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Abstract—Communication network failure, e.g., persistent
packet loss, may considerably affect the safe and stable operation
of smart grids. This may degrade the performance of various
components and applications including energy management and
economic dispatch. We propose a switched surplus-based dis-
tributed security dispatch approach to cope with the persistent
packet loss under unreliable communication network environ-
ment. First, we jointly consider the packet loss sequence and
the dynamic triggering sequence to define actual affected periods
caused by the persistent packet loss. Then, we outline an incentive
scheme, integrate primal-dual analysis and eigenvalue perturba-
tion theory to design the switched surplus-based distributed secu-
rity dispatch algorithm. Further, we design a dynamic triggering
mechanism that enables the proposed algorithm to dynamically
switch to different modes according to the change in network
state. With those components, the proposed method offers strong
robustness against persistent packet loss. In addition, we provide
the convergence and optimality proofs of the algorithm. Finally,
simulation results are provided to validate the proposed method,
and to demonstrate its effectiveness.

Index Terms—Economic dispatch, persistent packet loss, dy-
namic trigger, distributed optimization.

I. INTRODUCTION

AS the next generation electric power system, smart grid
has been envisioned to achieve optimal, flexible, secure,

and reliable system operations [1]. Internet of Things (IoT) is
one of the promising technologies that facilitates the transfor-
mation from traditional power systems to smart grids, thereby
promoting their development. For instance, IoT enables smart
meters to establish flexible communication among themselves,
thereby facilitating distributed operations within the smart
grid, such as distributed economic dispatch and distributed
frequency control. In this paper, we focus on studying the
economic dispatch problem (EDP). The EDP is an important
research topic in smart grid, which has gained extensive
interest from the research community in the recent years[2]. It
studies how to allocate energy generation devices or loads to
minimize the cost to the system, while satisfying the supply-
demand balance and local boundary constraints. In essence,
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EDP is a system decision problem that requires designing
effective optimization algorithms.

Currently, the algorithms for EDP can be roughly classi-
fied as centralized algorithms and distributed algorithms. The
traditional centralized algorithms, including genetic algorithm
[3], Lagrange multiplier method [4]-[5] and gradient descent
method [6], etc., have been thoroughly studied in the past.
However, the major drawback associated with these algorithms
is the centralized execution that requires a centralized con-
troller to collect all information, and to compute the optimal
solutions. With the high integration of IoT and smart grids,
there is an increasing trend to offload the heavy computing task
to the edge [7], [8]. Meanwhile, the distributed participants are
unwilling to expose personal date to the centralized controller
for both security and profit. In this situation, the conventional
centralized algorithms may not be relevant for many appli-
cations in the smart grid including energy management and
economic dispatch.

To tackle this challenge, the distributed algorithms have
been proposed, mainly based on the blockchain technol-
ogy, distributed alternating direction method of multipliers
(ADMM) and consensus-based method. First of all, the
essence of the blockchain technology is to use only one
ledger/database [9], [10]. The decentralized characteristic
makes blockchain technology more advantageous in data
transmission and consistency operation. However, this method
requires public storage and sharing. Secondly, the distributed
ADMM aims to utilize the dual-descent technique to optimize
both the original variable and the dual variable alternatively
[11]. For instance, the distributed ADMM was employed
to solve demand-side EDP with reduced energy, where the
combine heat and power (CHP) unit is taken into account.
By incorporating dynamic average consensus variables into
ADMM, [12] presented a distributed consensus-ADMM algo-
rithm to achieve peer-to-peer energy trading without knowing
the number of system nodes. Thirdly, the major concept of
consensus-based method is to establish distributed Lagrangian
dual variables, and to enable them to converge to the same
value to fulfil the optimization conditions. Based on this con-
cept, multiple types of consensus-based algorithms have been
developed, e.g., distributed Newton descent methods [13], [14]
and distributed neurodynamic methods [15], [16]. Recently,
the surplus-based distributed dispatch method was proposed in
[17], [18]. This method is designed by introducing an auxiliary
variable (called surplus) instead of decision variable to perform
distributed calculation, which possesses high privacy attribute.

The aforementioned literature provide solutions for EDP
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TABLE I: Comparative Technical Features of Previous
Researches

Ref. operation Reduced
communication

packet
loss

economic
dispatch

[3-5] centralized ✓
[7, 9-13,16-18] distributed ✓
[14-15] distributed ✓ ✓
[19-20] distributed ✓ ✓
[21-24] distributed ✓ ✓
This paper distributed ✓ ✓ ✓

under safe communication network. Note that the IoT network
serves as the infrastructure for data transmission and informa-
tion interaction within smart grids, which frequently encounter
various safety-related concerns, one of which is the data packet
loss [19]. The data packet loss is an unavoidable occurrence
resulting from communication line uncertainties and random
noise. This may drastically affect the operation performance
for smart grid [20].

There is an increasing interest to investigate the effects
of packet loss on EDP, and then to design corresponding
resistance mechanisms. For instance, a Newton-consistent
optimization algorithm was proposed in [21], for better ro-
bustness against bounded packet loss. However, the method
is only suitable for unconstrained optimization problem. For
constrained optimization problem, a robust distributed eco-
nomic dispatch algorithm was proposed in [22], which takes
the packet-dropping communication links into consideration.
However, this method is built upon the assumption that the
distributed communication network is strongly connected. To
avoid this assumption, [23] found that the errors caused by the
packet loss were accumulated for the λ-consensus algorithm.
A compensation mechanism was presented to reduce the
impact of packet loss. Most recently, literature [24] employed
the distributed robust chance constrained optimization method
to solve EDP with considerations of both packet loss and
uncertainty in wind power generation. The existing studies
[21], [22], [23], [24] have obtained good results to deal with
the problem of packet loss. Nevertheless, they mainly focus
on one-step or short-term packet loss. It is still a challenge to
handel the persistent packet loss under worse communication
channels.

We propose a switched surplus-based distributed security
dispatch approach for the smart grid in an unreliable com-
munication network. Compared to [3]-[5] that are central-
ized methods, this paper belongs to a distributed method.
In contrast to [7], [9]-[13] and [16]-[18] that primarily fo-
cus on distributed optimization, this paper emphasizes on
strategy making when communication failures occur and re-
duction of the communication cost. Although [14]-[15] use
the event triggering strategies to reduce the frequency of
communication, they cannot handle network failures caused
by packet loss. Despite the contribution of [19]-[20] in reduc-
ing communication and handling packet loss, their approach
cannot be directly applied to distributed economic dispatch.
In comparison to the methods presented in [21]-[24], which
suffer from high communication costs, our approach leverages
system switching and event-triggered techniques to reduce

communication expenses while ensuring fault-tolerant system
operation. The distinctions between this paper and existing
studies are summarized in Table I.

1) We define the actual safe and unsafe periods that take
the coexistence of persistent packet loss sequence and event-
triggering sequence into account, thus offering an analytic
model to study the persistent packet loss, which is used
designing the distributed dispatch approach.

2) We propose a switched surplus-based distributed security
dispatch approach for smart grid under unreliable commu-
nication network. Compared to the existing surplus-based
distributed dispatch approach [17]-[18], the proposed approach
enables the utilization of switched system dynamics and
estimation to defend persistent packet loss. Meanwhile, the
high privacy can be maintained due to the surplus variable.

3) We embed an event-triggered based communication
strategy into the proposed distributed dispatch approach. To
reduce the communication expenditure, each agent only needs
to asynchronously share information with its neighbors at dis-
crete time if necessary. Moreover, theoretically analytic results
are offered to verify the global convergence and optimality
of the proposed dispatch approach with the event-triggered
communication strategy.

The rest of this paper is organized as follows. In Section II,
the persistent packet loss model is introduced and the EDP
is formulated. The structure of the switched surplus-based
distributed security dispatch approach is introduced in detail,
and the proof of convergence and optimality is provided in
Section III. In Section IV, simulation results are provided
to validate the proposed method, and to demonstrate its
effectiveness. Section V concludes this paper. Some frequently
used notations are provided in Table II for quick reference.

II. PROBLEM FORMULATION

A. Economic Dispatch: Problem Formulation

We consider that a distributed energy system consists of
multiple distributed generators (DGs) and loads, each of which
can be seen as an agent. For convenience of expression, Rℵ

and R+ denote the ℵ-dimensional real numbers and positive
real numbers, respectively. |z| is the modulus of z. ∥h∥i
denotes the i-norm of vector h ⊆ Rn or matrix h ⊆ Rn×n.
1n(0n) denotes an n-dimensional column vector of ones (ze-
ros). The EDP focuses on finding the total operation cost (1),
while meeting the global supply-demand balance constraint
(2) and local operation constraints (3-4).

min Obj =
∑n

i=1
fi(xi(t)) (1)

s.t.
∑n

i=1
xi(t) =

∑n

i=1
ςi, (2)

xmin
i ≤ xi(t) ≤ xmax

i , (3)
|xi(t+ 1)− xi(t)| ≤ xramp

i , (4)

where xi ∈ R and ςi ∈ R represent the power generation and
local load of DG i, respectively; fi(xi(t)) is the cost function
of DG i. In this paper, we only require that fi(xi(t)) is convex
without any specific form. xmin

i , xmax
i and xramp

i represent the
lower bound, upper bound and ramp rate of xi(t), respectively.
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TABLE II: Frequently Used Notation

Notation Description Notation Description

Rℵ,R+ ℵ-dimensional real numbers and positive
real numbers t ,i, πi

Indices of operation time, distributed generator,
and inequality constraint for generator i

n, γi
Total number of distributed generator and the
number of inequality constraint for generator i xi, x Index and vector form of power output

xmin
i , xmax

i , xramp
i

Lower bound, upper bound and ramp rate of
power output ςi Local load of distributed generator i

λi, λ Index and vector form of dual variable yi, y Index and vector form of auxiliary variable

Ωi, Ω Index and vector form of feasible operation region Θi, Θ
Index and vector form of dual variable feasible
operation region

f(•), g(•), h(•) Indices of cost, inequality and equality function a, b, c Coefficients of cost function

T1
The settling time of Lyapunov function
V1 and V2

Ξloss, Ξsafe The total packet loss time, total safe time

Ξ̄loss, Ξ̄safe
The actual total packet loss time, actual total
safe time Γloss(k), Γsafe(k) The start and end time of kth packet loss

Γ̄loss(k), Γ̄safe(k) The first trigger time and system returns time Ψloss(k), Ψsafe(k) The packet loss period and safe period

Ψ̄loss(k), Ψ̄safe(k)
The actual packet loss period and actual
safe period k Index of packet loss number

tmi Index of mth triggering time inactual period tli
Index of last triggering time before packet
loss occurs

k1, k2, e, u, v Coefficients of the switched surplus-based
algorithm sign(•), PΩ(•), | • | Sign function, projection operation,

and absolute value

To simplify notations, we define h(x) = [h1(x1), h2(x2),
. . . , hn(xn)] and∑n

i=1
hi(xi) =

∑n

i=1
xi(t)−

∑n

i=1
ςi. (5)

Further, (3) and (4) can be re-written in the form of a
common inequality constraint, i.e.,

gπi
(xi(t)) ≤ 0, (6)

where gπi(xi(t)) is the function of the inequality constraint
and πi = 1, 2, . . . , γi represents the index of inequality
constraint for xi. The expression of (6) has been widely used
in the existing studies, e.g., [12], [14] and [17]. For the studied
EDP, equation (6) comes from equations (3) and (4). Thus, we
have γi = 4. The detailed mathematical expressions are given
by

g1(xi(t)) =xi(t)− xmax
i ≤ 0, (7)

g2(xi(t)) =xmin
i − xi(t) ≤ 0, (8)

g3(xi(t)) =xi(t+ 1)− xi(t)− xramp
i ≤ 0, (9)

g4(xi(t)) =xi(t)− xi(t+ 1)− xramp
i ≤ 0. (10)

Note that our proposed method is capable of solving univer-
sal inequality constraint, i.e., equation (6), rather than being
limited to the specific expressions as shown in equations (7-
10). Next, we can get the feasible operation region of xi(t),
defined as Ωi = {xi|gπi

(xi) ≤ 0}. The Lagrangian function
of problem(1-4) is given by

L(x, λ) =

n∑
i=1

Li(xi, λ) =

n∑
i=1

fi(xi) +

n∑
i=1

λihi(xi), (11)

where x = [x1, x2, . . . , xn]; λ = [λ1, λ2, . . . , λn] is the
Lagrangian multiplier.

We denote λ∗
i as the optimal solution of λi, x∗ =

[x∗
1, . . . , x

∗
n] is the saddle point of problem (1-4). The physical

meaning of λi is the power price. Note that the power price is
positive. Thus, λ∗

i > 0. The following Assumption 1 implies
that x∗ satisfies that the Slater condition as a Slater vector.

Assumption 1 (Slater condition)[4]: There exists a vector
x∗ ∈ x such that gπ(x∗) < 0, for all π = 1, 2, . . . , γ.

According to Lemma 1 in [4], λ∗
i lies in the compact set

Θi= {λ∗
i ∈ R+|∥λ∗

i ∥2 ≤
∑n

i=1 fi(x
∗
i )− q̄

r̄
}, (12)

where r̄ = min{−gπi
(x∗

i (t))|1 ≤ i ≤ n, 1 ≤ πi ≤ γi},
q̄ ≤ minx∈ΩL(x, λ) and Θ = [Θ1,Θ2, . . . ,Θn] is the feasible
region of the Lagrangian multiplier. The significance of (12) is
to show that the Laplace multiplier λ is positive and bounded
in Θ.

To handle the inequality constraint (6), the projection opera-
tion is applied. The projection operation refers to a mathemat-
ical procedure that projects a given point onto a feasible set
defined by a set of constraints. The purpose of the projection
operation is to find the closest feasible point to the given point.
The projection operation of x on Ω = {x ∈ R|xmin ≤ x ≤
xmax} comes from PΩ(x) = argmin

x̃∈Ω
∥x− x̃∥.

B. Communication Network and Persistent Packet Loss Model

In this paper, the communication network is defined as a
undirected graph G = (V, ξ,A). Therein, V = {1, 2, . . . , n}
is the node set of the graph G, each of which represents a DG.
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Fig. 1: Packet loss period and trigger period



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 20XX 4

ξ ⊆ V × V represents the set of communication lines among
the nodes. A = [aij ] ⊆ Rn×n is the adjacency matrix, where
aij is ith row and jth column element of A. If node i can
receive the information from node j, then there exists an edge
(j, i) ∈ ξ and aij = 1; otherwise, aij = 0. Ni = {j|(j, i) ∈ ξ}
is the neighbors of node i and |Ni| denotes the number of
neighbors. We denote D = diag{d1, d2, . . . , dn} as the degree
of node i, where di =

∑n
j=1,i̸=j aij . And Laplace matrix can

be represented as L = D −A.

There are many factors (e.g., malicious cyberattacks) that
may cause persistent packet loss, resulting in failure or even
blackout. For the time period [t1, t2], we define Ξloss(t1, t2)
and Ξsafe(t1, t2) as the total packet loss time and total safe
time of [t1, t2], respectively. As shown in Fig. 1, the start
and end time of kth packet loss are defined as Γloss(k)
and Γsafe(k). Under this definition, each packet loss period
and each safe period are further denoted as Ψloss(k) =
[Γloss(k),Γsafe(k)) and Ψsafe(k) = [Γsafe(k),Γloss(k+1)),
respectively. Then, we can get Ξloss(t1, t2) = ∪Ψloss(k) ∩
[t1, t2) and Ξsafe(t1, t2) = ∪Ψsafe(k) ∩ [t1, t2). Since we
adopt an event-triggered communication strategy to avoid
unnecessary communication interaction among DGs, each DG
suspends communication before an event is triggered. In fact,
the failure or recovery of the network does not affect the
communication network immediately. This is because each
agent only shares information with its neighbors at the trig-
gering time [19]. This implies that there exists the first trigger
time Γ̄loss(k) after Γloss(k). Similarly, the system returns to
normal state if an event is triggered at Γ̄safe(k) after Γsafe(k).
Therefore, the actual unsafe period caused by the packet loss
and the actual safe period are Ψ̄loss(k) = [Γ̄loss(k), Γ̄safe(k))
and Ψ̄safe(k) = [Γ̄safe(k), Γ̄loss(k + 1)), respectively. Then,
to avoid misunderstanding, we further define Ξ̄loss(t1, t2) =
∪Ψ̄loss(k)∩ [t1, t2) and Ξ̄safe(t1, t2) = ∪Ψ̄safe(k)∩ [t1, t2).

In order to enable the objective function (1-4) to be solvable,
the packet loss should neither last too long nor occur too
frequently. Following from [25], we consider the following
Assumption 2 to limit the duration Ξloss(t1, t2) and number
N(t1, t2) of the packet loss.

Assumption 2 [25]: For duration 0 ≤ t1 ≤ t2, there exists
ρ ∈ [0, 1] and N0, T0, σ ∈ R+, such that

Ξloss(t1, t2) ≤Ξ0 + ρ(t2 − t1), (13)
N(t1, t2) ≤N0 + σ(t2 − t1), (14)

where ρ and σ are the constraint coefficients; N(t1, t2)
represents the number of switching from the safe period
to the packet loss period in time period [t1, t2]; Ξ0 and
N0 are the maximum persistent packet loss time and the
maximum frequency that the system can tolerate, respectively.
Meanwhile, the packet loss constraints can be separated into
the time-ratio constraint, i.e., equation (13) and the dwell-time
constraint, i.e., equation (14). Note that the performance of the
distributed algorithm is related to the frequency and duration
of the packet loss directly.

III. SWITCHED SURPLUS-BASED DISTRIBUTED
ECONOMIC DISPATCH STRATEGY

A. Algorithm Design

Inspired by [17], we introduce an auxiliary variable,
i.e., surplus, is considered designing the subsequent dis-
tributed dispatch algorithm, which is denoted as y(t) =
[y1(t), y2(t), . . . , yn(t)] ∈ Rn. It locally records the state
changes of power generation and communicates with neigh-
bor nodes instead of the decision variable, i.e., power gen-
eration xi(t). By making use of dual variable λ(t) =
[λ1(t), λ2(t), . . . , λn(t)] ∈ Rn and incentive projection op-
eration k1sig(PΩ(xi(t))− xi(t))

u, we propose a switched
surplus-based distributed security dispatch strategy to solve the
EDP under persistent packet loss. The proposed algorithm en-
compasses dynamics P1 and dynamics P2 that are performed
during t ∈ Ψ̄safe and t ∈ Ψ̄loss, respectively.

P1 :



ẋi(t) = −α(t)(∇fi(xi(t)) + λi(t))

+ |−α(t)(∇fi(xi(t)) + λi(t))| ·
sign(PΩi(xi(t))− xi(t))

+k1sig(PΩi(xi(t))− xi(t))
u

+k2sig(PΩi(xi(t))− xi(t))
v, (15a)

λ̇i(t) = Λi(t) + εyi(t) + α(t)(xi(t)− ςi)

+
∣∣∣Λ̃i(t) + εyi(t) + α(t)(xi(t)− ςi)

∣∣∣ ·
sign(PΘi(λi(t))− λi(t))

+k1sig(PΘi(λi(t))− λi(t))
u

+k2sig(PΘi(λi(t))− λi(t))
v, (15b)

ẏi(t) =
∑
j∈Ni

aij(yj(t
m
j )− yi(t

m
i ))

−εyi(t)− Λi(t), (15c)

Λi(t) =
∑
j∈Ni

aij(λj(t
m
j )− λi(t

m
i )), (15d)

P2 :



ℏẋi(t) = −α(t)(∇fi(xi(t)) + λi(t))

+ |−α(t)(∇fi(xi(t)) + λi(t))| ·
sign(PΩi

(xi(t))− xi(t))

+k1sig(PΩi
(xi(t))− xi(t))

u

+k2sig(PΩi
(xi(t))− xi(t))

v, (16a)
ℏλ̇i(t) = Λ̃i(t) + εyi(t) + α(t)(xi(t)− ςi)

+
∣∣∣Λ̃i(t) + εyi(t) + α(t)(xi(t)− ςi)

∣∣∣ ·
sign(PΘi

(λi(t))− λi(t))

+k1sig(PΘi
(λi(t))− λi(t))

u

+k2sig(PΘi
(λi(t))− λi(t))

v, (16b)

ℏẏi(t) =
∑
j∈Ni

aij(yj(t
l
j)− yi(t

l
i))

−εyi(t)− Λ̃i(t), (16c)

Λ̃i(t) =
∑
j∈Ni

aij(λj(t
l
j)− λi(t

l
i)), (16d)

where α(t) is a non-increasing gain variable satisfying∫∞
0

α(t)dt = ∞, and
∫∞
0

α2(t)dt < ∞. For example, we
can choose α(t) = 10/(1 + t). The function as sig(a)b =
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[sign(a1)|a1|b, . . . , sign(an)|an|b]T comes from [17], where
sign(a) is the sign function with sign(a) < 0 if a < 0,
sign(a) = 0 if a = 0 and sign(a) > 0 if a > 0. PΩi(xi)
and PΘi

(λi) represent the projections of xi and λi in the
local constraint interval Ωi and set Θi, respectively. k1 > 0,
k2 > 0, 0 < µ < 1, and v > 1 are control variables. ε and
ℏ are positive constants. tmi represents mth triggering time in
actual period. tli refers to the last triggering time before packet
loss occurs.

In the proposed algorithm, we design dynamics P1 and
P2 to deal with the persistent packet loss, which can be
adaptively switched according to the change of the net-
work state. The decision variable xi is calculated locally,
which can protect the sensitive information well. The item
−α(t)(∇fi(xi(t))+λi(t)) in (15a) is obtained by calculating
the descent direction of xi related to the dual problem of
(1) with equality constraint 2. To further deal with inequality
constraints (3), we employ the incentive projection operation.
Specifically, the second term in (15a) enables the infeasible
points projecting into the feasible region Ωi. The items of
k1sig(PΩi

(xi(t))− xi(t))
u and k2sig(PΩi

(xi(t))− xi(t))
v

enable the system converging to the feasible region in a fixed
time. This will be described in detail in the next subsection.
λi(t) is the Lagrangian dual multiplier associated with equality
constraint (2). The functionality of (15b) is to enable all
local Lagrangian dual multipliers converging to the same
value. Meanwhile, the design of xi(t) − ςi further enables
the system to achieve global supply-demand balance after
converging. Moreover, the incentive projection operation is
applied in (15b) to enable λi operating in feasible region Θi. In
(15c), the design of surplus variable yi(t) is to locally record
the state changes of power generation. It converges to zero
eventually, which will be introduced subsequently in Lemma
1. Further, owing to the utilization of consensus protocols
(i.e.,

∑
j∈Ni

aij(yj(t
m
j )− yi(t

m
i )) and Λi(t)), we only need to

share λi and yi with neighbors and perform local calculation
to solve problems (1-4). Regrading the differences between
P1 and P2, Λi(t) and

∑
j∈Ni

aij(yj(t
m
j )− yi(t

m
i )) in (15)

enable utilizing the information from neighbor nodes at the
triggering time to update the system dynamics. Considering
the packet loss, dynamics (16) is designed by making use of
the last received information, e.g., λi(t

l
i) and yi(t

l
i), to estimate

the surplus mismatch
∑

j∈Ni
aij(yj(t

l
j)− yi(t

l
i)) and Λ̃i(t).

Next, to reduce the communication cost, the event-triggered
communication strategy is considered for t ∈ Ψ̄safe. In this
scenario, each agent establishes communication interaction
with neighbors and transmits the sharing variables (λi, yi)
in the triggering time. The triggering functions take the form:

C1(λi(ti), yi(ti)) =a3(ϖ1∥λi(t
m
i )− λi(ti)∥2 (17)

+ϖ2∥yi(tmi )− yi(ti)∥2

− 1

2a1

∑
i∈Ni

aij
∥∥λi(t

m
i )− λi(t

m
j )

∥∥2),
C2(λi(ti)) = |λm

i (t)− λi(t)| − α(t)πe−σt, (18)
C3(yi(ti)) = |ymi (t)− yi(t)| − α(t)πe−σt, (19)

C =C1(λi, yi) + C2(λi) + C3(yi), (20)

where C1(λi(ti), yi(ti)) is the triggering function related to
both of λi(ti) and yi(ti); C2(λi(ti)) is the triggering function
related to λi(ti) only; C3(yi(ti)) is the function related to
yi(ti) only; C refers to the overall triggering function, i.e., the
sum of C1(λi(ti), yi(ti)), C2(λi(ti)), and C3(yi(ti)). ϖ1 =[
2(a1−1)

a1
+ a2

]
|Ni|; ϖ2 = a2 |Ni|; a1, a2, a3, π, and σ are

positive constants.
The motivation of (17)-(20) is to utilize the prin-

ciples of event control to trigger state updates when
necessary. For the triggering function (17), when the
event is triggered as ti = tmi , both |λi(t

m
i )− λi(ti)|2

and |yi(tmi )− yi(ti)|2 are reset to zero. Thus, at the
instant tmi , it is evident that C1(λi(tmi ), yi(t

m
i ))= −

1
2a1

∑
i ∈ Niaij

∣∣λi(t
m
i )− λi(t

m
j )

∣∣2 < 0. As time progresses,
the system operates without being triggered. As ti increases,
the difference between λi(t

m
i ) and λi(ti), as well as yi(t

m
i )

and yi(ti), changes gradually. When C1(λi(ti), yi(ti)) > 0,
information is exchanged using event triggering. The func-
tionality of the triggering functions (18)-(19) are similar to
(17). In this paper, since algorithm (15)-(16) is designed to
be controlled by the three triggering functions simultaneously,
we define the overall triggering function (20) as the sum of
(17)-(19). Information exchange among neighbors occurs once
C ≥ 0.

Based on (17-20), the next triggering time is determined as

tm+1
i = max{t ≥ tmi |C4(λi(ti), yi(ti)) ≤ 0}. (21)

When t ∈ Ψ̄loss, the event-triggering mechanism is out
of work caused by the packet loss. To address the issue,
we introduce a virtual-trigger strategy which makes each
agent periodically attempt to communicate with its neighbor
nodes. Once the communication succeeds, the network is
considered to restore from packet loss state to safe state, that
is Ψ̄loss → Ψ̄safe. The virtual triggering time is determined
by

tl+1
i = tli +∆T, (22)

where ∆T is the virtual-triggering interval.
To clearly show the implementation procedure, the pseu-

docode of the proposed switched surplus-based distributed
security dispatch algorithm with communication strategy (21-
22) is summarized in Algorithm 1.

Next, a complexity analysis based on the switched surplus-
based distributed security dispatch algorithm is presented.
There are four main elements that affect the time complexity:
(i) Calculation of the cost function fi(xi) in (1). The dimen-
sion of fi(xi) is ℵ by xi ∈ Rℵ, where fi(xi) is equal to
aixi

2(t) + bixi(t) + ci. The time complexity for calculating
the cost function fi(xi) is O(ℵ2); (ii) Derivative of the cost
function fi(xi) in (15a) and (16a). The time complexity for
the derivative of fi(xi) is O(ℵ2); (iii) Calculation of yi and λi

in (15b-15c) and (16b-16c). The dimension of yi and λi are
both equal to xi. The time complexity for calculating yi and
λi is O(ℵ2); (iv) The operation time t. We define the iteration
step as ∆t, then the number of iterations is t/∆t. With those
components, the final time complexity of the proposed method
is O( t

∆tℵ
2), which is consistent with the traditional economic

dispatch algorithms as literature [17], [25].
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Algorithm 1: Switched surplus-based algorithm
Input: Local operation constraints Ωi, boundary

constraints Θi of λi, local loads ςi and
Lagrange matrix L of communication network.
Any admissible values of xi(0), yi(0), λi(0)
and parameters of fi(xi).

Output: The optimal output of each power device.
1 some description;
2 while non-convergence do
3 only if t = 0;
4 Each power device exchange the information of

yi(t0) and λi(t0) to its neighbour nodes. Each
node computes yi and λi according to P1;

5 if communication network safe then
6 if C > 0 then
7 1. The nodes complete the information

exchange.;
8 2. Calculate the decision variable xi(t)

using the moment information by P1.
9 else

10 The decision variable is calculated using
the information from the last successful
information exchange by P1.

11 end
12 end
13 if communication network occurs persistent packet

loss then
14 The decision variable xi(t) is calculated using

the information of the last successful
information exchange before the packet loss
occurred by P2.

15 end
16 end

Remark 1: Our proposed method can be used to solve a class
of distributed optimization, i.e., equations (1), (2), and (6),
with consideration of persistent packet loss. Note that both of
distributed optimization and packet loss are typical problems
in IoT-based systems, e. g., IoT-based smart grid considered in
this paper. Thus, our proposed method can be easily employed
to solve relevant optimization problems considering persistent
packet loss in other IoT-based systems, if the studied problem
can be abstracted in the form of equations (1), (2), and (6).

B. Optimality and Convergence Analysis

In this section, we propose three Lemmas to analyze the
state valuation of the proposed algorithm during the actual
safe period and the actual packet loss period. Then, the global
optimality and convergence are provided in Theorem 1. To
increase the readability of paper, xi(t) is abbreviated as xi,
λi(t) as λi, yi(t) as yi in the later.

Specifically, We define the Lyapunov function as V1 =
(xi − PΩi

(xi))
2. Since 2(xi − PΩi

(xi))(−α(t)(∇fi(xi) +
λi)) − 2 |xi − PΩi

(xi)|
∣∣−α(t)(∇fi(xi) +∇hT

i (xi)λi)
∣∣ ≤ 0

[31], we can get that Lie derivative of V1 is

V̇1 =2(xi − PΩi
(xi))ẋi

=2(xi − PΩi
(xi))(−α(t)(∇fi(xi) + λi))

− 2 |xi − PΩi(xi)|
∣∣−α(t)(∇fi(xi) +∇hT

i (xi)λi)
∣∣

− 2k1|xi − PΩi
(xi)|u+1

− 2k2|xi − PΩi
(xi)|v+1

≤− k1V1

u+1
2 − k2V1

v+1
2 . (23)

Recalling the studied problem (1-4), it is not diffcult to
verify that fi(xi), gi(xi) are strongly convex and Lipschitz
continuous. Then, it can be derived from [26] that V1 con-
verges to 0 in the fixed time when the settling time is defined as
T1 ≤ 1

k1(1−µ)+
1

k2(1−v) . Further, we can see that xi = PΩi
(xi)

for t ≥ T1. Therefore, the projection part of the algorithm can
be ignored and the decision variable xi can converge to the
constraint set in the fixed time T1. Similarly, we choose the
Lyapunov function as V2 = (λi − PΘi

(λi))
2. Since V1 and

V2 hold the same structure. The proof process of V1 can be
applied to V2. Thus, we can get the local Lagrangian multiplier
λi can converge to the constraint set in the fixed time T1, i.e.,
λi = PΘi

(λi).
Based on the separation principle [27], the fixed-time pro-

jection can be achieved. Then, for t = {t|t > T1, t ∈ Ψ̄safe},
dynamics P1 can be rewritten as

P3 :



ẋi = −α(t)(∇fi(xi) + λi),

λ̇i = Λ̃i + εyi + α(t)(xi − ςi),
ẏi =

∑
j∈Ni

aij(yj(t
m
j )− yi(t

m
i ))

−εyi − Λ̃i

Λ̃i =
∑

j∈Ni

aij(λj(t
m
j )− λi(t

m
i )),

(24)

We denote x, λ, λm, y, ym ∇f(x), and ς as the column
vector forms of xi, λi, λi(t

m
i ) yi, yi(t

m
i ), ∇fi(xi), and ςi,

respectively. I is the Identity matrix.
By the definition of the adjacency matrix A, the degree

matrix D and the Laplace matrix L, we can get

Λ̃i =
∑
j∈Ni

aij(λj(t
m
j )− λi(t

m
i ))

=
∑
j∈Ni

aij(λj(t
m
j ))−

∑
j∈Ni

aij(λi(t
m
i ))

= Aiλ
m −Diλ

m

= −Liλ
m, (25)

where Ai , Di and Li represent ith row of A, D and
L, respectively. Similarly, it is not difficult to obtain∑

j∈Ni
aij(yj(t

m
j )− yi(t

m
i )) = −Liy

m. We denote Λ̃ as the
column vector form of Λ̃i. Thus, we can get

Λ̃=


Λ̃1

Λ̃2

. . .

Λ̃n

 =


−L1λ

m

−L2λ
m

. . .
−Lnλ

m

 = −Lλm. (26)

The second item in P3 can be further rewritten as
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λ̇ =


λ̇1

λ̇2

. . .

λ̇n

 =


Λ̃1 + εy1 + α(t)x1 − ς1
Λ̃2 + εy2 + α(t)x2 − ς2
. . .

Λ̃n + εyn + α(t)xn − ςn



=


Λ̃1

Λ̃2

. . .

Λ̃n

+ ε


y1
y2
. . .
yn

+ α(t)


x1

x2

. . .
xn

−


ς1
ς2
. . .
ςn


= −Lλm + εIy + α(t)(x− ς). (27)

The third item in P3 can be further rewritten as

ẏ =


ẏ1
ẏ2
. . .
ẏn

 =


−L1y

m
1

−L2y
m
2

. . .
−Lny

m
n

− ε


y1
y2
. . .
yn

−


Λ̃1

Λ̃2

. . .

Λ̃n


= −Lym − εIy + Lλm (28)

So the second and third items in P3 are rewritten as{
λ̇ = −Lλm + εIy + α(t)(x− ς),
ẏ = −Lym − εIy + Lλm.

(29)

By appending −Lλ + Lλ and Lλ − Lλ − Ly + Ly to the
right side of (29), respectively. We can get{

λ̇ = −Lλ+ εIy + α(t)(x− ς)− Lλm + Lλ,
ẏ = Lλ− Ly − εIy + Lλm − Lλ− Lym + Ly.

(30)

We rewrite (30) as the following matrix form,[
λ̇
ẏ

]
=

[
−L εI
L − L− ε

] [
λ
y

]
+ α(t)

[
x− ς

0

]
+

[
−L 0
L − L

] [
λm − λ
ym − y

]
. (31)

First, we propose Lemma 1 to show the performance of λi

and yi during the actual safe period.
Lemma 1: We define Zi(t) = λi(t), Zi+n(t) = yi(t) and

Ẑ(t) = 1
n

∑2n
i=1 Zi(t), i = 1, . . . , 2n. When t ∈ Ψ̄safe, we

can get: (i) λi(t) → Ẑ(t) as t → ∞; (ii) yi(t) → 0 as t → ∞.
Proof: For sake of expression, we define hi(xi) = xi −

ςi and denote the column vector of hi(xi) as h(x). We also
define that pi(t) = λi(t

m
i ) − λi(t), qi(t) = yi(t

m
i ) − yi(t),

and W (t) = [p1(t), p2(t), . . . , pn(t), q1(t), q2(t), . . . , qn(t)].
Therein, the mathematical expression of matrixes M and M̄
is given by

M =

[
−L εI
L − L− εI

]
, M̄ =

[
−L 0
L − L

]
. (32)

Equation (27) can be rewritten as
λ̇1

. . .

λ̇n

ẏ1
. . .
ẏn

=

[
−L εI
L − L− εI

]


λ1

. . .
λn

y1
. . .
yn

+ α(t)

[
x− ς
0

]

+

[
−L 0
L − L

]


λ1(t
m
1 )− λ1

. . .
λn(t

m
n )− λn

y1(t
m
1 )− y1

. . .
yn(t

m
n )− yn

 . (33)

Recalling the definitions of Z(t), W (t), h(x), M and M̄ ,
equation (33) can be rewritten as

Ż(t) = MZ(t) + M̄W (t) +

[
α(t)h(x(t))

0

]
. (34)

We consider that there is 1-order differential equation as
χ̇(t) = Aχ(t) + B(t). According to the solution of 1-order
differential equation [32], we have χ(t)=eA(t−T1)χ(T1) +∫ t

T1
eA(t−τ)B(τ)dt. Note that equation (34) is also a 1-order

differential equation. Thus, the solution of Z(t) has the same
form as the one of χ(t). Then, we replace χ(t) to Z(t), A to

M , and B(t) to M̄W (t)+

[
α(t)h(x(t))

0

]
. The solution of

(34) is given by

Z(t) =eM(t−T1)Z(T1) +

∫ t

T1

eM(t−τ)

[
α(τ)h(x(τ))

0

]
dτ

+

∫ t

T1

M̄eM(t−τ)W (τ)dτ. (35)

1n refers to the n-dimensional column vector, where each
element is equal to 1. Recalling the definition of the Laplace
matrix L, one obtains 1TnL = 0. Then, recalling the define of
M and M̄ , we can get

1

n
(1Tn , 1

T
n )M =

1

n
(1Tn , 1

T
n )

[
−L εI
L − L− εI

]
=

1

n

[
−1TnL+ 1TnL ε1TnL− 1TnL− ε1TnL

]
=

1

n
[0 0] = 0, (36)

1

n
(1Tn , 1

T
n )M̄ =

1

n
(1Tn , 1

T
n )

[
−L 0
L − L

]
=

1

n

[
−1TnL+ 1TnL − 1TnL

]
=

1

n
[0 0] = 0, (37)

(1Tn , 1
T
n )α(t)

[
x− ς
0

]
= 1Tnα(t)(x− ς) = 1Tnα(t)h(x).

(38)

By multiplying 1
n (1

T
n , 1

T
n ) on both sides of the (34), it

follows from (36)-(38) that

1

n
(1Tn λ̇+ 1Tn ẏ) =

α(t)

n
1Tnh(x(t)). (39)

Then, by calculating the integration of (39) from T1 to t,
we have∫ T1

t

1

n
(1Tn λ̇(τ) + 1Tn ẏ(τ))dτ =

∫ T1

t

α(τ)

n
1Tnh(x(τ))dτ

(40)
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⇒ 1

n
1Tnλ

∣∣∣∣T1

t

+
1

n
1Tny

∣∣∣∣T1

t

=

∫ T1

t

α(τ)

n

n∑
i=1

hi(xi(τ))dτ

(41)

⇒ 1

n
1Tn (λ(T1)− λ(t) + y(T1)− y(t))

=

∫ T1

t

α(τ)

n

n∑
i=1

hi(xi(τ))dτ (42)

According to the definition of Ẑ(t), we have

Ẑ(t) =
1

n

∑2n

i=1
Zi(t)

=
1

n
(Z1(t) + Z2(t) + . . .+ Zn(t)

+ Z1+n(t) + Z2+n(t) + . . .+ Z2n(t))

=
1

n
(λ1(t) + λ2(t) + . . .+ λn(t)

+ y1(t) + y2(t) + . . .+ yn(t))

=
1

n
(1Tnλ(t) + 1Tny(t)). (43)

Thus, it follows from (42) that
1

n
(1Tnλ(T1) + 1Tny(T1))−

1

n
(1Tnλ(t) + 1Tny(t))

=

∫ T1

t

α(τ)

n

n∑
i=1

hi(xi(τ))dτ, (44)

⇒ Ẑ(T1)− Ẑ(t) =

∫ T1

t

α(τ)

n

n∑
i=1

hi(xi(τ))dτ, (45)

⇒ Ẑ(t) = Ẑ(T1)−
∫ T1

t

α(τ)

n

n∑
i=1

hi(xi(τ))dτ, (46)

⇒ Ẑ(t) = Ẑ(T1) +

∫ t

T1

α(τ)

n

n∑
i=1

hi(xi(τ))dτ. (47)

Let [eMt]i and [eMt]ij represent the ith row and the element
in ith row and jth column of matrix eMt, respectively.
According to the definitions of Z(t) and Ẑ(t), we can write
Zi(t) = λi(t) and Ẑ(T1) =

1
n (1

T
n , 0

T
n )Z(T1) for i = 1, . . . , n.

Then, we have∣∣∣λi(t)− Ẑ(t)
∣∣∣

≤
∣∣∣∣([eM(t−T1)]i −

1

n
(1Tn , 0

T
n ))Z(T1)

∣∣∣∣
+

∫ t

T1

α(t)

∣∣∣∣([eM(t−τ)]i −
1

n
(1Tn , 0

T
n ))

[
h(x(τ))
0n

]∣∣∣∣dτ
+

∫ t

T1

M̄
∣∣∣[eM(t−τ)]i

∣∣∣ · ∥W (τ)∥1dτ

≤ max
1≤j≤2n

∣∣∣∣[eM(t−T1)]ij −
1

n

∣∣∣∣ ∥Z(T1)∥

+

∫ t

T1

α(τ) max
1≤j≤2n

∣∣∣∣[eM(t−τ)]ij −
1

n

∣∣∣∣ ∥h(x(τ))∥ dτ
+

∫ t

T1

M̄
∣∣∣[eM(t−τ)]i

∣∣∣ · ∥W (τ)∥1dτ. (48)

According to (18), if C2(λi(ti)) ≤ 0, we have

|λm
i (t)− λi(t)| ≤ α(t)πe−σt. (49)

Recalling the definition of W (t), for i = 1, . . . , n, it is not
difficult to obtain that

∥W (τ)∥1 ≤ nα(t)πe−σt. (50)

Thus, we can get∫ t

T1

M̄
∣∣∣[eM(t−τ)]i

∣∣∣ · ∥W (τ)∥1dτ

≤ nπM̄

∫ t

T1

∣∣∣[eM(t−τ)]iα(τ)e
−στ

∣∣∣dτ. (51)

Since xi is within the corresponding constraint set for t ≥
T1, there exists a constant l satisfying ∥h(x)∥1 ≤ l. Based on
Lemma 4 in [17], we can get max1≤j≤2n

∣∣∣[eM(t−τ)]ij −
1
n

∣∣∣ ≤
γe−β(t−τ), where γ, β ∈ R+. According to (51), it follows
from (48) that∣∣∣λi(t)− Ẑ(t)

∣∣∣ ≤γe−β(t−T1)∥Z(T1)∥1

+ l1γ

∫ t

T1

α(τ)e−β(t−τ)dτ

+ nπM̄

∫ t

T1

∣∣∣[eM(t−τ)]iα(τ)e
−στ

∣∣∣dτ. (52)

Multiplying the term α(s) on both sides of (52) and
integrating it from T1 to ∞, one has∫ ∞

T1

α(s)
∣∣∣λi(s)− Ẑ(s)

∣∣∣ ds
≤
∫ ∞

T1

α(s)γe−β(s−T1)∥Z(T1)∥1ds

+ lγ

∫ ∞

T1

α(s)

∫ s

T1

α(τ)e−β(s−τ)dτds

+ nπM̄

∫ ∞

T1

α(s)

∫ s

T1

∣∣∣α(τ)[eM(s−τ)]ie
−στ

∣∣∣dτds. (53)

Since α(t) is non-increasing and
∫∞
0

α2(t)dt < ∞, (53)
satisfies ∫ ∞

T1

α(s)γe−β(s−T1)∥Z(T1)∥1ds

≤ α(T1)∥Z(T1)∥1
∫ ∞

T1

γe−β(s−T1)ds

=
γα(T1)∥Z(T1)∥1

β
≤ ∞, (54)

lγ

∫ ∞

T1

α(s)

∫ s

T1

α(τ)e−β(s−τ)dτds

≤ lγ

∫ ∞

T1

e−βθ

∫ ∞

T1

α(s− θ)α(s− θ)dsdθ

≤ l1γ

β

∫ ∞

T1

α2(s)ds ≤ ∞, (55)
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nπM̄

∫ ∞

T1

α(s)

∫ s

T1

∣∣∣α(τ)[eM(s−τ)]ie
−στ

∣∣∣dτds
≤ nπα(T1)

M̄

Mij + σ

∫ ∞

T1

α2(s)ds ≤ ∞. (56)

Eqns. (54-56) imply that
∫∞
T1

α(s)
∣∣λi(s)− Z̄(s)

∣∣ ds ≤ ∞
for i = 1, . . . , n. Thus, λi(t) → Ẑ(t), as t → ∞. Simi-
larly, since Zi(t) = yi(t) as i = n + 1, . . . , 2n, we have∫∞
T1

α(s) |yi(s)| ds ≤ ∞. Thus, yi(t) → 0, as t → ∞. The
proof is completed.

Next, in Lemmas 2 and 3, we analyze the dynamics behavior
of the proposed algorithm for t ∈ Ψ̄safe and t ∈ Ψ̄loss,
respectively. The equilibrium point of dynamics (15-16) is
denoted as (x∗, λ∗, y∗), which means that 0=− α(t)(∇f(x∗) + λ∗),

0 = Lλ∗,
0 = y∗.

(57)

We further design five auxiliary variables, i.e.,

θ(t) = RT (x(t)− x∗), η(t)=RT (λ(t)− λ∗),

δ(t) = RT (y(t)− y∗), e(t) = η(tm)− η(t),

z(t) = δ(tm)− δ(t), (58)

where R ∈ Rn×n satisfies RTR = RRT = In.
Note that ∥θ(t)∥2, ∥η(t)∥2, ∥δ(t)∥2 are continuous and

differentiable, we define the following Lyapunov function

V3(t) =
1

2
(∥θ(t)∥2 + ∥η(t)∥2 + ∥δ(t)∥2). (59)

Lemma 2: There exists a positive constant φ1 such that for
any t ∈ Ψ̄safe, dynamics P1(15) with the triggering strategy
(21) enables

V̇3(t) ≤ V3(Γ̄
safe
k ) exp(−φ1(t− Γ̄safe

k )). (60)

Proof: On the basis of Lemma 1 and (57), we can obtain

V̇3(t) =θT (t)θ̇(t) + ηT (t)η̇(t) + δT (t)δ̇(t)

=θT (t)RT (−α(t)∇f(x(t))− α(t)λ(t))

+ ηT (t)RT (−Lλ(tm) + εy(t) + α(t)(x(t)− ς))

+ δT (t)RT (−Ly(tm)− εy(t) + Lλm)

=α(t)θT (t)RT (−∇f(x(t)) +∇f(x∗))

− α(t)θT (t)η(t)− ηT (t)RTL(λ(tm)− λ∗)

+ εηT (t)δ(t) + α(t)ηT (t)θ(t)

− δT (t)RTL(y(tm)− y∗)− εδ2(t)

+ δT (t)RTL(λ(tm)− λ∗). (61)

From the definition of convex function, we can get
α(t)θT (t)RT (−∇f(x(t)) + ∇f(x∗)) ≤ −a(t)θT (t)ζθ(t),
where ζ = diag{ζi} is the convex coefficient. Since G is
connected, we have ηT (t)Lη(t) ≥ κ2∥η(t)∥2, λT (t)Lλ(t) ≥
κ2∥λ(t)∥2. According to the properties of the Laplace matrix,
we can obtain eT (t)Le(t) ≤ 2

∑n
i=1 |Ni| · ∥λi(t

m
i )− λi(ti)∥2

and zT (t)Lz(t) ≤ 2
∑n

i=1 |Ni| · ∥yi(tmi )− yi(ti)∥2. We
choose a1 ≥ 1−ε

2κ2
and a2 ≥ κ2

ε , where κ2 is the smallest
nonzero eigenvalue of the Laplacian matrix. Then, we have

− δT (t)RTL(y(tm)− y∗)

≤
n∑

i=1

|Ni| · ∥yi(tmi )− yi(ti)∥2 −
1

2
δT (t)Lδ(t), (62)

− ηT (t)RTL(λm − λ∗)

=
a1 − 1

a1
(λ(tm)− λ(t))TL(λ(tm)− λ(t))

− 1

a1
λT (tm)Lλ(tm)− a1 − 1

a1
ηT (t)Lη(t)

≤2(a1 − 1)

a1

n∑
i=1

|Ni| · (λi(t
m
i )− λi(ti))

2

− 1

2a1

n∑
i=1

∑
j∈N

aij
∥∥λi(t

m
i )− λj(t

m
j )

∥∥2
− a1 − 1

a1
ηT (t)Lη(t). (63)

Applying Young’s inequality [30], we have the following
facts that

εηT (t)δ(t) ≤ ε

2
∥η(t)∥2 + ε

2
∥δ(t)∥2, (64)

δT (t)RTL(λ(tm)− λ∗)

=δT (t)RTL(e(t) + η(t))

≤ 1

2a2
δT (t)Lδ(t) + a2

n∑
i=1

|Ni| · ∥λi(t
m
i )− λi(ti)∥2

+
1

2
δT (t)Lδ(t) +

1

2
ηT (t)Lη(t). (65)

By substituting (62-65) in (61) , we further get

V̇3(t) ≤− α(t)ζ∥θ(t)∥2

−
[
(
a1 − 2

2a1
)κ2 −

ε

2

]
∥η(t)∥2

−
[
ε

2
− κ2

2a2

]
∥δ(t)∥2

+ a3(ϖ1∥e(t)∥2 +ϖ2∥z(t)∥2

− 1

2a1

n∑
i=1

∑
j∈N

aij
∥∥λi(t

m
i )− λj(t

m
j )

∥∥2. (66)

According to the triggering strategy (21) and the triggering
function (17), we have

a3(ϖ1∥e(t)∥2 +ϖ2∥z(t)∥2

− 1

2a1

n∑
i=1

∑
j∈N

aij
∥∥λi(t

m
i )− λj(t

m
j )

∥∥2
=

n∑
i=1

C1(λi(ti), yi(ti)) ≤ 0. (67)

Based on (66) and (67), we can get

V̇3(t) ≤− α(t)ζ∥θ(t)∥2

−
[
(
a1 − 2

2a1
)κ2 −

ε

2

]
∥η(t)∥2

−
[
ε

2
− κ2

2a2

]
∥δ(t)∥2. (68)
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By selecting φ1 = min{α(t)ζ, (a1−2
2a1

)κ2− ε
2 ,

ε
2−

κ2

2a2
}, (68)

can be further organized as

V̇3(t) ≤ −φ1V3(t), (69)

which implies that (60) is satisfied for any t ∈ Ψ̄safe. The
proof is thus completed.

Lemma 3: There exists a positive constant φ2 such that for
any t ∈ Ψ̄loss, dynamics P2 enables

V̇3(t) ≤ V3(Γ̄
loss
k ) exp(−φ2(t− Γ̄loss

k )). (70)

Proof: The same variables and parameters in Lemma 2
are employed. we let tli denote the moment of packet loss. The
Lyapunov function (59) is applied for t ∈ Ψ̄loss. Then,

V̇3(t) ≤− α(t)ζ∥θ(t)∥2 −
[
(
a1 − 2

2a1
)κ2 −

ε

2

]
∥η(t)∥2

−
[
ε

2
− κ2

2a2

]
∥δ(t)∥2

+

n∑
i=1

ϖ1

∥∥λi(t
l
i)− λi(Γ̄

loss
k ) + λi(Γ̄

loss
k )− λi(ti)

∥∥2
+

n∑
i=1

ϖ2

∥∥yi(tli)− yi(Γ̄
loss
k ) + λi(Γ̄

loss
k )− λi(ti)

∥∥2
−

n∑
i=1

∑
i∈Ni

1

2a1

∥∥λi(t
l
i)− λj(t

l
j)
∥∥2

≤− α(t)ζ∥θ(t)∥2 −
[
(
a1 − 2

2a1
)κ2 −

ε

2

]
∥η(t)∥2

−
[
ε

2
− κ2

2a2

]
∥δ(t)∥2

+

n∑
i=1

ϖ1

∥∥λi(t
l
i)− λi(Γ̄

loss
k )

∥∥2
+

n∑
i=1

ϖ2

∥∥yi(tli)− yi(Γ̄
loss
k )

∥∥2
− 1

2a1

n∑
i=1

∑
i∈Ni

aij
∥∥λi(t

l
i)− λj(t

l
j)
∥∥2

+ϖ1

∥∥η(Γ̄loss
k )

∥∥2 +ϖ1∥η(t)∥2

+ϖ2

∥∥δ(Γ̄loss
k )

∥∥2 +ϖ2∥δ(t)∥2. (71)

Since tli belongs to the packet loss period, we can get (72)
in light of (22), i.e.,

n∑
i=1

ϖ1

∥∥λi(t
l
i)− λi(Γ̄

loss
k )

∥∥2 + n∑
i=1

ϖ2

∥∥yi(tli)− yi(Γ̄
loss
k )

∥∥2
−

n∑
i=1

∑
i∈Ni

1

2a1

∥∥λi(t
l
i)− λj(t

l
j)
∥∥2 ≤ 0. (72)

By substituting (72) in (71) , we further get

V̇3(t) ≤− α(t)ζ∥θ(t)∥2 +ϖ3∥η(t)∥2 +ϖ4∥δ(t)∥2

+ϖ1

∥∥η(Γ̄loss
k )

∥∥2 +ϖ2

∥∥δ(Γ̄loss
k )

∥∥2
≤φ2 max{V3(t), V3(Γ̄

loss
k )}, (73)

where ϖ3=ϖ1 −
[
(a1−2

2a1
)κ2 − ε

2

]
, ϖ4=ϖ2 −

[
ε
2 − κ2

2a2

]
and

φ2=max{α(t)ζ,ϖ1, ϖ2, ϖ3, ϖ4}. From (73), we can easily

obtain function (70) such that for any t ∈ Ψ̄loss. The proof is
thus completed.

Finally, we prove the global convergence and optimality of
proposed algorithm in Theorem 1.

Theorem 1: Suppose that fi(xi(t)) and gi(xi(t)) are
strongly convex and Lipschitz continuous. If the system packet
loss frequency and duration satisfy φ1((σ+ρ∆T )−1)+φ2(σ+
ρ∆T ) < 0, the switched surplus-based distributed economic
dispatch strategy (15-16) can exponentially converge to the
global optimal solution.

Proof: For t ∈ [Γ̄safe
k−1 , Γ̄

loss
k ], the proposed strategy

enables V3(t) satisfying

V̇3(t) ≤ exp(−φ1(t− Γ̄safe
k−1 ))V (Γ̄safe

k−1 )

≤ exp(−φ1(t− Γ̄safe
k−1 ))

exp(−φ2(Γ̄
safe
k−1 − Γ̄loss

k−1))V (Γ̄safe
k−1 )

· · ·
≤ exp(−φ1(t− t0 − Ξ̄loss(t0, t))

+ φ2Ξ̄lossV (t0)). (74)

where t0 is the initial time.
Similarly, for t ∈ [Γ̄loss

k , Γ̄safe
k ], we can obtain,

V̇3(t) ≤ exp(−φ1(t− Γ̄safe
k ))V (Γ̄loss

k )

≤ exp(−φ1(t− Γ̄safe
k ))

exp(−φ2(Γ̄
loss
k − Γ̄safe

k−1 ))V (Γ̄safe
k−1 )

· · ·
≤ exp(−φ1(t− t0 − Ξ̄loss(t0, t))

+ φ2Ξ̄lossV (t0)). (75)

Recalling the definition of Ξ̄loss, we can get Ξ̄loss(t0, t) ≤
Ξloss(t0, t)+N(t0, t)∆T . It further follows from (74-75) that

V̇3 ≤ exp(−φ1(t− t0) + (φ1 + φ2)(T0 + σ(t− t0)

+ ∆T (N0 + ρ(t− t0))))V (t0)
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Fig. 2: The physical topology and communication network
of the 119-bus test system
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≤V3(t0) exp((φ1 + φ2)(T0 +∆TN0))

exp(φ1((σ + ρ∆T )− 1)

+ φ2(σ + ρ∆T )(t− t0)). (76)

Due to φ1((σ+ρ∆T )−1)+φ2(σ+ρ∆T ) < 0, the proposed
algorithm is exponentially convergent.

According the Lemma 1 and (57), we can get
n∑

i=1

x∗
i =

n∑
i=1

ςi,

λ∗
i = λ∗

j ,
n∑

i=1

fi(x
∗
i ) = L(x∗, λ∗). (77)

Based on the Karush-Kuhn-Tucker (KKT) conditions, we
can conclude that x∗ is the global optimal solution. The proof
is thus completed.

IV. SIMULATION RESULTS AND EXPERIMENT

To evaluate the performance of, and to demonstrate the
effectiveness of the switched surplus-based distributed eco-
nomic dispatch strategy considering the persistent packet loss,
we conduct two studies on the IEEE 119-bus system [28].
The physical topology and communication network of the
IEEE 119-bus system are shown in Fig. 2. Each load bus
can send its load information to the nearest DGs. This system
contains ten DGs, each of which has the cost function with
the form of fi(xi) = aixi

2+ bixi+ci. Each DG is capable of
exchanging information with neighbors through the distributed
communication network and performing local computing. The
parameters of the cost functions and constraints are listed in
Table III from [29].

A. Optimality and Convergence Analysis without Packet Loss

In this section, we focus on demonstrating the optimality
and convergence of the proposed method without packet
loss. The local loads of 10 DGs are randomly set as
[1.9; 1.8; 2.2; 2.4; 1.5; 3.8; 1.7; 1.9; 3.1; 2.1]. Moreover, we set
the gain variable to α(t) = 10/(t+ 1), and several control
parameters to ε = 0.03, v = 0.5 and u = 2 [17]. We
compare the performance of our proposed method for EDP,
with a centralized cuckoo optimization algorithm [5] and a
surplus-based distributed algorithm [17]. The final results are
listed in Table IV. The performances of the three algorithms

TABLE III: Parameters of Cost Functions and Constraints

- a b c pg,min
i pg,max

i pg,ramp
i

DG1 0.021 7.88 460 0 25 5
DG2 0.010 7.85 510 0 35 4.5
DG3 0.022 7.82 130 0 36 3.3
DG4 0.031 7.8 310 0 40 5.5
DG5 0.025 7.82 500 0 50 3
DG6 0.019 7.87 375 0 30 6.5
DG7 0.012 7.79 210 0 80 4.5
DG8 0.021 7.78 260 0 66 5.2
DG9 0.041 7.81 250 0 79 3.5
DG10 0.029 7.90 170 0 60 5.9

TABLE IV: Result Comparison of Different Algorithms

The centralized cuckoo
optimization algorithm [5]
without persistent
packet loss

DG1 DG2 DG3 DG4 DG5
1.152 3.919 2.463 2.070 2.167
DG6 DG7 DG8 DG9 DG10
1.536 5.766 1.390 1.443 0.489

The surplus-based
distributed algorithm [17]
without persistent
packet loss

DG1 DG2 DG3 DG4 DG5
1.153 3.921 2.463 2.070 2.167
DG6 DG7 DG8 DG9 DG10
1.535 5.766 1.391 1.443 0.489

The switched
surplus-based distributed
algorithm without
persistent packet loss

DG1 DG2 DG3 DG4 DG5
1.152 3.921 2.467 2.072 2.167
DG6 DG7 DG8 DG9 DG10
1.537 5.766 1.392 1.443 0.489

the switched
surplus-based distributed
algorithm with
persistent packet loss

DG1 DG2 DG3 DG4 DG5
1.154 3.919 2.463 2.071 2.167
DG6 DG7 DG8 DG9 DG10
1.537 5.767 1.392 1.444 0.490

are comparable. In Table IV, the first three algorithms, i.e.,
the centralized cuckoo optimization algorithm [5], the surplus-
based distributed algorithm [17], and our proposed algorithm,
are used to solve the EDP without any packet loss. It can
be observed that the power generations of DG1-DG10 by
using the three algorithms are very similar. To be specific,
compared the centralized cuckoo optimization algorithm with
our proposed method, DG3 has the largest deviation that
is 2.463-2.467=0.004. The total calculation error is 0.23%.
Similarly, compared the surplus-based distributed algorithm
with our proposed method, the DG with the largest deviation
is also DG3. That is 2.463-2.467=0.004. The total calculation
error is 0.29%. Those imply that the calculation results are
highly similar with small calculation errors, thereby verifying
the optimality of the proposed algorithm when the packet loss
is not taken into account.

To clearly observe the convergence processes, the trajec-
tories of the variables (event triggering sequence, xi, λi, yi
and power mismatch) are shown in Fig. 3-4. Specifically,
Fig. 3 shows the event-triggered sequence of each DG. Each
triggering time is represented as “†”. On the right side of
Fig. 3, the period between 58 and 62 is enlarged for the
sake of observation. It can be seen that each DG only needs
to exchange information with its neighbors at discrete time,
which reduces the frequency of communication, and also the
communication cost. Fig. 4(a), (b) and (c) show the power

DG1

DG2

DG3

DG4

DG5

DG6

DG7

DG8

DG9

DG10

Time (s)

Fig. 3: Event triggering sequence
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Fig. 4: Convergence results by using the proposed method
without persistent packet loss: (a) trajectory of xi, (b)

trajectory of λi, (c) trajectory of yi, (d) trajectory of power
mismatch.

generation xi, Lagrangian multiplier λi and auxiliary variable
yi, respectively. It is clear that each of them converges. In
addition, the power mismatch of all generators and loads are
shown in fig. 4(d). The power mismatch eventually converges
to 0. This implies that the supply and demand are balanced,
i.e.,

∑n
i=1 xi =

∑n
i=1 ςi.
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Fig. 5: Convergence results by using the proposed method
with persistent packet loss: (a) trajectory of xi, (b) trajectory

of power mismatch, (c) event triggering sequence.

B. Performance Analysis under Persistent Packet Loss

This case study focuses on demonstrating the performance
of the proposed algorithm under persistent packet loss by
comparing with the state-of-the-art distributed algorithm, i.e.,
the surplus-based distributed algorithm [17]. The same system
setting is employed as the first case study. We consider that
the persistent packet loss happens at time interval [10, 15),
[30, 35), [60, 65) and [80, 85). ∆T is set to 0.02s. The
simulation results of the power generation, power mismatch,
and event triggering sequence for our proposed method are
shown in Fig. 5. Fig. 5(a) and Fig. 5(b) imply that the proposed
method enables each xi being convergent and the global power
mismatch to be zero, even if there exists persistent packet loss.
It can be seen from Fig. 5(c) that communication strategy
can be adaptively switched to (21) and (22), respectively. To
be specific, the feature of asynchronous event triggering is
maintained during safe period. Meanwhile, each DG attempts
to periodically restore communication during the packet loss
period. The finally convergent results are reported in Table IV.
It can be seen that those results are very similar to the case
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results of energy mismatch.

without packet loss. To further evaluate the optimality of the
proposed method considering packet loss, the corresponding
calculation results are also listed in Table IV. Notably, these
results remain highly similar to the first three algorithms that
do not consider packet loss. The calculation errors between the
proposed method with packet loss and the three algorithms
without packet loss, i.e., the packet loss and the centralized
cuckoo optimization algorithm, the surplus-based distributed
algorithm, and the proposed method, are 0.32%, 0.72%, and
0.58%, respectively. All these calculation errors are low,
demonstrating that the proposed method can still achieve
optimal solutions even in the presence of packet loss.

Next, to further demonstrate the robustness of the proposed
method, we test the performance of the switch surplus-based
distributed algorithm with the same system setting. The sim-
ulation results are reported in Fig. 6. It can be seen that the
surplus-based distributed algorithm [17] is sensitive to packet
loss. The estimated power generation of each DG fails to
converge; meanwhile, the global power generation and demand
is unbalanced. This is because the surplus-based distributed
algorithm does not take any resistance strategy into account
to deal with the packet loss. On the contrary, our proposed
method is capable of resisting the persistent packet loss well,
thus making it of high value for practical applications.

V. CONCLUSION

In this paper, we investigated the economic dispatch prob-
lem considering persistent packet loss, and proposed a novel
switched surplus-based distributed economic dispatch ap-
proach to find the global optimal solutions. The proposed

algorithm is designed with switched system dynamics and
dynamic trigger mechanism, which can effectively reduce the
impact of persistent packet loss while maintaining the asyn-
chronous communication capability. In addition, we do not
require that the communication topology is strongly connected
or connected when packet loss occurs, which considerably
broadens the practical value of our proposed scheme for
more generic applications. Finally, though theoretical analysis
and simulation results, we validated the performance of our
proposed scheme and demonstrated the effectiveness of our
proposed method.
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