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Abstract

While frequency-domain response theory is the conventional approach
for computing nonlinear optical properties within time-dependent
electronic-structure theory, time-domain methods offer an advantage
by also accommodating non-perturbative responses. Furthermore, the
time-domain approach significantly simplifies the implementation of
highly nonlinear responses compared to the traditional response theory.

My research, contained in four papers and one review article, aims
to contribute to the field of time-domain time-dependent electronic
structure theory for the description of linear and nonlinear optical
properties. These contributions include: Investigating the capability
of dynamic orbitals to improve the description of linear and nonlinear
optical properties, extending a hierarchy of time-domain time-
dependent coupled-cluster methods with dynamic and static orbitals
to accommodate strong magnetic fields, and developing an efficient
approach for the extraction of higher-order response properties.

We have found that dynamic orbitals improve the accuracy
of linear and nonlinear optical properties with minimal additional
computational cost. By applying time-domain electronic-structure
theory in strong magnetic fields, we have demonstrated that magnetic
optical rotation, generally treated as linearly dependent on the
magnetic field strength, deviates from linearity in strong magnetic
fields. Finally, the finite-difference approach used for property
extraction from time-domain simulations proved to be highly accurate,
even for nonlinear optical properties up to fourth order. These
contributions pave the way for further exploration of accurate, time-
resolved nonlinear magneto-optic phenomena.
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Sammendrag

Den konvensjonelle metoden for å beregne ikke-lineære optiske
egenskaper innenfor tidsavhengig elektronstrukturteori er responsteori
i frekvensdomenet. Alternativt kan man benytte tidsdomenemetoder,
som har den fordel at også ikke-perturbative responser kan håndteres.
Videre er utledningen og implementeringen av ikke-lineære responser
av høyere orden svært mye enklere for tidsdomenemetoder sammen-
lignet med den tradisjonelle responsteorien.

Mitt mål i forskningen har vært å bidra til feltet for tidsavhengig
elektronstrukturteori i tidsdomenet, for å beskrive lineære og ikke-
lineære optiske egenskaper. Mine forskningsbidrag inkluderer følgende:
Å undersøke potensialet til dynamiske orbitaler for å forbedre
beskrivelsen av lineære og ikke-lineære optiske egenskaper. Å utvide
et hierarki av tidsavhengige coupled-cluster tidsdomenemetoder med
både dynamiske og statiske orbitaler, slik at de håndterer sterke
magnetiske felt. Å utvikle en effektiv, nøyaktig metode for å utvinne
responsegenskaper av høyere orden.

Arbeidet mitt har resultert i fire forskningsartikler og en oversikt-
sartikkel, der hovedresultatene er som følger. Observasjon av dy-
namiske orbitaler som forbedrer nøyaktigheten av lineære og ikke-
lineære optiske egenskaper med minimal ekstra beregningskostnad.
Demonstrasjon av at magnetisk optisk rotasjon, som generelt betraktes
som lineært avhengig av magnetfeltstyrken, avviker fra linearitet i
sterke magnetfelt. Differensmetodene som blir brukt for utvinning av
egenskaper fra tidsdomenesimuleringer viser seg å være svært nøyak-
tig, selv for ikke-lineære optiske egenskaper opp til fjerde orden. Disse
bidragene baner vei for videre forskning på nøyaktige, tidsoppløste ikke-
lineære magneto-optiske fenomener.
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Chapter 1

Introduction

Within the field of nonlinear optics [1, 2], nonlinear optical properties are defined as
frequency-dependent responses. This definition emerged in the frequency domain,
as lasers used in these early experiments emitted monochromatic continuous
waves [3]. This led to the development of time-dependent electronic-structure
theory [4] predominantly in the frequency domain, using perturbation-theory-
based response theory [5, 6]. However, in recent years, advances in computing
power and the advent of ultrashort laser pulses [7] have sparked interest in the
time-domain for both electronic-structure theory and nonlinear optics. Time-
domain electronic-structure theory [8, 9] provides a time-resolved description of
light-matter interaction, closely mimicking experiments. As an emerging field,
many subjects within it remain to be explored. The goal of this thesis is to
contribute to the development of time-dependent electronic-structure theory for
describing nonlinear optical properties, with a focus on signal processing, electron
correlation, and strong magnetic fields.

1.1 Setting

The goal of time-dependent electronic-structure theory is to find an approximate
solution to the electronic non-relativistic time-dependent Schrödinger equation

i
∂

∂t
Ψ(t) = ĤΨ(t), (1.1)

where Ψ(t) is the exact wavefunction governing the electronic system and
Hamiltonian operator Ĥ represents the total energy of the system. The
prevailing electronic-structure methods in the realm of quantum chemistry,
namely Kohn–Sham density-functional theory (DFT) [10] and post-Hartree–Fock
methods and their time-dependent variants, have demonstrated to be broadly
applicable to the understanding and interpretation of experimental measurements
of molecular properties. Among these, time-dependent density-functional theory
(TDDFT) stands out as a method that strikes a favorable balance between
efficiency and accuracy, thus garnering widespread adoption. However, despite
its popularity, TDDFT suffers from inherent limitations; the theory lacks
systematic improvability and therefore depends on higher level ab initio methods
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Chapter 1. Introduction

or experimental data for benchmarking. It also exhibits notable failures including
unphysical peak shifting of absorption spectra and an inability to capture Rabi
oscillations due to the adiabatic approximation nearly always being invoked [9].
On the other hand, time-dependent post-Hartree–Fock methods, particularly time-
dependent coupled-cluster (TDCC) theory, are comprehensively understood and
deliver remarkable accuracy, albeit at a higher computational cost.

Time-domain TDDFT [11] has been under development since the 1990s, and
although time-dependence was considered theoretically within coupled-cluster
theory already in the 1970s, a practical implementation of time-domain TDCC [12]
was not explored until 2011 [13]. Time-domain methods [8, 9] offer the advantage
of being able to describe non-perturbative responses in addition to allowing for
a time-resolved description of the electron dynamics. The ultimate goal of time-
domain electronic-structure methods is to simulate experiments within the field of
attochemistry. This could one day enable the investigation and control of chemical
reactions at the most fundamental level [14]. Another area where time-domain
methods show promising potential is for the computation of nonlinear properties.
Linear optical properties, as well as nonlinear optical properties of second and third
order, are efficiently computed with response theory; highly nonlinear properties
(here defined as those above third order), however, require equations that are
complicated to derive. These are more easily found in the time domain using
finite-difference methods.

While the more mature field of frequency-domain methods closely resemble
their time-domain counterparts, there are certain distinguishing factors between
the two. Signal processing is required for the extraction of properties that can be
directly compared to experimental nonlinear optical measurements. Furthermore,
the interaction of electrons with explicit magnetic fields needed for simulations at
non-perturbative magnetic field strengths have not yet been implemented for the
time-domain TDCC methods.

1.2 Research objectives

With the goal of advancing the development of time-dependent electronic-structure
theory for nonlinear optical properties, the following research objectives have been
defined:

• To extend the time-domain methods implemented for use in strong magnetic
fields to encompass the hierarchy of TDCC methods.

• To investigate whether dynamic orbitals provide an improved description of
linear and nonlinear optical properties.

• To compare the performance of different current-dependent density-
functional theory (CDFT) functionals with TDCC theory for describing
optical properties in the presence of magnetic fields.

2



1.3. Scope

• To investigate whether magnetic optical rotation1 remains a linear function
of the magnetic field strength, even at very high field strengths.

• To explore the existing approaches for extracting non-linear response
properties from time-domain signals and identify a reliable and efficient
scheme that can be used for higher-order response properties.

Achieving these objectives will lead to an improved description of nonlinear optical
properties with time-domain methods. Extending time-domain TDCC theory to
accommodate finite magnetic fields will allow for the accurate exploration of other
magnetic and magneto-optic phenomena, such as: magnetic circular dichroism,
the Cotton–Mouton effect [16]; and at a later stage, the description of strong field
and ionization dynamics in a magnetic field.

1.3 Scope

Time-dependent electronic-structure theory nearly always invokes the Born-
Oppenheimer approximation [17, 18] where nuclei are treated as classical clamped
point charges. This approximation is fully justified for the short simulation times
that will be studied in this thesis. Secondly, the semiclassical approach will be
taken, where electrons are treated quantum-mechanically, and electromagnetic
fields are treated classically. Thirdly, we will assume the dipole approximation for
the first three papers presented in this thesis: The electromagnetic field potential
A is taken to be uniform over the entire molecule, A(r, t) ≈ A(0, t) = A(t). The
interacting light in the ’optical’ region has wavelengths longer than 1 × 104 a.u.,
which is much longer than the size of the small molecules considered here (∼ 1−10
a.u.); therefore, the electromagnetic field is approximately position-independent.
Finally, the basis sets most commonly used within quantum chemistry are built
from Gaussian atomic type orbitals. These are situated on the nuclei, and cannot
be used to describe ionization. This limits the research within this thesis to
dynamics of bound electrons and therefore to weak electric fields. Non-linear
optical properties are weak-field phenomena by definition, and Gaussian atomic
type orbitals are therefore appropriate for the small closed-shell molecules that
will be considered here.

1.4 Outline

This dissertation is a collection of five papers: four research articles presented
in chronological order of writing, and one review article titled Time-dependent
coupled-cluster theory. In the four chapters preceding the papers, I will attempt
to unify the research articles and set them into a broader context. After the
introduction in Chapter 1, a review of the literature will be presented in Chapter 2.

1Although strictly speaking a magneto-optical response, Bloembergen’s has defined magnetic
optical rotation as a "nonlinear response in which the optical polarization is a bilinear function
of the optical field amplitude and the applied magnetic field" [15]

3



Chapter 1. Introduction

Figure 1.1: Research area

The research conducted within this thesis builds upon three more or less separable
research fields illustrated in Figure 1.1. Firstly, I am furthering the development
of TDCC theory, and this work naturally builds on all the prior development,
primarily conducted in our research group. Secondly, approaches for extracting
properties from real-time simulations have been a parallel research field, mainly
dominated by researchers within TDDFT, with Dr. Xiaosong Li and coworkers
having made notable contributions. Thirdly, implementing a finite magnetic field
is made possible by researchers including Dr. Erik Tellgren, Prof. Trygve Helgaker,
Prof. Stella Stopkowicz and Assoc. Prof. Andrew Teale. These three fields have
all been highly relevant for the work in this thesis, and the literature of each will
be presented. Chapter 3 introduces the papers and the main findings, with a focus
on how they relate to the overarching theme of this dissertation, to each other,
and to the research objectives. My contributions will also be explicitly highlighted.
The fulfillment of the research objectives will be assessed in Chapter 4, in addition
to discussions of future work.
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Chapter 2

Literature and previous research

2.1 Coupled-cluster theory

Coupled-cluster theory, in conjunction with a suitable basis set, embodies almost
all the characteristics of the exact wave function that Molecular Electronic-
Structure Theory [4] defines as desirable. It provides an approximate wavefunction
that is square-integrable, antisymmetric, size-extensive, it can be made gauge-
invariant, and it is equivalent to the exact solution with the given basis set when
the cluster operator is untruncated. Although the theory is not variational, it can
be derived from bivariational principles. Consequently, the exact ground state is
not the upper limit to the coupled cluster ground state, it does however allow for
adding degrees of freedom to the bivariatoinal ansätze in the same manner as for
variational methods.

This section will provide a streamlined account of the development of coupled-
cluster theory, focusing only on contributions that directly relate to the time-
domain TDCC methods developed and explored in this thesis. With that said,
I would like to acknowledge the extensive development of alternative variants
of coupled-cluster theory including coupled-cluster response-theory [5, 6] and
equation-of-motion coupled-cluster (EOM-CC) theory [19–26].

2.1.1 Coupled-cluster equations

Coupled-cluster theory was originally developed in nuclear physics by Coester and
Kümmel [27, 28] and was introduced to computational chemistry by Čížek and
Paldus [29–31], among others. The wavefunction ansatz was constructed as the
exponential of a linear combination of excitation operators acting on a reference
determinant

|Ψ〉 = eT̂ |Φ〉 = eT̂1+T̂2+T̂3+··· |Φ〉 . (2.1)
The cluster operator T̂n

T̂n =
∑
µn

τµnX̂µn , (2.2)

parameterized by the cluster amplitudes τµn was defined as the sum of all possible
n-electron (n-rank) excitations from the reference Hartree–Fock determinant,

X̂µn |Φ〉 = |Φµn〉 . (2.3)
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Chapter 2. Literature and previous research

The naming convention in coupled-cluster theory is based on the electron-ranks
included in the approximation [32], —i.e. the coupled-cluster singles and doubles
(CCSD) is obtained by truncating after double excitations n = 2, and the coupled-
cluster singles, doubles, and triples (CCSDT) is obtained by truncating after triple
excitations n = 3.

A major advantage of coupled-cluster theory is that the coupled-cluster ansatz
leads to size-consistency being preserved even when the cluster operator is
truncated. The power series expansion of the exponential ansatz eT̂ = ∑∞

k=0
1
k! T̂

k,
however, leads to the variational solution, constructed by minimizing the energy
expression

E = 〈Φ| (e
T̂ )†Ĥ(eT̂ ) |Φ〉

〈Φ|(eT̂ )†(eT̂ )|Φ〉
(2.4)

not terminating until the N -electron limit has been reached. Instead, Coester and
Kümmel used a projection technique for obtaining equations for the energy and
amplitudes:

E = 〈Φ| e−T̂ ĤeT̂ |Φ〉 , (2.5)
0 = 〈Φµn| e−T̂ ĤeT̂ |Φ〉 . (2.6)

When the cluster operator was truncated (after an excitation rank n), one equation
was included per µn, giving a set of nonlinear amplitude equations that could then
be solved iteratively.

2.1.2 Time-dependent coupled-cluster theory

A time-dependent coupled-cluster theory was introduced by Monkhorst [33],
and Dalgaard and Monkhorst [34] for calculating dynamic first-order response
properties. The TDCC theory was later developed for dynamics by Hoodbhoy
and Negele [35, 36], and Schönhammer and Gunnarsson [37].

For variational methods, the Hellmann-Feynman theorem allows the calculation
of first-order response properties with

〈Â〉 = d

dε

〈Ψ| Ĥ + εÂ |Ψ〉
〈Ψ|Ψ〉

∣∣∣∣∣
ε=0

= 〈Ψ| Â |Ψ〉
〈Ψ|Ψ〉 . (2.7)

However, in coupled-cluster theory, the ground state is not a stationary point of
the energy functional, making Eq. (2.7) inapplicable.

To address this, Arponen [38] proposed a bivariational framework that by
definition adhered to the Hellmann-Feynman theorem. In this framework, the bra
and ket were treated as independent variables, parameterized with independent
operators. The |Ψ(t)〉 was the standard Coester and Kümmel ket-state. The
bra-state:

〈Ψ̃(t)| = 〈Φ̃(t)| eΛ̂(t)e−T̂ (t), Λ̂n(t) =
∑
µn

λµn(t)Ŷµn , (2.8)
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2.1. Coupled-cluster theory

was parametrized by both the bra cluster operator Λ̂(t) and the −T̂ (t) cluster
operator originating from the similarity transformation of the Schrödinger equation
in Eq. (2.5).

Arponen demonstrated the feasibility of deriving both the time-independent
and time-dependent equations using bivariational principles. The stationary points
of the bivariational expectation value functional,

E [〈Ψ̃| , |Ψ〉] = 〈Ψ̃| Ĥ |Ψ〉
〈Ψ̃|Ψ〉

, (2.9)

were were shown to be equivalent to the left and right eigenvector equations

E |Ψ〉 = Ĥ |Ψ〉 , 〈Ψ̃| Ĥ = E 〈Ψ̃| , (2.10)

which are the time-independent Schrödinger equation and its dual, respectively. In
a similar vein, Arponen determined that the stationary conditions of a bivariational
action-functional,

S[Ψ̃(t),Ψ(t)] =
∫ T

0
Ldt =

∫ T

0
〈Ψ̃(t)| i d

dt
− Ĥ(t) |Ψ(t)〉 dt, (2.11)

yielded the time-dependent Schrödinger equation and its complex conjugate,

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , −i~ ∂

∂t
〈Ψ̃(t)| = 〈Ψ̃(t)| Ĥ. (2.12)

These formulations satisfied the time-dependent Hellmann-Feynman theorem, and
expectation values could thus be calculated with the usual formula,

〈Â〉 (t) = 〈Ψ̃(t)| Â |Ψ(t)〉 . (2.13)

Arponen and coworkers [39–41] went on to explore the connection between the
bivariational action-functional (2.11) and classical Hamiltonian mechanics. Either
the bra and ket states S[Ψ̃(t),Ψ(t)] or the cluster amplitudes S[λ, τ ] could be used
as canonical variables: The bivariational action-functional in terms of the cluster
amplitudes was given by

S[λ, τ ] =
∫ T

0
Ldt =

∫ T

0
iλ · τ̇ − 〈Ψ(τ, λ)|Ĥ|Ψ(τ)〉 dt. (2.14)

This form allowed the equations of motion to be found with the Euler-Lagrange
equation,

∂L
∂zµn

= d

dt

∂L
∂żµn

, (2.15)

with zµn representing the collection of all independent variations of the
wavefunction parameters: These equations are much simpler to evaluate than
procedures employing projections techniques. Using H(τ, λ) = 〈Ψ(τ, λ)|Ĥ|Ψ(τ)〉
as a short-hand, the equations of motion were evaluated to [42],

iτ̇ = ∂H
∂λνn

, −iλ̇ = ∂H
∂τνn

. (2.16)
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Chapter 2. Literature and previous research

Eqs (2.16) constitute classical (complex) Hamilton’s equations of motions.
Consequently, they evolve in time as symplectic transformations. This makes
it possible to use symplectic integrators developed for exact quantum mechanics
known for their capability to conserve physical properties with high precision.

The exponential eΛ̂(t), referred to as extended coupled cluster [39, 43, 44],
was not widely adapted in quantum chemistry, due to the complexity of its
implementation: The working equations proved to be computationally expensive,
without offering improvements in describing dynamic electron correlation. The
form that prevailed was a linear parametrization (1 + Λ), introduced by Helgaker
and Jørgensen [45, 46], independently of Arponen’s bivariational framework.
Instead, they performed a constrained optimization of the coupled-cluster
functional,

L(τ, λ) = 〈Φ| e−T̂ ĤeT̂ |Φ〉+
∑
µn

λµn 〈Φµn| e−T̂ ĤeT̂ |Φ〉 , (2.17)

giving a second set of parameters through the Lagrangian multipliers λµn .
With coupled-cluster ansätze that fulfilled the Hellmann-Feynman theorem

established, Koch and Jørgensen [47, 48] derived equations of motion for the
wavefunction parameters using projection techniques, albeit for the development
of coupled-cluster response theory, where the time-dependence was solved order
for order in the frequency-domain [49]

iτ̇0(t) = 〈Φ̃0|e−T̂ (t)Ĥ(t)eT̂ (t)|Φ0〉 , iτ̇µn(t) = 〈Φ̃µn|e−T̂ (t)Ĥ(t)eT̂ (t)|Φ0〉 ,
iλ̇0(t) = 0, iλ̇µn(t) = −〈Ψ̃(t)|[Ĥ(t), X̂µn ]|Ψ(t)〉 . (2.18)

The τ0(t) amplitude is seen to be decoupled from the other amplitudes, and
therefore acts as a phase factor. The λ0 amplitude is time-independent and is fixed
to 〈Ψ̃|Ψ〉 = 1 in order to ensure normalization. These amplitudes can be formally
eliminated but the phase carries additional information that may be useful.

Linear-response coupled-cluster theory was mostly successful, but observables
where found to exhibit an unphysical gauge-origin dependence when magnetic
fields where introduced into the Hamiltonian, even at the complete basis set limit.
Pedersen and Koch [50] demonstrated that gauge-origin invariance was reinstated
when the orbitals were fully optimized. Specifically, the orbital-optimized coupled-
cluster (OCC) [51–53], where the single excitation operator was replaced by a
Brueckner-type unitary rotation operator eκ̂,

κ̂ = −κ̂† =
∑
µ1

(κµ1X̂µ1 − κ̂∗µ1X̂
†
µ1), (2.19)

was shown to be gauge-origin invariant.
The non-orthogonal orbital-optimized coupled-cluster (NOCC) [54] was also

proposed and implemented in order reduce the dimension of the eigenvalue problem
used for determining the excitation energies. The NOCC methods were identical
to the OCC methods, apart from a loosening of the κ̂ = −κ̂† constraint. While
the OCC method was later found to not converge to full configuration interaction
(FCI) at the untruncated limit [55] for systems larger than 2 electrons, the NOCC
method was found to have this property [56].
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2.1. Coupled-cluster theory

2.1.3 Time-domain time-dependent coupled-cluster theory

Up until 2011, TDCC theory had mainly been developed within response theory.
It was again considered for studying time-resolved dynamics when Huber and
Klamroth [13] presented an implementation of time-dependent coupled-cluster
singles and doubles (TDCCSD) that propagated the equations of motion of the
τ -amplitudes with the explicit fourth order Runge–Kutta (RK4) algorithm. The
implementation, however, did not propagate the λ-amplitudes. Furthermore, it
was found that simulations become numerically unstable in strong external fields.

A year later, Kvaal [57] presented a time-domain orbital-adapted time-
dependent coupled-cluster (OATDCC) theory, based on Arponen’s bivariational
framework. The OATDCC theory encompassed time-varying bi-orthogonal
orbitals Φ(t) and Φ̃(t) as additional degrees of freedom. The equations of motion
were found by requiring an action functional to be stationary with respect to
all variations of the wavefunction parameters. The Euler-Lagrange equations
corresponding to amplitude variations alone read

iτ̇µn(t) = 〈Φ0|Ŷ µne−T̂ (t)(Ĥ(t)− iD̂0)eT̂ (t)|Φ0〉 , (2.20)
−iλ̇µn(t) = 〈Φ0|Λ̂(t)e−T̂ (t)[Ĥ(t)− iD̂0, X̂µn ]eT̂ (t)|Φ0〉 . (2.21)

These were equivalent to the standard TDCC equations of motion, found by Koch
and Jørgensen [47, 48], with an additional operator,

D̂0 =
∑
pq

〈φ̃p|φ̇q〉a†pã†q, (2.22)

emerging from the time-dependence of the orbitals. Hence, the standard TDCC
method could be derived using the bivariational framework.

The OATDCC theory provided polynomially scaling methods when the
coupled-cluster ansätze are nontrivially truncated. Within the bivariational
framework [58], it was additionally possible to introduce active and frozen
subspaces into the OATDCC theory. When the entire space is defined as active, the
OATDCC methods became equivalent to time-dependent non-orthogonal orbital-
optimized coupled-cluster (TDNOCC) [54]. Furthermore, the theory reduces
to time-dependent Hartree–Fock (TDHF) at the highest level of truncation,
and becomes identical to multiconfigurational time-dependent Hartree–Fock
(MCTDHF) [59] at the untruncated limit.

Inspired by the OATDCC theory, Sato and coworkers [60–64] developed
a time-domain time-dependent formulation of OCC theory [51–53]. As with
the OATDCC framework, the time-dependent orbital-optimized coupled-cluster
(TDOCC) implementation allowed for the utilization of frozen, dynamic, and
active orbitals. Coupled with a finite-element discrete variable representation
(FEDVR) basis, the TDOCC method was capable of describing the electron
continuum. This enhancement facilitated the simulation of strong field and
ionization dynamics. As illustrated by Sato et al. [60], TDOCC simulations
could be employed to calculate both first and second ionization probabilities and
high harmonic generation spectra. Despite the TDOCC model lacking formal
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convergence, it was observed to be virtually indistinguishable from FCI for the
cases studied.

The connection to classical Hamiltonian mechanics motivated Pedersen and
Kvaal [65] to recommend using a symplectic integrator for integrating the equations
of motion of the coupled-cluster amplitudes. This would facilitate proper
conservation of physical properties, also for truncated cluster operators. An
implementation of a time-domain TDCCSD method, evolved with the symplectic
s-stage Gauss–Legendre integrator [66] demonstrated that energy was conserved,
even after extended simulation periods. Furthermore, the intuition gleaned from
the bivariational framework of two dual states being required to define a single
coupled-cluster state, motivated the definition of a two-component state vector,

|S〉〉 = 1√
2

(
|Ψ〉
|Ψ̃〉

)
. (2.23)

An indefinite inner product, and an autocorrelation function were then defined for
the state vector. The indefinite inner product was given as

〈〈S1|S2〉〉 ≡
1
2
(
〈Ψ̃1|Ψ2〉+ 〈Ψ1|Ψ̃2〉

)
. (2.24)

This form of the state vector gave expectation values with the same expression
that was proposed in Ref. [42] within response theory

〈〈S|P̂ |S〉〉 = 1
2 〈Ψ̃| P̂ |Ψ〉+ 1

2 〈Ψ̃| P̂
† |Ψ〉∗ . (2.25)

The autocorrelation function, giving the overlap between states at different
times t′ and t, was defined as

A(t′, t) ≡ 〈〈S(t′)|S(t)〉〉. (2.26)

The autocorrelation function was used for generating dipole spectra, by taking
the Fourier transform of A(t1, t), where t > t1 is the time after the system has
interacted with a laser pulse. The autocorrelation function A(0, t) quantifies the
probability amplitude of a system staying in its ground state at a subsequent time
t > 0. It was utilized to probe the source of the numerical instabilities reported
in Ref. [13] during high intensity laser-driven dynamics. The instabilities were
reproduced and were found to coincide with ground state depletion and a rapid
increase in the τ -amplitudes. These findings supported the following mechanism
for the numerical stabilities: As the reference determinant probability approaches
zero, the amplitudes need to steeply increase in order to ensure the intermediate
normalization e−τ0(t)〈Φ̃|Ψ(t)〉 = 1, imposed on the system holds. This, however,
leads to challenging integrator conditions.

Typically, the laser pulse is handled semi-classically as a one-electron operator.
Pedersen and Kvaal [65] therefore argued that dynamical orbital methods such
as TDOCC, TDNOCC , and OATDCC should be capable of capturing the main
effects of the laser pulse, and provide stable conditions for the integrator.

This led Kristiansen et al. to implement the time-domain TDNOCC
method [67], an implementation that would later be part of the HyQD [68]

10
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software suite. In order to quantify the dynamic orbitals’ ability to capture the
effects, the overlap between the reference state vector,

|R〉〉 = 1√
2

(
|Φ0〉
|Φ̃0〉

)
, (2.27)

and the state vector was monitored using a reference weight

W = |〈〈S(t)|R(t)〉〉|2. (2.28)

The large oscillation in the amplitudes, accompanied with W approaching
zero, and subsequent failure of the simulation was reproduced when using
the static TDCCSD method subject to a high-intensity laser pulse. The
dynamic orbitals of time-dependent non-orthogonal orbital-optimized coupled-
cluster doubles (TDNOCCD) were found to successfully capture the laser pulse
effects, with a reference weight that remained close to one for laser fields with field
strengths of 1 a.u. However, upon application of an adequately high field strength,
the TDNOCCD method was destabilized, accompanied by an unphysical rise in
the reference weight above one.

Electron dynamics in exact quantum mechanics is commonly analyzed by
considering the populations of stationary states. Pedersen et al. defined the time-
resolved populations pn in terms of the expectation value of the indefinite inner
product [69],

pn(t) = 〈〈S(t)|P̂n|S(t)〉〉. (2.29)

Where P̂n is a projection operator, defined as

P̂n = |En〉〉〈〈En|, (2.30)

and En are a set of orthonormal excitation state-vectors. The process of defining
excitation states for approximate wavefunctions carries inherent ambiguities. This
is particularly relevant in the context of coupled-cluster theory, as two prevalent
approaches can be used: equation-of-motion coupled-cluster theory and linear
response coupled-cluster theory. Projection operators based on both approaches
were derived, implemented, and shown to conserve the stationary state populations
over time. The study of excited-state Rabi oscillation, chirped lasers, and the
attribution of features within the transient spectra (computed by Skeidsvoll et
al. [70]) has been conducted with the use of stationary-state populations. Despite
the EOM-CC projection operator lacking formal size-intensity, the results obtained
from the two methods were largely similar. However, minor spurious effects were
observed with the LR-CC projection operator, leading to the recommendation of
constructing the stationary-state projection operator from EOM-CC excited states.

Given the computationally intensive nature of coupled-cluster methods, it
is natural to consider time-saving approximations. Sato and coworkers have
implemented a range of TDOCC approximative methods. The cheapest method,
the time-dependent second-order Møller–Plesset (TDOMP2) method [61, 71] scales
as O(K5) with respect to the number of basis functions K. This method is
particularly efficient as the right and left hand amplitude coefficients are each
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others complex conjugate (τabij = λij∗ab ), making it sufficient to only solve for the
right-hand side. Despite being a perturbative method, explicit time-dependence
is achieved through the time-dependent orbitals, granting stability even when
simulating strong laser-electron interactions.

The favorable scaling of TDOMP2 makes it a particularly appealing method,
but it has not yet been applied to the description of linear and nonlinear optical
properties. Although the development of time-domain time-dependent coupled-
cluster methods has primarily focused on dynamics outside of the perturbation
region this far, there are clear advantages in using time-domain methods for
simulating weak-field dynamics. These advantages are particularly relevant for
the evaluation and extraction of nonlinear response properties which will be the
topic of the next two sections.
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2.2 Evaluating magnetic and electric properties

The incorporation of the electromagnetic field into the Hamiltonian for studying
magneto-optical properties introduces a new layer of computational complexity.
For both wavefunction methods and DFT methods, the Hamiltonian becomes
complex. Additionally, efforts must be undertaken to ensure gauge invariance.
Beyond these computational aspects, it is also necessary to expand DFT to include
an additional basic variable, supplementing the charge density.

2.2.1 London orbitals

The time-dependent non-relativistic closed-shell electronic Hamiltonian Ĥ0 =
1
2 p̂ + W , where p̂ = −i∇ is the momentum operator and W represents all
Coulomb interactions, may be coupled to a classical electromagnetic field through
the interaction of a vector potential A(r, t) and a scalar potential φ(r, t) as

Ĥ(t) = 1
2(p̂ + A(r, t))2 +W − φ(r, t). (2.31)

The gauge freedom of a classical electric and magnetic field allows for a Coulomb
gauge fixing condition to be applied

∇ ·A(r) = 0, (2.32)

simplifying Eq. (2.31) to

Ĥ(t) = Ĥ0 + p̂ ·A(r, t) + 1
2A(r, t)2 − φ(r, t). (2.33)

However, this still leaves residual gauge freedom that can be expressed with gauge
transformations of the form

A′(r, t) = A(r, t) +∇f, ∇2f = 0. (2.34)

For the action of the Lagrangian L ≡ 〈Ψ̃(t)|i ∂
∂t
− Ĥ(t)|Ψ(t)〉, and thereby all

the observables to remain invariant,

〈Ψ̃(t)|i ∂
∂t
− Ĥ(t)|Ψ(t)〉 = 〈Ψ̃′(t)|i ∂

∂t
− Ĥ ′(t)|Ψ′(t)〉 , (2.35)

the bivariational wavefunction undergoes a compensating unitary local phase
transformation,

Ψ′(t) = e−ifΨ(t), Ψ̃′(t) = eif Ψ̃(t), (2.36)

that introduces rapid oscillations into the wavefunction.
In the context of approximate wavefunctions, the inability of basis set

parameters to fully describe e−if(r,t) may lead to an unphysical gauge variance.
Epstein [72] demonstrated that to ensure gauge invariance when modeling a
wavefunction within an electromagnetic field, it is essential to employ a variational
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wavefunction method in conjunction with a basis set at the basis set limit.
However, the oscillations introduced into the wavefunction by the magnetic field
can cause slow basis set convergence when using conventional Gaussian type
orbitals.

In the specific case of a static magnetic field, gauge origin invariance can be
guaranteed through the use of a specific class of orbitals known as London atomic
orbitals (LAOs) [73]. The static magnetic field can be described by an external
vector-potential in a cylindrical gauge with the origin placed at O,

AO(r) = 1
2B× (r−O). (2.37)

Defining rO = r−O, the closed-shell Hamiltonian of Eq. (2.31) can be expressed
in terms of the magnetic field B,

Ĥ(t) = Ĥ0 + 1
2 ÎO ·B + 1

8[B2r2
O − (rO ·B)2],

where
ÎO = irO ×∇ (2.38)

is the canonical angular momentum about O.
The origin of the magnetic vector potential depends on the choice of the

coordinate system and a shift of the vector potential origin by G can be expressed
as the gauge transformation

AG(r) = AO(r) +∇f, f = −AO(G) · r. (2.39)

The exact wavefunction is therefore transformed as

Ψ′ = ei
1
2 B×(G−O)·rΨ. (2.40)

The LAOs emulate this by including the phase factor into the definition of the
atomic orbitals:

ω(B,G,C) = ei
1
2 B×(G−C)·rχ(rC). (2.41)

The χ(rC) is the standard atomic orbital, usually taken as a spherical Gaussian
type orbital, centered at C, and the attached field-dependent plane wave
ei

1
2 B×(G−C)·r moves the global gauge-origin O to the center of each atomic orbital,

giving local gauge-origins. In addition to guaranteeing gauge-origin invariance, this
hybrid atomic orbital leads to rapid basis-set convergence compared to standard
Gaussian type orbitals as the bulk of the effect of the magnetic field is incorporated
at the basis set level [74].

LAOs were incorporated into the Hartree–Fock method for magnetic property
calculation using perturbation theory in 1972 [75]. An implementation employing
efficient analytical derivative techniques was introduced in 1990 [76], greatly
contributing to the establishment of LAOs as the standard for ab initio
methods [77] for the calculations of magnetic and magneto-optical properties
within response theory [78].
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2.2.2 Finite-field methods with London orbitals

For magnetic fields of field strengths beyond the perturbative regime, finite-field
methods may be employed instead. In perturbation-based theories, it was not
necessary to compute molecular integrals over LAOs since the analytical derivatives
were evaluated at zero magnetic field, replacing the plane-wave gauge factors with
multipoles. However, for finite-field methods, the computation of integrals over
LAOs becomes necessary.

In 2008, Tellgren and coworkers developed the London program [79], capable
of evaluating integrals over LAOs using the McMurchie–Davidson scheme [80]
for both uniform and non-uniform [81] magnetic fields. This advancement
facilitated the description of all molecular orientations in a finite magnetic fields.
Additionally, the derivatives of integrals over LAOs were implemented in the
London program, enabling exploration of geometric changes as a function of
the magnetic field [82]. Initial implementations were presented for the Hartree–
Fock [83] and full configuration interaction methods [84]. This advancement
allowed the demonstration of closed-shell paramagnetic systems transitioning to a
diamagnetic state at sufficiently high magnetic fields [85], and the discovery of a
new ’strong’ type of bond — the perpendicular paramagnetic bonding mechanism
— alongside the well-known ionic and covalent bonds.

Both the standard DFT and a CDFT [86–88] implementation was introduced
for the first time for finite fields in London [89] using the vorticity-dependent
exchange-correlation functionals on the form suggested by Vignale and Rasolt [86].

CDFT is formally more correct than standard DFT. Furthermore, benchmark-
ing of magnetizabilities, rotational g-tensors, nuclear shielding constants, and spin-
rotation constants [90, 91] yielded subpar results for DFT compared to Hartree–
Fock and coupled-cluster theory. It was found that the neglected current-density
contributions to magnetic properties with standard DFT were significant: Even
with constraints applied to Kohn–Sham calculations to achieve the same density
as a coupled-cluster benchmark, the description of magnetic properties was still
deficient. However, a comparison of the implemented CDFT with FCI calcula-
tions indicated that the inclusion of paramagnetic current densities dependence
didn’t substantially improve upon DFT. The current-dependent functionals used
were parameterizations of a uniform electron gas. Although these functionals were
modified to yield an electron density that diminished with distance, more sophist-
icated functionals were deemed necessary.

Finding appropriate CDFT functionals requires benchmarks, and only Hartree–
Fock method and the exponentially scaling FCI method were implemented with
LAOs so far. This motivated the implementation of finite-field coupled-cluster
theory at the CCSD and coupled-cluster singles, doubles and perturbative triples
(CCSD(T)) levels [92, 93]. The implementation was complex throughout, and the
operations on the two-electron integrals did not rely on permutation symmetries.
The coupled-cluster implementation was utilized to explore the impact of electron-
correlation effects in atoms and molecules in the presence of strong magnetic fields,
which proved to be significant. It was discovered that strong magnetic fields
required larger basis sets, particularly when states of high angular momentum
were important for describing the properties of interest.
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The implementation of finite-field coupled-cluster methods in the London
software allowed for the accurate description of dynamic electron correlation with
polynomial scaling. However, systems that exhibited multireference character
cannot be addressed using standard coupled-cluster methods. An implementation
of equation-of-motion coupled-cluster theory was introduced with the Qcumbre
software [94] allowing for the description of certain multireference states within a
single reference framework [95]. This software suite included the standard EOM-
CC at both the CCSD [96] and CCSDT levels [97], enabling the computation of
excitation spectra in magnetic fields with high precision. Additionally, variants
were developed that had the capability to flip the spin of the excited electron [96],
ionize an electron, and investigate electron attachment. The software was also
expanded to facilitate the computation of properties using linear response at the
CCSD level [98].

The finite-field coupled-cluster methods allowed Furness et al. [99] to
benchmark CDFT functionals. The meta-generalized gradient approximation
(mGGA) functionals B98 [100], and TPSS [101, 102] were altered to include current
dependence utilizing the modification of the kinetic energy density suggested by
Dobson [103] and later used by Becke [104] and Bates and Furche [105]

τ(r)→ τ̃(r) =
occ∑
i

[∇ϕi(r)]∗ · [∇ϕi(r)]− |jp(r)|2
ρ(r) , (2.42)

giving cB98 and cTPSS. Furness et al. implemented these functionals, along
with the hybrid TPSSh functional [106], which was composed of 10% orbital-
dependent exchange. They then conducted benchmarking against CCSD(T). The
inclusion of current dependence was found to improve the description of ground
state systems in strong magnetic fields, while offering only modest improvements
for low to moderate magnetic fields. The cTPSS, cTPSSh, and a range-
separated variant denoted cTPSSrsh [107] were also applied to nuclear shielding
constants [108], where, as in Ref. [99], the cTPSS-based functionals yielded only
modest improvements.

Beyond the development of CDFT, numerical advances for more efficient
calculation were presented in the Quest program [79]. While the integration
over LAOs was originally done with the McMurchie-Davidson (MD) scheme, Irons
et al. [109] investigated the efficiency of the most popular integral schemes for
hybrid LAO-plane wave basis functions: McMurchie-Davidson, Head–Gordon–
Pople [110], and Rys quadrature [111]. A procedure for improving the integral
performance was implemented where the best algorithm was chosen based on the
angular momentum of the basis functions. Additionally, the scheme for finding
gradients for LAOs was also improved [112].

2.2.3 Time-domain finite-field methods

A time-dependent electromagnetic pulse can be introduced into the Hamiltonian
given in Eq. (2.31), which already includes an interaction with a static magnetic
field. The Hamiltonian can then separated into a time-independent and time-
dependent part

Ĥ(t) = Ĥ + V̂ (t). (2.43)
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The time-independent Hamiltonian Ĥ describes the interaction with the static
magnetic field described by the vector potential AO(r)

Ĥ = Ĥ0 + AO(r) · p̂ + 1
2A

2
O(r), (2.44)

and the time-dependent interaction operator V̂ (t)

V̂ (t) = [p̂ + AO(r)] ·A(r, t) + 1
2A

2(r, t), (2.45)

describes the interaction with the dynamic electromagnetic pulse A(r, t), coupled
to the vector potential of the static field.

Simplifications can be achieved by invoking the dipole approximation, A(r, t) ≈
A(0, t) = A(t). The interaction operator V̂ (t) then becomes independent of the
static magnetic field. This allows the static magnetic field to be treated with
the procedure used to obtain the reference determinant. The interaction with the
time-dependent laser is treated separately with, for example, a time-dependent
wavefunction method.

Finite magnetic fields with LAOs were recently implemented for time-domain
TDHF and time-domain TDDFT in the Chronus Quantum (ChronusQ) software
package [113]. The time-domain TDDFT implementation was used in conjunction
with LAOs to obtain magnetic circular dichroism spectra in Ref. [114]. The
generalized gradient approximation of magnetic field DFT [115–117] was used,
and although the exchange-correlation functional did not explicitly depend on
the magnetic field, the density functional implicitly depends on the magnetic
field, through the perturbation of the electron density and its derivatives.
Strong magnetic fields were implemented for time-domain time-dependent current-
dependent density-functional theory (TDCDFT) [118] in the Quest program.
This implementation included field-dependent terms in the mGGA exchange-
correlation functionals: cTPSS, cTPSSh and cTPSSrsh.

The finite-field approach is mostly straightforward to implement for time-
domain TDCC theory, for example the formal TDCC method is left unchanged.
The practical considerations of such an implementation is described in section
3.3. The implementation would lead to more comprehensive capturing of electron
correlation compared to the existing time-domain TDHF and TDDFT methods
and could serve as a benchmark for these.

Additionally, while the dipole approximation is applicable in most scenarios,
it might not be suitable for absorption spectra in the X-ray region, given
the high frequencies of the external laser involved. Consequently, simulations
predicated with the dipole approximation are unable to compute properties that
are contingent on beyond-dipole effects, such as anisotropic circular dichroism.
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2.3 Extraction of linear and nonlinear optical proper-
ties

Time-domain methods find application in the computation of both linear as well
as nonlinear optical properties. The objective of this section is to provide an
overview of the development in computing dynamic optical properties starting
from the static optical properties, tracing its evolution chronologically through
key papers.

2.3.1 Static optical properties

The approaches for computing dynamic properties within electronic response
theory are mainly based on the groundwork laid for static properties. In the static
case, the molecule’s dipole moment can be expressed as a power series expansion
in the electric field strength:

µi = µ0
i + µ

(1)
ij Ej + µ

(2)
ijkEjEk + µ

(3)
ijklEjEkEl + · · · . (2.46)

Here, µ0
i represents the permanent dipole moment, and the subscripts i, j, k, and

l represent Cartesian coordinates i, j, k, l ∈ {x, y, z}, with summation over terms
with repeated subscripts implied. The first order response function in Eq. (2.46)
is the static polarizability tensor (α), the second order response function is the
static first hyperpolarizability tensor (β), the third order response is the static
second hyperpolarizability tensor (γ), and so on. The computation of static
nonlinear properties relies on two primary categories of methods: perturbation-
theory methods, and the finite-field methods, with the latter initially introduced by
Cohen and Roothan [119] for computing static polarizabilities with Hartree–Fock
theory.

In the finite-field method, the electronic system interacts with a finite electric
field of field strength Ej by means of an interaction operator, given in the length
gauge as V̂ = Ej · µ̂i. The dipole moment, traditionally obtained from the energy
with second-order perturbation theory, was expressed by Cohen and Roothan [119]
as the expectation value of the dipole operator

µi = 〈ψ|µ̂i|ψ〉 . (2.47)

For the case where the system did not possess a permanent dipole moment, the
polarizability was identified from Eq. (2.46) as

αij = µi
Ej
. (2.48)

where the higher order terms in Eq. 2.46 were considered negligible.
The finite-field method was extended to compute higher-order responses by

Zyss [120]. In Zyss’ work, higher-order responses were obtained by numerically
differentiating the dipole moment with respect to the field strengths using finite
differences. To eliminate the second and fourth order responses functions µ(2)

ijk

and µ(4)
ijklm, symmetric finite difference expressions, with error terms on the order

O(E2
j ), were employed.
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2.3.2 Dynamic linear optical properties

The direct application of the finite-field method to dynamic fields posed a
challenge. Consequently, alternative approaches based on the the sum-over-
states formalism [121, 122], were developed for computing frequency-dependent
polarizabilities and hyperpolarizabilities. To avoid explicit summation over excited
states, the modified Sternheimer method [123–125] or response theory, initially
introduced by Olsen and Jorgensen [49], can be employed. Although response
theory is a powerful tool for calculating response functions, it becomes increasingly
complex as higher-order responses are considered. Moreover, these perturbation
theory-based methods in the frequency domain may exhibit divergence near
resonant frequencies of the system.

Yabana and Bertsch, who had backgrounds from nuclear physics, where time-
domain methods were commonly used, proposed the combination of time-domain
methods with the original finite-difference approach to determine the dynamic
polarizability [126–129]. By employing an external electric field of sufficiently low
strength to induce only linear responses, the time-dependent analogue of Eq. (2.46)
can be truncated to contain a single dynamic term. The relation between the
dipole moment µi(t) and the driving electric field Ej(t) in its most general form
for a purely linear response is then given by

µi(t) = µ0
i +

∫ ∞
−∞

µ
(1)
ij (t, t1)Ej(t1)dt1. (2.49)

By imposing time-invariance and causality this relation is simplified, leading the
first order response function µ(1)

ij to depend solely on the time difference between
t and t1

µi(t) = µ0
i +

∫ ∞
−∞

µ
(1)
ij (t− t1)Ej(t1)dt1. (2.50)

This results in a second term consisting of a convolution of the electric field and
the response function. By performing a Fourier transom of Eq. 2.50,

F
[
µi(t)− µ0

i

]
= αij(ω)Ẽj(ω). (2.51)

the dynamic polarizabilities, defined as a frequency-dependent response function,
can be extracted

αij(ω) = F [(µi(t)− µ(0)
i )e−γt]/Ẽj(ω), , (2.52)

where a small dampening factor exp(−γt) was added to the signal in order to
remove artifacts originating from the abrupt cut of the signal at the end of the
simulation.

2.3.3 Dynamic nonlinear optical properties

Even though one of the advantages of time-domain methods is its ability
to simulate all nonlinear responses of a system to electromagnetic radiation
simultaneously, only the computation of the dynamic polarizability had so far
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been considered. The advantage of obtaining all orders of response in one signal,
comes with the challenge of how to separate them. The explicit time dependence of
the electric field introduces complicated expressions for the nonlinear relations [1,
130]

µi(t) = µ0
i +

∫ ∞
−∞

µ
(1)
ij (t− t1)Ej(t1)dt1 (2.53)

+
∫ ∫ ∞

−∞
µ

(2)
ijk(t− t1, t− t2)Ej(t1)Ek(t2)dt1dt2

+
∫ ∫ ∫ ∞

−∞
µ

(3)
ijkl(t− t1, t− t2, t− t3)Ej(t1)Ek(t2)El(t3)dt1dt2dt3

+ · · ·

This led to finite-difference methods long being considered inappropriate for
computing dynamic properties. Furthermore, when directly converting the
expression for the dynamic dipole moment from the time domain to the frequency
domain, using notation adapted from response theory with ω(n) = ω1+ω2+· · ·+ωn,

µi(ω) = δ(µ0
i ) + αij(ω)Ẽj(ω) (2.54)

+ 1
2

∫∫ ∞
−∞

βijk(−ω(2);ω1, ω2)Ẽj(ω1)Ẽk(ω2)dω1dω2

+ 1
6

∫∫∫ ∞
−∞

γijkl(−ω(3);ω1, ω2, ω3)Ẽj(ω1)Ẽk(ω2)Ẽl(ω3)dω1dω2dω3

+ · · · ,

the higher-order response functions are convoluted with external fields. Con-
sequently, the frequency-dependent nonlinear optical properties cannot be ob-
tained by a simple Fourier transform of their time-domain counterparts.

When the interacting electromagnetic field is monochromatic, the first
hyperpolarizability tensor βijk(−ω(2);ω1, ω2) consists of a contribution at a
frequency twice the carrier frequency βijk(−2ω;ω, ω) and a contribution at
zero frequency βijk(0;ω,−ω). The prior describes the physical process of
second harmonic generation and will be denoted βSHG

ijk for short, the latter
describes the process of optical rectification and will be denoted βOR

ijk . The
second hyperpolarizability γijkl(−ω(3);ω1, ω2, ω3) consists of a contribution at a
frequency three times the carrier frequency γijkl(−3ω;ω, ω, ω) and a contribution
at the same frequency as the carrier frequency γijkl(−ω;ω, ω,−ω). The
γijkl(−3ω;ω, ω, ω) describes third harmonic generation, and will be denoted γTHG

ijkl ,
the γijkl(−ω;ω, ω,−ω) describes a degenerate four wave mixing, and will be
denoted γDFWM

ijkl .
In 2002, Tsolakidis et al. [131] made the initial attempt to develop a method

for computing nonlinear properties using time-domain simulations, focusing
specifically on the second hyperpolarizability. Their method was applicable to
electric fields on the form of a step function and for molecules not possessing a
first hyperpolarizability. Care had to be taken to ensure that the external field was
sufficiently strong so as to excite the polarizability and second hyperpolarizability,
but not so strong as to significantly excite higher-order responses. With a
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similar sentiment, Wang et al. [132] presented a method for extracting the
first hyperpolarizability. Their approach involved choosing an electric field that
selectively excited the first-order and second-order responses, corresponding to
the polarizability and first hyperpolarizability. The frequency-domain response
functions; α(ω), β(−2ω;ω, ω), and β(0;ω,−ω) occur at unique frequencies,
enabling their separation in the frequency domain. Both these methods, however,
rely on a careful choice of the electric field strength and are limited to the specific
hyperpolarizabilities for which they were developed.

A general approach for extracting higher perturbation was presented by
Takimoto et al. [133, 134]. They demonstrated that by decomposing the dynamic
electric field E(t) into a time-dependent part and the time-independent field
strength, Ej(t) = EjF (t), the finite-field method originally used for static electric
fields could be used also for separating dynamic nonlinear responses by taking
finite differences with respect to field strengths,

µi = µ0
i + Ej

∫ ∞
−∞

µ
(1)
ij (t− t1)F (t1)dt1 (2.55)

+ EjEk

∫∫ ∞
−∞

µ
(2)
ijk(t− t1, t− t2)F (t1)F (t2)dt1dt2

+ EjEkEl

∫∫∫ ∞
−∞

µ
(3)
ijkl(t− t1, t− t2, t− t3)F (t1)F (t2)F (t3)dt1dt2dt3 + · · · .

The polarizability and the SHG components of the first hyperpolarizability were
then computed using the quasi-monochromatic approximation. A monochromatic
wave with the carrier frequency ω, enveloped by a Gaussian function of bandwidth
δ, was chosen as the external field,

Ej(t) = Ej exp[−(t− tc)2δ2/2]sin(ωt). (2.56)

As the bandwidth approaches zero (δ → 0), the Fourier transform of the time-
domain signal becomes a Dirac delta function in frequency space. Using the
fact that nonlinear response functions vary slowly in the frequency domain, these
can be extracted from the integrals in Eq. (2.54). The first hyperpolarizability
components can thus be computed in a similar way as the polarizability, by Fourier
transforming both the signal and the electric field.

Although performing a Fourier transform is the obvious method for converting
the response functions from the time to frequency domain, it is computationally
expensive to propagate the Schrödinger equation for the length of time required
for adequate resolution, even when acceleration techniques such as filter-
diagonlization, used by Wang et al., is employed.

Ding et al. [135] proposed an alternative ramped continuous wave (RCW)
approach, that completely eliminates the need for Fourier transforms. By using
an envelope-free monochromatic electric field

Ej(t) = Ej cos(ωt), (2.57)

the Fourier transformations of the time-dependent response functions yield
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analytic solutions

µ
(1)
ij (t) = αij(−ω;ω) cos(ωt), (2.58a)

µ
(2)
ijk(t) = 1

4[βSHG
ijk (ω) cos(2ωt) + βOR

ijk (ω)], (2.58b)

µ
(3)
ijkl(t) = 1

24[γTHG
ijkl (ω) cos(3ωt) + 3γDFWM

ijkl (ω) cos(ωt)], (2.58c)

and the frequency-dependent response functions can be found by fitting the
analytic solution of Eqs. (2.58) to the time-domain response signal, typically with
a least-squares fitting procedure.

The relations in Eqs. (2.58) are only exact in the limit where the field has
been switched on for an infinite amount of time. If switched on abruptly, the
system will perturb too far from the ground state resulting in a superposition of
ground and excited states, the extracted polarizability and hyperpolarizabilities
will then correspond to a system of significant excited-state character. The
Gaussian envelope used by Takimoto et al. [133] to model an incoming pulse finite
in time had the dual function of ensuring a slow switching-on of the field. Ding
et al. instead suggested using a ramping phase to fill this requirement

F (t) =
{

t
tr

cos(ωt) 0 ≤ t < tr
cos(ωt) tr ≤ t ≤ ttot.

(2.59)

The ramping factor t
tr

delivers a linear increase in the field strength from 0
to tr, where tr denotes the time duration of the ramping phase. The method
was demonstrated by extracting nonlinear optical properties up to third order in
response. The polarizability and first hyperpolarizabilities were predicted with
a high degree of accuracy, the second hyperpolarizabilities, however, displayed a
high frequency noise that was attributed to higher order effects [9]. In addition to
the fitting scheme, the RCW approach introduced a finite-difference formula for
the diagonal components with an error term in the fourth order given by

µ
(1)
ij = 8∆−i (t, Ej)−∆−i (t, 2Ej)

12Ej
+O(E4

j ), (2.60a)

µ
(2)
ijj = 16∆+

i (t, Ej)−∆+
i (t, 2Ej)− 30µ0

i

24E2
j

+O(E4
j ), (2.60b)

µ
(3)
ijjj = −13∆−i (t, Ej) + 8∆−i (t, 2Ej)−∆−i (t, 3Ej)

48E3
j

+O(E4
j ), (2.60c)

where we have used the short hand

∆±i (t, Ej) ≡ µi(t, Ej)± µi(t,−Ej), (2.61)

for the sum/difference of the time-dependent dipole moments computed with
opposite polarization directions and same field strength Ej.

The RCW approach was later applied to configuration interaction theory by
Lestrange et al. [136]. In this work, the ramping time was increased from one
to five optical cycles, followed by four optical cycles of propagation, improving
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the accuracy of the computed second hyperpolarizabilities. The approach has
also been extended to allow for relativistic corrections in Ref. [137]. In the same
paper, the effect of the error term on the accuracy of the extracted first and
second hyperpolarizability was investigated. Computations using finite-difference
formulas with error of orders O(E2

j ), O(E4
j ), and O(E6

j ) were compared and it was
found that the accuracy of the second hyperpolarizability, which had the highest
sensitivity to the error term, had only a ≈ 0.3% improvement for the pNA molecule
by going from the O(E4

j ) to the O(E6
j ) finite-field equations.

Recently, Uemoto et al. [138] introduced an alternative finite-field based
method specifically designed for ultrashort pulsed light that uses an enveloped
monochromatic pulse

F (t) = sin2
(
πt

ttot

)
cos(ωt), 0 ≤ t ≤ ttot, (2.62)

where the shape of the envelope, in theory, can be freely chosen. The frequency-
dependent hyperpolarizability is assumed to slowly vary in frequency space, and
can therefore be taken out of the integrals of Eq. (2.54). So far the approach
is almost identical to the one presented by Takimoto et al. [133]. From here,
Uemoto et al. [138] suggests separating the individual frequencies constituting the
hyperpolarizabilities using Fourier filtration. Taking the first hyperpolarizability
as an example, the zero-frequency component can be isolated by eliminating the 2ω
peak from the Fourier spectrum. Generally, the Fourier filter is defined to exclude
all frequencies outside of a ±ω range centered around the frequency component
of interest kω. Subsequently, the signal is transformed back to the time domain
using an inverse Fourier transform.

µ(n)(t; kω) =
∫ −(k−1)ω

−(k+1)ω
µ̃(n)(ω′)e−iω′tdω′

+
∫ (k+1)ω

(k−1)ω
µ̃(n)(ω′)e−iω′tdω′. (2.63)

The same Fourier filtration is then applied to the electric field

F (t; kω) =
∫ −(k−1)ω

−(k+1)ω
F̃ (ω′)e−iω′tdω′

+
∫ (k+1)ω

(k−1)ω
F̃ (ω′)e−iω′tdω′, (2.64)

and the frequency-dependent response functions can then be obtained by finding
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the fraction of the Fourier-filtered field in the Fourier-filtered signal

βOR
ijj (ω) =

4µ(2)
ijj(t; 0)

[F (t; 0)]2 , (2.65a)

βSHG
ijj (ω) =

4µ(2)
ijj(t; 2ω)

[F (t; 2ω)]2 , (2.65b)

γDFWM
ijjj (ω) =

8µ(3)
ijjj(t;ω)

[F (t;ω)]3 , (2.65c)

γTHG
ijjj (ω) =

24µ(3)
ijjj(t; 3ω)

[F (t; 3ω)]3 . (2.65d)

In practice, the fraction of the Fourier-filtered signal in the Fourier-filtered field is
found by curve-fitting. This process ensures retrieval of the frequency-dependent
information embedded in the monochromatic pulse and thus hinges on a similar
argument as Ding et al.’s RCW approach.

Despite Uemoto et al. reintroducing the Fourier transform, which contradicts
Ding et al.’s initial aim of avoiding it, their procedure does not demand a
significantly high resolution. It is important to note that the purpose of the Fourier
transform in their method is solely for filtering purposes, not for obtaining the
frequency-dependent response function itself. Moreover, Uemoto et al.’s approach
offers the advantage of closely resembling ultrashort pulsed laser experiments,
aligning more closely with the objectives of time-domain methods to model
experimental parameters.

The extraction of nonlinear optical properties in the time domain is gaining
popularity [139–146]. However, it is important to acknowledge that response
theory methods offer significantly faster computations. While a linear response
calculations requires 10–100 evaluations of terms scaling as O(N6) at the CCSD
level, time-domain methods typically require over 50 000 evaluations of these
O(N6) terms. Efforts should therefore be made to reduce the propagation time
required for extracting nonlinear properties. Furthermore, it is worth noting that
none of the existing methods have successfully been applied to properties beyond
the second hyperpolarizability. Already at the second hyperpolarizability, the
finite-field methods encounter challenges, in particular for small molecules, with
noticeable noise present in the time-domain signal.
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Chapter 3

Research and papers

In addition to the research papers that will be presented in the chapter, my work
has contributed to software development within the HyQD software suite [68].
HyQD is an open-access software hosted on GitHub and has been well-documented
by Schøyen [147], Winter-Larsen [148], Sutterud [149] and Kristiansen [150].

In this chapter, an introduction to the attached papers will be presented, where
the motivation behind their conception will be discussed, and their individual
contributions towards the research objectives will be highlighted.

3.1 Paper I

Kristiansen, H. E., Ofstad, B. S. , Hauge, E., Aurbakken, E., Schøyen, Ø. S.,
Kvaal, S., & Pedersen, T. B. (2022). Linear and Nonlinear Optical Properties
from TDOMP2 Theory. Journal of Chemical Theory and Computation, 18 (6),
3687–3702. https://doi.org/10.1021/acs.jctc.1c01309

Motivated by the favorable O(K5), scaling and performance of TDOMP2
for strong field dynamics reported by Pathak et al. [61], the TDOMP2 method
was implemented in HyQD in order to evaluate its performance for weak-
field dynamics. A unified derivation of the TDOMP2 and TDNOMP2 methods
was also presented. The time-dependent second-order coupled-cluster (TDCC2)
theory [151], which is the static-orbital equivalent to TDOMP2 theory, was
implemented so that the effect of the dynamic orbitals could be isolated. The
TDCCSD method was already available, and could be used as a benchmark.

Core excitations, as evaluated with linear response calculations, have been
found to deviate more from experimental spectra than those of valence excitation
character. This observation led us to investigate the impact of dynamic orbitals
for this case. Additionally, previous studies have noted that orbital relaxation
affects the computation of static polarizabilities and hyperpolarizabilities [152].
Consequently, we decided to further examine how dynamic orbitals influence
dynamic polarizabilities and hyperpolarizabilities for the same ten electron
systems: Ne, HF, H2O, NH3, and CH4.

We compared the TDOMP2 and the TDCC2 methods by overlaying absorption
spectra up to core excitations for the same systems as used for computing the
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Figure 3.2: Comparison of the induced dipole moments extracted from TDCCSD
simulations of the HF molecule with a least-squares fitting to the form expected from
response theory.

polarizabilities and hyperpolarizabilities. Except for minor differences in intensity
and peak positions, the TDOMP2 and TDCC2 methods produced qualitatively
similar absorption spectra. Furthermore, the differences between the excitations
computed with TDOMP2 and TDCC2 were found to be consistent across both
the valence and core regions. This led us to conclude that dynamic orbitals do
not have a major impact on the description of the core region, and the previous
difficulties in describing this region do not seem to stem from a lack of orbital
relaxation.

The dynamic polarizabilities and first hyperpolarizabilities were computed with
the linear RCW approach [135]. We used a one cycle ramp, followed by three
optical cycles of propagation, in line with the recommendation in Ref. [135]. The
second order hyperpolarizabilities were not evaluated however, due to difficulties
with the curve fitting procedure. As discussed in Section 2.3, the extraction
method is based on response theory, where the form of the time-dependent
responses is assumed to follow specific sinusoidal functions. As seen in Figure
3.2b there are clear deviations from this presupposed form.

We compared the polarizability and hyperpolarizability computed with the
TDCC2 and TDOMP2 methods to those calculated with the TDCCSD method.
Additionally, we calculated the properties with the TDCC2-b variant introduced
by Kats et al. [153]. This variant is less computationally effective than the
standard TDCC2 method, but it includes a higher amount of orbital relaxation. In
comparison to the TDCC2 method, the TDOMP2 method was found to produce
polarizabilities and first hyperpolarizabilities that were closer to those of TDCCSD
.

The dynamic polarizability and first hyperpolarizability for TDCCSD and
TDCC2 were also compared to their linear and quadratic response counterparts,
using Dalton [154]. In this way, the accuracy of the RCW approach could
be monitored. The first hyperpolarizabilities extracted with the RCW approach
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were found to differ more from those computed with quadratic-response coupled-
cluster than the extracted polarizability differed from the linear-response coupled-
cluster. This was accompanied by the time-dependent second-order response
deviating more from its expected sinusoidal form than the time-dependent first-
order response. As an aside, there is currently no implementation of linear-
or quadratic-response TDOMP2 available, but its favorable scaling and strong
performance for computing optical properties motivates such an implementation.

This paper was the first to consider nonlinear dynamic properties with time-
domain TDCC. Specifically, the research objective of describing nonlinear optical
properties with dynamic orbitals was addressed, with the observation that dynamic
orbitals do in fact appear to improve the description.

Contributions My largest contributions to this paper was the implementation of
the time-domain TDCC2 and TDCC2-b methods. I was a supporting contributor
to the writing of the original draft with Håkon Emil Kristiansen being the lead
author. My writing contributions were mostly confined to the writing of Section
2.2: TDCC2 Approximation, and also to reviewing and editing the overall manu-
script. I contributed to visualization, by aiding in the production of the absorption
spectra figures.

3.2 Paper II

Ofstad, B. S., Kristiansen, H. E., Aurbakken, E., Schøyen, Ø. S., Kvaal, S.,
& Pedersen, T. B. (2023). Adiabatic extraction of nonlinear optical proper-
ties from real-time time-dependent electronic-structure theory. The Journal of
Chemical Physics, 158 (15), 154102. https://doi.org/10.1063/5.0145521

Although the linear-response coupled-cluster and TDCC gave quite similar
results for the polarizabilities and hyperpolarizabilities in Paper I, larger deviations
between the time-dependent second order response (which is the time domain
equivalence of the frequency-domain first hyperpolarizability) and the sinusoidal
function that relates them in response theory were observed. These deviations
were even more significant for the non-diagonal terms that were needed for the
research objective of computing magnetic optical rotations. Ding et al. [135] had
suggested that the high-frequency noise polluting the time-dependent second order
response was a result of higher order perturbations remaining in the signal even
after the separation using central finite differences. The finite difference formula
has an error term of fourth order in the electric field strength O(E4

j ), and the
time-dependent response functions cannot be expected to be error free.

It was found in Ref. [137], however, that only an approximate 0.3% error
reduction between time-domain and response theory for the pNA molecule
second hyperpolarizability calculations could be attained by using a central
finite difference formula with O(E6

j ) instead of O(E4
j ). This indicates that the

higher order terms are not the main source of error for the extraction of second
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Figure 3.3: The time profiles of linear and quadratic ramps

hyperpolarizabilities. We sought to investigate whether these effects were instead
due to an insufficiently adiabatic in the ramping phase.

A quadratic ramp, meant to give a more gentle ramping

FQRCW(t) =


2t2
t2r

cos(ωt) 0 ≤ t < tr
2

t2r−2(t−tr)2

t2r
cos(ωt) tr

2 ≤ t < tr
cos(ωt) tr ≤ t ≤ ttot

(3.1)

was therefore constructed. The linear ramp of the RCW approach was replaced
by the quadratic ramp giving the linear RCW and quadratic RCW approaches,
respectively. The form of the two ramping pulses can be compared Figure 3.3.

It was quickly uncovered that the quadratic ramp produced a signal that
corresponded better to the expected form. In fact, the propagation phase
was so regular that one might imagine that a whole three or four cycles of
propagation after the ramping phase might be unnecessary. As stressed previously,
the main advantage of response theory over time-domain methods lies in the
former’s superior computational efficiency. It would therefore be advantageous to
explore where to attribute computational time when simulating with time-domain
methods, in the ramping phase, or in the propagation phase. For completeness,
the recent pulsed wave (PW) approach by Uemoto et al. [138], reviewed in Section
2.3, was also included in the comparison.

The three approaches were compared for computing polarizabilities, as well
as first, second, and third-order hyperpolarizabilities with the time-dependent
configuration interaction singles (TDCIS), TDCC2, and TDCCSDmethods. It was
demonstrated that the discrepancies between the signal and response equations are
indeed a result of nonadiabatic effects that emerge due to the finite-time increase
from zero to maximum intensity of the external laser field.

In fact, with a long enough ramping phase, the first hyperpolarizabilities could
be extracted with the same accuracy as the polarizabilities. The error of the first
hyperpolarizability was improved from approximately 0.4% with the standard one
cycle of propagation followed by four cycles of propagation with linear RCW to
below 0.0001% with a seven-cycle quadratic ramping, where six of the optical
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cycles were dedicated to the ramping phase. This strongly suggests that the errors
do not come from the finite-difference step, but rather from the ramping phase.
The second hyperpolarizability was improved from having errors on the magnetude
of 20% with the standard five-cycle linear RCW approach to errors below 0.8%
with a seven-cycle quadratic RCW approach. This is a significant error reduction.
The remaining error after the full adiabatic treatment could most likely be further
reduced by considering a finite-difference equation with an error of O(E6

j ). This
would, however, require running additional simulations at 4Ej and −4Ej.

The PW approach is fundamentally different from the linear and quadratic
RCW approaches, in that the adiabatic effect of the ramping phase is instead
provided by an envelope. The PW approach showed a consistent progression
towards the correct value as a function of longer simulation time, but required
longer simulation time overall to achieve accuracies comparable to the RCW
approaches. This very consistent progression could make it possible to extrapolate
a fully accurate answer with maybe a single, or two points, and if this is the case,
the PW approach could be computationally competitive. The PW approach also
differs from the RCW approach in what it aims to achieve. Uemoto et al. [138]
were mostly interested in simulating short pulses. One can argue that if these short
pulses excite wavefunctions into excited states, it is not appropriate to describe
the response using response theory, which is fundamentally based on the ramping
being fully adiabatic.

The successful extraction of the second hyperpolarizabilities encouraged the
attempt to extend the quadratic RCW approach to also extract third and fourth
order hyperpolarizabilities. The central finite-difference method of Ding et al. was
extended to the next two orders,

µ
(4)
ijjjj(t) = −39∆+

i (t, Ej) + 12∆+
i (t, 2Ej)−∆+

i (t, 3Ej) + 56µ0

144E4
j

+O(E4
j ), (3.2)

µ
(5)
ijjjjj(t) = 29∆−i (t, Ej)− 26∆−i (t, 2Ej) + 9∆−i (t, 3Ej)−∆−i (t; 4Ej)

720E5
j

+O(E4
j ),

(3.3)

with the third hyperpolarizabilities being accessible without needing to run
any more simulations than those already run in order to acquire the second
hyperpolarizabilities.

There are no available response theory implementations for the third and fourth
hyperpolarizabilities, so we cannot quantify their accuracy. However, we did
observe that the coefficient of determination, r2, acquired through curve fitting
of the time-dependent response function and the function that relates it to the
frequency-dependent response function, was found to be a strong indicator of
accuracy. The third order hyperpolarizabilities were fitted with r2 in the range
of 0.97 − 0.96, and the main component of the fourth hyperpolarizabilities, the
fifth order generation coefficient, could similarly be fit with an r2 of 0.90. These
fittings are of the same quality as what the standard linear RCW achieved for the
first hyperpolarizabilities. Higher accuracy is probably achievable for these highly
nonlinear responses if the simulation was ramped for longer than the six cycles,
and also by using a finite-difference equation with an error of O(E6

j ).
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The second paper further developed and improved upon the extraction
approaches used in Paper I, and thus built on the foundational work presented in
the first body of work. The work presented in Paper II acts as a utility that allows
for a faster and more accurate approach for extracting optical properties from time-
dependent simulations, needed for the research in Paper III. It was shown that only
three cycles of simulations were needed to extract second hyperpolarizabilities,
and we have thus achieved the research objective of identifying a reliable and
efficient scheme that can be used for extracting higher-order response properties.
While the approaches explored in the paper were applied to coupled-cluster and
configuration-interaction theory, it is likely that the conclusions also apply to
TDDFT.

Contributions As the main author, I was the lead contributor to the writing of
the original draft. I was also the lead contributor to the review and editing pro-
cess, the single contributor to the data collection and the lead contributor to the
mathematical analysis of the data. I was the lead contributor to the visualization
of the results. I contributed to the conceptualization of the research along with
Thomas Bondo Pedersen and Håkon Emil Kristiansen.

3.3 Paper III

Ofstad, B. S., Wibowo-Teale, M., Kristiansen, H. E., Aurbakken, E., Kit-
saras, P., Schøyen, Ø. S., Irons, T., Kvaal, S., Stopkowicz, S., Wibowo-
Teale, A., & Pedersen, T. B. (2023). Magnetic Optical Activity from
Real-Time Simulations. The Journal of Chemical Physics, (in press). ht-
tps://doi.org/10.1063/5.0171927

In Paper III, the hierarchy of TDCC approaches was extended to be applicable
for simulations in the finite-field framework with LAOs. The time-domain time-
dependent coupled-cluster methods in HyQD were used in conjunction with
integrals from the Quest software and were successfully validated. This was
achieved by comparing absorption spectra obtained from time-domain TDCC2
and TDCCSD with those determined using time-dependent EOM-CC2 and time-
dependent EOM-CCSD as implemented in Qcumbre [94].

The TDCC approaches were then used to explore the magnetic optical rotations
of the H2, HF, and CO molecules. The magnetic optical rotation, also referred
to as the Faraday effect [155], was originally found to be linearly related to the
magnetic field strength B and the length of the sample l in experiments conducted
by Verdet [156, 157]. This relationship is expressed as

θ = V (ω)Bl, (3.4)

with V being the Verdet constant.
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Magnetic optical rotations have previously been computed with response theory
according to [158–160]

θr
`

= 1
3Cω

∑
ijk

εijkIm
[
α

(k)
ij (−ω;ω)

]
, (3.5)

where C is a constant, ` is the path length, ω is the angular frequency of
the incoming laser, α(k)

ij (−ω;ω) is the Cartesian ij component of the molecular
polarizability tensor in the presence of the magnetic field along axis k, and εijk
denotes the Levi–Civita tensor.

The dynamic polarizability αij(−ω;ω) has been successfully computed using
LAOs and coupled-cluster methods in response theory, as demonstrated by Coriani
et al. [161], in order to compute Verdet constants. While response theory is
confined to the perturbative regime, the finite-field framework allows for computing
magnetic optical rotation for magnetic field strengths that surpass those currently
achievable in laboratories.

In the time domain, the complex polarizability was extracted from the time-
domain TDCC and TDDFT methods using the method developed in Paper II.
The magnetic optical rotation was computed for magnetic fields ranging from
1 T to 55 000 T, and it was demonstrated that the magnetic optical rotation
no longer adheres to linearity at high magnetic fields, with a departure from
linearity occurring at around 10 000 T, as depicted in Figure 3.4. This shift is
observed at such a high magnetic field strength that perturbation theory remains
sufficiently accurate for magnetic fields found on Earth, yet a finite-field approach
might be necessary in more extreme (stellar) scenarios. Moreover, it was found
that coupled-cluster methods with dynamic orbitals, specifically TDOMP2 and
TDNOCC, yielded different values than their static method counterparts, TDCC2
and TDCCSD. Echoing the findings of Paper I, the TDOMP2 method produced
magnetic optical rotations that more closely resembled those of TDCCSD than of
TDCC2.

In computing magnetic optical rotations with the hierarchy of available TDCC
methods in HyQD, this work contributes to the further assessment of dynamic
orbitals. The observation that dynamic orbitals yield different results than
static orbitals underscores the importance of accounting for orbital relaxation
in magnetic optical properties. Moreover, the study found that the cTPSSh
functional within the TDCDFT method modelled magnetic optical rotation more
accurately, while the range-separated cTPSSrsh functional gave results with larger
errors than the TDHF method. Overall, these findings advance our understanding
of the behavior of magnetic optical rotations at high magnetic fields and shed light
on the significance of orbital relaxation in magnetic optical properties.

The third paper extends the time-domain time-dependent coupled-cluster
methods presented in Paper I and the extraction method recommended in Paper
II to optical properties in finite magnetic fields. As such, the third paper can be
seen as building upon the work done in both Paper I and Paper II. It showcases the
main theme of optical properties from time-dependent electronic-structure theory
with both the recent implementation of finite-field TDCDFT and the hierarchy of
dynamic and static time-dependent coupled-cluster methods.
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Figure 3.4: The magnetic optical activity of H2 diverges from a straight line by 3% at
the magnetic field strength of 10 000 Tesla. Basis set: aug-cc-pVDZ. Bond length: 1.4
Bohr.

Contributions I was the lead contributor to the writing of the original draft and
to the review and editing process. I was the lead contributor to the data collection
along with Meilani Wibowo who collected the TDCDFT data and Petros Kitsaras
who generated the time-dependent EOM-CC data. I was the single contributor
to the mathematical analysis of the data and visualization of the results. I was
a supporting contributor to the conceptualization of the research with Thomas
Bondo Pedersen as lead contributor. I was an equal contributor to the software
development, along with the other authors of the paper.

3.4 Paper IV

Aurbakken, E., Ofstad, B. S., Kristiansen, H. E., Schøyen, Ø.
S., Kvaal, S., Sørensen, L. K., Lindh, R., & Pedersen, T. B.
(2023). Transient spectroscopy from time-dependent electronic-structure the-
ory without multipole expansions [Manuscript submitted for publication]. ht-
tps://doi.org/10.48550/arXiv.2307.02519

The external electromagnetic fields used for simulating linear and nonlinear
optical properties have so far been assumed to be spatially uniform. When consid-
ering shorter wavelength, the spatial component of the external electromagnetic
field must be explicitly treated. The spatially dependent vector potential of an
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3.4. Paper IV
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Figure 3.5: The quadrupole-allowed 1s → 3d transition of Ti+4 simulated with the
electric-dipole approximation (dashed line) and the full plane-wave potential (solid line).
Basis set: ANO-RCC-VDZ [163].

electromagnetic pulse is given by a sum of m plane waves,

A(r, t) =
∑
m

AmRe{umei(km·r−ωmt−γm)}Gm(t), (3.6)

where a Gaussian Gm(t) controls the shape of the pulse, km is the wave vector,
um the polarization vector, and γm the carrier envelope phase. A procedure
for computing integrals over the full plane-wave vector potential has recently
been implemented by Sørensen et al. [162]. This inspired the derivation and
implementation of a general theory for transient absorption spectroscopy using
the full plane-wave vector potential, presented in Paper IV. The implementation
was validated against Ref. [70] for the computation of the core-level pump-probe
spectrum of LiH, where the dipole approximation is valid.

The dipole and quadrupole allowed transitions for a titanium, both in ionic
form Ti4+ and molecular form TiCl4, has recently been investigated with EOM-
CCSD level of theory in Ref. [164] using a multipole expansion. We therefore
chose to explore these systems using the full plane-wave implementation of the
vector field, using TDCC2, TDOMP2, TDCCSD, and TDNOCCD. A quadrupole
allowed transition for the Ti4+ ion is displayed in Figure 3.5, where it can be
seen that the quadrupole-allowed transition is, as expected, not captured when
employing the dipole approximation. The observation from Papers I and III that
TDOMP2 generally computes properties closer to the higher accuracy TDCCSD
and TDNOCCD than TDCC2 appears to prevail, in this example. Lastly,
the anisotropic circular dichroism of the chiral hydrogen peroxide molecule was
computed using the hierarchy of TDCC methods.
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Chapter 3. Research and papers

Contributions My contributions to this paper was through the implemented
time-domain TDCC2 method. I was a supporting contributor to the writing of
the original draft with Einar Aurbakken being the lead author. I also contributed
to the visualization, by formatting the figures, and creating Figure 7 in Blender.

3.5 Paper V

Ofstad, B. S., Aurbakken, E., Sigmundson, Ø. S., Kristiansen, H. E.,
Kvaal, S., & Pedersen, T. B. (2023). Time-dependent coupled-cluster
theory. WIREs Computational Molecular Science, 13 (5) e1666. ht-
tps://doi.org/10.1002/wcms.1666

Paper V provides a comprehensive summary of time-dependent coupled-cluster
theory, including the first work presented in this thesis. Although it does not
directly contribute to the main theme in the same way as the other three papers do,
in the form of new research findings, it is an essential resource for contextualizing
and understanding the field to which the research in this thesis belongs. The review
paper also aids in providing a direction for future research that can contribute to
the advancement of the main theme of the dissertation, including the extension to
strong field phenomena.

Contributions I was the lead contributor to the Section Electronic dynamics
with bivariational coupled-cluster theories, with Thomas Bondo Pedersen as lead
contributor overall. I was a supporting contributor to the review and editing
process along with the other co-authors.
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Chapter 4

Conclusion

In the preceding chapters and associated research articles, I have explored linear
and nonlinear optical properties using time-domain methods. The achievements
related to the research goals outlined in the introduction, along with suggestions
for future work, will be summarized in this final chapter.

• A hierarchy of time-domain time-dependent coupled-cluster methods has
been successfully applied to evaluate magneto-optical properties in strong
magnetic fields.

• By computing polarizabilities, hyperpolarizabilities, magnetic optical rota-
tion and X-ray absorption spectra with both static and dynamic orbitals, we
have found indications that dynamic orbitals can enhance the description of
nonlinear optical and magneto-optical properties.

• We have found that of the three correlation-exchange functionals explored
for the TDCDFT method (cTPSS, cTPSSh, cTPSSrsh), the hybrid
cTPSSh functional provided the strongest performance for describing optical
properties in the presence of magnetic fields, while the range separated
cTPSSrsh performed worse than the time-dependent Hartree-Fock method.

• A deviation from linearity in the relationship between magnetic optical
rotation and magnetic field strength was observed at strengths of around
10 000 T.

• An efficient approach for extracting nonlinear properties of up to the fourth
response order has been introduced.

The enhanced performance of the dynamic orbitals in describing nonlinear
optical properties suggests that further work within methods employing dynamic
orbitals could be fruitful. Our implementation of the time-domain TDCCSD
method has led us to conclude that TDOMP2 may provide a more accurate
description of nonlinear optical properties than the TDCC2 method. A time-
domain implementation of time-dependent coupled-cluster singles, doubles, and
triples (TDCCSDT) could reveal whether this observation extends to the
TDNOCCD and TDCCSD methods, which we have identified as deviating in their
representation of magnetic optical rotation and X-ray absorption spectra.
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Chapter 4. Conclusion

A more comprehensive assessment of the accuracy of both the wavefunction
methods and the TDCDFT exchange-correlation functionals could be achieved
by including vibrational effects and evaluating nonlinear optical properties at
the basis set limit. This would enable a comparison of the computed properties
with experimental results, which is more rigorous than only benchmarking against
the higher accuracy TDCC methods. Additionally, further investigations of the
extraction approach developed as part of this thesis might enable the extracting
of even higher orders of response than presented here. This could be achieved
through a combination of longer ramping time, increased electric field strength,
and a finite-difference method with a smaller error term.

My studies of nonlinear properties for time-domain methods contribute to the
cumulative understanding of these methods. The research presented within this
thesis may aid not only in the advancement of computing nonlinear properties but
also in the continued development of time-domain methods for describing electron
dynamics.
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ABSTRACT: We present a derivation of real-time (RT) time-
dependent orbital-optimized Møller−Plesset (TDOMP2) theory
and its biorthogonal companion, time-dependent non-orthogonal
OMP2 theory, starting from the time-dependent bivariational
principle and a parametrization based on the exponential orbital-
rotation operator formulation commonly used in the time-
independent molecular electronic structure theory. We apply the
TDOMP2 method to extract absorption spectra and frequency-
dependent polarizabilities and first hyperpolarizabilities from RT
simulations, comparing the results with those obtained from
conventional time-dependent coupled-cluster singles and doubles
(TDCCSD) simulations and from its second-order approximation,
TDCC2. We also compare our results with those from CCSD and CC2 linear and quadratic response theories. Our results indicate
that while TDOMP2 absorption spectra are of the same quality as TDCC2 spectra, including core excitations where optimized
orbitals might be particularly important, frequency-dependent polarizabilities and hyperpolarizabilities from TDOMP2 simulations
are significantly closer to TDCCSD results than those from TDCC2 simulations.

1. INTRODUCTION
The correct semiclassical description of interactions between
matter and temporally oscillating electromagnetic fields must
start from time-dependent quantummechanics. Historically, the
most often used approach within molecular electronic structure
theory has been time-dependent perturbation theory, where the
time-dependent Schrödinger equation is solved order by order
in the external field strength, leading to a response theory of
molecular properties in the frequency domain through the
application of a series of Fourier transforms.1 Response theory
has the advantage that it directly addresses the quantities that are
used for the interpretation of experimental measurements, such
as one- and two-photon transition moments and frequency-
dependent electric-dipole polarizabilities and hyperpolarizabil-
ities, which may be expressed in terms of transition energies and
stationary-state wave functions that can, at least in principle, be
obtained from the time-independent Schrödinger equation for
the particle system alone. A major disadvantage is that time
resolution is lost when going from the time domain to the
frequency domain. The obvious solution would be to skip the
Fourier transforms and instead work directly in the time domain.
This, however, implies that the time-dependent Schrödinger
equation must be solved order by order in a discretized time
series, making the approach much too computationally
demanding for higher-order properties. Instead, so-called real-
time (RT) methods have received increasing attention in recent
yearssee, for example, the review of RT time-dependent
electronic structure theory by Li et al.2

RT methods approximate the solution of the time-dependent
Schrödinger equation without perturbation expansions and,
thus, contain information about the response of the atomic or
molecular electrons to external electromagnetic fields to all
orders in perturbation theory. Even extremely nonlinear
processes that are practically out of reach within response
theory, such as high harmonic generation and time-resolved
one- and many-electron ionization probability amplitudes, are
accessible with RT methods, see ref 2 and references therein.
Moreover, because RTmethods include the field explicitly in the
simulation, it becomes possible to investigate the detailed
dependence on laser parameters such as intensity, frequency
distribution, pulse shape, and delay between pump and probe
pulses without making explicit assumptions about the
perturbation order of the electronic processes involved.
Although RTmethods are usually much simpler to implement

than response theory (typically, the same code is needed as for
ground-state calculations, only generalized to complex param-
eters), a major downside of RT methods is the increased
computational cost arising from the discretization of time.
Thousands or even hundreds of thousands of time steps are
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needed, each associated with a cost comparable to one (or a few)
iterations of a ground-state optimization with the same (time-
independent) method. In addition, the basis set requirements
are generally more demanding because, in principle, all the
excited states and even continuum states may be involved in the
dynamics, and acceleration techniques commonly used for the
ground-state and response calculations may not be generally
applicable for RT simulations with all possible external
electromagnetic fields.
It is no surprise, therefore, that the most widely used RT

electronic structure method is RT time-dependent density-
functional theory (RT-TDDFT).2−5 Highly accurate wave
function-based RT methods have also been developed,
including multiconfigurational time-dependent Hartree−Fock
(MCTDHF)6−9 theory and related complete, restricted, and
generalized active space formulations.10−12 Avoiding the
factorial computational scaling caused by the full configuration
interaction (FCI) treatment at the heart of these approaches,
time-dependent extensions of single-reference coupled-cluster
(CC) theory13 and equation-of-motion CC (EOM-CC)
theory14,15 have been increasingly often used to simulate laser-
driven many-electron dynamics in the time domain in recent
years.16−33 The two approaches, time-dependent CC (TDCC)
and time-dependent EOM-CC (TD-EOM-CC) theories, differ
in their parametrization of the time-dependent left and right
wave functions. While TDCC theory propagates the well-known
exponential Ansaẗze for the wave functions, TD-EOM-CC
theory expresses them as the linear combinations of EOM-CC
left and right eigenstates. While both approaches are expected to
give similar results (and, indeed, appear to do so, see ref 33) for
weak-field processes, only the TDCC theory (albeit with
dynamical orbitals) has been successfully applied to strong-
field phenomena such as ionization dynamics and high harmonic
generation20 to date.
Although the original formulation of TDCC theory in nuclear

physics was based on time-dependent Hartree−Fock (HF)
orbitals,34 conventional TDCC theory is formulated with a static
reference determinant, the HF ground state, which is kept fixed
during the dynamics in agreement with the conventional
formulation of CC response (LRCC) theory.35,36 The fixed
orbital space has some unwanted side effects, however. Gauge
invariance is lost in truncated TDCC theory (but recovered in
the FCI limit),37,38 severe numerical challenges arise as the CC
ground state is depleted during the dynamics (e.g., in ground-
excited state Rabi oscillations),21,29 and it becomes impossible to
reduce the computational effort while maintaining accuracy by
splitting the orbital space into active and inactive orbitals for the
correlated treatment, as required to efficiently describe
ionization dynamics.17 These deficiencies can, at least partially,
be circumvented by allowing the orbitals tomove in concert with
the electron correlation. In practice, this is done by replacing the
single excitations (and de-excitations) of conventional CC
theory with full orbital rotations. This, in turn, can be done in
two ways. Within orbital-optimized CC (OCC) theory,37,39,40

the orbitals are required to remain orthonormal, whereas within
nonorthogonal OCC (NOCC) theory17,38 they are only
required to be biorthonormal. The orthonormality constraint
has an unfortunate side effect in the sense that the OCC theory
does not converge to the FCI solution in the limit of full rank
cluster operators for three or more electrons, as pointed out by
Köhn andOlsen.41 On the other hand,Myhre42 recently showed
that the NOCC theory may converge to the correct FCI limit for
any number of electrons. In practice, however, time-dependent

OCC (TDOCC) theory does not appear to deviate from the
FCI limit by any significant amount.20

The computational scaling with respect to the size of the basis
set and with respect to the number of electrons in TDOCC and
time-dependent NOCC (TDNOCC) theory is essentially
identical to that of conventional TDCC theory with identical
truncation of the cluster operators. The lowest-level truncation,
after double excitations, yields the TDOCCD and TDNOCCD
methods that both scale as 6(N )6 , which is significantly more
expensive than the formal 6(N )4 scaling of RT-TDDFT. In
order to bring down the computational cost to a more tractable
level, Pathak et al.26,27 generalized the orbital-optimized second-
order Møller−Plesset (OMP2)43 method to the time domain
and demonstrated that the resulting TDOMP2method provides
a reasonably accurate and gauge invariant description of highly
nonlinear optical processes.
In this work, we assess the description of linear and quadratic

optical properties within the TDOMP2 approximation. First, we
review the TDCC theory and its second-order approximation
TDCC2. Second, we review TDCC theories with dynamic
orbitalsTDNOCC and TDOCC theoryas obtained from
the time-dependent bivariational principle, and introduce the
second-order approximations TDNOMP2 and TDOMP2.
Finally, we compute linear (one-photon) absorption spectra
and frequency-dependent polarizabilities and first hyperpolar-
izabilities with the TDOMP2, TDCCSD, and TDCC2 methods
and compare them with results from CC2 and CCSD linear and
quadratic response theory.

2. THEORY
2.1. Notation. We consider a system of N interacting

electrons described by the second-quantized Hamiltonian

∑ ∑
∑ ∑

̂ = ̂ ̂ + ̂ ̂ ̂ ̂

= ̂ ̂ + ̂ ̂ ̂ ̂

† † †

† † †

H h a a u a a a a

h a a v a a a a

1
2

1
4

pq
q
p

p q
pqrs
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pq

p q s r

pq
q
p

p q
pqrs

rs
pq

p q s r
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where ap̂† (ap̂) are creation (annihilation) operators associated
with a finite set of L orthonormal spin orbitals {ϕp}p=1L . The one-
and two-body matrix elements hqp and urspq, respectively, are
defined as

∫ϕ ϕ ϕ ϕ= ⟨ | |̂ ⟩ = * ̂h h hx x x( ) (1) ( )dq
p

p q p q1 1 1 (2)

∬
ϕ ϕ ϕϕ
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= * * ̂

u u

ux x x x x x( ) ( ) (1,2) ( ) ( )d d
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p q r s

p q r s1 2 1 2 1 2 (3)

where xi = (ri, σi) refers to the combined spatial-spin coordinate
of electron i. The anti-symmetrized two-body matrix elements
vrspq are given by

= −v u urs
pq

rs
pq

sr
pq

(4)

2.2. TDCC2 Approximation. The TDCC Ansaẗze for the
left and right CC wave functions are defined by

|Ψ ⟩ = |Φ ⟩ ⟨Ψ̃ | = ⟨Φ |Λ̂̂ − ̂t t t( ) e , ( ) ( )eT t T t( )
0 0

( )
(5)

where |Φ0⟩ is a reference determinant built from orthonormal
spin orbitals, typically taken as the HF ground-state determi-
nant. The chosen reference determinant splits the orbital set into
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occupied orbitals denoted by subscripts i, j, k, l and virtual
orbitals denoted by subscripts a, b, c, d. Subscripts p, q, r, s are
used to denote general orbitals. The cluster operators T̂(t) and
Λ̂(t) are given by

∑ τ̂ = ̂ = ̂ + ̂ + ̂ + ̂ + + ̂
μ

μ
μT t t X T T T T T( ) ( ) ... N0 1 2 3

(6)

∑ λΛ̂ = ̂ = Λ̂ + Λ̂ + Λ̂ + Λ̂ + + Λ̂
μ

μ
μt t Y( ) ( ) ... N0 1 2 3

(7)

where μ denotes the excitations of rank 0, 1, 2, 3, ..., N, and the
excitation and de-excitation operators X̂μ and Ŷμ, respectively,
are defined by

̂ ≡ ̂ |Φ ⟩ ≡ |Φ ⟩μ μX X1,0 0 (8)

̂ ≡ ⟨Φ | ̂ ≡ ⟨Φ̃ |μ
μY Y1,0

0 (9)

such that ⟨Φ̃μ|Φν⟩ = δμν. The rank-0 cluster operators are
included to describe the phase and (intermediate) normal-
ization of the CC state.21

The equations of motion for the wave function parameters are
obtained from the bivariational action functional used by
Arponen44

∫[Ψ̃ Ψ] =: 3 t, d
t

t

0

1

(10)

where the CC Lagrangian is given by

∑ λ τ= ⟨Ψ̃ | ̂ − ∂ |Ψ ⟩ = − ̇
μ

μ
μ3 /t H t t( ) ( ) i ( ) it

(11)

and the Hamilton function / is given by

= ⟨Ψ̃ | ̂ |Ψ ⟩/ t H t t( ) ( ) ( ) (12)

The requirement that [Ψ̃ Ψ]: , be stationary with respect to
variations of the complex parameters zμ ∈ {τμ, λμ} leads to the
Euler−Lagrange equations

∂
∂ = ∂

∂ ̇μ μ

3 3
z t z

d
d (13)

Taking the required derivatives yields the equations of motion
for the amplitudes,

τ ̇ = ⟨Φ | ̂ ̂ |Φ ⟩μ μ − ̂ ̂t Y H ti ( ) e ( )eT t T t
0

( ) ( )
0 (14)

λ− ̇ = ⟨Φ |Λ̂ [ ̂ ̂ ] |Φ ⟩μ μ
− ̂ ̂t t H t Xi ( ) ( )e ( ), eT t T t

0
( ) ( )

0 (15)

Note that λ0(t) is a constant, which we choose such that the
intermediate normalization condition ⟨Ψ̃(t)|Ψ(t)⟩ = 1 is
satisfied, whereas the phase amplitude τ0 generally depends
nontrivially on time.21 The phase amplitude may, however, be
ignored as long as we are only interested in the time evolution of
expectation values.35 For other quantities, such as the
autocorrelation of the CC state21 or certain stationary-state
populations,30 the phase amplitude is needed. In the present
work, we will only consider expectation values.
Truncation of the cluster operators after single and double

excitations defines the TDCCSD method, which has an
asymptotic scaling of 6(N )6 . Defined as a second-order
approximation to the TDCCSD method within many-body
perturbation theory, the TDCC2 method45 reduces the

asymptotic scaling to 6(N )5 . In order to derive the TDCC2
equations, we partition the time-dependent Hamiltonian

̂ = ̂ + ̂H t H t U( ) ( )(0)
(16)

into a zeroth-order term, Ĥ(0)(t) = f ̂ + V̂(t), where f ̂ is the Fock
operator, and

∑̂ = ̂ ̂†V t V t a a( ) ( ) ( )
pq

q
p

p q
(17)

is a time-dependent one-electron operator representing the
interaction with an external field. The first-order term (the
fluctuation potential) is defined as,

̂ = ̂ − ̂ − ̂U H t f V t( ) ( ) (18)

In the many-body perturbation analysis of the TDCCSD
equations, the singles and doubles amplitudes are considered
zeroth-order and first-order quantities, respectively. For nota-
tional convenience, the time dependence of the amplitudes and
operators will be understood implicitly in the following.
The equations of motion are obtained by making the action

given by eq 10 stationary with respect to variations of the
amplitudes. The TDCC2 Lagrangian is obtained from the
TDCCSD Lagrangian by retaining terms up to quadratic in the
doubles amplitudes and the fluctuation potential

∑ ∑λ τ λ τ= − ̇ + ̇
μ

μ
μ

μ
μ

μ
i
k
jjjjjjj y

{
zzzzzzz3 / i

1

1
1

2

2
2

(19)

Introducing T̂1-transformed operators as

Ω̃ = Ω̂− ̂ ̂e eT T1 1 (20)

the TDCC2 approximation to the TDCCSDHamilton function
becomes

∑
∑

λ

λ

= ⟨Φ | ̃ |Φ ⟩ + ⟨Φ̃ | ̃ + [ ̃ ̂ ]|Φ ⟩

+ ⟨Φ̃ |[ ̂ + ̃ ̂ ] + ̃ |Φ ⟩
μ

μ μ

μ
μ μ

− ̂ ̂/ H H H T

f V T U

e e ,

,

T T
0 0 2 0

2 0

2 2

1

1 1

2

2 2
(21)

Note that the Fock operator appearing in the commutator in
the last term is not T̂1 transformed. The Euler−Lagrange
equations then yield equations of motion for the singles
amplitudes

∑ ∑ ∑
∑ ∑

∑

λ λ λ λ

λ λ

λ τ λ τ λ τ

̇ = + − + ̃

+ ̃ − ̃

+ ̃ − ̃ − ̃ikjjj y{zzz

f f f v

v v

v v v

i ( ) ( ) ( )

1
2

1
2

1
2

1
2

a
i

a
i

b
a
b

b
i

j
j
i

a
j

bj
b
j

aj
ib

c
bc
ij

aj
bc

k
ab
jk

jk
ib

ck
b
j

jk
bc

ac
ik

b
i

jk
bc

ac
jk

a
j

jk
bc

bc
ik

1 1 1

(22)

∑ ∑ ∑τ τ τ τ̇ = + + ̃ + ̃f f v vi ( ) ( ) 1
2

1
2i

a
i
a

jb
b
j

ji
ba

jbc
ik
bc

bc
aj

jkc
jk
ac

bi
jk

1 1

(23)

and for the doubles amplitudes,

∑ ∑τ τ τ̇ = ̃ + +v P ab f P ij fi ( ) ( ) ( ) ( )ij
ab

ab
ij

c
c
a

ij
cb

k
j
k

ki
ab

2 2
(24)
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∑
∑

λ λ λ

λ λ λ

̇ = ̃ + ̂ ̂ − ̂

+ ̂ ̃ + ̂ + ̂ ̃

v P ab P ij f P ab f

P ij v P ij f P ab v

i ( ) ( )( ) ( ( )( )

( ) ) ( ( )( ) ( ) )

ab
ij

ab
ij

a
i

b
j

c
a
c

bc
ij

c
i

ab
jc

k
k
i

ab
jk

a
k

bk
ij

1 2

2

(25)

Here, we have defined the fully and partially T1-transformed
Fock matrices

≡ ̃ + ̃ ≡ + ̃f f V f f V( ) ( ) , ( ) ( )q
p

q
p

q
p

q
p

q
p

q
p

1 2 (26)

and the operator P̂(pq) is an anti-symmetrizer defined by its
action on the elements of an arbitrary tensorM: P̂(pq)Mpq =Mpq
− Mqp.
The presence of the untransformed Fock operator in eq 21 has

a number of simplifying consequences. For example, the ground-
state doubles amplitudes become explicit functions of the singles
amplitudes, and the double excitation block of the EOM-CC
Hamiltonian matrix (the CC Jacobian) becomes diagonal. In
TDCC2 theory, however, it implies that the doubles amplitudes
are not fully adjusted to the approximate orbital relaxation
captured by the (zeroth-order) singles amplitudes. In order to
test the consequences of this, we have implemented the
TDCC2-b method of Kats et al.,46 where the fully T1-
transformed Fock operator is used in eq 21.
2.3. Review of Time-dependent Coupled-Cluster

Theories with Dynamic Orbitals. The TDOCC and
TDNOCC Ansaẗze replace the singles amplitudes of conven-
tional TDCC theory with unitary and non-unitary orbital
rotations, respectively. For both types of orbital rotations, the
left and right CC wave functions can be written on the form

|Ψ ⟩ = |Φ ⟩ ⟨Ψ̃ | = ⟨Φ |Λ̂κ κ̂ ̂ − ̂ − ̂t t t( ) e e , ( ) ( )e et T t T t t( ) ( )
0 0

( ) ( )

(27)

where |Φ0⟩ is a static reference determinant built from
orthonormal spin orbitals, typically taken as the HF ground-
state determinant in analogy with conventional TDCC theory.
The terminology of occupied and virtual orbitals thus refers to
this reference determinant, although both subsets are changed
by the time-dependent orbital rotations. Excluding singles
amplitudes, the cluster operators T̂(t) and Λ̂(t) are given by

∑ τ̂ = ̂ = ̂ + ̂ + ̂ + + ̂
μ

μ
μT t t X T T T T( ) ( ) ... N0 2 3

(28)

∑ λΛ̂ = ̂ = Λ̂ + Λ̂ + Λ̂ + + Λ̂
μ

μ
μt t Y( ) ( ) ... N0 2 3

(29)

where μ denotes excitations of ranks 0, 2, 3, ..., N, and the
excitation and de-excitation operators X̂μ and Ŷ

μ are defined the
same way as in conventional TDCC theory [eqs 8 and 9],
respectively. The exclusion of singles amplitudes is rigorously
justified, as they become redundant when the orbitals are
properly relaxed by the orbital-rotation operator exp(κ̂).17,37,38

In TDNOCC theory, the orbital rotations are non-unitary,
that is, κ̂† ≠ −κ̂. If κ̂ is restricted to be anti-Hermitian, we obtain
TDOCC theory where the orbital rotations are unitary.
However, this leads to the parametrization formally not
converging to the FCI limit (for N > 2), as pointed out by
Köhn and Olsen.41 On the other hand, Myhre42 showed that the
proper FCI limit may be restored by non-unitary orbital
rotations. Furthermore, it can be shown that occupied−
occupied and virtual−virtual rotations are redundant,17,37 and
that it is sufficient to consider κ̂(t) on the form

∑κ κ κ̂ = ̂ + ̂t t X t Y( ) ( ( ) ( ) )
ai

i
a

i
a

a
i

a
i

(30)

Using the Baker−Campbell−Hausdorff expansion, one can
show that the similarity transforms of the creation and
annihilation operators with exp(κ̂) are given by

∑̂ = ̂ [ ]κ κ κ− ̂ † ̂ † −a ae e et
p

t

q
q

t
p
q( ) ( ) ( )

(31)

∑̂ = ̂ [ ]κ κ κ− ̂ ̂a ae e et
p

t

q
q

t
q
p( ) ( ) ( )

(32)

Recalling that explicit time dependence only appears in the
interaction operator and in the wave function parameters, we
will suppress the dependence on time in the notation. For a
general one- and two-body operator Ω̂, the TDNOCC and
TDOCC expectation value functionals can be written as

∑ ∑γ⟨Ψ̃ |Ω̂|Ψ ⟩ = Ω̃ + Ω̃ Γt t( ) ( ) 1
4pq

q
p

p
q

pqrs
rs
pq

pq
rs

(33)

where

∑Ω̃ = [ ] Ω [ ]κ κ−e eq
p

rs
r
p

s
r

q
s

(34)

∑Ω̃ = [ ] [ ] Ω [ ] [ ]κ κ κ κ− −e e e ers
pq

tuvw
t
p

u
q

vw
tu

r
v

s
w

(35)

and γ, Γ are the effective one- and two-body density matrices,
respectively, given by

γ = ⟨Φ |Λ̂ ̂ ̂ |Φ ⟩− ̂ † ̂t a a( )e ep
q T t

p q
T t

0
( ) ( )

0 (36)

Γ = ⟨Φ |Λ̂ ̂ ̂ ̂ ̂ |Φ ⟩− ̂ † † ̂t a a a a( )e epq
rs T t

p q s r
T t

0
( ) ( )

0 (37)

The equations of motion for the wave function parameters
are, again, obtained from the Euler−Lagrange eq 13 for the full
parameter set zμ ∈ {τμ, λμ, κi

a, κa
i } with the Lagrangian given by

∑ λ τ= ⟨Ψ̃| ̂ − ∂ |Ψ⟩ = − ⟨Ψ̃| ̂ |Ψ⟩ − ̇
μ

μ
μ3 /H Qi i it 1

(38)

where the Hamiltonian is given by eq 1. Here, the interaction
with the external field (17) is absorbed into the one-body part of
the Hamiltonian such that

← +h h V t( ) ( )q
p

q
p

q
p

(39)

The operator Q̂1 is defined as

̂ ≡ ∂
∂

κ
κ

̂ − ̂Q
t

e e1 (40)

and = ⟨Ψ̃| ̂ |Ψ⟩/ H t( ) .
The detailed derivation of the equations of motion is greatly

simplified by absorbing the orbital rotation in the Hamiltonian
at each point in time, Ĥ← exp(−κ̂)Ĥ exp(κ̂), which amounts to
temporally local updates of the Hamiltonian integrals according
to eqs 34 and 35. This allows us to compute the temporally local
derivatives of the Lagrangian with respect to the parameters at
the point κ̂ = 0, such that, for example, the rather complicated
operator Q̂1 becomes the much simpler operator κ ̇ .̂ We thus find
that the equations of motion for the cluster amplitudes are given
by
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τ κ̇ = ⟨Φ | ̂ ̂ − ̇ |Φ ⟩̂μ μ − ̂ ̂Y Hi e ( i )eT T
0 0 (41)

λ κ− ̇ = ⟨Φ |Λ̂ [ ̂ − ̇ ̂ ] |Φ ⟩̂μ μ
− ̂ ̂H Xi e ( i ), eT T

0 0 (42)

where the right-hand sides are essentially identical to the usual
amplitude equations of CC theory, with additional terms arising
from the one-body operator κ ̇ .̂ As in conventional TDCC
theory, λ0 is constant and may be chosen such that intermediate
normalization is preserved.21 In the samemanner, wemay derive
the equations of motion for the orbital-rotation parameters as

∑ κ ̇ =A Ri
bj

b
j

aj
ib

a
i

(43)

∑ κ− ̇ =A Ri
bj

j
b

bi
ja

i
a

(44)

where the right-hand sides are given by eqs 30a and 30b in ref 17,
and

δ γ δ γ= ⟨Ψ̃|[ ̂ ̂ ̂ ̂ ]|Ψ⟩ = −† †A a a a a,aj
ib

j b a i a
b

j
i

j
i

a
b

(45)

Equations 43 and 44 are linear systems of algebraic equations
that require the matrix A = [Aaj

ib] to be nonsingular in order to
have a unique solution. We remark that this matrix becomes
singular whenever an eigenvalue of the occupied density block is
equal to an eigenvalue of the virtual density block. Although this
would prevent straightforward integration of the orbital
equations of motion, we have not encountered the singularity
in actual simulations thus far.
The abovementioned derivation does not require unitary

orbital rotations and is, therefore, applicable to TDNOCC
theory. Specialization to TDOCC theory is most conveniently
done by starting from the inherently real action functional20,37

∫ ∫= ℜ = + *: 3 3 3t td 1
2

( )d
t

t

t

t

0

1

0

1

(46)

which is required to be stationary with respect to variations of all
the parameters. The expression for the Lagrangian3 is identical
to eq 38 with κ̂ anti-Hermitian. The Euler−Lagrange equations
then take the form

= ∂
∂ − ∂

∂ ̇ + ∂
∂ * − ∂

∂ *̇
*

μ μ μ μ

i
kjjjjjj

y
{zzzzzz

i
kjjjjjj

y
{zzzzzz3 3 3 3

z t z z t z
0 1

2
d
d

1
2

d
d (47)

for zμ ∈ { κai , λμ, τμ}. The derivatives of 3 with respect to the
complex-conjugated parameters vanish for the amplitudes λμ
and τμ and, therefore, the resulting equations of motion for the
amplitudes are identical to eqs 41 and 42.
Taking the derivative of 3 with respect to κi

a and using eqs
43−45, we obtain the equations of motion for the orbital-
rotation parameters

∑ ∑ ∑

∑ ∑

κ ̇ = −

+ − + ̇
i
k
jjjjjjj y

{
zzzzzzz

B h D h D

v P v P D

i

1
2

i

bj
b
j

aj
ib

p
a
p

p
i

q
q
i

a
q

pqr
ra
pq

pq
ri

qrs
rs
iq

aq
rs

a
i

(48)

where we have defined the hermitized one- and two-body
density matrices

γ γ= + *D 1
2

( )q
p

q
p

p
q

(49)

= Γ + Γ *P 1
2

( )rs
pq

rs
pq

pq
rs

(50)

and the matrix

δ δ= −B D Daj
ib

a
b

j
i

j
i

a
b

(51)

Here, too, we face a potential singularity that we have never
encountered in practical simulations thus far.

2.4. TDOMP2 Theory. In the spirit of the TDCC2
approximation to TDCCSD theory, we may introduce second-
order approximations to TDNOCCD and TDOCCD theories,
which we will designate TDNOMP2 and TDOMP2 theories,
respectively, in accordance with the naming convention used in
time-independent theory.43 The TDOMP226,27 method has
previously been formulated as a second-order approximation to
the TDOCCD method20,37 by Pathak et al.26,27 The definition
of perturbation order is analogous to that of the TDCC2
approximation to the TDCCSD method,45 as outlined above.
Thus, the Hamiltonian is split into a zeroth-order term, Ĥ(0)(t) =
f ̂+ V̂(t), and a first-order term, the fluctuation potential Û = Ĥ(t)
− f ̂− V̂(t) such that the HF reference determinant is the ground
state of the zeroth-order Hamiltonian for V̂(t)→ 0. The doubles
amplitudes enter at the first-order level, whereas the orbital-
rotation parameters are considered zeroth order in analogy with
the singles amplitudes of TDCC2 theory.45

We start by considering non-unitary orbital rotations and
introduce the κ̂-transformed operators

Ω̃ = Ω̂κ κ− ̂ ̂e e (52)

The TDNOMP2 Lagrangian is defined by truncating the
cluster operators at the doubles level and retaining terms up to
quadratic in (λ, τ, u) in the TDNOCC Lagrangian 38

∑ λ τ= − ̇ − ⟨Φ | + Λ̂ ̃ + [ ̃ ̂ ] |Φ ⟩3 / Q Q Ti i (1 )( , )
abij

ab
ij

ij
ab

0 2 1 1 2 0

(53)

The TDNOMP2 Hamilton function / becomes

∑ ∑γ

= ⟨Φ | ̃ + [ ̃ ̂ ] + Λ̂ ̃ + Λ̂ [ ̃ ̂ ]|Φ ⟩
= ̃ + ̃ Γ

/ H H T H F T

h v

, ,
1
4pq

q
p

p
q

pqrs
rs
pq

pq
rs

0 2 2 2 2 0

(54)

where h̃qp, ṽrspq are matrix elements transformed according to eqs
34 and 35. The operator F̃ is given by

∑̃ = ̃ ̂ ̂†F f a a
pq

q
p

p q
(55)

where

∑̃ = ⟨Φ |[ ̂ [ ̂ ̃ ]] |Φ ⟩ = ̃ + ̃†
+f a a H h v, ,q

p
q p q

p

j
qj
pj

0 0
(56)

The non-zero matrix elements of the TDNOMP2 one- and
two-body density matrices γ, Γ are given by

∑ ∑γ δ γ γ λ τ γ λ τ= + = − =( ) , ( ) 1
2

, 1
2i

j
i
j

c i
j

c i
j

k
ab
jk

ik
ab

a
b

c
ac
ij

ij
bc

(57)

δ δ δ δ δ γΓ = − + ̂ ̂P kl P ij( ) ( ) ( )ij
kl

i
k

j
l

j
k

i
l

i
k

c j
l

(58)

τ λΓ = Γ =,ij
ab

ij
ab

ab
ij

ab
ij

(59)
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δ γΓ = −Γ = −Γ = Γ =ak
bj

ak
jb

ka
bj

ka
jb

k
j

a
b

(60)

The equations of motion now follow from the Euler−
Lagrange equations, with the Lagrangian given by eq 53. Taking
the required derivatives and the κ̂ → 0 limit we find the
equations of motion for the amplitudes

∑ ∑τ τ τ̇ = − ̂ + ̂v P ij f P ab fi ( ) ( )ij
ab

ij
ab

k
j
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ab

c
c
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ij
cb

(61)

∑ ∑λ λ λ− ̇ = − ̂ + ̂v P ij f P ab fi ( ) ( )ab
ij

ab
ij

k
k
i

ab
kj

c
a
c

cb
ij

(62)

The time dependence of the orbital-rotation parameters in the
κ̂ → 0 limit takes the same form as eqs 43 and 44, with density
matrices given by eqs 57−60. The explicit insertion of non-zero
matrix elements yields

∑ ∑ ∑ ∑ ∑

∑ ∑

κ γ γ γ γ

λ λ

̇ = − + +

+ −
i
k
jjjjjjj y

{
zzzzzzz

A f f v v

v v

i ( )

1
2

bj
b
j

aj
ib

j
a
j

j
i

b
b
i

a
b

jl
aj
il

c l
j

bc
ac
ib

b
c

jbc
aj
bc

bc
ij

klc
kl
ic

ac
kl

(63)

∑ ∑ ∑ ∑ ∑

∑ ∑

κ γ γ γ γ

τ τ

̇ = − − −
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jjjjjjj y
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(64)

We can now obtain the TDOMP2 equations from the
TDNOMP2 equations. The action functional takes the form of
eq 46, which 3 is equivalent to the expression given by eq 53
with κ̂ = −κ̂† and the equations of motion are obtained from the
Euler-Lagrange eq 47. Because the derivatives of the Lagrangian
with respect to the complex-conjugated amplitudes are zero, the
equations of motion for the amplitudes are equivalent to eqs 61
and 62. However, because the orbital transformation is
orthonormal, h, u, and f are Hermitian, and it follows that the
equation for λabij is just the complex conjugate of that for τijab such
that

λ τ= *
ab
ij

ij
ab

(65)

and, thus, it is sufficient to solve only one of the two sets of
amplitude equations. This simplification arises from the
unitarity of the orbital rotations and is not obtained within
neither TDCC2 nor TDNOMP2 theory. In addition, it follows
that the one- and two-body density matrices given by eqs 57−60
are Hermitian, that is,

γ γ= Γ = Γ* *,q
p

p
q

rs
pq

pq
rs

(66)

From the Euler-Lagrange equation, we then find that the
equation of motion for κai is given by
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∑ ∑
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Note that in contrast to the TDOCC equations, there is no
need to explicitly hermitize the density matrices, as they are
already Hermitian within TDOMP2 theory.

2.5. Optical Properties from RT Simulations. In order to
extract linear and nonlinear optical properties from RT time-
dependent simulations, we subject an atom or molecule, initially
in its (electronic) ground state, to a time-dependent electric field
Ε t( ). The semiclassical interaction operator in the electric-
dipole approximation in the length gauge is given by

∑ μ̂ = − Ε
∈{ }

V t t( ) ( )
i x y z

i i
, , (68)

where μi is the ith Cartesian component of the electric dipole
moment operator. The shape, frequency, and strength of the
electric field determine which properties may be extracted from
time-dependent simulations.
Linear (one-photon) absorption spectra can be computed by

using a weak electric field impulse to induce transitions from the
electronic ground state to all electric-dipole allowed excited
states of the system,47,48 including core excitations and valence
excitations. Such an electric field kick is represented by the delta
pulse δΕ = Εt t( ) ( )max , which we discretize by means of the box
function

Ε = Ε ≤ < Δlmoonoot
n t t

( )
0

0 else
i

imax

(69)

where Εmax is the strength of the field, ni is the ith Cartesian
component of the real unit polarization vector n⃗, and Δt is the
time step of the simulation.
The absorption spectrum is computed from the relationship

ω α ω= πω [ ]S
c

( ) 4
3

ImTr ( )
(70)

where the frequency-dependent dipole polarizability tensor
α(ω) is obtained from the Fourier transform of the induced
dipole moment

μ μ μ= −t t( ) ( )ij ij i
ind 0

(71)

Here, μijind(t) is the ith component of the induced dipolemoment
with the field polarized in the direction j ∈ {x, y, z}, μi0 is the ith
component of the permanent dipole moment, and μij(t) is
computed as the trace of the dipole matrix in the orbital basis
and the effective one-body density matrix (in the same basis). In
practice, we only compute finite signals at discrete points in time,
forcing us to use the fast Fourier transform (FFT) algorithm. In
order to avoid artifacts arising from the periodicity of the FFT
algorithm, we premultiply the dipole signal with the exponential
damping factor exp(−γt)

α ω μ= Εγ−t( ) FFT( ( )e )/ij ij
tind

max (72)

where γ > 0 is chosen such that the induced dipole moment
vanishes at the end of the simulation. This choice of the damping
factor artificially broadens the excited energy levels, producing
Lorentzian line shapes in the computed spectra.
Also, dynamic polarizabilities and hyperpolarizabilities can be

extracted from RT time-dependent simulations using the
method described by Ding et al.49 Suppose that the system
under consideration interacts with a weak, adiabatically
switched-on monochromatic electric field

ωΕ = Εt t( ) cos( )0 (73)
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where ω is the frequency and Ε0 is the amplitude of the field.
The dipole moment can then be written as a series expansionin
the electric field strength,

∑ ∑μ μ μ μ= + Ε + Ε Ε

+
∈{ } ∈{ }

t t t( ) ( ) ( )

...

i i
j x y z

ij j
j k x y z

ijk j k
0

, ,

(1)

, , ,

(2)

(74)

provided that Ε0 is sufficiently small and ω belongs to a
transparent spectral region of the system at hand. The time-
dependent dipole response functions μij(1)(t) and μijk

(2)(t) can be
expressed as

μ α ω ω ω= −t t( ) ( ; )cos( )ij ij
(1)

(75)

μ β ω ω ω ω β ω ω= [ − + − ]t t( ) 1
4

( 2 ; , )cos(2 ) (0; , )ijk ijk ijk
(2)

(76)

where αij, βijk are Cartesian components of the polarizability and
first hyperpolarizability tensors, respectively. The “diagonal”
elements μij

(1), μijj(2) of the dipole response functions can be
calculated from the time-dependent signal using the four-point
central difference formulas

μ
μ μ μ μ≈ [ Ε − −Ε ] − [ Ε − − Ε ]

Ε
t t t t8 ( , ) ( , ) ( , 2 ) ( , 2 )

12ij
i j i j i j i j

j

(1)

(77)

Figure 1. Absorption spectra computed with TDOMP2 and TDCC2 for Ne, HF, H2O, NH3, and CH4.
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μ
μ μ μ μ μ≈ [ Ε + −Ε ] − [ Ε + − Ε ] −
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t t t t16 ( , ) ( , ) ( , 2 ) ( , 2 ) 30

24ijj
i j i j i j i j i

j

(2)
0

2

(78)

with μ Εt( , )i j being the ith component of the time-dependent
dipole moment when a cosine field with a strength of Εj in the
±jth direction is applied. Finally, the polarizabilities and first
hyperpolarizabilities are determined by performing a curve fit of
the dipole response functions computed with finite differences
to the analytical forms given by eqs 75 and 76.
In practice, it is infeasible to adiabatically switch on the

electric field. This is circumvented by Ding et al.49 by turning on
the field with a linear ramping envelope lasting for one optical
cycle

π
ω

=t 2
c (79)

The electric field is then given by

ω

ω
Ε =

Ε ≤ <

Ε ≥

lmooooonooooot

t
t

t t t

t t t
( )

cos( ) 0

cos( )
c

c

c

0

0 (80)

and the curve fit is performed only on the part of the signal
computed after the ramp. Furthermore, Ding et al. suggest a total
simulation time of three to four optical cycles after the ramp and
that field strengths in the range Ε ∈ [ ]0.0005, 0.005 a.u.0 are
used.

3. RESULTS AND DISCUSSION
In order to assess optical properties extracted from the RT
TDOMP2 method, we compute absorption spectra, polar-
izabilities, and first hyperpolarizabilities for the 10-electron
systems Ne, HF, H2O, NH3, and CH4. To the best of our
knowledge, response theory has neither been derived nor
implemented for the OMP2method and, therefore, we compare
results from TDOMP2 simulations with those extracted from
RT TDCCSD and TDCC2 simulations and with results from
CCSD and CC2 response theory (LRCCSD/LRCC2).35,45 We
only compute polarizabilities and hyperpolarizabilities using the
TDCC2-b method because Kats et al.46 found that the effect of

the fully T1-transformed Fock operator on excitation energies is
negligible.
For Ne, we use the d-aug-cc-pVDZ basis set in order to

compare with Larsen et al.,50 while for the remaining molecules,
we use the aug-cc-pVDZ basis set.51−53 Basis set specifications
were downloaded from the Basis Set Exchange,54 and the
molecular geometries used are given in the Supporting
Information.
The RT simulations and correlated ground-state optimiza-

tions are carried out with a locally developed code described in
previous publications21,29,30 using Hamiltonian matrix elements
and HF orbitals computed with the PySCF package.55 The
CCSD and CC2 ground states are computed with the direct
inversion in the iterative subspace (DIIS)56 procedure, and the
OMP2 ground state with the algorithm described by Bozkaya et
al.43 with the diagonal approximation of the Hessian. The
convergence threshold for the residual norms is set to 10−10. The
ground-state energies and non-zero permanent dipole moments
for the systems considered are given in the Supporting
Information. The CCSD and CC2 linear and quadratic response
calculations are performed with the Dalton quantum chemistry
package.57,58

The TDOMP2, TDCCSD, TDCC2, and TDCC2-b equa-
tions of motion are integrated using the symplectic Gauss-
Legendre integrator.21,59 For all cases, the integration is
performed with a time step Δt = 0.01 a.u. using the sixth-
order (s = 3) Gauss−Legendre integrator and a convergence
threshold of 10−10 (residual norm) for the fixed-point iterations.
In all the RT simulations, the ground state is taken as the initial
state of the system, and we use a closed-shell spin-restricted
implementation of the equations. Also, the response calculations
are performed in the closed-shell spin-restricted formulation.

3.1. Absorption Spectra.Absorption spectra are computed
as described in Section 2.5 with the electric-field impulse of eq
69. The field strength is Ε = 0.001 a.u.0 , which is small enough
to ensure that only transitions from the ground state to dipole-
allowed excited states occur, while strong enough to induce
numerically significant oscillations. The induced dipole moment
is recorded at each of 100 000 time steps after the application of
the impulse, yielding a spectral resolution of about 0.006 a.u.
(0.163 eV) in the FFT of eq 72. The damping parameter is γ =
0.00921 a.u. (0.251 eV), which implies that the full width at half

Table 1. Dipole-Allowed Excitation Energies (in eV) below 30 eV Extracted from TDOMP2 and TDCC2 Simulations

TDOMP2 TDCC2 TDOMP2 TDCC2 TDOMP2 TDCC2

H2O 7.17 7.17 NH3 6.15 6.15 CH4 10.25 10.42
9.56 9.56 7.52 7.69 11.61 11.61
11.10 11.10 10.25 10.25 13.32 13.49
13.66 13.66 12.13 12.13 13.66 13.83
15.20 15.20 12.81 12.81 16.06 16.23
18.45 18.28 16.57 16.57 18.79 18.79
20.15 19.81 17.42 17.42 19.81 19.81
21.69 21.52 18.79 18.79 21.35 21.35
23.91 23.74 19.30 19.13 22.38 22.38
27.33 27.33 21.35 21.35 23.57 23.74
28.18 28.01 22.20 22.20 26.99 27.16

Ne 16.06 15.88 23.91 23.91 HF 10.08 9.91
23.06 22.89 25.45 25.28 14.35 14.18
27.84 27.50 26.82 26.82 19.30 18.96

28.18 28.18 22.72 22.54
29.21 29.21 24.25 24.08

29.21 29.04
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maximum of the Lorentzian absorption lines is roughly 50%
greater than the spectral resolution. Hence, very close-lying
resonances will appear as a single broader absorption line,
possibly with “shoulders”.
The quality of TDOMP2 absorption spectra can be assessed

by comparison with the well-known and highly similar TDCC2
theory (see Supporting Information for a validation of the
TDCC2 spectra by comparison with LRCC2 spectra in the
range from 0 to 930 eV), the essential difference between the
two methods being how orbital relaxation is treated. In general,
the LRCC2 theory provides excellent valence excitation
energies, often better than those of LRCCSD theory, for states
with predominant single-excitation character; see, for example,
the benchmark study by Schreiber et al.60 Preliminary and rather
limited tests of excitation energies computed with NOCC
theory revealed virtually no effect of the different orbital
relaxation treatments38 and, therefore, one might expect only
minor deviations between TDOMP2 and TDCC2 absorption

spectra, at least in the valence regions. For a full comparison of
the two methods, we will not limit ourselves to selected valence-
excited states but rather compare the complete spectra up to
core excitations, which are also activated by the broad-band
electric-field impulse. This implies that we also compare
unphysical spectral lines above the ionization threshold, which
arise artificially from the use of an incomplete basis set that
ignores the electronic continuum. Furthermore, we do not use
proper core-correlated basis sets for describing core excitations,
nor do we make any attempt at properly separating the core
excitations from high-lying artificial valence excitations. Hence,
no direct comparison with experimental data will be performed
in this work. We instead refer to refs 24 and 61, where
experimental near-edge X-ray absorption spectra are compared
with those computed with a range of LRCC and EOM-CC
methods and large basis sets for systems studied in this work.
Importantly, the direct comparison of TDCC2 and TDOMP2
absorption spectra will indicate the effects of fully bivariational,

Table 2. Polarizabilities (a.u.) of Ne, HF, H2O, NH3, and CH4 Extracted from TDCCSD, TDOMP2, TDCC2, and TDCC2-b
Simulationsa

Ne ω (a.u.) 0.1 0.2 0.3 0.4 0.5

LRCCSD 2.74 2.83 3.01 3.38 4.23
TDCCSD 2.74 2.83 3.03 3.49 4.76
TDOMP2 2.77 2.87 3.07 3.58 4.99
LRCC2 2.86 2.96 3.18 3.59 4.74
TDCC2 2.87 2.98 3.19 3.75 5.29
TDCC2-b 2.86 2.97 3.18 3.73 5.26

0.1 0.2 0.3

HF ω (a.u.) αyy αzz αyy αzz αyy αzz

LRCCSD 4.44 6.41 4.83 6.83 6.19 7.73
TDCCSD 4.45 6.41 4.84 6.83 6.72 7.84
TDOMP2 4.56 6.49 5.03 6.94 7.71 7.96
LRCC2 4.70 6.78 5.20 7.25 7.24 8.29
TDCC2 4.75 6.85 5.28 7.36 8.54 8.45
TDCC2-b 4.72 6.79 5.24 7.28 8.42 8.36

0.0428 0.0656 0.1

H2O ω (a.u.) αxx αyy αzz αxx αyy αzz αxx αyy αzz

LRCCSD 8.78 9.93 9.11 8.89 9.99 9.19 9.18 10.14 9.37
TDCCSD 8.78 9.93 9.11 8.90 10.00 9.19 9.19 10.14 9.37
TDOMP2 9.16 10.06 9.34 9.29 10.13 9.42 9.62 10.27 9.63
LRCC2 9.41 10.43 9.63 9.55 10.50 9.71 9.91 10.66 9.92
TDCC2 9.51 10.56 9.74 9.65 10.63 9.83 10.01 10.79 10.06
TDCC2-b 9.44 10.47 9.66 9.58 10.54 9.74 9.94 10.71 9.97

0.0428 0.0656 0.1

NH3 ω (a.u.) αyy αzz αyy αzz αyy αzz

LRCCSD 13.10 15.04 13.20 15.35 13.44 16.15
TDCCSD 13.10 15.05 13.20 15.36 13.45 16.15
TDOMP2 13.23 15.60 13.34 15.98 13.59 16.95
LRCC2 13.56 15.86 13.67 16.21 13.92 17.15
TDCC2 13.72 16.03 13.83 16.43 14.10 17.40
TDCC2-b 13.64 15.93 13.75 16.32 14.01 17.28

CH4 ω (a.u.) 0.0656 0.1 0.2

LRCCSD 17.05 17.39 19.55
TDCCSD 17.05 17.39 19.58
TDOMP2 17.18 17.53 19.79
LRCC2 17.49 17.84 20.08
TDCC2 17.69 18.05 20.34
TDCC2-b 17.61 17.96 20.25

aThe LRCCSD and LRCC2 results for Ne and HF are from ref 50., and the remaining LRCCSD and LRCC2 results are computed with the Dalton
quantum chemistry program (ref 57.).
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time-dependent orbitals on core excitations where orbital
relaxation is expected to play a key rolesee, for example, the
discussion by Park et al.24 for systems also considered in the
present work.
In Figure 1 we have plotted the TDOMP2 and TDCC2

electronic absorption spectra up to and including the core
region.
Although deviations between the TDOMP2 and TDCC2

spectra are visible, the two methods yield very similar results
both in the valence region and in the core region. The excitation
energies identified from the simulated spectra by automated
peak detection are reported in Table 1 for the dipole-allowed
states below 30 eV and confirm the close agreement between
TDOMP2 and TDCC2 theories.
The greatest deviations are found for the HF molecule,

especially for the intensities. Some intensity deviations are
expected, as the TDOMP2 method is gauge invariant (in the
complete basis set limit), while the TDCC2 theory is not,37,38

which is bound to influence transition moments but not
necessarily excitation energies. In the core regions, we note that
the spectra of H2O, NH3, and CH4 agree qualitatively with the
core spectra obtained by Park et al.24 from the TD-EOM-CCSD
theory. Keeping in mind that the large deviations between
LRCC2/LRCCSD and experimental core excitation energies
are ascribed to missing orbital-relaxation effects, it is intriguing
to observe that the fully bivariational orbital evolution included
in the TDOMP2 theory hardly affects the core spectra relative to
TDCC2 theory. Using automated peak detection, we find that
the differences in excitation energies in the core region between
the TDOMP2 and TDCC2 spectra are within 1−2 times the

spectral resolution. Because the error of LRCC2 core excitation
energies is typically several eV, we conclude that the orbital
relaxation provided by TDOMP2 theory is not sufficient to
significantly improve the agreement with experimental results.
This observation calls for further investigations with larger basis
sets, higher resolution (longer simulation times), and full
inclusion of double excitations (the TDOCCD and
TDNOCCD methods).

3.2. Polarizabilities and First Hyperpolarizabilities.
Polarizabilities and first hyperpolarizabilities are computed using
an electric field given by eq 80. After the initial one-cycle ramp,
we propagate for three optical cycles. The first- and second-
order time-dependent dipole response functions are computed
by finite differences according to eqs 77 and 78, with the first
optical cycle of the time evolution discarded because of the
ramping. We then perform least-squares fitting62 of the time-
domain dipole response functions to the form of eqs 75 and 76,
obtaining frequency-dependent polarizabilities and hyperpolar-
izabilities. For all the systems, we use the field strengths
Ε = ± ±0.0001, 0.0002 a. u.0 to compute the dipole derivatives
using finite differences.
The diagonal elements of the frequency-dependent polar-

izability tensor extracted from TDCCSD, TDOMP2, TDCC2,
and TDCC2-b simulations for Ne, HF, H2O, NH3, and CH4 are
listed in Table 2 along with results from LRCCSD and LRCC2
theories.
All the three diagonal elements are identical by symmetry for

Ne and CH4, αxx = αyy for HF and NH3, and off-diagonal
elements vanish for all the systems considered here. The

Figure 2. zz-component of the first-order dipole responses for HF atω = 0.1 a.u. andω = 0.3 a.u. fromTDCCSD, TDCC2, and TDOMP2 simulations.
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polarizability diverges at the (dipole-allowed) excitation
energies and, therefore, we select frequencies below the first
dipole-allowed transition in Table 1 (roughly 0.6 a.u. for Ne, 0.4
a.u. for HF, 0.3 a.u. for H2O, 0.2 a.u. for NH3, and 0.4 a.u. for
CH4).
The benchmark study by Larsen et al.50 indicated that the

LRCCSD theory yields accurate static and dynamic polar-
izabilities, although triple excitations are needed to obtain results
very close to the FCI theory, whereas results from the LRCC2
theory are significantly less accurate. Our results in Table 2
confirm this finding in the sense that TDCC2 (and LRCC2)
results are quite far from the corresponding TDCCSD (and
LRCCSD) results. We also note that TDCCSD and LRCCSD
results agree to a much greater extent than the results from
TDCC2 and LRCC2 theories.
Unfortunately, we have not been able to identify the source of

this behavior in the TDCC2model. The agreement between the
results from simulations and from response theory generally
worsens as the frequency approaches the lowest-lying dipole-
allowed transition. In this “semitransparent” regime, the
assumptions of linear response theory are violated and the
first-order time-dependent induced dipole moment cannot be
described as the simple function in eq 75.
This is confirmed by the plots of simulated time signals and

the least-squares fits in Figure 2 where the former clearly can
only be accurately described by eq 75 at sufficiently low
(transparent) frequencies. The TDCC2 least-squares fits,
however, do not appear worse than those of TDCCSD or
TDOMP2 theory. Hence, larger deviations from the form in eq

75 cannot explain the discrepancies between TDCC2 and
LRCC2 results.
Furthermore, we note the relatively large discrepancy between

the LRCCSD and TDCCSD results for the HF molecule at ω =
0.3 a.u. and the Ne atom at ω = 0.4 a.u. and ω = 0.5 a.u. In these
cases, the first-order response function extracted from the time-
dependent simulations (77) for all the methods considered does
not agree with the assumption of a pure cosine wave (75), as
shown in Figure 3 for the HF molecule. The source of deviation
is a combined effect of proximity to a pole, nonadiabatic effects
arising from ramping up the field over a single cycle, and the
absence of higher-order corrections in the finite-difference
expressions for the response functions.49 This is also likely to be
the source of the irregular behavior of αyy computed with the
TDCC2 and TDCC2-b methods.
Interestingly, we observe that polarizabilities from the

TDOMP2 theory are generally in better agreement with the
TDCCSD values than those from TDCC2 (and LRCC2)
theory. This trend is particularly evident from Figure 4 where we
have plotted the dispersion of the isotropic polarizability, αiso =
(αxx + αyy + αzz)/3.
Keeping in mind the similarity between the TDOMP2 and

TDCC2 spectra, the pronounced difference between TDOMP2
and TDCC2 polarizabilities is somewhat surprising. It is,
however, in agreement with the observation by Larsen et al.50

that orbital relaxation has a sizeable impact on polarizabilities
within CC theory, albeit not always improving the results
relative to FCI calculations. Only static polarizabilities were
considered by Larsen et al.50 because the orbital relaxation
formulated as a variational HF constraint within conventional

Figure 3. yy-component of the first-order dipole responses for HF at ω = 0.3 a.u. from TDCCSD, TDCC2, and TDOMP2 simulations.
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CC response theoryleads to spurious uncorrelated poles in
the response functions, making it useless for dynamic polar-
izabilities. The orbitals are treated as fully bivariational variables
within the TDOMP2 theory and, consequently, spurious poles
are avoided.37 Our results, therefore, seem to indicate that a fully
bivariational treatment of orbital relaxation is beneficial for
polarizability predictions. The partial orbital relaxation included
in the TDCC2-b method does not yield equally good
polarizabilities. In most cases, the results are nearly identical
to the TDCC2 ones, except for the H2O and NH3 molecules,
where the TDCC2-b polarizabilities are closer to the LRCC2
results, see Figure 4.
In Table 3 we list frequency-dependent first hyperpolariz-

abilities for HF, H2O, and NH3. Only the nonvanishing diagonal
components of the practically most important response tensors
corresponding to optical rectification (OR), βiiiOR = βiii(0, ω,
−ω), and second harmonic generation (SHG), βiiiSHG = βiii(−2ω,
ω, ω), are computed. Formally expressable as a double
summation over all the excited states, the first hyperpolariz-
ability generally requires a high-level description of electron
correlation effects for accurate calculations.63 This is reflected in
our results by the relatively large difference between the TDCC2
and TDCCSD methods.
While βiii

OR is singular when the magnitude of the radiation
frequency ω equals the excitation energy of the molecule, βiiiSHG

has an additional set of poles at half the excitation energies. The
βzzz
SHG results at ω = 0.3 a.u. for the HF molecule in Table 3 are

past the first pole and, hence, the sign has changed compared
with the SHG results at lower frequencies. The large negative
value of βzzzSHG atω = 0.3 a.u. obtained with the LRCCSDmethod
for theHFmolecule is due to proximity to two dipole-allowed, z-
polarized excitations at 0.598 a.u. (oscillator strength 0.005) and
at 0.532 a.u. (oscillator strength 0.157).

Figure 4. Isotropic polarizabilities extracted from TDCC2, TDCC2-b,
TDOMP2, and TDCCSD simulations, and from LRCC2 and LRCCSD
calculations.

Table 3. First Hyperpolarizabilities (a.u.) of HF, H2O, andNH3 fromTDCCSD, TDOMP2, TDCC2, and TDCC2-b Simulationsa

0.1 0.2 0.3

HF ω (a.u.) βzzz
OR βzzz

SHG βzzz
OR βzzz

SHG βzzz
OR βzzz

SHG

LRCCSD 12.81 14.38 15.28 29.40 21.86 −229.70
TDCCSD 12.89 14.45 15.63 29.32 25.11 −73.94
TDOMP2 13.05 14.66 15.21 28.16 24.98 −65.73
LRCC2 15.52 17.52 18.69 37.67 27.35 −51.78
TDCC2 16.53 18.63 19.40 36.39 32.11 −61.17
TDCC2-b 15.32 17.26 17.95 33.56 29.76 −64.95

0.0428 0.0656 0.1

H2O ω (a.u.) βzzz
OR βzzz

SHG βzzz
OR βzzz

SHG βzzz
OR βzzz

SHG

LRCCSD −9.11 −9.59 −9.43 −10.72 −10.25 −14.52
TDCCSD −9.14 −9.62 −9.50 −10.78 −10.47 −14.69
TDOMP2 −9.92 −10.49 −10.33 −11.80 −11.57 −17.63
LRCC2 −12.39 −13.12 −12.87 −14.83 −14.11 −20.76
TDCC2 −13.63 −14.42 −14.17 −16.18 −15.75 −23.70
TDCC2-b −11.89 −12.58 −12.38 −14.15 −13.84 −21.01

0.0428 0.0656

NH3 ω (a.u.) βyyy
OR βyyy

SHG βzzz
OR βzzz

SHG βyyy
OR βyyy

SHG βzzz
OR βzzz

SHG

LRCCSD −14.90 −15.50 23.90 28.02 −15.30 −16.88 26.57 40.49
TDCCSD −14.94 −15.59 24.20 28.45 −15.47 −17.27 27.35 41.94
TDOMP2 −15.64 −16.42 30.66 36.26 −15.81 −17.39 35.50 58.38
LRCC2 −16.69 −17.40 33.80 39.87 −17.16 −19.01 37.72 58.61
TDCC2 −17.32 −18.13 35.80 41.90 −17.51 −19.17 41.24 66.61
TDCC2-b −17.00 −17.79 32.60 38.26 −17.19 −18.81 37.80 61.67

aNotation: βiiiOR = βiii(0; ω, −ω) and βiii
SHG = βiii(−2ω; ω, ω). The LRCCSD and LRCC2 results for HF are taken from Larsen et al.50

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01309
J. Chem. Theory Comput. 2022, 18, 3687−3702

3698

70



The agreement between RT simulations and response theory
is seen to be somewhat worse than for polarizabilities, especially
for frequencies closer to the pole of the hyperpolarizability. To a
large extent this can be ascribed to the second-order dipole
response extracted from the time-dependent simulations not
being well described by the sinusoidal form of eq 76, as
illustrated in Figure 5.
Analogous observations were done by Ding et al.49 in the

context of RT-TDDFT simulations. Hence, moving on to
higher-order nonlinear optical properties cannot generally be
expected to provide more than a rough estimate with the present
extraction algorithm. As for the polarizabilites mentioned above,
we observe that the first hyperpolarizabilities obtained from
TDOMP2 simulations are generally closer to TDCCSD and
LRCCSD results than those from TDCC2 and LRCC2 theory.
The source of the improvement over TDCC2 theory must be
the bivariational orbital relaxation, although we stress that the
larger differences between TDOMP2 theory and TDCCSD
theory, which are particularly pronounced for NH3, clearly
demonstrate the insufficient electron correlation treatment of
the former for highly accurate predictions of nonlinear optical
properties. The importance of orbital relaxation is corroborated
by the TDCC2-b hyperpolarizabilities, which are somewhat
closer to the TDOMP2 and TDCCSD results than the TDCC2
ones.

4. CONCLUDING REMARKS
In this work, we have presented a new unified derivation of
TDOCC and TDNOCC theories, including the second-order
approximations TDOMP2 and TDNOMP2, using exponential
orbital-rotation operators and the bivariational Euler−Lagrange

equations. Using five small 10-electron molecules as test cases,
we have extracted absorption spectra and frequency-dependent
polarizabilities and hyperpolarizabilities from TDOMP2 simu-
lations with weak fields within the electric-dipole approximation
and compared the results with those from conventional
TDCCSD and TDCC2 simulations. Although the TDOMP2
absorption spectra are almost identical to the TDCC2 spectra,
including in the spectral region of core excitations, the
TDOMP2 polarizabilities and hyperpolarizabilities are signifi-
cantly closer to the TDCCSD results than those from TDCC2
simulations, especially for frequencies comfortably away from
resonances. Further corroborated by TDCC2-b simulations, our
results strongly indicate that fully (bi-)variational orbital
relaxation is important for frequency-dependent polarizabilities
and hyperpolarizabilities, while nearly irrelevant for absorption
spectra.
Combined with the observations by Pathak et al.,26 who found

that TDOMP2 theory outperforms TDCC2 theory for strong-
field many-electron dynamics, our results may serve as a
motivation for further development of TDOMP2 theory. First of
all, a reduced-scaling implementation of TDOMP2 theory,
obtained, for example, by exploiting the sparsity of the
correlating doubles amplitudes,64 can provide reasonably
accurate results for larger systems and basis sets that are out of
reach for today’s TDCC implementations. Second, an efficient
implementation of OMP2 linear and quadratic response
functions is warranted.
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(46) Kats, D.; Korona, T.; Schütz, M. Local CC2 electronic excitation
energies for large molecules with density fitting. J. Chem. Phys. 2006,
125, 104106.
(47) Repisky, M.; Konecny, L.; Kadek, M.; Komorovsky, S.; Malkin,
O. L.; Malkin, V. G.; Ruud, K. Excitation Energies from Real-Time
Propagation of the Four-Component Dirac-Kohn-Sham Equation. J.
Chem. Theory Comput. 2015, 11, 980−991.
(48) Goings, J. J.; Li, X. An atomic orbital based real-time time-
dependent density functional theory for computing electronic circular
dichroism band spectra. J. Chem. Phys. 2016, 144, 234102.
(49) Ding, F.; Van Kuiken, B. E.; Eichinger, B. E.; Li, X. An efficient
method for calculating dynamical hyperpolarizabilities using real-time
time-dependent density functional theory. J. Chem. Phys. 2013, 138,
064104.
(50) Larsen, H.; Olsen, J.; Hättig, C.; Jørgensen, P.; Christiansen, O.;
Gauss, J. Polarizabilities and first hyperpolarizabilities of HF, Ne, and
BH from full configuration interaction and coupled cluster calculations.
J. Chem. Phys. 1999, 111, 1917−1925.
(51) Dunning, T. H., Jr. Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen. J. Chem. Phys. 1989, 90, 1007−1023.
(52) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. Electron
affinities of the first-row atoms revisited. Systematic basis sets and wave
functions. J. Chem. Phys. 1992, 96, 6796−6806.
(53) Woon, D. E.; Dunning, T. H., Jr. Gaussian basis sets for use in
correlated molecular calculations. IV. Calculation of static electrical
response properties. J. Chem. Phys. 1994, 100, 2975−2988.
(54) Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus,
T. L. New Basis Set Exchange: An Open, Up-to-Date Resource for the
Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814−
4820.
(55) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li,
Z.; Liu, J.; McClain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters, S.;
Chan, G. K. L. PySCF: the Python-based simulations of chemistry
framework.Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, No. e1340.
(56) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-
Structure Theory; John Wiley & Sons, 2014.
(57) Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.;
Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; Dalskov, E. K.;
Ekström, U.; Enevoldsen, T.; Eriksen, J. J.; Ettenhuber, P.; Fernández,
B.; Ferrighi, L.; Fliegl, H.; Frediani, L.; Hald, K.; Halkier, A.; Hättig, C.;
Heiberg, H.; Helgaker, T.; Hennum, A. C.; Hettema, H.; Hjertenaes, E.;
Høst, S.; Høyvik, I.-M.; Iozzi, M. F.; Jansík, B.; Jensen, H. J. A.; Jonsson,
D.; Jørgensen, P.; Kauczor, J.; Kirpekar, S.; Kjaergaard, T.; Klopper, W.;
Knecht, S.; Kobayashi, R.; Koch, H.; Kongsted, J.; Krapp, A.;
Kristensen, K.; Ligabue, A.; Lutnaes, O. B.; Melo, J. I.; Mikkelsen, K.
V.; Myhre, R. H.; Neiss, C.; Nielsen, C. B.; Norman, P.; Olsen, J.; Olsen,
J. M. H.; Osted, A.; Packer, M. J.; Pawlowski, F.; Pedersen, T. B.;
Provasi, P. F.; Reine, S.; Rinkevicius, Z.; Ruden, T. A.; Ruud, K.;
Rybkin, V. V.; Sałek, P.; Samson, C. C. M.; de Merás, A. S.; Saue, T.;
Sauer, S. P. A.; Schimmelpfennig, B.; Sneskov, K.; Steindal, A. H.;
Sylvester-Hvid, K. O.; Taylor, P. R.; Teale, A. M.; Tellgren, E. I.; Tew,
D. P.; Thorvaldsen, A. J.; Thøgersen, L.; Vahtras, O.; Watson, M. A.;
Wilson, D. J. D.; Ziolkowski, M.; Ågren, H. The Dalton quantum
chemistry program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2014, 4, 269−284.
(58) Olsen, J. M. H.; Reine, S.; Vahtras, O.; Kjellgren, E.; Reinholdt,
P.; Hjorth Dundas, K. O.; Li, X.; Cukras, J.; Ringholm,M.; Hedegar̊d, E.
D.; Di Remigio, R.; List, N. H.; Faber, R.; Cabral Tenorio, B. N.; Bast,
R.; Pedersen, T. B.; Rinkevicius, Z.; Sauer, S. P. A.; Mikkelsen, K. V.;
Kongsted, J.; Coriani, S.; Ruud, K.; Helgaker, T.; Jensen, H. J. A.;
Norman, P. Dalton Project: A Python platform for molecular- and

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01309
J. Chem. Theory Comput. 2022, 18, 3687−3702

3701

73



electronic-structure simulations of complex systems. J. Chem. Phys.
2020, 152, 214115.
(59) Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical
Integration, 2nd ed.; Springer: Berlin, 2006.
(60) Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.; Thiel, W.
Benchmarks for electronically excited states: CASPT2, CC2, CCSD,
and CC3. J. Chem. Phys. 2008, 128, 134110.
(61) Coriani, S.; Christiansen, O.; Fransson, T.; Norman, P. Coupled-
cluster response theory for near-edge x-ray-absorption fine structure of
atoms and molecules. Phys. Rev. A 2012, 85, 022507.
(62) Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction; Springer: New York,
NY, 2009; pp 43−99.
(63) Christiansen, O.; Coriani, S.; Gauss, J.; Hättig, C.; Jørgensen, P.;
Pawłowski, F.; Rizzo, A. In Non-Linear Optical Properties of Matter:
From Molecules to Condensed Phases; Papadopoulos, M. G., Sadlej, A. J.,
Leszczynski, J., Eds.; Springer Netherlands: Dordrecht, 2006; Chapter
2, pp 51−99.
(64) Crawford, T. D.; Kumar, A.; Bazanté, A. P.; Remigio, R. D.
Reduced-scaling coupled cluster response theory: Challenges and
opportunities. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2019, 9,
No. e1406.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01309
J. Chem. Theory Comput. 2022, 18, 3687−3702

3702

74



Correction to “Linear and Nonlinear Optical Properties from
TDOMP2 Theory”
Hak̊on Emil Kristiansen,* Benedicte Sverdrup Ofstad, Eirill Hauge, Einar Aurbakken,
Øyvind Sigmundson Schøyen, Simen Kvaal, and Thomas Bondo Pedersen*
J. Chem. Theory Comput. 2022, 18 (6), 3687−3702. DOI: 10.1021/acs.jctc.1c01309

Cite This: J. Chem. Theory Comput. 2022, 18, 5755−5757 Read Online

ACCESS Metrics & More Article Recommendations

An error has been discovered in the equations of motion
(EOMs) for the a

i amplitudes of the TDCC2 method, eq
22. The contributions arising from the term
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of the TDCC2 Hamilton function, eq 21, were erronously left
out. Including these contributions, eq 22 becomes
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The missing contributions were also left out in the
implementation of the TDCC2 and TDCC2-b methods. We
have added the missing contributions to the implementation,
which has been verified by comparing expectation values of the
electric-dipole operator at nonzero electric-field strengths with
those obtained by numerical di!erentiation (second-order
central di!erence) of total energies. Note that energy derivatives
at nonzero field strengths are required to detect the error.

The peak positions in the absorption spectra (i.e., the
excitation energies) are una!ected by the error since the EOMs
for the τ amplitudes are unchanged. The relative intensities
deviate from the original results by at most 0.0015, typically
much less, for all molecules studied. Errors of this magnitude are
not visible in plotted spectra. The maximum error occurs for the
water molecule as shown in Figure 1. Hence, the reported
TDCC2 and TDCC2-b spectra are practically una!ected.

Figure 1. Absolute di!erence of the TDCC2 absorption spectra of the
water molecule before (“old”) and after (“new”) correcting the EOMs
for the a

i amplitudes.

On the other hand, the computed values of the polarizabilities
and first hyperpolarizabilities change. In Table 1 and Table 2 we
report updated values for the polarizabilities and first hyper-
polarizabilities, respectively. We note that the TDCC2 results
are now in much better agreement with the LRCC2 results than
originally reported. This is also evident in Figure 4 (replacing
Figure 4 in the original paper) where we have plotted the
dispersion of the isotropic polarizability using the new
polarizabilties from TDCC2 and TDCC2-b simulations. Also,
in Figure 2 and Figure 3 we have plotted the first-order dipole
response functions for the HF molecule from corrected TDCC2
simulations, which corrects the middle panels of Figure 2 and
Figure 3 in the original paper, respectively.
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Figure 2. Zz-component of the first-order dipole responses for HF at
ω = 0.1 au and ω = 0.3 au from corrected TDCC2 simulations.

Figure 3. Yy-component of the first-order dipole response for HF at
ω = 0.3 au from the corrected TDCC2 simulation.

Table 1. Polarizabilities (au) of Ne, HF, H2O, NH3, and CH4 Extracted from LRCC2, TDCC2, and TDCC2-b Simulationsa

ω = 0.1 au ω = 0.2 au ω = 0.3 au ω = 0.4 au ω = 0.5 au
Ne LRCC2* 2.86 2.96 3.18 3.59 4.74

TDCC2 2.86 2.96 3.18 3.73 5.27
TDCC2* 2.87 2.98 3.19 3.75 5.29
TDCC2-b 2.84 2.95 3.16 3.71 5.23
TDCC2-b* 2.86 2.97 3.18 3.73 5.26

ω = 0.1 au ω = 0.2 au ω = 0.3 au

αyy αzz αyy αzz αyy αzz

HF LRCC2* 4.70 6.78 5.20 7.25 7.24 8.29
TDCC2 4.71 6.78 5.24 7.28 8.47 8.36
TDCC2* 4.75 6.85 5.28 7.36 8.54 8.45
TDCC2-b 4.68 6.72 5.20 7.20 8.35 8.27
TDCC2-b* 4.72 6.79 5.24 7.28 8.42 8.36

ω = 0.0428 au ω = 0.0656 au ω = 0.1 au

αxx αyy αzz αxx αyy αzz αxx αyy αzz

H2O LRCC2* 9.41 10.43 9.63 9.55 10.50 9.71 9.91 10.66 9.92
TDCC2 9.41 10.43 9.63 9.55 10.50 9.71 9.91 10.67 9.94
TDCC2* 9.51 10.56 9.74 9.65 10.63 9.83 10.01 10.79 10.06
TDCC2-b 9.35 10.35 9.55 9.49 10.42 9.63 9.84 10.58 9.86
TDCC2-b* 9.44 10.47 9.66 9.58 10.54 9.74 9.94 10.71 9.97

ω = 0.0428 au ω = 0.0656 au ω = 0.1 au

αyy αzz αyy αzz αyy αzz

NH3 LRCC2* 13.56 15.86 13.67 16.21 13.92 17.15
TDCC2 13.56 15.86 13.67 16.25 13.93 17.21
TDCC2* 13.72 16.03 13.83 16.43 14.10 17.40
TDCC2-b 13.48 15.76 13.59 16.15 13.84 17.09
TDCC2-b* 13.64 15.93 13.75 16.32 14.01 17.28

ω = 0.0656 au ω = 0.1 au ω = 0.2 au

CH4 LRCC2* 17.49 17.84 20.08
TDCC2 17.50 17.85 20.12
TDCC2* 17.69 18.05 20.34
TDCC2-b 17.42 17.77 20.02
TDCC2-b* 17.61 17.96 20.25

aThe LRCC2 results for Ne and HF are from ref 1, and the LRCC2 results are computed with the Dalton quantum chemistry program (ref 2). The
calculations marked with * refers to the values reported in the original paper.
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Figure 4. Isotropic polarizabilities extracted from TDCC2, TDOMP2,
and TDCCSD simulations and from LRCC2 and LRCCSD
calculations.

Finally, we emphasize that the conclusions of the original
paper are una!ected by the error.

■ REFERENCES
(1) Larsen, H.; Olsen, J.; Hättig, C.; Jørgensen, P.; Christiansen, O.;

Gauss, J. Polarizabilities and first hyperpolarizabilities of HF, Ne, and
BH from full configuration interaction and coupled cluster calculations.
J. Chem. Phys. 1999, 111, 1917−1925.

(2) Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.;
Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; Dalskov, E. K.;
Ekström, U.; Enevoldsen, T.; Eriksen, J. J.; Ettenhuber, P.; Fernández,
B.; Ferrighi, L.; Fliegl, H.; Frediani, L.; Hald, K.; Halkier, A.; Hättig, C.;
Heiberg, H.; Helgaker, T.; Hennum, A. C.; Hettema, H.; Hjertenaes, E.;
Høst, S.; Høyvik, I.-M.; Iozzi, M. F.; Jansík, B.; Jensen, H. J. A.; Jonsson,
D.; Jørgensen, P.; Kauczor, J.; Kirpekar, S.; Kjaergaard, T.; Klopper, W.;
Knecht, S.; Kobayashi, R.; Koch, H.; Kongsted, J.; Krapp, A.;
Kristensen, K.; Ligabue, A.; Lutnaes, O. B.; Melo, J. I.; Mikkelsen, K.
V.; Myhre, R. H.; Neiss, C.; Nielsen, C. B.; Norman, P.; Olsen, J.; Olsen,
J. M. H.; Osted, A.; Packer, M. J.; Pawlowski, F.; Pedersen, T. B.;
Provasi, P. F.; Reine, S.; Rinkevicius, Z.; Ruden, T. A.; Ruud, K.;
Rybkin, V. V.; Sałek, P.; Samson, C. C. M.; Sánchez de Merás, A.; Saue,
T.; Sauer, S. P. A.; Schimmelpfennig, B.; Sneskov, K.; Steindal, A. H.;
Sylvester-Hvid, K. O.; Taylor, P. R.; Teale, A. M.; Tellgren, E. I.; Tew,
D. P.; Thorvaldsen, A. J.; Thøgersen, L.; Vahtras, O.; Watson, M. A.;
Wilson, D. J. D.; Ziolkowski, M.; Ågren, H. The Dalton quantum
chemistry program system. Wiley Interdiscip. Rev. Comput. Mol. Sci.
2014, 4, 269−284.

Table 2. First Hyperpolarizabilities (au) of HF, H2O, and NH3 from TDCCSD, TDOMP2, TDCC2, and TDCC2-b Simulationsa

ω = 0.1 au ω = 0.2 au ω = 0.3 au

βzzz
OR βzzz

SHG βzzz
OR βzzz

SHG βzzz
OR βzzz

SHG

HF LRCC2* 15.52 17.52 18.69 37.67 27.35 −51.78
TDCC2 15.54 17.53 18.26 34.31 30.57 −60.52
TDCC2* 16.53 18.63 19.40 36.39 32.11 −61.17
TDCC2-b 14.73 16.62 17.26 32.34 28.76 −64.06
TDCC2-b* 15.32 17.26 17.95 33.56 29.76 −64.95

ω = 0.0428 au ω = 0.0656 au ω = 0.1 au

βzzz
OR βzzz

SHG βzzz
OR βzzz

SHG βzzz
OR βzzz

SHG

H2O LRCC2* −12.39 −13.12 −12.87 −14.83 −14.11 −20.76
TDCC2 −12.42 −13.16 −12.93 −14.83 −14.45 −22.02
TDCC2* −13.63 −14.42 −14.17 −16.18 −15.75 −23.70
TDCC2-b −11.21 −11.88 −11.69 −13.41 −13.10 −20.08
TDCC2-b* −11.89 −12.58 −12.38 −14.15 −13.84 −21.01

ω = 0.0428 au ω = 0.0656 au

βyyy
OR βyyy

SHG βzzz
OR βzzz

SHG βyyy
OR βyyy

SHG βzzz
OR βzzz

SHG

NH3 LRCC2* −16.69 −17.40 33.80 39.87 −17.16 −19.01 37.72 58.61
TDCC2 −16.78 −17.58 33.97 39.88 −16.97 −18.59 39.26 63.96
TDCC2* −17.32 −18.13 35.80 41.90 −17.51 −19.17 41.24 66.61
TDCC2-b −16.59 −17.37 31.53 37.10 −16.77 −18.37 36.62 60.11
TDCC2-b* −17.00 −17.79 32.60 38.26 −17.19 −18.81 37.80 61.67

aNotation: (0; , )iii iii
OR = and ( 2 ; , )iii iii

SHG = . The LRCCSD and LRCC2 results for HF are taken from Larsen et al.1

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Erratum

https://doi.org/10.1021/acs.jctc.2c00830
J. Chem. Theory Comput. 2022, 18, 5755−5757

5757

77



78



Paper II

Adiabatic extraction of nonlinear
optical properties from real-time

time-dependent electronic-structure
theory

79

II





The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Adiabatic extraction of nonlinear optical
properties from real-time time-dependent
electronic-structure theory

Cite as: J. Chem. Phys. 158, 154102 (2023); doi: 10.1063/5.0145521
Submitted: 6 February 2023 • Accepted: 27 March 2023 •
Published Online: 17 April 2023

Benedicte Sverdrup Ofstad,1,a) Håkon Emil Kristiansen,1 Einar Aurbakken,1

Øyvind Sigmundson Schøyen,2 Simen Kvaal,1 and Thomas Bondo Pedersen1,b)

AFFILIATIONS
1 Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
2Department of Physics, University of Oslo, Oslo, Norway

a)Author to whom correspondence should be addressed: b.s.ofstad@kjemi.uio.no
b)Electronic mail: t.b.pedersen@kjemi.uio.no

ABSTRACT

Real-time simulations of laser-driven electron dynamics contain information about molecular optical properties through all orders in response
theory. These properties can be extracted by assuming convergence of the power series expansion of induced electric and magnetic multipole
moments. However, the accuracy relative to analytical results from response theory quickly deteriorates for higher-order responses due to
the presence of high-frequency oscillations in the induced multipole moment in the time domain. This problem has been ascribed to missing
higher-order corrections. We here demonstrate that the deviations are caused by nonadiabatic effects arising from the finite-time ramping
from zero to full strength of the external laser field. Three different approaches, two using a ramped wave and one using a pulsed wave, for
extracting electrical properties from real-time time-dependent electronic-structure simulations are investigated. The standard linear ramp is
compared to a quadratic ramp, which is found to yield highly accurate results for polarizabilities, and first and second hyperpolarizabilities,
at roughly half the computational cost. Results for the third hyperpolarizability are presented along with a simple, computable measure of
reliability.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0145521

I. INTRODUCTION

Extraction of frequency-dependent, off-resonance linear and
nonlinear optical properties of molecules from real-time time-
dependent electronic-structure simulations has been increasingly
used1–18 in place of conventional response theory19,20 in recent years.
One likely reason is that the implementation of response theory
becomes increasingly cumbersome with increasing response order,
whereas time-dependent methods are relatively straightforward to
implement.

While response theory is based on perturbation expansions,
real-time approaches where the initial ground-state wave function
(or density or density matrix) is propagated in the presence of an
external laser field automatically include responses to all orders
in perturbation theory. In principle, therefore, optical response

properties through any order can be extracted from induced mul-
tipole moments recorded during the real-time simulation. If the
total number of time steps in the wave function propagation can
be kept low enough, the real-time approach may become computa-
tionally advantageous over the response approach for higher-order
nonlinear properties such as the second hyperpolarizability.

The time required for real-time simulations depends on sev-
eral parameters besides the inherent computational complexity of
the equations of motion for the wave function parameters, which
generally take the form ẏ = f (y, t) where the dot denotes the time
derivative. The choice of integrator affects how large a time step
may be used without sacrificing accuracy and the number of expen-
sive evaluations of the function f (y, t) per time step. For given
choices of electronic-structure model and suitable integrator, how-
ever, the key parameter determining both computational effort and
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FIG. 1. Comparison of the third-order induced dipole moment extracted from
TDCCSD simulations of the Ne atom with a least-squares fitting to the form
expected from response theory.

accuracy of the extracted properties is the form used for the external,
time-dependent field.

Two general approaches for the extraction of response prop-
erties have been proposed recently. While Uemoto et al.14 used
a pulsed (i.e., with finite duration) wave, Ding et al.8 used a
monochromatic continuous wave ramped from zero to full strength
in a finite-time interval to mimic the adiabatic switching-on required
by response theory. In both cases, the individual orders of the
response of the electronic system are separated by running simu-
lations with different field strengths, followed by curve fitting to
extract specific frequency-dependent properties at each order. The
accuracy and total simulation time thus intrinsically depend on the
duration of the pulsed or continuous wave, including the ramping
time for the latter.

In this work, we investigate the convergence of the extracted
response properties (polarizabilities, and first and second hyperpo-
larizabilities) toward the results from response theory with respect
to the duration of the pulsed wave (PW). For the ramped con-
tinuous wave (RCW) approach, we perform the same convergence
study with respect to the adiabatic ramping time and the post-ramp
time.

The results reported by Ding et al.8 indicate that linear polar-
izabilities can be extracted from simulations with errors below∼1%, while the percentwise errors increase by roughly a fac-
tor of ten at each nonlinear order for hyperpolarizabilities. The
source of these errors is the significant deviation of the higher-
order time-domain dipole signals from the form expected from
frequency-dependent response theory. Figure 1 shows an example
for the Ne atom where we have extracted the third-order induced
dipole moment from time-dependent coupled-cluster singles-and-
doubles (TDCCSD) simulations with the approach recommended
by Ding et al.8 That is, we have used a continuous wave linearly
ramped for one optical cycle, followed by wave-function propa-
gation with full field strength for four optical cycles. Evidently,
the deviation between the computed dipole and the fitted one is
much too big for an accurate determination of the second hyper-
polarizability, as also indicated by the coefficient of determination,
r2 = 0.01.

Such deviations have been ascribed to higher-order trunca-
tion errors,8 and additional linear ramping time has been shown

to improve the accuracy of hyperpolarizabilities in the context of
time-dependent configuration-interaction simulations, both spin-
unrestricted and with spin-restriction through the graphical uni-
tary group approach.12 In this work, we investigate if the devia-
tions can be reduced by switching to a softer adiabatic ramping
while maintaining or reducing the total computational cost of the
time-dependent simulations.

The remainder of this paper is organized as follows: In Sec. II,
we review the RCW and PW methods for extracting up to the third
hyperpolarizability and propose an alternative to the linear ramping
of Ding et al.8 aimed at mitigating nonadiabatic effects. Test systems
and other computational details are provided in Sec. III, followed by
presentation and discussion of results in Sec. IV. Finally, concluding
remarks are given in Sec. V.

II. THEORY

The electronic dynamics induced by an electromagnetic field is
governed by the time-dependent Schrödinger equation

i
∂Ψ(t)
∂t

= Ĥ(t)Ψ(t), Ψ(0) = Ψ0, (1)

where Ψ0 is the initial condition, here chosen to be the normalized,
time-independent ground-state wavefunction. The time-dependent
Hamiltonian Ĥ(t) is given by

Ĥ(t) = Ĥ0 + V̂(t), (2)

where Ĥ0 is the molecular electronic Hamiltonian in the clamped-
nuclei Born-Oppenheimer approximation, and the matter–field
interaction operator V̂(t) is given in the length-gauge electric-dipole
approximation as

V̂(t) = −μ̂ ⋅ E(t). (3)

Here, μ̂ is the electric-dipole operator and E(t) is a uniform classical
electric field. The time evolution of the electric-dipole moment is
obtained from the explicitly time-propagated wavefunction as

μ(t) = ⟨Ψ(t)∣μ̂∣Ψ(t)⟩. (4)

Provided the external field is sufficiently weak and adiabati-
cally switched on, each Cartesian coordinate of the time-dependent
dipole moment μi(t) can be expanded as a power series in the
electric field Ej(t). Separating the electric-field component Ej(t)= EjF(t) into a constant amplitude Ej and a time-dependent
function F(t), ∣F(t)∣ ≤ 1, we may write21

μi(t) = μ0
i +∑

j
μ(1)i j (t)E j +∑

jk
μ(2)ijk (t)E jEk

+∑
jkl

μ(3)ijkl (t)E jEkEl

+∑
jklm

μ(4)ijklm(t)E jEkElEm + ⋅ ⋅ ⋅ . (5)

The time-dependent dipole responses μ(n)(t) can be written either
in the time domain or in the frequency domain.
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In the time domain, we may write the dipole responses as the
convolutions of time-dependent polarizabilities and hyperpolariz-
abilities with the field factors F(t),21

μ(1)i j (t) = ∫ ∞
−∞α(1)i j (t − t1)F(t1) dt1, (6a)

μ(2)ijk (t) =∬ ∞
−∞α(2)ijk (t − t1, t − t2)F(t1)F(t2) dt1 dt2, (6b)

μ(3)ijkl (t) =∬∫ ∞
−∞α(3)ijkl (t − t1, t − t2, t − t3)

× F(t1)F(t2)F(t3) dt1 dt2 dt3, (6c)

μ(4)ijklm(t) =∬∬ ∞
−∞α(4)ijklm(t − t1, t − t2, t − t3, t − t4)

× F(t1)F(t2)F(t3)F(t4) dt1 dt2 dt3 dt4. (6d)

By causality, the time-dependent (hyper-)polarizability tensors α(n)

vanish when any of the arguments t − tn < 0. In the frequency
domain, adopting the conventions of response theory,19

μ(1)i j (t) = ∫ ∞
−∞αi j(−ω; ω)F̃(ω)e−iωt dω, (7a)

μ(2)ijk (t) = 1
2∬

∞
−∞ βijk(−ω(2); ω1, ω2)

× F̃(ω1)F̃(ω2)e−i(ω1+ω2)t dω1 dω2, (7b)

μ(3)ijkl (t) = 1
6∬∫

∞
−∞ γijkl(−ω(3); ω1, ω2, ω3)

× F̃(ω1)F̃(ω2)F̃(ω3)e−i(ω1+ω2+ω3)t dω1 dω2 dω3, (7c)

μ(4)ijklm(t) = 1
24∬∬

∞
−∞ δijklm(−ω(4); ω1, ω2, ω3, ω4)

× F̃(ω1)F̃(ω2)F̃(ω3)F̃(ω4)e−i(ω1+ω2+ω3+ω4)t
× dω1 dω2 dω3 dω4, (7d)

where ω(n) = ω1 + ω2 + ⋅ ⋅ ⋅ + ωn and

F̃(ω) = 1
2π∫

∞
−∞F(t)eiωt dt. (8)

Using the notation of Olsen and Jørgensen,19 the frequency-
dependent (hyper-)polarizabilities are the linear and nonlinear
response functions,

αi j(−ω; ω) = −⟨⟨μ̂i; μ̂ j⟩⟩ω, (9a)

βijk(−ω(2); ω1, ω2) = ⟨⟨μ̂i; μ̂ j , μ̂k⟩⟩ω1 ,ω2
, (9b)

γijkl(−ω(3); ω1, ω2, ω3) = −⟨⟨μ̂i; μ̂ j , μ̂k, μ̂l⟩⟩ω1 ,ω2 ,ω3
, (9c)

δijklm(−ω(4); ω1, ω2, ω3, ω4) = ⟨⟨μ̂i; μ̂ j , μ̂k, μ̂l, μ̂m⟩⟩ω1 ,ω2 ,ω3 ,ω4
. (9d)

The response functions of the right-hand sides can, in principle,
be evaluated analytically with a wide range of quantum chemical
methods using response theory,22 although we are not aware of
any implementation beyond cubic response—i.e., beyond the second
hyperpolarizability γijkl.

With the electric field polarized along a specific axis, say j, the
“diagonal” components of the dipole responses, μ(n)ijj⋅ ⋅ ⋅j(t), can be

extracted from μi(t) recorded during simulations using the central
difference formulas,

μ(1)i j (t) ≈ 8Δ−i (t, E j) − Δ−i (t, 2E j)
12E j

, (10a)

μ(2)ijj (t) ≈ 16Δ+i (t, E j) − Δ+i (t, 2E j) − 30μ0
i

24E2
j

, (10b)

μ(3)ijjj (t) ≈ −13Δ−i (t, E j) + 8Δ−i (t, 2E j) − Δ−i (t, 3E j)
48E3

j
, (10c)

μ(4)ijjjj (t) ≈ 1
144E4

j
(−39Δ+i (t, E j) + 12Δ+i (t, 2E j)

− Δ+i (t, 3E j) + 56μ0). (10d)

The truncation error is O(E4
j) in each case, and

Δ±i (t, E j) = μi(t, E j) ± μi(t,−E j), (11)

is the sum/difference of the time-dependent dipole moments com-
puted with opposite polarization directions and same field strength
Ej. One can now use different choices for F(t) to obtain the
frequency-dependent response functions using either the frequency-
domain expressions (7) or those in the time-domain (6).

A. Ramped continuous wave approach
As the name suggests, the RCW approach uses a continuous

wave, i.e., F(t) = cos(ωt). This choice allows us to perform the
Fourier transformations of Eq. (7) analytically to obtain

μ(1)i j (t) = αi j(−ω; ω) cos (ωt), (12a)

μ(2)ijj (t) = 1
4
[βSHG

ijj (ω) cos (2ωt) + βOR
ijj (ω)], (12b)

μ(3)ijjj (t) = 1
24
[γTHG

ijjj (ω) cos (3ωt) + 3γDFWM
ijjj (ω) cos (ωt)], (12c)

μ(4)ijjjj (t) = 1
192
[δFHG

ijjjj (ω) cos (4ωt)
+ 4δFSHG

ijjjj (ω) cos (2ωt) + 3δHOR
ijjjj (ω)], (12d)

where the (hyper-)polarizabilities are assumed real, a valid assump-
tion given that Ĥ0 does not contain static magnetic fields, and

βSHG
ijj (ω) = βijj(−2ω; ω, ω), (13a)

βOR
ijj (ω) = βijj(0; ω,−ω), (13b)

γTHG
ijjj (ω) = γijjj(−3ω; ω, ω, ω), (13c)

γDFWM
ijjj (ω) = γijjj(−ω; ω, ω,−ω), (13d)

δFHG
ijjjj (ω) = δijjj(−4ω; ω, ω, ω, ω), (13e)

δHSHG
ijjjj (ω) = δijjj(−2ω; ω, ω, ω,−ω), (13f)

δHOR
ijjjj (ω) = δijjj(0; ω, ω,−ω,−ω). (13g)

The superscripts refer to the following nonlinear optical processes:
Second harmonic generation (SHG), optical rectification (OR),
third harmonic generation (THG), degenerate four-wave mixing
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FIG. 2. The time profiles FLRCW and FQRCW with ω = 0.

(DFWM), fourth harmonic generation (FHG), higher-order second
harmonic generation (HSHG), and higher-order optical rectifica-
tion (HOR). With the left-hand sides known from simulations
through Eq. (10), Eqs. (12a)–(12d) yield the frequency-dependent
(hyper-)polarizabilities by curve fitting.

Frequency-dependent response theory, however, requires the
field to be adiabatically switched on.19 This can be achieved by a
smooth modification of the continuous wave such that it is switched-
on at t → −∞ and reaches full strength at t →∞. Of course, this
is impractical and a finite-time ramping of the field from zero to
full strength must be applied in a way that minimizes nonadiabatic
effects using only post-ramp signals to extract the dipole responses
μ(n)(t). In Ref. 8, the adiabatic switching-on is simulated by a linear
ramp lasting for one optical cycle, i.e., a ramping time tr = tc where
the cycle time is tc = 2π

ω . We refer to this approach as the linear RCW
(LRCW) approach for which

FLRCW(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
t
tr

cos (ωt), 0 ≤ t < tr ,

cos (ωt), tr ≤ t ≤ ttot.
(14)

Following the ramping phase, Ding et al.8 propagated the system
for a further four optical cycles, giving a total simulation time of
ttot = 5tc. We will here investigate the effect of a longer ramping time
consisting of nr optical cycles, tr = nrtc. We note that the linear ramp
is not continuously differentiable at t = 0 and at t = tr .

In addition to extending the ramping time beyond a single
optical cycle, we investigate the quadratic ramp to achieve a more
adiabatic switching on of the electric field. We refer to this approach
as the quadratic RCW (QRCW) approach. Specifically,

FQRCW(t) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2t2

t2
r

cos (ωt), 0 ≤ t < tr

2
,

t2
r − 2(t − tr)2

t2
r

cos (ωt), tr

2
≤ t < tr ,

cos (ωt), tr ≤ t ≤ ttot,

(15)

which is continuously differentiable at both t = 0 and t = tr . As illus-
trated in Fig. 2, the quadratic ramp provides a gentler increase of the
electric field than the linear ramp for small t and near t = tr , albeit
with a more rapid increase around t = tr

2 . A similar sigmoid (Fermi-
like) function has been used to obtain electronic ground states by

adiabatically switching on electronic interactions, thus providing an
alternative to imaginary-time propagation.23

B. Pulsed wave approach
Uemoto et al.14 proposed an alternative approach to the extrac-

tion of linear and nonlinear properties from simulations of electron
dynamics driven by a laser pulse rather than by a continuous wave.
We refer to this approach as the pulsed wave (PW) approach, which
starts from the time-domain responses, Eqs. (6a)–(6d). Retardation
effects are neglected and the polarization thus is considered local
in time, i.e.,

μ(n)(t) =∬ ⋅ ⋅ ⋅∫ ∞
−∞α(n)(t − t1, t − t2, . . . , t − tn)

× F(t1)F(t2) ⋅ ⋅ ⋅F(tn) dt1 dt2 ⋅ ⋅ ⋅ dtn

≈ α(n)(t)F(t)n, (16)

where the Cartesian indices have been omitted for notational con-
venience. Following Uemoto et al.,14 the time-dependence of the
finite laser pulse is described using a trigonometric envelope, which
provides a well-defined approximation to the Gaussian envelope
typically used in experimental work,24

FPW(t) = sin2 ( πt
ttot
) cos (ωt), 0 ≤ t ≤ ttot. (17)

The finite duration of the laser pulse implies that the frequency dis-
tribution is broadened around the carrier frequency ω. This, in turn,
implies that α(n)(t) contains (hyper-)polarizabilities in a range of
frequencies and, therefore, a filtering procedure must be applied to
extract the proper nonlinear response functions in the frequency
domain. If the frequency distribution of the laser pulse is sufficiently
sharply centered at the carrier frequency—i.e., if the pulse duration is
sufficiently long—the linear polarizability dominates the time signal
and can be found by a direct fitting of the signal to the time profile
of the pulse,

μ(1)i j (t) = αi j(−ω; ω)FPW(t). (18)

This is essentially the same procedure used for a monochromatic
continuous wave [Eq. (12a)] above.

For the hyperpolarizabilities, where more than one frequency
component is present in the signal, the individual frequency compo-
nents are separated by means of a Fourier filtering procedure: μ(n)(t)
is Fourier transformed to the frequency domain to obtain

μ̃ (n)(ω′) = 1
2π∫

∞
−∞ μ(n)(t)eiω′t dt, (19)

which is subsequently transformed back to the time domain using
a suitably chosen frequency window specified as a positive integer
multiple k of the carrier frequency ω,

μ(n)(t; kω) = ∫ −(k−1)ω
−(k+1)ω μ̃ (n)(ω′)e−iω′t dω′

+ ∫ (k+1)ω
(k−1)ω μ̃ (n)(ω′)e−iω′t dω′. (20)
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The same procedure is applied to FPW(t),
FPW(t; kω) = ∫ −(k−1)ω

−(k+1)ω F̃ PW(ω′)e−iω′t dω′

+ ∫ (k+1)ω
(k−1)ω F̃ PW(ω′)e−iω′t dω′. (21)

The frequency-dependent hyperpolarizabilities are then acquired by
finding the coefficient needed to fit μ(n) (t; kω) to [FPW(t; kω)]n.
Thus, the first hyperpolarizabilities are found by curve fitting
according to

μ(2)ijj (t; 0) = 1
4

βOR
ijj (ω)[FPW(t; 0)]2, (22a)

μ(2)ijj (t; 2ω) = 1
4

βSHG
ijj (ω)[FPW(t; 2ω)]2, (22b)

the second hyperpolarizabilities according to

μ(3)ijjj (t; ω) = 1
8

γDFWM
ijjj (ω)[FPW(t; ω)]3, (23a)

μ(3)ijjj (t; 3ω) = 1
24

γTHG
ijjj (ω)[FPW(t; 3ω)]3, (23b)

and the third hyperpolarizabilities according to

μ(4)ijjjj (t; 0) = 1
64

δHOR
ijjjj (ω)[FPW(t; 0)]4, (24a)

μ(4)ijjjj (t; 2ω) = 1
48

δHSHG
ijjjj (ω)[FPW(t; 2ω)]4, (24b)

μ(4)ijjjj (t; 4ω) = 1
192

δFHG
ijjjj (ω)[FPW(t; 4ω)]4. (24c)

III. COMPUTATIONAL DETAILS

The time-dependent Schrödinger equation (1) is solved
approximately using the time-dependent configuration-interaction
singles (TDCIS)25,26 method, the time-dependent coupled-cluster
singles-and-doubles (TDCCSD)27–29 method, the second-order
approximate time-dependent coupled-cluster (TDCC2)17,30

model, and the time-dependent orbital-optimized second-order
Møller–Plesset (TDOMP2)17,31 model. The time-dependent
coupled-cluster methods have been used recently to simulate
optical properties, including linear absorption spectra,32–37 transient
pump-probe absorption spectra,38,39 and ionization dynamics and
high-harmonic generation.31,40–44

For the nonvariational methods, the dipole moment is com-
puted using the inherently real expectation-value functional pro-
posed in Refs. 28 and 45.

We test the RCW and PW approaches using the same ten-
electron systems as in Ref. 17, namely, Ne, HF, H2O, NH3, and
CH4. The geometries of these molecules can be found in the
supplementary material. The d-aug-cc-pVDZ46 basis set is used for
Ne, while the aug-cc-pVDZ47 basis set is used for the four remain-
ing systems. The basis set definitions are taken from the Basis Set
Exchange (BSE).48 The carrier frequencies are chosen in accord with
Ref. 17: Ne: ω = 0.1, HF: ω = 0.1, H2O: ω = 0.0428, NH3: ω = 0.0428,
and CH4: ω = 0.0656 a.u. These frequencies come in at less than one
third of the first dipole-allowed excitation energy for each system,

enabling properties up to (at least) the third hyperpolarizability to
be reliably extracted.

The Hartree–Fock reference orbitals and Hamiltonian inte-
grals are calculated using the Python-based Simulations of Chem-
istry Framework49 (PySCF) with the gradient norm convergence
threshold set to 10−10 a.u.

The ground states are computed using a locally developed
closed-shell spin-restricted code,50 all computed with a residual
norm convergence criteria of 10−12 a.u. The equations of motion
are integrated using the sixth order (three-stage, s = 3) symplectic
Gauss–Legendre integrator51 as described in Ref. 28 with a time
step of Δt = 0.01 a.u. and the residual norm convergence crite-
rion set to 10−10 a.u. for the implicit equations. The least-squares
curve fitting, using the Levenberg–Marquardt algorithm, as imple-
mented in the optimize module of SciPy52 is used to extract the
(hyper-)polarizabilities.

The coupled-cluster response data are computed using the
Dalton quantum chemistry package53–59 with the following gra-
dient/residual norm convergence criteria: 10−10 a.u. for the
Hartree–Fock reference orbitals, 10−10 a.u. for the CC ground-state
residual norms, and 10−8 a.u. for the response equations. The CIS
response data are computed using sum-over-states expressions.19,60

For all simulations, the electric-field strengths
E = ±0.001,±0.002,±0.003 a.u. are used in order to reduce
numerical noise for higher-order properties. The electric-field
strengths should be of a magnitude where both the errors associ-
ated with numerical noise and the errors arising from numerical
truncation and nonadiabatic effects remain small. Ding et al.8
explored field strengths in the range 0.0005 to 0.005 a.u. and found
E = 0.002 a.u. to provide the most accurate results. Uemoto et al.14

used field strengths from E ≈ 0.0002 a.u. to E ≈ 0.002 a.u. and did
not find the PW approach to be sensitive within this range.

IV. RESULTS
A. Time evolution of the nonlinear dipole
responses in the RCW approach

The accuracy of the (hyper-)polarizabilities obtained using the
RCW approach depends on how closely the time-domain dipole
responses μ(n)(t) actually are to their expected forms, expressed
by Eqs. (12a)–(12d). Therefore, we start by comparing the signals
extracted after linear and quadratic ramping. The motivation for
this is twofold: First, we wish to investigate if the deviations pre-
viously observed8 for time signals of nonlinear properties can be
alleviated with the closer-to-adiabatic quadratic ramp. Second, we
wish to investigate the effect of varying the ramping time tr = nrtc
and the propagation time tp = nptc. Their relative importance will
be assessed, and the most favorable ratio between nr and np will be
determined. When the time parameters are explicitly specified, the
approach will be denoted RCW(nr , np). Results obtained with the
TDCCSD method will be presented and discussed; analogous results
with the TDCC2, TDOMP2, and TDCIS methods are given in the
supplementary material.

The systems are ramped using either the linear ramp profile
FLRCW [Eq. (14)] or the quadratic ramp profile FQRCW [Eq. (15)]. The
ramp duration is increased in increments of one optical cycle, up to a
maximum of seven optical cycles (nr = 1, 2, . . . , 7), followed by four
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optical cycles of propagation (np = 4). The second- and third-order
time-dependent dipole responses μ(n) (t), n = 2, 3, are collected, and
fitted to the expected shapes in Eqs. (12b) and (12c).

The time-domain dipole response μ(2)zzz (t) for the NH3 molecule
is displayed in Fig. 3. The upper-most panel exhibits the one-cycle
ramp, and for each descending panel the number of ramping cycles
is increased by one. The function obtained by fitting the analytic
form over the range of four cycles post-ramp is displayed in black
along with its coefficient of determination, r2. The function obtained
by fitting to one post-ramp cycle is plotted in green.

Ramping with the linear profile, we observe the high-frequency
oscillations previously reported in Refs. 8 and 17. The correspon-
dence between the signal and expected form improves significantly
as the linear ramping time is increased to two and three optical
cycles. Increasing the linear ramp time above three optical cycles
only delivers marginal improvements. The simulations conducted
using the quadratic ramp, in contrast, appear to behave correctly
already at the one-cycle ramp stage. Evidently, the signal can be
improved either by switching to the quadratic ramp or by increasing
the duration of the linear ramping. The curves fitted using one post-
ramp cycle typically have r2 values slightly above those obtained by
fitting to four post-ramp cycles.

The second hyperpolarizability, a much smaller contribution to
the total induced dipole moment, is highly sensitive to errors in the
time signal. The third-order response signal, μ(3)zzz (t), features both
the high-frequency oscillations observed for the first hyperpolariz-
ability and the increase in amplitude as time progress. The molecule
least sensitive to these effects is H2O, for which results are presented
in Figs. 4(a) and 4(b). The molecule most sensitive is CH4, for which
results are presented in Figs. 4(c) and 4(d). The linear one-cycle
ramp is clearly inadequate for describing the second hyperpolar-
izability for both molecules, indicating that even a small amount
of nonadiabatic error dramatically reduces the correspondence of
the signal with its expected form. Increasing the ramping time to
two or three optical cycles greatly improves the signal, but analo-
gously to what was observed for the first hyperpolarizability, increas-
ing beyond three cycles does not improve the signal. Even with
increased ramping time, the linear ramp does not provide an accu-
rate description of the third order response signal, yielding at best
r2 = 0.22 for CH4. The quadratic ramp profile fairs notably better,
although the high-frequency oscillations and the drift of the ampli-
tude is observed for the CH4 molecule when a one-cycle ramp is
employed—i.e., in contrast to what was observed for the first hyper-
polarizability, a one-cycle quadratic ramp appears to be insufficient.

FIG. 3. The second-order dipole response obtained from TDCCSD simulations using, from top to bottom, nr = (1, 2, 3, 4, 5, 6, 7) linear ramp (a) or quadratic ramp (b) cycles
followed by four post-ramp cycles of propagation time for NH3. The fitting in black is done on all four post-ramp cycles, the fitting in green is done on one post-ramp cycle.
All plots are on the same scale.
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FIG. 4. The third-order dipole response obtained from TDCCSD simulations for (a) H2O using a linear ramp profile, (b) H2O using a quadratic ramp profile, (c) CH4 using
a linear ramp profile, and (d) CH4 using a quadratic ramp profile. From top to bottom panel, nr = (1, 2, 3, 4, 5, 6, 7) ramp cycles are followed by four post-ramp cycles of
propagation. The fitting in black is done on all four post-ramp cycles, the fitting in green is done on one post-ramp cycle. All four plots are on the same scale for each system.
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FIG. 5. Convergence toward CCSD linear response results of polarizabilities, αzz ,
extracted from TDCCSD simulations using the LRCW(ntot − 1, 1), QRCW(ntot− 1, 1), and PW(ntot) methods.

Increasing the number of ramping cycles quickly leads to conver-
gence, giving r2 = 0.999 98 when seven cycles are used for the CH4
molecule.

The gradual ramping of the electric-field strength is found to
reduce the signal errors indicating that nonadiabatic effects are the
main source of error, given that the dipole expansion is not divergent
in any order. Furthermore, it is clear that the quadratic ramp aids in
reaching an adiabatic description more rapidly than the linear ramp.
It is found that fitting the expected function to the signal after only
one post-ramp cycle is warranted when the simulation has ramped
in a sufficiently adiabatic manner. Based on these observations, we
shall compare the RCW method to the PW method using one post-
ramp cycle.

B. Polarizability
In the interest of gauging the accuracy of the different

approaches, polarizabilities extracted using the LRCW, QRCW, and
PW approach are compared to response theory calculations. By
assessing the closeness of the real-time approaches to response the-
ory at different total simulation times, ttot = (nr + np)tc = ntottc, we

FIG. 6. Convergence toward CCSD quadratic response results of first hyperpo-
larizabilities extracted from TDCCSD simulations using the LRCW(ntot − 1, 1),
QRCW(ntot − 1, 1), and PW(ntot) methods.

may compare the accuracy achieved by the three approaches at
similar computational costs.

The RCW simulations are performed using ntot = nr + 1, i.e.,
using the LRCW(nr , 1) and QRCW(nr , 1) methods, in line with
the discussion in Sec. IV A. The first-order dipole response is sep-
arated from the time signal using the finite difference formula
(10) for all approaches. By point-group symmetry, the polarizabil-
ity tensors of Ne and CH4 are equal for all Cartesian directions,
and only the zz component is computed. For the NH3 and HF
molecules, the xx and yy polarizability components are the same
by symmetry, whereas polarizability tensors for all three Carte-
sian directions are computed for H2O. The polarizabilities at the
CCSD level for the five systems in the zz direction are displayed in
Fig. 5. The other unique polarizability components at the CCSD level

J. Chem. Phys. 158, 154102 (2023); doi: 10.1063/5.0145521 158, 154102-8

© Author(s) 2023

88



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. First hyperpolarizabilities, βSHG
zzz , extracted from TDCCSD simulations using the LRCW(nr , np) and QRCW(nr , np)

methods compared with CCSD linear response results.

HF H2O NH3

LRCW(1,4) 14.428 −9.683 29.330
QRCW(1,4) 14.372 −9.588 28.022

QRCW(1,1) 14.375 −9.603 27.941
QRCW(2,1) 14.368 −9.590 28.005
QRCW(3,1) 14.371 −9.590 28.027
QRCW(4,1) 14.372 −9.591 28.020
QRCW(5,1) 14.370 −9.591 28.020

Response 14.370 −9.591 28.020

FIG. 7. Convergence toward CCSD cubic response results of second hyperpolarizabilities (a) γTHG
zzzz and (b) γDFWM

zzzz extracted from TDCCSD simulations using the
LRCW(ntot − 1, 1), QRCW(ntot − 1, 1), and PW(ntot) methods.

can be found in the supplementary material along with CC2 level
results.

The QRCW approach consistently produces polarizabilities
with the highest accuracy, achieving a 0.03% accuracy after the min-
imum two cycles of total simulation time, nr = 1, np = 1. The PW
approach requires longer computational time in order to attain
polarizabilities of the same accuracy as QRCW, yet it converges

consistently toward the correct value with increasing cycles of sim-
ulation time. Albeit with irregular convergence behavior, the LRCW
method achieves accuracies comparable to the PW approach as
illustrated for the NH3 and H2O molecules in Fig. 5.

The errors for the extracted polarizabilities are overall small
for all three approaches regardless of ramping. For the short-
est ramp length and poorest performing extraction approach, the
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TABLE II. The third harmonic generation components γTHG
jjjj of the second hyperpolarizabilities of Ne, HF, H2O, NH3, and CH4 extracted from TDCCSD, TDOMP2, TDCC2, and

TDCIS simulations compared with results from cubic response theory.

TDCCSD TDOMP2 TDCC2 TDCIS TDCCSD TDOMP2 TDCC2 TDCIS

HF γTHG
xxxx γTHG

zzzz

PW(3) −718 −912 −1180 −236 −509 −531 −685 −329
LRCW(2,1) −834 −997 −1050 −196 −539 −426 −588 −321
QRCW(2,1) −570 −700 −1010 −227 −511 −524 −643 −332

Response −625 ⋅ ⋅ ⋅ −949 −230 −517 ⋅ ⋅ ⋅ −653 −332

NH3 γTHG
yyyy γTHG

zzzz

PW(3) −1180 −1260 −1380 10.3 −7710 −8930 −9770 −4030
LRCW(2,1) −770 −1850 −2010 −470 −8030 −9500 − 11 000 −4310
QRCW(2,1) −1260 −1300 −1450 −2.40 −8100 −9070 −9990 −4110

Response −1220 ⋅ ⋅ ⋅ −1420 13.8 −7850 ⋅ ⋅ ⋅ −9950 −4130

H2O γTHG
xxxx γTHG

yyyy

PW(3) −1750 −2000 −2320 −796 −546 −562 −653 −14.1
LRCW(2,1) −1980 −1930 −2390 −866 −475 − 1040 −766 −174
QRCW(2,1) −1820 −2050 −2380 −831 −559 −584 −668 −23.2

Response −1800 ⋅ ⋅ ⋅ −2380 −820 −565 ⋅ ⋅ ⋅ −675 −13.8

γTHG
zzzz

PW(3) −1040 −1150 −1320 −469
LRCW(2,1) −1130 −1050 −1310 −531
QRCW(2,1) −1090 −1180 −1360 −491

Response −1080 ⋅ ⋅ ⋅ −1360 −483

Ne γTHG
jjjj CH4 γTHG

jjjj

PW(3) −119 −129 −148 −61.3 −2670 −2750 −2910 19.2
LRCW(2,1) −74.6 −189 −120 −63.5 −3950 −3020 −4140 −720
QRCW(2,1) −118 −128 −153 −65.5 −2650 −2800 −2910 2.03

Response −122 ⋅ ⋅ ⋅ −151 −62.8 −2720 ⋅ ⋅ ⋅ −2960 46.0

polarizability is still correct to 0.25%. This modest error can be
reduced to below 0.0009% using the QRCW(7,1) method for all
molecules.

C. First hyperpolarizability
The second-order dipole response signal is sensitive to non-

adiabatic effects, as seen in Fig. 3. Adiabatic ramping, therefore, is
expected to significantly improve accuracy.

Due to symmetry, all the diagonal components of the first
hyperpolarizability are zero for the Ne and CH4 molecules. The
H2O and the HF molecule exhibit diagonal first hyperpolarizabili-
ties in the zzz-direction, and the NH3 molecule has non-vanishing
hyperpolarizabilities in the yyy- and zzz-direction. The βSHG

zzz and
βOR

zzz components extracted from TDCCSD simulations are displayed
in Fig. 6. The βSHG

yyy and βOR
yyy components of NH3 can be found in

the supplementary material along with all non-zero diagonal first
hyperpolarizabilities at the CC2 level.

The errors of the extracted first hyperpolarizabilities are found
to be roughly an order of magnitude greater than for polarizabili-
ties with ntot = 2. Using the LRCW(1,1) method to extract the βSHG

zzz

component yields the following % errors: HF 0.33%, H2O 0.33%,
and NH3 2.6%. Using the QRCW(1,1) method reduces these to:
HF 0.01%, H2O 0.07%, NH3 0.2%. We obtain hyperpolarizabilities
with the smallest relative errors when applying QRCW(7,1) with
accuracies of: HF 0.0006%, H2O 0.001%, NH3 0.003% for the βSHG

zzz
component and: HF 0.003%, H2O 0.002%, NH3 0.005% for the βOR

zzz
component. With this error reduction the first hyperpolarizability
tensors have accuracies comparable to the extracted polarizability
tensors.

The PW approach performs surprisingly poorly with regard
to extracting the first hyperpolarizabilities as seen in Fig. 6. For
the shortest simulation times, some of the errors obtained for
the βSHG

zzz component are beyond the scale of the plot, especially
for the HF molecule. To check convergence, the total propaga-
tion time for the HF molecule was increased to PW(20), resulting
in a reduction of the error from 0.07% to 0.01% for the βOR

zzz
component and from −1.8% to 0.29% for the βSHG

zzz component.
Although improved, the PW(20) results are still of significantly
lower accuracy than the RCW(7,1) results, for which the errors
are 0.0006% for the βOR

zzz component and 0.004% for the βSHG
zzz

component.
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TABLE III. The degenerate four wave mixing component γDFWM
jjjj of the second hyperpolarizabilities of Ne, HF, H2O, NH3, and CH4 extracted from TDCCSD, TDOMP2, TDCC2,

and TDCIS simulations compared with results from cubic response theory.

TDCCSD TDOMP2 TDCC2 TDCIS TDCCSD TDOMP2 TDCC2 TDCIS

HF γDFWM
xxxx γDFWM

zzzz

PW(3) −254 −284 −342 −109 −303 −312 −397 −184
LRCW(2,1) −326 −360 −397 −134 −354 −334 −424 −219
QRCW(2,1) −290 −324 −393 −128 −356 −365 −439 −215

Response −298 ⋅ ⋅ ⋅ −387 −128 −358 ⋅ ⋅ ⋅ −441 −217

NH3 γDFWM
yyyy γDFWM

zzzz

PW(3) −913 −955 −1050 64.2 −4940 −5550 −6100 −2690
LRCW(2,1) −948 −1310 −1430 −71.9 −5900 −6540 −7350 −3240
QRCW(2,1) −1100 −1140 −1260 73.9 −5930 −6570 −7230 −3190

Response −1090 ⋅ ⋅ ⋅ −1260 78.8 −5870 ⋅ ⋅ ⋅ −7240 −3200

H2O γDFWM
xxxx γDFWM

yyyy

PW(3) −1260 −1420 −1640 −590 −438 −449 −521 5.67
LRCW(2,1) −1550 −1660 −1950 −715 −495 −681 −651 −44.3
QRCW(2,1) −1510 −1690 −1950 −706 −522 −538 −621 4.39

Response −1510 ⋅ ⋅ ⋅ −1950 −703 −524 ⋅ ⋅ ⋅ −623 7.44

γDFWM
zzzz

PW(3) −803 −877 −1010 −349
LRCW(2,1) −975 −1010 −1180 −431
QRCW(2,1) −963 −1050 −1200 −419

Response −959 ⋅ ⋅ ⋅ −1200 −417

Ne γDFWM
jjjj CH4 γDFWM

jjjj

PW(3) −79.3 −84.7 −95.7 −41.8 −1730 −1750 −1870 313
LRCW(2,1) −80.6 −114 −105 −51.3 −2330 −2130 −2500 192
QRCW(2,1) −93.1 −99.7 −114 −50.4 −2030 −2080 −2200 373

Response −94.2 ⋅ ⋅ ⋅ −114 −49.7 −2050 ⋅ ⋅ ⋅ −2210 384

The accuracies achieved using the QRCW(nr , 1) with
nr = (1, 2, 3, 4, 5) are compared to LRCW(1,4) and QRCW(1,4)
in Table I. Depending on the demands placed on computational
cost and accuracy, it is worth noting that propagating for only two
optical cycles (nr = np = 1) may be sufficient: The QRCW(1,1)
approach produces higher accuracy than the LRCW(1,4)
approach.

The errors of the first hyperpolarizabilities presented in this
section can be compared with the goodness of fit (r2) of the signals
they were extracted from. Taking NH3 as an example, increasing nr
from 1 to 7 yields the errors (4.68, 1.08, 1.50, 0.53, 0.93, 0.34, 0.65)%
with the LRCW method. As expected, the errors correlate strongly
to the coefficient of determination of the signal where they were
extracted from; the r2 value increases as (0.640, 0.989, 0.938, 0.997,
0.977, 0.999, 0.988). This correlation holds true for all molecules,
confirming that the r2 value can be used as a crude indicator of
accuracy.

D. Second hyperpolarizability
Accurate extraction of second hyperpolarizabilities is well

known to be challenging, showing errors an order of magnitude

greater than those observed for the first hyperpolarizabilities.8 An
increase of the r2 values in the third-order dipole response signal
will thus substantially increase trust in second hyperpolarizabilities
extracted from real-time simulations.

The errors of the γTHG
zzzz components as functions of simula-

tion time are compared for the different approaches in Fig. 7(a) at
the CCSD level. Results for the other Cartesian components can
be found in the supplementary material, including results obtained
from simulations at other levels of theory.

Starting with two cycles of simulation time, the LRCW(1,1)
approach produces γTHG

zzzz results with errors that vary greatly
between the systems, spanning from −1.5% for H2O to +56% for Ne.
Increasing the ramping time to seven optical cycles [LRCW(7,1)]
does not reduce the errors which now range from −34% for CH4
to −16% for Ne. The lacking improvement highlights the conver-
gence issues of the LRCW approach, as is clearly visible in the CH4
and H2O panels of Fig. 7(a). The poor convergence is accompanied
by dipole response signals μ(3)zzz (t) that do not show the expected
form. For example, the coefficient of determination for CH4 ranges
from r2 = 0.09 to r2 = 0.22 as the number of ramping cycles
is increased.
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FIG. 8. The fourth-order dipole response functions obtained from TDCCSD
simulations for the HF, NH3, and H2O molecules using QRCW(7,1).

TABLE IV. The third hyperpolarizabilities δzzzzz extracted from TDCCSD simulations
with QRCW(2,1), QRCW(7,1), PW(3), and PW(8).

δFHG
zzzzz δHSHG

zzzzz δHOR
zzzzz

HF

QRCW(2,1) 10 636 3 863 2 726
QRCW(7,1) 11 948 3 808 2 705

PW(3) 14 795 3 082 2 641
PW(8) 12 512 3 699 2 724

NH3

QRCW(2,1) 324 317 76 998 56 012
QRCW(7,1) 231 482 81 326 53 906

PW(3) 244 356 62 355 52 571
PW(8) 240 228 74 587 54 103

H2O

QRCW(2,1) −5 067 −2 271 −1 694
QRCW(7,1) −4 520 −2 208 −1 662

PW(3) −4 452 −1 748 −1 608
PW(8) −4 536 −2 129 −1 665

The PW(2) approach produces γTHG
zzzz with small intersystem

variations in error; the smallest error is 13% for HF, the largest 17.8%
for H2O. The properties also converge in a systematic fashion with
increasing simulation time. At the maximum simulation time, the
PW(8) method is able to attain errors as small as −0.02% for HF and
no larger than −0.25% for H2O.

The QRCW approach produces γTHG
zzzz results with the small-

est errors. The improvement over the other approaches is most

striking when only a few optical cycles of simulation time are used.
With QRCW (1,1), one gets γTHG

zzzz results with errors smaller than
1.6% for HF, H2O, and NH3 and somewhat higher errors for Ne
and CH4. Including an extra ramping cycle, the QRCW(2,1) method
reduces the errors of Ne from −17% to 3% and of CH4 from −21%
to 2.0%. Hence, the QRCW(2,1) method stands out as a possible
compromise between computational cost and accuracy. The most
accurate γTHG

zzzz results are acquired using the QRCW(7,1) method,
achieving accuracies with errors below 0.8% for all systems. How-
ever, the lowest error obtained for γTHG

zzzz is still a 1000-fold greater
than that found for the polarizabilities and βOR

zzzz , showing that some
loss of accuracy must be expected for higher-order responses.

The extracted γDFWM
zzzz results [Fig. 7(b)] behave similarly to

γTHG
zzzz . The errors are generally large when two cycles of simulation

time is used, 20% for LRCW(1,1), 31% for PW(2), and −6.7% for
QRCW(1,1). Increasing the simulation time quickly leads to very
accurate results when using the QRCW approach, less so for the
PW approach, and the LRCW approach continues to perform irreg-
ularly as a function of simulation time. The main difference between
the γDFWM

zzzz and the γTHG
zzzz results lies in the slower convergence with

increasing simulation time for the PW approach. The inferior per-
formance of PW for γDFWM

zzzz resembles the poorer performance found
for βSHG. The γDFWM

zzzz results are accurate to within 0.3% for all
systems when using the QRCW(7,1) approach.

Also, for the second hyperpolarizability, we find a relation
between r2 values of the fit with the errors observed, confirming
that r2 values close to 1 are needed for a reliable extraction. The
results obtained with the TDCCSD, TDOMP2, TDCC2, and TDCIS
methods for γTHG

xxxx , γTHG
yyyy , and γTHG

zzzz after a total simulation time of
three optical cycles are shown in Table II. The γDFWM

xxxx , γDFWM
yyyy , and

γDFWM
zzzz results are shown in Table III. In general, we observe that

the QRCW(2,1) approach yields more accurate second hyperpolar-
izabilities than the LRCW(2,1) and PW(3) approaches regardless of
the electronic-structure method used. We note in passing that, in
agreement with the observations made in Ref. 17, the TDOMP2
method yields optical properties that fall between those of the
TDCC2 and TDCCSD methods. Although there is no response data
available for the OMP2 method, we may assume that the TDOMP2
values reported with the QRCW approach is correct to within 1%
based on the accuracies observed for the TDCCSD, TDCC2, and
TDCIS methods.

As expected,61 the simulations at the TDCIS level provides opti-
cal properties vastly different from the other three methods due
to lack of electron correlation. Since the fourth-order dipole signal
is very weak, separation by numerical differentiation is more chal-
lenging. Although the optimal choice of the electric-field strength
is beyond the scope of this paper, we remark that increasing the
electric-field strength from E = 0.001 to E = 0.004 seems to reduce
the error of the numerical differentiation for the TDCIS method.

E. Third hyperpolarizability
The RCW and PW approaches can straightforwardly be

extended to evaluate higher order properties, here exemplified
with third hyperpolarizabilities. An example of extracting fourth
hyperpolarizabilities can be found in the supplementary material.

To the best of our knowledge, there are no implemented ana-
lytic response functions available for third hyperpolarizabilities.
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Instead, we will use the r2 value of the fit to the fourth-order dipole
response function μ(4)(t) to gauge the accuracy of the extracted
third hyperpolarizabilities. Figure 8 shows μ(4)zzzzz(t) calculated at the
TDCCSD level of theory along with the associated curve fitting using
the QRCW(7,1) method. The fitted curves have r2 values ranging
from 0.87 to 0.99, indicating that only the third hyperpolarizabil-
ity results for NH3 (r2 = 0.99) and HF (r2 = 0.96) are fully reliable
while the results for H2O are decent estimates.

The third hyperpolarizabilities for HF, NH3, and H2O are
given in in Table IV. The discrepancies between the PW and RCW
approaches are modest, typically on the order of 3% for the δFHG

zzzzz and
0.5% for the δHSHG

zzzzz when simulating for a total of eight optical cycles.
Increasing the total simulation time (i.e., increasing nr in the case of
the QRCW approach) is likely to improve the accuracy further, in
analogy to the convergence behavior observed for the lower-order
responses above.

V. CONCLUDING REMARKS

We have compared three approaches to the extraction of
linear and nonlinear optical properties from electron dynamics
simulations with respect to accuracy relative to results from response
theory and computational effort. The LRCW and QRCW
approaches are based on a monochromatic continuous wave pertur-
bation ramped from zero to full strength linearly and quadratically,
while the PW approach uses Fourier filtering to extract properties
at a given frequency from signals recorded during the interaction
of electrons with a finite laser pulse. All three approaches rely on
numerical (finite-difference) differentiation to separate different
orders of response in the time domain, followed by curve fitting to
obtain the property of interest at a given frequency.

Showing irregular convergence behavior toward response
results as the ramping time is increased, the LRCW approach is dif-
ficult to apply reliably for higher-order nonlinear responses. Using
a single optical cycle for ramping is found to be insufficient. On
the other hand, we find that the post-ramp simulation time can be
reduced to a single cycle without incurring an accuracy penalty The
QRCW approach, proposed in this work, is a clear improvement due
to reduced nonadiabatic effects. Although the convergence behavior
remains somewhat irregular, errors observed for linear and nonlin-
ear response properties are significantly reduced. Our tests indicate
that the QRCW approach yields highly accurate linear and quadratic
response properties with simulation times as short as two optical
cycles, one cycle for ramping and one post-ramp cycle for extracting
the response property of interest from wave-function simulations.
An additional ramp cycle should be added to reliably extract cubic
response properties, however. The QRCW approach thus yields sig-
nificantly improved accuracy at about half the computational cost of
the LRCW approach.

We find that the coefficient of determination (r2) obtained for
the curve fitting can be used as an indicator of accuracy in lieu of
analytical results from response theory. In all cases studied in this
work, the r2 value can be improved by increasing the ramping time
of the QRCW approach.

The PW approach offers an alternative to QRCW. The PW
approach shows monotonous but typically rather slow conver-
gence toward response results with respect to simulation time. For

comparable accuracy, the PW approach typically requires much
longer simulation times than the QRCW approach, which we rec-
ommend for reliable and efficient extraction of linear and nonlinear
response properties.

While our tests are based on TDCC and TDCIS meth-
ods, we expect that our conclusions remain valid also for other
electronic-structure methods, hopefully including time-dependent
density-functional theory which has yet to be tested.

SUPPLEMENTARY MATERIAL

The HF, H2O, NH3, and CH4 geometries used throughout this
article can be found in Sec. I of the supplementary material. The pro-
cedure for finding the fifth-order hyperpolarizabilities and example
calculations for the HF molecule are found in Sec. II. Tables dis-
playing polarizabilities, first hyperpolarizabilities, and second hyper-
polarizabilities extracted using QRCW(7,1), LRCW(7,1), and PW(8)
for all unique diagonal directions at the CC2, OMP2, CIS, and CCSD
levels of theory are available in Sec. III. Finally, figures displaying the
relative errors of the polarizabilities, first hyperpolarizabilities, and
second hyperpolarizabilities as functions of ntot = (2, 3, 4, 5, 6, 7, 8)
at the CC2 and CCSD levels of theory for all diagonal directions are
available in Sec. IV.
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We present a numerical approach to magnetic optical rotation based on real-time time-dependent electronic-
structure theory. Not relying on perturbation expansions in the magnetic-field strength, the formulation allows
us to test the range of validity of the linear relation between the rotation angle per unit path length and
the magnetic-field strength that was established empirically by Verdet 160 years ago. Results obtained from
time-dependent coupled-cluster and time-dependent current density-functional theory are presented for the
closed-shell molecules H2, HF, and CO in magnetic fields up to 55 kT at standard temperature and pressure
conditions. We find that Verdet’s linearity remains valid up to roughly 10–20 kT, above which significant
deviations from linearity are observed. Among the three current density-functional approximations tested
in this work, the current-dependent Tao-Perdew-Staroverov–Scuseria hybrid functional performs the best in
comparison with time-dependent coupled-cluster singles and doubles results for the magnetic optical rotation.

I. INTRODUCTION

Nonperturbative approaches to matter-field interac-
tions have found increasing use in electronic-structure
theory over the past decades. Not only do such ap-
proaches allow one to overcome the inherent limitations
of perturbation theory—weak field strengths, adiabatic
switching-on of the fields, (lack of) convergence of the
perturbation series—they also pave the way for funda-
mental discoveries, such as the paramagnetic bonding
mechanism in strong magnetic fields1 or the quantum-
dynamical mechanism underpinning high-harmonic gen-
eration.2

Using atom-centered Gaussian basis sets, quantum-
chemical studies of electronic ground and bound ex-
cited states in strong magnetic fields up to about one
atomic unit (1B0 = meEh/e~ ≈ 235 052T) are of-
ten motivated by the astrophysical search for heavier
atoms and even complex polyatomic molecules in, e.g.,
the atmosphere of magnetic white dwarfs.3 Such calcula-
tions require some modifications of existing implementa-
tions of commonly used electronic-structure theories such
as Hartree–Fock theory,4–7 full configuration-interaction
(FCI) theory,1 and coupled-cluster (CC) theory.8–11 In
the case of density-functional theory (DFT), however, a
more fundamental change is required since the density-

a)Electronic mail: b.s.ofstad@kjemi.uio.no
b)Electronic mail: t.b.pedersen@kjemi.uio.no

functional approximation must depend on the current
density in addition to the electron density to be applica-
ble to electrons in a static uniform magnetic field.12–17 As
an added benefit, the resulting current density-functional
theory (CDFT)15 is applicable also at low magnetic-field
strengths, thus potentially improving upon results ob-
tained from conventional DFT for, e.g., nuclear magnetic
resonance shielding constants.

Similarly, real-time time-dependent electronic-
structure theory18,19 allows one to simulate laser-induced
quantum dynamics without invoking perturbation the-
ory. This is particularly important for the simulation of
time-resolved spectroscopies where a pump laser is used
to create a non-stationary electronic wave packet, which
is then probed by a second laser pulse applied at variable
delays relative to the pump laser. With attosecond
laser pulses, it thus becomes possible to observe and
manipulate ultrafast electronic motion, opening a new
field of chemistry—attochemistry.20,21 Moreover, by
carefully choosing laser-pulse parameters such as shape,
electric-field strength, and carrier frequency, it becomes
possible to extract complete linear absorption spectra,
including bound core as well as valence excitations, and
low-order nonlinear optical properties from a single or a
few simulations.19

By combining the nonperturbative treatment of static
uniform magnetic fields with real-time time-dependent
electronic-structure theory of laser-driven multi-electron
dynamics we get access to magnetic-field-induced,
frequency-dependent molecular properties such as mag-
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netic optical rotation (MOR). Also named the Fara-
day effect after its discoverer,22 MOR is the rotation of
the polarization plane of linearly polarized light passing
through a transparent medium in the presence of a mag-
netic field with nonzero component along the propagation
direction of the light beam. While phenomenologically
similar,23 MOR differs from natural optical rotation by
being observable for chiral and achiral molecules alike.

The Faraday effect, which was of pivotal importance
for the development of Maxwell’s electromagnetic the-
ory,24 is today exploited in a large number of technolog-
ical applications, including fiber-optic current sensors,25
satellite communication systems,26 and measurement of
interstellar and intergalactic magnetic fields.27 Conse-
quently, much research effort remains invested in the de-
velopment of high-MOR materials.28 The foundation of
these applications is the linear relationship, discovered
through a series of thorough experiments by Verdet,29,30
between the rotation angle θ per unit path length ` and
the magnetic-field strength B along the propagation di-
rection of the light: θ/` = V B. The constant of propor-
tionality, the Verdet constant V , was found by Verdet to
depend on the frequency of the light and to be charac-
teristic of each type of molecule such that V for a given
solution can be obtained by summation over the contribu-
tions from each solute and solvent molecule.29–32 Verdet’s
linear law is commonly used to measure the strength
of magnetic fields generated by, e.g., laser-driven micro
coils.33 As an example, Nakamura et al.34 recently re-
ported a “record indoor magnetic field of 1200T”, which
was measured using MOR with the underlying assump-
tion that the Verdet constant is essentially independent
of the magnetic field strength, even for such a strong
field. It is, therefore, of interest to investigate the range
of validity of Verdet’s linear relationship using a nonper-
turbative approach.

Based on Verdet’s observations, a quantum-mechanical
account of the microscopic origin of MOR can be ap-
proximately reduced to the response of a single molecule
to a static uniform magnetic field and a time-dependent
uniform electric field.23,35,36 Accordingly, Parkinson and
Oddershede formulated the Verdet constant in terms of a
mixed magnetoelectric quadratic response function, i.e.,
a third-order mixed perturbation theory, linear in the
magnetic field and quadratic in the electric field.37 The
response-function approach has been used to compute
Verdet constants at the CC level of theory by Coriani et
al.38–40

Avoiding the perturbation expansion in the magnetic-
field strength, we will in this work investigate the range
of validity of the linear relationship between θ/l and B
using real-time time-dependent coupled-cluster (TDCC)
theory41 and real-time time-dependent current density-
functional theory (TDCDFT).42 This allows, for the first
time, a direct comparison of electron dynamics simula-
tions at the TDCDFT and TDCC levels of theory. More-
over, by using real-time simulations instead of perturba-
tion theory for the interaction with the radiation field,

the present work constitutes the initial steps towards
simulations of highly nonlinear processes such as high-
harmonic generation and ionization in the presence of a
finite magnetic field.

This paper is organized as follows. The general
quantum-mechanical theory of MOR is outlined in Sec. II
along with a description of how real-time time-dependent
electronic-structure simulations may be utilized to com-
pute θ/l without perturbation expansion in B. In
Sec. III we validate our magnetic-field-dependent im-
plementation of various TDCC theories by comparing
linear absorption spectra from simulations at finite B
with those obtained from equation-of-motion excitation-
energy coupled-cluster (EOM-EE-CC) theory,9 followed
by presentation and discussion of MOR results obtained
from TDCDFT and TDCC simulations. Finally, Sec. IV
contains our concluding remarks.

II. THEORY

A. Magnetic optical rotation

The polarization plane of linearly polarized light
propagating parallel to a static uniform magnetic field
through a sample of molecules is rotated by an angle θr,
given by23,35,36

θr
`

=
1

3
Cω

∑

ijk

εijkIm
[
α
(k)
ij (−ω;ω)

]
, (1)

where ` is the path length, ω is the angular frequency of
the light, α(k)

ij (−ω;ω) is the Cartesian ij component of
the molecular polarizability tensor in the presence of the
magnetic field along axis k, and εijk denotes the Levi–
Civita symbol. The subscript r signifies that the sample
of molecules are randomly oriented. The constant C is
given by

C =
1

2c

(
2πN
4πε0

)
, (2)

where N is the number density, c is the speed of light,
and ε0 is the vacuum permittivity.

For weak magnetic fields, the polarizability αkij may be
expanded to first order in the magnetic-field strength B,
leading to the conventional formula

θr
`

= V (ω)B, (3)

where V (ω) is the Verdet constant, which can be ex-
pressed in terms of frequency-dependent quadratic re-
sponse functions.37–40,43 Avoiding the expansion in B,
we instead work treat the magnetic field nonperturba-
tively and thus enable the calculation of MOR at any
magnetic-field strength.

As the magnetic-field strength grows, however, the ori-
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enting effect of the magnetic field becomes increasingly
important.44 In lieu of a rigorous averaging procedure,
we also compute the MOR assuming that all molecules
of the sample are found in the energetically most favor-
able geometry and orientation relative to the magnetic
field. For the case of fixed orientation, denoted with the
subscript o, we use the following expression for the MOR
per unit path length,

θo
`

= CωIm
[
α(z)
xy (−ω;ω)

]
, (4)

where the magnetic field vector is chosen parallel to the
z-axis.

We now turn to the problem of extracting the com-
plex frequency-dependent polarizability from simulations
of laser-driven electron dynamics in the presence of a
static uniform magnetic field. We note in passing that
the polarizability tensor could equally well be computed
from frequency-dependent linear response theory45 in the
presence of a finite magnetic field but, to our knowledge,
no such implementation has been reported for neither CC
theory nor CDFT.

B. Electron dynamics in a finite magnetic field

We consider a nonrelativistic atomic or molecular sys-
tem with N electrons exposed to a static uniform mag-
netic field B and a time-dependent radiation field with
the electric and magnetic fields E(r, t) and B(r, t). Al-
though vibrational effects must be taken into account
for highly accurate calculations of the MOR,38,43,46 we
will only consider electronic contributions in this work.
Within the clamped-nuclei Born-Oppenheimer approxi-
mation, the electronic minimal-coupling Hamiltonian can
be written as (we use atomic units throughout)

Ĥ(t) =
N∑

i=1

{
1

2
π̂2
i (ri, t) + Ŝi · [B + B(ri, t)]

}

+Wen +Wee, (5)

where Wen is the electronic-nuclear Coulomb attraction,
Wee is the electronic-electronic Coulomb repulsion, and
Ŝi and ri are the spin and position operators, respec-
tive, of electron i. The constant nuclear repulsion energy
is excluded for convenience and the kinetic momentum
operator,

π̂(r, t) = p̂+A(r) + A(r, t), (6)

differs from the canonical momentum operator p̂ = −i∇
by including the time-dependent electromagnetic vector
potential A(r, t) and the static magnetic vector potential

A(r) =
1

2
B × (r −O), (7)

where O is the magnetic gauge origin. The Coulomb
gauge condition is chosen for the electromagnetic vector
potential and the scalar potential vanishes such that the
source-free electric and magnetic fields are given by

E(r, t) = −∂tA(r, t), B(r, t) = ∇×A(r, t). (8)

The Hamiltonian can be recast as

Ĥ(t) = Ĥ0 + V̂ (t), (9)

where the time-independent Hamiltonian

Ĥ0 =
N∑

i=1

(
1

2
(p̂i +A(ri))

2 + Ŝi ·B
)

+Wen+Wee, (10)

describes the electronic system interacting with the static
uniform magnetic field B, and

V̂ (t) =
N∑

i=1

(
[p̂i +A(ri)] ·A(ri, t) + Ŝi ·B(ri, t)

+
1

2
A2(ri, t)

)
, (11)

describes the interaction with the time-dependent radi-
ation field. Unless B and E(r, t) are parallel, the de-
pendence on the static uniform magnetic field cannot be
isolated in the energy operator Ĥ0 but appears in the
time-dependent interaction operator as well.

The time-dependent Schrödinger equation reads

i∂tΨ(t) = Ĥ(t)Ψ(t), Ψ(0) = Ψ0, (12)

where Ψ0 is the wave function of the initial electronic
state before the radiation field is switched on. We choose
Ψ0 to be the magnetic field-dependent ground-state wave
function ψ0 with energy E0,

Ĥ0ψ0 = E0ψ0. (13)

This equation can be solved approximately using recent
implementations of quantum-chemical methods such as
Hartree–Fock theory4, coupled-cluster theory,8 and cur-
rent density-functional theory.15 With finite-dimensional,
isotropic Gaussian-type orbital basis sets, magnetic
gauge-origin invariance can be maintained by multiply-
ing each basis function with a magnetic field-dependent
phase factor to obtain the so-called London atomic or-
bitals (LAOs).47 This approach works well for ground
and excited states in magnetic fields up to about 1B0,
whereas anisotropic Gaussians or high angular momenta
are required for even stronger magnetic fields.48,49

The interaction operator of Eq. (11) can be substan-
tially simplified by assuming the electric-dipole approxi-
mation, A(r, t) ≈ A(0, t) ≡ A(t), which is valid for radi-
ation wavelengths well beyond the “size” of the atomic or
molecular system. In the context of MOR, we are inter-
ested in the transparent spectral region of the molecules
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studied, i.e., in energies below the first excitation energy,
and the conditions for using the electric-dipole approxi-
mation thus are satisfied. A simple gauge transformation
then yields the usual length-gauge dipole interaction op-
erator,

V̂ (t) =
N∑

i=1

r̂i · E(t), (14)

where E(t) = −∂tA(t). Thus, within the electric-dipole
approximation, the interaction operator is independent
of the static uniform magnetic field. The electric-dipole
interaction operator is assumed in the following sections
where we briefly summarize the TDCC and TDCDFT
approaches to the simulation of laser-driven electron dy-
namics in a static uniform magnetic field.

C. Time-dependent electronic-structure theory

1. Time-dependent coupled-cluster theory

Providing systematically improvable ground- and
excited-state energies and properties, the CC hierarchy of
wave-function approximations50–56 is arguably the most
successful wave function-based approach to the calcula-
tion of atomic and molecular electronic structure. At
least for systems with a nondegenerate ground state dom-
inated by a single Slater determinant, CC calculations—
especially with the “Gold Standard” of quantum chem-
istry, the CC singles and doubles with perturbative
triples (CCSD(T))57 model—are generally more reliable
than and can serve as benchmarks for affordable density-
functional approximations within DFT.

In the past decade, CC theory for ground8,11 and ex-
cited9,11 states has been developed for molecules in fi-
nite magnetic fields, i.e., for Hamiltonians of the form
given in Eq. (10). Compared with a conventional field-
free implementation of CC theory,50,51 the main compli-
cations arising from the finite magnetic field are that the
molecular orbitals and cluster amplitudes necessarily be-
come complex and that the dependence on the magnetic
gauge-origin must be eliminated. As mentioned above,
the latter can be elegantly handled by using LAO basis
functions4 and suitably modified integral-evaluation algo-
rithms.4,58,59 The complex orbitals, however, reduce the
permutational symmetries of the one- and two-electron
integrals. As long as these permutational-symmetry
reductions are properly taken into account, a conven-
tional CC implementation can be rather straightfor-
wardly turned into a magnetic-field implementation by
switching from real to complex arithmetic. Similarly, an
implementation of TDCC theory41 only requires complex
arithmetic in the ground-state CC functions, and may
thus be used without modifications to simulate electron
dynamics in finite magnetic fields provided that the re-
duced integral permutation symmetry is properly han-

dled.
In this work we use two different classes of TDCC

theory. In the first class, the single reference deter-
minant is chosen to be the Hartree–Fock ground-state
Slater determinant obtained from the magnetic Hamilto-
nian given in Eq. (10). The TDCC singles-and-doubles
(TDCCSD)60 model and its second-order approximation,
the TDCC2 model,61,62 belong to this class. In the sec-
ond class, the single reference determinant is built from
time-dependent spin orbitals which are bivariationally
optimized alongside the cluster amplitudes. The orbital
relaxation is constrained to conserve orthonormality in
orbital-optimized TDCC (TDOCC) theory,63,64 whereas
nonorthogonal orbital-optimized TDCC (TDNOCC) the-
ory65,66 requires biorthonormal orbitals. In both cases,
the orbital relaxation makes the singles cluster operators
redundant.63–66 Here we use the TDNOCCD model,65,67
which includes doubles amplitudes only, and the time-
dependent orbital-optimized second-order Møller-Plesset
(TDOMP2) method,62,68 which is a second-order approx-
imation analogous to TDCC2 theory. The TDCCSD and
TDNOCCD methods exhibit a computational scaling of
O(K6) with respect to the number of basis functions K,
while the TDCC2 and TDOMP2 models scale as O(K5).

2. Time-dependent current density functional theory

The density-functional theory (DFT) is extended to
take into account the effect of an external magnetic field
by including a dependence on both the charge density ρ
and the paramagnetic component of the induced current
density jp in the universal density functional F [ρ, jp]. It
was shown in Refs. 14, 17 that the Vignale–Rasolt for-
mulation12,13 of current-DFT (CDFT) can be treated in
a similar manner to Lieb’s formulation69 of conventional
DFT.

A non-perturbative treatment of an external magnetic
field in the Kohn–Sham CDFT scheme can be set up by
using LAOs (see Refs. 13, 15, 16 for details of the result-
ing Kohn-Sham equations). A central challenge in CDFT
calculations is then to define the exchange–correlation
functional Exc[ρ, jp], which now also depends on both
the charge- and paramagnetic current densities. It has
been shown that the accuracy of CDFT calculations us-
ing vorticity-based corrections to local density approx-
imation (LDA) and generalised gradient approximation
(GGA) levels is poor15,70,71. However, introducing an
explicit current dependence at the meta-GGA level via
a modification of the kinetic energy density as suggested
by Dobson72 and later used by Becke73 and Bates and
Furche74 as

τ(r)→ τ̃(r) =
occ∑

i

[∇ϕi(r)]∗ · [∇ϕi(r)]− |jp(r)|2
ρ(r)

, (15)

leads to a well-defined and properly bounded iso-
orbital indicator when it is applied to the Tao-Perdew-
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Staroverov–Scuseria (TPSS) functional75, which in this
work is denoted as cTPSS. Two variants of hybrid cTPSS
functionals, denoted as cTPSSh and cTPSSrsh, have
been introduced to dynamic CDFT in Ref. [42].

The cTPSSh functional includes a mixture of 10%
orbital-dependent exchange and 90% cTPSS exchange
functionals for the exchange contribution and 100% of
the cTPSS correlation contribution. The cTPSSrsh func-
tional similarly consists of a 100% cTPSS correlation
functional, and a range-separated TPSS-like exchange
functional defined in Ref. [76]. In this work we will use
the cTPSS, cTPSSh, and cTPSSrsh functionals for com-
puting the magnetic optical activity and compare their
performance relative to the TDCC models above.

D. Extracting dynamic properties

Depending on the shape of the time-dependent electric
field, the induced dipole moment computed as an expec-
tation value of the electric-dipole operator at each time
step during a simulation can be used to extract proper-
ties such as absorption spectra and polarizabilities. We
first consider the generation of linear absorption spectra,
which we will later use to validate the TDCC implemen-
tations by comparison with spectra computed through
time-independent EOM-EE-CC9,54,77 theory. We then
describe the extraction procedure used to obtain complex
polarizabilities, which are subsequently combined to yield
the MOR. For notational convenience, we do not use the
superscript k to denote the direction of the magnetic field
in this section.

1. Absorption spectra

In order to extract excitation energies and intensities
using time-dependent electronic-structure theory, the ex-
ternal electric field E(t) in Eq. (14) is chosen as a δ-pulse
at t = 0, E(t) = Euδ(t) where E is the field strength, u is
the (linear) unit polarization vector, and δ(t) is the Dirac
delta function. Completely localized in time, this pulse
is infinitely broad in the frequency domain and, there-
fore, excites the electronic system from the ground state
into all electric-dipole allowed excited states. If the field
strength is sufficiently weak, nonlinear processes such as
multiphoton transitions and transitions among excited
states are negligible, resulting in a linear absorption spec-
trum.

The δ-pulse is approximated as a box function,

E(t) =

{
Eu 0 ≤ t ≤ ∆t,

0 else,
(16)

where ∆t is the time step of the simulation—i.e., the
field is on during the first time step only. The absorption

spectrum is given by

S(ω) =
4πω

3c
Im
∑

i

µi(ω), (17)

where µi(ω) is obtained as the discrete Fourier trans-
form, computed with the normalized fast Fourier trans-
form (FFT) of the time-dependent dipole moment in-
duced along Cartesian axis i by a δ-pulse polarized along
the same axis,

µi(ω) = FFT[(µi(t)− µ(0)
i )e−γt]/E , (18)

where µ
(0)
i is the permanent ground-state dipole mo-

ment, and µi(t) is the dipole moment computed at time
t. The damping factor exp(−γt) is applied to avoid arti-
facts from the periodic FFT procedure and the parameter
γ > 0 can be interpreted as a common (inverse) lifetime
of the excited states, causing Lorentzian shapes of the
absorption lines. In general, the calculation of the lin-
ear absorption spectrum thus requires three independent
simulations, one for each Cartesian direction. To ensure
satisfactory resolution in the resulting spectra, the dura-
tion of the simulations need to be relatively long, typi-
cally with total simulation times exceeding 1000 a.u.

2. Complex polarizabilities

The frequency-dependent polarizability αij(−ω;ω) can
be extracted from simulations using the ramped contin-
uous wave approach of Ding et al.78 with the quadratic
ramp proposed by Ofstad et al.79 to suppress nonadi-
abatic effects. In the present case, however, it must be
recalled that the polarizability is complex in the presence
of the magnetic field.

With linear polarization vector u and field strength E ,
the electric field takes the form79

E(t) =





2t2

t2nr

Eu sin(ωt) 0 ≤ t < tnr

2 ,

t2nr
−2(t−tnr )

2

t2nr

Eu sin(ωt)
tnr

2 ≤ t < tnr
,

Eu sin(ωt) tnr
≤ t ≤ ttot,

(19)

where tnr
is the ramping time expressed as a multiple nr

of optical cycles,

tnr
= nr

2π

ω
, (20)

after which the electric field remains a full-strength,
monochromatic continuous wave until the simulation
concludes at t = ttot.

For sufficiently weak electric-field strengths, the Carte-
sian component i of the electric dipole moment computed
at times tnr

≤ t ≤ ttot can be expanded as

µi(t) = µ
(0)
i +

∑

j

αij(t)Ej + · · · , (21)
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where

αij(t) = Re [αij(−ω;ω)] sin(ωt)

+ Im [αij(−ω;ω)] cos(ωt). (22)

The time-domain polarizability αij(t) is computed by a
four-point finite difference formula, followed by a fitting
procedure to obtain the frequency-domain polarizability
αij(−ω;ω) as described in Refs. 78 and 79.

III. RESULTS

A. Absorption Spectra

We have implemented the TDCC models discussed
above in the open-source HyQD software80 using the
QUEST program81 to generate optimized Hartree–Fock
orbitals and Hamiltonian integrals in LAO basis to en-
sure magnetic gauge-origin invariance.4 We validate our
implementation of TDCCSD theory by comparing ab-
sorption spectra obtained from δ-pulse simulations with
spectra computed by the time-independent finite mag-
netic field EOM-EE-CCSD model9 with the same LAO
basis. The TDCCSD dipole moment is computed us-
ing the inherently real expectation-value functional pro-
posed in Refs. 60 and 82, and the electric-field strength
is E = 0.001 a.u. While the excitation energies are iden-
tical with the two approaches, the intensities may differ
when the number of electrons surpasses two. The ap-
proaches were nonetheless found to coincide quite well,
with only slight deviations observed between EOM-EE-
CCSD, TDCC and linear-response CC (LRCC)10. Al-
though the time-dependent approach generates the full
absorption spectrum, including core-valence excitations,
we only compare low-lying transitions to avoid full diag-
onalization of the EOM-EE-CC matrix. The finite mag-
netic field EOM-EE-CCSD calculations are performed
using the QCUMBRE software83 together with an in-
terface to the CFOUR program package,84,85 which pro-
vides the Hartree–Fock ground-state solution using the
MINT integral package.86 The EOM-EE-CCSD transi-
tion dipole moments are calculated with the expectation
value approach.77

Absorption spectra are computed for H2, He, Be, and
LiH at the magnetic-field strength 0.2B0 directed along
the y-axis, perpendicular to the bond axis for the di-
atomic molecules. The geometries of H2 and LiH are op-
timized in the magnetic field at the cTPSS level of theory
with the aug-cc-pVDZ87–90 basis set using QUEST.44,81
The resulting bond lengths are 1.39106 a0 for H2 and
2.96117 a0 for LiH.

For the EOM-EE-CCSD calculations, a convergence
threshold of 10−7 is used for the Hartree–Fock densi-
ties and CC amplitudes, while a looser threshold of 10−6

(10−5) is used for the right-hand (left-hand) side EOM
vectors. For the TDCCSD simulations, a convergence
threshold of 10−12 for the energy-gradient norm is used

for the Hartree–Fock ground state optimization, while
the CCSD ground-state amplitudes are converged to a
residual norm of 10−12. The TDCCSD equations of mo-
tion are integrated using sixth order (three-stage, s = 3)
symplectic Gauss-Legendre integrator60,91 with time step
∆t = 0.01 a.u. and residual norm convergence criterion
10−10 for the implicit equations. The total simulation
time is 1500 a.u. for He and H2, 2000 a.u. for Be, and
1000 a.u. for LiH.

Figure 1 displays the absorption spectra of the four sys-
tems obtained from the TDCCSD and EOM-EE-CCSD
approaches with the aug-cc-pVTZ87–90 basis set and a
damping factor with γ = 0.004. The excitation energies
are equivalent to within the resolution of the FFT (ap-
proximately 0.004 a.u. for He and H2, and 0.003 a.u. for
Be and LiH) for all systems. For the two-electron sys-
tems, the intensities also agree, while minor deviations
are observed for Be and LiH, as expected.

Corresponding absorption plots obtained from TDCC2
and EOM-EE-CC2/ EOM-EE-CCSD approaches can be
found in the Supplementary material. No implementa-
tions of excitation energies for the OMP2 and NOCCD
methods are available (only a pilot implementation of lin-
ear response theory was reported in Ref. 65), and, hence,
no validation is possible for these methods.

B. Magnetic Optical Activity

1. Computational details

Magnetic optical activity calculations are performed
for twenty magnetic-field strengths in the range 0T to
55 000T by extracting the imaginary part of the polariz-
ability as described in Sec. IID. The field strength of
the time-dependent electric field is chosen to be E =
0.001 a.u., which is small enough to warrant the dipole
expansion in Eq. (21). We consider two cases: The
orientation of the molecule is either taken to be in-
dependent of the direction of the magnetic field—i.e.,
the molecules of the sample are assumed to be ran-
domly oriented—and the MOR is computed according
to Eq. (1), or the molecule is taken to be fixed at the
energetically most favorable orientation with respect to
the magnetic-field direction and Eq. (4) is used. To
determine the most favorable orientation, the Hartree–
Fock/aug-cc-pVDZ ground-state bond lengths were com-
puted at both the perpendicular and parallel orientation
for each molecule. The ground-state energy difference as
a function of the magnetic-field strength is displayed in
Figure 2. For H2 and HF, the parallel orientation with
respect to the magnetic field direction is the most ener-
getically favorable, while the perpendicular orientation is
found to be most favorable for CO. All three molecules
are closed-shell diamagnetic molecules, and the differ-
ence in orientation stems from differences in the terms
quadratic in the magnetic field—the diamagnetic terms—
contained in Eq. (10). The optimized bond lengths for
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FIG. 1: Overlay of absorption spectra generated by TDCCSD and EOM-EE-CCSD at the magnetic-field strength
0.2B0 (perpendicular to the internuclear axis for the diatomic molecules) with the aug-cc-pVTZ basis set.

the three molecules can be found in the Supplementary
Information.

When evaluating Eq. (1) and Eq. (4), the ideal gas ap-
proximation is employed at standard temperature (0 ◦C)
and pressure (1 atm). Note that we do not use 1bar
as the standard pressure in order to enable compari-
son with previous work.38–40 The number density thus
is N = 2.68678× 1025 m−3 = 3.98140× 10−6 a−3

0 , and

C = 2.53048× 1027
J s

C2 m3
= 9.12748× 10−8 ~

e2 a30
. (23)

(With standard pressure 1 bar, one obtains instead C =
9.00812 × 10−8 ~/e2a30.) We compute the MOR for the
H2 molecule at ω = 0.08284 a.u. (λ = 550 nm), while
ω = 0.11391 a.u. (λ = 400nm) is used for the CO and
HF molecules in accordance with the experimental work
of Ingersoll and Lebenberg.92

For the randomly oriented case, simulations are car-

ried out with experimental field-free bond lengths: 1.4 a0
for H2, 2.132 a0 for CO, and 1.7328 a0 for HF. For the
fixed orientation case, the bond lengths of H2, CO, and
HF are optimized for each magnetic-field strength at the
cTPSS/aug-cc-pVDZ level of theory with the magnetic
field vector parallel (H2 and HF) or perpendicular (CO)
to the bond axis.

We compute the MOR from TDHF, TDCC2, TD-
CCSD, TDOMP2, and TDNOCCD simulations with the
HyQD software.80 Apart from using a stricter residual
norm convergence criteria of 10−12 for the implicit equa-
tions of the Gauss-Legendre integrator, the same conver-
gence thresholds are applied for the MOR calculations as
those specified in Sec. III A The TDCDFT simulations
are performed with the current–dependent exchange–
correlation functionals cTPSS, cTPSSh, and cTPSSrsh
as described in Ref. 42. The density is propagated using
the Magnus 2 propagator93 with a modest time step of
0.1 a.u., which has been shown to yield a good balance
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FIG. 2: The Hartree–Fock/aug-cc-pVDZ ground-state
energy difference between perpendicular and parallel
molecular orientation with respect to the magnetic field
direction as a function of field strength. The horizontal
black line marks zero energy difference.

between accuracy and efficiency for computing absorp-
tion spectra in the presence of a magnetic field.42 The
TDCDFT simulations are performed with the QUEST
code.81 For all calculations, the aug-cc-pVDZ basis set
is employed, and it should be noted that the basis set
limit has not been reached.39 Moreover, the CC expan-
sion lacks triple excitations, which are important for high
accuracy,40 and rovibrational effects are not taken into
account. Consequently, the simulations presented here
cannot be expected to reproduce or predict experimental
results with very high accuracy.

2. Verdet constants

We determine Verdet constants by fitting the MOR
data for randomly oriented samples to a fifth-order poly-
nomial in the magnetic-field strength, identifying V (ω) as
the coefficient of the linear term. The results are listed in
Table I along with the experimental results of Ingersoll
and Lebenberg.92

While electron correlation effects are important for HF
and CO, their impact is less pronounced in the case of H2.
The wave function methods that take electron correla-
tion into account yield Verdet constant which agree with
experimental values (for H2 and CO) to within 2–10%,
which is reasonable considering the lack of higher-order
correlation effects40 and vibrational contributions,94 in
addition to the relatively small basis set. With errors
ranging from 6% to 38%, the TDCDFT model with the
cTPSSrsh functional exhibit comparatively large errors,
especially considering that the TDHF results remain be-
low 24%.

Computations conducted using quadratic response the-
ory39,43 should yield identical Verdet constants, although

TABLE I: The Verdet constant (in 10−7 a.u.) extracted
from simulations. Experimental values are taken from
Ref. 92.

H2 HF CO
ω/a.u. 0.08284 0.11391 0.11391
TDHF 0.248 0.202 0.687
TDCC2 0.246 0.358 0.906
TDCCSD 0.245 0.304 0.884
TDOMP2 0.247 0.329 0.972
TDNOCCD - 0.274 0.876
cTPSS 0.303 0.416 0.987
cTPSSh 0.235 0.288 0.761
cTPSSrsh 0.160 0.202 0.512
Exp. 0.251 - 0.895

slight variations may arise, for example, due to nu-
merical errors from the finite-difference calculations in-
volved in the linear-response-function extraction.78,79
Parkinson et al.43 computed Verdet constants for the
three molecules at the Hartree–Fock level (i.e., the ran-
dom phase approximation). They used a somewhat
larger basis set than aug-cc-pVDZ, albeit without the
LAO phase factors, and obtained Verdet constants of
0.232 × 10−7 a.u. for H2, 0.219 × 10−7 a.u. for HF, and
0.702 × 10−7 a.u. for CO, in fair agreement with our
TDHF results in Table I. Coriani et al.39 computed the
Verdet constant for HF at the CCSD level with the same
basis set to be 0.3038× 10−7 a.u., which is within 0.03%
of our result (0.3037× 10−7 a.u.). This confirms that our
MOR procedure indeed reproduces quadratic response
theory at low magnetic-field strengths.

3. TDCC results at finite magnetic field

Figure 3 shows the MOR obtained from wave function-
based simulations of H2, HF, and CO as a function of
magnetic-field strength, with the dashed lines represent-
ing the values predicted from Eq. (3) using the Verdet
constants reported in Table I. Results for randomly ori-
ented molecules are shown in the left-hand panels, while
those for oriented molecules are shown in the right-hand
panels. There are significant deviations from linearity for
both oriented and randomly oriented samples, as we shall
discuss in more detail below.

The two uppermost panels of Fig. 3 show the MOR
of H2 obtained from TDHF, TDCC2, TDCCSD, and
TDOMP2 simulations. Since the H2 molecule is a two-
electron system, the TDCCSD and TDNOCCD methods
are equivalent. As also observed for the Verdet constants
above, electron correlation effects are not highly impor-
tant for the MOR of H2 at the range of magnetic-field
strengths considered here. The effect of orientation—
which includes varying bond lengths—is significant, with
θr roughly 28% greater than θo.
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For both HF and CO, however, correlation effects
are crucial, confirming previous observations based on
quadratic response theory by Parkinson et al.43 and Co-
riani et al.40 While the TDCCSD and TDNOCCD results
agree for CO, the optimization of the time-dependent or-
bitals in the TDNOCCD method give rise to a signif-
icant change compared with the static orbitals of TD-
CCSD theory for the HF molecule. This observation also
applies to the second-order approximations TDCC2 and
TDOMP2, where we also note that TDOMP2 results are
closer to the TDCCSD ones than those obtained from
TDCC2 theory for HF. However, this is not at all the
case for CO. The latter is in agreement with magnetic
field-free polarizability and hyperpolarizability results re-
ported by Kristiansen et al.62 It is, however, not possi-
ble to conclude which of the TDNOCCD and TDCCSD
methods is superior based on the present results, as it re-
quires a more careful study of convergence with respect to
higher-order excitations beyond doubles. We will, there-
fore, compare TDCDFT results with the MOR obtained
from both the TDCCSD and TDNOCCD methods.

It is noteworthy that the MOR is almost identical for
oriented and randomly oriented HF, whereas a signifi-
cant orientation effect is observed for the CO molecule.
While one might speculate that the “oriented” contribu-
tion, Eq. (4), dominates the averaging in Eq. (1) for HF,
it turns out to be caused by the change in bond length
obtained in the magnetic-field dependent geometry opti-
mization.

4. TDCDFT results at finite magnetic field

Figure 4 shows the MOR obtained from TDCDFT sim-
ulations of H2, HF, and CO as a function of magnetic-
field strength with the dashed lines representing the pre-
dicted values using Eq. (3) with the Verdet constants
reported in Table I. Results for randomly oriented and
oriented molecules are shown in the left- and right-hand
panels, respectively, and the TDHF, TDCCSD, and TD-
NOCCD results are reproduced here for comparison. For
the TDCDFT results, we also observe significant devi-
ations from linearity as the magnetic-field strength in-
creases.

It has been shown in previous studies42,76 that the
current-dependent DFT functionals (cTPSS, cTPSSh,
and cTPSSrsh) improve the accuracy of calculations of
chemical properties of molecules such as the isotropic
NMR shielding constants and the absorption spectra
of molecules in magnetic fields. These three function-
als have previously been applied to the calculation of
isotropic NMR shielding constants,76 and it was shown
that the cTPSSh and cTPSSrsh functionals have no sig-
nificant improvements compared with the cTPSS func-
tional. The cTPSSrsh functional has, however, been
found to better describe excited states compared to
cTPSS and cTPSSh in the magnetic field-free case.42 In
this study, we observe that the cTPSSh functional gen-

erally produces MOR values that are somewhat closer
to TDCCSD/TDNOOCD results than the cTPSS func-
tional. Moreover, the cTPSSh functional outperforms the
TDHFmethod for HF and CO, but not for H2. The MOR
values computed using the cTPSSh functional fall in be-
tween the cTPSS and cTPSSrsh results, which are over-
and under-estimates of the MOR, respectively. The poor
performance of the cTPSSrsh functional is somewhat
surprising considering that range separation is known
to improve the description of nonlinear properties.95,96
The cTPSSrsh functional incorporates a large fraction
of the current-independent PBE functional, which might
contribute to the quite poor performance in finite mag-
netic fields. When the magnetic field is set to zero, the
cTPSSrsh functional yields ground state energies and
dipole moments comparable to cTPSSh, both of which
outperform the cTPSS functional. Nevertheless, we can
see that in general, the TDCDFT results show a simi-
lar trend to TDCC results. Furthermore, the TDCDFT
calculations have a relatively low computational cost,
which scales as O(K3), where K is the number of ba-
sis functions – compared with the computational scaling
of TDCCSD and TDNOCCD, O(K6), or TDCC2 and
TDOMP2, O(K5).

5. Deviation from Verdet’s linear law

As noted above, it is evident from Figs. 3 and 4
that Verdet’s linear relation between the MOR and the
magnetic-field strength only holds for sufficiently small
magnetic-field strengths. While this is not surprising,
considering that the observations of Verdet can be ac-
counted for by first-order perturbation theory, it is not
straightforward to uniquely define a field strength at
which linearity is broken. In this work, we will define the
“breaking point” as the magnetic-field strength at which
the fifth-order polynomial function fitted to the nonper-
turbative MOR deviates from the value predicted from
the Verdet constants, defined as the linear coefficient of
this polynomial function, by a given percentage.

The magnetic-field strengths at which 3% and 5% devi-
ations are observed can be found in Table II. With ran-
dom orientation, the breaking point roughly lies some-
where between 10 and 20 kT (0.04–0.09B0), 2–3 or-
ders of magnitude above the strongest sustainable static
magnetic-field strength produced on Earth with a high-
temperature superconducting magnet, namely 45.5T
(2×10−4 B0).97 At 45.5T, the TDCCSD and TDNOCCD
results deviate from linearity by about 0.9% for H2 and
CO and by about 0.09% for HF (with random orienta-
tion). Even at the short-lived record field strength of
1.2 kT generated by electromagnetic flux-compression,34
the deviation from linearity remains low. At worst, the
deviation is slightly above 1% for the cases studied here.
This compares well with the deviation (of the Verdet con-
stant) estimated to be around 1% by Nakamura et al.34
Our results thus indicate that Verdet’s law can be safely
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FIG. 4: The magnetic optical rotation of H2, HF, and CO as a function of the magnetic-field strength computed
with TDCDFT and the TDHF, TDCCSD, and TDNOCCD methods. The panels on the left display the MOR for
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TABLE II: The magnetic-field strength (in kT) at
which the nonperturbative MOR deviates from Verdet’s
law by a chosen percentage.

Orientation
Random Fixed
3% 5% 3% 5%

H2 TDHF 9.03 13.1 22.1 28.5
TDCC2 9.14 13.2 21.9 28.2
TDCCSD 9.25 13.3 21.6 27.8
TDOMP2 9.03 13.0 21.9 28.2
cTPSS 6.39 9.69 27.1 32.3
cTPSSh 7.76 11.5 29.1 34.0
cTPSSrsh 16.2 22.6 31.2 36.2

HF TDHF 20.3 26.4 18.7 24.4
TDCC2 17.1 22.1 15.4 20.0
TDCCSD 18.7 24.0 16.2 21.3
TDOMP2 17.5 22.6 15.1 19.5
TDNOCCD 19.3 24.7 18.3 23.2
cTPSS 16.9 21.4 15.2 19.3
cTPSSh 18.1 23.3 13.3 18.6
cTPSSrsh 21.2 27.4 18.2 24.4

CO TDHF 14.9 19.0 11.6 14.2
TDCC2 12.4 15.4 10.7 12.9
TDCCSD 12.8 16.0 11.0 13.3
TDOMP2 11.5 14.5 10.2 11.4
TDNOCCD 12.7 15.9 11.0 13.3
cTPSS 13.7 16.2 9.86 11.9
cTPSSh 11.0 14.6 11.1 13.4
cTPSSrsh 24.9 33.3 13.9 17.0

applied for the range of magnetic-field strengths that
can be produced in current experimental setups, but one
must be careful if or when even stronger fields can be
generated.

IV. CONCLUDING REMARKS

We have in this work presented the first implementa-
tion of TDCC theory for the study of laser-driven multi-
electron dynamics in finite magnetic fields. The imple-
mentation is validated by comparing linear absorption
spectra obtained from simulations with those obtained
from time-independent EOM-EE-CC theory. The im-
plementation supports both static and dynamic refer-
ence determinants with the orbitals expanded in London
atomic orbitals to ensure magnetic gauge-origin invari-
ance.

The new implementation is applied to the calcula-
tion of magnetic optical rotation at finite magnetic-field
strengths, demonstrating that Verdet’s linear relation-
ship is valid up to field strengths of roughly 10–20 kT
(0.04–0.09B0). A deviation from linearity below 1% is
found at 45.5T, which is the strongest sustainable static

magnetic field ever produced by a superconducting mag-
net on Earth. Our results may also serve as reference for
future implementations of linear response theory45 in the
presence of finite magnetic fields.

We have also compared the TDCC magnetic optical
rotations with those obtained from TDCDFT simula-
tions using the current-dependent cTPSS, cTPSSh, and
cTPSSrsh density-functional approximations. With TD-
CCSD and TDNOCCD results as benchmark, we find
that the best-performing functional is cTPSSh. The
cTPSS functional tends to overestimate the rotation
while the cTPSSrsh functional tends to underestimate
it.

SUPPLEMENTARY MATERIAL

The supplementary material contains cTPSS/aug-cc-
pVDZ equilibrium bond lengths of H2, HF, and CO
placed in a magnetic field parallel or perpendicular to
the bond axis with field strengths ranging from 1T to
55 kT. The overlayed absorption spectra generated from
TDCC2 simulations and from time-independent EOM-
EE-CC2 calculations can also be found in the supple-
mentary material.
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Abstract

Recent years have witnessed an increasing interest in time-dependent

coupled-cluster (TDCC) theory for simulating laser-driven electronic

dynamics in atoms and molecules, and for simulating molecular vibrational

dynamics. Starting from the time-dependent bivariational principle, we review

different flavors of single-reference TDCC theory with either orthonormal static,

orthonormal time-dependent, or biorthonormal time-dependent spin orbitals.

The time-dependent extension of equation-of-motion coupled-cluster theory is

also discussed, along with the applications of TDCC methods to the calculation

of linear absorption spectra, linear and low-order nonlinear response functions,

highly nonlinear high harmonic generation spectra and ionization dynamics. In

addition, the role of TDCC theory in finite-temperature many-body quantum

mechanics is briefly described along with a few other application areas.

This article is categorized under:

Electronic Structure Theory > Ab Initio Electronic Structure Methods

Theoretical and Physical Chemistry > Spectroscopy

Software > Simulation Methods

KEYWORD S

attosecond dynamics, coupled-cluster theory, laser-driven electron dynamics, transient
spectroscopy, vibrational coupled-cluster

1 | INTRODUCTION

The objective of time-dependent molecular electronic structure theory1,2 is to solve the time-dependent Schrödinger
equation (TDSE),

i∂ t� bH tð Þ
� �

jΨ tð Þi¼ 0, jΨ 0ð Þi¼jΨ0i, ð1Þ

where the Hamiltonian, bH tð Þ¼ bH0þ bV tð Þ, contains the time-independent, clamped-nuclei Born–Oppenheimer elec-
tronic Hamiltonian,3,4 bH0, and an explicitly time-dependent operator, bV tð Þ, representing the interaction of the electrons
with external driving forces, usually electromagnetic fields. Atomic units will be used throughout this review unless
explicitly stated otherwise. With the appropriate initial state, jΨ0i, the TDSE thus allows simulation of electronic
dynamics directly corresponding to experimental setups.
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However, within the clamped-nuclei approximation, time-dependent electronic structure theory can only be
expected to yield reliable dynamics on time scales short enough that nuclear motion can be neglected—typically, up to
a few femtoseconds. An important example is the charge migration across the nuclear framework initiated by ioniza-
tion.5 For longer time scales, the nonadiabatic coupling of electronic and nuclear motion must be taken into account
using, for example, semiclassical methods based on the Ehrenfest theorem6,7 or, if feasible, fully quantum-mechanical
methods like the time-dependent Feshbach close-coupling method.8 An obvious application of time-dependent elec-
tronic structure theory thus is the simulation of processes induced by attosecond laser pulses,9 including attosecond
transient absorption spectroscopy.10 However, the broad spectral range of attosecond laser pulses combined with rela-
tively high intensities almost invariably induce ionization processes, placing heavy demands on the electronic structure
method and basis sets, which must accurately capture both bound states and the electronic continuum. The most accu-
rate approach is to solve the TDSE using mesh-based methods in both space and time such as, for example, the finite
element discrete variable representation [FEDVR].11 Although not without limitations, a less computationally demand-
ing approach is based on density-functional theory in combination with scattering states expanded in B-splines.9,12

Direct simulation of experiments is not the only valuable application of the TDSE; for example, energies and in principle
also the associated stationary-state wave functions of bH0 can be extracted from simulations without external driving forces
simply by starting in a nonstationary state.13 With judicious but artificial choices of the interaction operator bV tð Þ, the
TDSE can also be used as an alternative to perturbation theory for the calculation of molecular optical properties and
spectra. A weak electric-field kick applied to the electronic ground state, for example, yields linear absorption spectra
from the induced electric-dipole moment. The spectra automatically include all electric-dipole allowed transitions, both
valence and core excitations, from a single simulation or a few simulations, depending on symmetry and whether the
spectrum is simulated for an aligned or randomly oriented sample.2 This approach avoids diagonalization of large
matrices and is potentially advantageous for systems with a high density of states where a large number of eigenvalues
would be needed in traditional time-independent methods. Linear and low-order nonlinear optical properties—
polarizabilities and hyperpolarizabilities—can be extracted from induced electric and magnetic moments using either a
ramped continuous wave14 or a pulsed wave15 to perturb the ground-state wave function. Only a few, relatively short
simulations are required.

The main computational obstacles for methods aimed at solving the TDSE are the long simulation times required to
achieve sufficient resolution in Fourier analyses of the recorded signals and the small time steps required to capture
high-frequency components in the wave function. Since electron correlation effects must be accounted for, it is no sur-
prise that the most widely used electronic-structure method for electronic dynamics simulations is time-dependent
density-functional theory (TDDFT),16–18 often called real-time (RT) TDDFT to clearly distinguish it from perturbation-
based density response theory in the frequency domain. Similar to ground-state calculations, the TDDFT approach
often strikes a reasonable balance between computational effort and accuracy.

For higher accuracy, one must turn to methods that parameterize the wave function explicitly. Since electronic
excited states are often multi-configurational, high-accuracy simulations of electronic dynamics have been dominated
by the multi-configurational time-dependent Hartree–Fock (MCTDHF) method19–23 or the closely related complete,24

restricted,25,26 and generalized27 active space self-consistent field methods. These methods suffer from the curse of
dimensionality, making coupled-cluster (CC)28–31 approximations attractive alternatives with their more benign polyno-
mial scaling, at least for simulating electronic processes where the time-dependent wave function is dominated by a
single, generally time-dependent, electron configuration.

Time-dependent CC (TDCC) theory was first formulated by Monkhorst32 in 1977, albeit not with the purpose of
studying electronic dynamics. Rather, Monkhorst32 and later Dalgaard and Monkhorst33 applied perturbation theory to
the TDCC equations and derived expressions for linear response properties such as the frequency-dependent electric-
dipole polarizability, identifying excitation energies—the poles of the linear response function—as the eigenvalues of a
non-hermitian matrix. The non-hermiticity implies that the eigenvalues are not necessarily real and, indeed, Takahashi
and Paldus34 observed complex eigenvalues in their orthogonally spin-adapted TDCC approach to excitation energies.
However, they only obtained complex excitation energies with a (quoting Takahashi and Paldus34) “very poor (in fact
almost meaningless) CC representation for the ground state” of strongly correlated systems. Complex excitation ener-
gies would be potentially disastrous for a TDCC description of electronic dynamics,35 but we note that Thomas et al.36

have recently argued that complex eigenvalues should be rare except in the context of conical intersections.37–39

Like time-independent CC theory,40–43 TDCC theory without perturbation expansions has its roots in nuclear
physics.44–46 While Monkhorst's TDCC formulation was based on a fixed reference determinant, Hoodbhoy and Negele44,45

allowed the underlying spin orbitals to be time-dependent, determined by time-dependent Hartree–Fock theory. (We will
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use the terms spin orbital and orbital interchangeably.) Note, however, that Pigg et al.46 used static orbitals in the most
recent application of TDCC theory to nucleon dynamics. Later, in analogy to MCTDHF theory, the time evolution of the
orbitals was formulated with full coupling to the evolution of the correlating cluster amplitudes.47–49 Shortly after the publi-
cation of Hoodbhoy and Negele's first article,44 Schönhammer and Gunnarsson50 applied TDCC theory to compute the spec-
tral weight function from the phase factor of the TDCC wave function for prediction of core-level spectra of atomic and
molecular adsorbates. The next application of TDCC theory was also to a solid-state problem. In 1985, Sebastian51 used
TDCC theory to simulate scattering of high-energy cations from surfaces, computing the probability of neutralization
through a one-electron charge-transfer process. Sebastian proposed a conventional expression for the TDCC expectation-
value functional which, for truncated cluster operators, does not fulfill the Hellmann–Feynman theorem.52,53

A CC expectation-value functional that fulfills the Hellmann–Feynman theorem is a key result of Arponen's
bivariational formulation54 and of the equivalent constrained optimization approach of Helgaker and Jørgensen.55,56

This expectation-value functional quickly became the standard choice and was used by Bishop and Emary in their
TDCC study of a two-level system in a quantized electromagnetic field.35

The remainder of this review is organized as follows. We start in Section 2 with a brief summary of traditional
perturbative approaches to TDCC theory with emphasis on concepts that are important for the time-dependent
bivariational theory presented in Section 3. In Section 4, we describe the time-dependent extension of equation-of-
motion CC theory, which is equivalent to TDCC theory in the limit of untruncated cluster operators, while Section 5
reviews TDCC theory applied to molecular vibrational dynamics. Finally, Section 6 briefly reviews a few other applica-
tion areas where TDCC theory plays a role, and Section 7 contains our concluding remarks.

2 | PERTURBATION-BASED APPROACHES

Besides the early applications to dynamical systems mentioned above, TDCC theory has mainly been used as a starting
point for the calculation of frequency-dependent response properties in molecular electronic-structure theory.57

Inspired by Helgaker and Jørgensen's55,56 constrained optimization (Lagrangian) approach to static properties as energy
derivatives and by Olsen and Jørgensen's58 time-dependent variational formulation of response theory, Koch and
Jørgensen59 generalized the perturbation-based TDCC approach of Monkhorst32 and Dalgaard and Monkhorst33 to for-
mulate a general CC response theory. Equivalent to the bivariational theory of the “normal” TDCC method of
Arponen,54 the starting point is independent Ansätze for the wave function and its conjugate

jΨ tð Þi¼ e
bT tð Þ jΦ0ieτ0 tð Þ, ð2Þ

heΨ tð Þj ¼ e�τ0 tð ÞhΦ0j 1þ bΛ tð Þ
� �

e�bT tð Þ, ð3Þ

where the normalized reference Slater determinant, jΦ0i, is time-independent and usually taken to be the Hartree–
Fock ground-state determinant. The cluster operators bT tð Þ and bΛ tð Þ for an N-electron system are parameterized by
time-dependent amplitudes τ tð Þ and λ tð Þ,

bT tð Þ¼
X
μ
τμ tð ÞbXμ, bΛ tð Þ¼

X
μ
λμ tð ÞbY μ, ð4Þ

where the summations are over all possible excitations out of the reference determinant: bX and bY denote excitation and
de-excitation operators such that

eΦμjΦν

D E
¼ Φ0jbY μbXνjΦ0

D E
¼ δμν: ð5Þ

Note that the excitation and de-excitation operators separately commute: bXμ, bXν

h i
¼ bY μ, bY ν

h i
¼ 0. While the phase

amplitude, τ0 tð Þ, plays no role in CC response theory as formulated by Koch and Jørgensen, it becomes important in
the interpretation of TDCC dynamics.60,61
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Truncation of the cluster operators after single excitations yields the TDCC singles (TDCCS) model, after singles
and doubles yields the TDCC singles and doubles (TDCCSD) model, and so on. If the cluster operators are not trun-
cated, TDCC theory becomes equivalent to the formally exact time-dependent full configuration interaction (TDFCI)
theory, albeit with a wave function which is not normalized. Regardless of truncation, the TDCC wave functions
instead satisfy the (intermediate) normalization conditions

e�τ0 tð Þ Φ0jΨ tð Þh i¼ 1, eΨ tð ÞjΨ tð Þ
D E

¼ 1: ð6Þ

The equations of motion for the amplitudes are derived by inserting jΨ tð Þi and heΨ tð Þ j into the TDSE and its conju-
gate, respectively, followed by projection onto the excited determinants, yielding59

i_τμ tð Þ¼ eΦμje�bT tð Þ bH tð ÞebT tð ÞjΦ0

� �
, ð7Þ

i _λμ tð Þ¼� eΨ tð Þ j bH tð Þ, bXμ

h i
jΨ tð Þ

D E
, ð8Þ

where, as usual, the “dot” denotes the time derivative. The phase amplitude is determined by

i_τ0 tð Þ¼ Φ0je�bT tð Þ bH tð ÞebT tð ÞjΦ0

� �
: ð9Þ

Assuming that the electronic system is initially in its ground state and that the driving forces are adiabatically
switched-on and weak, the amplitudes are expanded in orders of the perturbation, leading to equations that must be
solved order-by-order. Rather than solving the equations in the time domain, it is assumed that the Fourier transforms
of the interaction operator, bV tð Þ, and of the nth order, n≥ 1 amplitudes exist, such that the amplitude equations can be
transformed to the frequency domain and solved at the frequencies of interest.

The expectation value of an operator bA takes the form originally suggested by Arponen54

bAD E
tð Þ¼ eΨ tð ÞjbAjΨ tð Þ

D E
, ð10Þ

which satisfies the time-dependent Hellmann–Feynman theorem.62–64 Note that the expectation value does not depend
on the phase amplitude τ0 tð Þ. Expanding the expectation value in orders of the perturbation then leads to an identifica-
tion of linear, quadratic, cubic, etc. response functions. If, for example, bV tð Þ represents the interaction of the electrons
with an electric field in the electric-dipole approximation, the response functions are (apart from a sign) the electric-
dipole polarizability and hyperpolarizabilities. Excitation energies and transition moments are identified from the poles
and residues of the response functions. If the interaction operator is further assumed periodic in time such that its
Fourier series converges, equivalent expressions for the CC response functions can be conveniently derived as
derivatives of the cycle-averaged quasienergy Lagrangian.57,65

Solving the TDSE with the ground state as the initial condition is thus the starting point for CC response theory. In
principle, the perturbative solutions obtained in the frequency domain can be transformed back to the time domain but
this would require a dense grid of frequencies and is never done in practice. Hence, in effect, CC response theory is a
time-independent method. Another time-independent approach is equation-of-motion CC (EOM-CC) theory,30,66–70

where excited states are written explicitly as linear excitation operators acting on the CC ground-state wave function.
This is a fundamentally different approach from CC response theory where explicit expressions for excited-state wave
functions are neither needed nor assumed. Still, the excitation energies obtained from CC response theory are identical
to those obtained from EOM-CC theory: The same non-hermitian eigenvalue problem arises in both theories. Transi-
tion moments and response functions differ, however, and only those obtained from (truncated) CC response theory
are properly size consistent.71,72 Both CC response theory and EOM-CC theory converge to the full configuration inter-
action (FCI) limit when no truncation of the cluster (and linear excitation) operators are introduced. A formulation of
response theory starting from a time-dependent EOM-CC Ansatz has been given by Coriani et al.73

4 of 28 SVERDRUP OFSTAD ET AL.
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For truncated cluster operators, the expectation-value functional (10) leads to broken symmetry properties of the CC
response functions under complex conjugation. This issue, which results in spurious origin-dependence of some optical prop-
erties, is rather easily fixed by using only the real part of Equation (10), as suggested by Pedersen and Koch.74 Alternatively,
one can enforce the proper symmetries on the response functions a posteriori.65 Another issue of truncated TDCC theory is
gauge dependence.74–77 In order to resolve this, the orbitals must be dynamical variables and Pedersen, Koch and coworkers
proposed the time-dependent orbital-optimized CC (TDOCC) model47 and later the time-dependent nonorthogonal orbital-
optimized CC (TDNOCC) model,48 which were formulated as response theories. Never implemented in a production-level
code, the TDOCC and TDNOCC models have not been extensively used or tested, but they have gained importance for
studying laser-driven electronic dynamics through Kvaal's formulation of orbital-adaptive time-dependent coupled-cluster
(OATDCC) theory,49 which is an adaptation of the basic idea of MCTDHF theory. The OATDCC model is equivalent to
TDNOCC theory if the underlying time-dependent orbital space is not split into active and external subspaces. For dynamics,
it is advantageous to start from the bivariational approach of Arponen.54

3 | ELECTRONIC DYNAMICS WITH BIVARIATIONAL CC THEORIES

While computationally demanding, RT TDCC theory offers clear advantages over perturbation-based approaches.
Explicitly time-dependent simulations contain responses to all orders and, therefore, are able to describe highly
nonlinear optical phenomena in a time-resolved manner. Furthermore, experimental parameters like pulse shape and
pulse duration can be embedded directly into the simulation. The TDCC methods can accordingly serve as a theoretical
complement to the increasingly topical field of experimental attosecond science. For certain use cases, such as the cal-
culation of near-edge x-ray absorption spectra, TDCC simulations may even prove to be computationally competitive.

The first application of TDCC theory to simulate laser-driven molecular electronic dynamics was presented in 2011
by Huber and Klamroth78 who used the semiclassical electric-dipole approximation, truncated the cluster operator bT tð Þ
after double excitations to obtain the TDCCSD model, and propagated only the τ amplitudes according to Equation (7).
Consequently, induced electric-dipole moments could not be computed from Equation (10) and Huber and Klamroth
instead resorted to an approximation using the configuration interaction singles-and-doubles expression, leading to rel-
atively large errors in excitation energies. More detrimental to the prospects of TDCC theory of laser-driven electronic
dynamics, Huber and Klamroth found that the TDCCSD method became numerically unstable in strong external fields
and with increasing basis set quality.

3.1 | The bivariational formalism

Arponen's bivariational principle54 naturally leads to the expectation-value functional (10) which satisfies the
Hellmann–Feynman theorem, both in the time-independent and in the time-dependent case. In the FCI limit,
Arponen's extended CC formulation is equivalent to the Lagrangian approach of Helgaker and Jørgensen,55,56 as dis-
cussed in detail by Kvaal.79

The starting point is the bivariational action functional54

S eΨ,Ψh i
¼
Z T

0
ℒdt, ð11Þ

with the Lagrangian

ℒ¼ eΨ tð Þji∂ t� bH tð ÞjΨ tð Þ
D E

¼ i eΨ tð Þj _Ψ tð Þ
D E

�ℋ tð Þ, ð12Þ

where the Hamilton function is

ℋ tð Þ¼ eΨ tð ÞjbH tð ÞjΨ tð Þ
D E

: ð13Þ

SVERDRUP OFSTAD ET AL. 5 of 28

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1666 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [01/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

139



The ket and bra, jΨ tð Þi and heΨ tð Þ j, are independent approximations to the exact wave function and its conjugate,
respectively. Under the condition that the bivariational action functional is complex analytic, requiring S be stationary
with respect to variations in the bra and in the ket leads to the TDSE and its conjugate:

i j _Ψ tð Þi¼ ∂ℋ

∂heΨ tð Þ j
, ð14Þ

ih _eΨ tð Þ j¼� ∂ℋ
∂ jΨ tð Þi : ð15Þ

These equations guarantee that the normalization condition

eΨ tð ÞjΨ tð Þ
D E

¼ 1, ð16Þ

is conserved. Evidently, Equations (14) and (15) are complex symplectic generalizations of the classical Hamiltonian
equations80 with the ket and bra functions as canonical variables. This connection with classical Hamiltonian mechan-
ics has been extensively explored by Arponen and coworkers81–84 (see also Ref. [64]) and suggests that jΨ tð Þi and
heΨ tð Þ j together represent the quantum state of the system.

This observation led Pedersen and Kvaal60 to propose the two-component state vector

j Sii¼ 1ffiffiffi
2
p jΨi

jeΨi
 !

, ð17Þ

and the indefinite inner product

S1jS2h ih i¼ 1
2
heΨ1j hΨ1j
� � jΨ2i

jeΨ2i

 !

¼ 1
2
eΨ1jΨ2

D E
þ1
2
eΨ2jΨ1

D E�
,

ð18Þ

which induces the expectation-value functional

bAD E
¼ 1
2
eΨjbAjΨD E

þ1
2
eΨjbA†jΨ
D E�

: ð19Þ

This form still satisfies the Hellmann–Feynman theorem and naturally leads to the correct symmetries in response
functions.64,74 For hermitian operators, the expectation-value functional (19) equals the real part of Equation (10).

Using z to denote the vector of all wave function variables, the Lagrangian becomes a function of z, _z, and time t,
ℒ¼ℒ z, _z, tð Þ, and the stationarity condition becomes the Euler–Lagrange equations

d
dt

∂ℒ
∂ _zμ
¼ ∂ℒ

∂zμ
, ð20Þ

which may offer a simpler derivation of the equations of motion for the chosen approximate parameterization.

3.2 | Formulations of TDCC theory with static or time-dependent orbitals

The Ansätze for the ket and bra states take the general form

6 of 28 SVERDRUP OFSTAD ET AL.
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jΨ tð Þi¼ e
bT tð Þ jΦ0 tð Þieτ0 tð Þ, ð21Þ

heΨ tð Þ j¼ e�τ0 tð ÞheΦ0 tð Þ j λ0 tð Þþ bΛ tð Þ
� �

e�bT tð Þ, ð22Þ

such that, with λ0¼ 1, the state vector (17) is normalized with respect to the indefinite inner product (18),
S tð ÞjS tð Þh ih i¼ Re λ0 tð Þð Þ. The phase amplitude τ0 is canonically conjugate to λ0.
In the conventional TDCC theory for an N-electron system, jΦ0 tð Þi¼jΦ0i is chosen to be the time-independent

field-free Hartree–Fock ground-state determinant and heΦ0 tð Þ j¼ hΦ0 j. The underlying spin orbitals are orthonormal and
the cluster operator bT tð Þ (bΛ tð Þ) contains from single to n-tuple, 1≤n≤N , excitation (de-excitation) operators with
respect to the Hartree–Fock determinant. The cluster operators are parameterized by the amplitudes τ tð Þ and λ tð Þ, one
amplitude per excitation and de-excitation, as in Equation (4). If n¼N , conventional TDCC theory is equivalent to the
formally exact TDFCI theory, although the intermediate normalization exp �τ0 tð Þð Þ Φ0jΨ tð Þh i¼ 1 may cause severe
numerical instabilities (see below for details). The amplitude equations of motion are given by Equations (7) and (8).

In time-dependent nonorthogonal orbital-optimized CC (TDNOCC) theory,48 all determinants contributing
to jΨ tð Þi and heΨ tð Þ j are time-dependent variational parameters. The underlying spin orbitals constitute a
biorthonormal set, eϕp tð Þjϕq tð Þ

D E
¼ δpq. Single excitations (de-excitations) are redundant when the orbitals are time-

dependent48,49 and, consequently, they are removed from bT tð Þ (bΛ tð Þ) in TDNOCC theory.
Inspired by MCTDHF theory, orbital-adaptive TDCC (OATDCC)49 theory adds the concept of active orbital space to

TDNOCC theory. The cluster operators are restricted to a subset of the orbital space, which is optimized along with its
orthogonal complement throughout the dynamics. This approach is very important for describing ionization dynamics.

With time-dependent orbitals, the amplitude equations of motion become49

i _τμ¼ eΦμje�bT bH� ibD0

� �
e
bT jΦ0

� �
, ð23Þ

�i _λμ¼ eΨ j bH� ibD0, bXμ

h i
jΨ

D E
, ð24Þ

where μ≥ 0, bXμ is an excitation operator such that jΦμi¼ bXμ jΦ0i, bX0¼ 1, and eΦμjΦν

D E
¼ δμν. Since _λ0¼ 0, normaliza-

tion with respect to the indefinite inner product is conserved and λ0¼ 1 is a natural choice. The time-dependence of the
orbitals gives rise to the operator

bD0¼
X
pq

< eϕp j _ϕq >ba†pbeaq, ð25Þ

where the creation and annihilation operators, which satisfy the usual fermionic anticommutator relations, refer to the
biorthonormal orbitals. With time-dependent orbitals, the τ and λ amplitude equations become coupled and must be
solved simultaneously.

If all orbitals are chosen active, we may write49

j _ϕqi¼
X
p
jφpiηpq, h _eϕp j¼�

X
q
ηpqheϕq j : ð26Þ

The nonvanishing components of ηpq are determined by the linear equations

i
X
bj

Aib
ajη

j
b¼Ri

a, ð27Þ

�i
X
bj

Aja
biη

b
j ¼Ra

i , ð28Þ

SVERDRUP OFSTAD ET AL. 7 of 28
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where the right-hand sides depend on the correlated one- and two-electron effective density matrices, thus coupling the
orbital evolution to the correlating amplitudes. For explicit expressions for the right-hand sides, we refer to
Equations (30a) and (30b) of Ref. [49]. The matrix elements Aib

aj are given by

Aib
aj¼ δbaρ

i
j�δijρ

b
a, ð29Þ

where ρ is the one-electron effective density matrix. In order for Equations (27) and (28) to be well-determined, the
matrix A¼ Aib

aj

h i
must remain nonsingular at any time t. While this cannot be mathematically guaranteed, the singular-

ity has not been reported in any publication to date.
Constraining the spin orbitals to be orthonormal throughout the dynamics, heϕp tð Þ j¼ hϕp tð Þ j, TDNOCC theory turns

into time-dependent orbital-optimized CC (TDOCC) theory.47,85 The Lagrangian is forced to be real, ℒ Re ℒð Þ, and
the two orbital equations of motion (26) are then related by complex conjugation, with the right-hand side of the orbital
equation of motion given in Equation (23) of Ref. [85]. As in OATDCC theory, the orbital space can be split into active
and inactive subspaces in TDOCC theory,85 facilitating simulations of highly nonlinear optical phenomena such as
ionization.

The TDOCC, TDNOCC, and OATDCC theories thus are very closely related and, unlike TDCC theory based on
static orbitals, they all provide gauge invariant results regardless of the truncation level of the cluster operators. As dem-
onstrated by Köhn and Olsen,86 however, TDOCC theory does not reproduce TDFCI results in the limit of untruncated
cluster operators when N >2. While this unfortunate feature was long believed to apply to TDNOCC theory, too,
Myhre87 recently showed that the correct limit can be obtained in TDNOCC theory for any N . On the other hand, the
benchmark studies of Sato and coworkers85,88–90 indicate that the deviation of TDOCC results from TDFCI results is
often negligible, at least for strong-field dynamics, see Section 3.5 below.

3.3 | Numerical integration

Collecting the bivariational parameters in a single vector z, the equations of motion can be written in the form of a
complex ordinary differential equation (ODE),

_z tð Þ¼ f z, tð Þ, z 0ð Þ¼ z0: ð30Þ

A wealth of numerical integrators for ODEs have been developed, addressing numerical issues such as conservation
of symplectic structure and stiffness, see, for example, the authorative treatise by Hairer, Lubich, and Wanner.91

Starting with the work of Huber and Klamroth,78 a popular integrator for TDCC theory has been the explicit fourth-
order Runge–Kutta (RK4) algorithm. Its popularity can most likely be traced to two properties: It is very simple to
implement and requires exactly four evaluations of the function f per time step, making computational time easily pre-
dictable. The RK4 integrator, however, is not symplectic and may thus break physically important conservation laws.
Pedersen and Kvaal60 instead proposed to use the symplectic s-stage Gauss–Legendre integrator91 (which is of even
order 2s, s¼ 1,2,3,…) and showed that this yields long-time conservation of energy close to machine precision and that,
depending on the time-step size and on the initial guess employed for the iterative solution of the implicit equations,
may yield fewer f-evaluations per time step than the RK4 integrator for s≤ 3.

More recently, Wang, Peyton, and Crawford92 investigated modified Runge–Kutta integrators with adaptive time
step, which increases stability when the parameters oscillate rapidly and allows larger time steps when they do not.
Remarkably, stability and accuracy is maintained also in conjunction with single-precision arithmetic, which allows
highly efficient calculations on graphical processing units. The combination of larger time steps when possible and
single-precision arithmetic leads to significant acceleration (more than an order of magnitude). Note, however, that
Wang, Peyton, and Crawford used the frozen core approximation, thus excluding the highest frequencies from the
amplitude oscillations. The high energies associated with core excitations and with ionization dynamics, in particular,
introduce stiffness in the TDCC equations and Sato et al.85 proposed to use an exponential Runge–Kutta integrator to
handle this.

8 of 28 SVERDRUP OFSTAD ET AL.
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3.4 | Bivariational interpretation

The definitions of the state vector (17) and of the indefinite inner product (18) provide the foundation for analysis of
the electronic dynamics in close analogy with conventional quantum mechanics. Autocorrelation functions (ACFs)—
overlaps of the quantum state with itself at different times—contain important information about the dynamics. The
early application of TDCC theory to core-level excitations of adsorbates by Schönhammer and Gunnarsson50 is an inter-
esting example that does not involve an external driving force.

Pedersen and Kvaal60 defined the ACF as

A t0, tð Þ¼ S t0ð ÞjS tð Þh ih i
¼ 1
2
eΨ t0ð ÞjΨ tð Þ
D E

þ1
2
eΨ tð ÞjΨ t0ð Þ
D E�

,
ð31Þ

and demonstrated that the total energies of the stationary states contributing to the electronic dynamics can be
extracted from it by Fourier transformation when t0 is taken to be the switch-off time of an external laser pulse. It
should be stressed that the phase amplitude τ0 tð Þ is important for a correct calculation of the ACF. The work of Peder-
sen and Kvaal60 was restricted to conventional TDCC theory with static orbitals, since the calculation of overlaps
between time-dependent Slater determinants exhibits factorial scaling, hampering the practical application of ACFs in
TDCC theories with time-dependent orbitals.

Not only the energies of participating stationary states, but also their populations during the dynamics can be com-
puted using the indefinite inner product. Pedersen et al.61 introduced the (two-component) operator,

bPI ¼ jΨIiheΨI j 0

0 jeΨIihΨI j

 !
, ð32Þ

projecting onto stationary state I. Here, jΨIi and heΨI j are the right and left wave functions of state I from EOM-CC the-
ory (see below for the precise definition). The projection operator (32) is hermitian with respect to the indefinite inner
product (18) and the population of state I at time t thus becomes

pI tð Þ¼ S tð ÞjbPI jS tð Þ
D ED E

¼ Re eΨ tð ÞjΨI

D E eΨI jΨ tð Þ
D E� �

:
ð33Þ

While inherently real, the populations are neither bounded below by 0 nor above by 1. Like ACFs, stationary-state
populations are considerably more challenging to compute with time-dependent orbitals than with conventional static
orbitals, and Pedersen et al.61 only presented results for the latter. Pedersen et al. also proposed a projection operator
based on CC linear response theory, which led to populations that are practically indistinguishable from those
obtained with the EOM-CC projector in most cases. It was found, however, that the linear-response projector may lead
to spurious high-frequency oscillations in the populations and it was recommended to mainly use the EOM-CC
projector.

As an example, Figure 1 shows the final TDCCSD populations of stationary states below the ionization energy for
the LiH molecule after interaction with a short, chirped laser pulse with carrier frequency resonant with the transition
from the 1Σþ ground state to the lowest-lying electric-dipole allowed 1Π state. The final populations are plotted as func-
tions of the laser chirp rate b. It is interesting to note that the greatest population of the resonant 1Π state is achieved by
a slight up-chirp, whereas a slightly larger down-chirp leads to virtually no population of the same state. These effects
are caused by transitions among excited states that are nonlinear optical processes from the viewpoint of response
theory. As illustrated in Ref. [61], such nonlinear processes, including quenched Rabi oscillations between excited sates,
can be tracked by recording populations. In the FCI limit, the populations are strictly conserved in the absence of
external driving forces but may show slight drifts and low-amplitude oscillations with truncated cluster operators. The
TDCCSD populations agree well with TDFCI populations provided all states participating in the dynamics are well
described at the EOM-CCSD level of theory.

SVERDRUP OFSTAD ET AL. 9 of 28
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3.5 | Strong-field and ionization dynamics

The TDCC theory with static orbitals has an inherent instability. If an intense, resonant laser pulse is applied to the
TDCC ground state of a system dominated by the Hartree–Fock ground-state determinant, the ground state is rapidly
depleted and the state of the system thus becomes essentially orthogonal to the Hartree–Fock determinant. Yet, by con-
struction, the intermediate normalization condition exp �τ0 tð Þð Þ Φ0jΨ tð Þh i¼ 1 must hold at any time t. This causes vio-
lent behavior of the amplitudes. Indeed, Pedersen and Kvaal60 found that even with untruncated cluster operators,
TDCC theory fails when the resonant laser pulse is strong enough. This implies, for example, that Rabi oscillations
between the ground state and an excited state are practically impossible to describe within static-reference TDCC
theory.

Choosing the time-dependent Brueckner determinant—the single determinant with the greatest overlap with
the TDFCI wave function at any time t—as reference determinant, one would expect the intermediate normalization
condition to place much less severe demands on the amplitudes, at least when the Brueckner weight is sufficiently close
to 1. Kristiansen et al.93 showed that the time-dependent reference determinant in TDNOCC theory (equal to
OATDCC theory without splitting of the orbital space) is, in fact, an excellent approximation to the Brueckner
determinant and that, therefore, TDNOCC theory shows improved numerical stability compared with static-
reference TDCC theory. An example is given in Figure 2, which shows the weight of the reference determinant in
TDNOCCD and TDCCSD simulations of the Be atom exposed to an intense near-resonant laser pulse, comparing
with the weight of the time-dependent Brueckner determinant and of the Hartree–Fock ground-state determinant
in TDFCI simulations. Also shown are the norms of the doubles amplitudes. The weight of the reference determi-
nant is defined by,93

W ¼j hhR tð ÞjS tð Þiij2, ð34Þ

where

jR tð Þii¼ 1ffiffiffi
2
p jΦ0 tð Þi

jeΦ0 tð Þi

� �
, ð35Þ

is the two-component state vector representing the reference determinant, either time-dependent for TDNOCC,
OATDCC, and TDOCC theory or the static Hartree–Fock determinant for conventional TDCC theory. The extreme
behavior of the amplitudes in TDCCSD theory is clearly correlated with low Hartree–Fock weights and enhanced stabil-
ity is obtained in TDNOCCD theory (labeled OATDCCD theory in Figure 2) where the reference determinant is an
excellent approximation to the Brueckner determinant. Instabilities may still occur in TDNOCCD theory,93 however,
and an absolutely stable TDCC theory likely requires a multireference Ansatz with time-dependent orbitals.

For a physically correct description of electronic dynamics with nonvanishing ionization probability, including
high-harmonic generation (HHG), the underlying basis set used to expand the time-dependent spin orbitals must sup-
port the electronic continuum. In the TDOCC approach of Sato et al.,85 a FEDVR is used along with absorbing

FIGURE 1 Controlling the ratio of CCSD energy level populations for LiH by altering the chirp rate of a laser pulse. The squares mark

reference populations from TDFCI simulations. The aug-cc-pVDZ basis set was used. (Reprinted from Ref. [61]. Copyright ©2020. T. B.

Pedersen, H. E. Kristiansen, T. Bodenstein, S. Kvaal, and Ø. S. Schøyen. Published by American Chemical Society.)

10 of 28 SVERDRUP OFSTAD ET AL.

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1666 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [01/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

144



boundary conditions and splitting of the spin-orbital space into active and inactive subspaces. The main goal of Sato
et al.85 was to simulate HHG processes induced by a few-cycles, near-infrared (800 nm) laser pulse for atoms, including
estimation of one- and two-electron ionization probabilities. To keep the computational cost reasonably low, the core
electrons were frozen.

The HHG spectra were computed from the absolute square of the Fourier transform of the induced dipole accelera-
tion, while Sato et al. estimated one- and two-electron ionization probabilities as the probabilities of finding one or two
electrons outside a sphere of radius 20 a:u: around the nucleus. Examples are given in Figures 3 and 4 for ionization
probabilities and HHG spectra, respectively, where results from TDOCCD and TDOCCDT simulations are compared
with time-dependent complete active space self-consistent field (TDCASSCF) results which, with the same orbital-space
splitting, can be regarded as TDFCI benchmark results. Both HHG spectra and ionization probabilities show consider-
able electron correlation effects and triple excitations must be included in the TDOCC treatment to get results close to
the TDFCI limit. Note, however, that even without triple excitations, the TDOCCD model yields very significant
improvements over the uncorrelated Hartree–Fock method.

Sato and coworkers have since 2018 published several studies of ionization and HHG processes with less computa-
tionally demanding CC-like approximations based on the FEDVR. The simplest time-dependent orbital-optimized
coupled-electron pair (TDOCEPA0)88 approximation, which can be viewed as a linearization of the TDOCCD method,
was shown to yield results roughly on par with the parent TDOCCD theory at low and intermediate laser intensities,
while the effects of electron correlation are somewhat overestimated at higher intensities. Although the TDOCEPA0
approximation carries the same formal computational complexity, O N6

	 

, as the parent TDOCCD method, the lineari-

zation leads to significant computational simplifications, including halving the number of equations to be propagated
due to the symmetry λ� tð Þ¼ τ tð Þ.

Further reductions in computational time was obtained with the time-dependent orbital-optimized second-order
Møller–Plesset (TDOMP2)88 model, where only terms through second order in the fluctuation potential are retained in
the TDOCCD Hamilton function ℋ, leading to an approximation scaling as O N5ð Þ. The TDOMP2 model is related to
the time-dependent second-order CC model, TDCC2,94 replacing single-excitation amplitudes by orbital rotations. The
TDOMP2 method tends to overestimate electron-correlation effects at a wide range of intensities, but strikes a reason-
able balance between accuracy and efficiency. Pathak, Sato, and Ishikawa95 also computed TDOMP2 results with those
obtained with a variant of TDCC2 theory where the single-excitation amplitudes are included alongside orbital optimi-
zation. It was found that the TDOMP2 method yields superior HHG spectra compared with the TDCC2-like method
proposed by Pathak, Sato, and Ishikawa.95 Compared with higher-level theories, it was concluded that the accuracy of
the TDOMP2 model is moderate.

Recently, Pathak, Sato, and Ishikawa90 also introduced the TDOCCDT(4) method, which includes triple-
excitation corrections through fourth order in the Hamilton function and shows a computational complexity of
O N7ð Þ, intermediate between the TDOCCD (O N6

	 

) and full TDOCCDT (O N8

	 

) models. Test calculations on the Ne

and Ar atoms indicate that the TDOCCDT(4) method gives results almost indistinguishable from the full TDOCCDT
model and the TDCASSCF model for HHG spectra and one- and two-electron ionization probabilities.

FIGURE 2 TDCCSD, OATDCCD, and TDFCI simulations of Be with the cc-pVDZ basis exposed to a laser pulse with peak electric-field

strength 1 a:u: and carrier frequency ω¼ 0:2068175a:u: (Reprinted from Ref. [93] with the permission of AIP Publishing.)
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3.6 | Linear and low-order nonlinear optical properties

Transient absorption spectroscopy10 is an important application of time-dependent electronic-structure theory,
yielding time-resolved spectra containing much richer information than conventional steady-state spectroscopy.
Skeidsvoll, Balbi, and Koch96 adapted the theory of transient absorption by Wu et al.10 to bivariational TDCC
theory and presented simulations of transient core-level spectra of the LiH and LiF molecules at the TDCCSD level of

FIGURE 3 The probabilities, as a function of time, of finding one (a) and two (b) electrons outside a sphere of radius R0 = 20 a.u.

Comparison of the results of TDHF, TD-OCCD, TD-OCCDT, and TD-CASSCF methods. (Reprinted from Ref. [85] with the permission of

AIP Publishing).

FIGURE 4 The HHG spectra of Ar exposed to a laser pulse with a wavelength of 800nm and an intensity of 6�1014W=cm2.

Comparison of the results of TDHF, TD-OCCD, TD-OCCDT, and TD-CASSCF methods. The inset shows a close-up of the spectra from 50th

to 80th harmonic order. (Reprinted from Ref. [85] with the permission of AIP Publishing.)
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theory. Using a resonant valence-exciting pump pulse followed by a core-exciting probe pulse, Skeidsvoll, Balbi, and
Koch observed oscillations of intensities with the pump-probe delay caused by interference in the wavepacket generated
by the pump pulse. Using a static reference determinant, ionization dynamics is out of reach and, therefore, only weak
lasers were studied. In fact, the wavepacket generated by the pump laser is overwhelmingly dominated by the electronic
ground state: the LiF ground-state population was found to be roughly 99:5% in Ref. [61]. Consequently, the pump-probe
spectra were dominated by features ascribable to ground-to-excited state transitions, that is, essentially linear absorp-
tion spectra.

Conventional linear absorption spectra can be extracted from simulations, too. A molecule, initially in its ground
state, is exposed to a weak electric-field kick—a weak delta-function shaped laser pulse—which induces transitions
from the ground state to all excited states that can be populated within the electric-dipole selection rules. For suffi-
ciently weak fields, multiphoton transitions are virtually absent. Moreover, the excited-state populations are so small
that transitions between them are virtually absent, too, yielding a linear absorption spectrum. The absorption cross sec-
tion may then be obtained from the Fourier transform of the induced electric-dipole moment. The great advantage of
this approach to linear absorption spectra is that the entire spectrum, including the high-frequency core-valence transi-
tions, is obtained from 1 to 3 simulations, one for each polarization direction to emulate random orientation of the sam-
ple relative to the propagation direction of the laser. The main challenge is the very long simulation times required to
achieve sufficient resolution of the simulated spectrum. The simulation time can be reduced by about a factor 5 using
Padé approximants for the Fourier transformation.97

Kristiansen et al.98 used linear absorption spectra, including core excitations, generated from the dipole moment
induced by an electric-field kick to validate their implementation of the TDCC2 model94 by comparing with results
from linear response theory. They also presented a derivation of the equations of motion for the TDOMP2 and
TDNOMP2 (where the spin orbitals are required to be biorthonormal instead of orthonormal) models based on expo-
nentially parameterized orbital rotations and the Euler–Lagrange Equation (20), and found that, despite the full orbital
relaxation included in the TDOMP2 model, no significant improvement over TDCC2 spectra was obtained in the core
region of the spectrum.

However, for frequency-dependent polarizabilities and hyperpolarizabilities extracted from TDCC2, TDCCSD, and
TDOMP2 simulations with ramped monochromatic continuous-wave lasers as suggested by Ding et al.,14 Kristiansen
et al.98 found that TDOMP2 theory outperforms the TDCC2 model, producing linear and nonlinear response functions
much closer to the full TDCCSD results. While the linear absorption spectra were in perfect agreement with
results from linear response theory (to within the resolution of the Fourier transformation), the TDCC2 and TDCCSD
polarizabilities and hyperpolarizabilities were found to deviate slightly. These deviations are most likely caused by the
nonperturbative nature of TDCC simulations and by nonadiabatic effects not being entirely removed by the single-cycle
ramping.

4 | ELECTRONIC DYNAMICS WITH EOM-CC THEORY

With a finite basis, the eigenfunctions of the time-independent Hamiltonian bH0 of the many-electron systemparticle-
system—the stationary states—can in principle be used to expand the time-dependent wave function because the
continuum (for which normalizable eigenfunctions do not exist) becomes discretized. Starting from the EOM-CC
Ansätze30,66–70 for the left and right eigenfunctions of the similarity-transformed Hamiltonian, one may formulate an
alternative theory, based on the eigenstate superposition approach, which converges to the correct FCI limit but pro-
vides different results than TDCC theory with truncated cluster operators. This idea was used by Kjønstad and Koch99

to recast the Born–Huang approximation4 to the fully coupled time-dependent electronic-nuclear wavefunction of a
molecular system in the framework of CC theory.

4.1 | Equation-of-motion coupled-cluster theory

In EOM-CC theory,30,66–70 the time-independent excited states are parameterized on top of the CC ground state as

jΨIi¼ bRIe
bT jΦ0i, ð36Þ

SVERDRUP OFSTAD ET AL. 13 of 28
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heΨI j¼ hΦ0 j bLIe
�bT , ð37Þ

where bT is the time-independent cluster operator of the ground-state CC wavefunction and jΦ0i is a static reference
determinant, typically the Hartree–Fock ground-state determinant. The linear excitation and de-excitation operators bRI

and bLI , respectively, are defined by

bRI¼I r0bIþX
ai

I
rai ba†abai þ 1

4

X
abij

I
rabij ba†abaiba†bbajþ���, ð38Þ

bLI ¼ I l0bIþX
ai

I
liaba†i baa þ 1

4

X
abij

I
lijabba†j babba†i baaþ�� �: ð39Þ

The coefficients of bLI and bRI are collected in the left and right eigenvectors of the field-free similarity transformed
Hamiltonian bH¼ exp �bT� �bH0 exp bT� �

,

HR¼RE, ð40Þ

LH¼EL, ð41Þ

Hμν¼ ΦμjbHjΦν

D E
, ð42Þ

where E¼ diag EIð Þ contains the energies of the ground and excited states, and the columns of R and the rows of L
define the right and left eigenvectors, respectively, such that the biorthonormality condition

eΨI jΨJ

D E
¼LIRJ ¼ δIJ , ð43Þ

is fulfilled (LI is the Ith row of L and RJ the Jth column of R).

4.2 | Time-dependent equation-of-motion coupled-cluster theory

The most direct formulation of time-dependent EOM-CC (TD-EOM-CC) theory is to expand the time-dependent bra
and ket wavefunctions in the basis of field-free EOM-CC states

jΨ tð Þi¼
X
I

jΨIiCI tð Þ, ð44Þ

heΨ tð Þj ¼
X
I

eCI tð ÞheΨI j : ð45Þ

Equations of motion for the time-dependent expansion coefficients eCI tð Þ and CI tð Þ can either be obtained from the
time-dependent bivariational principle or by requiring that the time-dependent Schrödinger equation holds for the left
and right wavefunctions, that is,

i j _Ψ tð Þi¼ bH tð Þ jΨ tð Þi, ð46Þ

�ih _eΨ tð Þ j¼ < eΨ tð Þ j bH tð Þ: ð47Þ
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Insertion of the Ansätze (44) and (45) into the TDSE and projecting onto the EOM-CC ket (bra) state yields

i _CI tð Þ¼
X
J

HIJ tð ÞCJ tð Þ, ð48Þ

�i _eCJ tð Þ¼
X
I

eCI tð ÞHIJ tð Þ, ð49Þ

where HIJ tð Þ are the matrix elements of the Hamiltonian bH tð Þ in the EOM-CC basis,

HIJ tð Þ¼ eΨI jbH tð ÞjΨJ

D E
¼ Φ0jbLIH tð ÞbRJ jΦ0

D E
: ð50Þ

When the time-dependent expansion coefficients have been determined, the expectation value of an arbitrary opera-
tor bΩ is given by

eΨ tð ÞjbΩjΨ tð Þ
D E

¼
X
IJ

eCI tð ÞΩIJCJ tð Þ, ð51Þ

in accordance with the Hellmann–Feynman theorem. The matrix elements ΩIJ are defined as in Equation (50). Note
that since heΨ tð Þ j and jΨ tð Þi are not Hermitian conjugates, the expectation value of bΩ is generally complex valued. Of
course, the indefinite inner product, Equation (18), could also be used here to obtain real values for hermitian
operators.

For a time-dependent Hamiltonian on the form bH tð Þ¼ bH0þ bV tð Þ, the matrix elements of the Hamiltonian can be
written as

HIJ tð Þ¼EIδIJ þVIJ tð Þ, ð52Þ

where the matrix elements VIJ tð Þ constitute a non-hermitian matrix with elements defined as in Equation (50).
This approach has been used by different groups to study explicitly time-dependent optical processes within the EOM-
CC framework with bV tð Þ¼�bμ �F tð Þ, where bμ is the electric-dipole operator and F tð Þ is the spatially uniform electric
field of the laser.

For example, Sonk, Caricato, and Schlegel100 studied the optical response of butadiene to short, intense laser pulses
while Luppi and Head-Gordon101 used the method to compute HHG spectra of H2 and N2. In both articles, the transi-
tion dipole matrix DIJ ¼ eΨI jbμjΨJ

D E
was symmetrized according to

DIJ 1
2

DIJ þD�JI
	 


, ð53Þ

because the authors were worried that the non-hermitian tranisiton dipole matrix in Equation (52) could lead to
dynamics that do not conserve the norm of the wavefunction. However, if the left and right TDSE are satisfied, it fol-
lows that

d
dt

eΨ tð ÞjΨ tð Þ
D E

¼ 0: ð54Þ

Hence, the biorthonormality of the left and right wavefunctions is conserved, provided that eΨ t0ð ÞjΨ t0ð Þ
D E

¼ 1. Note
that with symmetrization (and real energies), the Hamiltonian matrix (52) becomes hermitian and the left and right
expansion coefficients become complex conjugates, eCI tð Þ¼C�I tð Þ.

With the symmetrization (53), which was also used in Ref. [61] for test purposes (albeit with transition dipole
moments from CC response theory rather than EOM-CC theory), the left and right expansion coefficients are related by
complex conjugation. In a recent publication,102 Skeidsvoll et al. used the TD-EOM-CCSD method without symmetriza-
tion to simulate weak-field attosecond processes in small molecules—that is, distinct left and right expansion
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coefficients were retained. Core-level pump-probe spectra of LiH and LiF were compared with TDCCSD results from
Ref. [96] and found to be in good agreement.

The TD-EOM-CCSD approach can be much more efficient than the TDCCSD method if the participating states can
be limited by a careful selection procedure,102 but the main computational drawback of the approach is the full diago-
nalization of the Hamiltonian required for completely general quantum dynamics simulations. It is generally hard to
predict a priori how many and which states are required to describe a given dynamical process and a prohibitively large
number of states may be needed. Skeidsvoll et al.102 used an asymmetric band Lanczos algorithm combined with state
selection criteria based on transition strengths and frequencies to successfully limit the number of participating states,
including high-lying core-excited states using core-valence separation.103,104

Another alternative is to avoid the diagonalization problem entirely by propagating directly in a determinant basis.
While this effectively removes all issues related to diagonalization of large matrices—such as stability, selection of
states, and large memory usage—the computational complexity is moved to the time propagation, exactly as in TDCC
theory albeit with the benefit of linear parameterization. This would be especially disadvantageous in simulating tran-
sient absorption spectroscopy, since the ability to analytically propagate the wavefunction after the pulses are switched
off is removed, exactly as in TDCC theory. Still, this may be an attractive approach in cases where one is interested in
broad frequency ranges and large number of states.

4.3 | Time-dependent formulation of linear absorption spectra

As far as we know, propagation in the determinant basis has only been done for linear absorption spectra.105–111 The
starting point is the line-shape function obtained from Fermi's Golden Rule,112 which results from solving the TDSE to
first order in time-dependent perturbation theory with the ground-state wavefunction as initial condition and using the
rotating wave approximation (i.e., only ground-to-excited state one-photon transitions are included). The line-shape
function thus implicitly assumes weak-field perturbations. Adapting to EOM-CC states and assuming the electric-dipole
approximation for the semiclassical matter-field interaction, Fermi's Golden Rule for the line-shape function can be
written as107

Iα ωð Þ¼
X
I

eΨ0jbμαjΨI

D E eΨI jbμαjΨ0

D E
ℒ ω;ωI ,γð Þ, ð55Þ

where α� x,y,zf g, ωI ¼EI�E0, and we have assumed a Lorentzian line shape with fixed lifetime 1=γ for all excited
states:

ℒ ω;ωI ,γð Þ¼ 1
π

γ

ω�ωIð Þ2þ γ2
, γ>0: ð56Þ

Here, we follow Nascimento and DePrince107 and include the ground state in the summation over states I. The gro-
und state was not included in the work of Park, Perera, and Bartlett.109 Note that the line-shape function may be com-
plex in EOM-CC theory; had we used the indefinite inner product instead, only the real part of this expression would
be used.

Using that ℒ ω;ωI ,γð Þ is the Fourier transform of exp iωI t� γjtjð Þ, the line-shape function can be rewritten as

Iα ωð Þ¼
Z ∞

�∞
eMα

0ð Þjei bH0�E0

	 

tjMα 0ð Þ

� �
e�γjtje�iωtdt, ð57Þ

where the right and left dipole functions are defined as

jMα 0ð Þi¼bμα jΨ0i, ð58Þ

h eMα
0ð Þ¼ heΨ0 jbμα: ð59Þ

The line-shape function (57) thus may be evaluated by Fourier transformation of either of the dipole ACFs
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eMα
0ð ÞjMα �tð Þ

D E
or eMα

tð ÞjMα 0ð Þ
D E

, ð60Þ

after multiplication by the damping factor exp �γjtjð Þ. Here,

jMα �tð Þi¼ ei
bH0�E0

	 

t jMα 0ð Þi, ð61Þ

h eMα
tð Þ j¼ h eMα

0ð Þ j ei bH0�E0

	 

t: ð62Þ

Only one of these propagations need to be performed to compute the dipole ACF. While DePrince and
coworkers105–107,111 used a projection procedure for the TDSE for either jMα �tð Þi or h eMα

tð Þ j, Park, Perera, and Bart-
lett109 used the evolution of the dipole operators in the Heisenberg picture. Formally, at least, the two approaches are
equivalent. The absorption spectrum is then obtained from

S ωð Þ¼ 2ω
3

X
α

Re Iα ωð Þð Þ: ð63Þ

Since this approach does not require explicit diagonalization of the similarity transformed Hamiltonian, it provides
a direct route to the study of core excitation spectra106,109 and has been generalized to include scalar relativistic effects
at the exact two-component (X2C) level with a fifth-order Douglas–Kroll–Hess Hamiltonian.109 Scalar relativistic effects
including spin-orbit coupling at the X2C level was explicitly addressed in Ref. [108], where Koulias et al. illustrated
both frequency shift, activation of spin-forbidden transitions, and energy splitting of the 2P1=2 and 2P3=2 states in atoms
and cations of the alkali and alkaline earth metal groups.

It should be noted that the methodology outlined above is not restricted to the electric-dipole approximation and
can be generalized to account for beyond-dipole effects.107,110 Examples are shown in Figures 5 and 6, where the
method was applied to compute linear absorption and isotropic electronic circular dichroism spectra in substituted
oxiranes. Park, Perera, and Bartlett110 reported an implementation which included higher-order multipole functions
corresponding to full second-order oscillator strengths, simulating the 3p! 4d quadrupole-allowed transition in the pre
K-edge region of Ti4+ and TiCl4. This study also includes scalar relativistic effects.

Since the computational cost of these methods is dominated by the time integration and since long simulation times
are required to achieve sufficient resolution in the Fourier transform of the ACF, some effort has been spent on algo-
rithms designed to accelerate the simulations. Nascimento and DePrince106 used Padé approximants of the Fourier

FIGURE 5 Linear absorption spectra for substituted oxiranes computed at the TD-EOM-CC2/aug-cc-pVDZ level of theory. The solid

black lines correspond to artificially broadened stick spectra obtained from standard, frequency-domain EOM-CC2 computations. The labels

NH2, F, OH, and CH3 represent the oxirane substituents. (Reprinted from Ref. [107] with the permission of AIP Publishing.)
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transform, achieving an order of magnitude speedup with small or no errors in the linear absorption spectrum. Later,
however, Cooper et al.111 reported that the Padé approximants may give faulty results in dense spectral regions. The
same group later reported an implementation using a short iterative Lanczos (SIL) integration scheme.111 This method
utilized the fact that the main computational cost in the time propagation is the evaluation of the right hand side of the
TDSE, which amount to a matrix vector product HC. In the SIL approach, a tridiagonal approximation Hk to the Ham-
iltonian matrix is constructed and used to propagate a moment vector within a Krylov subspace of dimension k. Due to
the simple Hamiltonian form, they used the matrix representation of exp iHkdt

	 

directly in the time propagation. The

approximate Hamiltonian and the corresponding Krylov subspace must be regenerated regularly, but still the authors
report up to an order of magnitude speedup relative to the RK4 integrator. Although they used an algorithm designed
for hermitian matrices, it was shown that the SIL method generates frequency spectra with mostly negligible differences
from those generated with the RK4 integrator.

5 | TIME-DEPENDENT VIBRATIONAL COUPLED-CLUSTER THEORY

Vibrational coupled-cluster (VCC) theory refers to the application of CC theory to the nuclear Schrödinger equation in
the adiabatic Born–Oppenheimer approximation. There are two distinct flavors of VCC theory: First, a basis-free
method based on bosonic CC theory54,113–115 was developed into sophisticated VCC theory by Banik, Pal, and Prasad116

and Faucheaux and Hirata,117 who coined the acronym XVCC. The second approach is the modal approach to VCC

FIGURE 6 Electronic circular dichroism spectra for the substituted oxiranes computed at the EOM-CC2/aug-cc-pVDZ level of theory in

the length (left panels) and velocity (right panels) gauges. Colored lines correspond to TD-EOM-CC2-derived data, while the solid black lines

are frequency-domain spectra obtained by artificially broadening the corresponding stick spectra. (Reprinted from Ref. [107] with the

permission of AIP Publishing.)
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theory, simply termed VCC, developed by Christiansen.118,119 RT propagation has been developed in both flavors.
Indeed, in the XVCC case, this is where it started.

5.1 | Bosonic VCC theory: XVCC

The bosonic VCC theory starts with the harmonic approximation, writing the nuclear Hamiltonian as an M-
dimensional harmonic oscillator plus anharmonic perturbations. Each of the M modes have associated harmonic-oscil-
lator ladder operators ba†n satisfying

bam,ba†nh i
¼ δm,n, 1≤m,n≤M, ð64Þ

with joint vacuum j 0i, that is, the ground state of the M-dimensional harmonic oscillator. The XVCC nuclear
wavefunction is given by

jΨXVCCi¼ e
bS j 0i, ð65Þ

with the untruncated cluster operator bS defined by

bS¼XM
m¼1

σmba†mþ XM
m,n¼1

σm,nba†mba†nþ�� �: ð66Þ

The shown terms up to second order define the SUB2 approximation, while higher-order approximations, denoted
SUBN, truncate bS at the Nth order. The theory now proceeds as in traditional CC theory. It is to be remarked, that the
SUB2 approximation generates a wavefunction which is a squeezed state, that is, a general complex-valued Gaussian.

In Ref. [120], Prasad introduced TDCC theory for the study of Franck–Condon spectra, that is, the nuclear transi-
tion probabilities to the various vibrational eigenstates upon (instantaneous) excitation from the nuclear ground state at
the equilibrium geometry to an excited electronic surface. This seems to be the first application of CC theory to the
vibrational Schrödinger equation, and at the same time it is an early application of TDCC theory. Notable here is that
only the ket ðjΨiÞ is propagated in time, since the transition probability is obtained in terms of an ACF only dependent
on this ket. Prasad presented an application to a two-dimensional (2D) model system previously studied by Heller using
frozen Gaussians,121,122 pointing out similarities and differences. For example, the TDCC treatment in the SUB2
approximation is roughly equivalent to the thawed Gaussian approximation. In a follow-up study, Sastry and Prasad123

applied the above methodology to the Beswick–Jortner model124 of photodissociation of the form ABC! AB þ C.
In Ref. [125], Latha and Prasad studied the possibility of using TDCC theory to describe nonadiabatic dynamics on

conically intersecting potential-energy surfaces. In addition to treating multiple electronic surfaces, the basis is made
time dependent using a time-dependent self-consistent field (TDSCF) procedure. Although a very simple model system
was employed, the findings were encouraging. In particular, spurious peaks in the ACF arising from TDSCF theory
alone were strongly alleviated by the CC couplings.

5.2 | Modal VCC theory

In the VCC theory developed by Christiansen,118,119 the exponential Ansatz is applied to the vibrational Schrödinger
equation for nuclear motion. Formally, the theory can be described as standard single-reference CC theory with multi-
ple species of distinguishable particles, called modes. The starting point is the vibrational self-consistent field (VSCF)
procedure,119 which approximates the nuclear wavefunction as a Hartree product of M functions ϕm

0 qmð Þ called modals,
where m¼ 1, � � �,M. Similar to the Hartree–Fock procedure, VSCF also produces excited Hartree products,
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Φs qð Þ¼
YM
m¼1

ϕm
sm qmð Þ, ð67Þ

where s¼ s1, � � �,sMð Þ enumerates the modals, and where q¼ q1, � � �,qmð Þ are the nuclear coordinates. A certain arbitrari-
ness exists in the choice of the mode coordinates qm. The VSCF ground state Hartree product Φ0 qð Þ and the excited
products form the many-mode Hilbert space basis. A second-quantization formalism can be set up which in a natural
manner defines the exponential ansatz for the vibrational Schrödinger equation. Each modal ϕm

sm is associated with a
creation operator ba†,msm , satisfying

bamsm ,ba†,m0s0m0

h i
¼ δm,m0δsm ,s0m0 : ð68Þ

A general cluster operator reads bT¼PμτμbXμ, with μ being a generic index enumerating the various m-mode simul-
taneous excitations, up to M simultaneous excitations. For example, a single-mode cluster operator reads

bT1¼
XM
m¼1

XAm

sm
τmsmba†,msm bam0 , ð69Þ

where Am is the number of modals for mode m, while a two-mode cluster operator reads

bT2¼
XM
m¼1

XM
m0¼mþ1

XAm

sm

XAm0

sm0
τm,m0

sm,sm0
ba†,msm ba†,m0sm0 bam00 bam0 : ð70Þ

The cluster operator is usually truncated at a number n of simultaneous mode excitations, denoted the VCC[n]
approximation.118

Apart from the qualitative differences arising from having multiple distinguishable particle species, the Hamiltonian
in VCC theory is also qualitatively different, since the particles are now modes, and there are, in principle, arbitrarily
many such particles interacting at the same time. In particular, the Baker–Campbell–Hausdorff expansion does not
truncate for VCC for the exact Born–Oppenheimer potential-energy surface. The Hamiltonian is typically truncated at a
maximum number of interacting modals (e.g., using a sum-of-products approximation).

The Christiansen group has also developed RT time-dependent VCC (TDVCC) theory using the bivariational frame-
work in Section 3. In Ref. [126], Hansen et al. introduced the TDVCC formalism, along with an analysis of the separa-
bility of the bra and ket wavefunctions as well as the corresponding extensivity of expectation values. The authors also
considered imaginary-time propagation for locating the ground-state solution. These theoretical results are also highly
relevant for electronic-structure TDCC theory. The authors present an implementation of the TDVCC[2] method, using
the Dormand–Prince 8(5,3) explicit Runge–Kutta method with adaptive step size control, see Ref. [127], Section II.5.

In order to verify their implementation and analysis, the authors tested their TDVCC[2] code on the 2D Hénon–
Heiles potential, as well as calculations on the water and formaldehyde molecules, using approximate potentials on a
sum-over-products format coupling at most two modes per term, generated using Gaussian process regression.128 One
interesting finding is that round-off errors in the asymptotic region of imaginary-time propagation can, even for such
an accurate Runge–Kutta integrator, lead to slightly incorrect exponential decay rates, thereby predicting slightly wrong
excitation energies. The authors also studied the integration of a system driven by an explicitly time-dependent laser
pulse.

In a follow-up study,129 an automated implementation of the full hierarchy of TCVCC[n] approximations was pres-
ented. Again, the Dormand–Prince 8(5,3) method was the chosen integrator for the numerical studies. The authors note
that even though the integrator is not symplectic, it is sufficiently accurate so that there are no stability or non-
conservation problems often associated with explicit Runge–Kutta methods.91

The authors performed several detailed numerical experiments, demonstrating the convergence to the vibrational
FCI (VFCI) limit for a 5-mode system (formaldehyde). An extended truncation scheme inspired by single-reference
based multireference theory130 is also introduced, called VCC[kextn], where a single mode is chosen to have n�k more
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excitations than the VCC[k] truncation scheme. The convergence toward the VFCI limit was demonstrated to be
enhanced when a single mode dominated the dynamics.

The authors also discussed ACFs in detail with respect to their separability properties for separated noninteracting

systems, singling out the ACF defined by A t0, tð Þ¼ eΨ t0ð ÞjΨ tð Þ
D E

as being the only one producing physically reasonable

values (i.e., with absolute values smaller than 1). The ACF B t0, tð Þ¼ eΨ tð ÞjΨ t0ð Þ
D E�

was observed to have significantly

unphysical values. It is interesting to compare this with the ACF used by Pedersen and Kvaal,60 Equation (31), which is the
average of A and B. In the work of Pedersen and Kvaal, no unphysical values were observed for B t0, tð Þ unless the inte-
gration of the equations of motion failed due to ground-state depletion (in which case also A t0, tð Þ becomes ill-behaved).
The third ACF studied was based on the relation Ψ 0ð ÞjΨ tð Þh i¼ Ψ t=2ð Þ�jΨ t=2ð Þh i, valid in standard hermitian dynamics
for a real Ψ 0ð Þ and a real Hamiltonian. However, the authors found severely unphysical behavior of this ACF. Finally,
we mention that the authors applied their implementation to a larger system, studying the intramolecular vibrational-
energy redistribution of the imidazole molecule (with 21 modes) using an accurate many-term potential-energy surface.

In a related study, Hansen, Madsen, and Christiansen131 implemented the full time-dependent extended CC method
of Arponen,54 that is, the TDEVCC method. Although unfeasible for larger systems than, say, M¼ 6 modes, the
TDEVCC method utilizes a double exponential Ansatz for the bra and ket vectors, implying full multiplicative
separability and corresponding separability of expectation values. The authors observed that for ground-state energy
calculations, EVCC theory does not offer a significant improvement over “plain” VCC theory, especially taking the
computational cost into consideration. This is a finding consistent with the conventional wisdom in electronic-structure
theory.132 However, the authors noted that for time-dependent calculations, TDEVCC[k] performs in general much
better than TDVCC[k] with regards to the closeness of both the bra and the ket to the TDVFCI limit and accuracy of
expectation values. Both ACFs of type A and B are correctly separable with TDEVCC[k].

The Christiansen group has also developed and implemented a VCC analogue of orbital-adaptive TDCC49 (cf.,
Section 3), called time-dependent modal VCC (TDMVCC) theory. In Ref. [133], Madsen et al. presented an advanced
implementation of orbital-adaptive theory with very promising results, including the apparent cure of exploding ampli-
tude norms in TDVCC[n] calculations for the water potential-energy surface. This corroborates findings by Kristiansen
et al.,93 who applied TDNOCC theory to electronic systems.

6 | OTHER APPLICATION AREAS

6.1 | Finite-temperature theory

Development of viable computational tools for the study of many-body quantum systems, especially in the condensed phase,
at finite temperature is an active research area, see, for example, Refs. [134–137] for recent work within density-functional
theory. The earliest efforts to cast quantum mechanics in a thermodynamical framework were based on the close resem-
blance of the statistical partition function and the quantum-mechanical evolution operator with imaginary time. The
Matsubara formalism138 for Green's functions in quantum-field theory is a notable example of this connection. However,
when the time has been rotated to the imaginary-time axis, the dynamics are lost. To circumvent this problem there are sev-
eral techniques to re-introduce real time, for example, thermofield dynamics and the Keldysh formalism.139,140

The first to explore CC theory in a finite-temperature setting were Altenbokum and coworkers.115,141 They used a
density-matrix formulation with the Bloch equation replacing the Schrödinger equation. This, however, requires the
knowledge of the full spectrum of the Hamiltonian thus quickly making the solution prohibitive. Several years later the
thermal cluster cumulant (TCC) method was developed by Sanyal, Mandal, and Mukherjee as an extension of the ther-
mofield dynamics with the CC method, requiring a thermal formulation of Wick's theorem.142,143 This resulted in a
method resembling the cumulant expansion from statistical mechanics, and bypassed the need to know the full spec-
trum of the Hamiltonian. In a series of articles this method was studied and applied to an anharmonic oscillator and to
the Lipkin model of nuclear physics.142–146

In 2018, White and Chan147 started from an explicitly time-dependent formulation of CC theory and replaced time
by an imaginary time. This replaced the time-dependent formulation with a temperature-dependent formalism, dubbed
the finite-temperature coupled-cluster (FTCC) method, and was further studied in 2020.148 Their formulation of FTCC
theory is slightly different from the TCC model by Sanyal, Mandal, and Mukherjee,142 but the methods are equivalent
and lead to the same set of equations.
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At the same time, Hummel149 developed an imaginary-time time-dependent truncated CC method for the applica-
tion to systems at finite temperature. The truncation scheme is the direct-ring coupled-cluster doubles (drCCD) method
(i.e., the direct random-phase approximation) and leads to much more cost-effective equations than the FTCC formal-
ism at the price of reduced accuracy.

Following shortly after these publications, Harsha, Henderson, and Scuseria150 developed an imaginary-time TDCC
method for finite-temperature systems from the thermofield dynamics formalism. Results from this method were publi-
shed already in an earlier work comparing with a thermal configuration-interaction method.151

By including dynamics the study of non-equilibirium systems becomes possible. White and Chan152 utilized the
Keldysh formalism to extend the imaginary-time formalism to include a real component for RT dynamics.140 This
method was dubbed the Keldysh coupled-cluster (Keldysh-CC) method. Up to this point all time-dependence and
temperature-dependence was kept in the cluster amplitudes. However, in 2021 Peng et al.153 extended the Keldysh-CC
method to include orbital rotations. They formulated the Keldysh-OCC method as an extension of the TDOCC
method85 to finite-temperature systems.

6.2 | Sub-system embedding

Kowalski and Bauman154 have developed the sub-system embedding sub-algebra CC formalism, which is a generaliza-
tion of the complete active space CC (CASCC) formalism of Piecuch, Adamowicz, and coworkers.130,155 The excitations
that stay completely in the CAS is an example of a sub-system embedding sub-algebra. In Ref. [154], the formalism is
extended to the TDSE. Moreover, a CASCC generalization of unitary CC (UCC) is studied, including variational formu-
lations of the dynamical equations of motion. The UCC method is one of the main contenders for quantum advantage
on noisy intermediate-scale quantum (NISQ) devices.156

6.3 | Green's function methods

In coupled-cluster Green's function (CCGF) theory,157 the goal is to compute a quantum mechanical Green's function
by means of CC theory. For example, the one-body retarded Green's function defined by

G�pq t2� t1ð Þ¼�iθ t2� t1ð Þ Ψ0j bap t2ð Þ,ba†q t1ð Þ
n o

jΨ0

D E
, ð71Þ

is a causal propagator that expresses the amplitude of electron/hole propagation from time t1 to a later time t2. Here,bap tð Þ¼ eibHtbape�ibHt is the Heisenberg representation of bap and θ is the Heaviside step function. Intuitively, G� contains
information about causal single-particle processes in a quantum system starting out in the ground state, and can be
used to compute a host of properties.158 The Green's function is closely related to the ACFs described elsewhere in this
review.

In CCGF theory, the bivariational approximations for jΨ0i and hΨ0 j constitute the starting point, see Section 3.
Conventionally, a momentum-space representation of G� is sought and approximated using many-body perturbaton
theory. In recent work, however, RT propagation methods for jΨ0i in conjunction with a cumulant approximation159

(i.e., exponential Ansatz) was explored.
In Refs. [160, 161], Rehr, Vila and coworkers used RT propagation within EOM-CC theory, obtaining a non-

perturbative expression for the cumulant appearing in G� in terms of the solution to a set of coupled first-order,
nonlinear differential equations. The primary aim was to study x-ray absorption spectra of molecular systems, and it
was shown that the nonlinear terms of the cumulant expansion yields significant improvements over the traditional lin-
ear approximation. In Ref. [162], the approach is further extended and applied to the core-hole spectral function for
small molecular systems.

7 | CONCLUDING REMARKS

While still in its infancy, TDCC theory is emerging as a versatile tool in computational molecular science. As one might
perhaps expect from its unquestionable status as the high-accuracy method in time-independent quantum chemistry, it
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can provide high accuracy relative to TDFCI theory for electronic and vibrational quantum dynamics. With time-
dependent orbitals and sufficient flexibility in the basis set used to expand these orbitals, TDCC theory has the potential
to make decisive contributions to the understanding of molecular processes on the timescale of the electron—the
attosecond timescale—where not only bound states, but also the electronic continuum must be taken into account.
With relatively little development effort (since no response equations need to be implemented), TDCC theory can be
used to compute full linear absorption spectra, including core-level excitations. Linear and low-order nonlinear
response functions may be extracted from relatively short simulations. With proper use of Arponen's bivariational for-
mulation, essentially all information that can be extracted from hermitian quantum dynamics can also be extracted
from TDCC simulations despite the non-hermitian formulation.

Several challenges need to be overcome, however. The computational cost of TDCC theories is very high compared
with the most widely used method, TDDFT, and two issues need to be addressed. First, the computational complexity
or at least the prefactor of the evaluation of the function f in Equation (30) must be reduced. A general algorithm for
this is significantly more challenging to formulate than reduced-scaling algorithms for the ground state, since different
external driving forces may produce dramatically different responses in the wavefunction. For weak driving fields, for
example, it is (very) small changes in the cluster amplitudes that produce the oscillations of interest, making screening
procedures difficult to implement with full controllability of the accuracy, whereas strong fields can produce
wavefunctions with very wide spatial distribution.

Second, the number of f-evaluations must be kept at a minimum, requiring careful selection of the numerical inte-
grator and improved signal processing. Another major challenge, which is shared by all electronic quantum dynamics
methods, is the representation of the electronic continuum. Ideally, one would wish to have the accuracy of mesh-based
approaches like FEDVR at the cost of Gaussian-based electronic-structure theory.

Third, nuclear motion needs to be included to reliably extend simulation times beyond a few femtoseconds. This
can be approached with either classical or quantum nuclear motion but will eventually require a time-dependent
multireference CC wavefunction to describe, for example, a photo-induced chemical reaction.
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