neutrons, and electrons11. In other words, it is the matter that makes
up planets, stars, and galaxies. Dark matter, on the other hand, is believed to
be made up of something other than protons, neutrons, and electrons - i.e. it is
non-baryonic. Even though the ΛCDM model tells us that ∼ 25% of the energy
content of the Universe comes from dark matter, we do not know what it is. From
observations such as galactic rotation curves, cluster dynamics, gravitational
lensing, and the LSS (e.g. Massey, Kitching, and Richard, 2010; Rubin, Ford,
and Thonnard, 1980; Zwicky, 2009) we know that there is much more mass than
what we can see - thus the name dark matter. Several suggestions for what
dark matter might be, like massive compact halo objects (MACHOs), weakly
interacting massive particles (WIMPs), and axions (e.g. Brandt, 2016; Duffy and
Van Bibber, 2009; Schumann, 2019), already exist in the scientific community,
but as of now, the true nature of dark matter remains elusive.

11In terms of the standard model of particle physics, this is not strictly correct. Only
protons and neutrons belong to the baryon category, while electrons are leptons. This plays
nicely into astronomers’ apparent fondness for approximations.
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What is dark energy?

The driving mechanism behind the current accelerated expansion of our Universe
has been given the name dark energy. Yet again, it is dark because we cannot
see it - we can only infer its impact as some sort of energy with negative pressure.
As of now, we do not know the nature of dark energy, we only know that we
measure an accelerated expansion of the Universe (Riess et al., 1998) and that
we need something to drive this acceleration.

Thinking in terms of GR, the behaviour of the Universe is governed by its
content and the nature of space-time. In the ΛCDM model, dark energy can be
seen as a part of the energy content of the Universe and is given by a cosmological
constant, Λ, which can be interpreted as the energy density of the vacuum state.
On the cosmological side, this explanation matches observations well, but when
the energy of vacuum is calculated using quantum field theory, the resulting value
is about 54 orders of magnitude larger than what is gained from observations
(Martin, 2012). This is known as the cosmological constant problem.

Another approach is to look at the behaviour of space-time, as opposed to
the content of the Universe. A big motivation for the research field of modified
gravity (modified compared to GR) is to find a theory of gravity that explains
observations well, without the need for dark energy (Joyce, Lombriser, and
Schmidt, 2016)12.

What are the neutrino masses?

Neutrinos are small elementary particles that make up a tiny fraction of the
energy content of our Universe (see Sect. 2.1). Particle physics experiments
put an upper and lower bound on the sum of the neutrino masses, but the
absolute mass scale is yet unknown. Even though they are small, the neutrinos
affect structure formation (Lesgourgues and Pastor, 2006). Their relativistic
nature in the early Universe leads to a suppression of the growth of structure
at small scales, depending on their mass. On one side, this means that we can
use observations of the LSS to estimate the sum of the neutrino masses, based
on how much structure is suppressed compared to a massless neutrino case. On
the other side, the result depends on a choice of cosmological model and is also
degenerate with models of modified gravity (e.g. Baldi et al., 2014). Knowing
the absolute neutrino mass is therefore essential when it comes to accurately
determining cosmological parameters at a time when observations have become
exceptionally detailed. One of the scientific goals of the newly launched Euclid
satellite is to measure the sum of the neutrino masses to high accuracy, and
possibly determine the neutrino mass hierarchy (Laureijs et al., 2011).

12And even in some cases, (partially) without the need for dark matter (e.g. Bekenstein,
2004).
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And more?

The three questions above already provide a large challenge for astronomers and
physicists alike, and yet there are still a plethora of other questions in need of
answers13. As not all of them are relevant to this thesis work, most will not be
included, and some will have to make do with an honourable mention:

☆ The Hubble tension: In short, different measurements of H0, the
current value of the Hubble parameter, give different answers. At the
core of this, we have the Planck measurements (early time), which give
H0 = 67.4 ± 0.5 km s−1Mpc−1 (Planck Collaboration et al., 2020b), and
the Cepheid and type Ia supernovae measurements (late time), which give
H0 = 73.03 ± 1.04 km s−1Mpc−1 (Riess et al., 2022). This is a 5σ tension,
meaning that the chance of the discrepancy being due to random effects is
less than one in 3.5 million. The community is working hard to alleviate this
issue in different ways, and whether it is systematics, distance measurements,
a new cosmological model, or a combination, is yet unsettled.

☆ Inflation: For matter perturbations to grow and create structures as explained
earlier in this chapter, we need it to start out with a nearly homogenous
density field with small overdensities, as we see in the CMB. But where did
the small perturbations come from, and why do we end up with a homogenous,
isotropic, and (at least close to) flat universe? The brief period of inflation
after the Big Bang, where the Universe expands by a factor of around 1026 in a
tiny fraction of a second, provides explanations for this. In addition, it solves
the horizon problem, explaining how parts of the CMB that should not have
been in causal contact can have the same temperature. However, to this day,
no direct observation of inflation exists. Experiments are currently looking
for primordial B-modes, which are predicted by inflation models through the
creation of inflationary gravitational waves (Kamionkowski and Kovetz, 2016;
LiteBIRD Collaboration et al., 2023).

☆ Baryon asymmetry: In the first fractions of a second of the Universe’s
existence, pairs of matter and antimatter particles were continuously created
and annihilated. Somehow, we ended up with an imbalance, resulting in
more matter than antimatter, leaving the Universe today to be filled with
gas, galaxies, stars, and planets. Currently, there is no explanation for why
this is the case, or which mechanism kicked in at the very beginning to make
it so (Sakharov, 1991).

☆ The core-cusp problem: The inferred dark matter halo profiles of dwarf
and low surface brightness galaxies do not coincide with the density profiles
found in dark matter ΛCDM N -body simulations (De Blok, 2010). The
inferred profiles show a flat core, while the simulations predict a steeper
cusp (e.g. Navarro, Frenk, and White, 1996; Oh et al., 2015). This issue
can be alleviated by incorporating baryonic physics into the simulations (e.g.

13Luckily for us, of course, who would be out of a job had this not been the case.

16



Unanswered questions

Del Popolo and Pace, 2016), but whether or not this is the full solution is yet
unclear. Another explanation could come (partly) from the nature of dark
matter, which would then have to deviate from the standard CDM scenario
(e.g. Nguyen et al., 2021).

☆ The S8 tension: The density fluctuations observed from the CMB can
be evolved forward in time using simulations. The resulting clustering,
parametrised by S8 = σ8(Ωm/0.3)0.5 (where σ8 is the root-mean-square of the
amplitude of clustering at 8 h−1Mpc), as predicted by the ΛCDM model, does
not coincide with observations from low-redshift probes like weak gravitational
lensing and galaxy clustering. The measurements give a weaker clustering
in a 2 − 3σ tension with expectations from the CMB. Suggestions have been
made to resolve this tension (e.g. Alexander, Bernardo, and Toomey, 2022;
Poulin et al., 2023; Tanimura et al., 2023), but it remains an open question.
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Chapter 2

Beyond the standard model of
cosmology

The multiple unanswered questions within our field (see Sect. 1.4) lead many
to venture outside of the standard model of cosmology to find answers. In this
chapter, I provide a short introduction to massive neutrinos and f(R)-modified
gravity. The latter is a clear step away from the ΛCDM model, where GR is
modified in order to avoid the need for dark energy. Massive neutrinos, on the
other hand, are already a part of the ΛCDM model. However, they were for a
long time thought to be massless, and many theoretical models and simulations
still omit them due to their small contribution. Massive neutrinos are now
being integrated into existing frameworks, and have become more important
than ever as our observational data reach precision beyond the massive neutrino
influence. Because of this, the massive neutrinos find themselves in this “beyond
the standard model of cosmology” chapter.

2.1 Massive neutrinos

The standard model of particle physics divides the building blocks of our Universe
into two parts; the elementary particles and the forces acting between them.
In the lepton category of the elementary particles, we find the electron, muon,
and tau particles (e, µ, τ) and the associated electron, muon, and tau neutrinos
(νe, νµ, ντ ). The latter three were for a long time assumed to be massless particles,
until neutrino oscillations were confirmed around the change of the millennium
(Fukuda et al., 1998; KamLAND Collaboration et al., 2005; SNO Collaboration et
al., 2002), showing that one type of neutrino particle can evolve into another as it
propagates through time. The different neutrino particles are all a superposition
of neutrino mass states (Thomson, 2013),

⎛
⎜
⎝

νe

νµ

ντ

⎞
⎟
⎠
=
⎛
⎜
⎝

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

⎞
⎟
⎠

⎛
⎜
⎝

ν1
ν2
ν3

⎞
⎟
⎠

, (2.1)

where νi with i = 1, 2, 3 are the mass states (often shortened to mi) and Usi are
components of a unitary matrix, U , for the various neutrino flavours, s = e, µ, τ .
In other words, a neutrino propagates through space as a linear superposition of
the three mass states and collapses into a specific flavour once it interacts. If the
masses of the different νi states are not the same, phase differences between the
terms in the linear superposition will arise as the neutrino propagates through
space. This indicates that, for example, what was originally an electron neutrino
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2. Beyond the standard model of cosmology

could become a muon neutrino. The detection of neutrino oscillations, therefore,
means that at least two of the three neutrino mass states are non-zero.

Currently, neutrino oscillation experiments are able to put constraints on the
difference between neutrino mass states (Particle Data Group, Workman, et al.,
2022),

∆m2
21 = (7.53 ± 0.18) × 10−5 eV2,

∆m2
32 = (−2.519 ± 0.033) × 10−3 eV2

(IH), (2.2)
∆m2

32 = (2.437 ± 0.033) × 10−3 eV2
(NH).

The experiments cannot, however, always know the sign of the difference, which
results in two possible mass orderings of the three neutrino mass states. We
have the normal hierarchy (NH), where m1 <m2 ≪m3, or the inverted hierarchy
(IH), where m3 ≪m1 <m2. Combining the measurements we get a lower bound
on the sum of the neutrino masses given by ∑mν ≳ 0.1 eV and ∑mν ≳ 0.06 eV
for the inverted and normal hierarchies respectively. An upper bound on the
sum of the neutrino masses, ∑mν ≲ 2.4 eV, is given by the KATRIN (KArlsruhe
TRItium Neutrino) experiment, which studies the single β-decay of molecular
tritium (KATRIN Collaboration et al., 2022).

Besides the neutrino mass being of interest in the field of particle physics,
it also affects cosmology. In the early Universe, neutrinos were relativistic and
made up a fraction of the radiation content of the Universe. After some time,
depending on their mass, they became non-relativistic and instead now make up
a part of the matter content of the Universe. This is often taken out of the dark
matter budget and, in general, means that neutrinos play a special role in the
growth of structure. The neutrino density fraction depends on the sum of the
neutrino masses and is given by (Lesgourgues and Pastor, 2006)

Ων =
∑mν

93.14 eVh2 . (2.3)

Based on the lower mass constraints from particle physics experiments, this
means that the neutrinos make up at least 0.14% of the total energy content
of the Universe, or at least 0.4% of the matter content. This does not seem
like a lot, and it is understandable why, up until recently, neutrinos have often
been ignored in cosmological simulations. However, newer satellites, such as
Euclid, have a high enough resolution to detect the effects of the neutrinos
on structure formation directly in the matter power spectrum (see Sect. 3.2;
Laureijs et al., 2011). We, therefore, need to take them into account in order to
match our observations with our theory and simulations. Paper I is a Euclid
collaboration paper where different implementations of massive neutrinos in
various cosmological simulations are compared to each other, to prepare for the
comparison with new high-precision data. It includes the ANUBIS code, which
was developed as a part of this thesis.

So, we need to include massive neutrinos in our simulations because they
affect structure formation. But how do they affect structure formation? Let us
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paint a picture by trailing the neutrinos through the history of the Universe, in
broad strokes (following the works of Lesgourgues and Pastor, 2006). At early
times, the neutrinos were a part of the primeval soup together with everything
else, and they were ultra-relativistic. As the Universe expanded and cooled,
the neutrinos decoupled from the rest of the plasma. This happened when the
Universe had a temperature of roughly 1 MeV, about 1 second after the Big
Bang, and the neutrinos remained ultra-relativistic. So long as this was the
case, the neutrinos contributed to the radiation content of the Universe. The
Universe continued to expand and cool, and once we reached a state where the
neutrino temperature fell below its mass, the neutrinos became non-relativistic1.
At this point, they no longer contributed to the radiation content of the Universe
(scaling like a−4), but to the matter content instead (scaling as a−3). The time
of the transition depends on the neutrino mass, and based on current limits, it
happened during matter domination, after the time of recombination. But even
though at least two of the three neutrino mass states are non-relativistic today,
they have a large velocity distribution. This means that they contribute to the
dark matter content as hot dark matter (HDM) and not as cold dark matter
(CDM). Because of this, the neutrinos free-stream at some characteristic length,
depending on their mass, m,

λFS(t) = 7.7 1 + z
√

ΩΛ +Ωm(1 + z)3
(

1 eV
m
)h−1Mpc, (2.4)

during the time of matter and Λ domination (Lesgourgues and Pastor, 2006).
This results in a damping of neutrino density fluctuations on small scales, as the
neutrinos cannot be confined to regions smaller than λFS. When the neutrinos
were still relativistic, the free-streaming length was equal to the Hubble radius,
roughly the size of the observable Universe, confirming that the neutrinos did
not cluster while relativistic during matter domination. Now, once the neutrinos
have become non-relativistic, they behave like ordinary non-relativistic matter,
meaning that the neutrino overdensities (inside the horizon) start moving towards
a δν ∝ a behaviour on scales larger than the free-streaming length. Still, due to
the effects of free-streaming, δν is much smaller than δcdm

2.
The presence of neutrinos has various effects on the CMB and the LSS.

We are most interested in how massive neutrinos impact the growth of matter
perturbations during the era of matter domination, as this is the dominant
observable effect. On scales smaller than the free-streaming length, the neutrinos
do not cluster and do not need to be included in the Poisson equation. However,
the neutrinos still contribute to the Friedmann equation and thus the background
expansion rate. If we assume that the neutrino density is dominated by non-

1This transition was individual for each of the neutrino flavours, depending on their mass.
2The neutrino overdensities that were outside the horizon during the non-relativistic

transition are not affected by the free-streaming in the same way, and quickly move towards
δν ≈ δcdm once they enter the horizon.
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relativistic neutrinos in this regime (∝ a−3), we can define

fν =
ρν

ρcdm + ρb + ρν
=

Ων

Ωm
, (2.5)

which will then stay constant. Including the massive neutrinos in our equations
for the evolution of matter overdensities, through the expansion rate, will then
lead to approximately δm ∝ a1−(3/5)fν , assuming fν ≪ 1. This shows that the
growth of matter perturbations is damped on scales smaller than the neutrino
free-streaming length due to the fact that the neutrinos do not cluster, but still
contribute to the expansion rate. Overall, the nature of the massive neutrinos
results in a damping of the linear matter power spectrum given by

P (k)fν

P (k)fν=0 ≈ −8fν (2.6)

on small scales and for small fν at redshift zero. This has been shown to be
even larger on non-linear scales, in the lines of −10fν , with a turn-around at
k ∼ 1 h Mpc−1 due to the virialisation of halos at small scales, resulting in a
spoon-like feature (Hannestad, Upadhye, and Wong, 2020). A lot more details
than what is presented here goes into this overall result, and can be found in
e.g. Lesgourgues and Pastor, 2006 for anyone interested. In addition to the
behaviour of the perturbations, massive neutrinos also affect the time of matter-
radiation equality and delay it by a fraction (1 − fν)

−1 compared to a massless
case. This also suppresses the matter perturbations and shows up both in the
CMB temperature anisotropy spectrum and the matter power spectrum.

Given the information above, it is clear that determining the absolute mass
scale of neutrinos is important for cosmology. If found from particle physics
experiments, it would help put constraints on our cosmological models, as we
would know exactly how much suppression of structure to expect, in addition
to the neutrino impact on the CMB. Naturally, we can do this the other way
around as well. We can use cosmological observations to put constraints on
the neutrino mass. Current bounds, based on CMB, lensing, Supernovae Ia,
and BAO observations, give ∑mν < 0.09 eV at 95% confidence by Di Valentino,
Gariazzo, and Mena, 2021, putting pressure on the IH mass ordering. This,
although providing a tighter upper bound than particle physics experiments,
depends on the choice of cosmological model (ΛCDM), and can therefore never be
completely independent. The neutrino mass is also known to have degeneracies
with modified gravity models (e.g. Baldi et al., 2014), which can further relax
the mass constraints.

2.2 f(R)-modified gravity

The concordance ΛCDM model incorporates GR as the theory of gravity,
as detailed in Sect. 1.2. Even though both ΛCDM and GR by themselves
are thoroughly tested and widely accepted theories (e.g. Ishak, 2018; Planck
Collaboration et al., 2020a; Will, 2014), there are still some questions that are
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left unanswered. Some of these are addressed in Sect. 1.4 and motivate, amongst
others, the research field of modified gravity theories.

One well-known branch of the modified gravity field contains the f(R)-
modified gravity theories (Sotiriou and Faraoni, 2010). Here, the Einstein-Hilbert
action, as introduced in Sect. 1.2, is extended by a function of the Ricci scalar,
f(R),

S = ∫ (
R + f(R)

16πG
+Lm)

√
−g d4x. (2.7)

With the exception of this new function, all the other parameters are as before.
An alternative description of this is an addition of a fifth force on top of gravity,
which also works attractively3. In f(R)-modified gravity, this fifth force is carried
by the scalaron, which is a scalar degree of freedom of the theory, described by
fR = df/dR.

If we again follow the principle of least action, as in Sect. 1.2, and require
δS = 0 when varying the action with respect to the metric, we get the new field
equations (Sotiriou and Faraoni, 2010)

Gµν + fRRµν − (
fR

2
− ◻fR)gµν −∇µ∇νfR = 8πGTµν . (2.8)

Here, ◻ = ∇µ∇µ, c = 1, and the rest of the parameters are as before. In
the Newtonian (quasi-static and weak field) limit, this can be reduced to two
equations,

∇
2Φ = 16πG

3
δρ −

1
6

δR, (2.9)

∇
2fR =

1
3
(δR − 8πGδρ), (2.10)

a modified version of the Poisson equation and the equation of motion of fR,
respectively. Here, δR and δρ are the perturbations to the Ricci scalar and
density field. If we then look at regions with low curvature (δR ≈ 0), we see that
the Poisson equation is enhanced by a factor 4/3 compared to what we found
for ΛCDM in Eq. (1.35). The range of this additional “gravitational force” is
determined by the Compton wavelength of the scalaron, which again depends
on the specific f(R)-modified gravity theory.

In order to coincide with observations, modified gravity theories need to
behave like regular GR in regions where deviations from GR are well-tested and
confirmed to be insignificantly small (Will, 2014). In other words, we must have
fR → 0 in high-density regions, reverting back to the regular Poisson equation.
This is achieved through a chameleon screening mechanism, which scales with
density in such a way that the gravity theory reverts back to GR in regions with
deep Newtonian potentials (Brax et al., 2008; Khoury and Weltman, 2004). This
mechanism, although allowing for the f(R)-modified gravity theories to coincide

3This can be seen by rewriting this into a scalar-tensor theory.
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with observations, makes it harder to study their effects. Because of this, cosmic
voids are good environments to do exactly this, as they are underdense regions
where the enhanced gravity of f(R) theories are less affected by screening. In
Paper II, we investigated the current framework of void modelling and how it
performs in the presence of massive neutrinos and f(R)-modified gravity.

2.2.1 Hu-Sawicki

In this thesis work, I have focused on Hu-Sawicki f(R)-modified gravity (Hu and
Sawicki, 2007). In this specific case, the function added to the Einstein-Hilbert
action is given by

f(R) = −m2 c1(R/m
2)n

c2(R/m2)n + 1
. (2.11)

Here, m2 = H2
0 Ωm and n, c1, and c2 are parameters of the model which are

constant, non-negative, and dimensionless. With this form of the f(R) function,
the limit c2(R/m

2)n ≫ 1 gives

f(R) = −m2 c1
c2
+O ((

m2

R
)

n

) , (2.12)

meaning that equating −m2c1/c2 with −2Λ gives an expansion history similar to
that of ΛCDM. This corresponds to the relation c1/c2 = 6ΩΛ/Ωcdm between the
parameters c1 and c2. We can now calculate the scalar degree of freedom as

fR =
df(R)

dR
= −n

c1(
R

m2 )
n−1

(c2(
R

m2 )
n
+ 1)2

≈ −n
c1
c2

2
(

m2

R
)

n+1

, (2.13)

where a value n = 1 is typically adopted, determining how the f(R) theory scales
with R. It is possible to completely specify the model using only n and fR0,
where fR0 is the present-day background value of the scalar degree of freedom,
given by (Llinares, Mota, and Winther, 2014)

fR0 = −n
c1
c2

2
(

Ωm
3(Ωm + 4ΩΛ)

)

n+1

. (2.14)

As we have made our choice for n, the value of fR0 is the only free parameter we
work with. It determines when the chameleon screening kicks in and moves the
modified gravity theory towards GR. In addition, it tells us the current range
of the fifth force through the Compton wavelength of the scalaron as (Llinares,
Mota, and Winther, 2014)

λ0
C = 3

√
n + 1

Ωm + 4ΩΛ

√
∣fR0∣

10−6 h−1Mpc. (2.15)
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From the information above it is clear that f(R)-modified gravity theory
enhances gravity, further leading to an enhancement of structure growth on
scales smaller than the Compton wavelength of the scalaron. This will show
up in cosmological observational probes, like the matter power spectrum and
the halo mass function (HMF; see Secs. 3.2 and 3.3). A recent combination of
datasets, mainly based on galaxy clusters, gave log10 ∣fR0∣ < −4.79 for n = 1 at
95.4% confidence level (Cataneo et al., 2015). Stronger bounds from different
astrophysical probes exist, driving the value of ∣fR0∣ even lower (Koyama,
2016), where the effects of the modification to gravity become unobservable
on cosmological scales. Still, f(R) theory is well studied and provides a good
testing ground for GR as an effective modified gravity model. The exploration of
beyond-ΛCDM models is not always solely about the model investigated, but also
about understanding and pushing the limits of what we can do with cosmology.
Can we detect the effects of modified gravity with cosmological probes alone?
Can we constrain the model, rule it out, or confirm it, or must we also include
astrophysical probes? Can we disentangle degeneracies with cosmological probes
alone, and which probes must we combine to do so? This is what we want to
know, and why we keep investigating, even when astrophysical probes might
have already put tight constraints in place.

2.3 Degeneracy

From Secs. 2.1 and 2.2 it is evident that massive neutrinos and f(R)-modified
gravity have the opposite effect on structure formation. While the massive
neutrinos suppress structure growth below the free-streaming length, f(R)-
modified gravity enhances structure growth on scales smaller than the Compton
wavelength of the scalaron. This leads to degenerate observables, like the matter
power spectrum, the HMF, the halo bias, and the void-galaxy cross-correlation
function (Baldi et al., 2014; Giocoli, Baldi, and Moscardini, 2018; Hagstotz
et al., 2019; Mauland et al., 2023), where different combinations of ∑mν and
fR0 even can give results consistent with a massless neutrino ΛCDM scenario.
Figure 2.1 shows the effect of massive neutrinos, f(R)-modified gravity, and
their combination on the CDM+baryon matter power spectrum (see Sect. 3.2
for details on the power spectrum) compared to a massless neutrino ΛCDM
scenario.

The cases of massive neutrinos and f(R)-modified gravity do not stand on
completely even ground though. As neutrino oscillations have been detected, we
know that massive neutrinos have a place in our cosmological model. This is not
the case for modified gravity. What we do know then, is that the uncertainty in
the neutrino mass leaves some extra wiggle room when putting constraints on
fR0. If, however, a modified gravity model turns out to be a better description of
our Universe than ΛCDM, the opposite could also be true, where the parameters
constraining the modified gravity theory could affect the cosmological constraints
on the neutrino mass. Still, this is only the case if the degeneracy remains. If
it can be broken, through for example the combination of various observables,
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Figure 2.1: CDM+baryon matter power spectrum for simulations run with
massive neutrinos and f(R) gravity compared to a massless neutrino ΛCDM
case. The modifications to gravity enhance structure formation on small scales
(large k), while the massive neutrinos suppress it on similar scales. Their
combined effect, therefore, lies closer to the massless ΛCDM scenario. The
simulations are taken from Paper II.

the constraints can become tighter. Observing at higher redshifts is a possible
way of breaking the degeneracy, as f(R)-modified gravity becomes almost fully
screened for z ≳ 3 for ∣fR0∣ < 10−5 (Zhao, Li, and Koyama, 2011) when looking
at the matter power spectrum, and effectively screened for cluster abundances
at z > 0.5 (Hagstotz et al., 2019). Some specific suggested observables for
breaking the degeneracy are the void size function at high redshifts for large
voids (Contarini et al., 2021), redshift space distortions (Wright et al., 2019),
and weak lensing (e.g. Giocoli, Baldi, and Moscardini, 2018). Ideally, however,
would be the achievement of tight constraints on the neutrino mass from particle
physics experiments, independent of a cosmological model.
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Chapter 3

Observing the large-scale structure

A well-established way of observing the LSS of the Universe is through galaxy
surveys. Here, a patch of sky is observed and data are gathered so that galaxies
may be catalogued together with properties such as their inferred distance. The
placement of galaxies in a large volume helps us ascertain information about
the structure of the cosmic web, along with information about the distribution
of dark matter. Cosmological N -body simulations (see Ch. 4) help us further
understand the theory behind the distribution of matter, especially dark matter,
for which galaxies are biased tracers (Benson et al., 2000; Desjacques, Jeong, and
Schmidt, 2018). With data from surveys and simulations, various properties can
be calculated to make sure that theory and observations coincide. In this chapter,
I will briefly introduce some statistical properties that are key components in
the papers that make up this thesis. There are other observational probes of the
LSS, like gravitational lensing and the CMB, but these were not a part of this
thesis work and will therefore not be included in the following short review.

3.1 Cross-correlation function

The spatial two-point cross-correlation function (CCF) describes the excess
probability over random of finding two objects (typically galaxies) separated by
a distance r (Carroll and Ostlie, 2014). If galaxies were distributed evenly, the
probability of finding a galaxy in a small volume, dV1, and another in a small
volume, dV2, separated by a distance, r, would be dP = n2dV1dV2, with n the
average number density of galaxies. We know that galaxies are not distributed
evenly, and the probability is therefore instead given by

dP = n(1 + ξ(r))dV1dV2, (3.1)

where ξ(r) is the two-point correlation function,

ξ(r) = ⟨δ(x)δ(x + r)⟩, (3.2)

with δ(x) = (ρ(x) − ρ̄)/ρ̄ the overdensity at position x. Commonly, isotropy
is assumed, reducing ξ(r) to ξ(r). The galaxy correlation function gives us
information about clustering and has been studied for a long time. Observations
find that it approximately follows a power law on separation scales r < 10 h−1Mpc,
given by ξ(r) ∝ r−γ , with γ ∼ 1.8 (Peebles, 1980; Totsuji and Kihara, 1969;
Watson, Berlind, and Zentner, 2011). However, it is not only the correlation
function of galaxy positions that holds important information. In Paper II, we
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3. Observing the large-scale structure

studied the cross-correlation function between voids and dark matter halos1 in
different cosmologies. Cosmic voids have recently become an active research
field, with the void-galaxy CCF at its centre. More details about this can be
found below, in Sect. 3.5.

If the density field were Gaussian, the two-point correlation function would
hold all possible information. Due to non-linear evolution, this is not the case, and
higher-order statistics are needed in order to capture all the information. The two-
point correlation function can be generalised to an n-point correlation function,
with the three-point correlation function the most commonly encountered case:

ζ(r12, r23, θ) = ⟨δ(x)δ(x + r12)δ(x + r23)⟩. (3.3)

This describes the excess over random of finding a specific configuration of three
galaxies, with r12 the separation between galaxy 1 and 2, r23 the separation
between galaxy 2 and 3, and θ the angle between them. For the three-point
correlation function to be nonzero, the configuration must form a closed triangle.

3.2 Power spectrum

Another important statistic for studying the LSS and clustering of mass is the
matter power spectrum (Dodelson and Schmidt, 2020). This is the Fourier
transform of the two-point correlation function (Sect. 3.1), defined as

P (k) = ∫ ξ(r)e−ik⋅rd3r, (3.4)

where k is the wavenumber. Alternatively, we can look at it as Fourier
transforming the overdensity field,

δ(k) = ∫ δ(r)e−ik⋅rd3r, (3.5)

giving

P (k1)(2π)3δD(k12) = ⟨δ(k1)δ(k2)⟩, (3.6)

where δD is the Dirac-delta function. Analysing the matter distribution in
Fourier space, as opposed to the CCF in physical space, has its advantages.
On large scales, where δ ≪ 1, linear theory applies and each Fourier mode
evolves independently as seen in Sect. 1.3.2. This direct link between the large
scales of the matter power spectrum and linear theory makes it a convenient
observable for comparison between data and models. In addition, performing
computations in Fourier space usually requires less time and computational
power. Figure 3.1 shows a comparison between data and theory for the linear
matter power spectrum.

1Of course, we cannot observe dark matter halos directly. This research was performed on
simulation data. If we had used observational data, we would have studied the void-galaxy
cross-correlation function instead.
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Power spectrum
Planck Collaboration: The cosmological legacy of Planck

Fig. 19. Linear-theory matter power spectrum (at z = 0) inferred from different cosmological probes (the dotted line shows the
impact of non-linear clustering at z = 0). The broad agreement of the model (black line) with such a disparate compilation of
data, spanning 14 Gyr in time and three decades in scale, is an impressive testament to the explanatory power of ΛCDM. Earlier
versions of similar plots can be found in, for example, White et al. (1994), Scott et al. (1995), Tegmark & Zaldarriaga (2002), and
Tegmark et al. (2004). A comparison with those papers shows that the evolution of the field in the last two decades has been
dramatic, with ΛCDM continuing to provide a good fit on these scales.

ering three orders of magnitude in scale and much of cosmic
history. The level of agreement, assuming the ΛCDM model,
is quite remarkable. That structure grows through gravitational
instability in a dark-matter-dominated Universe seems well es-
tablished, and the power of the model to explain a wide range
of different phenomena is impressive. However, the tremendous
statistical power of the Planck data, and modern probes of large-
scale structure, is such that we can perform much more detailed
comparisons than this.

One consistency check, which we can make internal to the
Planck data set, is to check whether the large-scale structure that
lenses the CMB anisotropies at z ' 0.5–10 has the right ampli-
tude given the size of the anisotropies and the constituents in-
ferred from the acoustic oscillations. Between the epoch of last
scattering at z ' 1100 and and the epoch corresponding to the
peak of the lensing kernel (z ' 2–3), the fluctuations in the mat-
ter density are predicted to grow in amplitude by nearly three
orders of magnitude. Since for much of this time the Universe is
matter dominated and the fluctuations are in the linear regime,
GR predicts the amount of growth at the percent level, allowing

a precision test of the theory. In fact, the comparison can be done
to such high accuracy that it is best phrased as a scaling, Aφφ

L , of
the theoretical prediction – taking into account the distributed ef-
fects of lensing, etc. We find Aφφ

L = 0.997±0.031, which provides
a stunning confirmation of the gravitational instability paradigm,
and also allows us to constrain constituents of the Universe that
do not cluster on small scales (such as massive neutrinos; see
Sect. 5.3) and so reduce the small-scale power spectrum. Future,
more precise, measurements of CMB lensing will provide strong
constraints on neutrino masses, extra relativistic degrees of free-
dom, and early dark energy.

Also shown in Fig. 19 are measurements of the matter power
spectrum inferred from galaxy clustering and the Lyα forest.
The former represents a measurement at z ' 0, although it has
an uncertain amplitude because of galaxy bias. In plotting the
SDSS galaxy clustering points, we have accounted for galaxy
bias assuming the phenomenological bias model of Reid et al.
(2010). Specifically, we have fit this model to the Planck best-
fit cosmology, yielding {b0, a1, a2} = {1.23, 0.56,−0.35} at a
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Figure 3.1: Data from various cosmological probes compared to the theoretical
prediction of the linear matter power spectrum (black line) at redshift zero. The
turn-around value, kta, represents the scale where modes started entering the
horizon during matter domination instead of radiation domination. The results
of the Meszaros effect can thus be seen for k > kta. The dotted line shows the
predicted behaviour of the non-linear power spectrum. Credit: ESA and the
Planck Collaboration (Planck Collaboration et al., 2020a)

Again, due to the non-linear evolution of matter fluctuations, some
information about the matter field leaks over to higher-order statistics. Repeating
the above process for the three-point correlation function we get the bispectrum,

B(k1, k2, k3)(2π)3δD(k123) = ⟨δ(k1)δ(k2)δ(k3)⟩. (3.7)

Studying the bispectrum is interesting in itself to better understand non-
Gaussianities in the matter field, but can also provide additional information,
for example when massive neutrinos are present in the cosmological model, as
their effects are larger on the non-linear level. Both the power spectrum and the
bispectrum were studied for various neutrino masses in Paper I.

In addition to studying the observed power and bispectrum, investigating
the ratio of power and bispectra for various simulated cosmologies are of interest.
Especially the power spectrum ratio of alternative cosmologies to that of ΛCDM,
known as the boost, has gained interest as a probe of the difference in clustering
statistics between the models. In Paper III, we made a pipeline for the creation
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3. Observing the large-scale structure

of a boost emulator for beyond-ΛCDM models. As an example, we created a
boost emulator for f(R)-modified gravity in the presence of massive neutrinos,
incorporating their degenerate effect.

3.3 The halo mass function

The halo mass function (HMF) describes the abundance of dark matter halos as
a function of their mass. Typically, it is measured by

HMF = dn

d ln M
, (3.8)

the number density, n, of halos within a narrow logarithmic halo mass band,
d ln M . As mentioned in Sect. 1.3.3, halos are virialised objects that have
detached from the background expansion (Peacock and Heavens, 1990; Press
et al., 1974). They form hierarchically, meaning that small halos form first and
merge with each other to create more massive halos. The largest, and most
recently formed, halo structures are today the hosts of galaxy clusters. Because
of this, the HMF is sensitive to the expansion history of the Universe and the
nature of gravity and can be used to estimate cosmological parameters (Despali
et al., 2016; Dodelson and Schmidt, 2020).

Constraints are generally obtained by comparing theoretical predictions and
simulations with observations. The setback here is, yet again, that dark matter
halos are not directly observable. Luckily, dark matter halos are hosts to galaxies,
which are biased tracers of the underlying dark matter field (e.g. Desjacques,
Jeong, and Schmidt, 2018). By applying models for how galaxies populate their
hosts, galaxy surveys, and especially the abundance of galaxy clusters, may be
used to infer the distribution of dark matter halos (Castro, Marra, and Quartin,
2016). This can again be cross-checked with predictions from detailed simulations,
where multiple tools already exist for creating halo catalogues out of dark matter
density fields (e.g. Behroozi, Wechsler, and Wu, 2012; Despali et al., 2016). In
Paper I, the impact of massive neutrinos on the HMF was studied for various
N -body simulations and emulators. The HMF was also included in Paper II, to
investigate the difference between cosmologies with massive neutrinos and f(R)
gravity.

3.4 The halo bias

Both galaxies and halos are biased tracers of the underlying matter field. The
halo bias can be defined as (e.g. Castorina et al., 2014)

b(k) =
Ph,cb(k)

Pcb(k)
, (3.9)

where Ph,cb(k) is the cross-power spectrum between halos and CDM+baryons
and Pcb(k) is the auto power spectrum of CDM+baryons. The halo bias tells us

30



Cosmic voids

something about how the distribution of halos follows that of the underlying dark
matter, and it will depend on the nature of gravity and the expansion history
of the Universe. For example, for a ΛCDM scenario with massless neutrinos,
the halo bias is scale-independent on linear scales, while the introduction of
massive neutrinos introduces a scale dependence (e.g. Chiang, Loverde, and
Villaescusa-Navarro, 2019). Because of its alterations to gravity, and thereby
structure growth, a modification to gravity will also induce a change in the
observed bias (e.g. Arnold et al., 2019).

The halo bias is most easily studied in simulations, where we have access to
the underlying dark matter field, and can create halo catalogues as mentioned
in Sect 3.3. Because of this, the halo bias is included in Papers I and II, as a
way of studying the impact of massive neutrinos and f(R)-modified gravity.

3.5 Cosmic voids

The CCF, matter power spectrum, HMF, and halo bias (Sect. 3.1-3.4) are
statistical observables based on the distribution of matter. However, much
can also be learned by studying the opposite - the absence of matter. Cosmic
voids have recently emerged as important independent probes of cosmological
parameters and gravity. They are vast regions in space that have not undergone
virialisation and can therefore be described well by linear perturbation theory. In
addition to this, their empty nature makes them the areas in the Universe with
the highest neutrino-to-other-matter ratio, and their sizes are of similar scales
to the neutrino free-streaming length. This makes them excellent candidates
for studying the effects of massive neutrinos. Being underdense, voids are also
promising regions for studying modified gravity theories, which include screening
mechanisms to adhere to already established observational knowledge of our
local Universe. Seeing as these mechanisms kick in for high-density regions,
cosmic voids will experience modified gravity in a less screened manner.

To extract cosmological information from voids, we can study the redshift
space distortions (RSDs) in the quadrupole of the void-galaxy CCF. Firstly,
redshift space is the space, or the coordinate system, in which objects are placed
based on their redshift. In our Universe, the redshift of an object, like a galaxy,
depends on its distance from us, due to the expansion of space. The further
away an object is, the faster it moves away from us, as known from Hubble’s
law, v = H0r, where v is the velocity of the object, H0 is the Hubble constant,
and r is the distance to the object. Because of this, the light that is emitted
from the galaxy is redshifted before it reaches us, courtesy of the Doppler effect.
In addition to the recessional velocity due to the expansion of space, objects
will also have an additional redshift or blueshift due to their individual peculiar
velocities. These velocities result in distortions in the redshift space. Secondly,
the CCF in itself tells us something about how galaxies are distributed around
voids and can be divided up into multipoles (e.g. Nadathur et al., 2019),

ξℓ(s) =
2ℓ + 1

2 ∫

1

−1
Lℓ(µ)ξ(s, µ)dµ, (3.10)
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3. Observing the large-scale structure

where ℓ denotes the multipole, s is the distance between the void centre and
galaxy in redshift space, Lℓ is the Legendre polynomial of order ℓ, and µ = cos θ
where θ is the angle between the line-of-sight (LOS) and void-galaxy separation
vector. The RSDs in the quadrupole (ℓ = 2) relay information about how the
galaxies in and around a void move along the LOS.

Now, in order to gain information from the multipoles of the void-galaxy CCF
in redshift space, we need a model. Let us denote the void-galaxy separation
vector by r in real space and s in redshift space. Then, the CCF in redshift
space, ξs(s), can be related to the CCF in real space, ξr(r), by the streaming
model (Fisher, 1995; Paillas et al., 2021; Peebles, 1980),

1 + ξs
(s) = ∫ (1 + ξr

(r))P (v∥, r)dv∥. (3.11)

Here, P (v∥, r) is the probability distribution function (PDF) of the galaxies’
peculiar velocities parallel to the LOS, v∥. By dividing this velocity into two
components, one which comes from stochastic motion, ṽ∥, and another which
comes from a coherent, spherically symmetric outflow from the void centre, vr(r),
Eq. (3.11) can be rewritten as (Woodfinden et al., 2022)

1 + ξs
(s) = ∫ (1 + ξr

(r))P (ṽ∥, r)Jrsdṽ∥. (3.12)

Now, P (ṽ∥, r) is the PDF for the stochastic velocity component, which is centred
around zero, and Jrs is the Jacobian of the coordinate shift from real to redshift
space, given by

Jrs =

⎡
⎢
⎢
⎢
⎢
⎣

1 + vr

raH
+
(v′r − vr/r)

aH
µ2

r

⎤
⎥
⎥
⎥
⎥
⎦

−1

. (3.13)

Here, vr is the coherent outflow velocity from earlier, µr is the cosine of the angle
between the LOS and r, H is the Hubble parameter, and the prime denotes the
derivative with respect to r.

The void velocity profile, vr(r), is not readily observable and is therefore
typically modelled or obtained from simulations. One common model is the
linear velocity profile, given by (Peebles, 1980, 1993)

vLin
r = −

1
3

faH∆(r)r, (3.14)

where f = d ln D/d ln a is the linear growth rate, with a the scale factor and D
the linear growth factor2, and ∆(r) = 3

r3 ∫
r

0 δ(x)x2dx, with δ(r) the overdensity
profile of dark matter around the void. Figure 3.2 shows the quadrupole of
the void-galaxy CCF for a massless neutrino ΛCDM simulation compared to
the model presented above, using the linear velocity profile as model input.

2The growth factor, D(a), quantifies the growth of matter perturbations as δ(k, a) =
δ(k, aini)D(a), where aini is some initial value. During matter domination, inside the horizon,
we have D(a) = a.
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Figure 3.2: Quadrupole of the void-galaxy CCF for a massless neutrino ΛCDM
simulation compared to the void-galaxy CCF model of Eq. (3.12). The velocity
input to the model is given by Eq. (3.14) and the simulation is taken from Paper
II. The shape of the quadrupole illustrates how galaxies inside the void move
towards a slight overdensity at the void edge, while galaxies outside the void
move towards the same overdensity from the other side.

When deriving Eq. (3.14), the growth rate is assumed to be scale-independent.
This assumption does not hold for cosmologies with modified gravity or massive
neutrinos (e.g. Hernández, 2017; Mirzatuny and Pierpaoli, 2019), which was one
of the points of interest in Paper II, where we investigated how the void-galaxy
CCF modelling performs compared to simulations with massive neutrinos and
f(R)-modified gravity.

Now, if we can accurately model the RSDs in the quadrupole of the void-
galaxy CCF resulting from the peculiar velocities of the galaxies, voids can also
be used to test our cosmological model through the Alcock-Paczyński (AP) effect
(Alcock and Paczyński, 1979). Here, the ratio of the observed angular size and
redshift size of an object of known shape is used to study a fiducial cosmology.
Any deviations from the expected shape will show up in the CCF in addition
to contributions from peculiar velocities. Voids are excellent candidates for
testing this effect, as the average shape of many voids stacked together should be
spherical. Any deviations from this indicate that the chosen fiducial cosmology
is not the true cosmology and can thus be used to help estimate cosmological
parameters.

This was a short recap of the main observables appearing in the three papers
included in this thesis. For more details, see the papers themselves and sources
therein, or e.g. Carroll and Ostlie, 2014 and Dodelson and Schmidt, 2020. With
that, let us now move away from theory and have a quick look at N -body
simulations.
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Chapter 4

Cosmological N-body simulations
A good way to test the current models of our Universe, or to investigate the effects
of new ones, is to perform cosmological simulations. Simply put, a volume of
space is filled up with matter corresponding to the expected distribution at some
early cosmic time. We then press “play” and allow the matter distribution to
evolve with time according to the laws of physics implemented in the simulation.
For a large simulated volume of space, these types of simulations are typically
focused on dark matter, as it constitutes most of the matter content and can be
described by less complicated physics than baryonic matter. For this thesis work,
I have performed a series of dark matter simulations including both massive
neutrinos and f(R)-modified gravity. In this chapter, I will provide a brief
overview of the simulation codes I have used and how they work.

4.1 General

Before addressing the individual simulations, a general overview of cosmological
N -body simulations, focusing on dark matter, is quite useful. Although
complicated to construct numerically, the premise behind the framework is
rather simple: Starting from Gaussian initial conditions, in the form of density
fluctuations, we want to evolve collisionless matter through time and space under
the effect of gravity. How this endeavor is undertaken varies from code to code
(see e.g. codes like GADGET, gevolution, CONCEPT, and RAMSES: Adamek et al.,
2016; Dakin, Hannestad, and Tram, 2022; Springel et al., 2021; Teyssier, 2002),
but the main idea behind N -body codes is the division of the matter content into
“particles”. Now, remembering back to the Vlasov-Poisson system of Sect. 1.3.3,
what we are interested in is the behaviour of the distribution function, f , of cold
dark matter. To follow this numerically, we can take advantage of the fact that
the matter occupies a thin sheet in phase-space, and discretise the sheet. The
small elements each have a position and momentum, and as the movement of
the dark matter in each small phase-space region is described by the geodesic
equation, so is the movement of the small phase-space element itself. Instead
of solving the Vlasov-Poisson system directly, we can then follow the evolution
of the particles under the influence of gravity, using the geodesic equation. For
cold dark matter, we can look at the non-relativistic limit, leading to a system
of equations given by

x′ =
p

ma
,

p′ = −ma∇Ψ, (4.1)
∇

2Ψ = 4πGa2ρ,
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4. Cosmological N-body simulations

where p is the canonical momentum, Ψ is the gravitational potential, the
derivatives are taken with respect to conformal time, and x is given in comoving
coordinates, thereby including the Hubble expansion. It is the small discretised
elements of phase space that we call particles in this setting. This means that
the particle mass, m, depends on the amount of matter we have in the simulation
volume, and the amount of particles we want to include.

Once initial conditions in the form of particle positions and velocities are in
place1, an important part of the numerical setup is computing the gravitational
potential experienced by each particle. This could be obtained by directly
summing up the gravitational force exerted on each particle from all the other
particles, but this is not computationally effective and quickly becomes quite
expensive (O(N2)) for a large number of particles, N . Two well-known methods
of improving this process are the particle mesh (PM) based approach and the
tree algorithm (see e.g. Bagla, 2005, for a review). In the first method, the
masses of the particles are conveyed to a grid, or mesh, creating a 3D density
field. Once this is obtained, the Poisson equation can easily be solved in Fourier
space, thereby acquiring the gravitational potential. How well this process works
depends on the spatial resolution of the mesh. Equal, and high, resolution of
the density field throughout the full simulation volume can still quickly get
computationally expensive (O(Nm log Nm), where Nm is the number of mesh
points). Because of this, some codes use adaptive mesh refinement (AMR), where
the mesh has a higher resolution in regions of high density while keeping a lower
resolution in regions of low density. For the other approach, the tree algorithm,
the simulation domain is divided into sub-domains, or tree nodes, which make
up levels of a hierarchical tree structure. The idea is to divide the simulation
box into fractions of eight, so that level 1 is 1/8th of the simulation volume, level
2 is 1/64th, and so on. This division goes on until each cell contains, at most,
one particle. The advantage of this approach is that, when calculating the sum
of gravitational forces on one particle, distant particles in the vicinity of each
other may be grouped into one tree node. The collective contribution to the
gravitational potential from the group of distant particles may be approximated
by a multipole expansion, keeping only the lower modes. This reduces the force
calculation to O(N log N). This approach does not have the spatial resolution
issue of the previous one, but will instead struggle with nearly homogenous
density fields. To get the best of both worlds, some codes combine the two
approaches explained below into a tree-PM method (Xu, 1995). We then look
at the Poisson equation in Fourier space and split the gravitational potential
into a short and a long-range contribution. For the long-range contribution, the
Poisson equation is solved in Fourier space, using the PM method, and for the
short-range contribution, we revert back to real space and find the gravitational

1I will not cover this part here, but in short words, it is typically acquired by rescaling the
linear matter power spectrum of today to some desired starting redshift, followed by drawing
random phases for each perturbation mode from a Gaussian distribution depending on the
initial power spectrum, creating a density field. This is then converted into particle positions
and velocities using e.g. the Zel’dovich approximation (Efstathiou et al., 1985; Zel’dovich,
1970). For more details, see e.g. Sirko, 2005.
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potential using the tree algorithm. This combination leads to an algorithm
that does not have the same spatial restrictions as the PM method, and at the
same time computes the contribution from long-range forces accurately also for
nearly homogenous density fields. Of course, once the gravitational potential is
obtained, there still remains the time integration portion of the particle evolution.
Many different numerical algorithms exist for this part of the calculation, where
the leapfrog method (Quinn et al., 1997) is a well-known example.

The implementation of the above-mentioned methods is complicated and
has, to my advantage, been performed in different variations by many skilled
astronomers and programmers before me. As a part of my Ph.D. work, I
have utilised the already existing N -body codes RAMSES (Teyssier, 2002), ISIS
(Llinares, Mota, and Winther, 2014), and COLAsolver2. The two former were
expanded and merged to create ANUBISIS (Papers I and II), and the latter was
used to create a power spectrum ratio emulator pipeline, Sesame (Paper III).
Let us have a look at the codes and their purpose in more detail.

4.2 ANUBISIS

ANUBISIS is a RAMSES-based3 (Teyssier, 2002) cosmological N -body simulation
including massive neutrinos and modified gravity. It is a merging of the ISIS
(Llinares, Mota, and Winther, 2014) and ANUBIS4 codes, which separately
incorporate modified gravity and massive neutrinos respectively. The latter was
developed as a part of this thesis work and was rigorously tested in Paper I.
Below follows a short recap of the codes used to build ANUBISIS.

4.2.1 RAMSES

RAMSES is a hydrodynamical Newtonian N -body code with multiple areas of
applicability. On smaller scales, it can be used to simulate galaxies, and is built to
handle the hydrodynamics of baryonic matter. On larger scales, it can carry out
cosmological dark matter simulations, providing us with time-stamped positions
and velocities of the particles in the simulation box. RAMSES is a PM code, but
utilises a tree algorithm to incorporate AMR, enabling it to locally change the
refinement of the simulation mesh in areas of high density. This provides the
opportunity of highly resolved regions where there is a lot of clustering, without
having to refine large empty areas to the same degree.

4.2.2 ANUBIS

ANUBIS is an extension of the RAMSES code which incorporates massive neutrino
particles. It was developed as a part of this thesis work, with the ultimate goal
of combining it with the ISIS code (see Sect. 4.2.3), to create ANUBISIS. On its

2https://github.com/HAWinther/FML/tree/master/FML/COLASolver
3https://bitbucket.org/rteyssie/ramses/src/master/
4https://github.com/renmau/anubis
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own, it was a part of the Euclid Consortium massive neutrino code comparison
project in Paper I.

Originally, RAMSES is a Newtonian N -body code, meaning that the equations
of motion (EOMs) of the simulated particles are given by Eq. (4.1). While this
is a good approach for cold dark matter particles, which move slowly compared
to the speed of light, it is not valid for massive neutrino particles. The neutrinos
are relativistic at early times, and in order for the EOMs to handle arbitrarily
high momenta, they must be rewritten in a relativistic form. By proceeding as
before, but not taking the non-relativistic limit, the geodesic equation gives

x′ =
p

√
p2 +m2a2

, (4.2)

p′ = −
2p2 +m2a2
√

p2 +m2a2
∇Ψ, (4.3)

where the parameters are as before and c = 1. To include massive neutrinos
in RAMSES, we thus created a separate particle ensemble for the neutrinos and
changed the EOMs to the form given here. This is implemented in such a way
that the total matter density, Ωm, stays fixed, meaning that an increase in
Ων gives a corresponding decrease in Ωcdm, and vice-versa. We also included
radiation in the background expansion, through the Hubble function, and allowed
for the option of reading this from file instead of calculating it within the code.
In Fig. 4.1, the dark matter density field of an ANUBIS simulation is shown,
clearly displaying the cosmic web structure of our Universe.

The performance of ANUBIS compared to other N -body codes incorporating
massive neutrinos was tested in Paper I for various simulation setups and neutrino
masses. The comparison was performed with less than optimal resolution
(Schneider et al., 2016)5, but ANUBIS overall still gave results consistent with
the other codes, both in the massless and massive neutrino cases for the various
observables. However, the performance at small scales was noticeably better for
redshift zero and for the simulations with a higher particle density compared to
the standard particle density chosen for the comparison.

4.2.3 ISIS

ISIS (Llinares, Mota, and Winther, 2014) is an extension of the RAMSES code
incorporating modified gravity, with screening mechanisms, in the form of scalar-
tensor gravitational theories. Thus, it is a PM N -body code with AMR, where
additional fifth forces are included in the gravitational potential calculations. It
includes a non-linear implicit solver for a general scalar field, thereby handling
different modified gravity theories. Among them is Hu-Sawicki f(R) gravity

5This was due to limited time and computing resources on our end. ANUBIS was developed
alongside the comparison project and was not optimised in terms of time stepping. This,
combined with the high memory requirements of RAMSES for increasing the base grid resolution,
led to us settling for a lower resolution option.
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Figure 4.1: Dark matter density field for the high-resolution massless neutrino
simulation performed by ANUBIS for Paper I. The original box has dimensions of
512 h−1Mpc, and the plot shows a 300 × 300 × 25 h−3Mpc3 slice projected onto
two dimensions for redshift zero.

(Sect. 2.2.1), incorporated through its scalar-tensor formulation, which has been
the main interest of this thesis work.

The resulting combination of ANUBIS and ISIS, ANUBISIS, was used in Paper
II to perform simulations including both massive neutrinos and f(R)-modified
gravity. These were further analysed using cosmic voids, clearly showcasing the
degenerate nature of massive neutrinos and f(R) gravity.

4.3 Sesame – A power spectrum ratio emulator pipeline

In the final project of this Ph.D. thesis (Paper III), I moved away from the
ANUBIS and ANUBISIS simulations, and instead looked at an approximate N -
body simulation, the COLAsolver in the FML library6. Taking advantage of the
low computing resource requirements of the code, we used it as a baseline for

6https://github.com/HAWinther/FML/tree/master/FML/COLASolver
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creating a full emulator pipeline for the power spectrum boost of beyond-ΛCDM
cosmologies, B(k, z) = Pbeyond−ΛCDM(k, z)/PΛCDM(k, z). This was achieved by
running a large set of simulations for varying cosmological parameter values with
the COLAsolver, and then using the output as training data for a neural network.
As an example, we created an emulator for f(R)-modified gravity, including
massive neutrinos. The full pipeline was named Sesame - from simulations to
emulators using approximate methods7. Below follows a brief overview of the
COLAsolver and the machine learning techniques applied when creating the
emulator.

4.3.1 The COLAsolver

Sometimes, for statistical analysis, we do not necessarily need incredibly accurate
simulations, but rather a high quantity of simulations. For this, the above
approach with ANUBISIS is too time- and memory-consuming. What we can
do instead, is use approximate methods, which do not fully solve the particle
trajectories as explained in Sect. 4.1, but rather employ some shortcuts. One
such method is the comoving Lagrangian acceleration (COLA) method (Tassev,
Zaldarriaga, and Eisenstein, 2013), which takes advantage of the fact that
structure formation can be described accurately on large scales by Lagrangian
perturbation theory (LPT). To reduce the simulation time substantially, a
simulation can therefore use LPT at large scales, while still using, in this case, a
full PM N -body solution at small scales. This is obtained by, instead of solving
for the full trajectory of the particle, solving for the displacement (δx) between
the LPT trajectory (xLPT) and the full trajectory (x). So, instead of solving
something along the lines of (ignoring factors of m and a)

x′′ = −∇Ψ, (4.4)

we instead solve, using x = δx +xLPT,

δx′′ = −∇Ψ −x′′LPT. (4.5)

This stays accurate on large scales even with few time steps, reducing the
computation time substantially. In practice, we are trading accuracy on small
scales for speed. However, increasing the amount of time steps makes the method
converge towards a regular PM N -body simulation, meaning that you can control
the trade-off.

This method is implemented in the COLAsolver in the FML library, which is
the version following the MG-PICOLA code (Winther et al., 2017)8, which uses the
COLA method in the setting of f(R)-modified gravity. The COLAsolver version
also includes massive neutrinos, as explained by Wright, Winther, and Koyama,
2017. The implementation of massive neutrinos is different in the COLAsolver
compared to ANUBISIS. As we saw earlier, ANUBISIS implements the neutrinos

7https://github.com/renmau/Sesame_pipeline
8https://github.com/HAWinther/MG-PICOLA-PUBLIC
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as particles. The neutrinos in the COLAsolver are instead described through
a mesh-based approach, where the distribution function of neutrinos, based on
linear theory, is represented on a spatial mesh (Brandbyge and Hannestad, 2009).
This does not allow us to follow the neutrinos into the non-linear regime, but as
they cluster weakly, this is still a good approximation.

4.3.2 Machine learning

The efficiency of the COLAsolver makes it possible to perform a large number of
simulations with varying cosmological parameters over a short timespan. Doing
this for both a beyond-ΛCDM and a ΛCDM model allows us to extract the
matter power spectrum boost. Using machine learning, we can then use this
data to train a neural network, which in turn can provide us with an emulator
capable of predicting the matter power spectrum boost at any desired redshift
and cosmological parameter values within some allowed intervals.

In order to obtain the emulator, we use the PyTorch-Lightening9 package
in Python, which is a wrapper for the PyTorch10 module. This provides a simple
interface for accessing a machine learning framework, focusing on deep learning
through training neural networks with multiple layers. The architecture of the
neural network is engineered by the user, allowing adaptation based on need in
terms of performance. Figure 4.2 illustrates an example structure of a neural
network with multiple layers, each consisting of a number of neurons. In this
specific case, we have the input layer in green, to the left, which takes all our
data and presents it to the rest of the network. For simplicity, the figure only
contains three neurons in the input layer, but these will represent the amount
of features you have in your data. If you have a function that depends on 20
variables, xi with i = 1, . . . , 20, then you need 20 neurons in your input layer.
Each neuron in the input layer then takes one data feature, xi, and passes it on
to all the neurons in the first hidden layer, through a connection (the arrows
in the figure). This is where the magic starts to happen. Each connection has
an associated weight, w, so that the values that arrive at the neurons in the
hidden layers are weighted. The inputs to each neuron are then summed up so
that we have Y = ∑xiwi. Next, a bias value, b, is added to allow the sum to be
adjusted, providing more flexibility. An activation function, g, is then applied to
the sum, which is where the possibilities of non-linearities are introduced. From
each neuron in the first hidden layer, g(Y + b) is then sent to each neuron in the
next hidden layer, and the process with weights, bias, and activation function
repeats itself. Finally, the last hidden layer passes data to the output layer,
repeating the aforementioned process one last time. The output neurons then
produce the final results. In our illustration, there is only one output neuron,
representing, for example, the value of a function that we want to estimate given
some feature values. How much the output data differs from the input data
can now be estimated, and is often known as the loss. The goal is then for the

9https://www.pytorchlightning.ai/index.html
10https://pytorch.org/
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Figure 4.2: Neural network with two hidden layers.

weights to be updated so that the error between the input data and output data
is reduced, which is done through several iterations of the process above, using
the gradient of the loss to estimate how the weights should be changed. This
is the training algorithm of the neural network. Interestingly, if the function
we were trying to estimate was linear in nature, we would not need any hidden
layers and could go directly from the input layer to the output layer. The process
would then be similar to linear regression. For more information about machine
learning and neural networks, see e.g. Hastie, Tibshirani, and Friedman, 2009;
Marsland, 2014.

In the manner explained above, neural networks were trained on power
spectrum boost data in Paper III, creating emulators for the example case of
f(R) gravity with massive neutrinos, as a means to demonstrate the Sesame
pipeline.
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Chapter 5

Summary and outlook
After four chapters introducing and reviewing the area of interest of this thesis,
it is finally time to summarise and conclude the work. Below follows first a
short recap of each individual paper in writing order, and then a conclusion and
outlook for the time to come.

5.1 Summaries of papers

Paper I

This paper is a collaboration project performed within the Euclid Consortium,
led by Julian Adamek, SNSF Eccellenza professor at the University of Zurich.

The Euclid mission has many scientific goals revolving around the study of
the dark components of our Universe. Therein lies the aim of measuring the sum
of the neutrino masses to a precision better than 0.03 eV (Laureijs et al., 2011).
This measurement will be obtained through a joint analysis of galaxy clustering
and weak gravitational lensing and therefore requires extensive knowledge of how
neutrinos affect structure formation. With our current model of the Universe, this
can be studied in detail with N -body simulations. In this paper, 17 simulations
incorporating neutrinos were compared through the power spectrum, bispectrum,
halo mass function, and halo bias for ∑mν = 0.0 eV, 0.15 eV, 0.3 eV, and 0.6 eV.
The codes varied in structure, ranging from full N -body implementations to
emulators. All in all, they showed good agreement, especially when studying
the ratio between the massive and massless neutrino scenarios for the various
observables, as this cancels out some of the internal code systematics.

This is the paper where ANUBIS made its debut (see Sect. 4.2.2). Overall,
ANUBIS agreed well with the other codes in the comparison project, but suffered
slightly from restricted resolution due to the neutrino implementation and limited
computer resources. Because of the memory requirements of RAMSES, ANUBIS
was run with a base-grid of 512. As mentioned in Paper II, no changes were
made to the time-stepping algorithm in RAMSES when neutrinos were introduced,
resulting in time-consuming calculations, but also a more detailed time-evolution
of the dark matter particles in the simulations where neutrinos were included.
This showed up as a slight excess in the power spectrum ratio between the massive
and massless neutrino runs at large scales, and again at small scales where the
AMR-scheme of RAMSES led to less refinement where neutrinos suppress structure
formation. Still, convergence tests show that the issue of different refinement at
small scales due to the neutrinos can be solved by a higher particle density.

In conclusion, this paper confirms that different implementations of massive
neutrinos in the cosmological simulations included in the comparison perform
similarly. It is left up to the reader to choose the code that best suits them when
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modelling the impact of massive neutrinos on structure formation, depending on
resources and desired output. In addition, this project served as an excellent
testing ground for the ANUBIS code.

Paper II

In this paper, the effects of massive neutrinos and f(R)-modified gravity were
studied through void statistics (see Sect. 3.5). Cosmic voids are promising
grounds for investigating both massive neutrinos and modified gravity due to
their underdense nature. This means that the ratio of neutrinos to other species
is high in these regions, and also that the screening mechanisms in play for
modified gravities are not invoked, which should make it easier to study both of
their signatures. We used simulations performed with ANUBISIS (see Sect. 4.2)
to obtain void catalogues in the cases of a reference ΛCDM run with massless
neutrinos, two massive neutrino runs (∑mν = 0.15 eV and 0.6 eV), one f(R)-
modified gravity run (∣fR0∣ = 10−5), and two combined simulations with massive
neutrinos and modified gravity. In each case, we calculated the void velocity
profile and the void-halo cross-correlation function from the simulation data and
compared them to theory. First, we did this by using the real space halo data
available to us from the simulations. However, galaxy surveys can only observe
in redshift space, and we therefore also carried out these calculations on the
redshift data after applying a reconstruction method (Nadathur, Carter, and
Percival, 2019) to put the redshift space information back into real space.

The purpose of this paper was to test the current void modelling framework
in the presence of massive neutrinos and f(R)-modified gravity, which breaks the
assumption of a scale-invariant growth rate going into the CCF and reconstruction
models. In theory, this means that we expected the models to perform better in
the ΛCDM scenario. Although we found higher velocities and velocity dispersions
for the galaxies surrounding voids in the f(R) gravity case, and the opposite for
massive neutrinos, the uncertainties connected to the velocity models and the
fact that we had a sparse sample of tracers outweighed any possible differences in
the model performance. In addition, the reconstruction process did not perform
noticeably different for the various cosmologies. If anything, it performed slightly
better in the massive neutrino scenario, possibly due to lower velocities adhering
to the assumptions of linearity. We also performed Markov chain Monte Carlo
(MCMC) fits for the cosmological parameter fσ8 and the Alcock-Paczyǹski
parameter ϵ, to see if the obtained values better matched the fiducial cosmology
for the massless neutrino ΛCDM case. All in all, we did not find a better
match between the models and the simulations for the massless neutrino ΛCDM
case compared to massive neutrinos and f(R) gravity, even though voids are
sensitive to their effects. This led us to conclude that more accurate modelling
and simulations are needed in order to use the void-galaxy CCF to distinguish
between the cosmological models. In addition, we also found that the void-
galaxy CCF is yet another degenerate observable for massive neutrinos and
f(R)-modified gravity at redshift zero.
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Paper III

In the final paper of this thesis work, we created a full pipeline, Sesame, for
constructing a matter power spectrum boost emulator for beyond-ΛCDM models,
without the need for supercomputers. Emulators are great tools when we
are interested in specific global clustering statistics, like the matter power
spectrum, and are much faster and less resource-demanding than performing
full cosmological simulations. However, to create the emulator, a large suite
of simulations for various parameter choices is typically required in order to
interpolate and achieve estimates for intermediate parameter values. Because
of this, once an emulator is constructed for a chosen cosmological model, it is
not straightforward to create a new emulator for a different model. To forego
this issue, we created an emulator pipeline using the fast and approximate
COLA method (Sect. 4.3.1) for the N -body simulation step. In this way, if
we are interested in, for example, the matter power spectrum boost between
a ΛCDM and beyond-ΛCDM model, we can perform both the ΛCDM and
beyond-ΛCDM simulations efficiently. Focusing on the boost, as opposed to the
full matter power spectrum, is convenient as some effects from the internal code
structure cancel out (see e.g. Euclid Consortium et al., 2023), allowing us to
reach precision at higher k-values. To extract the beyond-ΛCDM matter power
spectrum afterwards, we can utilise already existing highly-accurate ΛCDM
emulators. In addition, the shape of the boost curve is easier to estimate using
machine learning, compared to the full matter power spectrum. The next step
in our emulator pipeline is thus to use the PyTorch-Lightening package (see
Sect. 4.3.2) to give the boost value for various values of cosmological parameters,
redshifts, and scales to a neural network. Here, the data is used to train the
network, resulting in an emulator for the boost.

As an example demonstration of Sesame, we created emulators for the linear
and non-linear boost of f(R)-modified gravity, including massive neutrinos. For
our setup, we achieved below 1% accuracy between the simulated and emulated
boost in the fully linear case, and around 2% agreement for the non-linear boost,
using approximately 3000 CPU hours for the creation of each emulator. We
provide the emulators and the full pipeline, Sesame, for the reader, opening up
the opportunity for the user to create their own emulator by implementing their
desired cosmology to the COLAsolver and applying the pipeline.

5.2 Conclusions and outlook

It has been said by many, in different variations, that endings are often no more
than beginnings in disguise. We have now arrived here, at what will be the final
paragraphs of this thesis work - so where better to start the ending, than at the
beginning?

I opened this thesis with an introduction to the standard model of cosmology
and how perturbations in the early Universe grew into the intricate structures we
observe today. This laid the groundwork for everything following, from how we
can observe large-scale structure at the present time, to how we can simulate it
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throughout time. In addition, a standard model of cosmology also opens up the
possibility of a non-standard model of cosmology. This is a broad research field,
and in this thesis, I cover only a small corner of it. My topics of interest have
been massive neutrino particles and f(R)-modified gravity, and their impact on
large-scale structure probes. Neutrinos, on one side, are a part of the ΛCDM
model, and make up a small fraction of the dark matter content of the Universe.
Their unique nature, changing from relativistic to non-relativistic, results in a
suppression of structure formation on small scales. f(R)-modified gravity, on the
other side, is what I above called a non-standard model of cosmology, where the
GR framework is extended in such a way that the accelerated expansion of the
Universe can be explained without dark energy. This results in an enhancement of
structure growth, also on small scales, yielding several degenerate observables for
massive neutrinos and f(R) gravity. Understanding and breaking this degeneracy
has been the topic of several research papers in recent times (e.g. Baldi et al.,
2014; Contarini et al., 2021; Giocoli, Baldi, and Moscardini, 2018; Wright et al.,
2019), and some interesting avenues, like the void size function at high redshifts,
weak lensing, and RSDs, have been found.

For this thesis work, I approached the above topic numerically. This resulted
in the N -body code ANUBISIS, which includes both modified gravity and massive
neutrinos, and the emulator pipeline, Sesame, which creates emulators for the
matter power spectrum boost for beyond-ΛCDM models compared to ΛCDM.
These are both tools that can be used for further exploration of the degenerate
effect of massive neutrinos and modified gravity on structure formation. The
code ANUBIS, including the effect of massive neutrinos, was also part of a Euclid
project, confirming that current simulations incorporate neutrinos accurately
enough to model their impact at the sub-percent level. Sesame, the emulator
pipeline, is perhaps the most general output to result from this thesis work, as
it can be used by others to create emulators for global clustering statistics for a
cosmological model of their choice. In addition to the creation and testing of
these codes, which is covered in Papers I and III, I also spent a large portion
of my time using ANUBISIS simulations to test the void modelling framework
in the presence of massive neutrinos and f(R)-modified gravity, resulting in
Paper II. Here, we found that we need a more accurate velocity modelling for
the void velocity profile, along with a more precise reconstruction method and
high-resolution simulations or observational data in order for the cosmological
parameters extracted by void statistics to be accurate enough to pick up the
effects of massive neutrinos and modified gravity. In addition, we found that the
void-halo cross-correlation function is yet another degenerate observable, at least
for redshift zero. A new investigation with simulations of increased resolution,
and at higher redshifts, would therefore be of interest. This knowledge, along
with ANUBIS, ANUBISIS, and Sesame, are the main takeaways from this thesis
work.

Exciting times are now coming for cosmologists worldwide. With the recent
launch of the Euclid satellite on the 1st of July this year, we are patiently
awaiting new constraints on gravity and the dark sector of our Universe. Two of
the main science goals of Euclid particularly concern this thesis work. First, we
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have the goal of measuring the sum of the neutrino masses to a 1σ precision better
than 0.03 eV, and secondly, we have the goal of measuring the rate of structure
growth accurately enough to distinguish general relativity from several modified
gravity theories (Laureijs et al., 2011). A reasonable question is then, with their
known degeneracy, can we reach both of these goals to the desired accuracy?
A recent paper by Euclid Collaboration et al., 2023 investigates the expected
constraining power of the fR0 parameter in Hu-Sawicki f(R) gravity. They find
that by combining probes, in an optimistic setting, Euclid should be able to
constrain log fR0 at the 1% level when using a fiducial value of ∣fR0∣ = 5 × 10−6

in the analysis. They also find that Euclid should be able to distinguish between
models with ∣fR0∣ = 5×10−5, 5×10−6, and 5×10−7 and ΛCDM at more than 3σ in
this optimistic scenario. The analysis includes a neutrino mass of ∑mν = 0.06 eV,
but does not allow it to vary, and thereby does not include the degeneracy
between modified gravity and massive neutrinos. As mentioned in the paper,
this might result in constraints that are tighter than they would be if ∑mν

was allowed to vary. How much tighter is not yet determined. Still, the Euclid
observational data, with its gravitational lensing, galaxy clustering, high redshift
observations, and complementary data like redshift space distortions, is very
promising in regards to breaking the degeneracy between modified gravity and
massive neutrinos. Accomplishing this would help us further constrain the total
neutrino mass and modified gravity individually, but also allow us to better
understand their interplay on cosmological probes throughout time and scale.
This leaves us here, at the precipice, waiting for data that might further solidify
the standard model of cosmology - or better yet, might not.
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Abstract. The measurement of the absolute neutrino mass scale from cosmological large-
scale clustering data is one of the key science goals of the Euclid mission. Such a measurement
relies on precise modelling of the impact of neutrinos on structure formation, which can be
studied with N -body simulations. Here we present the results from a major code comparison
effort to establish the maturity and reliability of numerical methods for treating massive
neutrinos. The comparison includes eleven full N -body implementations (not all of them
independent), two N -body schemes with approximate time integration, and four additional
codes that directly predict or emulate the matter power spectrum. Using a common set of
initial data we quantify the relative agreement on the nonlinear power spectrum of cold dark
matter and baryons and, for theN -body codes, also the relative agreement on the bispectrum,
halo mass function, and halo bias. We find that the different numerical implementations
produce fully consistent results. We can therefore be confident that we can model the impact
of massive neutrinos at the sub-percent level in the most common summary statistics. We
also provide a code validation pipeline for future reference.

Keywords: cosmological neutrinos, cosmological simulations, neutrino masses from cosmol-
ogy, power spectrum
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1 Introduction

The upcoming Euclid mission [1] will provide very detailed observations of the large-scale
structure of our Universe, making it possible to probe physics related to dark energy and
neutrinos at an unprecedented level of precision. The analysis and interpretation of these
data require a very accurate modelling of the process of structure formation. This is of
particular relevance since a precise modelling of the mass-dependent effect neutrinos have on
various summary statistics will allow a cosmological measurement of the absolute neutrino
mass scale, which is one of the key science objectives of Euclid.

Here we focus on the treatment of massive neutrinos in cosmological N -body simulations
and investigate the convergence of a number of different codes over a variety of different scales
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and redshifts. Oscillation experiments have established a firm lower bound on the sum of
neutrino masses of around 0.06 eV. Using the well-known relation between neutrino mass and
cosmological energy density, ∑mν ≈ Ωνh

2× 94 eV, this lower bound on the sum of neutrino
masses corresponds to a lower bound of Ωνh

2 > 6× 10−4, or approximately 0.5% of the total
matter density. As usual, the cosmological density of any component X can be given in terms
of ΩX, which is its present-day energy density in units of the critical density, and physical
density parameters are then denoted as ωX = ΩXh

2, where h is the reduced Hubble parameter.
The sum of the neutrino masses is already constrained using information from the cosmic

microwave background (CMB) combined with observations of large-scale structure like baryon
acoustic oscillations [2], redshift-space distortions [3], and the Lyman-α forest [4]. While
currently providing only upper bounds, these constraints are expected to improve significantly
with upcoming surveys like Euclid which will be able to measure the neutrino mass fraction
even if it is close to the lower bound. The matter power spectrum is still affected at the level
of 4 % in this scenario, which is well within the sensitivity of the Euclid main probes.

For instance, the weak-lensing signal probed by Euclid is sensitive to the matter power
spectrum up to k ≈ 7hMpc−1 [5]. A linear model would be completely inadequate at such
short scales and we therefore need robust nonlinear models. The forecast for galaxy clus-
tering in Euclid typically assumes that the matter power spectrum and the galaxy bias is
well understood at least up to k ≈ 0.3hMpc−1 which also requires some nonlinear prescrip-
tion [6]. Many codes considered here are used in Euclid preparation papers and reference
simulations. For instance, PKDGRAV3 ran Euclid’s flagship simulations and the simulations
used by Knabenhans et al. [7, 8] to train the EuclidEmulator2; openGADGET3 was used to
calibrate the halo mass function for the Euclid cluster abundance analysis by Castro et al. [9],
and PINOCCHIO was used to create the synthetic catalogues for the validation of the covari-
ance matrix of cluster abundance and the clustering of clusters by Fumagalli et al. [10, 11].
Our objective is therefore to establish a reliable calibration baseline for the measurement of
the neutrino mass scale within the cosmological analysis of Euclid data. We expect that our
results are also relevant in the context of other so-called “stage IV surveys” like the Vera C.
Rubin Observatory or the Nancy Grace Roman Space Telescope.

Over the past decade, a variety of different methods have been employed to incor-
porate massive neutrinos in N -body simulations [12]. As discussed in more detail later,
they broadly fall into two categories which we may refer to as “particle based” and “mesh
based,” respectively. They follow different philosophies of keeping track of the evolving neu-
trino phase-space distribution function. Particle-based methods sample the six-dimensional
phase-space directly, see e.g. refs. [13–22]. Mesh-based methods, on the other hand, work
under the approximation that neutrino perturbations remain small and can be treated with
perturbation theory [23–26]. In the simplest case that is sufficient for low neutrino masses one
works with a linear realisation of the neutrino density field on a grid [23]. The linear theory
for neutrinos may also be solved using the full nonlinear gravitational potential calculated in
the simulation [24–26]. A different approach is to treat the massive neutrinos as a fluid and
then solve the corresponding fluid equations, employing some approximation scheme to close
the set of equations [27]. One can also attempt to integrate the Vlasov-Poisson equations on
a six-dimensional phase-space grid [28].

Generally speaking, the mesh-based schemes work best for relatively small neutrino
masses where neutrino perturbations remain linear or quasi-linear at all times. There are also
hybrid schemes that use elements from both approaches. For instance, one may use a linear
mesh-based representation at early times which is then converted to a particle representation
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at late time [29, 30]. The so-called “δf method” introduced in Elbers et al. [31] is another
hybrid approach that uses a particle ensemble to estimate perturbations δf to the smooth
background phase-space distribution function f . Finally, a coordinate (gauge) transformation
can be used to include linear neutrino perturbations without modifications to the N -body
simulation code [32]. Cosmology-rescaling algorithms that are applied in post-processing have
been shown to provide accurate results as well [33]. In this work, we aim to compare these
different numerical approaches by employing them to run cosmological N -body simulations
starting from the same initial conditions, and comparing the properties of the resulting matter
and halo distributions using a controlled post-processing pipeline.

This paper is structured as follows. We begin with a brief review of neutrino physics
and its impact on cosmology in section 2. In section 3, we describe the numerical methods
that can be used to account for the cosmological effects of neutrinos. Our simulations are
described in section 4 and in section 5 we present our numerical results. We conclude with
a discussion in section 6.

2 Neutrino physics

From oscillation experiments it is firmly established that at least two of the standard-model
neutrino mass states have non-zero mass, but the absolute mass scale is unknown and two
mass orderings remain possible: normal and inverted. The current best-fit values for the
mass-square differences measured in oscillation experiments are given by [34]

∆m2
21 = 7.42+0.21

−0.20 × 10−5 eV2, (2.1)
∆m2

31 = 2.517+0.026
−0.028 × 10−3 eV2 (NO), (2.2)

∆m2
32 = −2.498+0.028

−0.028 × 10−3 eV2 (IO), (2.3)

where “NO” denotes the normal mass ordering and “IO” the inverted one. This leads to
lower bounds on the sum of neutrino masses of ∑mν & 0.06 eV (NO) and ∑mν & 0.1 eV
(IO), respectively. The best current experimental upper bound on the neutrino masses comes
from the KATRIN experiment, which measures an incoherent sum of mass states using beta
decay of tritium [35, 36]. This bound approximately translates to ∑mν . 2.4 eV.

However, cosmology already provides much more stringent bounds, typically around∑
mν . 0.1− 0.2 eV. Assuming a minimal ΛCDM cosmology with massive neutrinos, a joint

analysis of cosmological probes currently obtains ∑mν < 0.09 eV at 95% confidence, already
putting pressure on the inverted mass ordering scenario [37]. These constraints are based
on several physical effects affecting the CMB and large-scale structure in different ways, see
Archidiacono et al. [38] for a review. Some of the effects are simply related to the change in the
expansion history, others to the explicit coupling of neutrinos to cosmological perturbations.
More specifically, massive neutrinos modify the shape of the matter power spectrum both
in the linear and the nonlinear regimes. First, as neutrinos behave like radiation in the
early Universe, they move the radiation-matter equality to slightly later times, therefore
shifting the peak of the power spectrum towards smaller wavenumbers. Second, after the
non-relativistic transition, they slow down the linear growth of perturbations at scales smaller
than the free-streaming length, leading to a scale-dependent growth rate. The small-scale
suppression in the linear power spectra of cold dark matter (CDM) and baryons, Pcb, or
total matter (which includes massive neutrinos), Pm, with respect to a model with massless
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neutrinos, can be quantified as [18, 39, 40]

∆Pcb
Pcb

≈ 6 fν ,
∆Pm
Pm

≈ 8 fν , (2.4)

respectively, where fν = Ων/Ωm is the neutrino mass fraction. In the nonlinear regime,
this suppression is even more prominent and exhibits a dip at k ≈ 1 h Mpc−1 for low
redshift, giving rise to the well-known “spoon-like” feature [41]. In the context of the halo
model, this feature appears at the transition region of the two-halo and the one-halo terms.
In particular, the dip is caused by the small-scale suppression of two-halo clustering that
is induced by free-streaming, while the subsequent rise reflects the fact that the number
of the most massive halos is rather independent of the neutrino masses. All these effects
can be accurately predicted by modelling the neutrino component in cosmological N -body
simulations. Assessing the relative accuracy and convergence of such modelling over a range
of different numerical methods and simulation codes is the main goal of this paper.

3 Numerical methods

In this section, we give an overview of the various methods that have been developed for
the treatment of massive neutrinos in N -body simulations and other numerical models. The
most accurate results are expected when the local density of neutrinos in configuration space
is accounted for within a simulation itself. This is technically challenging because of the large
phase-space volume that is populated by neutrino particles. The methods to deal with this
broadly fall into two categories that shall be discussed in turn: particle-based and mesh-based.
Hybrid methods that use concepts from both categories have also been developed. Apart
from full N -body simulations that may try to incorporate (as much as possible) the neutrino
physics, there also exist approximate methods to generate realisations of large-scale structure.
These can be augmented with recipes to account for the effect of massive neutrinos. Finally, if
one is only interested in summary statistics like the power spectrum, emulators are a powerful
tool that can be calibrated to include the sum of the neutrino masses as a free parameter.
An overview of the various numerical codes employed in this work is given in table 1.

3.1 Particle-based methods
Conceptually, the most straightforward method of accounting for cosmic neutrinos in a sim-
ulation is to represent them by a separate N -body ensemble. However, this method faces
several challenges that need to be addressed carefully.

The first challenge is posed by the aforementioned phase-space volume that needs to
be sampled. The phase-space distribution of neutrino particles typically has a very large
velocity dispersion that is orders of magnitude larger than the bulk velocity. Therefore,
representing the neutrinos with a small number ofN -body particles that simply track the bulk
velocities, which is essentially the method of choice for CDM or baryons, would completely
miss the fact that most neutrinos are unbound and easily free stream out of gravity wells.
Thus, the common practice is to sample the N -body particles from the true phase-space
distribution, effectively performing a Monte-Carlo integration of the evolution equations.
The main drawback of this method is that a poor sampling usually introduces significant
shot noise, while high sampling rates quickly become very expensive as both the memory
requirement and computations become completely dominated by the neutrino particle load.
This is undesirable since neutrinos are just a tiny fraction of the matter after all.
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Code type neutrino method(s) reference(s)
GADGET-3 N -body (Tree-PM) particle [42, 43]
L-GADGET3 N -body (Tree-PM) mesh [43–45]
openGADGET3 N -body (Tree-PM) particle [46, 47]
GADGET-4 N -body (Tree-PM) particle [48]
NM-GADGET4 N -body (Tree-PM) Newtonian motion gauge [32, 49]
AREPO N -body (Tree-PM) particle [50, 51]
CONCEPT N -body (P3M) mesh [27, 52]
PKDGRAV3 N -body (Tree + FMM) mesh [53]
SWIFT N -body (PM + FMM) particle / δf [31, 54, 55]
ANUBIS N -body (PM + AMR) particle [56, 57]
gevolution N -body (uniform PM) particle / mesh [20, 58, 59]
COLA N -body surrogate mesh [60, 61]
PINOCCHIO N -body surrogate linear growth factor [62, 63]
ReACT P (k) prediction halo-model reaction [64, 65]
BACCOemulator P (k) prediction emulation [45]
EuclidEmulator2 P (k) prediction emulation [8]
Cosmic Emu P (k) prediction emulation [66, 67]

Table 1. Overview of the numerical codes employed in this code comparison. N -body codes typically
use a particle-mesh (PM) method coupled to some scheme to increase the force resolution in high-
density regions. Methods featured here include Tree-PM, adaptive mesh refinement (AMR), fast
multipole method (FMM), particle-particle/particle-mesh (P3M), and moving mesh. No adaptive
force computation is used in gevolution, COLA, and PINOCCHIO, which all work with a uniform mesh.

Shot noise affects all moments of the distribution function, and in particular the density.
This means that shot noise will also propagate into the gravitational field computed from
the neutrino perturbations. While this could in principle severely degrade the accuracy of
the gravitational evolution as a whole, the impact is actually mitigated by the fact that
neutrinos only account for a very small fraction of the total matter, and the gravitational
fields are therefore dominated by cold species. Nevertheless, some shot noise does propagate
into the other matter species, particularly on large scales where the contribution of neutrino
perturbations is largest. Various strategies have been developed to reduce the impact of
shot noise, e.g. by filtering small-scale fluctuations. One effective strategy is to implement a
statistical weighting of the neutrino particles, as is done in the δf method [31]. This method
works by decomposing the distribution function f into an analytical background component
f̄ and a perturbation δf computed from the particle ensemble. The weights are given at
each time step by requiring phase-space density conservation. These weights are typically
negligible, except for particles that are significantly perturbed, such as those captured by
halos. Shot noise is thereby minimised as particles only contribute to the gravitational
potential when needed. The δf method has been implemented in a number of codes, but
is only used by SWIFT in this comparison (see table 1). Other strategies aimed at reducing
shot noise while still using particles include alternate sampling of neutrino momenta [21] and
various hybrid methods [29, 30, 68].

– 5 –

64



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

The second challenge pertains to the kinematics of neutrino N -body particles. If one
were to apply a similar time-stepping criterion as for cold matter species, the high velocities
would typically result in extremely small integration time steps, making the simulations
considerably more expensive. This is often solved by relaxing the time-stepping criterion
and allowing the neutrino particles to travel a larger distance in each integration step than
what would be considered “safe” for cold species. High-velocity neutrino particles then
respond poorly to small-scale fluctuations in the gravitational forces. Given that the neutrino
distribution at small scales is plagued by the shot-noise problem anyway, this additional
problem is often considered to be of little concern.

Still regarding kinematics, further issues arise due to the relativistic nature of neutrinos.
In the weak-field limit, the propagation of a collisionless massive particle is governed by the
Hamiltonian equations of motion [69]

v = pc√
p2 +m2c2a2 , (3.1)

p′ = − 2p2 +m2c2a2

c
√

p2 +m2c2a2∇Ψ , (3.2)

where v is the peculiar velocity, p is the canonical momentum, m is the particle’s rest-mass,
a is the scale factor, and Ψ is the gravitational potential, assuming as usual that gravitational
slip can be neglected, i.e. that non-relativistic and ultra-relativistic particles essentially see
the same potential. Here, a prime denotes the derivative with respect to conformal time
and c denotes the speed of light. The canonical momentum is conserved in the absence of a
gravitational force. For non-relativistic particles one usually considers the limit p2 � m2c2a2

in which the equations simplify to

v = p

ma
, (3.3)

p′ = −ma∇Ψ . (3.4)

This simpler set of equations has the advantage that it is easy to find integration methods that
are symplectic, i.e. that preserve the phase-space volume exactly as demanded by Hamiltonian
time evolution. Note also that, in the absence of a gravitational force, the peculiar velocity
scales exactly as ∝ a−1 in this case.

Even though the evolution of high-momentum particles suffers from severe errors, in-
cluding the breakdown of causality for p2 > m2c2a2, some implementations might still use
the simplified equations. The propagation of these errors into the clustering amplitude of
matter is limited by the fact that high-momentum particles barely contribute to clustering
in the first place. However, using the more accurate eqs. (3.1) and (3.2) is a more common
choice. The issue of symplectic time integration in this case is discussed e.g. in appendix A
of Adamek et al. [20] and appendix D of Elbers et al. [31].

3.2 Mesh-based methods
The main alternative to particle-based methods is to represent the distribution function on a
spatial mesh. Yoshikawa et al. [28] discretise the distribution function on a six-dimensional
mesh in phase-space, however, a brute-force approach like this is rather expensive and can-
not easily be applied to very large simulations where memory requirements are a particular
concern. A possible way out is to take moments of the distribution function (density, bulk ve-
locity, and so on) where the momentum coordinates are integrated out so that a discretisation
in the three spatial dimensions is sufficient.
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Experience from solving the hierarchy of moments (the so-called Boltzmann hierarchy)
in linear perturbation theory shows that a considerable number of moments must be taken
into account in order to reach good accuracy for the evolution of the lowest moments. This
concerns in particular the density that also affects the clustering of other matter components
through gravitational coupling. On the other hand, the numerical solutions are readily avail-
able in the linear regime where they can be expressed in terms of linear transfer functions.
Throughout this paper, we follow the convention from standard linear cosmological pertur-
bation theory where the transfer function TX of any perturbation variable X in Fourier space
is defined through the relation

X(k, z) = TX(k, z)ζ(k) , (3.5)

where ζ(k) is the comoving curvature perturbation of the mode k before it enters the horizon.
Those transfer functions provide a deterministic factor by which any given initial random
perturbation mode needs to be multiplied in order to obtain, for instance, the density per-
turbation at any given time. Using these transfer functions that can be calculated at the
outset, a simulation code can therefore construct the linear density field of neutrinos at any
point in time for any given realisation of the random initial conditions. This is precisely what
basic mesh-based methods do: they use the density field of neutrinos extrapolated from lin-
ear perturbation theory, which is often a reasonable approximation because neutrinos do not
cluster strongly. The method is free of shot noise and is by construction exact in the limit
of linear perturbations. However, it obviously lacks any response to nonlinear gravitational
potentials that develop in a simulation.

While the linear method produces results that are sufficiently accurate for many pur-
poses, some more advanced approaches have been developed in attempts to address the
shortcomings. Ali-Haïmoud & Bird [24] solve for the transfer function of the neutrino per-
turbations using the nonlinear matter power spectrum of the simulation to construct an
effective source term, assuming that the phase correlation between neutrino and matter per-
turbations remain largely intact even at nonlinear scales. Dakin et al. [27] employ the coupled
evolution equations for the lowest moments in their nonlinear form. Then, to avoid having
to calculate a large Boltzmann hierarchy for every wavevector represented in the simulation,
the hierarchy is truncated by assuming that a “scaling” holds approximately for ratios of
higher moments, where the scaling coefficients are taken from linear theory. This approxi-
mation is then used to close the system of equations using only a small number of nonlinear
moments. By construction this method agrees with the simpler method in the limit of linear
perturbations. While the resulting nonlinear neutrino density is somewhat more realistic,
the distribution function still has some residual errors that cannot easily be reduced without
including further moments in the nonlinear computation.

3.3 Approximations and other methods

For some purposes, such as the computation of covariance matrices for different cosmological
probes, it is useful to have methods for making cosmological predictions that are faster, al-
though less accurate, than the traditional N -body methods discussed so far. Here we present
two such methods that can be used as surrogates for N -body simulations: the COmoving
Lagrangian Acceleration (COLA) approach and the PINpointing Orbit-Crossing Collapsed HI-
erarchical Objects (PINOCCHIO) approach. In both cases, a speed-up is achieved by drastically
simplifying the time integration in the particle evolution. Finally, we also present a method

– 7 –

66



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

that avoids the need to include any neutrino physics in the actual N -body simulation alto-
gether, apart from in the background solution. This method employs the so-called Newtonian
motion gauge and can be used with virtually any numerical scheme that solves the Newtonian
gravity problem.

3.3.1 COLA
The COLA approach by Tassev et al. [70] produces fast, approximate simulations of cosmolog-
ical structure formation. Essentially, instead of solving for a full particle trajectory x(t), in
this approach we solve for the deviations of the full trajectory about the trajectory predicted
by second-order Lagrangian perturbation theory (2LPT) δx(t) = x(t)− x2LPT(t). Since the
evolution of the particles on large scales will be very close to that predicted by 2LPT, we
can decrease the number of time steps of the simulation to trade accuracy at small scales for
overall simulation speed while maintaining good accuracy at large scales. For a large number
of time steps, the method effectively converges to a standard PM N -body method.

Adding massive neutrinos to the COLA method was described by Wright et al. [61],
which also included an implementation in the MG-PICOLA simulation code1 by Winther et
al. [60]. This implementation was carried over to the COLA solver within FML2 which succeeded
MG-PICOLA. It is this implementation of the COLA solver within FML that we use in this paper.
These implementations rely on the linear mesh-based method described above, i.e. we use
the density field of neutrinos extrapolated from linear perturbation theory on a mesh for the
PM part. For the 2LPT part of the COLA code, we make a further approximation to the
2LPT equation and use the ΛCDM kernel to speed up the computation.

To demonstrate the key advantage of COLA over traditionalN -body codes, we use only 50
time steps linearly distributed in scale factor for the COLA simulations in this paper. However,
the COLA method does not work well for simulations starting from high initial redshifts when
using a relatively small number of time steps; for a discussion on how to optimise initial
redshift and number of time steps in COLA simulations see sections 4.1 and 4.3 of Izard et
al. [71]. Therefore, we use a slightly modified3 version of FML’s built-in generator of initial
conditions to generate initial particle data at z = 19 instead of z = 127 as is described
in section 4.1 and used for the other methods in this paper. In addition, we use the CAMB
Boltzmann solver by Lewis et al. [72, 73] to generate the density transfer function for massive
neutrinos. Finally, we note that for all COLA simulations in this paper we use a force grid that
is a factor of three finer than the mean inter-particle distance; for a thorough investigation
of the impact of varying this factor in COLA simulations see section 4.4 of Izard et al. [71].

3.3.2 PINOCCHIO
The PINOCCHIO code4 [62, 74, 75] is an approximate method to generate halo catalogues in a
very small fraction (of the order of 1/1000) of the time taken by an equivalent N -body simu-
lation. Starting from a linear density field generated in Lagrangian space over a regular grid,
its main goal is to construct halo catalogues by predicting which particles will end up in dark
matter halos. To achieve this goal the algorithm first smoothes the linear density on a grid of

1https://github.com/HAWinther/MG-PICOLA-PUBLIC.
2https://github.com/HAWinther/FML/tree/master/FML/COLASolver.
3The modifications are to the order in which (pseudo-)random numbers are drawn for the phases and

amplitudes, such that we now do the same as the version of N-GenIC used for the other methods in this paper,
see section 4.1.

4https://github.com/pigimonaco/Pinocchio.
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smoothing radii, then uses ellipsoidal collapse to compute the collapse time of each particle.
In the second step, it proceeds to group the collapsed particles into halos, using an algorithm
that mimics their hierarchical clustering and distinguishes between halos and filaments.

As opposed to the other N -body methods employed in this work, PINOCCHIO does not
integrate particle orbits but places halos at their final position using a single 2LPT or 3LPT
displacement. Indeed, once the displacement fields are averaged over the multi-stream region
that corresponds to a dark matter halo, LPT is very effective in predicting halo positions [76].
Another difference is that PINOCCHIO does not start from a set of displaced particles but
generates the linear density field internally. Having implemented the same sequence for
populating modes in k-space as the N-GenIC code that is used for the purpose of generating
initial data in this work (see section 4.1), it can reproduce the same large-scale structure if
the same seed for random numbers is provided.

The extension of PINOCCHIO to massive neutrinos is presented by Rizzo et al. [63] and
is based on the result of Castorina et al. [18, 77] that the nonlinear clustering of massive
neutrinos is negligible. We use CAMB to compute linear power spectra in massive neutrino
cosmologies, and compute the scale-dependent growth rate of matter by taking ratios of
power spectra of CDM and baryons (i.e. without neutrinos) at different times. We also adapt
the code to incorporate a scale-dependent growth rate. With respect to the original imple-
mentation of Rizzo et al. [63], which was limited to 2LPT, we extend here the computation
to third order: as shown by Munari et al. [75] this results in a significant improvement at
mildly nonlinear scales.

Although the code has been conceived to predict the properties of dark matter halos,
it can produce a full nonlinear density field as follows: particles that do not belong to halos
are moved to their final position using 3LPT, halo particles are distributed around their halo
center of mass following a Navarro-Frenk-White (NFW) profile [78] with Maxwellian velocity
distributions. This allows us to construct snapshots like an N -body simulation, representing
density fields that are far more accurate than a straight LPT implementation. Because we
have only one type of particle, to compute the power spectrum of CDM and baryons needed
below (section 5) we subtract the linear neutrino contribution from the total matter power
spectrum obtained from the snapshot. To this end we also assume that the neutrino-matter
cross-power spectrum, Pν,m(k), can be approximated by Pν,m(k) =

√
PL
ν (k)Pm(k), where the

superscript “L” denotes a power spectrum from linear theory. This approximation is strictly
only true in the linear regime but we apply it at all scales.

We do not expect PINOCCHIO to be competitive with N -body codes in predicting the
matter power spectrum: taking it as a sophisticated implementation of 3LPT, we expect
it to lose power on scales smaller than k = 0.3hMpc−1 for the halo power spectrum and
k = 0.2hMpc−1 for the matter power spectrum. It will not be competitive with COLA as
well which, being a PM code, can converge to the solution (on scales larger than the mesh)
if a sufficient number of time steps is used. This better accuracy comes at a higher cost in
computing time, by approximately a factor of eight in the configuration used in this paper
(see also Blot et al. [79] for a similar benchmark), as well as in memory since our COLA runs
use a grid three times finer than the mean particle separation. The PINOCCHIO code is widely
used especially to characterise the covariance of galaxy clustering measurements, thanks to
its low computational cost and its ability to generate halo catalogues.
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3.3.3 Newtonian motion gauge

The Newtonian motion gauge approach for massive neutrinos was developed by Partmann
et al. [32] and Heuschling et al. [49]. It allows for a simulation of nonlinear CDM in an
ordinary Newtonian N -body simulation while accounting for the impact of linear neutrinos
via a modification of the dark matter initial conditions and by employing a dynamically
evolving coordinate system. The method is agnostic towards the implementation of the
N -body simulation and for this paper we choose to employ GADGET-4 [48]. However, any
method solving Newtonian nonlinear gravity is compatible, even methods other than N -
body simulations. We would like to stress that our method is exact in the weak-field limit
of general relativity (see Fidler et al. [80]) and therefore captures the full effect of linear
neutrino perturbations on the nonlinear matter clustering.

The Newtonian motion approach allows for a very simple inclusion of massive neutrinos,
requiring only three additional steps applied to a simulation without any neutrinos. First, we
start from a set of “back-scaled” initial conditions based on the present-day power spectrum
of CDM and baryons in the Newtonian motion coordinates, excluding neutrino perturbations.
In contrast to other neutrino methods presented in this paper, these initial conditions do not
assume a scale-dependent growth, i.e. the rescaling of the power spectrum is done using the
scale-independent growth factor D+. The residual effect of decaying modes due to neutrinos
is included in the construction of the present-day matter power spectrum in the Newtonian
motion coordinate system. This also has the added benefit that ordinary generators of
initial conditions can be used without modifications, provided that the correctly back-scaled
Newtonian motion gauge power spectrum is used. We then evolve the initial data with the
Newtonian solver, taking into account the impact of the massive neutrinos on the background
evolution via the Hubble rate. Finally, we obtain the output in the Newtonian motion gauge.
To make it comparable to the output of other methods, we need to transform the result to
the gauge employed therein (usually the “N -boisson” gauge [80]). This step is realised by a
displacement field acting on the particle positions that is implemented in a similar way to
how the initial conditions are set. The transformation accounts for the residual impact of
neutrinos and other relativistic effects on the evolution of the CDM and baryon particles.
However, by construction, the transformation vanishes exactly at z = 0 (or another chosen
target redshift) while it is in general very small at late times, for small neutrino masses and
on small scales. Therefore, it can often be neglected as it will only lead to small corrections
in which case the output of the simulation can be used as-is.

For this work, we include only the first two steps, while omitting the final particle
displacement. This leads to a small mismatch in the results shown for z = 1 at large scales
for the cases of the highest neutrino masses. By leaving this correction out, we demonstrate
that for most neutrino masses, box sizes, and redshifts the method is already sufficiently
accurate in its simplest form. For more details on the transformation we refer the reader to
the original work by Partmann et al. [32].

3.4 Halo-model reaction

The halo-model reaction approach provides the nonlinear corrections caused by massive neu-
trinos to a ΛCDM power spectrum through a ratio of halo-model predictions. Following
Cataneo et al. [81], the nonlinear power spectrum is then given by

PNL(k, z) = R(k, z)PNL
pseudo(k, z) , (3.6)
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where R(k, z) is the halo-model reaction and PNL
pseudo(k, z) is the nonlinear pseudo power

spectrum.
The pseudo spectrum is a nonlinear ΛCDM power spectrum but with the initial con-

ditions tuned such that its linear clustering exactly matches the linear clustering in the
non-standard cosmology at the target redshift. For example, if the non-standard physics
introduces a simple rescaling of the linear clustering amplitude, one could just rescale the
amplitude of any ΛCDM power spectrum to produce the pseudo spectrum. In the case of
scale-dependent modifications, this becomes a bit trickier in practice. We approximate this
quantity as in previous works by Cataneo et al. [64, 81] and pass the modified linear spec-
trum as produced by CAMB to HMcode developed by Mead et al. [82], with ΛCDM presets,
i.e. no baryonic feedback nor massive neutrinos. The benefit of using the pseudo rather than
ΛCDM cosmology is that it guarantees the mass functions in target and pseudo cosmologies
are similar as they have the same linear clustering. This produces a smoother transition
between the two-halo and one-halo terms. This transition was one of the previous issues in
calculating this nonlinear response using the halo model [83–85].

Following Cataneo et al. [64], the halo-model reaction for massive neutrinos is given by

R(k) =
(1− fν)2 PHM

cb (k) + 2fν (1− fν)PHM
ν,cb(k) + f2

νP
L
ν (k)

PL
m(k) + P 1h

pseudo(k)
, (3.7)

with “cb” denoting the CDM and baryon component and “ν” denoting massive neutrinos. We
include the effects of massive neutrinos at the linear level in the numerator via the weighted
sum of the nonlinear halo-model (cb) spectrum and the massive neutrino linear spectrum [15].
The components of the reaction are

PHM
ν,cb(k) ≈

√
PHM

cb (k)PL
ν (k) , (3.8)

PHM
cb (k) = PL

cb(k) + P 1h
cb (k) . (3.9)

Explicitly, the one-halo terms are given as integrals over the Fourier space halo density profile
u(k,M) and the halo mass function n(M),

P 1h
cb (k) =

∫
d lnM ncb(M)

(
M

ρ̄cb

)2
|ucb(k,M)|2 , (3.10)

P 1h
pseudo(k) =

∫
d lnM npseudo(M)

(
M

ρ̄m

)2
|upseudo(k,M)|2 , (3.11)

where ρ̄ is the background density for the specified matter species. The halo mass functions
are given as

ncb(M) = ρ̄cb
M

[ν ′f(ν ′)] d ln ν ′
d lnM , (3.12)

npseudo(M) = ρ̄m
M

[ν ′′f(ν ′′)] d ln ν ′′
d lnM . (3.13)

The peak heights are defined as ν ′ = δsc,cb(M)/σcb[Rcb(M)] and ν ′′ = δsc,m/σm[Rm(M)],
where the subscript “sc” indicates this quantity is calculated by solving the standard ΛCDM
spherical-collapse equations but with the indicated matter density. The mass fluctuation
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variances are given by

[σcb(R)]2 =
∫ d3k

(2π)3 |W̃ (kR)|2PL
cb(k), (3.14)

[σm(R)]2 =
∫ d3k

(2π)3 |W̃ (kR)|2PL
m(k). (3.15)

In all predictions from halo-model reaction, we employ a Sheth-Tormen halo mass func-
tion [86, 87], a power-law concentration-mass relation (see for example the work by Bullock
et al. [88]), and an NFW halo density profile [78]. The predictions are computed numerically
using the public code ReACT5 by Bose et al. [65, 89].

3.5 Power-spectrum emulation
Fast predictors of the matter power spectrum are an essential ingredient for many inference
pipelines in cosmology. Since numerical simulations are too costly to be directly applied in
this context, different approaches based on approximate methods or elaborate fitting tech-
niques have been used in the past. Apart from the halo-model reaction discussed in the
previous section, well-known examples are the halofit predictor developed by Smith et al. [90]
and later improved by Takahashi et al. [91], and the HMcode predictor by Mead et al. [82], the
latter being based on the halo model. In terms of the power-suppression signal of neutrinos,
fitting routines by Bird et al. [16] have been used in the past.

More recently, the emulation technique has become a popular alternative to obtain fast
predictions of the matter power spectrum within the cosmological parameter space. Broadly
speaking, emulators are interpolation routines based on a suite of numerical simulations
that sample the cosmological parameter space and act as a training set. There are different
surrogate techniques currently used for cosmological emulators, such as Gaussian process
regression [66, 92–94], polynomial chaos expansion [7, 8], or neural network approaches [95].

In addition to the predictions from halofit and HMcode mentioned above, we focus in this
paper on the Cosmic Emu [66], the EuclidEmulator2 [8], and the BACCOemulator [45]. These
emulators provide predictions of the matter power spectrum and include a free parameter
for the sum of the neutrino masses. We will now summarise the particularities of these three
emulators, specifically focusing on the neutrino implementation.

• The Cosmic Emu-2022 is built upon the Mira-Titan simulations [67, 96], a suite of 111
simulations run with the HACC code [97]. The simulations are distributed over an eight-
dimensional cosmological parameter space comprising (ωm, ωb, ων , σ8, h, ns, w0, wa),
where σ8 is the present-day amplitude of linear matter density fluctuations at the scale
of 8h−1 Mpc, ns is the scalar spectral index, and w0, wa parameterise the effective
equation of state of dark energy in terms of the first two coefficients of the Taylor series
expansion around a = 1. The emulator achieves an absolute precision of about four
percent for modes of k < 5hMpc−1 within the redshift range z ∈ [0, 2]. Neutrinos are
not incorporated in the simulations and are effectively treated as a smooth background
component. The power spectra are then corrected on large scales for enhanced growth
beyond the neutrino free-streaming scale using the scale-dependent linear growth factor.

• The EuclidEmulator2 is trained on 200 paired and fixed simulations that were run with
PKDGRAV3. It emulates the nonlinear boost factor that is then multiplied by the results

5https://github.com/nebblu/ReACT.
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of a linear Boltzmann solver. The emulator covers eight cosmological parameters (Ωm,
Ωb,

∑
mν , As, h, ns, w0, wa), where As is the amplitude of primordial perturbations

at the scale kp = 0.05 Mpc−1, and includes redshifts of z ∈ [0, 3] and modes up to
k = 10hMpc−1. It claims an error of below one percent which is better than the other
emulators discussed here. Note, however, that the EuclidEmulator2 covers a somewhat
narrower parameter space motivated by the results of the Planck mission [98]. Within
the training set the neutrinos are modelled using the mesh-based method implemented
in PKDGRAV3.

• The BACCOemulator is trained on a very large suite of simulations based on the cos-
mology-rescaling technique [99]. More specifically, four high-resolution simulations with
judiciously chosen cosmologies are rescaled to more than 800 cosmologies at different
redshifts. Whenever the target cosmologies included massive neutrinos, their effect
is added following the extension of the cosmology-rescaling technique presented by
Zennaro et al. [33]. This emulator varies eight cosmological parameters (Ωcb, Ωb,∑
mν , σ8, h, ns, w0, wa) and covers a redshift range of z ∈ [0, 1.5] for modes up

to k = 5hMpc−1. The claimed precision is better than three percent.

We refer to the original references for more information about the emulators.

4 Simulations

To compare different numerical methods, we carry out a large suite of N -body simulations
where we employ different codes to run the same set of ten simulations summarised in table 2.
These ten simulations cover different choices of total neutrino mass ∑mν (including the
massless case), different box sizes Lbox, and different mass resolutions to check for numerical
convergence with respect to finite-volume and discretisation effects. Npart denotes the number
of particles used for CDM and baryons, as well as the number of particles for neutrinos if
a particle-based method is employed. For simplicity, we assume degenerate neutrino mass
eigenstates because cosmology is mainly sensitive to the total neutrino mass scale [100].
We keep the total matter density (at redshift zero) fixed at Ωm = 0.319 by adjusting the
CDM density parameter together with the neutrino mass. The baryon density is fixed at
Ωb = 0.049, and the remaining cosmological parameters are As = 2.215 × 10−9 at the pivot
scale kp = 0.05 Mpc−1, ns = 0.9619, and h = 0.67, which are based on the Euclid Flagship 2
simulation. Dark energy is modelled as a cosmological constant that provides a spatially flat
background solution, and the CMB temperature is set to 2.7255 K and the effect of radiation
is taken into account in the simulations at the linear level, either by using carefully tailored
initial conditions as detailed below or by including the radiation component on the mesh if
a mesh-based method is used.

Using identical initial data (see section 4.1 below for details) in each case, the ten
simulations are run with each of the thirteen N -body methods listed in table 1 to produce
particle snapshots at redshifts z = 1 and z = 0. For AREPO, due to resource constraints,
only the four simulations with Npart = 5123 are run, precluding the possibility of conducting
numerical convergence tests in this case. Therefore, a total of 248 individual snapshots are
analysed in this code comparison. In addition, nonlinear power spectra are predicted for each
distinct choice of neutrino masses using the remaining methods in table 1, as well as using
the HMcode and halofit fitting methods.
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Simulation Lbox Npart mass resolution ∑
mν

0.0eV 512 h−1 Mpc 5123 8.85×1010 h−1M� 0.0 eV
0.15eV 512 h−1 Mpc 5123 8.75×1010 h−1M� 0.15 eV
0.3eV 512 h−1 Mpc 5123 8.65×1010 h−1M� 0.3 eV
0.6eV 512 h−1 Mpc 5123 8.45×1010 h−1M� 0.6 eV
0.0eV_HR 512 h−1 Mpc 10243 1.11×1010 h−1M� 0.0 eV
0.15eV_HR 512 h−1 Mpc 10243 1.09×1010 h−1M� 0.15 eV
0.0eV_1024Mpc 1024 h−1 Mpc 10243 8.85×1010 h−1M� 0.0 eV
0.15eV_1024Mpc 1024 h−1 Mpc 10243 8.75×1010 h−1M� 0.15 eV
0.3eV_1024Mpc 1024 h−1 Mpc 10243 8.65×1010 h−1M� 0.3 eV
0.6eV_1024Mpc 1024 h−1 Mpc 10243 8.45×1010 h−1M� 0.6 eV

Table 2. Overview of the basic parameters used in our simulation suite. The cases with
∑
mν = 0 eV

and
∑
mν = 0.15 eV are the two main baselines for our comparison, but we include some cases with

larger masses, up to
∑
mν = 0.6 eV, to probe more “extreme” regions of parameter space.

4.1 Initial conditions
The initial conditions of all simulations are generated at redshift z = 127.6 The linear
matter power spectra and transfer functions are obtained by running either CAMB or the CLASS
Boltzmann code by Blas et al. [101]. These files are then used by the REPS7 code to compute
the rescaled power spectra and transfer functions at z = 127 by solving the multi-fluid linear
equations as outlined by Zennaro et al. [102]. This procedure, known as rescaling, guarantees
that the power spectrum of the output of the simulation on linear scales at low redshift will
match the correct linear power spectra. A realisation of initial data is then generated by
drawing random phases for all perturbation modes and fixing their amplitudes according to
the initial transfer functions. This approach of “fixing” the amplitudes effectively removes
cosmic variance at linear scales and has been shown to generally produce less noisy summary
statistics [103]. It introduces a specific type of non-Gaussianity that is not expected to affect
any of our results. Given the density field of CDM and baryons, the initial positions and
velocities of the N -body particles are computed from the Zeldovich approximation [104].
We employ a modified version of the N-GenIC code8 that accounts for the scale-dependence
present in both the growth rate and growth factor in cosmologies with massive neutrinos.

For neutrinos, the different implementations make use of distinct methods. For particle-
based implementations, the positions and velocities of the massive neutrino particles are gen-
erated in a similar fashion as CDM. This means we effectively make use of the Zeldovich
approximation to set the first two moments of the phase-space distribution function which
correspond to the density perturbation and bulk velocity, respectively. The initial veloci-
ties of neutrino particles are then offset by a random thermal component drawn from their
Fermi-Dirac distribution [105, 106]. We assume the standard Big Bang scenario where this
distribution is set in equilibrium before the weak interaction freezes out — when the Uni-
verse was about 1 second old — and after freeze-out simply redshifts as the Universe expands.
Note that this means that the typical thermal velocities are much larger than those of a dis-

6COLA exceptionally uses z = 19 as initial redshift (see section 3.3.1).
7https://github.com/matteozennaro/reps.
8https://github.com/franciscovillaescusa/N-GenIC_growth.
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tribution that is in thermal equilibrium at low redshift. For SWIFT, neutrino particles are
instead set up with the FastDF code,9 using geodesic integration from high redshift [20, 69],
to reproduce the full distribution function and to prevent the initial perturbations from being
erased by thermal motions [55]. For mesh-based implementations, on the other hand, the
density field of each neutrino species is directly computed using the phases from the random
field realisation of the linear initial conditions.

4.2 Post-processing pipeline
In order to quantify differences in our numerical schemes as precisely as possible, we analyse
the snapshots of all our N -body simulations in a common pipeline. We compute the power
spectra and bispectra of the CDM and baryon component, and produce halo catalogues from
which we measure the halo mass functions and halo bias. In cases where the simulations
provide a neutrino distribution, we also compute the cross-power spectra of neutrinos with
the CDM and baryon component, as well as the neutrino auto-power spectra.

4.2.1 Power spectra
The power spectra of the different snapshots have been estimated using Pylians3.10 The
routine first deposits particle masses into a regular 3D grid with N3 voxels using the cloud-
in-cell mass-assignment scheme. In this work, we always use a mesh with N3 = Npart such
that the Nyquist scales match between particles and mesh. Although using larger grids may
improve measurements on smaller scales, we recommend caution due to potential systematics
and advise against relying on results near or beyond the Nyquist scale set by the mean
particle separation. The constructed field is then Fourier transformed and the effects of the
mass-assignment scheme are corrected. Next, for each mode the square of its amplitude is
computed, |δ(k)|2. The modes are then binned in intervals of width equal to the fundamental
frequency kF = 2πL−1

box and the power spectrum is finally estimated as

P (ki) = 1
Ni

∑

k∈Bi

|δ(k)|2 , (4.1)

where Ni is the number of independent modes in the considered bin Bi = {k | i kF ≤ |k| <
(i+ 1)kF} and ki is computed as

ki = 1
Ni

∑

k∈Bi

|k| . (4.2)

To compute the cross-power spectrum of two fields instead, the estimator is generalised in
the most straightforward way,

PX,Y(ki) = 1
2Ni

∑

k∈Bi

[
δX(k)δ∗Y(k) + δ∗X(k)δY(k)

]
, (4.3)

where the subscripts “X” and “Y” denote the two different fields. When presenting the
results, we combine the measurements into larger bins logarithmically spaced in k. This
reduces the noise at large k and makes our plots more readable.

Some codes do not produce snapshots at exactly the desired redshift, but at redshifts
that deviate by less than± 0.01 from the target redshift. These differences can be visible when

9https://github.com/wullm/fastdf.
10https://pylians3.readthedocs.io.
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comparing power spectra on a sub-percent level. For those cases, we rescale the power spectra
by the square of the ratio of the linear growth factors at the respective redshift values. Such
a rescaling is applied to ANUBIS for all snapshots and to L-GADGET3 and PKDGRAV3 at z = 1.

4.2.2 Bispectra
We measure the bispectrum of CDM and baryons (ccc) using the estimator

B̂ccc(kl, km, kn) ≡ k3
F

Ntr(kl, km, kn)
∑

q1∈Bl

∑

q2∈Bm

∑

q3∈Bn

δK(q1 + q2 + q3) δ(q1) δ(q2) δ(q3), (4.4)

where Ntr is the number of “fundamental triangles”,

Ntr(kl, km, kn) ≡
∑

q1∈Bl

∑

q2∈Bm

∑

q3∈Bn

δK(q1 + q2 + q3) , (4.5)

formed by the vectors qi satisfying the triangle condition q1 + q2 + q3 = 0 that are included
within the “triangle bin” defined by the triplet of centers (kl, km, kn) and corresponding bins
Bl, Bm, Bn.

We use a Python code implementing the fourth-order density interpolation and the
interlacing scheme described by Sefusatti et al. [107]. In order to compare the large-volume
simulations (Lbox = 1024h−1 Mpc) more easily with the small-volume ones, we use the same
k-space binning in both cases, fixing the bin width to kF of the small box. Just like for
the power spectra, to account for inaccuracies in the redshift of some snapshots, we rescale
some of the resulting bispectra by the cube of the ratio of the linear growth factors at the
respective redshift values. Such a rescaling is applied to ANUBIS for all snapshots and to
L-GADGET3 and PKDGRAV3 at z = 1.

4.2.3 Halo catalogues
For the considered snapshots of the various simulations, we identify halos with the code
Denhf [108–111] which uses a “spherical overdensity” criterion. The algorithm does not
rely on any pre-identification method. Only CDM and baryon particles are considered in the
characterisation of halos; neutrino particles (if present at all in the simulation) are considered
as a background component [17, 77].

Denhf estimates the local density at the position of each N -body particle by calculating
the distance to its 10th-nearest neighbour d10, and assigning to each particle a density that is
proportional to d−3

10 . Centered on the particle with the highest density value, the algorithm
grows a sphere and stops when the mean density within the sphere falls below a desired
overdensity threshold, set to 200 times the background density of CDM and baryons for
the purpose of this work. All particles assigned to this spherical overdensity halo are then
removed from the global list of particles, and the algorithm proceeds recursively until none
of the remaining particles has a local density large enough to be the center of a 10-particle
halo. Particles not assigned to halos will be part of the field.

Only in the case of PINOCCHIO we use the halo catalogues as produced by the code
itself instead of Denhf. Because PINOCCHIO is calibrated on the friends-of-friends halo mass
function, we translate its masses to spherical overdensity ones by applying the rescaling of
halo masses that translates the halo mass function of Watson et al. [112], that has been used
to calibrate the code, to the one of Tinker et al. [113]. Such a rescaling has been used, e.g.,
by Fumagalli et al. [10] to force the halo mass function averaged over 1000 realisations to
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Figure 1. Power spectrum of CDM and baryons as measured from different codes, relative to
GADGET-3 at z = 0 and z = 1 for a neutrino mass of

∑
mν = 0.15eV in the simulation with Lbox =

512h−1 Mpc and Npart = 5123 CDM and baryon particles. The corresponding particle Nyquist
wavenumber is indicated by the grey dash-dotted line. The grey bands highlight the interval of ± 0.01.

follow a target one. We compute the rescaling only once, in the case of massless neutrinos,
and use it for all neutrino masses.

For the codes that do not produce snapshots at the exact values of the desired redshifts,
we apply no further corrections here. The error in the redshift is less than ± 0.01 while our
halo properties typically display disagreements larger than 1% between different codes. We
therefore assume that the error due to mismatching redshift values is subdominant.

5 Results

5.1 Power spectra
A key prediction from neutrino simulations is a suppression of the matter power spectrum
that exceeds the maximum linear theory prediction of ∆Pm/Pm ≈ 8fν . The matter power
spectrum can be decomposed as follows

Pm(k) = (1− fν)2Pcb(k) + 2fν(1− fν)Pν,cb(k) + f2
νPν(k) , (5.1)

where Pcb is the power spectrum of CDM and baryons, Pν,cb the cross-power spectrum of
neutrinos with CDM and baryons, and Pν the neutrino power spectrum. Various methods
treat these components differently or make predictions for only some of them, so we discuss
each component in turn. Finally, we will also compare the total Pm(k) with various power
spectrum emulators, including EuclidEmulator2 which only predicts this quantity.

5.1.1 CDM and baryons
The leading contribution to Pm(k) is Pcb(k), which is suppressed in massive neutrino models.
Figure 1 shows the ratio of Pcb(k) for models with a neutrino mass of∑mν = 0.15 eV relative
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Figure 2. Suppression of the power spectrum of CDM and baryons at z = 0 and z = 1 for three
different neutrino masses,

∑
mν ∈ {0.15, 0.3, 0.6} eV, when compared to the massless case. Results

are from the simulations with Lbox = 512h−1 Mpc and Npart = 5123. The corresponding particle
Nyquist wavenumber is indicated by the grey dash-dotted line.

to the GADGET-3 simulation which we arbitrarily pick as the reference. In all our figures,
results from codes where massive neutrinos are represented through an N -body ensemble are
plotted using solid lines, while other N -body methods, including surrogates, use dashed lines.
Any additional predictions use dotted lines. In figure 1, the linear prediction, computed with
CLASS, is shown by the rose dotted line that drops off sharply at k ≈ 0.1hMpc−1 beyond
which the error quickly exceeds 10%. At z = 0, on the largest scales, all codes deviate less
than 1% — the fluctuations seen in the dotted lines are largely due to the lack of cosmic
variance in the codes that predict Pcb(k) directly. On smaller scales, some of the codes
start to deviate from the GADGET-3 reference. PINOCCHIO is in agreement within 1% up to
k ≈ 0.1hMpc−1, ANUBIS up to k ≈ 0.3hMpc−1, gevolution up to k ≈ 0.5hMpc−1, and
COLA up to k ≈ 0.7hMpc−1. The other codes stay within a 1% deviation from GADGET-3 for
all scales down to the particle Nyquist scale of kNyq = πN

1/3
part L

−1
box ≈ 3hMpc−1. This scale is

indicated by a vertical dash-dotted line. The ReACT and BACCOemulator codes stay accurate
within 1% to 5% on all scales down to the Nyquist scale. At z = 1 the qualitative behaviour
is similar, but most notably the codes disagree more on large scales while still staying within
a 1% agreement. Here, PINOCCHIO is accurate up to k ≈ 0.2hMpc−1.

Figure 2 shows the ratio of Pcb(k) for models with massive neutrinos relative to the
massless case for ∑mν ∈ {0.15, 0.3, 0.6} eV. For later convenience, we denote this suppres-
sion ratio by Scb(k), or in general

SX(k) = P
(massive)
X (k)

P
(massless)
X (k)

, (5.2)

where the subscript “X” denotes any component in question, here X → cb. Linear calcula-
tions (taken from CLASS) predict that, on the largest scales, the growth of structure is mostly
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Figure 3. The suppression of the power spectrum of CDM and baryons relative to the one measured
in the GADGET-3 reference runs at z = 0 and z = 1 for

∑
mν = 0.15 eV for the simulations with

Lbox = 512h−1 Mpc and Npart = 5123. The corresponding particle Nyquist wavenumber is indicated
by the grey dash-dotted line. The grey bands highlight the interval of ± 0.01.

unaffected so that Scb(k) approaches unity, while on small scales Scb(k) reaches a plateau.
Compared to this linear expectation, all codes in the comparison predict slightly less suppres-
sion around k = 0.1hMpc−1 and a much greater suppression for k > 0.3hMpc−1, followed
by an upturn on nonlinear scales. This upturn has been repeatedly demonstrated and results
from the reduced sensitivity of the one-halo contribution [41, 114]. At z = 0, we obtain
excellent agreement between all simulations and most approximate methods up to the scale
of maximum suppression at kmax ≈ 1hMpc−1, where the suppression is 20% greater than
the linear prediction. At z = 1, the scale of maximum suppression shifts to kmax ≈ 2hMpc−1

and the differences are greater, both with the linear prediction and between the codes, with
the exception of PINOCCHIO11 which fares significantly better compared to z = 0.

To study these relative differences in greater detail, we show Scb(k) for the smallest
neutrino mass, ∑mν = 0.15 eV, relative to the GADGET-3 prediction for this quantity in fig-
ure 3. With the exception of PINOCCHIO and CLASS, all codes agree to better than 1% at
z = 0 up to the particle Nyquist scale. Near kNyq, the approximate COLA method and the
BACCOemulator differ by more than 1% from the bulk of the simulations, while gevolution
differs by slightly less than 1%. Beyond this scale, the predictions diverge and should be com-
pared to higher-resolution runs since our estimator of the power spectrum is computed on a
mesh with a matching Nyquist scale. The measured power spectra therefore cannot be used
beyond kNyq where they become strongly biased. This particularly affects the comparison
between simulations — where the power spectrum estimator is employed — and other meth-
ods to predict Pcb(k). At z = 1, nonlinearities are smaller and the agreement between the
simulations is better. Here the snapshot produced by PINOCCHIO achieves percent accuracy
to k ≈ 0.3hMpc−1. Some of the approximate methods fare slightly worse at this earlier time

11The reason for this disagreement is due to the fact that the accuracy of LPT-based PINOCCHIO depends
on the level of nonlinearity that varies with neutrino mass.
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Figure 4. The suppression of the power spectrum of CDM and baryons relative to the one measured
in the GADGET-3 reference runs at z = 0 for

∑
mν ∈ {0.3, 0.6} eV for the simulations with Lbox =

512h−1 Mpc and Npart = 5123. The corresponding particle Nyquist wavenumber is indicated by the
grey dash-dotted line. The grey bands highlight the interval of ± 0.01.

compared to z = 0, with the difference between CLASS and the simulations increasing by 50%
and COLA diverging beyond k = 2hMpc−1. The NM-GADGET4 method requires an additional
post-processing coordinate transformation at any redshift except z = 0. Because this addi-
tional step is omitted in this work for simplicity, a small error at low wavenumbers remains in
the z = 1 data. This explains why the error is larger at that redshift than at the final time.

ANUBIS notably drops off for k > 1hMpc−1 at z = 1 and also shows a small excess on
linear scales both at z = 0 and z = 1. This excess originates from the massless case and
is a result of ANUBIS being run with a coarser base grid than the other codes (5123 for all
simulations) due to limited resources. A finer base grid requires more memory but the lack
of it can be somewhat compensated by using a smaller time step. For the ANUBIS massive
neutrino runs, this is done automatically but for the massless case the time step has been
set to half of that originally calculated by the code. Tests indicate that further reducing the
time step or ideally using a finer base grid should lessen the excess at large scales, but finding
the optimal choice of code settings is not the aim of this work. The drop-off observed for
ANUBIS at z = 1 for k > 1hMpc−1 is due to differences in resolution between the various
simulations. As ANUBIS is an AMR-code, a modified version of the RAMSES code originally
written by Teyssier [56], the inclusion of massive neutrinos, which suppresses clustering on
small scales, also reduces the number of refinements reached in the simulation compared to
the massless case. This effect increases with the neutrino mass and is more noticeable for
higher redshifts where there is also less refinement due to less clustering. This can be solved
by a higher particle density which automatically leads to more refinement. Generally this is
also necessary to find a better agreement between ANUBIS and GADGET-3 for smaller scales, as
can be observed from the high-resolution runs and also in a previous comparison conducted
by Schneider et al. [115] between RAMSES, GADGET-3, and PKDGRAV3.

The observed differences are greater when the neutrino mass is increased, especially for
the approximate methods. Figure 4 shows Scb(k) relative to the GADGET-3 prediction for
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models with ∑mν = 0.3 eV (left panel) and ∑mν = 0.6 eV (right panel) at z = 0. While the
BACCOemulator agrees to better than 1% with GADGET-3 up to kNyq for 0.3 eV, it makes no
prediction for 0.6 eV because that value lies far outside the range covered by the training set
of the emulator. We deliberately include a case of such a large neutrino mass to exacerbate
the differences between the various numerical implementations. The reaction method differs
by slightly more than 1% and 2% at k = 0.7hMpc−1 for total neutrino masses of 0.3 eV and
0.6 eV, respectively. The differences with the linear prediction (CLASS) and with PINOCCHIO
are large, as noted above for 0.15 eV.

The agreement is excellent for the other codes, but some subtle differences can be dis-
cerned. On large scales, we observe that SWIFT, CONCEPT, COLA, gevolution, PKDGRAV3,
NM-GADGET4, and L-GADGET3 show the same coherent scatter relative to GADGET-3, especially
for a neutrino mass of 0.6 eV. This is due to the contamination from shot noise in the neu-
trino particle implementation used by the GADGET-3 run. The other mentioned codes have
implementations that do not suffer from shot noise or take measures to limit the contami-
nation. For instance, in gevolution the neutrino N -body ensemble is evolved throughout
the simulation, but it is only used as source of gravitational fields from redshift z = 7 and
below. At higher redshifts, the code uses the linear grid-based density instead. The reason-
ing behind this strategy is that shot noise is constant over time and hence more problematic
at high redshift where cosmological perturbations are smaller in comparison. On the other
hand, the linear prediction for neutrinos is expected to be very accurate at high redshift.
One can therefore reduce the total error by judiciously choosing the time at which the code
switches from linear to fully nonlinear neutrino treatment. It is nonetheless reassuring that
even without mitigating against shot noise the scatter remains far below 1%.

On small scales the differences are also larger. The lines for COLA and gevolution track
each other closely, but differ by more than 1% from the other codes for k > 1hMpc−1. SWIFT,
PKDGRAV3, and CONCEPT are low compared to GADGET-3 for k > 1hMpc−1, unlike what was
seen in figure 3. ANUBIS diverges from GADGET-3 by more than 1% for k > 1hMpc−1 for the
0.6 eV neutrino mass case. As mentioned earlier, this is due to the fact that the AMR scheme
has a lower effective resolution as the neutrino mass increases, simply because refinement
is triggered by clustering. Finally, NM-GADGET4 is slightly higher than GADGET-3. However,
these differences remain below 1% well beyond kNyq.

5.1.2 Convergence tests

To study the numerical convergence of our results, we consider the effects of finite box size
and resolution. Figure 5 shows the relative suppression for the runs with larger volume (left
panel) and higher resolution (right panel). When Lbox is doubled at fixed resolution, the
agreement remains excellent on linear scales and is sometimes even slightly better around
kNyq, providing an important consistency check for most codes. Increasing instead the mass
resolution by doubling kNyq, the agreement between the simulations improves significantly
on nonlinear scales. Including more scales in either direction, most codes remain within 1%
of the reference runs done with GADGET-3. The excess on large scales for the case of ANUBIS
persists as a result of the coarse base grid. For the runs with Npart = 10243, this base grid
is even less suited and the time-steppings for the massless cases are set to 0.1 and 0.15 times
the original time step for the larger-box and high-resolution runs, respectively.
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Figure 5. The suppression of the power spectrum of CDM and baryons relative to the one measured
in the GADGET-3 reference runs at z = 0 for

∑
mν = 0.15 eV for the simulations with a larger volume,

Lbox = 1024h−1 Mpc and Npart = 10243 (left panel), and at a higher resolution in the small volume,
Lbox = 512h−1 Mpc and Npart = 10243 (right panel). The respective particle Nyquist wavenumbers
are indicated by the grey dash-dotted lines. The grey bands highlight the interval of ± 0.01.

5.1.3 Contributions from neutrinos
The subdominant contributions to Pm(k) are the cross-power spectrum Pν,cb(k) between neu-
trinos and the CDM and baryon component, and the auto-power spectrum Pν(k) of neutrinos.
As can be seen from eq. (5.1), these are suppressed by the small factors fν and f2

ν , respec-
tively, and they are themselves additionally strongly suppressed with respect to Pcb(k) on
scales smaller than the neutrino free-streaming scale. While both of these contributions will
be exceedingly hard to constrain individually from observations, it is nonetheless interesting
to study them in the context of our code comparison in order to highlight some more subtle
differences in the numerical schemes. Figure 6 (left panel) shows Pν,cb(k) for various codes
relative to the result from the SWIFT code, for the smallest neutrino mass, ∑mν = 0.15 eV,
computed from the high-resolution simulations. We use SWIFT as the reference here because
it has a very low level of shot noise in the neutrino component, yet is able to track the non-
linear evolution of neutrinos very accurately. As is the case with CDM and baryons, linear
theory cannot describe neutrino clustering on nonlinear scales and therefore CLASS signifi-
cantly underestimates the cross-power spectrum for k > 0.1hMpc−1. Most other codes use
a particle implementation of neutrinos and scatter about the SWIFT prediction partially due
to shot noise. The results from CONCEPT have no shot noise, but depart from the other codes
for k > 0.2hMpc−1. The relative difference to SWIFT is 8% at k = 1hMpc−1. Much the
same applies to the neutrino auto-power spectrum, Pν(k), shown relative to the neutrino
auto-power spectrum of SWIFT in the right panel of figure 6. Here, for the codes with a
neutrino particle ensemble, the dominant contribution to the shot noise is removed. Except
for SWIFT this is done by subtracting the inverse of the average neutrino particle density,
n̄−1, from the measured power spectrum, where n̄−1 = 0.125h−3 Mpc3 in our high-resolution
simulations. For SWIFT the subtracted values are derived from the δf method. The difference
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Figure 6. Relative cross-power spectrum of neutrinos with CDM and baryons (left) and neutrino
auto-power spectrum (right) with respect to SWIFT at z = 0 for

∑
mν = 0.15 eV for the higher-

resolution simulation with Lbox = 512h−1 Mpc and Npart = 10243. The Nyquist wavenumber is
indicated by the grey dash-dotted line. The grey bands highlight the interval of ± 0.01.

between SWIFT and CONCEPT is 19% (off the chart) at k = 1hMpc−1 and the effects of shot
noise are even more evident in the other codes. The agreement between gevolution and
SWIFT is quite remarkable, and on the largest scales these results are also more consistent
with CONCEPT than with the other N -body codes.

5.1.4 Total matter
Some of the codes, in particular the EuclidEmulator2, only provide predictions for the
power spectrum of total matter, Pm(k). In figure 7, we show the relative agreement of
different emulators and other codes predicting Pm(k) to our high-resolution reference run
with GADGET-3. The left panel shows the result for the matter power spectrum itself, Pm(k),
at ∑mν = 0.15 eV. The correlated fluctuations on large scales are due to sample variance
which is only present in the reference simulation and not in the predicted spectra. We note
that emulators, HMcode, and the halo-model reaction method perform slightly better than the
fitting recipe of halofit. The results of the EuclidEmulator2 are marginally consistent with
the claimed accuracy of 1%, but the neutrino mass lies close to the boundary of parameter
space the emulator was trained for. The right panel of figure 7 shows corresponding results
for the power suppression factor, Sm(k), with respect to the massless scenario. Cosmic Emu
shows a disagreement larger than 1% around k ≈ 1hMpc−1 where the power suppression is
largest. Also halofit performs poorly, worse even than linear theory (CLASS). The other codes
remain within 1% of the GADGET-3 result up to the particle Nyquist scale. Overall our results
are in fair agreement with the detailed comparison carried out by Parimbelli et al. [116].

5.2 Bispectra
The nonlinear evolution of matter fluctuations generates a non-vanishing bispectrum, the
three-point correlation function of matter in Fourier space, even if non-Gaussianity is negli-

– 23 –

82



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

0.01 0.1 1 10

k [hMpc−1]

-0
.0

5
0

0
.0

5
0
.1

P
m
/P

(G
A
D
G
E
T
-
3
)

m
−

1

0.01 0.1 1 10

k [hMpc−1]

-0
.0

1
0

0
.0

1
0.

02

S
m
/S

(G
A
D
G
E
T
-
3
)

m
−

1

CLASS

BACCOemulator

ReACT HMcode halofit CosmicEmu EuclidEmulator2

Figure 7. Total matter power spectrum Pm(k) at z = 0 for
∑
mν = 0.15 eV from emulators and fitting

methods (left panel), and the respective suppression Sm(k) with respect to the massless case (right
panel), compared to the higher-resolution reference GADGET-3 simulation with Lbox = 512h−1 Mpc
and Npart = 10243. The corresponding particle Nyquist wavenumber of the GADGET-3 run is indicated
by the grey dash-dotted line and marks the limit beyond which the estimator of the power spectrum
becomes unreliable. Disagreements near and beyond this line are therefore not indicative of errors in
the emulators. The grey bands highlight the interval of ± 0.01.

gibly small in the initial conditions. This represents an opportunity for the measurement of
neutrino masses, as we expect that the suppression predicted by linear theory is enhanced
at the nonlinear level [117–120]. The total matter bispectrum in the presence of massive
neutrinos can be schematically defined as

Bmmm(k1, k2, k3) = (1− fν)3Bccc(k1, k2, k3) + fν (1− fν)2B(sym)
ccν (k1, k2, k3)

+ f2
ν (1− fν)B(sym)

cνν (k1, k2, k3) + f3
ν Bννν(k1, k2, k3), (5.3)

where “ccc” denotes the CDM and baryon bispectrum (we do not write “cb cb cb” to avoid
clutter) and we note the presence of cross cold-cold-neutrino “ccν” and cold-neutrino-neutrino
“cνν” terms that are symmetrised, as indicated by the superscript “(sym)”. In this work, we
focus on the bispectrum of CDM and baryons only, but cross terms have also been investigated
in the literature, e.g. by Ruggeri et al. [121]. As for the power spectrum case, the leading
term is the one of CDM and baryons.

Figure 8 shows a comparison of the bispectrum Bccc as measured at redshift z = 1 by all
simulation codes12 for all triangle configurations and all neutrino masses considered, for the
set of runs with Npart = 5123. Triangles are plotted as a function of kmax = max(k1, k2, k3).
The comparison shows the maximum percentage difference with respect to GADGET-3 of
all triangle configurations at each value of kmax. For L-GADGET3, openGADGET3, GADGET-4,
PKDGRAV3, CONCEPT, and NM-GADGET4, discrepancies are mostly within 5% for∑mν = 0.0 eV,
while steadily growing up to around 10% for massive neutrino cosmologies. Other simulation

12PINOCCHIO is not used in this test that is mostly focused on nonlinear scales beyond its range of validity.
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Figure 9. Squeezed bispectrum of CDM and baryons as measured from different codes, relative
to GADGET-3 at z = 0 and z = 1 for a neutrino mass of

∑
mν = 0.15eV in the simulation with

Lbox = 512h−1 Mpc and Npart = 5123 CDM and baryon particles. Results shown are for the squeezed
configuration where k1 = k2 ≡ k, k3 = 0.012hMpc−1. The grey bands highlight the interval of ± 0.01.

codes are within 10% already at ∑mν = 0.0 eV. ANUBIS and gevolution show some of the
strongest deviations at large kmax, but this is mainly a result of finite resolution as we find
much better agreement in the higher-resolution runs. At low kmax, strong fluctuations can
be observed where measurements can cross zero because of sampling variance, which in turn
leads to numerical issues when taking ratios.

In figure 9, we consider specifically a squeezed configuration for which k1 = k2 and k3 =
0.012hMpc−1 and show the agreement between different codes for a total neutrino mass of∑
mν = 0.15 eV at redshift z = 0 (left panel) and z = 1 (right panel). We use measurements

from our simulations with Lbox = 512h−1 Mpc and Npart = 5123. The relative agreement is
better at low redshift, partially due to the fact that the signal amplitude is larger there.

Figure 10 is a comparison of simulation codes for different triangle configurations, for
all choices of neutrino masses at redshift z = 1. We consider four triangle configuations:
squeezed, equilateral and two different scalene configurations. Squeezed configurations refer
to triangles where one of the side is much shorter than the other two (in Fourier space) which
corresponds to looking at the correlation of a distant point with two points close to each
other. Equilateral configurations, instead, refer to the correlation of three points at equal
distance. Scalene triangles do not have any specific symmetry. In detail, we consider

• squeezed configurations, for which k1 = k2 and k3 = 0.012hMpc−1, plotted as a
function of k1 as in figure 9;

• equilateral configurations, for which k1 = k2 = k3, plotted as a function of k1;

• scalene configurations A, for which k1 = 0.79hMpc−1, k2 = 0.56hMpc−1, plotted
as a function of k3;
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Figure 10. The four panels show bispectrum measurements at redshift z = 1 in the simulations with
Lbox = 512h−1 Mpc and Npart = 5123 for different triangle configurations: squeezed (top left panel),
equilateral (top right panel), and scalene configurations A and B (bottom panels). In each panel, the
top subpanel shows the suppression ratio of the bispectrum of CDM and baryons for three different
neutrino masses

∑
mν ∈ {0.15, 0.3, 0.6} eV with respect to the massless case, and the three bottom

subpanels show the respective relative differences of the various codes when compared to GADGET-3.
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• scalene configurations B, for which k1 = 0.39hMpc−1, k3 = 0.2hMpc−1, plotted
as a function of k2.

In each of the four panels of figure 10, the top subpanel shows the ratio between the CDM
and baryon bispectrum for massive neutrino cosmologies over massless ones, which we define
in analogy to the case of the power spectrum as

Tccc(k1, k2, k3) = B
(massive)
ccc (k1, k2, k3)

B
(massless)
ccc (k1, k2, k3)

. (5.4)

The three bottom subpanels show the relative differences of the measurements of the suppres-
sion ratio in the various codes with respect to GADGET-3 at each of the three neutrino masses,
i.e. ∑mν ∈ {0.15, 0.3, 0.6} eV (from top to bottom). For all configurations considered, dis-
crepancies fall broadly within the 5% range. As expected, massive neutrinos suppress the
bispectrum of CDM and baryons at all scales, with a stronger effect at smaller scales. For
comparison, we also show the tree-level prediction from perturbation theory, using

B(tree-level)
ccc (k1, k2, k3) = 2F2(k1,k2)PL

cb(k1)PL
cb(k2) + 2 permutations , (5.5)

where
F2(k1,k2) = 5

7 + 1
2

k1 · k2
k1k2

(
k1
k2

+ k2
k1

)
+ 2

7
(k1 · k2)2

k2
1k

2
2

, (5.6)

and PL
cb is the linear power spectrum of CDM and baryons generated by CLASS. We can see

in figure 10 that the suppression ratio is in good agreement with this prediction when all
the three scales k1, k2, k3 have a small wavenumber, and that the measured suppression is
generally stronger if some of the wavenumbers are large. This is in line with the results seen
in the power spectrum, where strong nonlinearities lead to additional suppression.

At the largest scales, i.e. when k1, k2, k3 . 0.1hMpc−1, a distinct feature can be dis-
cerned which is particularly prominent in the equilateral configuration and for larger neu-
trino masses: the measurements from the various codes separate into two groups, GADGET-3,
openGADGET3, GADGET-4, AREPO, and ANUBIS on the one side, and L-GADGET3, NM-GADGET4,
CONCEPT, PKDGRAV3, SWIFT, gevolution, and COLA on the other side. The latter group
includes all the codes that employ a mesh-based method, and all of them have means to
mitigate against shot noise. We therefore suspect that this dichotomy originates from shot
noise in the particle method. This could be tested, e.g. by increasing the number of neutrino
particles until convergence is achieved.

As with the case of the power spectrum, we conducted various checks concerning nu-
merical convergence with respect to finite-volume and resolution effects. These show a con-
sistent picture that is in line with what we discussed in section 5.1.2. As an example,
figure 11 presents the results for the case of the squeezed configuration in simulations with
Npart = 10243, with a larger volume (left panel) or a higher resolution (right panel) than our
simulations with Npart = 5123. In both cases, the agreement on smaller scales is improved:
for the larger volume this happens because more independent triangles contribute to each
measurement, while for the higher resolution this is due to the better numerical convergence
of the density field on small scales.

Overall we may conclude that the N -body methods which produce highly consistent
two-point statistics also tend to agree very well on the three-point statistics presented here.
NM-GADGET4 appears to be an outlier, showing considerable deviations for squeezed configura-
tions when the sum of the neutrino masses is large. This is however not unexpected since the
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Figure 11. The suppression of the squeezed bispectrum of CDM and baryons relative to the one
measured in the GADGET-3 reference runs at z = 1 for

∑
mν = 0.15 eV for the simulations with a larger

volume, Lbox = 1024h−1 Mpc and Npart = 10243 (left panel), and at a higher resolution in the small
volume, Lbox = 512h−1 Mpc and Npart = 10243 (right panel). Results shown are for the squeezed
configuration where k1 = k2 ≡ k, k3 = 0.012hMpc−1. The grey bands highlight the interval of ± 0.01.

final gauge transformation from Newtonian motion gauge has been neglected here. This trans-
formation mainly acts at large scales and would therefore affect the squeezed configurations.
At low neutrino mass, where the method works best, this effect is almost negligible though.
It also becomes minimal at redshift z = 0 which was set as the target redshift for this method.

5.3 Halo mass function

From the halo catalogues produced by Denhf, we estimate the halo mass functions (consider-
ing only the contribution from CDM and baryons) and compare them to the predictions by
Tinker et al. [113], hereafter Tinker10, as well as Despali et al. [111], hereafter Despali16. For
these predictions, we use the linear power spectra of CDM and baryons calculated by CLASS
for the respective neutrino cosmologies in the modelling of the theoretical halo mass func-
tions. It has been shown by Costanzi et al. [122] that this approach reproduces the halo mass
function well for neutrino cosmologies. Figure 12 shows the ratio of the halo mass functions
relative to the halo mass function of GADGET-3 at a neutrino mass of ∑mν = 0.15 eV for
the runs with Npart = 10243, in the large volume where Lbox = 1024h−1 Mpc (left panel), as
well as for the higher-resolution setup with Lbox = 512h−1 Mpc (right panel). At the high-
mass end, the agreement between different codes is generally very good, and fluctuations are
smaller in the larger volume due to better statistics. At low massesM200b < 1013 h−1M�, the
number density of halos is underestimated by COLA, gevolution, and ANUBIS by up to 50%
for the lower resolution. At higher resolution the agreement improves. The relatively poor
performance of gevolution in predicting the halo mass function can be understood from the
fact that the code uses a uniform mesh. This leads to a smoothing of small-scale structures
and generally to a mass estimate of halos that is poorly converged at the low-mass end. COLA
suffers from the same limitation, but the simulations used a mesh with significantly higher
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Figure 12. Halo mass functions relative to the one of GADGET-3, for Npart = 10243 at z = 0 and
neutrino mass

∑
mν = 0.15 eV. The result for the larger-volume runs with Lbox = 1024h−1 Mpc

is shown in the left panel while the right panel shows the result for the higher-resolution runs with
Lbox = 512h−1 Mpc.

resolution in this case. Specifically, in the runs with Npart = 10243, COLA used a mesh of
30723 grid points, while gevolution used a mesh of 20483 grid points.13

Figure 13 shows the suppression of the halo mass function due to neutrinos with masses∑
mν ∈ {0.15, 0.3, 0.6} eV at redshift z = 0 (left panel) and z = 1 (right panel). At low halo

masses, there is little suppression, while going to higher masses the number density of halos
is more and more suppressed. The higher the neutrino masses, and the higher the redshift,
the stronger the suppression: at z = 0 and ∑mν = 0.15 eV the suppression goes down to a
factor of 0.9 at halo masses of 1014 h−1M�, while at z = 1 and∑mν = 0.6 eV the suppression
goes down to 0.4 at the same halo mass. In analogy to the case of the power spectrum, we
define the suppression ratio with respect to the massless case as

R =
dn(massive)

d lnM
dn(massless)

d lnM
. (5.7)

Figure 14 shows this suppression ratio relative to the one measured from GADGET-3 for a
sum of neutrino masses of ∑mν = 0.15 eV. The different codes generally agree within 3% on
the suppression ratio, even in cases where the halo mass function was poorly converged in
figure 12. Our data show a trend that the suppression is about 1% stronger than predicted
by the models of Tinker10 and Despali16. The COLA results are a slight outlier, agreeing
more with these models than with the other simulations.

13Running gevolution on such a fine mesh, i.e. with less than one particle per cell on average, was not
supported in the public release of the code. In such a situation, the evolution would become unstable due to the
low order of the finite-difference gradients used in the particle update. A second-order gradient computation
was therefore implemented for this work, a feature that is made available in a recent patch of the code.
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Figure 13. The halo mass function for different neutrino masses, relative to the case with massless
neutrinos for each code, respectively. We show the results for the simulations with Lbox = 512h−1 Mpc
and Npart = 5123 at z = 0 (left panel) and at z = 1 (right panel).

5.4 Halo bias

Finally, we study the halo bias for a fixed selection of halos defined by a mass threshold of
M200b > 1013 h−1M�. However, since the halo mass function shows considerable differences
between the different simulations, sometimes due to the fact that the mass estimate is not well
converged at the low-mass end (certainly for gevolution, COLA, and ANUBIS), we apply the
halo selection as follows. First, we select the halos above the mass threshold in the reference
runs done with GADGET-3. We may call the size of the selected population Nh. Then, for each
other code, we generate the sample by selecting the Nh most massive halos. The reasoning for
this approach is that, while the estimated masses of individual halos may differ significantly
between different codes, we still expect there to be a tight correlation that largely preserves
the mass ordering. Another way to think about this is to consider a simple abundance
matching of Nh sources, assigned to the centers of the most massive halos. We compare the
bias measurements to the prediction by Tinker et al. [113] (Tinker10). Here the large-scale
bias is estimated from the mass-dependent peak height of halos in the linear density field.
Given the GADGET-3 halo masses, we model the peak heights using the linear power spectrum
of CDM and baryons calculated by CLASS for the respective neutrino cosmology. We then
take the average of all biases obtained for each halo mass to get the final prediction. Note
that the prediction of Tinker10 is only expected to work in the linear regime.

Figure 15 shows the bias measurements from the simulations with larger volume, Lbox =
1024h−1 Mpc. We define the scale-dependent halo bias b(k) as the ratio of the cross-power
spectrum of halos with CDM and baryons and the auto-power spectrum of CDM and baryons,
i.e.

b(k) = Ph,cb(k)
Pcb(k) . (5.8)
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Figure 14. Suppression of the halo mass functions relative to the one measured in GADGET-3 at
redshift z = 0 and for a total neutrino mass of

∑
mν = 0.15 eV. We show the results for the simulations

with Lbox = 1024h−1 Mpc and Npart = 10243 in the left panel, and Lbox = 512h−1 Mpc and Npart =
10243 in the right panel. The grey bands highlight the interval of ± 0.01.

It has been shown by Castorina et al. [77] that defining the bias factor with respect to
cold species gives closer-to-universal and less scale-dependent results than using the same
definition with respect to total matter. As can be seen in the left panel of figure 15, the bias
measurements agree reasonably well on large scales except for gevolution where the bias is
measured to be about 4% larger, and for PINOCCHIO where the bias is measured to be about
10% smaller. In analogy to the case of the power spectrum, we again define a bias ratio with
respect to the massless case, which in this situation will quantify the increase (rather than
suppression) of the bias in the presence of massive neutrinos,

Q(k) = b(massive)(k)
b(massless)(k)

. (5.9)

Results for this bias ratio are shown in the right panel of figure 15. Here the agreement
between different codes is excellent, well within 1% over almost the entire range of scales
probed. For PINOCCHIO the bias ratio is about 1% accurate up to k ' 0.3hMpc−1.

To study the robustness of our results with respect to the mass resolution of the
simulations we repeat the bias measurements in the runs with higher resolution, i.e. with
Lbox = 512h−1 Mpc and Npart = 10243. The smaller simulation volume leads to a higher
level of shot noise in the halo counts, which incurs somewhat larger fluctuations when com-
pared to the larger volume. As can be seen in figure 16, the agreement between the different
codes is improved significantly, in particular for codes that have difficulties in predicting the
halo mass function accurately (gevolution, COLA, and ANUBIS). The results for PINOCCHIO
do not improve significantly, as the discrepancy is mainly due to the approximate nature of
the method rather than lack of resolution.

It is worth pointing out that the bias ratio Q has a shape similar to the inverted power
spectrum ratio Scb. This is actually expected, and was recently discussed by Hassani et
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Figure 15. Halo bias with respect to CDM and baryons at z = 0 and neutrino mass
∑
mν =

0.15 eV for the simulations with Lbox = 1024h−1 Mpc and Npart = 10243. In the GADGET-3 reference
simulations, all halos with M200b > 1013 h−1M� are selected, providing a sample of size Nh. For the
other simulations, we then select the most massive Nh halos. The grey bands in the lower panels
highlight the interval of ± 0.01.

al. [123]. It means that the power spectrum of halos, when selected at fixed mass threshold,
is much less sensitive to the neutrino mass than the power spectrum of CDM and baryons.
On the other hand, synthetic catalogues are often created in such a way that the observed
abundance of a certain type of object is reproduced (abundance matching). In such a situa-
tion, it may be more appropriate to study the dependence of the bias on the neutrino mass
at fixed number count. We therefore repeat our measurements, but keeping the size of all
samples fixed at N (massless)

h , which is the number of halos with M200b > 1013 h−1M� in the
GADGET-3 reference simulation at zero neutrino mass. In other words, when selecting the
halo sample for non-zero neutrino mass, we still select the N (massless)

h most massive halos in
all simulations. This effectively reduces the mass threshold of the selection for the massive
neutrino case when compared to the previous procedure.

Figure 17 shows the results of the bias measurement obtained through this procedure,
using the higher-resolution simulations. We observe that the bias still increases with neutrino
mass, but not quite as much as in figure 16 where a fixed halo mass threshold was used. The
large-scale bias indicated by the dotted line (Tinker10) is about 0.01, or one percentage point,
lower so that the corresponding bias ratio Q drops by 0.7%. The largest effect in Q appears
around k ≈ 1hMpc−1 were the change can be as much as 2% due to the different halo
selection. The interplay between bias enhancement and the suppression of the matter power
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Figure 16. Halo bias with respect to CDM and baryons at z = 0 and neutrino mass
∑
mν = 0.15 eV

for the higher-resolution simulations with Lbox = 512h−1 Mpc and Npart = 10243. In the GADGET-3
reference simulations, all halos with M200b > 1013 h−1M� are selected, providing a sample of size Nh.
For the other simulations, we then select the most massive Nh halos. The grey bands in the lower
panels highlight the interval of ± 0.01.

spectrum has another layer of complexity due to the way in which the sample is selected.
This needs to be studied carefully in the context of the specific numerical recipes that are
employed in the production of synthetic catalogues.

6 Discussion

Accurate and reliable modelling of the signatures that the neutrino mass imprints on the ob-
servables used to test the cosmological model is an essential ingredient for the data analysis
of all upcoming galaxy surveys, and in particular for Euclid. Such modelling necessarily re-
quires a self-consistent description of the linear and possibly nonlinear clustering of neutrinos
along with the nonlinear evolution of dark matter and baryonic structures. By comparing
results across different implementations, including eleven full N -body implementations, two
N -body schemes with fast time integration based on Lagrangian perturbation theory, and
a further four codes that predict the nonlinear matter power spectra directly, we establish
that current numerical techniques are in sub-percent agreement with regards to modelling
the impact of massive neutrinos on the most common summary statistics of cosmological
large-scale structure. We identify several specific situations where larger modelling errors
can occur, but such shortfalls are generally well understood in terms of approximations or
other compromises that were made in these situations. Our results can therefore be used as
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Figure 17. Halo bias with respect to CDM and baryons at z = 0 and neutrino mass
∑
mν = 0.15 eV

for the higher-resolution simulations with Lbox = 512h−1 Mpc and Npart = 10243. In the GADGET-3
reference simulation for

∑
mν = 0 eV, all halos with M200b > 1013 h−1M� are selected, providing

a sample of size N
(massless)
h . We then select the most massive N

(massless)
h halos in all the other

simulations, even for those with non-zero neutrino mass. The grey bands in the lower panels highlight
the interval of ± 0.01.

a detailed guide for choosing the preferred modelling techniques for any application given its
requirements in terms of resources, accuracy, and quantities that need to be modelled. The
validation presented here is the crucial first step for building up confidence in the numerical
tools employed in the data analysis pipeline of Euclid. It is particularly vital when consid-
ering the actual measurement of the neutrino mass scale from the data, which is one of the
key science goals of the mission.

The fastest method of predicting simple summary statistics like the nonlinear matter
power spectrum are emulators, and they will therefore play a crucial role in the cosmological
likelihood analysis of Euclid and other large-scale structure surveys. They are of course
many orders of magnitude faster than simulations but tend to outperform even semi-analytic
models which often have some bottlenecks in their numerical evaluation. However, emulators
can only be as accurate as the simulations they are trained on, and it is therefore important
to understand the modelling errors of simulations too. We find that the current state of the
art for emulators yield an absolute precision on the power spectrum of total matter better
than 2% and can predict the relative change due to the neutrino mas to better than 1% on all
scales considered in this work. Interestingly, the best semi-analytic fitting methods available,
in particular ReACT and HMcode, can achieve similar performance.
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Overall our results demonstrate that we are in a fairly comfortable position, with sev-
eral independent numerical techniques at our disposal that produce consistent results at the
sub-percent level if we employ them diligently. The community has also implemented such
techniques in a large number of different N -body codes, such that there is no shortage in
choice of which code one wants to use. Moreover, our detailed comparison of particle-based
and mesh-based techniques shows that the assumption of linear neutrinos is clearly sufficient
to reach percent accuracy, even up to scales of the order of k ≈ 7hMpc−1 relevant for pre-
dicting the weak-lensing signal in Euclid. We note that some codes have inherent difficulties
reaching such levels of absolute accuracy due to effects of finite resolution. This is obvious in
the cases where a uniform mesh is employed in the computation of gravitational interactions
(gevolution and COLA), but AMR does not solve the issue entirely as the example of ANUBIS
illustrates. The relative impact of massive neutrinos can nonetheless be predicted very accu-
rately with those codes. Here we do of course not attempt to address the additional challenge
of modelling baryonic effects, i.e. astrophysical processes, down to such scales as this can be
treated separately, see e.g. Martinelli et al. [124] for a discussion. On mildly nonlinear scales
and in particular at redshifts z & 1 relevant for Euclid, a “sophisticated 3LPT” realisation
like the one produced with PINOCCHIO, based on a scale-dependent linear growth rate com-
puted from CAMB and propagated to second- and third-order LPT with standard techniques,
can be useful to produce a large number of halo catalogues in a limited amount of computing
time, see e.g. Fumagalli et al. [10].

The summary statistics considered in our analysis include auto- and cross-power spectra
of the CDM and baryon component and neutrinos, bispectra of the CDM and baryon com-
ponent, halo mass functions, and halo bias. We present results for redshifts z = 0 and z = 1,
relevant for galaxy surveys like Euclid. We do not consider redshift-space distortions or other
effects that occur due to taking observations on our past light cone, and leave a detailed in-
vestigation of these effects to future work. However, we expect that no big surprises would
appear given our level of confidence in the modelling of the summary statistics presented here.

In order to aid future code development, we make our reference simulations and analysis
pipelines available via a public repository (see data availability statement below). This
provides a reliable baseline against which further numerical methods can be validated, and
it showcases the current state-of-the-art in modelling massive neutrinos in cosmology.

Acknowledgments

JA acknowledges financial support from the Swiss National Science Foundation. BB was sup-
ported by a U.K. Research and Innovation Stephen Hawking Fellowship (EP/W005654/1).
MBa acknowledges support by the project “Combining Cosmic Microwave Background and
Large Scale Structure data: an Integrated Approach for Addressing Fundamental Questions
in Cosmology”, funded by the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale
(PRIN) Bando 2017 — grant 2017YJYZAH. CH-A acknowledges support from the Excellence
Cluster ORIGINS which is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy — EXC-2094 — 390783311.
BSW is supported by a Royal Society Enhancement Award (grant no. RGF\EA\181023).
RM, DFM, HAW, FH thank the Research Council of Norway for their support and our
computations were performed on resources provided by UNINETT Sigma2 — the National
Infrastructure for High Performance Computing and Data Storage in Norway. CM ac-
knowledges support from a U.K. Research and Innovation Future Leaders Fellowship [grant

– 36 –

95



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

MR/S016066/1]. The PINOCCHIO simulations were performed on Queen Mary’s Apocrita
HPC facility, supported by QMUL Research-IT. CG acknowledges the support from the
grant PRIN-MIUR 2017 WSCC32 ZOOMING and from the Italian National Institute of As-
trophysics under the grant “Bando PRIN 2019,” PI: Viola Allevato. TC is supported by the
INFN INDARK PD51 grant and the FARE MIUR grant ‘ClustersXEuclid’ R165SBKTMA.
KD acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy — EXC-2094 — 390783311 and the COM-
PLEX project from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program grant agreement ERC-2019-AdG 882679.
The openGADGET3 simulations were carried out at the Leibniz Supercomputer Center (LRZ)
under the project pr86re. CA and BL are supported by an European Research Council Start-
ing Grant (ERC-StG-716532), and BL also acknowledges support by the U.K. Science and
Technology Facilities Council Consolidated Grants No. ST/I00162X/1 and ST/P000541/1.
KK is supported by the U.K. Science and Technology Facilities Council (grant numbers
ST/S000550/1 and ST/W001225/1). MV and GP are supported by the INFN INDARK PD
51 grant and by the ASI-INAF n. 2017-14-H.0 agreement. REA and MZ acknowledge the
support of the ERC-STG number 716151 (BACCO). This work used the DiRAC@Durham fa-
cility managed by the Institute for Computational Cosmology on behalf of the STFC DiRAC
HPC Facility (https://dirac.ac.uk/). The equipment was funded by BEIS via STFC capital
grants ST/K00042X/1, ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham Uni-
versity and STFC operation grant ST/R000832/1. DiRAC is part of the U.K. National
e-Infrastructure.

The Euclid Consortium acknowledges the European Space Agency and a number of
agencies and institutes that have supported the development of Euclid, in particular the
Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian
Euclid Consortium, the French Centre National d’Etudes Spatiales, the Deutsches Zentrum
für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência
e a Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics and Space
Administration, the National Astronomical Observatory of Japan, the Netherlandse Onder-
zoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the
State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office
(SSO), and the United Kingdom Space Agency. A complete and detailed list is available on
the Euclid web site (http://www.euclid-ec.org).

For the purpose of open access, the authors have applied a Creative Commons Attri-
bution (CC BY) licence to any Author Accepted Manuscript version arising from this work
and upload the accepted version to arXiv with CC BY licence.

Data availability. Raw data from our reference runs (GADGET-3), and all
reduced data (summary statistics) presented in this work are available at
https://doi.org/10.5281/zenodo.7868793. We also provide initial data, parameter specifica-
tions for CLASS, and a documented analysis pipeline to facilitate further validations against
our results.

References

[1] R. Laureijs et al., Euclid definition study report, arXiv:1110.3193 [INSPIRE].
[2] E. Di Valentino, A. Melchiorri and J. Silk, Cosmological constraints in extended parameter

space from the Planck 2018 legacy release, JCAP 01 (2020) 013 [arXiv:1908.01391]
[INSPIRE].

– 37 –

96



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

[3] eBOSS collaboration, Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey:
cosmological implications from two decades of spectroscopic surveys at the Apache Point
Observatory, Phys. Rev. D 103 (2021) 083533 [arXiv:2007.08991] [INSPIRE].

[4] N. Palanque-Delabrouille et al., Hints, neutrino bounds and WDM constraints from SDSS
DR14 Lyman-α and Planck full-survey data, JCAP 04 (2020) 038 [arXiv:1911.09073]
[INSPIRE].

[5] P.L. Taylor, T.D. Kitching and J.D. McEwen, Preparing for the cosmic shear data flood:
optimal data extraction and simulation requirements for stage IV dark energy experiments,
Phys. Rev. D 98 (2018) 043532 [arXiv:1804.03667] [INSPIRE].

[6] Euclid collaboration: A. Blanchard et al., Euclid preparation: VII. Forecast validation for
Euclid cosmological probes, Astron. Astrophys. 642 (2020) A191 [arXiv:1910.09273]
[INSPIRE].

[7] Euclid collaboration: M. Knabenhans et al., Euclid preparation: II. The EuclidEmulator —
a tool to compute the cosmology dependence of the nonlinear matter power spectrum, Mon.
Not. Roy. Astron. Soc. 484 (2019) 5509 [arXiv:1809.04695] [INSPIRE].

[8] Euclid collaboration: M. Knabenhans et al., Euclid preparation: IX. EuclidEmulator2 —
power spectrum emulation with massive neutrinos and self-consistent dark energy
perturbations, Mon. Not. Roy. Astron. Soc. 505 (2021) 2840 [arXiv:2010.11288] [INSPIRE].

[9] Euclid collaboration: T. Castro et al., Euclid preparation: XXIV. Calibration of the halo
mass function in Λ(ν)CDM cosmologies, Astron. Astrophys. 671 (2023) A100
[arXiv:2208.02174] [INSPIRE].

[10] A. Fumagalli et al., Euclid: effects of sample covariance on the number counts of galaxy
clusters, Astron. Astrophys. 652 (2021) A21 [arXiv:2102.08914] [INSPIRE].

[11] Euclid collaboration: A. Fumagalli et al., Euclid preparation. XXVII. Covariance model
validation for the 2-point correlation function of galaxy clusters, arXiv:2211.12965 [INSPIRE].

[12] R.E. Angulo and O. Hahn, Large-scale dark matter simulations, arXiv:2112.05165
[DOI:10.1007/s41115-021-00013-z] [INSPIRE].

[13] J. Brandbyge, S. Hannestad, T. Haugbølle and B. Thomsen, The effect of thermal neutrino
motion on the non-linear cosmological matter power spectrum, JCAP 08 (2008) 020
[arXiv:0802.3700] [INSPIRE].

[14] M. Viel, M.G. Haehnelt and V. Springel, The effect of neutrinos on the matter distribution as
probed by the intergalactic medium, JCAP 06 (2010) 015 [arXiv:1003.2422] [INSPIRE].

[15] S. Agarwal and H.A. Feldman, The effect of massive neutrinos on the matter power spectrum,
Mon. Not. Roy. Astron. Soc. 410 (2011) 1647 [arXiv:1006.0689] [INSPIRE].

[16] S. Bird, M. Viel and M.G. Haehnelt, Massive neutrinos and the non-linear matter power
spectrum, Mon. Not. Roy. Astron. Soc. 420 (2012) 2551 [arXiv:1109.4416] [INSPIRE].

[17] F. Villaescusa-Navarro et al., Cosmology with massive neutrinos I: towards a realistic
modeling of the relation between matter, haloes and galaxies, JCAP 03 (2014) 011
[arXiv:1311.0866] [INSPIRE].

[18] E. Castorina et al., DEMNUni: the clustering of large-scale structures in the presence of
massive neutrinos, JCAP 07 (2015) 043 [arXiv:1505.07148] [INSPIRE].

[19] J.D. Emberson et al., Cosmological neutrino simulations at extreme scale, Res. Astron.
Astrophys. 17 (2017) 085 [arXiv:1611.01545] [INSPIRE].

[20] J. Adamek, R. Durrer and M. Kunz, Relativistic N -body simulations with massive neutrinos,
JCAP 11 (2017) 004 [arXiv:1707.06938] [INSPIRE].

[21] A. Banerjee, D. Powell, T. Abel and F. Villaescusa-Navarro, Reducing noise in cosmological
N -body simulations with neutrinos, JCAP 09 (2018) 028 [arXiv:1801.03906] [INSPIRE].

[22] J. Brandbyge, S. Hannestad and T. Tram, Momentum space sampling of neutrinos in N -body
simulations, JCAP 03 (2019) 047 [arXiv:1806.05874] [INSPIRE].

– 38 –

97



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

[23] J. Brandbyge and S. Hannestad, Grid based linear neutrino perturbations in cosmological
N -body simulations, JCAP 05 (2009) 002 [arXiv:0812.3149] [INSPIRE].

[24] Y. Ali-Haimoud and S. Bird, An efficient implementation of massive neutrinos in non-linear
structure formation simulations, Mon. Not. Roy. Astron. Soc. 428 (2012) 3375
[arXiv:1209.0461] [INSPIRE].

[25] J. Liu et al., MassiveNuS: cosmological massive neutrino simulations, JCAP 03 (2018) 049
[arXiv:1711.10524] [INSPIRE].

[26] J.Z. Chen, A. Upadhye and Y.Y.Y. Wong, One line to run them all: SuperEasy massive
neutrino linear response in N -body simulations, JCAP 04 (2021) 078 [arXiv:2011.12504]
[INSPIRE].

[27] J. Dakin et al., νCONCEPT: cosmological neutrino simulations from the non-linear
Boltzmann hierarchy, JCAP 02 (2019) 052 [arXiv:1712.03944] [INSPIRE].

[28] K. Yoshikawa, S. Tanaka, N. Yoshida and S. Saito, Cosmological Vlasov-Poisson simulations
of structure formation with relic neutrinos: nonlinear clustering and the neutrino mass,
Astrophys. J. 904 (2020) 159 [arXiv:2010.00248] [INSPIRE].

[29] J. Brandbyge and S. Hannestad, Resolving cosmic neutrino structure: a hybrid neutrino
N -body scheme, JCAP 01 (2010) 021 [arXiv:0908.1969] [INSPIRE].

[30] S. Bird, Y. Ali-Haïmoud, Y. Feng and J. Liu, An efficient and accurate hybrid method for
simulating non-linear neutrino structure, Mon. Not. Roy. Astron. Soc. 481 (2018) 1486
[arXiv:1803.09854] [INSPIRE].

[31] W. Elbers et al., An optimal non-linear method for simulating relic neutrinos, Mon. Not. Roy.
Astron. Soc. 507 (2021) 2614 [arXiv:2010.07321] [INSPIRE].

[32] C. Partmann, C. Fidler, C. Rampf and O. Hahn, Fast simulations of cosmic large-scale
structure with massive neutrinos, JCAP 09 (2020) 018 [arXiv:2003.07387] [INSPIRE].

[33] M. Zennaro et al., How to add massive neutrinos to your ΛCDM simulation — extending
cosmology rescaling algorithms, Mon. Not. Roy. Astron. Soc. 489 (2019) 5938
[arXiv:1905.08696] [INSPIRE].

[34] I. Esteban et al., The fate of hints: updated global analysis of three-flavor neutrino
oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].

[35] KATRIN collaboration, Improved upper limit on the neutrino mass from a direct kinematic
method by KATRIN, Phys. Rev. Lett. 123 (2019) 221802 [arXiv:1909.06048] [INSPIRE].

[36] KATRIN collaboration, Direct neutrino-mass measurement with sub-electronvolt sensitivity,
Nature Phys. 18 (2022) 160 [arXiv:2105.08533] [INSPIRE].

[37] E. Di Valentino, S. Gariazzo and O. Mena, Most constraining cosmological neutrino mass
bounds, Phys. Rev. D 104 (2021) 083504 [arXiv:2106.15267] [INSPIRE].

[38] M. Archidiacono, T. Brinckmann, J. Lesgourgues and V. Poulin, Physical effects involved in
the measurements of neutrino masses with future cosmological data, JCAP 02 (2017) 052
[arXiv:1610.09852] [INSPIRE].

[39] J.R. Bond, G. Efstathiou and J. Silk, Massive neutrinos and the large scale structure of the
universe, Phys. Rev. Lett. 45 (1980) 1980 [INSPIRE].

[40] W. Hu, D.J. Eisenstein and M. Tegmark, Weighing neutrinos with galaxy surveys, Phys. Rev.
Lett. 80 (1998) 5255 [astro-ph/9712057] [INSPIRE].

[41] S. Hannestad, A. Upadhye and Y.Y.Y. Wong, Spoon or slide? The non-linear matter power
spectrum in the presence of massive neutrinos, JCAP 11 (2020) 062 [arXiv:2006.04995]
[INSPIRE].

[42] V. Springel, The cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364
(2005) 1105 [astro-ph/0505010] [INSPIRE].

– 39 –

98



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

[43] V. Springel et al., The Aquarius project: the subhalos of galactic halos, Mon. Not. Roy.
Astron. Soc. 391 (2008) 1685 [arXiv:0809.0898] [INSPIRE].

[44] R.E. Angulo et al., Scaling relations for galaxy clusters in the Millennium-XXL simulation,
Mon. Not. Roy. Astron. Soc. 426 (2012) 2046 [arXiv:1203.3216] [INSPIRE].

[45] R.E. Angulo et al., The BACCO simulation project: exploiting the full power of large-scale
structure for cosmology, Mon. Not. Roy. Astron. Soc. 507 (2021) 5869 [arXiv:2004.06245]
[INSPIRE].

[46] A.M. Beck et al., An improved SPH scheme for cosmological simulations, Mon. Not. Roy.
Astron. Soc. 455 (2016) 2110 [arXiv:1502.07358] [INSPIRE].

[47] T. Marin-Gilabert, M. Valentini, U.P. Steinwandel and K. Dolag, The role of physical and
numerical viscosity in hydrodynamical instabilities, Mon. Not. Roy. Astron. Soc. 517 (2022)
5971 [arXiv:2205.09135] [INSPIRE].

[48] V. Springel, R. Pakmor, O. Zier and M. Reinecke, Simulating cosmic structure formation with
the gadget-4 code, Mon. Not. Roy. Astron. Soc. 506 (2021) 2871 [arXiv:2010.03567]
[INSPIRE].

[49] P. Heuschling, C. Partmann and C. Fidler, A minimal model for massive neutrinos in
Newtonian N -body simulations, JCAP 09 (2022) 068 [arXiv:2201.13186] [INSPIRE].

[50] V. Springel, E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on
a moving mesh, Mon. Not. Roy. Astron. Soc. 401 (2010) 791 [arXiv:0901.4107] [INSPIRE].

[51] R. Weinberger, V. Springel and R. Pakmor, The Arepo public code release, Astrophys. J.
Suppl. 248 (2020) 32 [arXiv:1909.04667] [INSPIRE].

[52] J. Dakin, S. Hannestad and T. Tram, The cosmological simulation code CONCEPT 1.0, Mon.
Not. Roy. Astron. Soc. 513 (2022) 991 [arXiv:2112.01508] [INSPIRE].

[53] D. Potter, J. Stadel and R. Teyssier, PKDGRAV3: beyond trillion particle cosmological
simulations for the next era of galaxy surveys, arXiv:1609.08621 [INSPIRE].

[54] M. Schaller et al., SWIFT: SPH with inter-dependent fine-grained tasking, Astrophysics
source code library https://ascl.net/1805.020, May 2018.

[55] W. Elbers, Geodesic motion and phase-space evolution of massive neutrinos, JCAP 11 (2022)
058 [arXiv:2207.14256] [INSPIRE].

[56] R. Teyssier, Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution
code called Ramses, Astron. Astrophys. 385 (2002) 337 [astro-ph/0111367] [INSPIRE].

[57] R. Mauland, O. Elgarøy, D.F. Mota and H.A. Winther, The void-galaxy cross-correlation
function with massive neutrinos and modified gravity, arXiv:2303.05820 [INSPIRE].

[58] J. Adamek, D. Daverio, R. Durrer and M. Kunz, General relativity and cosmic structure
formation, Nature Phys. 12 (2016) 346 [arXiv:1509.01699] [INSPIRE].

[59] J. Adamek, D. Daverio, R. Durrer and M. Kunz, Gevolution: a cosmological N -body code
based on general relativity, JCAP 07 (2016) 053 [arXiv:1604.06065] [INSPIRE].

[60] H.A. Winther et al., COLA with scale-dependent growth: applications to screened modified
gravity models, JCAP 08 (2017) 006 [arXiv:1703.00879] [INSPIRE].

[61] B.S. Wright, H.A. Winther and K. Koyama, COLA with massive neutrinos, JCAP 10 (2017)
054 [arXiv:1705.08165] [INSPIRE].

[62] P. Monaco et al., An accurate tool for the fast generation of dark matter halo catalogs, Mon.
Not. Roy. Astron. Soc. 433 (2013) 2389 [arXiv:1305.1505] [INSPIRE].

[63] L.A. Rizzo et al., Simulating cosmologies beyond ΛCDM with PINOCCHIO, JCAP 01 (2017)
008 [arXiv:1610.07624] [INSPIRE].

[64] M. Cataneo et al., On the road to per cent accuracy — III. Non-linear reaction of the matter
power spectrum to massive neutrinos, Mon. Not. Roy. Astron. Soc. 491 (2020) 3101
[arXiv:1909.02561] [INSPIRE].

– 40 –

99



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

[65] B. Bose et al., On the road to per cent accuracy — V. The non-linear power spectrum beyond
ΛCDM with massive neutrinos and baryonic feedback, Mon. Not. Roy. Astron. Soc. 508
(2021) 2479 [arXiv:2105.12114] [INSPIRE].

[66] E. Lawrence et al., The Mira-Titan universe II: matter power spectrum emulation, Astrophys.
J. 847 (2017) 50 [arXiv:1705.03388] [INSPIRE].

[67] K.R. Moran et al., The Mira-Titan universe — IV. High-precision power spectrum emulation,
Mon. Not. Roy. Astron. Soc. 520 (2023) 3443 [arXiv:2207.12345] [INSPIRE].

[68] A. Banerjee and N. Dalal, Simulating nonlinear cosmological structure formation with massive
neutrinos, JCAP 11 (2016) 015 [arXiv:1606.06167] [INSPIRE].

[69] C.-P. Ma and E. Bertschinger, A calculation of the full neutrino phase space in cold + hot
dark matter models, Astrophys. J. 429 (1994) 22 [astro-ph/9308006] [INSPIRE].

[70] S. Tassev, M. Zaldarriaga and D. Eisenstein, Solving large scale structure in ten easy steps
with COLA, JCAP 06 (2013) 036 [arXiv:1301.0322] [INSPIRE].

[71] A. Izard, M. Crocce and P. Fosalba, ICE-COLA: towards fast and accurate synthetic galaxy
catalogues optimizing a quasi N -body method, Mon. Not. Roy. Astron. Soc. 459 (2016) 2327
[arXiv:1509.04685] [INSPIRE].

[72] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed
FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [INSPIRE].

[73] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo
approach, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436] [INSPIRE].

[74] P. Monaco, T. Theuns and G. Taffoni, Pinocchio: pinpointing orbit-crossing collapsed
hierarchical objects in a linear density field, Mon. Not. Roy. Astron. Soc. 331 (2002) 587
[astro-ph/0109323] [INSPIRE].

[75] E. Munari et al., Improving fast generation of halo catalogues with higher order Lagrangian
perturbation theory, Mon. Not. Roy. Astron. Soc. 465 (2017) 4658 [arXiv:1605.04788]
[INSPIRE].

[76] E. Munari et al., Testing approximate predictions of displacements of cosmological dark matter
halos, JCAP 07 (2017) 050 [arXiv:1704.00920] [INSPIRE].

[77] E. Castorina et al., Cosmology with massive neutrinos II: on the universality of the halo mass
function and bias, JCAP 02 (2014) 049 [arXiv:1311.1212] [INSPIRE].

[78] J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical
clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].

[79] L. Blot et al., Comparing approximate methods for mock catalogues and covariance matrices
II: power spectrum multipoles, Mon. Not. Roy. Astron. Soc. 485 (2019) 2806
[arXiv:1806.09497] [INSPIRE].

[80] C. Fidler et al., A new approach to cosmological structure formation with massive neutrinos,
JCAP 01 (2019) 025 [arXiv:1807.03701] [INSPIRE].

[81] M. Cataneo et al., On the road to percent accuracy: non-linear reaction of the matter power
spectrum to dark energy and modified gravity, Mon. Not. Roy. Astron. Soc. 488 (2019) 2121
[arXiv:1812.05594] [INSPIRE].

[82] A. Mead, S. Brieden, T. Tröster and C. Heymans, HMcode-2020: improved modelling of
non-linear cosmological power spectra with baryonic feedback, arXiv:2009.01858
[DOI:10.1093/mnras/stab082] [INSPIRE].

[83] A. Cooray and R.K. Sheth, Halo models of large scale structure, Phys. Rept. 372 (2002) 1
[astro-ph/0206508] [INSPIRE].

[84] M. Cacciato et al., Galaxy clustering & galaxy-galaxy lensing: a promising union to constrain
cosmological parameters, Mon. Not. Roy. Astron. Soc. 394 (2009) 929 [arXiv:0807.4932]
[INSPIRE].

– 41 –

100



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

[85] C. Giocoli, M. Bartelmann, R.K. Sheth and M. Cacciato, Halo model description of the
non-linear dark matter power spectrum at k � 1Mpc−1, Mon. Not. Roy. Astron. Soc. 408
(2010) 300 [arXiv:1003.4740] [INSPIRE].

[86] R.K. Sheth and G. Tormen, Large scale bias and the peak background split, Mon. Not. Roy.
Astron. Soc. 308 (1999) 119 [astro-ph/9901122] [INSPIRE].

[87] R.K. Sheth and G. Tormen, An excursion set model of hierarchical clustering: ellipsoidal
collapse and the moving barrier, Mon. Not. Roy. Astron. Soc. 329 (2002) 61
[astro-ph/0105113] [INSPIRE].

[88] J.S. Bullock et al., Profiles of dark haloes. Evolution, scatter, and environment, Mon. Not.
Roy. Astron. Soc. 321 (2001) 559 [astro-ph/9908159] [INSPIRE].

[89] B. Bose et al., On the road to per cent accuracy IV: ReACT — computing the non-linear
power spectrum beyond ΛCDM, Mon. Not. Roy. Astron. Soc. 498 (2020) 4650
[arXiv:2005.12184] [INSPIRE].

[90] VIRGO Consortium collaboration, Stable clustering, the halo model and nonlinear
cosmological power spectra, Mon. Not. Roy. Astron. Soc. 341 (2003) 1311
[astro-ph/0207664] [INSPIRE].

[91] R. Takahashi et al., Revising the halofit model for the nonlinear matter power spectrum,
Astrophys. J. 761 (2012) 152 [arXiv:1208.2701] [INSPIRE].

[92] K. Heitmann et al., The Coyote universe II: cosmological models and precision emulation of
the nonlinear matter power spectrum, Astrophys. J. 705 (2009) 156 [arXiv:0902.0429]
[INSPIRE].

[93] T. Nishimichi et al., Dark quest. I. Fast and accurate emulation of halo clustering statistics
and its application to galaxy clustering, Astrophys. J. 884 (2019) 29 [arXiv:1811.09504]
[INSPIRE].

[94] S.K. Giri and A. Schneider, Emulation of baryonic effects on the matter power spectrum and
constraints from galaxy cluster data, JCAP 12 (2021) 046 [arXiv:2108.08863] [INSPIRE].

[95] G. Aricò et al., The BACCO simulation project: a baryonification emulator with neural
networks, Mon. Not. Roy. Astron. Soc. 506 (2021) 4070 [arXiv:2011.15018] [INSPIRE].

[96] K. Heitmann et al., The Mira-Titan universe: precision predictions for dark energy surveys,
Astrophys. J. 820 (2016) 108 [arXiv:1508.02654] [INSPIRE].

[97] S. Habib et al., HACC: simulating sky surveys on state-of-the-art supercomputing
architectures, New Astron. 42 (2016) 49 [arXiv:1410.2805] [INSPIRE].

[98] Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron.
Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

[99] R.E. Angulo and S.D.M. White, One simulation to fit them all — changing the background
parameters of a cosmological N -body simulation, Mon. Not. Roy. Astron. Soc. 405 (2010) 143
[arXiv:0912.4277] [INSPIRE].

[100] M. Archidiacono, S. Hannestad and J. Lesgourgues, What will it take to measure individual
neutrino mass states using cosmology?, JCAP 09 (2020) 021 [arXiv:2003.03354] [INSPIRE].

[101] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System
(CLASS) II: approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

[102] M. Zennaro et al., Initial conditions for accurate N -body simulations of massive neutrino
cosmologies, Mon. Not. Roy. Astron. Soc. 466 (2017) 3244 [arXiv:1605.05283] [INSPIRE].

[103] R.E. Angulo and A. Pontzen, Cosmological N -body simulations with suppressed variance,
Mon. Not. Roy. Astron. Soc. 462 (2016) L1 [arXiv:1603.05253] [INSPIRE].

[104] Y.B. Zeldovich, Gravitational instability: an approximate theory for large density
perturbations, Astron. Astrophys. 5 (1970) 84 [INSPIRE].

– 42 –

101



J
C
A
P
0
6
(
2
0
2
3
)
0
3
5

[105] M. Davis, F.J. Summers and D. Schlegel, Large scale structure in a universe with mixed hot
and cold dark matter, Nature 359 (1992) 393 [INSPIRE].

[106] A. Klypin, J. Holtzman, J. Primack and E. Regos, Structure formation with cold plus hot dark
matter, Astrophys. J. 416 (1993) 1 [astro-ph/9305011] [INSPIRE].

[107] E. Sefusatti, M. Crocce, R. Scoccimarro and H. Couchman, Accurate estimators of correlation
functions in Fourier space, Mon. Not. Roy. Astron. Soc. 460 (2016) 3624 [arXiv:1512.07295]
[INSPIRE].

[108] G. Tormen, The assembly of matter in galaxy clusters, Mon. Not. Roy. Astron. Soc. 297
(1998) 648 [astro-ph/9802290] [INSPIRE].

[109] G. Tormen and L. Moscardini, Properties of cluster satellites in hydrodynamical simulations,
Mon. Not. Roy. Astron. Soc. 350 (2004) 1397 [astro-ph/0304375] [INSPIRE].

[110] C. Giocoli, G. Tormen and F.C. Bosch, The population of dark matter subhaloes: mass
functions and average mass loss rates, Mon. Not. Roy. Astron. Soc. 386 (2008) 2135
[arXiv:0712.1563] [INSPIRE].

[111] G. Despali et al., The universality of the virial halo mass function and models for
non-universality of other halo definitions, Mon. Not. Roy. Astron. Soc. 456 (2016) 2486
[arXiv:1507.05627] [INSPIRE].

[112] W.A. Watson et al., The halo mass function through the cosmic ages, Mon. Not. Roy. Astron.
Soc. 433 (2013) 1230 [arXiv:1212.0095] [INSPIRE].

[113] J.L. Tinker et al., The large scale bias of dark matter halos: numerical calibration and model
tests, Astrophys. J. 724 (2010) 878 [arXiv:1001.3162] [INSPIRE].

[114] E. Massara, F. Villaescusa-Navarro and M. Viel, The halo model in a massive neutrino
cosmology, JCAP 12 (2014) 053 [arXiv:1410.6813] [INSPIRE].

[115] A. Schneider et al., Matter power spectrum and the challenge of percent accuracy, JCAP 04
(2016) 047 [arXiv:1503.05920] [INSPIRE].

[116] G. Parimbelli et al., DEMNUni: comparing nonlinear power spectra prescriptions in the
presence of massive neutrinos and dynamical dark energy, JCAP 11 (2022) 041
[arXiv:2207.13677] [INSPIRE].

[117] S. Saito, M. Takada and A. Taruya, Impact of massive neutrinos on nonlinear matter power
spectrum, Phys. Rev. Lett. 100 (2008) 191301 [arXiv:0801.0607] [INSPIRE].

[118] Y.Y.Y. Wong, Higher order corrections to the large scale matter power spectrum in the
presence of massive neutrinos, JCAP 10 (2008) 035 [arXiv:0809.0693] [INSPIRE].

[119] B. Audren et al., Neutrino masses and cosmological parameters from a Euclid-like survey:
Markov chain Monte Carlo forecasts including theoretical errors, JCAP 01 (2013) 026
[arXiv:1210.2194] [INSPIRE].

[120] R. de Belsunce and L. Senatore, Tree-level bispectrum in the effective field theory of large-scale
structure extended to massive neutrinos, JCAP 02 (2019) 038 [arXiv:1804.06849] [INSPIRE].

[121] R. Ruggeri, E. Castorina, C. Carbone and E. Sefusatti, DEMNUni: massive neutrinos and the
bispectrum of large scale structures, JCAP 03 (2018) 003 [arXiv:1712.02334] [INSPIRE].

[122] M. Costanzi et al., Cosmology with massive neutrinos III: the halo mass function and an
application to galaxy clusters, JCAP 12 (2013) 012 [arXiv:1311.1514] [INSPIRE].

[123] F. Hassani, J. Adamek, R. Durrer and M. Kunz, Biased tracers as a probe of beyond-ΛCDM
cosmologies, Astron. Astrophys. 668 (2022) A56 [arXiv:2206.14179] [INSPIRE].

[124] M. Martinelli et al., Euclid: impact of non-linear and baryonic feedback prescriptions on
cosmological parameter estimation from weak lensing cosmic shear, Astron. Astrophys. 649
(2021) A100 [arXiv:2010.12382] [INSPIRE].

– 43 –

102



Paper II

The void-galaxy cross-correlation
function with massive neutrinos
and modified gravity

Renate Mauland, Øystein Elgarøy, David F. Mota, and Hans A.
Winther
Published in Astronomy & Astrophysics, A&A 674 A185 (2023).
DOI: 10.1051/0004-6361/202346287.

II

103





A&A 674, A185 (2023)
https://doi.org/10.1051/0004-6361/202346287
c© The Authors 2023

Astronomy
&Astrophysics

The void-galaxy cross-correlation function with massive neutrinos
and modified gravity

R. Mauland , Ø. Elgarøy, D. F. Mota, and H. A. Winther

Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
e-mail: renate.mauland-hus@astro.uio.no

Received 1 March 2023 / Accepted 3 May 2023

ABSTRACT

Massive neutrinos and f (R)-modified gravity have degenerate observational signatures that can impact the interpretation of results
in galaxy survey experiments, such as cosmological parameter estimations and gravity model tests. Because of this, it is important
to investigate astrophysical observables that can break these degeneracies. Cosmic voids are sensitive to both massive neutrinos
and modifications of gravity and provide a promising ground for disentangling the above-mentioned degeneracies. In order to analyse
cosmic voids in the context of non-ΛCDM cosmologies, we must first understand how well the current theoretical framework operates
in these settings. We performed a suite of simulations with the RAMSES-based N-body code ANUBISIS, including massive neutrinos
and f (R)-modified gravity both individually and simultaneously. The data from the simulations were compared to models of the void
velocity profile and the void-halo cross-correlation function (CCF). This was done both with the real space simulation data as model
input and by applying a reconstruction method to the redshift space data. In addition, we ran Markov chain Monte Carlo (MCMC) fits
on the data sets to assess the capability of the models to reproduce the fiducial simulation values of fσ8(z) and the Alcock-Paczyǹski
parameter, ε. The void modelling applied performs similarly for all simulated cosmologies, indicating that more accurate models
and higher resolution simulations are needed in order to directly observe the effects of massive neutrinos and f (R)-modified gravity
through studies of the void-galaxy CCF. The MCMC fits show that the choice for the void definition plays an important role in the
recovery of the correct cosmological parameters, but otherwise, there is no clear distinction between the ability to reproduce fσ8 and
ε for the various simulations.

Key words. neutrinos – gravitation – large-scale structure of Universe – cosmological parameters – methods: data analysis

1. Introduction

Cosmic voids are underdense regions in the large-scale struc-
ture (LSS) which together with halos, walls, and filaments
make up the cosmic web. They have recently become a pop-
ular independent probe for cosmological parameters as they
provide information about the parameter combination fσ8(z)
through the study of redshift space distortions (RSDs) from
the imprint left on the quadrupole of the void-galaxy cross-
correlation function (CCF; Cai et al. 2016; Nadathur & Percival
2019; Nadathur et al. 2019b). Further on, careful modelling of
the RSDs around voids originating from the peculiar veloc-
ities of galaxies also opens up for the applied fiducial cos-
mology to be tested through the Alcock-Paczyǹski effect
(Alcock & Paczyński 1979; Sutter et al. 2012; Hamaus et al.
2022). In addition to this, the empty nature of cosmic voids
makes them sensitive to diffuse components of our Universe,
such as massive neutrinos, and effects of modified gravities
which scale inversely with density (Zivick et al. 2015; Cai et al.
2015; Massara et al. 2015; Falck et al. 2018; Kreisch et al. 2019;
Fiorini et al. 2022).

The presence of massive neutrinos suppresses structure
formation on scales smaller than the neutrino free-streaming
length (Lesgourgues & Pastor 2006), while f (R)-modified grav-
ity enhances it on scales smaller than the Compton wavelength
of the scalaron (e.g., Cataneo et al. 2015). This results in observa-
tional degeneracies which have previously been studied in simula-
tions (Baldi et al. 2014; Giocoli et al. 2018; Contarini et al. 2021).

Both massive neutrinos and modified gravity are indepen-
dently large research fields. Determining the absolute mass
scale of neutrinos is not only an important quest within parti-
cle physics but also essential in order to understand LSS for-
mation within cosmology. The massive neutrinos make up a
fraction of the matter content of the Universe ranging from
0.5−2% based on the lower and upper limits of the sum of the
neutrino masses, 0.06 eV .

∑
mν . 2.4 eV, provided by parti-

cle physics experiments (Particle Data Group 2022; Aker et al.
2022). This range can be further constrained through cosmo-
logical observations. Effects of massive neutrinos on LSS and
signatures left in the cosmic microwave background (CMB;
Archidiacono et al. 2017) can be used to estimate the sum
of the neutrino masses. New space missions, such as Euclid
(Laureijs et al. 2011), are now sensitive enough to accurately
pick up on the effects of massive neutrinos on the matter power
spectrum. Euclid aims to measure the sum of the neutrino masses
to a precision better than 0.03 eV. This will be achieved through
a combined analysis of galaxy clustering and weak gravitational
lensing. For small neutrino masses,

∑
mν < 0.1 eV, this is pre-

cise enough to determine the neutrino mass hierarchy.
Although constraints from cosmology are typically tighter

than the ones obtained from particle physics experiments, they
do depend on an assumed cosmological model. Because of this,
disentangling degeneracies between massive neutrinos and var-
ious cosmologies is important in order to fully determine the
neutrino mass scale. Accounting for massive neutrinos when
studying alternatives to ΛCDM (Lambda cold dark matter) is
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therefore also necessary to make sure that constraints on the
model in question are properly estimated. For f (R)-modified
gravity, the constraints on the model parameters might be
slightly alleviated when massive neutrinos are included in the
estimates, due to their degeneracy.

The theory of general relativity (GR) has been thoroughly
investigated in high density regions, for instance through local
solar system tests (Will 2014). To adhere to the resulting
measurements, modified gravity theories typically need to be
screened as a function of density. This contributes to the
constraints on the parameters of these models and also makes
deviations from ΛCDM hard to observe in highly screened envi-
ronments. Cosmic voids are underdense regions sensitive to both
massive neutrinos and f (R)-modified gravity. Because of this,
voids have been proposed as a means to separate their known
degenerate effects. The void size function at high redshifts for
large voids is found by Contarini et al. (2021) to be a promising
candidate for the task.

Before further exploring voids in the context of massive
neutrinos and f (R)-modified gravity, we must first take a look
at the theory behind the models developed to extract cosmo-
logical information from them. In our case, we investigate the
void-galaxy CCF in redshift space, the void velocity profile, and
a reconstruction method for putting galaxy positions observed
from redshift space back into real space. These are all based on
linear theory and, to a degree, a standard ΛCDM universe. In this
paper, we explore the need for change in these models in order
to use them to describe voids in a universe with massive neu-
trinos and f (R)-modified gravity. To do so, we compared them
to N-body simulations containing massive neutrinos and f (R)-
modified gravity, both independently and combined. We studied
how well the model for the void velocity profile and the void-
halo CCF in redshift space fit the simulation data in each case.
The latter was done both by using all the real space information
from the simulations directly as model input and also by treating
the simulation data as observational data, using redshift space
halo positions and a reconstruction method to gain an estimate
of the corresponding real space positions of the halos. In addi-
tion, we performed Markov chain Monte Carlo (MCMC) fits for
fσ8(z) and the Alcock-Paczyǹski parameter, ε, in order to test
how well we are able to recover the fiducial cosmology.

This paper is structured as follows: We start by present-
ing background theory for cosmic voids, massive neutrinos, and
f (R)-modified gravity in Sect. 2 and then explain our simulation
set-up in Sect. 3. In Sect. 4 we detail the methodical approach
of the paper before reporting our results in Sect. 5. Finally, we
conclude in Sect. 6.

2. Theory

2.1. Cosmic voids

In the following subsections, we recap some models developed
to extract information from cosmic voids. This includes the mod-
elling of the void-galaxy CCF in redshift space, the velocity pro-
file, and a reconstruction process. In addition, we briefly explain
how voids can be used to test cosmology through the Alcock-
Paczyński effect. The numerical definition of voids in this work
is addressed in Sect. 4.2.

2.1.1. Cross-correlation function

The void-galaxy CCF gives us information about how galax-
ies are distributed around voids as a function of the void-centre
galaxy separation (Cai et al. 2016; Nadathur & Percival 2019;

Woodfinden et al. 2022). In real space, we denote this separa-
tion vector by r, and in redshift space by s. As we observe in
redshift space, deconstructing the separation vectors into com-
ponents perpendicular and parallel to the line-of-sight (LOS) is
advantageous, and gives the following relations
s⊥ = r⊥, (1)

s‖ = r‖ +
v‖

aH
. (2)

Here, H is the Hubble rate, a the scale factor, and v‖ the com-
ponent of the galaxy peculiar velocity parallel to the LOS. The
LOS can be defined as from the observer to the void centre, the
galaxy or the midpoint between them. We use the observer to
void-centre definition in this paper.

The void-galaxy CCF in redshift space, ξs(s), can be related
to the void-galaxy CCF in real space, ξr(r), by the streaming
model (Peebles 1980; Fisher 1995; Paillas et al. 2021):

1 + ξs(s) =

∫
(1 + ξr(r))P(v‖, r)dv‖, (3)

where P(v‖, r) is the probability distribution function (PDF) of
the galaxies’ peculiar velocities parallel to the LOS. This is a
mapping from real to redshift space, based on the fact that void-
galaxy pairs are conserved when moving between the two1. The
galaxy velocities can further be separated into two components,
one describing the coherent outflow velocity away from the
void centre, and the other an additional stochastic motion of the
galaxies. The first term can be assumed spherically symmetric
around and radially directed out from the void centre when aver-
aging over a large number of voids, due to statistical isotropy
in real space. Following this argument, we can write the LOS
galaxy velocity component as
v‖(r, µr) = vr(r)µr + ṽ‖, (4)
where ṽ‖ is the random velocity component parallel to the LOS,
µr = cos θ, and θ is the angle between the LOS and r so that
vr(r)µr is the part of the coherent outflow velocity profile pro-
jected along the LOS.

By performing a coordinate change from v‖ → ṽ‖, as shown
in Woodfinden et al. (2022), Eq. (3) can be written as

1 + ξs(s) =

∫
(1 + ξr(r))P(ṽ‖, r)Jrsdṽ‖, (5)

where Jrs is the Jacobian resulting from the shift from real to
redshift space and P(ṽ‖, r) is the PDF of the random velocity
component centred around zero. Writing out the Jacobian we get
the expression

Jrs =

[
1 +

vr

raH
+

(v′r − vr/r)
aH

µ2
r

]−1

, (6)

with derivatives with respect to r denoted by a prime.
Simulations show that P(ṽ‖, r) is approximated well by a
Gaussian (Nadathur & Percival 2019; Paillas et al. 2021) and we
therefore consider

P(ṽ‖, r) =
1√

2πσ2
v‖ (r)

exp
(
−

ṽ2
‖

2σ2
v‖ (r)

)
, (7)

with the additional assumption of a spherically symmetric veloc-
ity dispersion, σ2

v‖ (r).

1 In order for this to hold, the voids must be consistently identified
either in real or redshift space for both ξr(r) and ξs(s). However, iden-
tification in redshift space leads to an orientation-dependent selection
bias of the possible voids (Chuang et al. 2017; Nadathur et al. 2019a).
To avoid this, we always identify voids in real space in this paper.
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2.1.2. Velocity modelling

Equation (5) depends on the coherent mean outflow velocity pro-
file around the void, v(r) = vr(r)r̂. This quantity can be provided
to the model through a template, for example, obtained from a
simulation, or it can be modelled separately. Typically, using
linear perturbation theory and the continuity equation (Peebles
1980, 1993), the expression

vLin
r (r) = −1

3
f aH∆(r)r (8)

is used for the radial outflow velocity profile. Here, f =
d ln D/d ln a is the linear growth rate, with D as the growth fac-
tor, and ∆(r) is the integrated density,

∆(r) =
3
r3

∫ r

0
δ(x)x2dx, (9)

with δ(r) the dark matter overdensity profile around the void.
Nadathur et al. (2019b) show that ∆(r) ∝ σ8, which leads to vr(r)
depending on the combination of the parameters fσ8, where σ8
is the amplitude of the linear matter power spectrum at a scale
of 8 h−1Mpc. It is also worth noting that in the process of deriv-
ing Eq. (8), the growth rate is assumed constant, which does not
hold for cosmologies with massive neutrinos or modified gravity,
where the growth rate is scale-dependent (e.g., Hernández 2017;
Mirzatuny & Pierpaoli 2019).

Although Eq. (8) is commonly used to model the coherent
outflow velocity, the expression in Eq. (5) should hold for any
spherically symmetric velocity profile. One other example of this
is the more general velocity profile from Paillas et al. (2021),
which introduces an extra degree of freedom,

vGen
r (r) = −1

3
f aH∆(r)r

1 + Avξ0(r)
. (10)

Here, ξ0(r) is the void-galaxy CCF monopole and Av is a free
parameter. This expression is able to better fit the void velocity
profile by adjusting Av. However, the value of Av must be esti-
mated from, for example, simulations if we want to use Eq. (10)
for void-galaxy CCF modelling.

2.1.3. Reconstruction

When working with observational data, we only have access to
galaxy positions in redshift space. However, the model of the
void-galaxy CCF in redshift space depends on the real space
void-galaxy CCF. One way to obtain this quantity is by using
a reconstruction method to estimate the positions of galaxies in
real space.

In the context of voids, Nadathur et al. (2019a) propose one
such method, based on Nusser & Davis (1994). It involves solv-
ing the Zel’dovich equation (Zel’dovich 1970),

∇ ·Ψ +
f
b
∇ · (Ψ · r̂)r̂ = −δg

b
, (11)

for the displacement field, Ψ. Here, f is the growth rate and
b is the linear bias relating the galaxy overdensity field, δg, to
the matter overdensity field, δ, in redshift space. The displace-
ment field, Ψ, relates the Eulerian and Lagrangian positions of
the galaxies. A part of this displacement, given by

ΨRSD = − f (Ψ · r̂)r̂, (12)

is due to the linear RSDs resulting from the galaxies’ peculiar
velocities. By shifting the galaxy positions in redshift space by

−ΨRSD, we can approximately obtain their real space positions.
As seen above, this procedure depends on an input value of the
growth rate, f , and the linear galaxy bias, b, which combined
make the reconstruction parameter β = f /b. Consequentially,
the reconstruction method depends on a fiducial cosmological
model through the growth rate.

2.1.4. The Alcock-Paczyński effect

One way to inspect a chosen cosmology is through the Alcock-
Paczyński (AP) effect (Alcock & Paczyński 1979). This test only
involves the geometry of the Universe and is performed by
studying the ratio of the observed angular and redshift size of
an object with a known shape. An example is cosmic voids,
which on average should have a spherical configuration. A cor-
rectly chosen fiducial cosmology should, when converting from
observed redshifts to physical distances, reproduce the spheri-
cal shape of the average void. Deviations from this show up as
anisotropies in the void-galaxy CCF in addition to the contribu-
tion from peculiar velocities. If we can model the RSDs from
velocities accurately enough, the AP effect can be used on voids
as a test of the fiducial cosmology.

We parameterise the AP effect through the parameters

α‖ =
DH(z)
Dfid

H (z)
, α⊥ =

DA(z)
Dfid

A (z)
, (13)

which are distance ratios parallel and perpendicular to the
LOS between the true cosmology and the fiducial cosmological
model2. Here, DH(z) = c/H(z), which is the Hubble distance at
redshift z, and DA(z) is the comoving angular diameter distance.

Taking into account the difference between the true cosmol-
ogy and the fiducial model, the void-galaxy CCF in redshift
space scales like

ξs(s‖, s⊥) = ξs,fid
(
α‖sfid

‖ , α⊥sfid
⊥

)
(14)

due to the void-galaxy pair separation, sfid, dependency of the
calculation. The two AP parameters can be rewritten into

α = α2/3
⊥ α1/3

‖ , (15)

ε =
α⊥
α‖
, (16)

where α characterises the volume dilation and ε quantifies
anisotropic distortions, which largely affect the quadrupole of
the CCF, as Nadathur et al. (2019b) demonstrate. When perform-
ing the calculation of the CCF model, the input parameters ξr(r),
∆(r), and σv‖ are scaled by α in order to not use the absolute void
size as a standard ruler (Nadathur et al. 2019a). This leaves only
a dependence on ε. The underlying assumption behind the AP
modelling in Eq. (14) is that the positions of voids in a fiducial
cosmology where the AP parameters are not unity, is (in a statis-
tical sense) just an AP stretching of the void positions in the true
cosmology. This is not always the case, and the implications of
this assumption for extracting constraints from the void-galaxy
CCF in future surveys is the topic of an upcoming paper.

2 In our case, we already know that the fiducial cosmology should
match the true cosmology as we are performing this test on simulated
data. Still, this gives us an opportunity to test how well we reproduce the
fiducial cosmology and could also be used to estimate the constraining
power of an observed data set of similar resolution.
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2.2. Massive neutrinos

From neutrino flavour oscillation experiments, we know that at
least two of the three neutrino mass states have a non-zero mass
(Fukuda et al. 1998; Ahmad et al. 2002; Araki et al. 2005). Cur-
rently, the flavour oscillation experiments of solar and atmo-
spheric neutrinos put constraints on the differences between the
neutrino mass states given by (Particle Data Group 2022)

∆m2
21 = (7.53 ± 0.18) × 10−5 eV2, (17)

∆m2
32 = (−2.536 ± 0.034) × 10−3 eV2 (IH), (18)

∆m2
32 = (2.453 ± 0.033) × 10−3 eV2 (NH). (19)

These experiments are not yet sensitive enough to distinguish
between the ordering of the mass states, and we, therefore, have
two possibilities: the normal hierarchy (NH), where m1 < m2 �
m3, and the inverted hierarchy (IH), where m3 � m1 < m2. Put
together, these measurements provide a lower bound on the sum
of the neutrino masses at

∑
mν & 0.06 eV and

∑
mν & 0.1 eV for

the NH and IH respectively. An upper bound on the sum of the
neutrino masses is also provided by particle physics and the most
recent constraint, at

∑
mν . 2.4 eV, comes from the KATRIN

experiment, which investigates the single β-decay of molecular
tritium (Aker et al. 2022).

Massive neutrinos make up a fraction of the matter content
of the Universe, Ων, described through the relation (Lesgourgues
& Pastor 2006)

Ωνh2 ≈
∑

mν

93.14 eV
. (20)

Typically, this is taken out of the dark matter budget, Ωc, so
that the total matter content, Ωm = Ωc + Ων + Ωb, stays con-
stant. Here, Ωb and Ωm denote the energy density of baryons
and the total matter respectively. As the massive neutrinos are
relativistic at early times, they free-stream out of local peaks
in the density throughout the first stages of structure formation
(Lesgourgues & Pastor 2006). This, in addition to massive neu-
trinos altering the background evolution, leads to a suppression
of matter fluctuations on scales smaller than the neutrino free-
streaming length. The strength of this scale-dependent suppres-
sion depends on the neutrino mass and shows up in the linear
matter power spectrum at small scales as

∆Pm

Pm
≈ −8 fν. (21)

This is a comparison between a cosmology with massless neutri-
nos and massive neutrinos, where Pm is the linear matter power
spectrum considering the total matter and fν = Ων/Ωm. At non-
linear scales, this suppression is known to be even stronger, with
a maximum around k ∼ 1 h Mpc−1, followed by a turn-around
which results in a spoon-like shape of the matter power spec-
trum ratio (Hannestad et al. 2020).

The presence of massive neutrinos results in observable fea-
tures in the LSS and CMB (Will 2014), which makes it possi-
ble to obtain an upper bound on the sum of the neutrino masses
through cosmological observations. Recently, Di Valentino et al.
(2021) find

∑
mν . 0.09 eV at a 95% confidence level by

analysing a combination of data sets. This puts pressure on
the IH, which might further be confirmed by the Euclid space
mission (Laureijs et al. 2011). It should, however, be noted that
although cosmology can provide a tighter upper bound on the
sum of the neutrinos masses than current particle physics exper-
iments, the analysis depends on the choice of a cosmological
model.

2.3. f(R)-modified gravity

In the concordance ΛCDM model, we have the general theory of
relativity (GR) with the Einstein-Hilbert action

S =

∫
R

16πG
√−g d4x, (22)

where R is the Ricci scalar and g is the determinant of the metric
tensor, gµν. To derive the Einstein field equations, we also need
to insert the Lagrangian density of matter, Lm, which describes
the matter in the theory,

S =

∫ ( R
16πG

+ Lm

) √−g d4x. (23)

In f (R)-modified gravity theories, the Einstein-Hilbert action
is modified by adding a function depending on the Ricci scalar,

S =

∫ (
R + f (R)

16πG
+ Lm

) √−g d4x. (24)

For the specific case of Hu-Sawicki f (R)-modified gravity,
we have

f (R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (25)

where m2 = H2
0Ωm and c1, c2, and n are constant, dimensionless,

non-negative parameters that describe the model (Hu & Sawicki
2007). Requiring that the model gives dark energy in the form of
a cosmological constant, these three parameters can be reduced
to two, n and fR0, where

fR0 = −n
c1

c2
2

(
Ωm

3(Ωm + 4ΩΛ)

)n+1

(26)

and c1/c2 = 6ΩΛ/Ωm. Increasing the value of | fR0| gives greater
deviations from GR, which has an effect on structure formation.
This was demonstrated in Hu & Sawicki (2007), where raising
the value of | fR0| showed an enhancement in the matter power
spectrum on small scales.

The f (R) model has become the ‘fiducial’ model used to
investigate cosmological signatures of modified gravity. It is
well studied in the literature and constraints have already been
produced based on various cosmological probes. For example,
an analysis by Cataneo et al. (2015) including cluster, CMB,
supernova, and baryon acoustic oscillation (BAO) data obtains
an upper bound on the Hu-Sawicki f (R) theory given by
log10 | fR0| < −4.79 for n = 1 at 95.4% confidence level. This
familiarity is the reason why we chose Hu-Sawicki f (R) as our
modified gravity model for this work. We set the fiducial value
to | fR0| = 10−5, as this is the value that the LSS is currently able
to probe (Koyama 2016). In addition, we occasionally include
some analysis with | fR0| = 10−4 to enhance the effects of the
modified theory, even though this value has been ruled out by
some probes (e.g., Cataneo et al. 2015).

2.4. Massive neutrinos and f(R) gravity degeneracy

Modifications of gravity are often described as adding a fifth
force which, in addition to gravity, works attractively. This fifth
force is in f (R)-modified gravity carried by the scalaron, the
scalar degree of freedom, quantified by d f /dR. The Compton
wavelength of the scalaron, λC , determines the range of the fifth
force, which also establishes the scale on which Hu-Sawicki
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f (R)-modified gravity enhances structure formation (e.g.,
Llinares et al. 2014; Cataneo et al. 2015),

λ0
C = 3

√
(n + 1)

Ωm + 4ΩΛ

√
| fR0|
10−6 h−1Mpc. (27)

For | fR0| = 10−5 and n = 1, this corresponds to scales k &
0.1 h Mpc−1 at redshift zero.

Massive neutrinos change the time of matter-radiation equal-
ity, leading to changes in the LSS. In addition, they suppress
structure formation on scales smaller than the neutrino free-
streaming length (Lesgourgues & Pastor 2006),

λFS = 7.7
1 + z√

ΩΛ + Ωm(1 + z)3

(
1 eV∑

mν

)
h−1Mpc, (28)

due to their inability to cluster as relativistic particles. This cor-
responds to scales of k & 0.02 h Mpc−1 for

∑
mν = 0.15 eV at

redshift zero.
The scales where structure formation is enhanced by f (R)

gravity coincide with the neutrino free-streaming length. The
suppression effect of the massive neutrinos can therefore,
depending on neutrino mass and the value of fR0, counteract
the structure enhancement of f (R)-modified gravity. This degen-
eracy has been shown to affect observables such as the matter
power spectrum, the halo mass function (HMF) and the halo bias
(Baldi et al. 2014).

3. Simulations

A variety of simulations incorporating massive neutrinos
and modified gravity in different ways already exist (e.g.,
Adamek et al. 2022; Winther et al. 2015), although fewer take
both into account simultaneously (e.g., Baldi et al. 2014; Giocoli
et al. 2018). We approach this in our own way, by develop-
ing a RAMSES-based code, ANUBISIS, which offers the option
of both massive neutrinos and several different modified gravity
theories. This code is a merger between ANUBIS3 and ISIS, as
explained in further detail below.

3.1. ANUBIS

For massive neutrino simulations, we have implemented neu-
trino particles in the N-body and hydrodynamical code RAMSES
(Teyssier 2002). RAMSES implements the particle mesh (PM)
method with adaptive mesh refinement (AMR), which enables
higher resolution in denser regions of the simulation box. As
RAMSES is a Newtonian N-body code, the most straightforward
way to add neutrinos is to implement them as their own particle
family and alter the equations of motion (EOM) to handle arbi-
trarily high momenta. Originally, the gravitational potential is
calculated by solving the Poisson equation, but we instead solved
the geodesic equation written in terms of canonical momen-
tum, as commonly done for N-body codes including relativistic
particles (Ma & Bertschinger 1994; Adamek et al. 2017, 2022).
As a first approach, we ignored frame-dragging, scattering of
particles on gravitational waves, and anisotropic stress, leaving
us with the EOMs
∂qi

∂τ
= − 2q2 + m2a2

√
q2 + m2a2

∂φi

∂xi , (29)

∂xi

∂τ
=

qi√
q2 + m2a2

, (30)

3 https://github.com/renmau/anubis

where q is the canonical momentum, a is the scale factor, m is
the cold dark matter (CDM) particle mass, ∂φ/∂xi is the gravi-
tational force (which for modified gravity models includes addi-
tional fifth-forces), τ is conformal time, and xi is the coordinate
three-position vector.

In addition to including the massive neutrinos as a new par-
ticle family, we also incorporated radiation into the background
evolution through the Hubble function, with an additional option
to read the Hubble function, H(z), from file. As of now, we have
made no changes to how the time-stepping scheme already incor-
porated in RAMSES operates, which makes for quite slow cal-
culations for the lighter neutrino masses. This could be imple-
mented at a later stage by, for example, detaching the neu-
trino particles from the grid and allowing them to travel fur-
ther, letting the CDM particles solely determine the size of the
time steps, or by requiring that the neutrino runs use the same
refinements and level structure as an equivalent massless neu-
trino simulation. The latter alternative would allow a more direct
comparison between ΛCDM and massive neutrino simulations,
especially when studying various ratio properties.

The performance of the ANUBIS code is tested against
other codes incorporating massive neutrinos in the massive
neutrino code comparison project (MNCCP) within Euclid
(Adamek et al. 2022), although with a somewhat lower resolu-
tion than what is expected for convergence within 1% between
the RAMSES and GADGET-3 codes (Schneider et al. 2016). The
upper panel of Fig. 1 displays the neutrino suppression on the
CDM + baryon (cb) matter power spectrum for different val-
ues of the sum of the neutrino masses at z = 0 for both ANUBIS
and GADGET-3. The plot shows good agreement between the two
codes, especially for lower neutrino masses. At higher masses,
the codes start to deviate at smaller scales. This is most likely
due to internal differences in resolution for RAMSES, between
the ΛCDM and massive neutrino simulations. As the neutrino
mass increases, structure formation is more suppressed, leading
to fewer refinements created by the RAMSES AMR-scheme. This
results in a slightly lower resolution for the neutrino simulations,
compared to the ΛCDM one, which shows up in the ratio. This
can be resolved by a higher particle density. The lower panel of
Fig. 1 displays the neutrino suppression on the HMF for the same
neutrino masses as for the matter power spectrum ratios in the
upper panel. The magnitude of the suppression is in agreement
for both GADGET-3 and ANUBIS, and increases with the halo
mass, corresponding to the findings of Brandbyge et al. (2010).

3.2. ISIS

ISIS is a cosmological N-body code incorporating scalar-
tensor gravitational theories including screening mechanisms
into RAMSES (Llinares et al. 2014). This is done by implementing
a non-linear implicit solver for a generic scalar field, which can
treat various scalar-tensor-modified gravity theories. This also
includes f (R) theories, which can be rewritten into the scalar-
tensor format. In particular, ISIS contains Hu-Sawicki f (R)-
modified gravity, as described in Sect. 2.3.

The upper panel of Fig. 2 shows the ratio of the cb mat-
ter power spectrum for a ΛCDM (lcdm_small) and f (R)
(fofr_small) simulation run with ISIS, with the parameter
| fR0| = 10−4. Here, we can clearly see the enhancement of struc-
ture at small scales, with a peak at similar scales to the trough
in the neutrino suppression in Fig. 1. For the HMF in the bot-
tom panel of Fig. 2, the amount of large mass halos is increased,
compared to ΛCDM, as opposed to the ANUBIS simulations with
massive neutrinos that show a decrease. This enhancement is due
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Fig. 1. Comparison of the neutrino suppression on the cb power spec-
trum and HMF for ANUBIS and GADGET-3 at z = 0 for various val-
ues of the sum of the neutrino masses. Top: the neutrino suppression
on the cb power spectrum. The greyed-out area indicates the parts of
the ratios lying outside of the Nyquist frequency of the simulations.
Bottom: the neutrino suppression on the HMF. Only halos with Npart ≥
11 are included.

to a boost of gravity resulting from the fifth force present in f (R)-
modified gravity. Summed up, these figures show the opposite
behaviour of what is observed in Sect. 3.1, as expected.

The two simulations introduced here, dubbed lcdm_small
and fofr_small, are occasionally used as additions to the sim-
ulations performed for this work. This is further explained in the
following section, along with the simulation details.

3.3. ANUBIS + ISIS = ANUBISIS

To obtain a RAMSES-based code which includes both the effects
of massive neutrinos and f (R) gravity, we have merged the
ANUBIS and ISIS codes into one code, ANUBISIS. This pro-
vides us with the opportunity to run simulations with massive
neutrinos and modified gravity both independently and simulta-
neously. For this paper, we have performed a suite of such sim-
ulations with properties as presented in Table 1. Summarised,
we have six simulations, one with ΛCDM cosmology, one with
Hu-Sawicki f (R)-modified gravity, two with ΛCDM and mas-
sive neutrinos, and two with massive neutrinos and Hu-Sawicki
f (R) gravity combined. In addition to these six simulations
run with the ANUBISIS code, we also have two simulations,
one ΛCDM and one f (R), which was previously run with the
ISIS code, as presented in Sect. 3.2. These are included as the
f (R) simulation was run with | fR0| = 10−4, and therefore bet-
ter demonstrates the effects of modified gravity in specific cases
where we are interested in studying this further.
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Fig. 2. CDM + baryon (cb) matter power spectrum and HMF of the
fofr_small simulation, compared to lcdm_small. The power spec-
trum and HMF ratios are displayed in the top and bottom panels respec-
tively. For the power spectrum ratio, the different σ8-values of the sim-
ulations are taken into account through scaling, and the greyed-out area
indicates the parts of the ratios lying outside of the Nyquist frequency
of the simulations.

In this section, we present some general properties of the
ANUBISIS simulations. To better help distinguish the results, we
introduce a general linestyle guide where pure ΛCDM is always
shown as a full line, f (R) as a dashed line, massive neutrino runs
as a dotted line, and the combination of f (R)-modified gravity
and massive neutrinos as a dash-dotted line. The upper panel of
Fig. 3 shows the ratio of the CDM+baryon (cb) matter power
spectrum between the various ANUBISIS simulations and the
ΛCDM case. At large scales, there is originally a slight excess in
the power spectrum for the massive neutrino and f (R) + massive
neutrino runs. This appears as a result of the grid settings used
in the simulations, which is further explained in Appendix A.
Essentially, it amounts to a σ8-scaling (2−3% difference), which
is accounted for in the figure. On smaller scales, we observe the
expected suppression of structure for the massive neutrino simu-
lations and an enhancement of structure for the f (R) simulation.
The f (R) + 0.15 eV simulation is slightly suppressed, compared
to the pure f (R) run, but it is still dominated by the modified
gravity effects due to the low neutrino mass. The f (R) + 0.6 eV
simulation, on the other hand, is mostly dominated by the mas-
sive neutrinos due to the high neutrino mass, but it is still slightly
enhanced, compared to the pure 0.6 eV run.

In the bottom panel of Fig. 3, the HMF of the various sim-
ulations, compared to ΛCDM, is shown. In general, we again
see that the massive neutrinos suppress the formation of the
most massive halos. This is mostly due to the massive neutrinos
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Table 1. Simulation overview showing the type of simulation and the corresponding properties.

Simulation Type Lbox [h−1 Mpc] Ncdm Nν | fR0| Mass resolution [h−1 M�]

lcdm ΛCDM 1536 10243 0 0 2.99 × 1011

fofr f (R) 1536 10243 0 10−5 2.99 × 1011

015ev 0.15 eV 1536 10243 2 × 10243 0 2.95 × 1011

06ev 0.60 eV 1536 10243 2 × 10243 0 2.85 × 1011

fofr_015ev f (R) + 0.15 eV 1536 10243 2 × 10243 10−5 2.95 × 1011

fofr_06ev f (R) + 0.60 eV 1536 10243 2 × 10243 10−5 2.85 × 1011

lcdm_small ΛCDM 512 5123 0 0 8.85 × 1010

fofr_small f (R) 512 5123 0 10−4 8.85 × 1010

Notes. The top six entries show the simulations run with the ANUBISIS code, and the bottom two show simulations previously run with the ISIS
code. For the simulations involving Hu-Sawicki f (R) gravity, we always set n = 1 in Eq. (26).
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Fig. 3. CDM + baryon (cb) matter power spectrum and HMF of the dif-
ferent ANUBISIS simulations, compared to ΛCDM. The power spec-
trum and HMF ratios are displayed in the top and bottom panels
respectively. For the power spectrum, the greyed-out area indicates
the parts of the ratios lying outside of the Nyquist frequency of the
simulations.

reducing the maximum cluster mass on a linear level (Brandbyge
et al. 2010). Because of the fifth force contribution to gravity, we
again expect the opposite effect for the f (R) simulation. This is,
however, not very clear for the | fR0| = 10−5 simulation. If we
instead look back at the smaller box simulations from ISIS in
Fig. 2 with | fR0| = 10−4, this effect is much more prominent.

Another interesting property is the scale-dependent halo
bias. Here, we define it as the ratio between the cross-power
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Fig. 4. Scale-dependent halo bias for the various ANUBISIS simula-
tions. The upper panel shows the value of the bias for each simula-
tion, while the lower panel shows the ratio with ΛCDM for each model.
The greyed-out area indicates the parts lying outside of the Nyquist
frequency of the simulations.

spectrum of halos and CDM+baryons and the auto matter power
spectrum of CDM+baryons,

b(k) =
P(k)halo,cb

P(k)cb
. (31)

This is defined by the cold species instead of the total matter,
as it yields a more universal and scale-independent result in the
presence of massive neutrinos (Castorina et al. 2014). In Fig. 4,
we see the halo bias for the ANUBISIS simulations at the top,
and the ratio of the biases, compared to ΛCDM, at the bot-
tom. The ratios show a bump at the same scales where we see
a trough for the massive neutrino power spectrum ratios. In our
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Fig. 5. Scale-dependent halo bias for the fofr_small and lcdm_small
simulations. The upper panel shows the value of the bias for each simu-
lation, while the lower panel shows the ratio with ΛCDM. The greyed-
out area indicates the parts lying outside of the Nyquist frequency of the
simulations.

case, this shows that our halo power spectrum is less sensitive to
the neutrino mass than the cb power spectrum, as discussed by
Hassani et al. (2022). In Fig. 5 we also show the scale-dependent
bias for the pure ISIS simulations. In general, we see that the
halo bias increases with neutrino mass and decreases with the fR0
parameter, compared to ΛCDM, in line with previous findings in
the literature (e.g., Arnold et al. 2019; Chiang et al. 2019).

Looking at the bias values on linear scales, we can calculate
an estimate of the linear halo bias. This is presented in Table 2,
together with β and σ8. The two latter are simulation parame-
ters, β being the reconstruction parameter of Sect. 2.1.3 and σ8
the amplitude of the linear matter power spectrum at a scale of
8 h−1Mpc. For the ΛCDM and massive neutrino simulations, σ8
is a known parameter obtained from the linear power spectrum
calculated by CLASS4 as a part of the initial condition set-up
(see Sect. 3.4). For the simulations including modified gravity,
an estimation of the linear σ8-value was found by observing that
σν8,CLASS/σ

ΛCDM
8,CLASS ≈ σν8,ANUBISIS/σ

ΛCDM
8,ANUBISIS for the linear values

calculated from CLASS and the non-linear values calculated from
ANUBISIS. We then assumed that this relation also holds in the
modified gravity context.

3.4. Initial conditions

The initial conditions used for the ANUBISIS simulations were
generated by following the same procedure as outlined in
Adamek et al. (2022). In short, the linear matter power spectra
and transfer functions were generated by CLASS (Lesgourgues
2011; Blas et al. 2011), and rescaled to z = 127 through the

4 https://github.com/lesgourg/class_public

Table 2. Linear bias, reconstruction parameter, and σ8 for the various
simulations.

Simulation b β σ8

lcdm 1.436 0.3715 0.85
fofr 1.349 0.3954 0.89
015ev 1.484 0.3595 0.82
06ev 1.739 0.3067 0.73
fofr_015ev 1.397 0.3818 0.86
fofr_06ev 1.624 0.3285 0.76
lcdm_small 1.271 0.4146 0.80
fofr_small 1.091 0.4830 0.91

Notes. The linear halo bias, b, is found by taking the average of the
scale-dependent bias for k < 0.05 h−1 Mpc. Values of β = f /b are esti-
mated using the ΛCDM growth rate value, f = Ω0.55

m . The σ8-values are
known for the ΛCDM and neutrino simulations and otherwise estimated
as explained in the main text.

REPS5 code (Zennaro et al. 2017), which takes the effects of
massive neutrinos into account through a two-fluid descrip-
tion and by including radiation in the background evolution
and implementing a scale-dependent growth rate. Positions and
velocities for the CDM and neutrino particles were then gen-
erated by a version of the N-GenIC code6 that also has been
modified to include the scale-dependence of the growth rate and
growth factor in the presence of massive neutrinos.

For the initial conditions, we used Ωb = 0.049 and Ωc '
0.27. We kept the total matter density fixed at Ωm ' 0.319
by adjusting the ratio of Ωc and the neutrino density param-
eter, Ων =

∑
mν/(93.14h2 eV). Besides this, we used the

Hubble constant, h = 0.67, the scalar spectral index, ns =
0.9619, the CMB temperature, TCMB = 2.7255 K, and the ampli-
tude of the primordial power spectrum, As = 2.215 × 10−9, at
the pivot scale kp = 0.05 Mpc−1. This is the same cosmology as
applied by Adamek et al. (2022).

We used the method outlined above to generate initial con-
ditions for our ΛCDM and massive neutrino simulations. For
the simulations including f (R)-modified gravity, we used the
outputs from the other simulations at z = 4 as initial con-
ditions. The deviations from GR are small at this stage, and
only become more important at later times, as demonstrated
for z = 3 and | fR0| = 10−5 by Zhao et al. (2011). For the two
independent ISIS runs, the initial conditions were generated by
Grafic2 (Bertschinger 2001), with the parameters Ωc = 0.267,
Ωb = 0.045, h = 0.719, and ns = 1.0.

4. Method

In this section, we detail the various codes and packages used to
study our simulation data. We also provide an overview of the
full analysis process.

4.1. Halo finder

To identify halos in our simulations, we used the ROCKSTAR7

halo finder (Behroozi et al. 2012). ROCKSTAR locates halos in
phase space by applying the 3D friends-of-friends (FOF) method

5 https://github.com/matteozennaro/reps
6 https://github.com/franciscovillaescusa/N-GenIC_
growth
7 https://bitbucket.org/gfcstanford/rockstar/src/main/
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to pinpoint overdense regions. For each of the groups created in
the FOF procedure, the linking length (the characteristic length
scale grouping the particles together) is reduced progressively,
so that subgroups emerge in a hierarchical structure. Seeds are
then placed in the lowest substructures and particles are assigned
to the halo seed within the shortest phase-space distance. From
this, the relationship between host and subhalos is computed
and unbound particles are removed. Finally, halo properties are
calculated.

When applying ROCKSTAR to our simulations, we read the
gadget files directly to obtain the CDM particle properties and
the cosmological parameters. The force resolution was set to be
approximately the smallest distance resolved by the simulation,
and the linking length was set to l = 0.28 h−1Mpc, which is 0.2
of the mean inter-particle separation. In the end, we removed
the subhalos and were left with a host halo catalogue. As shown
in Adamek et al. (2022), ANUBIS underestimates the number of
halos, especially at low mass. This can be improved upon by
increasing the particle density but was not done for the simula-
tions presented in this paper. Because of this, we made no further
mass cuts to the halo catalogue.

4.2. Void finder

When identifying voids within the halo catalogue of a simu-
lation, we must first define a void numerically. In this paper,
we apply two different void definitions, spherical voids and
voxel voids.

For the spherical void detection, we used the void finder
module implemented in Pylians8, which is based on the
method detailed in Banerjee & Dalal (2016). Here, the algo-
rithm is provided with a range of radii corresponding to spherical
regions of various sizes to be investigated, along with an over-
density threshold given by ∆ = ρ/ρ̄ − 1. Starting with the largest
radius, the simulation box is divided into a grid and the density
profile is calculated in each voxel and smoothed on a scale cor-
responding to the given radius. Voxels with densities below the
threshold are identified and sorted. Starting with the lowest den-
sity voxel, all the voxels around it within the given radius are
considered and added as a part of the void. This is then repeated
for the next to lowest density voxel and so on. If any of the voxels
within the corresponding radius are already assigned to another
void, the new void is rejected. Once this is done for all the voxels
below the density threshold, the algorithm moves on to the next
to largest radius provided, smooths the density field at that scale,
and once again proceeds as explained above. This is repeated
for all the radii given initially, and the resulting voids identified
are spherical regions of these specific sizes, with the centre at the
lowest density voxel. In our case, we set ∆ = −0.75 and provided
the algorithm with 47 void radii between 16−82 h−1Mpc.

For detecting voids by using the voxel void definition, we
employed the Revolver9 void finder (Nadathur et al. 2019c).
Here, the voxel voids are defined by using a watershed method.
The simulation box is divided into a grid and local minima of
the density field are located. Around each of these minima, sur-
rounding voxels with increasing overdensity are added to the
pool up until a voxel with a lower overdensity than the one pre-
viously added is discovered. Using this definition, the identified
voids may have any shape, as opposed to the spherical void def-
inition. The centre of the void again lies within the voxel with
the lowest density. The Revolver void finder can also perform

8 https://github.com/franciscovillaescusa/Pylians3
9 https://github.com/seshnadathur/Revolver

reconstruction when provided with a halo catalogue given in
redshift space. This is based on linear theory, as described in
Sect. 2.1.3, and requires the halo bias, b, and growth rate, f , as
input parameters. For a more detailed description of the spheri-
cal and voxel void definitions, along with other void-identifying
algorithms, see Massara et al. (2022).

4.3. Covariance matrix

Each of our simulation boxes only has one realisation. To
obtain an estimate of the uncertainty in the redshift space void-
halo CCF calculated from the simulation data, we attained the
covariance matrix through a Jackknife method. We applied the
Jackknife estimator as implemented in Pycorr10, following
Mohammad & Percival (2022).

The ANUBISIS simulation boxes were equally divided into
n = 512 sub-boxes11. Individual Jackknife realisations were then
made by calculating the correlation function for the full vol-
ume with one of the sub-boxes removed at a time. This lead to
n Jackknife realisations, each with a volume fraction (n−1)/n of
the original volume. Based on this, each element in the covari-
ance matrix, Ci j, is given by

Ci j =
n − 1

n

n∑

k=1

[
ξk

i − ξ̄i
][
ξk

j − ξ̄ j
]
, (32)

where

ξ̄i =
1
n

n∑

k=1

ξk
i (33)

is the mean estimate from all the n Jackknife realisations.
It is important to note that since we only have one simu-

lation of each individual case, and we used the data from the
simulations to calculate ξr, vr(r), and σv‖ , the model and data ξs

are correlated. Ideally, the input parameters should be calculated
from the average of many mock simulations, as is done in for
example Woodfinden et al. (2022) and Nadathur et al. (2019b),
to avoid this problem, along with the issue of the uncertainty
associated with only having one measurement of ξr. One way
to deal with the correlated errors is to calculate the covariance
matrix for the CCF of the difference between the model and
the data, ξs

diff = ξs
model − ξs

data. A more detailed explanation and
demonstration of the effects of this approach can be found in
Appendix A of Radinović et al. (2023). We did not include this
step in our analysis as we focus more on the comparison between
the simulations as opposed to reducing the statistical error for a
single simulation.

4.4. Analysis pipeline

For the ANUBISIS simulation data, the CDM and neutrino par-
ticles were given separate identifiers. It is the CDM particle
information that goes into the procedure detailed below unless
otherwise stated.

First, the particle data were given to the ROCKSTAR halo
finder, which identified halos in the simulation boxes as detailed
in Sect. 4.1. This provided both the positions and velocities of
the halos, enabling us to put the halos into redshift space if
needed. The halo catalogues were then given to the Revolver

10 https://github.com/cosmodesi/pycorr
11 We ran tests using both less (216) and more (2744) Jackknife samples
and found similar estimates for the covariance matrix.
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void finder, which identified voxel voids in between the halos,
as explained in Sect. 4.2. In order to test how well reconstruc-
tion (Sect. 2.1.3) performs in the case of massive neutrinos and
modified gravity, this step was not only performed directly on
the real space halo catalogue but also with the redshift space
halo catalogue as input. We performed the reconstruction step
by applying Revolver, which solves Eq. (11) through an itera-
tive fast Fourier transform algorithm (Burden et al. 2014, 2015).
This is the same algorithm used for BAO reconstruction (e.g.,
Gil-Maŕin et al. 2020; Bautista et al. 2021). We then had two
void catalogues, one directly identified in real space, and one
in reconstructed real space, both found by the voxel void defini-
tion. We then performed the same void finding with the spher-
ical void definition, as detailed in Sect. 4.2, both with the real
space and reconstructed real space halo positions. After obtain-
ing void catalogues in real and reconstructed real space, for the
voxel and spherical void definitions, we performed a radius cut
at 21 h−1Mpc for all catalogues, to eliminate void discoveries
that coincide with the average spacing between halos. For each
catalogue, the remaining voids with their coinciding halos were
then stacked on top of each other to obtain an ‘average’ void
with more statistically robust properties and spherical symme-
try. From the halo distribution in and around these voids, we
calculated the density profile, mean velocity profile, and LOS
velocity dispersion. The latter was computed as detailed by
Radinović et al. (2023). These are all ingredients needed to cal-
culate the void-halo CCF in redshift space as shown in Eq. (5).

We want to compare the modelled void-halo CCF in red-
shift space with the void-halo CCF calculated directly from the
simulation data. In order to obtain the latter we used the cor-
relation function estimation wrapper, Pycorr, which currently
utilises the Corrfunc12 CCF engine (Sinha & Garrison 2019,
2020). Provided the redshift space halo catalogue, real space
void catalogue, and randomly distributed reference catalogues,
Pycorr calculates the void-halo CCF of the simulation data as
we would observe it. This is done using the Landy-Szalay esti-
mator (Landy & Szalay 1993),

ξ(r, µ) =
D1D2(r, µ) − D1R2(r, µ) − D2R1(r, µ) + R1R2(r, µ)

R1R2(r, µ)
,

(34)

where D is the simulated data catalogues, R is the random cat-
alogues, and 1 and 2 are the halos and voids. We used 50 bins
between 0−150 h−1 Mpc for r, the spatial distance between the
pairs, and 200 bins from −1 to 1 for µ, the angular separation.
For the random catalogues, we used 50 times as many halos and
voids as the simulations. Pycorr also has an inbuilt Jackknife
estimator, which allowed us to calculate the covariance matrix
of the CCF, as described in Sect. 4.3. We calculated the void-
halo CCF using both the voids identified in real space and in
reconstructed real space.

Having the simulated CCF, we used Victor13 to calculate
the theoretical model and compare it to the data, both in the
real and reconstructed case. To do so, Victor requires ξs from
the simulations, a covariance matrix, and ξr, vr(r), ∆DM, and σv‖
as input to the model. Victor also assesses the goodness of fit
between the data and the model, and provides a χ2 value upon
request.

Through an interface with Cobaya (code for bayesian anal-
ysis14, Torrado & Lewis 2019, 2021), we can also use Victor

12 https://github.com/manodeep/Corrfunc
13 https://github.com/seshnadathur/victor
14 https://github.com/CobayaSampler/cobaya

to perform MCMC fits of the parameters in the void-halo CCF
model. We assumed a Gaussian form of the likelihood

logL = −1
2

(
ξs

model − ξs
data

)
C−1

(
ξs

model − ξs
data

)T
, (35)

along with flat priors for the parameters fσ8, σv‖ , β, and ε,
encompassing the fiducial values. In the case where we used the
actual real space data from the simulations, β was not included.
In the case of reconstruction, β was allowed to vary. When com-
paring CCF data to theory, reconstruction was only performed
for the fiducial β-value of each simulation. However, to allow
for β to vary for the MCMC fits, we performed reconstruction,
void finding, and the CCF calculation repeatedly for 11 different
β-values, which were provided to Victor to perform the fit. Ide-
ally, covariance matrices should also be computed in each recon-
struction case, as it depends on β. This is a time-consuming task,
and as a first approach, we instead assumed a fixed β = βfiducial

for all the covariance matrices. We also kept the input ξr equal
to the one calculated for βfiducial in all cases, meaning that the
β-dependence only shows up in ξs. This is the same approach
taken by Radinović et al. (2023).

5. Results

In this section, we present the results of our analysis. In addition,
we discuss the implications of our results.

5.1. Void abundance

First, we take a look at the general void population identified in
all the ANUBISIS simulations. In Fig. 6 we show the abundance
of voids depending on the effective void radius. At the top, the
voxel void definition has been used to find the voids, and at the
bottom, the spherical void definition. For the voxel voids, the dif-
ference in the number of voids is clearly apparent in the approx-
imate range 10−40 h−1 Mpc. For the spherical voids, however,
this is not the case. If we zoom in, the same ordering is present,
but this is not apparent at first glance due to the high number
of voids identified in the given range. The spherical void finding
algorithm, as detailed in Sect. 4.2, identifies voids by smoothing
the field for a given top-hat radius and declaring spheres with
density below a certain threshold as voids. For small radii, this
results in a large amount of voids, some of which might be the
result of shot noise, for all simulations.

For the f (R) and f (R) dominated f (R) + 0.15 eV simula-
tions, we see an increase in the number of voids within the
10−40 h−1 Mpc effective radius range, compared to ΛCDM. This
is due to the fifth force enhancing gravity in these regions, result-
ing in a more effective ‘evacuation’ of the areas. Li et al. (2012)
also report a higher number of the large voids in their f (R) simu-
lations, although it should be noted that their maximum void size
is around 15 h−1 Mpc due to their smaller, but higher resolution,
simulation boxes.

The most massive neutrino simulation, 0.60 eV, shows the
opposite behaviour. Here, the amount of voids in the given size
range is suppressed, compared to ΛCDM. This is a result of the
neutrinos slowing down the clustering and thereby the evolu-
tion of the voids towards lower densities. Massara et al. (2015)
also report fewer large voids in their massive neutrino simula-
tions, compared to ΛCDM, where large in their case is in the
range 20−40 h−1 Mpc. For very large voids, Reff & 45 h−1Mpc,
we see a turn-around of the ordering for both void definitions.
Cai et al. (2015) also found a higher amount of very large radii
(&25 h−1 Mpc) voids in their regular GR simulations, compared
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Fig. 6. Histogram of effective void size for the various ANUBISIS sim-
ulations. The voxel voids display a notable difference in the number of
voids in the ∼10−40 h−1 Mpc range. Both void definitions also show a
slight opposite abundance difference amongst the largest voids in the
simulation catalogues.

to f (R). Based on investigation they suggest that this is a result
of the largest voids being less empty in the f (R) case, as the
enhanced gravity inside makes it easier for halos to form, com-
pared to ΛCDM. When looking at a big region in ΛCDM versus
a big region in the f (R) simulation, the number density of halos
would be lower for ΛCDM, making it easier to pass the void
identification criteria. The opposite could then be argued for the
massive neutrino simulations. It should be noted that the differ-
ences observed for very large voids in Fig. 6 are enhanced due
to the logarithmic scale, and could also be affected by the small
sample size.

For the ΛCDM simulation, we find in total Nhalo ≈ 1.3 ×
106. From this, we chose a radius cut for the voids as Rcut

eff
=

1.5(Nhalo/Vbox)−1/3 ≈ 21 h−1Mpc. This was applied to the void
catalogues to make sure that we exclude what are simply empty
regions in between halos in the simulations, and not actual voids.

5.2. Velocity profile

When using galaxy surveys to identify voids, the velocity profile
needed for the CCF model is typically modelled by the linear
velocity profile or estimated from simulations. Because of this,
we want to study how the simulated velocity profiles for var-
ious cosmologies compare to the linear model. In Fig. 7, the
mean radial outflow void velocity profile for each ANUBISIS
simulation is shown for both the voxel and spherical void def-
initions. The individual profiles are compared to the theoretical
linear velocity profile, as shown in Eq. (8), and the more gen-
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Fig. 7. Radial void velocity profiles for all ANUBISIS simulations
together with the linear velocity profile and a fit to the more general
velocity profile, presented in Sect. 2.1.2. The voxel and spherical void
definitions are shown in the left and right columns respectively. The Av-
parameter in each panel shows the best-fit value of the general profile.

eral velocity profile, as shown in Eq. (10). For the linear velocity
profile, the growth rate, f = Ω0.55

m , corresponding to the expected
ΛCDM value, was applied for all simulations. In doing so, we
ignore the scale dependence of the growth rate in the f (R) and
massive neutrino cosmologies and investigate whether or not this
leads to biased results. For the general profile, the best-fit values
of the Av-parameter are given in each panel of Fig. 7. These were
obtained through the least squares method.

The general velocity profile is, with the best fit Av-parameter
values, by construction, a good match to the velocity profiles
found in the simulation data. For the voxel voids, the best-fit
parameter value is consistently higher for f (R) and decreases
with increasing neutrino mass, compared to ΛCDM. This is
expected as a result of higher velocities in the f (R) case, and
lower in the massive neutrino case. The mixed simulations lie
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Fig. 8. Radial void velocity profiles for the fofr_small and
lcdm_small simulations together with the linear velocity profile and
a fit to the more general velocity profile. The voxel and spherical void
definitions are shown in the left and right columns respectively. The Av-
parameter shows the best-fit value for the general profile.

somewhere in between. For the spherical voids, we do not see the
same pattern for the neutrino masses and the value of Av. How-
ever, for the spherical voids, the general velocity profile does not
fit as well as for the voxel voids at higher radii. When estimating
Av, this must be taken into account, in addition to the peak of the
velocity profile. If we could observe the velocity profile directly
over a large void sample, the best-fit Av-value could be an inter-
esting parameter to explore as a cosmological probe. Observing
the velocity profile directly is not possible in traditional galaxy
surveys, which is why it is currently modelled or estimated from
simulations.

From visual inspection, it is clear that the theoretical linear
velocity profile is not a good fit for the data close to the void
centre. This is due to a sparse tracer sample in this region and
also depends on the void centre definition (Massara et al. 2022).
It affects the voxel void definition more than the spherical one.
In the voxel void case, the linear model overestimates the clus-
tering. We can see that this is somewhat compensated for in the
f (R) simulations, due to higher velocities. This is even more vis-
ible for the pure ISIS simulations, as shown in the lower left
panel of Fig. 8. For the spherical voids, this is less of an issue,
although the linear model slightly underestimates the clustering.
In the latter case, this could be compensated by adopting a dif-
ferent value of the growth rate, f , in the linear theory model, as
demonstrated in Fig. 9. For the voxel voids, increasing the value
of f in line with expectations (e.g., Mirzatuny & Pierpaoli 2019)
only increases the discrepancies.

Altogether, it is evident that the linear velocity profile is not
a drastically worse fit for the f (R) or massive neutrino simula-
tions. Before we can address any differences due to cosmology,
however, we must make sure that a sparse tracer sample does not
affect our model-data comparison. As it stands now, applying the
linear velocity profile to the CCF modelling results in modifica-
tions similar to changes in fσ8, due to the offset induced by the
number of tracers (Massara et al. 2022). In addition, we should
point out that even if the velocity modelling was improved to
forgo this issue, the modifications expected from the | fR0| = 10−5

f (R) simulation and the most massive neutrino simulation are
mostly on scales smaller than the average void size.
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Fig. 9. Linear velocity profile, compared to the fofr_small simulation,
for various values of the growth rate, f . The regular linestyle and colour
show the velocity profile for the simulation. For ΛCDM we have f =
Ω0.55

M ≈ 0.53.

5.3. Velocity dispersion

The CCF theory presented in Sect. 2.1.1 depends on the veloc-
ity dispersion of the void velocity profile. For all the ANUBISIS
simulations, Fig. 10 shows this quantity for both the voxel and
spherical void definitions, scaled by the average amplitude beyond
75 h−1Mpc,σ∗. The velocity dispersion profile has the same shape
for all the various cosmologies, but a different amplitude, σ∗, as
presented in Table 3. The relative values of the amplitudes coin-
cide with expectations. The halos in and around the void in the
f (R) simulation feel a stronger gravitational pull towards the edge,
compared to the ΛCDM case. In general, there is also more clus-
tering which leads to higher velocities. The relative values of the
amplitudes in the f (R) and ΛCDM cases coincide well with the
findings of Fiorini et al. (2022). The opposite behaviour is seen for
the massive neutrino simulations, where less clustering results in
lower velocities. However, although these differences can be cal-
culated from the simulated data, they can not readily be observed.

5.4. Void-halo CCF: data versus model

We are interested in the void-halo CCF of the various simulated
cosmologies and how well the theory presented in Sect. 2.1.1
reproduces the simulation data. Figure 11 shows the monopole,
quadrupole, and hexadecapole of the void-halo CCF for the
ANUBISIS simulations. The left and right columns display the
results for the voxel and spherical void definitions respectively.
The voids were identified from the real space halo catalogue, and
the redshift space halo positions were calculated directly from
the real space positions and corresponding LOS velocities.

For the monopole, the differences between the simulations
are clearer for the voxel void definition, as was also the case
earlier when looking at the void abundance. The shape of the
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Fig. 10. LOS velocity dispersion scaled by σ∗ as given in Table 3.
The voxel and spherical void definitions are shown in the upper and
lower panels respectively. All the simulated cosmologies result in sim-
ilar profile shapes. The largest differences are located towards the void
centres, which are dominated by shot noise.

monopole is closely related to the shape of the density profile
around the void, as both in essence describe how halos are dis-
tributed around the void centre as a function of radius. The f (R)
and f (R)+0.15 eV simulations show the narrowest profiles (most
evolved) and the 0.6 eV simulation the broadest (least evolved),
while the others fall somewhere in between. From the void abun-
dance histogram in Fig. 6, we saw that the f (R) case has more
voids in the 10−40 h−1 Mpc effective radius range and the 0.6 eV
has less, compared to ΛCDM. This further explains what we see
here in terms of the shapes of the profiles, as the monopole is
based on the overall averaged void from each simulation box.
For the voxel void definition, the central value goes towards
−1.0, while for the spherical void definition, we see a very flat
core stabilising at around −0.88. This is again a result of the
void-finding algorithm, where a sphere of a given radius with a
smoothed density below −0.75 is classified as a void. As men-
tioned before, this leads to the detection of a large amount of
small voids, and in addition, most of the detected voids have
central densities that are larger than −1.0.

The quadrupole is most easily studied for the voxel void def-
inition. Here, we see, in all cases, the expected smooth shape
resulting from RSDs as a consequence of halos inside the void
moving towards the small overdensity at the edge, but also halos
outside the void moving back towards the void edge. For the
spherical voids, we instead see a sharp feature proceeding the
edge of the void. The difference between the quadrupoles of the
two void definitions is due to the shapes of the void density pro-
files and the presence of a velocity dispersion. This is further

Table 3. Average value of the LOS velocity dispersion, σ∗, for r ≥
75 h−1 Mpc in the case of voxel voids (VV) and spherical voids (SV).

Simulation ∼σVV
∗ [km s−1] ∼σSV

∗ [km s−1]

lcdm 334.4 334.3
fofr 356.7 356.9
015ev 329.2 328.8
06ev 300.8 300.6
fofr_015ev 351.0 351.0
fofr_06ev 320.8 320.3
lcdm_small 319.4 319.6
fofr_small 388.1 387.9

explained through the use of a toy model in Appendix B. Within
the error bars, the quadrupole for each simulation is not eas-
ily distinguishable. The most massive neutrino simulation shows
signs of lower peaks due to overall lower velocities for the voxel
void definition, but higher resolution simulations should be per-
formed in order to confirm this.

The hexadecapole is, from the theoretical model, expected to
be small (Cai et al. 2016). This is the case for all simulations and
both void definitions, except for a little dip in the voxel void ξs

4
around s ∼ 35 h−1 Mpc. This small signal in the hexadecapole
shows why it can still be important to include this multipole
when fitting the model to the data to obtain cosmological param-
eters, instead of assuming it to be zero.

Figures 12–14 respectively display the monopole, quadru-
pole, and hexadecapole of the void-halo CCF in redshift space
as calculated directly from the ANUBISIS simulation data, com-
pared to its theoretical value calculated by Victor as outlined
in Sect. 2.1.1. The simulation data follow the regular colour and
linestyle pattern, while the theory is presented with full brown
and blue lines. The brown line is the relevant theoretical multi-
pole as calculated by Victor, with the velocity profile from the
simulation data given to the model as a velocity template, and
the blue line is the same, only with the linear velocity profile as
displayed in Eq. (8) given as input. For each simulation, void
definition, and multipole, only the ΛCDM simulation data line
has error bars. This is to illustrate their magnitude but otherwise
reduce cluttering.

The monopole data-theory comparison in Fig. 12 is pre-
sented through the difference between the redshift space and real
space monopole. This is done to better display the discrepancies
between the data and the two models. For all simulations and
both void definitions, we see good agreement. There is a pref-
erence towards inputting the velocity profile from the simula-
tions in the model, compared to using the linear velocity pro-
file. This is expected simply because we are providing the model
with the actual data that we want to reproduce. We already saw,
in Sect. 5.2, that the linear velocity profile does not reproduce
the velocity profile directly calculated from the halos in the sim-
ulations very well. However, if this study was performed on
observational data, we would not have had access to the exact
mean outflow velocity profile. We could then either use the lin-
ear approximation or make estimates through simulations.

The quadrupole data-theory comparison in Fig. 13 is the
most interesting to study, as it is the RSDs observed here that,
through modelling, can give us an estimate of the fσ8-value.
It is again evident from visual inspection that the model repro-
duces the data well for all simulations. For the voxel void
definition, applying the linear velocity profile as an approxi-
mation gives results within the error bars for all simulations.
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Fig. 11. Void-halo CCF for the ANUBISIS simulation data. The voxel and spherical void definitions are shown in the left and right columns
respectively. The error bars are estimated using a Jackknife technique and are only shown for the ΛCDM case for a tidier visual representation
of the data.

For the spherical void definition, the consequence of applying
the linear velocity profile is more significant, even though the
difference between the data and linear theory velocity profiles
in Fig. 7 is larger for the voxel void definition. This could be
partly because even though the linear and simulation velocity
profiles deviate more towards the void centre for the voxel voids,
compared to the spherical voids, they actually coincide better for
r & 30 h−1Mpc. This is also where we see some of the larger
discrepancies between the spherical void simulation quadrupole
and the modelled quadrupole with the linear velocity as input.
Even though we see a difference in the model fit for the two
void definitions, there is no significant difference in the perfor-
mance of the model between the various simulated cosmologies.
Ideally, we need higher resolution simulations along with more
accurate velocity modelling in order to quantify this.

Figure 14 shows that also the hexadecapole is well described
by the model for both void definitions. This further encourages
including it in analysis when it is available.

5.5. Reconstructed void-halo CCF: data versus model

The reconstruction process, detailed in Sect. 2.1.3, assumes lin-
earity and a constant growth rate which might affect its perfor-
mance when modified gravity or massive neutrinos are intro-

duced. Figure 15 shows how reconstruction performs for each
individual ANUBISIS simulation. The lines, following the reg-
ular colour and style pattern, show a histogram of the differ-
ence between the LOS coordinate (defined as the z-direction
in our simulation boxes) in real space and reconstructed real
space. The fainter line, in the same colour, shows a histogram
of the difference in the LOS coordinate in real space and redshift
space, before any reconstruction is performed. The reconstruc-
tion process illustrated in this figure is executed with the fiducial
β-values presented in Table 2.

For each simulation, the histogram of the difference between
real and redshift space is always broader than that for the dif-
ference between real and reconstructed real space. This tells us
that performing reconstruction has indeed led us closer to the
actual real space values. The method is tested on ΛCDM simula-
tions by, for example, Nadathur et al. (2019a), Woodfinden et al.
(2022) and Radinović et al. (2023), and we achieve similar results
in our case. The non-ΛCDM simulations again obtain compa-
rable results to the ΛCDM reference. Although the f (R) domi-
nated ones ( f (R) and f (R) + 0.15 eV) seem to perform slightly
worse, and the heaviest neutrino mass, 0.6 eV, slightly better.
The reconstruction method is based on linear theory, and one
possible explanation for this could therefore be that the massive
neutrino simulations, with their suppressed clustering and lower
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Fig. 12. Difference between the redshift and real space monopole of the
void-halo CCF from the ANUBISIS simulations vs. theory calculated by
Victor. The results are obtained by using the voxel and spherical void
definitions in the left and right columns respectively. Two theory results
from Victor are included, one where the velocity profile is given by
linear theory and one where it is given by a template. The template used
in this case is the velocity profile calculated from the simulation data.

velocities, are closer to the linear approximation on the scales
where the reconstruction is performed. For the f (R) dominated
simulations, the opposite would then be the case. This is further
highlighted for the pure ISIS simulations, as shown in Fig. 16,
where the deviations from GR are larger. As a test, we also ran
the reconstruction process for this simulation when varying the
growth rate, f , by 10−20% (as for Fig. 9). This did not lead
to a significant difference in the histogram, but it did show up
in the quadrupole as expected, and explained, by Nadathur et al.
(2019a).

Figure 17 displays the quadrupole of the void-halo CCF for
both the simulation data and the theory when the reconstruction
step has been performed. In practice, this means that we per-
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Fig. 13. Quadrupole of the void-halo CCF from the simulations vs. the-
ory calculated by Victor. Layout and input as explained for Fig. 12.

formed the analysis as before, but instead of using the actual real
space positions to calculate ξr, we instead used the reconstructed
real space information. This mimics a possible procedure for per-
forming the quadrupole analysis when using observational data.
The model does, however, also require the density profile of the
CDM, the mean outflow velocity profile, and the velocity disper-
sion. For this, we used the same as before, which was calculated
from the actual real space data. This works as an approximation,
as these quantities are only templates given to the model. For the
velocity dispersion, it was also necessary to use the real space
simulation data, as we did not have velocity information for the
halos in reconstructed real space.

Comparing Figs. 13 and 17, it is clear that the model better
fits the data when the reconstruction step is not involved. This
is expected, as reconstruction only approximates the real space
halo positions, and can not fully recreate the real space CCF. The
deviation between the model and data does, however, appear to
be comparable for the different ANUBISIS simulations.
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theory calculated by Victor. Layout and input as explained for Fig. 12.

5.6. MCMC fits

A way to test the CCF theory for the different simulated cos-
mologies is to check if they all reproduce the original parameter
values of the simulations in a similar manner. Figure 18 displays
the posterior distributions of the fσ8 and ε parameters based on
the void-halo CCF simulation data and model calculations for
all ANUBISIS simulations. Each triangle plot shows the result
for one simulation and both void definitions and follows the reg-
ular colour and linestyle pattern. The contours display the 68%
and 95% confidence intervals and the grey dashed lines show
the fiducial values, although with an assumed value of f ≈ Ω0.55

m
for all simulations. We only display the fσ8 and ε parameters,
as the LOS velocity dispersion, σv‖ , is not an observable. The
corresponding parameter values are listed in Table 4.

It is evident from Fig. 18 that the voxel voids more closely
reproduce the fiducial parameter values overall. This could pos-
sibly be because the voxel void definition results in a smoother
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Fig. 15. Difference in the LOS coordinate between real space and recon-
structed real space for the ANUBISIS simulations shown in the regular
linestyle and colour. The weaker full line of the same colour shows the
difference between the LOS coordinate in real and redshift space.

CCF that is easier to fit than the very sharply varying spheri-
cal void CCF. We do, however, see that the model prediction is
able to follow the sharp features (e.g., Fig. 13). The spherical
void catalogue also contains a larger amount of voids with effec-
tive radii at the lower end of the included radius range, com-
pared to the voxel void catalogue (Fig. 6). It should be further
explored whether or not performing the fits in different radius
bins would alleviate the discrepancies between the spherical and
voxel voids’ abilities to reproduce the fiducial parameter values.
This investigation is saved for future work.

In general, we find that the spherical voids lead to higher
fσ8-values, compared to the voxel voids. This might be due
to a large number of small voids with deep density profiles
identified by the spherical void finder. This gives, on average,
a higher velocity peak, as can be observed in Figs. 7 and 8, and
could lead to larger inferred values of fσ8. The ε-values, on the
other hand, seem to be quite consistent between the two defini-
tions for all simulations. The fact that the voxel and spherical
voids coincide the best in their prediction for the f (R) + 0.15 eV
simulation is most likely a coincidence, which illustrates how
the different model components and void definitions can vary.
In general, even though there is a difference between the void
definitions, there does not seem to be a clear distinction for how
well the fiducial values are reproduced for the various simulated
cosmologies.

In Fig. 19, we see the results of the MCMC fits when the
reconstruction step is included and β is allowed to vary. The
numerical values are given in Table 4. Again, the voxel void
definition better reproduces the fiducial values of the ANUBISIS
simulations. In fact, the differences between the voxel and spher-
ical void definitions have increased. We still see quite consis-
tent ε-values between both void definitions, with a slightly lower
value for the spherical voids except for the 0.15 eV and 0.6 eV
cases. The fσ8-values, however, are now consistently lower for
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lcdm_small simulations.

the spherical voids, compared to the voxel voids, opposite of
before. This might lie in the ability of the reconstruction method
to correctly predict the high velocities found in the smaller spher-
ical voids. Yet again, there is no clear difference between the
simulated cosmologies and how accurately the fiducial parame-
ter values are recovered. This underlines that the reconstruction
method should be further studied for various void definitions.

It should be noted that for the fits that include reconstruc-
tion and a free β-value, we encounter the issue of a multi-
modal likelihood surface for β. This issue is more prominent
for the voxel void definition than for the spherical one. It does,
however, seem to be an artefact of the reconstruction model and,
as a first approach, we dealt with it by constraining the range of
the flat prior. The new range was chosen to include the most
likely values resulting from the parameter fit performed with
the original prior.

6. Conclusions

Cosmic voids are promising and independent probes of grav-
ity and cosmology expected to provide stringent constraints
on fσ8 and the ratio between the Hubble distance and trans-
verse comoving distance in upcoming space missions such as
Euclid (Hamaus et al. 2022; Radinović et al. 2023). Voids are
also proposed as grounds for studying the effects of massive
neutrinos and modified gravity, both separately and simulta-
neously, and as a way to break known degeneracies (Li et al.
2012; Massara et al. 2015; Voivodic et al. 2017; Kreisch et al.
2019; Perico et al. 2019; Contarini et al. 2021). In this paper,
we investigate the performance of models describing the void-
halo CCF, the radial mean void velocity profile, and a recon-
struction method using ANUBISIS simulations with both massive
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Fig. 17. Quadrupole of the reconstructed void-halo CCF from the sim-
ulations vs. theory calculated by Victor. The real space CCF used as
theory input is calculated from the reconstructed real space halo cata-
logue and the voids identified in it. The layout follows Fig. 12.

neutrinos and Hu-Sawicki f (R) gravity. Our simulation suite
consists of six simulations, one reference ΛCDM cosmology,
one with Hu-Sawicki f (R)-modified gravity (| fR0| = 10−5), two
with massive neutrinos (

∑
mν = 0.15 eV, 0.6 eV), and two with

both massive neutrinos and modified gravity (| fR0| = 10−5 +∑
mν = 0.15 eV, 0.6 eV). Occasionally, we supplement with a

ΛCDM and f (R) simulation (| fR0| = 10−4) run with ISIS, when
we want to investigate the effects of modified gravity further.

We find that the linear void velocity model (Eq. (8)) fits the
velocity profiles calculated directly from the data similarly for
all ANUBISIS simulations. This is the case both when using the
voxel void and spherical void definitions to locate voids in the
halo catalogues. In fact, the increased velocities in the f (R) dom-
inated simulations happen to partially compensate for the bias
between the velocity profile calculated from the data and the one
calculated from linear theory, arising from a sparse tracer sample
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Table 4. Best fit value for fσ8 and ε for all ANUBISIS simulations for both the voxel (VV) and spherical (SV) void definition, with and without
reconstruction.

Simulation fσ8,VV fσ8,S V εVV εS V fσrecon
8,VV fσrecon

8,S V εrecon
VV εrecon

S V

lcdm 0.43+0.03
−0.03 0.47+0.03

−0.03 0.998 ± 0.004 0.998 ± 0.004 0.43+0.03
−0.03 0.39+0.03

−0.03 1.000 ± 0.005 0.999 ± 0.003
fofr 0.48+0.03

−0.03 0.51+0.02
−0.02 0.996 ± 0.004 0.996 ± 0.003 0.44+0.03

−0.02 0.38+0.02
−0.03 1.001 ± 0.004 1.000 ± 0.003

015ev 0.41+0.03
−0.03 0.46+0.03

−0.03 1.003 ± 0.004 0.997 ± 0.004 0.40+0.03
−0.03 0.36+0.03

−0.03 1.001 ± 0.004 1.003 ± 0.003
06ev 0.37+0.03

−0.03 0.44+0.03
−0.03 0.997 ± 0.004 0.996 ± 0.004 0.36+0.03

−0.03 0.30+0.03
−0.03 0.996 ± 0.005 0.998 ± 0.003

fofr_015ev 0.46+0.03
−0.03 0.47+0.03

−0.03 0.997 ± 0.004 0.999 ± 0.003 0.42+0.02
−0.02 0.38+0.03

−0.03 1.005 ± 0.004 0.999 ± 0.004
fofr_06ev 0.41+0.03

−0.03 0.46+0.03
−0.02 0.995 ± 0.004 0.995 ± 0.004 0.37+0.03

−0.02 0.29+0.02
−0.03 1.001 ± 0.004 1.000 ± 0.003

Notes. The limits are given at 68% and the flat prior ranges are fσ8 ∈ [0.08, 1.3] and ε ∈ [0.8, 1.2].

(Massara et al. 2022). This shows that the linear velocity model
needs to be improved further before differences due to massive
neutrinos or modified gravity can be seen clearly. We also fit the
velocity profile from the simulation data to a more general veloc-
ity model (Eq. (10)), with one free parameter. This model fits the
data well and has a different best-fit parameter value for the var-
ious simulations. If the radial velocity profile could be observed
directly with good precision from galaxy surveys, the value of
this free parameter would be an interesting observable. The value
is, however, degenerate for massive neutrinos and f (R)-modified
gravity. Similarly, we find that the LOS velocity dispersion pro-
files have the same shape for all the simulated cosmologies, but
different amplitudes. This amplitude is an interesting parameter,
but it has the same issue of degeneracy, in addition to not being
readily observable.

We compare the monopole, quadrupole, and hexadecapole
in redshift space calculated from the simulation data with two
theoretical model outcomes calculated by Victor. The only dif-
ference in the two models is the velocity profile input, which in
one case is the radial linear velocity profile and in the other case,
the velocity profile calculated from the simulation data. For all
the multipoles, we see that the model fits the data with similar
accuracy for all the different simulations. As expected, there is a
preference towards the model that has the velocity profile from
the data given as input, both for the voxel and spherical void
definitions. As it stands, we need more accurate modelling and
high-resolution surveys if we hope to use the void-galaxy CCF
to put constraints on f (R)-modified gravity or massive neutrinos.
However, our simulations show that modified gravity and mas-
sive neutrinos affect the monopole and quadrupole in oppo-
site ways, making the void-galaxy CCF yet another degenerate
observable.

When calculating the model prediction of the void-halo CCF
in redshift space, we have in the above case used the real space
CCF information from the simulation boxes as model input. For
data obtained from a galaxy survey, this information is unknown
and can be approximated through a reconstruction process where
the redshift space positions are put back into real space by solv-
ing for the displacement field (Nadathur et al. 2019a). When per-
forming reconstruction for all simulations, we find that the pro-
cess performs similarly for all simulated cosmologies, although
slightly better for the most massive neutrino case and slightly
worse for the modified gravity case, compared to ΛCDM. This
could be due to the reduced clustering and lower velocities in
the massive neutrino simulations better adhering to the linear
approximations of the reconstruction model, and the opposite
for the modified gravity simulation. When fitting the CCF model
to the data when the reconstruction step is included, the model

provides a slightly worse fit to the data. This is expected as we
are now providing the model with information that only approx-
imates the actual real space CCF that is needed as model input.
The model-data fit is, however, comparable for all the ANUBISIS
simulations also in this scenario.

During our analysis, we kept the growth rate, f , constant
in all cases, effectively ignoring the scale dependence for mod-
ified gravity and massive neutrino cosmologies. We used the
expected ΛCDM value, f = Ω0.55

m , for all simulations to keep the
study consistent, and instead investigated if this choice gives vis-
ible biases in our model fits. As recapped above, all model-data
fits perform similarly for the different simulations. The linear
velocity profile does, however, show a slight improvement for
the f (R) simulations, especially visible for the pure ISIS run.
We, therefore, tried varying the value of f in this model to see
if this could further improve the fit. For the voxel void defini-
tion, which already overestimates the clustering, increasing f to
values more in line with expectations for f (R)-modified gravity,
only contributes to further mismatch between the model and the
simulation data. For the spherical void definition, which suffers
less from the effect of a sparse tracer sample, increasing f can
give a better fit. This only shows that the choice of void find-
ing algorithm and the current sparse tracer sample issue in the
void velocity modelling is important and must be consistently
handled before possible effects of a different growth rate in the
various simulated cosmologies can be resolved.

For all the ANUBISIS simulations, we performed MCMC
fits for fσ8 and the Alcock-Paczyǹski parameter, ε. We did this
both with and without reconstruction. In both cases, we find that
the voxel void definition better recovers the fiducial values of
the fσ8-parameter for the various simulations. The ε-values are
more consistently recovered between the two void definitions.
The discrepancies are most prominent when reconstruction is
included, where the fσ8-values recovered for the spherical voids
are consequently underestimated for all simulated cosmologies,
as opposed to slightly overestimated without the reconstruction
step. Still, for both void definitions, the ability to recover the
fiducial parameter values is similar for the different simulations.
There is no indication that the parameter estimations are more
accurate for a ΛCDM cosmology, compared to f (R)-modified
gravity or massive neutrinos.

Our investigations suggest that the current limitations of the
void theories must be dealt with in order for the models to be
accurate enough to clearly showcase differences between the
various simulated cosmologies. This is particularly clear for
the velocity profile modelling and the reconstruction method.
In addition, higher resolution simulations are necessary to lower
the uncertainties in the data. Once this is in place, cosmic voids
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are a promising ground for studying cosmologies with massive
neutrinos and f (R)-modified gravity.
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Appendix A: ANUBISIS resolution
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Fig. A.1. Matter power spectrum ratio between a 0.15 eV massive neu-
trinos simulation and a ΛCDM simulation with varying timestep, per-
formed by ANUBIS. The simulation box has Lbox = 1024 h−1Mpc,
Ncdm = Nν = 10243, and a fixed coarse base grid of 5123. The time step
is calculated by the RAMSES algorithm for both runs, but for the ΛCDM
case it is multiplied by a reduction factor, A. We see here that one way
to compensate for the coarse base grid, especially at large scales, is to
shorten the time step. This requires a longer run time for the ΛCDM
simulation, but not more memory as would be the result of adopting a
finer grid.

In the upper panel of Fig. 3, we present the matter power spec-
trum ratio for the non-ΛCDM simulations, compared to the ref-
erence ΛCDM run. We mention that at larger scales there is orig-
inally an excess in the power spectrum for the massive neutrino
and f (R) + massive neutrino runs. This is attributed to the coarse
base grid settings used in the simulations. With the resources
available to us at the time of running ANUBISIS, we made appro-
priate adjustments in order to constrain our memory and time
usage. To accomplish this, we chose a base grid of 5123 for all
the simulations, which results in a lower resolution at early times
and at large scales where there is less clustering. This is due
to the nature of the RAMSES AMR-scheme, which creates more
refinements as structure grows. In a ratio comparison, such an
internal consequence of the algorithm should cancel out, but as
the massive neutrinos contribute when calculating the time steps,
the simulations containing these particles automatically oper-
ate with smaller time steps. This leads to a more detailed time
development of the CDM particles in the massive neutrino and
f (R) + massive neutrino simulations, compared to the ΛCDM
and pure f (R) runs. Effectively, we resolve the simulations con-
taining massive neutrinos better at large scales, resulting in the
refinement of more clustering in these cases. This evens out as
time passes and more refinements are made, but for large neu-
trino masses, this also happens for small scales, where the sup-
pressed structure formation leads to fewer refinements within the
code, compared to the ΛCDM case. To help even out the issues at
large scales, we ran the ΛCDM and pure f (R) simulations with
one-fourth of the time step originally calculated by the code. The
effect of adjusting the time step is illustrated in Fig. A.1. Ideally,
the simulations should be run with a coarser base grid and with
a higher particle density, which would also contribute to better
resolution overall. This is not done in our case, due to computa-
tional costs.

In the end, this issue is practically equivalent to having a
slightly different σ8-value (2 − 3% lower) at large scales. We

have not accounted for this in our analysis, as the resulting
changes are small. For our MCMC fits, the true σ8-value is still
encompassed in the flat prior interval, and the only difference in
Figs. 18 and 19 would be a slight adjustment of the fiducial fσ8-
line towards lower values for ΛCDM and f (R). Simulations with
the same issue still showed good agreement with other codes in
the MNCCP (Adamek et al. 2022).

Appendix B: Quadrupole shape

If the redshift space void-halo CCF model (Eq. 3) did not include
a velocity dispersion for the mean outflow velocity profile, the
shape of the quadrupole in redshift space would be qualitatively
similar for all void definitions. This would mean a trough inside
the void due to outflow towards the overdensity at the edge, and
a peak outside due to infall towards the same overdensity, akin to
the shape we see for the voxel voids in Fig. 11. Adding a velocity
dispersion to the model effectively corresponds to ‘smoothing’
the RSD quadrupole.

If we take the real space radial coordinate, r, to be equal to
the redshift space coordinate, s, in the theory model, then from
Eq. (5) it can be shown that for vr/(raH) � 1 we roughly have
ξs

2 ∝ d
dr (vr/raH). This means that it is deviations from linear-

ity of the void velocity profile (equivalent to deviations from a
flat density profile) that lead to a quadrupole inside the void. To
better understand the shape of the quadrupole for different void
definitions, it is useful to consider a simple toy model. We define
a density profile that is perfectly flat inside the void, and equal
to zero outside: δ = δ0 for r < Rvoid and δ = 0 for r > Rvoid.
This then gives a velocity profile vr ∝ r inside the void, and
vr ∝ R3

void/r
2 outside, if we apply Eq. (8). This again gives ξs

2 = 0
inside the void, and ξs

2 ∝ R3
void/r

4 outside. At the void edge, we
have a sharp feature. For real voids, the density profile is never
perfectly flat on the inside, and the deviations break the linearity
of the outflow velocity, resulting in a trough in the quadrupole
inside the void. The flatter the density profile is inside the void,
the sharper the peak of the velocity profile is, leading to sharper
features in the quadrupole. The monopole, quadrupole, and hex-
adecapole, in the absence of a velocity dispersion, are illustrated
by the green line in Fig. B.1. The sharp features at Rvoid are visi-
ble both for the quadrupole and hexadecapole.

The above scenario is the case when there is no velocity
dispersion. If we add this to the model, the imposed smooth-
ing effect simply reduces the amplitude of the no-dispersion
quadrupole for the voxel void definition. This means that the
smoothing length given by the size of the velocity disper-
sion is smaller than the features seen in the no-dispersion
quadrupole. On the other hand, for spherical voids, where
the density profile is very flat in the void centre and the
quadrupole has sharp features as a consequence, this smooth-
ing results in a sharp peak followed by a sharp trough close
to the void edge (as seen in Fig. 11). This shows up at the
point where the density profile stops being flat, which is also
the point where the velocity profile has a sharp peak. The
blue dashed line in Fig. B.1 shows this effect clearly for the
quadrupole. The smaller the average void is, the larger this
first peak is, as the smoothing effect is more dramatic. This
shape is also similar to what previous studies have found
for Zobov voids (Nadathur et al. 2019a,b; Nadathur & Percival
2019; Massara et al. 2022; Woodfinden et al. 2022), which is not
surprising, as these voids also have a fairly flat density profile,
δ ∼ −1.0, at the void centre.

A185, page 22 of 23

126



Mauland, R., et al.: A&A 674, A185 (2023)

−0.4

−0.2

0.0

ξ 0
(r

)

Real space monopole

−0.4

−0.2

0.0

0.2

ξ 2
(r

)

Without vel.disp. With vel.disp.

10 20 30 40 50

r [h−1Mpc]

−0.2

0.0

0.2

ξ 4
(r

)

Fig. B.1. Monopole, quadrupole, and hexadecapole for the toy model of
the void density profile both with (blue dashed line) and without (green
line) velocity dispersion. The flat density profile inside the void results
in a sharp feature in the quadrupole at the void radius, which smoothes
out and gives a peak right before the trough inside the void.
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ABSTRACT

The mysterious nature of the dark sector of the Λ-cold-dark-matter (ΛCDM) model is one of the main motivators behind the study
of alternative cosmological models. A central quantity of interest for these models is the matter power spectrum, which quantifies
structure formation on various scales and can be cross-validated through theory, simulations, and observations. Here, we present
a tool that can be used to create emulators for the non-linear matter power spectrum, and similar global clustering statistics, for
models beyond ΛCDM with very little computation effort and without the need for supercomputers. We use fast approximate N-body
simulations to emulate the boost, B(k, z) = Pbeyond−ΛCDM(k, z)/PΛCDM(k, z), and then rely on existing high-quality emulators made for
ΛCDM to isolate Pbeyond−ΛCDM(k, z). Since both the ΛCDM and beyond-ΛCDM models are simulated in our approach, some of the
lack of power on small scales due to the low force-resolution in the simulations is factored out, allowing us to extend the emulator
to k ∼ 3 − 5 h Mpc−1 and still maintain good accuracy. In addition, errors from the simulation and emulation process can easily
be estimated and factored into the covariance when using the emulator on data. As an example of using the pipeline, we create an
emulator for the well-studied f (R) model with massive neutrinos, using approximately 3000 CPU hours of computation time, as
opposed to millions of CPU hours for many existing ΛCDM emulators. Provided with the paper is a fully functioning pipeline that
generates parameter samples, runs a Boltzmann solver to produce initial conditions, runs the simulations, and then gathers all the data
and runs it through a machine learning module to develop the emulator. This tool, named Sesame, can be used by anyone to generate
a power spectrum emulator for the cosmological model of their choice.

Key words. neutrinos – gravitation – cosmology: large-scale structure of Universe – methods: numerical – statistical

1. Introduction

The Λ-cold-dark-matter (ΛCDM) model describes our Universe
well, yet two of its main components remain elusive. The true na-
tures of dark matter and dark energy are still unknown, but their
impact on the Universe has been, and continues to be, widely
studied across multiple research fields. In an attempt to forego
the dark energy component of theΛCDM model, alternative the-
ories of gravity have become a popular avenue to explore. These
beyond-ΛCDM models (see e.g. Clifton et al. 2012; Koyama
2016) have an effect on structure formation, leaving an im-
print on the matter power spectrum. This can be further studied
through the use of cosmological simulations, which typically re-
quire a large amount of computing resources for high-resolution
simulations capable of accurately distinguishing between mod-
els down to small scales. In addition, a simulation is only per-
formed for a specified set of cosmological parameters, requiring
a rerun for any parameter changes. To forgo both of these issues,
emulators can be created for desired statistical observables, like
the matter power spectrum - a key observable whose theoreti-
cal prediction is needed to constrain beyond-ΛCDM models in
current and near-future weak-lensing surveys (J-PAS Collabora-
tion et al. 2014; LSST Collaboration et al. 2019; DES Collabo-
ration et al. 2021; Euclid Collaboration et al. 2022). The emula-
tors (Heitmann et al. 2013; Kwan et al. 2015; Giblin et al. 2019;
Nishimichi et al. 2019; Angulo et al. 2021; Euclid Collabora-
tion et al. 2021; Moran et al. 2023) are typically constructed by
performing a high number of N-body simulations within some

parameter space, and then interpolating to access any desired pa-
rameter value. This can be done, for example, through the use of
machine learning, training a neural network on highly accurate
simulation data. As mentioned above, this typically requires a lot
of computing resources, but once the simulations are performed
and the training is done, the emulators are simple to use and have
both minimal time and memory requirements.

Although highly accurate, a limit of this approach is the
ability to easily extend the resulting emulator to new cosmo-
logical models. In this paper, we present a full pipeline using
fast approximate N-body simulations and neural network train-
ing to create an emulator for the matter power spectrum boost,
B(k, z) = Pbeyond−ΛCDM(k, z)/PΛCDM(k, z), without the need for
a large amount of computing resources. The approximate simu-
lations employ the comoving Lagrangian acceleration (COLA)
method (Tassev et al. 2013) to simulate both the ΛCDM and
beyond-ΛCDM models (Valogiannis & Bean 2017; Winther
et al. 2017; Wright et al. 2017; Brando et al. 2022; Fiorini et al.
2022; Brando et al. 2023; Wright et al. 2023), allowing us to
extract the boost up to scales of k ∼ 3 − 5 h Mpc−1 to a few per-
cent accuracy. The pipeline is named Sesame - from simulations
to emulators using approximate methods. As a demonstration of
Sesame, we create an emulator for the boost between the Hu-
Sawicki f (R) model (Hu & Sawicki 2007) and a dynamical dark
energy model, w0waCDM. In f (R)-modified gravity, an addi-
tional function of the Ricci scalar, R, is added to the general
relativity (GR) framework (Buchdahl 1970). This function can
be designed to recreate a similar expansion history as ΛCDM,
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without the need for dark energy. Still, as the nature of grav-
ity is modified, resulting observational signals are expected (see
e.g. de Felice & Tsujikawa 2010, for a detailed review). One
such signal is the enhancement of structure formation on scales
smaller than the Compton wavelength of the scalaron - the scalar
degree of freedom of the f (R) theory, d f /dR (e.g. Hu & Sawicki
2007; Pogosian & Silvestri 2008; Cataneo et al. 2015). This will
show up in the matter power spectrum.

In addition to exploring universe models besides ΛCDM,
calculations and simulations within the ΛCDM framework are
continuously expanded to reach higher levels of accuracy. One
such extension is the inclusion of massive neutrinos. These
lightweight particles have often been excluded from cosmolog-
ical simulations due to their low impact compared to cold dark
matter (cdm), which makes up about 84% (Planck Collabora-
tion et al. 2020) of the matter content of the Universe. However,
improvements in telescopes and satellites now give us an obser-
vational accuracy high enough to measure the impact of neutri-
nos on structure formation - suppression on scales smaller than
the neutrino free-streaming length (Lesgourgues & Pastor 2006).
The newly launched Euclid satellite is expected to measure the
effect of massive neutrinos directly on the matter power spec-
trum, thereby putting tighter constraints on the neutrino mass
scale (Laureijs et al. 2011). Because of this, we include modified
gravity, massive neutrinos, and dark energy in the form of the
well-known w0wa Chevallier-Polarski-Linder (CPL) parametri-
sation (Chevallier & Polarski 2001; Linder 2003) when creat-
ing our emulator. The inclusion of massive neutrinos in the f (R)
simulations is also particularly important, due to the degeneracy
between the effects of neutrinos and f (R)-modified gravity on
structure formation on non-linear scales (e.g. Baldi et al. 2014).

Simulations including massive neutrinos (Potter et al. 2016;
Adamek et al. 2017; Liu et al. 2018; Dakin et al. 2019; Part-
mann et al. 2020; Weinberger et al. 2020; Springel et al. 2021;
Euclid Consortium et al. 2023), modified gravity (Li et al. 2012;
Puchwein et al. 2013; Llinares et al. 2014; Winther et al. 2015;
Hassani & Lombriser 2020; Ruan et al. 2022), and both (Baldi
et al. 2014; Wright et al. 2017; Giocoli et al. 2018; Mauland
et al. 2023) already exist with various methods of implementa-
tion, along with models, fits, and emulators to extract the boost
or the matter power spectrum directly for these cosmological
models (e.g. Zhao 2014; Winther et al. 2019; Hannestad et al.
2020; Bose et al. 2020, 2021; Ramachandra et al. 2021; Euclid
Collaboration et al. 2021; Arnold et al. 2022; Bose et al. 2023).
The main takeaway from this paper is therefore not the f (R)-
modified gravity emulator (although it will be provided), but the
full pipeline, Sesame, which includes the drawing of parameter
samples, running the simulations, training the neural network,
and creating the emulator for the boost, B(k, z). This tool can be
used to produce an emulator for a desired cosmological model
by implementing said model into the simulations and using a
suitable Boltzmann solver to extract the initial conditions. The
resulting accuracy of both the simulations and the emulator can
be tuned by the choice of simulation settings and neural network
architecture.

This paper is structured as follows: In Sect. 2, we present
some background theory for the matter power spectrum, f (R)-
modified gravity, and massive neutrinos. This is followed by an
outline of the methods applied in Sect. 3, including a description
of the full pipeline. In Sect. 4 we go through some simulation de-
tails, and then present our results in Sect. 5. Finally, we conclude
in Sect. 6.

2. Theory

In this section, we present some background information for the
key components of this work. We first outline the necessary de-
tails on the matter power spectrum, followed by f (R)-modified
gravity and massive neutrinos.

2.1. Matter power spectrum

The matter power spectrum, P(k), is defined as (e.g. Dodelson &
Schmidt 2020):

(2π)3P(k)δD(k − k′) = ⟨δ̃(k)δ̃(k′)∗⟩, (1)

where k is the wavenumber, δD is the Dirac-delta function, and
δ̃(k) is the Fourier transform of the overdensity field, δ(x). The
power spectrum is the Fourier transform of the two-point cor-
relation function, ξ(r), which describes the excess probability,
over random, of finding two objects separated by a distance r.
Analysing the matter power spectrum gives great insight into the
clustering of matter at different times and scales, in addition to
how variations in cosmological parameters affect structure for-
mation.

When studying alternative models to the concordance
ΛCDM model of our Universe, the ratio between the power spec-
trum in the alternative model and that of ΛCDM holds valu-
able information about the deviations between them. Different
components of a cosmological model, like massive neutrinos
or modified gravity, have theoretically predicted impacts on the
power spectrum (e.g. Lesgourgues & Pastor 2006; Song et al.
2007; Koyama et al. 2009). As the matter power spectrum can
be observed from various surveys (Chabanier et al. 2019; LSST
Collaboration et al. 2019; Euclid Collaboration et al. 2022), its
shape is well known, and it can therefore be used to constrain
these cosmological models. As an example in this paper, we are
interested in the differences in the power spectrum between a
w0waCDM universe with GR as the gravity model and one with
f (R)-modified gravity as the gravity model, both with the inclu-
sion of massive neutrinos,

B(k, z) =
P f (R)(k, z | ΩΛ,Ωcdm,Ωb, ns, σ

f (R)
8 ,w0,wa, h,Mν, fR0)

PGR(k, z | ΩΛ,Ωcdm,Ωb, ns, σ8,w0,wa, h,Mν)
.

(2)

Here, ΩΛ, ΩCDM, and Ωb are the energy densities of dark energy,
dark matter, and baryons respectively; ns is the scalar spectral in-
dex; h is the Hubble constant today; σ8 and σ f (R)

8 denote the nor-
malisation of the linear matter power-spectra at z = 0; fR0 is the
Hu-Sawicki f (R)-modified gravity parameter (see Sect. 2.2.1);
Mν denotes the sum of the neutrino masses, and w0 and wa are
dynamical dark energy parameters for the CPL parametrisation
of the dark energy equation of state (Chevallier & Polarski 2001;
Linder 2003),

w = w0 + wa
z

1 + z
, (3)

where w0 = −1 and wa = 0 correspond to a cosmological con-
stant.

2.2. Beyond-ΛCDM models

Beyond-ΛCDM is a broad term encompassing everything that
is not the ΛCDM model. There are too many beyond-ΛCDM
models proposed in the literature to be covered here, but a review
can be found in Bull et al. (2016).
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The simplest models are dark energy models that mainly
only modify the background evolution through the Hubble func-
tion, H(a). These are the so-called quintessence models (Wet-
terich 1988) and parametrised models for the dark energy equa-
tion of state, w(a), like CPL. Next in the level of complexity,
we have models where the quintessence field is coupled to mat-
ter (often only dark matter), dubbed coupled-quintessence mod-
els (Amendola 2000). Then we have modified gravity models,
where an extra degree of freedom is introduced, giving rise to
a fifth force for the full matter sector. To be able to evade local
gravity constraints, these models often need a screening mech-
anism to hide the modifications in high-density environments
where such gravity tests have been performed (see e.g. Khoury
& Weltman 2004b; Clifton et al. 2012; Koyama 2016). In ad-
dition to the models mentioned so far, we also have models of
dark matter beyond cold dark matter (e.g. axions Marsh 2016),
non-standard inflationary models (Martin et al. 2014), and many
more. The model we will use here for demonstrating how an
emulator can be created using Sesame is a f (R) modified grav-
ity model. This is chosen as it is well known and because it is
already implemented in the applied code base.

2.2.1. f (R)-modified gravity

In f (R)-modified gravity theory (Sotiriou & Faraoni 2010), the
Einstein-Hilbert action of GR is extended by a function, f (R),

S =
( ∫ R + f (R)

16πG
+Lm

)√−gd4x. (4)

Here, R is the Ricci scalar, G is the Newtonian gravitational con-
stant, Lm is the matter Lagrangian density, and g is the determi-
nant of the metric tensor, gµν. The f (R) function can take many
forms, one of which is given by

f (R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (5)

proposed by Hu & Sawicki (2007). Here c1, c2, and n are dimen-
sionless, constant, and non-negative parameters of the model and
m2 = H2

0Ωcdm, with H0 the value of the Hubble parameter to-
day. This f (R) function was designed so that cosmological tests
at high redshifts yield the same results as for GR. In addition,
in the limit where c2(R/m2)n ≫ 1, Eq. (5) can be written as
f (R) = −m2c1/c2 + O((m2/R)n), showing that a cosmological
constant, and thereby a similar background evolution to that of
ΛCDM, can be obtained by equating −m2c1/c2 with −2Λ. This
corresponds to a relation given by c1/c2 = 6ΩΛ/Ωcdm between
the two parameters c1 and c2. The equation of motion of the
scalar degree of freedom, fR, of the f (R)-model is then given
by

fR ≡ d f (R)
dR

≈ −n
c1

c2

(m2

R

)n+1
. (6)

By fixing the value of fR0, the present-day background value of
the scalar degree of freedom, an independent connection can be
found for c1 and c2. This enables the model to be fully specified
by the parameters fR0 and n. We will apply n = 1 in this paper.

From theory and simulations, the impact of this form of
f (R)-modified gravity on structure formation, and thereby the
matter power spectrum, can be predicted for various values of
fR0. In general, this modification to gravity enhances structure
formation on small scales (Hu & Sawicki 2007; Pogosian & Sil-
vestri 2008; Cataneo et al. 2015), as a result of an attractive force,

dubbed the fifth force, which appears in addition to Newtonian
gravity. The effects of this, in order for the theory to be compati-
ble with observations (Will 2014), are suppressed in high-density
regions due to a chameleon screening effect (Khoury & Weltman
2004a; Brax et al. 2008). The value of fR0 controls the threshold
at which the screening kicks in and recovers GR. Values above
fR0 ∼ −10−5 are in general ruled out from cosmological obser-
vations (Cataneo et al. 2015; Koyama 2016), although massive
neutrinos, which have the opposite effect on structure formation,
have not always been taken into account in these analyses (Baldi
et al. 2014).

2.3. Massive neutrinos

From particle physics, we know that there are three neutrino
mass states, νi with i = 1, 2, 3 (e.g. Thomson 2013). The abso-
lute mass scale, mνi (often shortened to mi), of each state is un-
known, but neutrino oscillation experiments give us constraints
on the mass difference between the states (Particle Data Group
et al. 2022)

∆m2
21 = (7.53 ± 0.18) × 10−5 eV2,

∆m2
32 = (−2.519 ± 0.033) × 10−3 eV2 (IH), (7)

∆m2
32 = (2.437 ± 0.033) × 10−3 eV2 (NH),

where IH denotes the inverted hierarchy (m3 ≪ m1 < m2) and
NH the normal hierarchy (m1 < m2 ≪ m3). This gives a lower
bound of

∑
mν ≳ 0.1 eV and

∑
mν ≳ 0.06 eV for the sum of

the neutrino masses for the inverted and normal hierarchies re-
spectively. An upper bound is given by

∑
mν ≲ 2.4 eV, based on

the KATRIN single β-decay experiment (KATRIN Collaboration
et al. 2022).

In addition to particle physics experiments, the sum of the
neutrino masses can be constrained through cosmological obser-
vations. As neutrinos make up a fraction of the energy content
of the Universe, given by (Lesgourgues & Pastor 2006)

Ων ≈
∑

mν

93.14 eV h2 , (8)

they affect the formation of structure. At early times, the mas-
sive neutrinos are relativistic, and free-stream out of overdense
regions. This, in addition to alterations of the background evo-
lution, like the time of matter-radiation equality, leads to a sup-
pression of the matter power spectrum on scales smaller than the
neutrino free-streaming length (Lesgourgues & Pastor 2006),

λFS = 7.7
1 + z√

ΩΛ + Ωm(1 + z)3

(
1 eV∑

mν

)
h−1Mpc. (9)

Here, Ωm = Ωcdm +Ωb +Ων is the total energy density of matter
and the other parameters are as explained before. The suppres-
sion of structure formation is observable and can help constrain
the sum of the neutrino masses. A recent combination of various
probes finds

∑
mν ≲ 0.09 eV at 95% confidence (Di Valentino

et al. 2021) and one of the science goals of the Euclid mission
is to measure

∑
mν to more than 0.03 eV precision through the

use of weak gravitational lensing and galaxy clustering (Laureijs
et al. 2011).

Although cosmological observations can be used to obtain
tighter upper bounds on the sum of the neutrino masses, it is
important to take into account the dependence on the choice
of a cosmological model. Hu-sawicki f (R)-modified gravity, as
mentioned above, has the opposite effect of massive neutrinos
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on structure formation, and thus results in degenerate observ-
ables like the matter power spectrum, halo mass function (HMF),
halo bias, and void-galaxy cross-correlation function (Baldi et al.
2014; Mauland et al. 2023).

3. Method

In this section, we introduce the methods behind the simulations
and machine learning codes used to create the emulator. We also
detail the steps that need to be taken before applying the pipeline
and the steps taken within the pipeline itself.

3.1. Simulations

The simulations in this paper were performed with the
COLASolver implemented in the FML library1. This is a fast
and approximate particle-mesh (PM) N-body code which em-
ploys the COLA method introduced by Tassev et al. (2013).
The COLASolver succeeds the MG-PICOLA2 code (Winther et al.
2017) and has various options for cosmologies and gravity mod-
els, including dynamical dark energy and f (R)-modified gravity.
It also contains massive neutrinos, using a grid-based method as
proposed in Brandbyge & Hannestad (2009), which was imple-
mented and tested by Wright et al. (2017).

3.1.1. The COLA method

The COLA method (Tassev et al. 2013) is based on the fact
that structure formation on large scales is well described by
Lagrangian perturbation theory (LPT). We can use this to our
advantage and solve for the displacement, δx, between a parti-
cle’s LPT trajectory, xLPT, and its full trajectory, x. The geodesic
equation for the particles is given by

dx
dτ
= v, (10)

dv
dτ
= −∇Φ, (11)

which, when setting x = δx + xLPT, becomes

dδx
dτ
= δv, (12)

dδv
dτ
= −∇Φ − d2xLPT

dτ2 . (13)

The additional COLA force is easily computed from the dis-
placement fields that are already calculated when creating the
initial conditions. In this COLA frame (the frame co-moving
with the LPT trajectories), the initial velocity of the particles
is simply δv = 0, and stays small on large scales during the
evolution. This allows us to take much larger time steps than in
usual N-body simulations, while still maintaining high accuracy
on the largest scales, reducing the simulation time substantially.
When increasing the number of timesteps, the method converges
towards a full PM N-body code. The COLA method has become
an increasingly popular method for cheaply generating simula-
tions and mock galaxy catalogues (Tassev et al. 2015; Feng et al.
2016; Izard et al. 2016; Koda et al. 2016; Leclercq et al. 2020;
Brando et al. 2023; Wright et al. 2023).

1 https://github.com/HAWinther/FML/tree/master/FML/
COLASolver
2 https://github.com/HAWinther/MG-PICOLA-PUBLIC

3.1.2. Screened modified gravity

The COLASolver we use already contains implementations of a
wide range of modified gravity models, like f (R) gravity, the
symmetron, DGP, and Jordan-Brans-Dicke (de Felice & Tsu-
jikawa 2010; Hinterbichler et al. 2011; Dvali et al. 2000; Joudaki
et al. 2022). A typical modified gravity model has a Poisson
equation which in linear perturbation theory, and in Fourier
space, reads (see e.g. Winther et al. 2017)

Φ(k, z) = − 3
2k2Ωmaδm(k, z)

Geff(k, z)
G

. (14)

Here, Geff(k, z)/G represents an effective Newtons constant,
which might depend on both time and scale. For example, for
the f (R) model, we have

Geff(k, z)
G

= 1 +
1
3

k2

k2 + a2m2
f (R)

, (15)

where m−1
f (R) is the range of the fifth-force. This is exact on linear

scales, but it does not include the important screening effect seen
in many modified gravity models. To accurately take this into ac-
count, one must solve the non-linear partial differential equation
(PDE) for the extra degree of freedom of the theory (e.g. the
scalar field, fR, for the case of f (R) gravity). The COLASolver
includes the possibility of doing exactly this, but it is quite time-
consuming. Instead, we therefore rely on the method of Winther
& Ferreira (2015). Here, the Poisson equation is taken to be

Φ(k, z) = ΦN(k, z) − 3
2k2Ωmaδeff

m (k, z)
(
Geff(k, z)

G
− 1

)
, (16)

where the first term is standard Newtonian gravity and the sec-
ond term is the contribution from the fifth force. The effective
density, δeff

m , (in real space) is given by

δeff
m (x, z) = δm(x, z)F(ΦN ,∇ΦN ,∇2ΦN , . . .), (17)

where the function F estimates the screening. In this way, F = 1
corresponds to no screening. For different models, we can use
spherical symmetry to compute the F function. For example, for
f (R), we have

F = min

1,
3| fR0|
2|ΦN |

(
Ωm + 4ΩΛ
Ωma−3 + 4ΩΛ

)n+1 , (18)

which only depends on the local value of the standard Newto-
nian potential. This is easily (and cheaply) computed in the code
using Fourier transforms, making the cost an order of magnitude
lower than solving the full equation of motion.

In the COLASolver, different screening methods have been
implemented for a wide range of models. The above approxima-
tion is accurate, but it is not perfect (depending on the model).
Because of this, one should always compare the results to full
N-body simulations, to assess the accuracy. If higher accuracy is
needed, there is a possibility of improving it. One simple fix is to
modify the screening method by introducing a fudge factor (or
function), γ(a), to scale F with. Then, γ(a) can be adjusted by
comparing to exact simulations. This has been done for f (R) by
Winther & Ferreira (2015), by fitting a constant factor to match
a particular redshift. As the main purpose of this paper is to set
up a general pipeline, and because emulators for the particular
example model used here already exist (e.g. Ramachandra et al.
2021; Arnold et al. 2022; Sáez-Casares et al. 2023), we choose
to not adjust γ(a) and our screened simulations thus have γ = 1.
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3.1.3. Massive neutrinos

Massive neutrinos were for a long time considered beyond
ΛCDM, at least from the perspective of N-body simulations.
This has changed over the last decade, and most simulations
these days do include the effect of massive neutrinos.

In the COLASolver, massive neutrinos are treated as a field
evolving according to linear theory, as proposed by Brandbyge
& Hannestad (2009). After creating the CDM+baryon particles,
we compute and store the initial density field, δcb(k, zini), and
evaluate

δν(k, z) =
Tν(k, z)

Tν(k, zini)
Tν(k, zinit)
Tcb(k, zinit)

δcb(k, zini), (19)

where Tcb and Tν are the CDM+baryon and neutrino transfer
functions respectively. This is then added as a source to the Pois-
son equation (here for GR)

Φ = − 3
2k2Ωma

[
(1 − fν)δcdm + fνδν

]
, (20)

where fν = Ων/Ωm. For more information about the neutrino
implementation, see Wright et al. (2017). The implementation
of massive neutrinos used here was previously included in a
massive neutrino code comparison project (Euclid Consortium
et al. 2023), and showed percent level agreement in the power
spectrum compared to more exact methods of including massive
neutrinos.

3.2. Machine learning

To create an emulator for the power spectrum boost, B(k, z),
we utilise PyTorch-Lightening3, a lightweight wrapper for
the Python PyTorch package 4. PyTorch is a machine-learning
framework focusing on deep learning, and it provides the tools
necessary to train neural networks with multiple layers. It re-
quires our data as input, separated into three different categories:
training, testing, and validation. The training data is used to train
the neural network. This is the data that the neural network learns
from. During the learning process, the neural network occasion-
ally sees the validation data, as a means to help tune the model,
but does not learn from it. Once the neural network is fully
trained and the emulator is created, it can be evaluated against
the test data to assess its performance. The architecture of the
neural network training can be designed by the user by deciding
the number of hidden dimensions, number of neurons, the batch
size, and more 5. The number of hidden dimensions governs how
many layers there are between the input and output layers. Each
of these layers has a given number of neurons, which perform
computations on the training data before passing it to the next
layer. The data is also commonly divided into smaller subsets,
containing a set number of samples in each batch. This allows
for a more efficient training process.

For our neural network training, we assigned data to the
training, validation, and test sets by drawing Latin hypercube
samples (McKay et al. 1979; Heitmann et al. 2006) for each data
set, corresponding to a 80−10−10 percent distribution. This en-
sured that each set had an even distribution of parameters in the
available parameter set. We also tested both two and three hid-
den layers, in addition to varying the number of neurons in each
3 https://www.pytorchlightning.ai/index.html
4 https://github.com/pytorch/pytorch,
https://pytorch.org/
5 See the PyTorch-Lightening documentation for detailed instruc-
tions.

layer, ranging from 8−512 in different combinations. Finally, we
tested the batch size, varying from 16 − 256. From our example
case of f (R)-modified gravity, we created three different emula-
tors, two including unscreened f (R) gravity, one for the linear
power spectrum boost and one for the non-linear, and one for the
non-linear screened f (R) gravity power spectrum boost. They all
have a batch size of 64 and two hidden layers, but the two un-
screened f (R) emulators use 16 neurons in the first hidden layer
and 8 in the second, while the screened f (R) emulator has 128
and 64 neurons due to a more complicated shape for some of the
curves. This can be further optimised and changed by the user
based on the desired accuracy of the training process and will
depend on the simulations and the parameters that are varied.

3.3. Pipeline

The full pipeline used for this work is made avail-
able at https://github.com/renmau/Sesame_pipeline,
including instructions on how to use it. It can be applied as is for
cosmologies with f (R) modified gravity and massive neutrinos,
or extended to different cosmologies as wished. Here follows an
outline of the steps necessary both to use the pipeline, and taken
inside the pipeline itself:
First of all, the desired cosmological model, if not already in-
cluded in the COLASolver, must be implemented. Likewise, the
model must be implemented in a Boltzmann solver in order to
obtain the initial conditions, or an already existing solver with
the necessary cosmology can be used. Once this is done, the sim-
ulation setup must be tested for the model in question to obtain
the number of time steps, box size, grid resolution, and so on,
that gives the desired convergence within the code itself. With
the optimal setup obtained, the boosts dependence on cosmolog-
ical parameters must be tested in order to determine which pa-
rameters should be included when creating the emulator. When
this is decided, the priors on the parameters must be chosen,
along with a fiducial cosmology and the number of desired sam-
ples to simulate for the neural network to work on. These are the
steps that need to be taken outside of the pipeline. Once this is
in order, Latin hypercube sampling is employed to sample the
parameter space evenly. The way the pipeline is set up now, in-
dividual parameter samples are drawn for the training, testing,
and validation sets so that they make up a 80−10−10 percentile
distribution of the total amount of samples. Alternatively, one
can draw all the samples at once and then distribute the sam-
ples into data sets later. The desired amount of samples for the
various cosmological parameters is written to file, together with
the desired simulation settings of the COLASolver. The infor-
mation in this file is then used to generate a bash script where
new parameter files for the COLASolver are created. This script
is then activated and the simulations are run for both the beyond-
ΛCDM and ΛCDM model for all the samples. This creates mul-
tiple outputs of the matter power spectrum at various redshifts in
each case. The boost, B(k, z) = Pbeyond−ΛCDM(k, z)/PΛCDM(k, z),
is then calculated for each parameter combination and redshift,
and smoothed with a Savitzky-Golay filter (Savitzky & Golay
1964). The smoothing is performed to reduce small fluctuations
and thereby make the curves easier to estimate for the neural
network. The parameter values, redshifts, log10 k, and B(k, z) are
written into three separate files that go into the neural network
learning. 80% of the sample data goes into a training file, 10%
into a validation file, and the remaining 10% into a test file, as
mentioned above. These are then fed to the neural network, and
the power spectrum ratio emulator is created. In this step, the
architecture of the neural network must also be decided. This
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might take some trial and error, in order to obtain the desired
accuracy.

At this point, the boost emulator for the desired cosmology
has been created. To extract Pbeyond−ΛCDM(k, z), we can now de-
pend on already existing high-quality emulators for ΛCDM (e.g.
Angulo et al. 2021; Euclid Collaboration et al. 2021; Moran et al.
2023). Ideally, the final step should be to run a high resolution
N-body simulation to determine the accuracy of the boost within
the COLASolver. This would likely be the most expensive part
to perform out of everything detailed above, but gives us an es-
timate of the simulation errors. Alternatively, if high-resolution
simulations already exist for the cosmological model of inter-
est, these can be used instead. In addition to this, we can get an
estimate of the emulator errors by comparing the emulator per-
formance to the test set. Both of these error estimates can then
be baked into the covariance when using the emulator to fit to
data, to ensure that all errors are included.

4. Simulations

For the example case of the f (R) model, we performed two main
sets of simulations with the COLASolver (Sect. 3.1) to obtain the
power spectrum boost. One setup had unscreened f (R) gravity,
while the other included screening mechanisms. For these runs,
we picked 550 samples of five cosmological parameters, varied
within the intervals

σ8 ∈ [0.66, 0.98],
Ωcdm ∈ [0.20, 0.34],

w0 ∈ [−1.3,−0.7], (21)
wa ∈ [−0.7, 0.7],

log10 fR0 ∈ [−8.0,−4.0].

These intervals, with the exception of log10 fR0, are based on the
EuclidEmulator2, and are either the same (w0, wa) or slightly
larger (Ωcdm, σ8) than the intervals used by Euclid Collaboration
et al. (2021)6. A sample selection of 100 parameter samples can
be seen in Fig. 1.

The simulation setup and the fiducial cosmology are given in
Table 1. In each case, we had Lbox = 350 h−1Mpc, Ngrid = 768,
and Npart = 640. The simulations were started at zini = 30.0
and used 30 timesteps up until z = 0.0. Regarding the simula-
tion setup we used, note that COLA simulations in general often
use a large force-grid with Ngrid = (2 − 3)Npart (see e.g. Izard
et al. 2016). This is in order to have enough force-resolution to
be able to create and resolve small halos - a crucial property if
one is to create mock galaxy catalogues. The dark matter power-
spectrum, on the other hand, is less sensitive to this, and we can
therefore get away with using a smaller grid. When it comes
to choosing the final simulation setup, it is important to always
perform convergence tests of how the boost, B, changes with re-
spect to the box size, the number of particles, the force resolution
(the grid size), the number of time-steps, and other accuracy pa-
rameters like the initial redshift. This is essential to ensure that
the result within COLA is converged. This has been done for
the setup used here, as seen in Fig. 2. Once this is done, the
true accuracy can be assessed by comparing the COLA result to
high-resolution N-body simulations. The power spectrum boost
for the 100 parameter samples mentioned above can be seen in
Fig. 3 for three different scenarios; linear boost with unscreened
6 A convenience of using the COLASolver to perform the simulations
is that it is fast, and therefore, extending the parameter intervals is com-
putationally cheap compared to more accurate full N-body simulations.
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Fig. 1. Sample distribution for 100 of the total 550 samples. The bur-
gundy dot shows the fiducial cosmology parameter values, as given in
Table 1.

Table 1. Fiducial values for the main simulations and for parameter
variation tests run with a slightly different setup. If a parameter does
not vary, this is its default value. The Mν parameter refers to the sum
of the neutrino masses and is given in eV. The main simulations have
Lbox = 350 h−1Mpc, Ngrid = 768, and Npart = 640. The parameter test
runs have Lbox = 350 h−1Mpc and Ngrid = Npart = 640.

Parameter Fiducial value Test value
As 2.1 × 10−9 2.1 × 10−9

σ8 0.82 0.83
ns 0.96 0.96
h 0.67 0.67

Mν 0.058 0.0
Ωcdm 0.27 0.27
Ωb 0.049 0.05
w0 −1.0 −1.0
wa 0.0 0.0

log10 fR0 −5.0 −5.0

f (R) gravity, non-linear boost with unscreened f (R) gravity, and
non-linear boost with screened f (R) gravity.

For every sample, COLASolver was run twice, once with
f (R)-modified gravity and the selected value of fR0, and once
with regular GR. We ran our simulations for GR and f (R) using
the same initial conditions (i.e. we use the same value of As),
which translates into

(
σ

f (R)
8

)2
=

∫
k3

2π2 PGR(k, z = 0)
(

D f (R)(k, z)
DGR(z)

)2 dk
k
, (22)

where the growth factors, D, are normalised to unity in the early
Universe. This ensures that the boost, B, is unity at early times,
while today σ

f (R)
8 is slightly higher for our f (R) simulations

than our GR simulations. We used amplitude-fixed initial condi-
tions (Angulo & Pontzen 2016; Villaescusa-Navarro et al. 2018;
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Fig. 2. Convergence test for the COLASolver simulation setup for the
screened boost between a f (R) gravity simulation with | fR0| = 10−5

and Mν = 0.2 eV, and a ΛCDM simulation with massless neutrinos,
at z = 0.0. The fiducial setup is the same as the test setup in Table. 1,
namely Ntime = 30, Ngrid = Npart = 640, and Lbox = 350 h−1Mpc. Here,
Ntime denotes the number of time steps. The only parameter changed
from the test setup to the final setup is Ngrid, which was increased to
Ngrid = 786 due to the resolution on non-linear scales.

Klypin et al. 2020) for our simulations to suppress the effects of
cosmic variance.

In order to know which cosmological parameter to include as
variables in the emulator training, we performed some test simu-
lations. Figure 4 displays the non-linear boost for the unscreened
f (R) case, with | fR0| = 10−5, when different parameters are al-
lowed to vary. From this, it is clear that σ8, Ωcdm, w0, and possi-
bly wa are the most influential parameters on the power spectrum
ratio. Because of this, σ8,Ωcdm, w0, wa, and log10 fR0, in addition
to z and k, were chosen as the parameters to vary when produc-
ing the data used to train the neural network when creating the
boost emulator. Tests performed where σ8 is not kept fixed for
the f (R) and GR initial conditions show a larger variation for all
the parameters in general. However, fixing σ8 shows that some
of this effect is due to the difference in clustering. We also per-
formed tests with screened f (R) gravity and a different value for
fR0. These tests also pointed toward the same parameter choices.

5. Results

In this section, we present the results for our example boost emu-
lator with f (R)-modified gravity for three different cases: the lin-
ear power spectrum boost with unscreened f (R) gravity, the non-
linear power spectrum boost with unscreened f (R) gravity, and
the non-linear power spectrum boost with screened f (R) gravity.
The emulator results compared to the test data sets can be seen
in Figs. 5, 6, and 7 respectively, for three different redshifts.

In general, we see that the fully linear case has better agree-
ment between the emulator and test data for all redshifts, com-
pared to the non-linear cases. This is most likely due to the sim-
plicity of the boost curve, making it easier for the neural net-
work to predict. The same effect is also seen for higher redshifts
in all three cases, where the curves flatten out and become eas-
ier for the learning processes to capture accurately. Overall, the
fully linear boost emulator agrees with the COLASolver simu-
lations to below one percent accuracy on all scales and all red-
shifts (Fig. 5). For the non-linear unscreened f (R) case (Fig. 6),
we have agreement to below 1% up to k ∼ 1 h Mpc−1 for red-
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Fig. 3. Matter power spectrum (CDM + baryons) boost for modified
gravity and GR for the 100 samples shown in Fig. 1 at z = 0.0. The
upper and middle panel shows the linear and non-linear boost for un-
screened f (R) gravity. The lower panel shows the non-linear boost for
screened f (R) gravity. The burgundy line displays the boost for the fidu-
cial cosmology, as listed in Table 1.

shifts z = 1.58 and z = 0.55, and otherwise agreement to around
2% at smaller scales. For z = 0.00, we have close to 1% agree-
ment up to k ∼ 0.3 h Mpc−1, and between 2 − 3% agreement
otherwise. For the non-linear boost in the screened f (R) grav-
ity case (Fig. 7), we have below one percent accuracy up to
k ∼ 1 h Mpc−1 for z = 1.58, and below 2% up until the very
smallest scales. For z = 0.55, we deviate from below 1% at
k ∼ 0.2 h Mpc−1, but again stay within 2% until k ∼ 5 h Mpc−1.
When we reach redshift zero there are some larger outliers, re-
sulting in some differences around 3 − 4%, although the bulk
of the set stays below 2%. Still, for the non-linear boost emu-
lator, both in the case of screened and unscreened f (R) grav-
ity, it is clear, when compared to Fig. 3, that the curves with
the largest discrepancy between predictions and simulations can
differ quite a lot from the fiducial expectation. This is not un-
expected, as the training set for the neural network will contain
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Fig. 4. Boost for modified gravity with fR0 = −10−5 and GR for differ-
ent parameter variations. The ratios are shown in the larger panels for
three different parameter values, while the narrower panels connected
to each large panel show the corresponding ratios of ratios for the three
different parameter values, with the middle value as the baseline. The
parameters are varied while holding the rest constant, and the fiducial
test cosmology is given in Table 1. When varying Ωcdm, Ωb is kept con-
stant, meaning thatΩm varies accordingly. WhenΩb is varied,Ωcdm also
varies so that Ωm is kept constant at a value of 0.32. There is no screen-
ing invoked for the f (R) simulations. The Mν parameter refers to the
sum of the neutrino masses and is given in eV.

fewer samples with parameter values that lie close to the edges
of the allowed intervals, therefore making the predictions less
robust for periphery samples. An example of this is shown in
Fig. 8, where an outlier is highlighted. The corresponding pa-
rameter sample, compared to the fiducial values, is given in Ta-
ble 2. The error can be further approved by adjusting the neu-
ral network architecture, but will depend on the features in the
curve and the parameters included in the training process, and
must therefore be adjusted individually for anyone interested in
applying the pipeline. It should also be mentioned that for the
screened f (R) gravity emulator (Fig. 7), there could be some
overfitting for the simplest curves, due to the relatively complex
architecture containing 128 and 64 neurons in the two hidden
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Fig. 5. Emulator performance compared to the test data sets for various
redshifts for the linear boost with unscreened f (R) gravity. The emulator
results, along with the simulations, are given in the larger panels, while
the narrower panels display the corresponding relative difference, given
by Bemulator/Bsimulation − 1. The grayed-out area in the same panel shows
±1%, and the Nyquist frequency of the simulations is k ≈ 5.7 h Mpc−1.

layers. We found that this was necessary in order to catch the
shape of the more complex curves, like the one highlighted in
Fig. 8. This could possibly be remedied by supplying the neural
network with smoother data curves.
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Fig. 6. Emulator performance compared to the test data sets for various
redshifts for the non-linear boost with unscreened f (R) gravity. Figure
setup as explained for Fig. 5.

6. Conclusions

Emulators for various global clustering statistics are mem-
ory and time-saving. However, creating them often requires
a lot of resources through the use of large N-body sim-
ulation suites. Because of this, the construction of accu-
rate emulators usually depends on the use of supercomput-
ers. In this paper, we have presented a full pipeline, Sesame,
for creating emulators for the matter power spectrum boost,
B(k, z) = Pbeyond−ΛCDM(k, z)/PΛCDM(k, z), for beyond-ΛCDM
models, without the need for large computing resources. The
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Fig. 7. Emulator performance compared to the test data sets for vari-
ous redshifts for the non-linear boost with screened f (R) gravity. Figure
setup as explained for Fig. 5.

pipeline employs the fast and approximate COLA method (Tas-
sev et al. 2013; Wright et al. 2017; Winther et al. 2017) to per-
form the simulations, simulating both the beyond-ΛCDM and
ΛCDM model. This allows us to extract the boost up to higher
k-values, due to some of the internal code artifacts canceling,
as demonstrated in e.g. Euclid Consortium et al. (2023). The
simulation data is then used to train a neural network, through
the PyTorch Lightening deep learning module, resulting in a
boost emulator. At this point, we rely on existing ΛCDM emula-
tors to extract Pbeyond−ΛCDM(k, z).
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Table 2. Parameters for one of the samples with the largest discrepancy
between simulated and emulated boost for the screened f (R) gravity
case, compared to the fiducial values. The parameters Ωcdm, wa, and
log10 fR0 all have values close to the interval boundaries of the emulator
training data.

Parameter Fiducial sample Outlier sample
σ8 0.82 0.87
Ωcdm 0.27 0.21
w0 −1.0 −1.1
wa 0.00 −0.46

log10 fR0 −5.00 −4.04
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Fig. 8. Lower panel of Fig. 7 with one of the largest outliers highlighted
in green. The rest of the results are as before, but muted with a gray
colour. The parameter sample values of the outlier can be found in Ta-
ble. 2.

Using the pipeline will consist of the following steps:

– Implement the model or parametrisation you want to emulate
in the COLASolver. This most commonly consists of imple-
menting the Hubble function and how to compute the gravi-
tational potential. Here, already implemented models can be
used as examples. For most models, this will be a minor task.

– Pick the simulation setup and do a convergence test to ensure
that the setup is converged within the code itself.

– Pick which cosmological parameters you are interested in
varying. For this, it is useful to study how the boost, B,
changes when varying individual cosmological parameters,
and select the ones that have a significant impact. From our
experience, looking at different modified gravity models that
deviate fromΛCDM only close to today, as long as the power
(σ8) is kept the same (depending on the model), either in the
initial conditions or at z = 0, it is often σ8 (or As) and Ωm
that are the most relevant.

– Pick the priors of the parameters you want to vary and the
number of samples you want to include, and use this to gen-
erate the Latin hypercube samples (script provided in the
pipeline).

– Generate all the input for COLASolver, meaning the input
files and the necessary power spectra, by running a Boltz-
mann solver (script provided in the pipeline for CLASS (Les-
gourgues 2011; Blas et al. 2011)).

– Run the simulations to produce all the data files containing
the power spectra needed to compute the boosts (script pro-
vided in the pipeline).

– Gather all the data and make the files needed for the emulator
(script provided in the pipeline).

– Determine the neural network architecture (often trial and
error) and run the training to produce the emulator (script
provided in the pipeline).

– Check the accuracy of the emulator and redo the previous
step if needed until you have something acceptable (script to
compare the emulator with data provided in the pipeline).

– Estimate the errors. The emulation error can be obtained
from the training set and the error of the simulations them-
selves can be estimated by running a set of high-resolution
N-body simulations or by using already existing simulations.

As an example of using this pipeline, we created three em-
ulators for f (R)-modified gravity, including massive neutrinos.
The three emulators estimate the boost in the cases of linear and
non-linear boost for unscreened f (R) gravity, and the non-linear
boost for screened f (R) gravity. The first two of these have not
been made before, while for the last case there already exists
several emulators (e.g. Ramachandra et al. 2021; Arnold et al.
2022; Sáez-Casares et al. 2023). The fully linear emulator has
below-percent accuracy compared to the simulations, while the
non-linear boost emulators have around 2% accuracy. When us-
ing emulators to fit data, this error between the emulator and
simulations should be taken into account. In addition, the ap-
proximate simulation method, COLA, has an error compared to
full N-body simulations, which must also be folded into the error
budget.

With the paper, we provide the full pipeline at https://
github.com/renmau/Sesame_pipeline. Sesame can then be
used by anyone to create emulators for their desired beyond-
ΛCDM model, either by employing one of the models already
incorporated in COLASolver code, or by implementing the de-
sired model and then applying the pipeline.
Acknowledgements. We would like to thank the Research Council of Norway for
their support.
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