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1 Introduction

The stochastic process B (t) which we today call fractional Brownian mo-
tion (fBm) with Hurst parameter H € (0,1) was originally introduced by
Kolmogorov in a study of turbulence. Subsequently many other applications
have been suggested. (See Section 3 for more details). For this reason, and
also because this 1-parameter family of processes contains the fundamental
classical Brownian motion as a special case (H = 3), there has been a great
increase in the interest and the research activity related to fBm, especially
in the last 10 years.

In order to obtain good mathematical models based on fBm it is neces-
sary to have a stochastic calculus for such processes. However, f Bm is not a
semimartingale (except when H = 1), so the classical stochastic calculus can-
not be applied. On the other hand, it turns out that an efficient white noise
theory can be constructed and based on this one can introduce stochastic
(Wick-It6) integration and (Malliavin type) differentiation for fBm.

The purpose of this paper is to give an introduction to this newly devel-
oped theory. The first part of the paper is mainly a survey of results from
[HOUZ], [DHP], [HQ] and [EvdH]. This is the case for most of Sections 2, 3
and 4, except for the fractional It6 formula (Theorem 3.6), which is new in
this setting (arbitrary H € (0,1) and Wick-It6 integration).

In Section 5 we develop the Malliavin calculus for fBm, including a
fundamental theorem of fractional stochastic calculus (Theorem 5.3) and
integration by parts (Theorem 5.4). These results are new. Then we use
these results to give a new proof of the fractional It6 isometry (Theorem
5.6), which was first proved by [EvdH].

Finally in Section 6 we present the multi-dimensional analogues of these
results.



2 Classical white noise theory

We begin by recalling the standard setup for the classical white noise prob-
ability space. See e.g. [HKPS], [K], [HOUZ] or [A@PU] for more details.

Definition 2.1. Let S(R) denote the Schwartz space of rapidly decreasing
smooth functions on R and let 2 := S§'(R) be its dual, usually called the
space of tempered distributions. Let p be the probability measure on the
Borel sets B(S'(R)) defined by the property that

[ eoli <. H)dute) = expl=5 |1 g)s FES®, (1)
S'(R)

where i = /=1 and < w, f >= w(f) is the action of w € Q = &'(R) on
f € S(R).

The measure p is called the white noise probability measure. Its existence
follows from the Bochner—Minlos theorem.

Using (1) one can prove that
El<w,f>]=0 forallfeSR), (2)

where in general

Ewwn=mwwn=/memm

Q
is the expectation of F' with respect to .
Moreover, we have the isometry
Bl< w, f > = ||l for all f € S(R). (3)

Based on this we can now define < w, f > for an arbitrary f € L?(R) as
follows:
<w, f>= lim <w, f, > (limit in L*(y)), (4)

n—oQ

where f, € S(R) is a sequence converging to f in L?(R). In particular, this
makes

B(t) := B(t,w) :=< w, x0,4(-) > (5)
well-defined as an element of L?(u) for all ¢ € R, where

1 ifo<s<t
Xo,(8) =4 —1 ift <s<0, exceptt=s5=0
0  otherwise
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By Kolmogorov’s continuity theorem the process B(t) has a continuous
version, which we will denote by B(t). It can now be verified that B(t) is a
Gaussian process and

E[B(t1)B(t2)] =

N min(\tl\, |t2‘) if t129 >0 (6)
/X[O’tl](s)x[o’t2](8)d5 - { 0 otherwise
R

Therefore B(t) is a Brownian motion with respect to the probability law pu.
It follows from (5) that

<w, f>= /f(t)dB(t) for all deterministic f € L*(R). (7)
R

Let AI:Z(R”) be the set of all symmetric deterministic functions f € L*(R").
If f e L*(R") the iterated Ito integral of f is defined by

L(f) = / F(H)dBEm (1

tn to (8)
=t [([ o[ £t t)aBe)aB () b))

We now recall the following fundamental result:

Theorem 2.2. (The Wiener-Itd chaos expansion theorem I)
Let F € L*(uu). Then there exists a unique sequence { fn}52y of functions
fn € L*>(R) such that

o0

F(w) = an(fn) (convergence in L*(u)). 9)

n=0

Moreover, we have the isometry
o
E[F*] =Y ol fall22mn)- (10)
n=0

By convention we put Iy(fo) = fo for constants fy, and then || fo]|> = | fo|%
In the following we let

ho(z) = (-1)"e ™ e (e77); n=0,1,2,... (11)




denote the Hermite polynomaials and we let

&) =7 i((n—1)) 2hy_1(V22)e T; n=12,... (12)

be the Hermite functions. Then &, € S(R) and there exist constants C' and
v such that

Cn = if 2| < 2y/n

& (z)] < A x| < 2¢/n

Ce if |z| > 2y/n

for all n (See for example, [T], p.26, Lemma 1.5.1.). From [T], {&,}°2,
constitutes an orthonormal basis for L*(R).

Let J be the set of all multi-indices @ = (a1, ag,...) of finite length
l(a) = max{3; 4 # 0}, with o, € Ny = {0,1,2,...} for all i. For a =
(a1,...,05) € J we put a! = aqlap!-- ! and |a] = a3 + -+ - + a,, and we
define

(13)

Ho(W) = hoy (K W, &1 >)hay (K w, € >) -+ - by, (< w, &, >). (14)
Thus, for example,

H(Q,(),g,l)(UJ) = h2(< UJ,fl >)h0(< w,§2 >)h3(< w, 63 >)h1(< w,§4 >)
=(<w,& > 1) (< w, &> =3 <w,&>) <w, &y >,

since
ho(z) = 1, hi(z) = z, ho(x) = 2° — 1, hs(z) = 2* — 3u.

Important special cases are the unit vectors

e® =(0,0,...,0,1) (15)
with 1 on the k’th entry, 0 otherwise; £k =1,2,...
Note that
Hew (w) = hi(< w, & >) =< w, & >= /fk(t)dB(t). (16)
R

More generally we have, by a result of It6[1]:
Hal) = [ €2(2)aB*"I(0) (1)
Rla|

where ® denotes symmetrized tensor product, i.e. §®°‘(m) is the symmetriza-
tion with respect to the /() variables x1,. .., Tyq) of the tensor product

§®a(m) = gi@al (xla o 7xal) o 'Sf?zam(xl(a)—am-l-lv cee 7$l(a)) (18)

where £ = (21,..., %)) and o = (a1, ..., @) € T, m # 0.
This is the link between Theorem 2.2 and the following result:
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Theorem 2.3. (The Wiener—Itd chaos expansion theorem II)
Let F € L*(). Then there exists a unique family {co}acs of constants
cq € R such that

F(w) = Z caHao(w) (convergence in L*(u)). (19)
acd

Moreover, we have the isometry

E[F’ =) cdad (20)

acJ

We now use Theorem 2.2 and Theorem 2.3 to define the following space
(S) of stochastic test functions and the dual space (S)* of stochastic distri-
butions:

Definition 2.4. a) We define the Hida space (S) of stochastic test func-
tions to be all 1) € L?(u) whose expansion

Y(w) = Z aoHa(w)

acJ

satisfies
D alal(@2NF < oo forallk=1,2,... (21)
acJ

where
CN)Y = (2-1)"(2-2)"2---(2-m)"™ ify=(y,...,Ym) €T- (22)

b)  We define the Hida space (S)* of stochastic distributions to be the
set of formal expansions

Gw) = Z boHo(w)

acJg

such that
Z b2a!(2N)™% < 0o for some g < oo. (23)
a€J

*

We equip (S) with the projective topology and (S)* with the inductive
topology. Then (S8)* can be identified with the dual of (S) and the action of
G € (8)* on ¢ € (S) is given by

(G, ) (s)(8) = Z alagby, (24)

acd



In the sequel, we will denote the action (-, - )(s)(s) simply with symbol
<" >
In particular, if G belongs to L*(u) C (S)* and ¢ € (S) C L?*(p), then
<Gﬂ ¢> = (G: w>L2(u) = E[G¢]

We can in a natural way define (S)*-valued integrals as follows:

Definition 2.5. Suppose that Z : R — (S)* is a given function with
property that

(Z(t),v) € L'(R,dt) V¢ € (S) (25)
Then [, Z(t)dt is defined to be the unique element of (S)* such that

([ 2t w) = [ (2w, vde e o) (20
R R
Just as in [HOUZ], Proposition 8.1, one can show that (26) defines [, Z(t)dt
as an element of (§)*. If (25) holds, we say that Z(t) is integrable in (S)*.

Example 2.6. (White noise)
For given ¢ € R the random variable B(t) € L?(u) has the expansion

B(t) =< waX[O,t](') >=< WaZ(X[o,t],fk)LZ(R)fk(') >
k=1

t
/gk dS < w, & >= Z/gk dSH (k) ) (27)
0

k=17

Mg

=~
1

1

From this and (13) we see that regarded as a map B(-) : R — (8)*, B(t)
is differentiable with respect to ¢ and

ng H.iy(w) in (8)* (28)
The expansion on the right hand side of (28) is called white noise and
denoted by W ().

The space (S)* is convenient for the Wick product:

Definition 2.7. If Fj(w) = Y, cg)’H,a(w);i = 1,2, are two elements of
(8)* we define their Wick product (Fy ¢ Fy)(w) by

(Fy 0o Fy)(w Z Cy cﬂ Hop(w Z Z ! J(w) (29)

,,BEJ ’)’EJ Ol+/3 =7



The Wick product is a commutative, associative and distributive (over
addition) binary operation on each of the spaces (S) and (S)*.

Example 2.8. i) If F' is deterministic then F ¢ G = F - G.
ii) If f € L?(R) is deterministic, then

o o

/f(t)dB(t) =<w, [ >=) (/&)@ <w& >= Y (&) r@H.mW).
R

k=1 k=1

Moreover, if ||f||2 = 1 then < w, f >°"= h,(< w, f >). Hence, if also
g(t) € L*(R) is deterministic,

([ 10aB@) o ([ 9OdB®) = 3 (5610 0:6) 120 Hetr o0 )

= / F()dB(®)) - / g(OdB(1) — (f, 9)rewy (see e.q. [HOUZ])  (30)

A fundamental property of the Wick product is the following relation to
It6/Skorohod integration:

Theorem 2.9. Suppose f(t,w) : R x Q@ — R is Skorohod integrable. Then
f(t,-) oW (t) is dt-integrable in (S)* and

/ F(tw)OB(t) = / F(t,w) o W (H)dt, (31)

where the integral on the left is the Skorohod integral (which coincides with
the Ito integral if f is adapted).

Proof. See [HOUZ] for details. O



3 Fractional white noise theory

Recall that if 0 < H < 1 then the (1-dimensional) fractional Brownian
motion (f Bm) with Hurst parameter H is the Gaussian process BH) () € R

with mean
EB® ()] =B®(0)=0 foralltcR (32)

and covariance
1
BB (s) B (1) = S{tP" + s — [t - s} steR (33)

Here E denotes the expectation with respect to the probability law of
BH) (1) = B (t, w).

Note that if H = L then B (t) = B()(t) coincides with the classical
Brownian motion. If 3 < H < 1 then BU)(¢) is persistent while if 0 < H < 3
then BU)(t) is anti-persistent. The Hausdorff dimension of the graph of
B (t);t € [0,1]is 2— H, so the paths of B (t) get smoother as H increases.
For 0 < H < } the quadratic variation of B#)(t) over [0, 1] is infinite, while
for % < H < 1 the quadratic variation is 0.

For these and other results on fBm we refer to [MVN], [S2] and the
references therein.

Because of these properties fractional Brownian motion has been sug-
gested as a useful tool in the modeling of physical phenomena and in finance.
Kolmogorov, who was the first to study this process, applied it to turbulence
(0 < H < 3) (see [S2] for more information). Mandelbrot and Van Ness
[MVN] and later Mandelbrot [M] suggested many other applications, partic-
ularly in finance. For such applications we refer to [AMN], [BQ], [BHOS],
[BSZ], [CQ], [EvdH], [HQ], [HOSa|, [HASul], [HOSu2], [MST], [Mi], [Ne],
[RV], [S1], [Si], [So] and [SV]. In [BSZ] it is argued that temperature can
be modeled remarkably well by an Ornstein—Uhlenbeck process driven by an
fBm of Hurst parameter H ~ 0.6 — 0.7. On the other hand, fBm with
Hurst parameter less than % appears in the modeling of prices in the Nordic
electricity market, according to [Si].

In view of the above it is of interest to develop a stochastic calculus for
fBm. If % < H < 1 the integral with respect to f Bm can be defined pathwise
(with w as a parameter), as follows:

/f t w 5B = lim Zf tk, tk—l—l) B(H)(tk)) (34)

‘Atk‘—)o

This follows from a general theory of integration with respect to processes
of zero quadratic variation, originally due to L.C. Young [Y]. See [N] for more
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information. However, when applied to finance this type of integration leads
to arbitrage. See [D], [DK1], [R] and [S1].

For % < H < 1 an alternative integration theory based on the Wick
product ¢ was introduced by [DHP], as follows:

/ B0 = lm 5 () o (Btk) — B ) (39)

|Atk|—)0

We call these fractional Ito integrals, because these integrals share many
of the properties of the classical It0 integral. In particular, in contrast to the
pathwise integral (34) we have

E| / f(t,w)dBH (t)] = 0. (36)

In [HQ] this fractional It6 calculus was extended to a white noise calculus
for fBm and applied to finance, still for the case % < H < 1 only. Then in
[EvdH] this theory and its application to finance was extended to be valid
for all values of H in (0,1). We now review briefly the approach of [EvdH]:

Fix H € (0,1).

The main idea is to relate the fractional Brownian motion B)(t) with
Hurst parameter H € (0,1) to classical Brownian motion B(t) via the fol-
lowing operator M:

Definition 3.1. The operator M = M) is defined on functions f € S(R)
by

Mf(y) =y "f(y); yeR (37)
where
g<y)::=_/feiwyg<x>dx (38)

denotes the Fourier transform.

This can be restated as follows:
For 0 < H <  we have

flo =t~ f@
-

Mf(z) = Cu / dt, (39)

R

where

l\?l»-

Cy=[2I'(H — %)cos(E

5 (H - ))] 'IT(2H + 1)sin(7H)]z,

10



with I'(+) denoting the I'- function.
For H = 3 we have

For 2 < H < 1 we have

_ /(@)

The operator M extends in a natural way from S(R) to the space

L%(R) :={f : R — R (deterministic); |y|2 Hiy) e LA(R)}
={f:R=> R Mf(z) € L*(R)}
={f : R = R;[[fllrz, ) < 00}, where || fl[zz, ) = M fllr2(w)

The inner product on this space is

(fs g)L%(R) = (M, MQ)L2(R)- (42)

In particular, the indicator function xjo(-) is easily seen to belong to this
space, for fixed ¢ € R, and we write

MX[O,t](x) = M0, t](x).
Note that if f,g € L*(R) N L% (R) then

(fy Mg) 2wy = (f, Mg)LZ( R)
/ P F)at)dy = (TF,9) o = (MS, 9y (43)
We now define, for ¢t € R

B (t) := B (t,w) :=< w, M[0,](-) > (44)
Then BU)(t) is Gaussian, B®)(0) = E[B¥)(t)] = 0 for all ¢ € R and, by (3)

E[BH) (s (t)] = /M[O s](x) M0, t](z)dz

/MO s|(y) M0, t] dy—/|y|1 —2H X[0,5] () X0, () dy

1
= Sl + [s*" — s — 4] (see [EvdH, (A.10)])

Therefore, the continuous version B (t) of BH)(t) is a fractional Brownian
motion, as defined in (32)-(33).

11



Remark. Note that the underlying probability measure p is the same as for
B(t).

Let f(z) = > ; ajX(;;11(2) be a step function. Then by (44) and linear-
ity

<w,Mf>=Y"a; <w, Mt tj] >

= Y (B (tr) - BOw) = [ F0dB00. (1)

R

Since
| <w, Mf> |2 = 1M fllzew = 1f]lz2, @)

we see that (45) extends to all f € L%(R). Comparing with (7) we obtain

/f (t)dBM (¢ /Mf t)dB(t); f € L%(R). (46)
Since M f € L*(R) for all f € S(R) we can by (3) define
M : S8 (R) —» S'(R) by
< Mw, f>=<w,Mf>; feS8(R), for p-aew e Q=S8 (R). (47)
We now define the following stochastic analogue of L% (R):
Ly(s) ={G : Q> R GoM e ()} (48)

and
1Gl2, () = IG o M2y, (49)

where (G o M)(w) = G(Mw) denotes function composition. Note that
L (p) = L*(po M7Y).

Let {&}72, be the Hermite functions as in Section 2. Define

ex(z) = M 1&(x); k=1,2,... (50)

Then {e;}32, is an orthonormal basis for L% (R).

12



Example 3.2. (Fractional white noise)
From (44) we see that for each ¢ the random variable B (¢, w) belongs
to L?*(11), and its chaos expansion (19) can be found as follows:

B(H) (t) =<uw, M[Oat]() >=< Mw)X[O,t](') >

o0

=< Muw, Z(X[o,t], ek)L%(R)ek(') >
k=1

=< Mw,» (M[0,t], Mey) p2myer(-) >

k=1

Z(M[O;t],fk)w(]m < Muw, e, >

£
Il
—

M2

(X[, M&k) 2wy < w, Mey, >

=
Il
—

I
M8

/Mfk(s)ds'}le(k)(W), (51)

ES
Il
—

where we have used (44), (47) and (43).
Now define the fractional white noise W(H)(t) by the expansion

WD) = 3 M ()Mo ) 52

Then it can be shown (see [EvdH]) that WU (¢) € (S)* for all t and

dBW) ()

= WH(t) in (S)*. (53)
dt
In view of Theorem 2.9 the following definition is natural:

Definition 3.3. (The fractional It6/Wick integral)

Let Y : R — (S)* be such that Y () o W) (t) is dt-integrable in (S)*.
Then we say that Y is dB®)-integrable and we define the integral of
Y (t) = Y (t,w) with respect to BU)(t) by

/ Y (£, w)dB (1) = / Y (t) o W (1) dt. (54)

13



Note that by (52) this definition coincides with (46) if Y = f € L% (R) is
deterministic, since in that case, by (43),

/f ) o Wi Z/f ) ME(t)dt) Ho ()

= Z [y M &) L2y Hem (w Z Mf, &) 2@ Hew (W)
k=1

:/MfoW(t)dtszf(t)dB(t)-

=

Example 3.4. Using Wick calculus in (S)* we get

St~

B ()dBH) () = / B (1) o WH) (1)t

dBU)(t) 1
CT 1=3

I
—=
!
=

0
= (< w, M(0,T) >)* = [(< w, M[0,T] >)? = (M0, T], M[0, T]) (s
= S(BIT))? — ZIMIO, Ty = 5 (BI(T)) — ST, (5)
where we have used (30) and (A9) in [EvdH].
Example 3.5. (The fractional Wick exponential)
Consider the fractional stochastic differential equation
dX(t) = a@)X (t)dt + B(t) X (t)dB™) (t);t > 0 (56)

which is just a shorthand notation for

t t

X(t) = X(0) + /oz(s)X(s)ds + /B(S)X(s)dB(H)(s).

0 0

Here af-), 5(-) are locally bounded deterministic functions. To solve this
equation we use (53) to rewrite it as a differential equation in (S)*:

L;(t) = a(t)X () +BHXE) o WH (1) = X (t) o [a(t) + BOWH (1)) (57)

14



This is the familiar differential equation for the exponential, but with
ordinary product replaced by Wick product. Thus by analogy we guess that
the solution is

X(t) = X(0) o exp®( / a(s)ds + / B(s)dB™(s)), (58)

where

and, in general,
exp’F = EOO lF " if convergent in (S)*
“nl” '
—

It can be verified that (58) is indeed the (unique) solution of (57). See
[EvdH] or [HQ)] for details.

In general we have (see [EvdH, (3.5)] or [HO, (3.15)])
1
exp’(<w, M f >) =exp(<w,Mf> —§||Mf||i2(R))- (59)

Therefore the solution can also be written

t t
X(t) = X(0) oexp( [ Be)aBN(s) + [ alo)ds =5 [ (MLB(s)xwn(5) d
0 0 R
(60)
where M is the operator M acting on the variable s.
If X(0) = z is deterministic, this becomes
t t 1
X(0) = aexp( | AdB(s) + [ als)ds =5 [ OL(B(s)x0a(5))ds).
0 0 J
(61)
In particular, if 3(s) = 8, a(s) = « are constants, we get, by using
(A 10) in [EvdH],
X(t) = zexp(BBH) (1) + at — %BQRH); t>0. (62)

15



Remark. Note that if the expansion of the process Y (s) is

Y(s) = Z Co($)Ho(w) for each s € R
acd

then the expansion of its dB) -integral is

[Y61B5) = [(3 cals)Halw)) o (3 Mee(s) oo ()ds

R R QEJ

[ 3l M) Moo @) = 3 (cas M) 20 Mot ).
R Q€T keN acJ,keN
(63)
In particular, if [V (s)dB¥)(s) € L*(u) then
R

Bl / ¥ (s)dBH)(5)] = 0. (64)

R

Indeed, the dBY) -integral shares many of the properties of the Skorohod
integral for classical Brownian motion. See section 5.

We end this section by presenting an Ito formula for fractional Brownian
motion valid for all H in (0,1). In the case H > 0.5 such a formula was
obtained by Duncan, Hu and Pasik-Duncan [DHP]. A formula for general H
similar to ours has been obtained independently by J. van der Hoek [vdH]
and C.Bender [B]. Our proof, given below, is different from the proofs of
these authors.

Theorem 3.6. (A fractional It6 formula)

Let f(s,z) : R X R = R belong to CY*(R x R) and assume that the 3

random variables
¢ ¢
of 0*f -
f(t, BE®), [ 5-(s, B (s))ds and / -3 (5, BY(5))s™1ds - (65)
0 0
all belong to L*(u). Then

f(@t, B () = £(0,0) + / %(S,B(H)(s))ds-l- / %(S,B(H)(s))dB(H)(s)

0
t
o f (H) 2H—1
+H / 71 (s, BUD(5)) 57" ds. (66)
0

16



Proof. Let a € R be constant and let 5 : R — R be a deterministic differen-
tiable function. Define

g(t,z) = exp(az + B(t)) (67)

and put
Y(t) = g(t, B (t)). (68)

Then
Y (t) = exp(aB")(t))exp(B(t))

69
= exp®(aB (1) + %a%w)exp(ﬁ (t))- )

Therefore, by Wick calculus in (S)*,

Ly (1) = exp? (@B (1) + 2a227) o (aWE (1) + Ho228exp(B(2))

dt 2
+exp® (@B (D) + S0 exp((1)8 (1)
=Y)B'(t) +Y(t) o (W (t)) + Y (t)Ho 2?1,
Hence
Y (t) = Y(0) +/Y( )B( )ds+/Y( JadBH) (s) H/Y(s)oﬁs?H Lds

This can be written

ot B (1)) = 9(0,0) + / 20 (5, B ())ds + [ 5, B (5))aB )

+H/ 63:2(

which is (66).
Now let f(t,z) be as in Theorem 3.6. Then we can find a sequence f, (¢, x)
of linear combinations of functions g(¢, z) of the form (67) such that

Ofn 0 Ofn 0
fult ) = 7(0,2), 02 t,0) > X (1,), 1,0 5 O )

uCIJ
Ud
\_/
~
VA

N

T

L
U
VA
—
N
=]
Nawd

0% fn i

o2 %) 2 55

and (t,z) pointwise dominatedly as n — oc.
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By (70) we have for all n

Falt, BE(1)) = £,(0,0) + / t aai( B ())ds +

0

o\“
QD
8|3

w
S}
S|
=
oy
=

¢ 52
+H / ) ;; (5, BUD (5))s2H 1 ds. (71)
0
Taking the limit of (71) in L*(u) (and hence also in (S8)*) we get

£t BI(®) = £(0,0) + / oL (5, B(5))ds + lim £< B (5))dB(s)

+H/a s, BH) (s5))s* (s, (72)
Since s — —f(s, B(s)) is continuous in (S)* we have

On (o B (5))dBE) (5) = af”( B (s)) o W (5)ds

Oz Oz
0 0
—>/ gi(s B (5)) o W) (5)ds in (S)* ,as n — oo. (73)
Comparing (72) and (73) we see that ft 9L (s, B (s)) o W) (s5)ds €
L?(p) and (66) follows. O
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4 Differentiation

We now recall the approach in [HQ] to differentiation, as modified and ex-
tended by [EvdH]:

Definition 4.1. Let F' : 2 — R and choose v € ). Then we say F' has a
directional M-derivative in the direction -y if

DM F(w) := lim L[F(w + eM7y) = F(w)] (74)

exists almost surely in (S)*. In that case we call DSH)F the directional M-
derivative of F' in the direction 7.

Example 4.2. (i) Suppose F(w) =< w, M f >" for some f € L%(R), n € N.
Then

[P+ M) = )] = 1[< w-+eMa, Mf >" — <, Mf >7]

(<w,Mf>4e < My,Mf>)"— <w,Mf>"]

N[ =M=

Sn<w,Mf>" <My, Mf> as e—0.
Hence we get the chain rule
DM (<w, Mf>") =n<w Mf>""'< My, Mf > . (75)
In particular, choosing n = 1 and v € L% (R) we get

D / F®ABI (&) = (M7, Mf)2@ = (v, f) 2, )- (76)

ii) Suppose G(w) =< w, Mg >°" for some g € L% (R), n € N. Assume
H
|Mg||r2w) = 1. Since by Example 2.8 we have < w, Mg >*"= hy,(< w, Mg >
) with A, asin (11), we get

1 1
[G(w+eMy) = Gw)] = Z[<w+eMy, Mg >™ = <w, Mg >™]
1

= g[hn(< wHeMy, Mg >) — hp(< w, Mg >)]

1
= g[hn(< w,Mg>+e < My, Mg >) — hy(< w, Mg >)]
= h(<w,Mg>) < My,Mg >=nhp_1(< w,Mg>) < M~, Mg >,

by a well-known property of the Hermite polynomials {h,}52,. Hence the
following Wick chain rule holds:

DM (< w,Mg>") =n<w, Mg >"""N< My, Mg > . (77)
By linearity this holds also if || Mg||2®) # 1.
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Definition 4.3. We say that F' :  — R is differentiable if there exists a
function

U:R—(S)"
such that
D" F(w) = / MU(t)M~y(t)dt  for all € L%(R). (78)
R
Then we write
(1) O

and we call DgH)F the Malliavin derivative or the stochastic gradient of F at
t.

Example 4.4. From (75)-(77) we get, for f € L% (R),

DM (<w, Mf>") =n<w Mf>""1f(t) foraa.t (80)
D / f(s)dBH) (s)) = f(t) fora.a.t (81)
R

D§H)(< w, Mf>") =n < w Mf >0 f(t) fora.a.t (82)

These examples illustrate that the stochastic gradient satisfies a chain rule
both with respect to ordinary products and with respect to Wick products.
Note that for a = (o, ..., q,) € J we have

%a(w) = h’al(< wagl >) o 'ham(< wagm >)
=< w,& > < w, &, SO
=< w,Me; >°* ... < w, Me,, >°m

Therefore, by (82),

Do (w) =" tiha,_, (< w, Me; >)Ljzihe, (< w, & >)ei(t)
=1

= Z aiH, .o (w)ei(t). (83)

This motivates the following
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Definition 4.5. (Fractional stochastic Sobolev spaces)
Let ]D)gg) be the set of all F' € L?(11) whose chaos expansion

= Z coH
acJg

satisfies

Z Zciaia!||ei||%2(m < 00. (84)

acJ =1

ItF e ng) we define the fractional stochastic derivative of F' by

chaal a— 6(7’) ) (t)

acg =1

(H)
D pw) = 25 F

Note that if F € D"} then D{)F(w) € L2(A x p) (where A denotes
Lebesgue measure on R) and

H
1DV P2y = D cRavedledl|2my- (85)

Next we extend this to (S)*:

Definition 4.6. (The general fractional stochastic gradient)
Let F € (8)*, with chaos expansion

F(w) = caHa(w).

acJ

Then we define the fractional stochastic gradient of F' by the expansion

(H) ©
D P () = a(TdF(t,w) =Y catiHo o @eilt)  (86)

acd i=1
=Y Y cotiei(t)|Hy(w) (87)
€T aiza—e(@ =y
169

=31 cpreor (i + Des(®)H, W), (88)

yeJ =1

where [(y) =max{i;~; # 0} is the length of . One can show that DgH)F €
(8)* for a.a. t € R.
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If G(t) = G(t,w) is a time dependent expansion of the form

G(t) = Y galt)Ha(w),

acJ

where g, € L2 (R) for all o € J, we define MG(t) by the expansion

MG(t) =) Mga(t)Ha(w)- (89)
aEJ

In particular, by (52) we see that the relation between fractional and
classical white noise is given by

WH () = MW (¢). (90)
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5 Fractional Malliavin calculus

In this section we first study the relations between the fractional and the
classical stochastic calculus and then we use this to prove some fundamental
results about Malliavin calculus for fractional Brownian motion. As before

D§H) denotes the Malliavin derivative with respect to B)(.). In the clas-

1

sical case (H = ;) we use the notation D, for the corresponding Malliavin

derivative (see Definition 4.6).

Proposition 5.1. (Differentiation)
Let F € (S)*. Then
DF = MD"™F  fora.a.teR (91)

Proof. Let F have the expansion

Then by (88) and (89) we get

i)

MD{™F =MD eyiewr (i + Des(D]H, (W)
yeJ i=1
I(v)

= Z[Z Cype (Vi + 1)&()| Hy (w)

yeJ i=1
= DtF

Proposition 5.2. (Integration)
Suppose Y : R — (8)* is dB™) -integrable (Definition 3.3). Then

/ Y (t)dB) (¢ / MY (t)6B(t (92)

R

Proof. Suppose Y (t) = > . 7 ca(t)Ha(w). Then by (63) and (43) we have

/ YOABD () = 57 (ca ME) 12y Hareo ()

R acJ keEN

= ) (Mo, &)o@ Horeto (W / MY (t)6B(t (93)

acJ keN

23



Theorem 5.3. (Fundamental theorem of fractional stochastic calcu-
lus)

Suppose Y : R — (S)* is dB™)-integrable. Then

D"y / (s)dB™) (s / DMy (s)dBH) (s) + Y (t) (94)

R

Proof. 1f Y (s) = Y ,c 7 ca(s)Ha(w) then by (63) and (86) we get

/ (s)dBH) (s DgH)( Z (Cas M&k) L2y Hay o0 (W)
R

acJ ,keN

Z (car M&k) 2w Z a+ "N H oo (w)es(t)

a€J keN €N

- Z (Ca’ M{f’c)ﬂ(R) aiHa+€(k),5(¢) €; (t)

aeJ keNEN

+ D (car M&k) gy Ha(w)ex(t) (95)

acJ ,keN

Applying (63) to the integrand DéH)Y(s) we see that the right hand side
of (94) is

Z (Car M&) 2wy H ety 4ot (w)ei(t)

acJ kieN

+ ) (caren) iz men(t)Ha(w),

a€J ,keN
which coincides with (95) since, by (42) and (43),
(Caser)r2, @) = (Mca, Meg)r2@w) = (Mca, &) r2®) = (Car M&k)r2@)-  (96)

O

Theorem 5.4. (Fractional integration by parts)
Let F € L?(p) and Y : R — (S)*. Then

F / Y (s)dB")(s) = / FY(5)dB®)(s) + / MY (s\MD")Fds  (97)

R R

provided that all the terms are well-defined and belong to L* ().

24



Proof. The classical (H = }) integration by parts formula states that

F / Y (s)5B(s) = / FY (s)5B(s) + / Y(s)D,Fds (98)

R R R

See e.g. [N, (1.49)].
Combining this with Proposition 5.2 and Proposition 5.1 we get

F/Y( )dB™) (s /MY )0 B(s
R
= /FMY( )6 B(s) /MY )DyFds

:/M (FY (s))dB(s) /MY )M, D) Fds

= / FY (s)dB™) (s / MY (s)M,D) Fds.

R
U
Since dB)-integrals have expectation 0 (see (64)) we deduce
Corollary 5.5. Let F,Y (s) be as in Theorem 5.4. Then
E[F / (s)dBH)(s)] = E] / MY (s)MD*) Fds). (99)

R

The following fractional It6 isometry was first proved by [EvdH]. We give
a different proof, based on the results above:

Theorem 5.6. (The fractional It6 isometry [EvdH])
Let Y : R — (8)*. Then

BI( [ Y (a8 1)
" (100)
= F| / (MY (t))2dt] + E| / / D™ M2y (s) - DD MZY (t)dsdt]

provided that each of the terms are well-defined. Here M; indicates that the
operator M acts on the variable t, and similarly with M.
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Proof. By (43), Corollary 5.5, Theorem 5.3 and Corollary 5.5 again we get

bl / / DIMZY (s) - DY MY (t)dsd]

= / / MDY (s) - M (DY MY (1)) ds)]
- /D o
/ MPY (1) - {D{ / Y (5)aB™)(s)) ~ ¥ (1)} ]

_ / R/Y ))dt] — E[/M2 (4)dH]
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6 The multidimensional case

We now proceed to the multidimensional case. In the following we let
Hy,...,Hy be N numbers (Hurst coefficients) in (0,1) and we put

H=(H,...,Hy) € (0,1)".

With (€, 1) as in Section 2 we let (4, i11), ..., (2, un) be N copies of (€, 1)
and we put

Q:(le...xQN)’ IJ’:(N1®®NN)

Then the N-dimensional fractional Brownian motion with Hurst vector
H = (Hy,...,Hy) is defined by

B® @) = (B @),..., BV (1)) (101)
where
B{V(t) = BV (t,w) = B (t,wy); w= (wi,...,wy) €Q

is a 1-dimensional fBm with Hurst coefficient Hy € (0,1); k=1,..., N.
Thus B™)(t) consists of N independent 1-dimensional f Bm’s B(F1)(¢),...,
B(HN)(t).
We let JV be the set of all N-tuples a = (o™, ..., o)) with
ol = ( gj) ---’%(fim)) € Jforall j=1,..., N and we put
Ha(w) =Hom (wi) - Homw (wy) fora € JN. (102)

Then the family {#4}qes~ constitutes an orthogonal basis for L?(u)
and
BulHa)?] = al:=al...aM)

Therefore every F' € L?(u) has a chaos expansion

Fw)= Z caMoa(w) where cq € R for all « € JV (103)
aegn
with
1 ey = D caal (104)
aegN

We can now proceed to define the corresponding stochastic test function
spaces (S) and stochastic distribution spaces (S)*, as in Section 2.
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Component number n of B®) (¢), B (1), has the expansion

0o
B0 = B (tan) = 3 [ MO s)isHae ) (109
k=17

where M #») is as in Definition 3.1 with H = H,. The corresponding expan-
sion for component number n of fractional white noise is

W (&) = Wt w,) =~ Mg () H, 00 (wn)- (106)

k=1

As in Section 3 we have W™ (t) € (S)* and

W (t) = %Bgm(t) in (S)* forn=1,...,N. (107)

(See (51)-(53)).
The Wick product on (S)* is defined as in Section 2:
Y. aaHaWw)o Y bgHgw)= Y aabgHy 4 glw)  (108)
aegN Begn a,BegV
Note in particular that if m,n € {1,..., N} with m # n then by (102)
Ho(wm) © Hp(wn) = Ha(wm)Hp(wn). (109)
As in Definition 3.3 we now define

Definition 6.1. (The multi-dimensional fractional It6/Wick inte-

gral)
a) If X : R — (8)* is such that X (¢) ¢ W (t) is dt-integrable in (S)*
then we define

/ X (t,w)d B (f) = / X(t,w) o W (1)dt. (110)

b) IfY : R — ((S)*)¥ is such that Y, (¢) o W™ (¢) is dt-integrable in
(S)* for alln =1,..., N we say that Y is dB®)-integrable and define

/ Y (t)dB® (t) := i / Y, (t)dBH) (1). (111)

R n



Example 6.2. Let m # n. Then

/ BE) (1) dBW (t) = / B (T)x10,11(t) © W (¢)dt

0

n

R
T
= B® (7)o / W ()dt = BE)(T) o BE)(T) = BH=)(T, w,,) BH)(T, w,)
0
Therefore, if we choose

BSY(t) - xpo(t)  if k=n
Yi(t) =4 =B () - xpry(t) if k=m
0 otherwise
then

/ Y (£)dB®)(£) = B (T) Bl (T — B (T)BUm) (T = ),

even though Y # 0.

Proceeding as in Section 4 we are led to the following definition of a
stochastic derivative in the direction n: (See Definition 4.5)

Definition 6.3. Let ]Dg) be the set of all F € L?(u) whose chaos expansion

Flw)= Y caHaW)

aegnN
satisfies
o
Z Zcéagn)alﬂeiHQ <oo forn=1,...,N (112)
aegV i=1
IfF e ]D)f? we define the fractional stochastic derivative of F' in direction

n(n=12,...,N) by

o F W
W(t,w): Z anai Ho—eni) (W)eni(t) (113)

ey i=1

DIVF =

where . .
g™ =(0,...,0,69,0,...,0) e TV
with £®) on the n'th place and e, ;(t) = (M) (=Dg ().
We define the fractional stochastic gradient of F' by
oHO QN

)w b

VI F(t,w) = (

o A )L (114)
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Note that by (112) we have
: H
V®F(t,w) € L*(Ax p) if F e D,

where as before A denotes Lebesgue measure on R.
As in the 1-dimensional case we extend this to F' € (§)* by setting

pwp_ OVF ()
Br= T = Y Y o Ha o (119

oegN =1

(See Definition 4.6).

We now give the multi-dimensional versions of the results of Section 5.
These results can either be obtained similarly to those in Section 5, or by
reducing to the 1-dimensional cases, and we therefore omit the proofs.

Proposition 6.4. (Differentiation)
Let F € (S)*. Then

Dy F = MIDDIVE  forn=1,...,N. (116)

Proposition 6.5. (Integration)
Suppose Y : R — ((8)*)V is dB™)-integrable (Definition 6.1). Then

/Y t)dB®) (¢ /M B(t), (117)

R
where
M®Y (t) = (MY (t),..., MEDY, (1)). (118)

Theorem 6.6. (The fundamental theorem of fractional stochastic
calculus)
Suppose Y : R — ((8)*)N is dBH) _integrable. Then

DY / Y (s)dB™) (s Z / D{Y;(s)dBM (s) + Yu(t).  (119)

R

Theorem 6.7. (Fractional integration by parts)
Let F € L*(p) and Y : R — ((S)*)V. Then

F / Y (s)dB™)(s) = / FY (5)dB®(s) + / M®y (s) - MBVE P (s)ds,

(120)
(where the dot - denotes inner product in RY ), provided that all the terms
are well defined and belong to L*(p).
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Theorem 6.8. (The multi-dimensional fractional It6 isometry)
Let Y : R — ((S)*)N. Then

E[(/ (t)dB ]—E[Z / (MY, (1))

LHY / / DU (MUY2Y,(5)) - D (MIY2Y, (1)) dsd]. (121)

m,n= 1
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