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Abstract

We establish that
∞∑

m=1

∞∑
n=1

aman
mn

(max(m, n))3 ≤
4
3

∞∑
m=1

|am |
2

holds for every square-summable sequence of complex numbers a = (a1, a2, . . .) and that the
onstant 4/3 cannot be replaced by any smaller number. Our proof is rooted in a seminal
911 paper concerning bilinear forms due to Schur, and we include for expositional reasons an
laboration on his approach.
2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY

icense (http://creativecommons.org/licenses/by/4.0/).

SC: primary 26D07; secondary 11B68; 40A25
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1. Introduction

Set R+ = (0, ∞). Suppose that K is a function defined on R+×R+ that is continuous,
positive, symmetric, and homogeneous of degree −1, i.e. such that

K (λx, λy) = λ−1 K (x, y)

holds for all x, y, λ > 0. The problem of interest is to identify the smallest real number
= C(K ) such that the inequality

∞∑
m=1

∞∑
n=1

aman K (m, n) ≤ C
∞∑

m=1

|am |
2 (1)
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holds for every square-summable sequence of complex numbers a = (a1, a2, . . .). The
anonical example of an inequality of the form (1) is Hilbert’s inequality, where the
ernel is K (x, y) = (x + y)−1. In this case, it was Hilbert who proved that the inequality
olds with the constant C = 2π before Schur [9] established that the best constant is
= π . It is for this reason that inequalities of the form (1) are commonly referred to

s Hilbert-type inequalities.
Schur actually established a much more general result. A hint to his approach can be

ound in our list of assumptions above, since the requirement that K be a continuous
unction on R+ × R+ may seem incongruous as we only evaluate it at pairs of positive
ntegers in (1). Schur’s main idea is to first study the continuous analogue of (1) and then
educe the continuous case to the discrete case.

To state his result, we introduce the auxiliary function

k(y) =
K (1, y)

√
y

(2)

for 0 < y < ∞. The reduction from the continuous case to the discrete case goes through
when k enjoys certain monotonicity properties.

Theorem 1 ([9]). Let K be a continuous, positive, and symmetric kernel of homogeneity
−1 and let k be as in (2).

(a) If k is decreasing on the interval (1, ∞), then

C(K ) ≥

∫
∞

0
k(y) dy.

(b) If k is decreasing on the interval (0, ∞), then

C(K ) ≤

∫
∞

0
k(y) dy.

The reader is invited to verify that K (x, y) = (x + y)−1 satisfies the assumption of
heorem 1(b) and to check that the integral for C(K ) indeed equals π .

Chapter IX in the classical monograph Inequalities by Hardy, Littlewood and Pólya [5]
s devoted to the further development of Schur’s idea. Theorem 318 in that text is a
eneralization of (b), while (a) is implicitly contained in Section IX.5. However, the
uthors are keenly aware of the limitations of Schur’s approach:

If the reader will try to deduce Theorem 331 from Theorem 328 similarly, he will
find some difficulty. Something is lost in the passage from integrals to series, and
it is by no means always possible that (as here) the passage can be made without
damage to the final result.

[Hardy, Littlewood and Pólya [5, p. 249]].

There is a vast literature (which we make no attempt at delineating) of extensions and

eneralizations of Theorem 1 in various directions, common among them is that Schur’s
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approach works with only superficial modifications. We will instead consider a family of
kernels exemplifying the phenomenon quoted above, namely

Kα(x, y) =
1

√
xy

(xy)α

(max(x, y))2α

or 0 < α < ∞. Accordingly, we let Cα = C(Kα) denote the best constant in the
nequality (1) with the kernel K = Kα . Since

kα(y) =

{
yα−1 if 0 < y ≤ 1,

y−α−1 if 1 < y < ∞,

t is plain that Kα satisfies the assumption of Theorem 1(a) for all 0 < α < ∞ and
he assumption of Theorem 1(b) only for 0 < α ≤ 1. Consequently, the best constant

satisfies Cα ≥ 2/α for all 0 < α < ∞ and Cα = 2/α when 0 < α ≤ 1. We are interested
n whether the latter conclusion holds for some α > 1.

If K = Kα , then the left-hand side of (1) enjoys the integral representation

α

∞∑
m=1

∞∑
n=1

aman Kα(m, n) =

∫
∞

−∞

⏐⏐⏐⏐⏐
∞∑

m=1

amm−
1
2 −i t

⏐⏐⏐⏐⏐
2

α2

α2 + t2

dt
π

, (3)

which can be established by expanding the absolute values into a double sum. Similar
formulas can be obtained for other Hilbert-type inequalities via the Mellin transform (see
e.g. [10, Sec. IV]). For each fixed square-summable sequence a, the right-hand side of
(3) is increasing as a function of α. The same must also be true for the left-hand side,
so the function α ↦→ αCα is increasing. It follows that if Cα ≤ 2/α holds for some α̃,
then the same estimate also holds for all 0 < α ≤ α̃.

To prove that Cα = 2/α holds beyond α = 1, we will rely on another innovation of
Schur’s seminal paper [9], namely the Schur test. See [4, Sec. 3] for a historical account of
the Schur test. In its simplest form, the Schur test is just the weighted Cauchy–Schwarz
inequality with an unspecified weight. The strategy is to first use this inequality, then
analyze the resulting expression and try to identify a good weight. Unfortunately, once
a good weight is found the proof of the resulting inequality is often written up without
any mention of how the weight was found. Indeed, Schur’s (!) proof of Theorem 1 in
Section 7 of [9] makes no reference to the Schur test first introduced in Section 3 of the
very same paper.

The first goal of the present note is therefore to give a complete account of Theorem 1
including a clear explanation of how the weight is found. After analyzing how the proof
of Theorem 1(b) fails for the kernels Kα when α > 1, we are next led by the Schur test
to a sufficient condition for Cα ≤ 2/α. We will finally use Euler–Maclaurin summation
to show that this condition is satisfied for α = 3/2, thereby answering a question raised
by the present author in [1, Sec. 5.2].

Theorem 2. For every square-summable sequence a = (a1, a2, . . .) it holds that
∞∑

m=1

∞∑
n=1

aman
mn

(max(m, n))3 ≤
4
3

∞∑
m=1

|am |
2

and the constant 4/3 cannot be replaced by any smaller number.
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By the fact that α ↦→ αCα is increasing discussed above and Theorem 1(a), we also
obtain the following.

Corollary 3. Suppose that 0 < α ≤ 3/2. For every square-summable sequence
= (a1, a2, . . .) it holds that

∞∑
m=1

∞∑
n=1

aman Kα(m, n) ≤
2
α

∞∑
m=1

|am |
2

and the constant 2/α cannot be replaced by any smaller number.

Corollary 3 is an improvement on [1, Thm. 1] due to the present author, which implies
that Cα = 2/α for 0 < α ≤ α0 = 1.48 . . .. Here α0 denotes the unique positive solution
of the equation αζ (1 + α) = 2 where ζ is the Riemann zeta function. The Riemann zeta
function makes an appearance due to the relation

ζ (1 + α) =

∞∑
n=1

n−1−α
=

∞∑
n=1

kα(n). (4)

Since Kα(1, 1) = kα(1) = 1 for every 0 < α < ∞, it is plain that Cα ≥ 1. Consequently,
it is not true that Cα = 2/α in general.

Let us close out this introduction by briefly mentioning some interesting properties of
he constants Cα . The determination of Cα is equivalent to a problem arising in the theory
f composition operators on the Hardy space of Dirichlet series through [6, Prob. 3]
nd [1, Thm. 2]. The connection to composition operators provides at once the lower
ound Cα ≥ ζ (1 + 2α). The question of whether Cα = 2/α is related to the discrete
pectrum of certain Jacobi matrices by [2, Thm. C], which in turn is related to the
eproducing kernel thesis for certain composition operators through material from [7,
ec. 5] and [2, Sec. 5]. We refer to [8, Ch. 8] for a general account of the theory of
omposition operators on Hardy spaces of Dirichlet series.

. The Schur test

We follow the strategy outlined by Schur [9, p. 2] and begin by investigating the
ontinuous analogue of (1). Suppose that the kernel K is continuous, positive, symmetric,
nd homogeneous of degree −1. Consider the inequality∫

∞

0

∫
∞

0
f (x) f (y) K (x, y) dydx ≤ B

∫
∞

0
| f (x)|2 dx . (5)

We want to find the smallest constant B = B(K ) such that the inequality (5) holds for
every square-integrable complex-valued function f on R+.

By the symmetry and positivity of the kernel K , we may assume without loss of
generality that f is nonnegative on R+. After inspecting (5), it is natural to expect that
the proof of such an estimate would involve the Cauchy–Schwarz inequality. A naive
first attempt is to use the symmetry and positivity of K to write

f (x) f (y) K (x, y) = f (x)
√

K (x, y) f (y)
√

K (y, x)
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before applying the Cauchy–Schwarz inequality. It turns our that a slightly more refined
approach is called for. A continuous function ω :R+ → R+ will be called a weight in
what follows. For an unspecified weight ω, we write

f (x) f (y) K (x, y) = f (x)

√
K (x, y)

ω(y)
ω(x)

f (y)

√
K (y, x)

ω(x)
ω(y)

. (6)

By the Cauchy–Schwarz inequality and symmetry, we deduce from (5) and (6) that∫
∞

0

∫
∞

0
f (x) f (y) K (x, y) dydx ≤

∫
∞

0
| f (x)|2

1
ω(x)

∫
∞

0
K (x, y) ω(y) dydx . (7)

If we can find a weight ω and a constant A such that the estimate∫
∞

0
K (x, y) ω(y) dy ≤ Aω(x) (8)

holds for every 0 < x < ∞, then plainly B(K ) ≤ A. This is the Schur test.
The plan is now to study the integral on the left-hand side of (8) in order to identify

a suitable weight ω. Due to the homogeneity of K , we can write∫
∞

0
K (x, y) ω(y) dy =

∫
∞

0
K (1, y) ω(xy) dy.

From this we see that the easiest way to attain the estimate (8) is to choose a weight
which satisfies ω(xy) = ω(x)ω(y) for every x and y in R+. By the assumption that ω is
ontinuous, this is only possible if ω(x) = xr for a fixed real number r .

We now want to pick r to minimize the resulting integral. Appealing to the homo-
eneity of K yet again, we find that∫

∞

0
K (1, y) yr dy =

∫
∞

1
K (1, y)

(
yr

+ y−r−1) dy.

he minimum of the integrand on the right-hand side is attained at r = −1/2 for each
xed 1 < y < ∞. Hence it follows that

B(K ) ≤ 2
∫

∞

1

K (1, y)
√

y
dy =

∫
∞

0

K (1, y)
√

y
dy. (9)

Is this the best constant? The only estimate we have used is the Cauchy–Schwarz
inequality in (7). To attain the equality here with a non-trivial function, there must be
a constant C ̸= 0 such that f = Cω. However, this is not permissible since ω is not
square-integrable on R+. To overcome this issue, we fix ε > 0 and set

fε(x) =

{
0 if 0 < x ≤ 1,

x−
1
2 −ε if 1 < x < ∞.

In view of the final equality in (9), it is sufficient to consider a test function supported
on 1 < x < ∞. It is plain that the square-integral of fε on R+ is equal to (2ε)−1. By
he homogeneity of K and integration by parts, we find that∫

∞

0

∫
∞

0
fε(x) fε(y) K (x, y) dydx =

1
ε

∫
∞

1
K (1, y) y−

1
2 −ε dy.

etting ε → 0+, we find that the estimate in (9) indeed yields the best constant in (5).
e have consequently established the following result.
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Theorem 4. Suppose that the kernel K is continuous, positive, symmetric, and
omogeneous of degree −1. For every square-integrable function f on R+,∫

∞

0

∫
∞

0
f (x) f (y) K (x, y) dydx ≤ B

∫
∞

0
| f (x)|2 dx, B =

∫
∞

0

K (1, y)
√

y
dy,

nd the constant B cannot be replaced by any smaller number.

Let us next turn to the discrete case and the proof of Theorem 1. Although we will
ot explicitly use Theorem 4 in our proof, we are influenced by the choice of weight and
est function made above.

roof of Theorem 1(a). If a = (am)m≥1 is defined by am = m−
1
2 −ε for some ε > 0,

hen
∑

m≥1 |am |
2

= ζ (1 + 2ε). Moreover,

∞∑
m=1

∞∑
n=1

aman K (m, n) = −K (1, 1)
∞∑

m=1

m−2−2ε
+ 2

∞∑
m=1

∞∑
n=m

(mn)−
1
2 −ε K (m, n).

The first sum remains bounded as ε → 0+ and can be ignored. We need to estimate the
double sum from below, and we rewrite it using homogeneity to find that

∞∑
m=1

∞∑
n=m

(mn)−
1
2 −ε K (m, n) =

∞∑
m=1

m−1−2ε

∞∑
n=m

1
m

K (1, n/m)

(n/m)
1
2 +ε

.

e recognize the inner sum as a left Riemann sum with uniform partition size m−1 for
he integral

Iε =

∫
∞

1

K (1, y)

y
1
2 +ε

dy =

∫
∞

1

k(y)
yε

dy.

ombining the assumption that k is decreasing on the interval (1, ∞) with the fact that
the function y ↦→ y−ε is decreasing on the same interval and a geometric argument,
it can be seen that Iε is a lower bound for every left Riemann sum (see Fig. 1 for an
example). Thus,

∞∑
m=1

∞∑
n=1

aman K (m, n) ≥ −K (1, 1)ζ (2 + 2ε) + 2Iεζ (1 + 2ε).

etting ε → 0+, we find that C(K ) ≥ 2I0. We finish the proof by using the homogeneity
f K as in (9).

Let us now turn to the Schur test in the discrete case. As above, if there is a weight
:N → R+ and a constant A such that

∞∑
n=1

K (m, n) ω(n) ≤ Aω(m) (10)

olds for every m ≥ 1, then the best constant C(K ) in the Hilbert-type inequality (1)
atisfies C(K ) ≤ A.
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Fig. 1. Left Riemann sums of uniform partition size m−1 of the function y ↦→ y−εkα(y) on the interval
(1, 5). Here m = 2, α = 1/2, and ε = 1/4.

Proof of Theorem 1(b). Following our analysis of the continuous case above it is natural
to choose the weight ω(m) = 1/

√
m for m ≥ 1. By (10), we then find that

C(K ) ≤ sup
m≥1

1
ω(m)

∞∑
n=1

K (m, n) ω(n) = sup
m≥1

∞∑
n=1

1
m

K (1, n/m)
√

n/m
. (11)

We recognize the right-hand side of (11) as right Riemann sums of uniform partition size
m−1 for the integral

I =

∫
∞

0

K (1, y)
√

y
dy =

∫
∞

0
k(y) dy.

he assumption that k is decreasing on the interval (0, ∞) and a geometric argument
see Fig. 2 for an example) shows that the supremum in (11) is attained as m → ∞ and

is equal to I . Hence we get that C(K ) ≤ I by the Schur test.

A similar Riemann sum argument starting from (11) under the assumption that k is
ncreasing on (0, 1) and decreasing on (1, ∞), gives that

C(K ) ≤ k(1) +

∫
∞

1
k(y) dy. (12)

his estimate is in general unlikely to be sharp, since we have to choose m = 1 to attain
he supremum for the integral over the interval (0, 1) and m → ∞ to attain the supremum

for the integral over the interval (1, ∞). For the kernels Kα the estimate (12) becomes
α ≤ 1 + 1/α. This is sharp if and only if α = 1 when k1(y) = 1 for all 0 < y < 1.

This case is presented in Fig. 2.
The typical situation for α > 1 is presented in Fig. 3. One possible strategy to improve

(12) is to keep track of the overestimates on (0, 1) and underestimates on (1, ∞) for each
fixed m ≥ 1 and try to compute the supremum in (11). This plan was carried out in [1,
Lem. 8] and it led to the proof that Cα = 2/α for 0 < α ≤ 1.48 . . . mentioned in the
ntroduction. We will instead take an alternative approach, which in addition to giving a
tronger result also is somewhat easier to handle from a computational point of view.

Our approach is based on the observation that Kα(1, 1) = kα(1) = 1, so as α increases
his term will be increasingly dominant. The plan is therefore to adjust the weight in the
chur test accordingly. The key idea of the next result is that we require of the unspecified
eight ω that (10) is satisfied with A = 2/α. We then try to choose a parameter in the
eight in order to satisfy this requirement.
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Fig. 2. Right Riemann sums of uniform partition size m−1 of the function kα on the interval (0, 4). Here
m = 2 and α = 1.

Lemma 5. Suppose that 0 < α < 2. If

ζ (1 + α) ≤
2
α

+

(
2
α

− 1
)

mα

(
2
α

−
√

m
∞∑

n=1

Kα(m, n)
√

n

)
(13)

holds for every m ≥ 2, then Cα = 2/α.

roof. We already know that Cα ≥ 2/α by Theorem 1(a), so it is enough to consider
he upper bound Cα ≤ 2/α. We will use the Schur test (10) with the weight

ωα(m) =

{
δα if m = 1,

1/
√

m if m ≥ 2,

for some parameter δα > 0. To conclude that Cα ≤ 2/α, we need to establish that
∞∑

n=1

Kα(m, n) ωα(n) ≤
2
α

ωα(m) (14)

holds for every m ≥ 1. There are two cases. First, if m = 1, then (14) yields the
requirement

δα +

∞∑
n=2

Kα(1, n)
√

n
≤

2
α

δα.

Note that for 0 < α < 2 we may choose a positive δα satisfying this estimate as required
y the Schur test. Second, if m ≥ 2, then (14) yields the requirement

δα

mα+
1
2

+

∞∑
n=2

Kα(m, n)
√

n
≤

2
α

1
√

m
.

e can find δα > 0 which satisfies both requirements whenever(
2
α

− 1
)−1 ∞∑

n=2

Kα(1, n)
√

n
≤

2
α

mα
− mα+

1
2

∞∑
n=2

Kα(m, n)
√

n

for every m ≥ 2. This is equivalent to (13) by a computation involving (4).
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Fig. 3. Right Riemann sums of uniform partition size m−1 of the function kα on the interval (0, 4). Here
m = 3 and α = 3/2.

3. Euler–Maclaurin summation

We require two estimates in order to establish that the requirement (13) from Lemma 5
holds for α = 3/2. These estimates can be extracted from [1, Sec. 4], but we include
a complete account here to ensure that the present note is self-contained. Although we
shall use the two estimates only for α = 3/2 in the proof of Theorem 2, we state them
somewhat generally. What we need to know about Euler–Maclaurin summation can be
found in [3, Sec. 11.5].

Lemma 6. Fix 0 < α < ∞. For every m ≥ 1 it holds that
∞∑

n=m+1

n−α−1
≤

1
α

m−α
−

1
2

m−α−1
+

(α + 1)
12

m−α−2.

roof. Let f be a function defined on the interval [m, ∞) which has continuous
erivatives of order three on the same interval. If both f and f ′ vanish at infinity, then
ne step of the Euler–Maclaurin summation formula yields that

∞∑
n=m+1

f (n) =

∫
∞

m
f (x) dx −

f (m)
2

−
f ′(m)
12

+
1
3!

∫
∞

m
b3({x}) f (3)(x) dx, (15)

here {x} denotes the fractional part of x and

b3(x) = x3
−

3
2

x2
+

1
2

x

is the third Bernoulli polynomial. If 0 ≤ x ≤ 1/2, then b3(1−x) = −b3(x) and b3(x) ≥ 0.
f f (3) is an increasing function on the interval [m, ∞), then a symmetry consideration
hows that∫

∞

m
b3({x}) f (3)(x) dx ≤ 0. (16)

e apply (15) and (16) to f (x) = x−α−1 and obtain the stated result.

emma 7. Fix 1 ≤ α ≤ 2. For every m ≥ 1 it holds that
m∑

nα−1
≤

1
α

mα
+

1
2

mα−1
+

α − 1
12

mα−2
−

(3 − α)(5 − α)(6 − α)(8 + α)
720α

.

n=1
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Proof. Let f be a function defined on the interval [1, m] which has continuous deriva-
tives of order five on the same interval. Two steps of the Euler–Maclaurin summation
formula yields that

m∑
n=1

f (n) =

∫ m

1
f (x) dx +

f (1) + f (m)
2

+
f ′(m) − f ′(1)

12

−
f (3)(m) − f (3)(1)

720
+

1
5!

∫ m

1
b5({x}) f (5)(x) dx,

(17)

here {x} again denotes the fractional part of x and

b5(x) = x5
−

5
2

x4
+

5
3

x3
−

1
6

x

is the fifth Bernoulli polynomials. If 0 ≤ x ≤ 1/2, then b5(1−x) = −b5(x) and b5(x) ≤ 0.
f f (5) is a decreasing function on [1, m], then a symmetry consideration shows that∫ m

1
b5({x}) f (5)(x) dx ≤ 0. (18)

f 1 ≤ α ≤ 2 and f (x) = xα−1, then f (5) is decreasing on [1, m] for every m ≥ 2. We
herefore obtain the stated result from (17), (18), and the estimate

−
f (3)(m)

720
= −

(α − 1)(α − 2)(α − 3)
720

mα−4
≤ 0,

which holds when 1 ≤ α ≤ 2.

We can now deduce our main result from Lemmas 5, 6, and 7.

Proof of Theorem 2. By Lemma 5, it is sufficient to establish the estimate (13) for
α = 3/2 and every m ≥ 2. We begin by estimating the left-hand side of (13) from above
using Lemma 6 with α = 3/2 and m = 4 to obtain

ζ ( 5
2 ) ≤ 1 + 2−5/2

+ 3−5/2
+ 4−5/2

+ 4−3/2
(

2
3

−
1
8

+
5

384

)
=

√
2

8
+

√
3

27
+

1127
1024

.

To estimate the right-hand side of (13), we first compute

√
m

∞∑
n=1

Kα(m, n)
√

n
= m−α

m∑
n=1

nα−1
+ mα

∞∑
n=m+1

n−α−1,

hen use Lemmas 6, 7 for 1 ≤ α ≤ 2, and finally that m ≥ 2 to obtain

≤
2
α

+
α

6
1

m2 −
(3 − α)(5 − α)(6 − α)(8 + α)

720α

1
mα

≤
2
α

+

(
α

6
2α−2

−
(3 − α)(5 − α)(6 − α)(8 + α)

720α

)
1

mα
.

Inserting this estimate into the right-hand side of (13) and setting α = 3/2, we get

2
3/2

+

(
2

3/2
− 1

)
m3/2

(
2

3/2
−

√
m

∞∑ K3/2(m, n)
√

n

)
≥

2693
1920

−

√
2

24
.

n=1
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e
c

I
t

D

r

D

R

This completes the proof since
√

2
8

+

√
3

27
+

1127
1024

<
2693
1920

−

√
2

24
.

What does this mean for the parameter δα in the proof of Lemma 5? Inserting the
stimates from Lemmas 6 and 7 directly into the requirements, we find that an acceptable
hoice satisfies

1.0245 . . . = 3

(√
2

8
+

√
3

27
+

103
1024

)
≤ δ3/2 ≤

773
640

−

√
2

8
= 1.0315 . . .

t is not possible to push much further with Lemma 5: a numerical computation shows
hat (13) does not hold for m = 2 when α ≥ 1.5069.
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