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Abstract. Solution methods for the nonlinear PDE of the Rudin--Osher--Fatemi (ROF) and
minimum-surface models are fundamental for many modern applications. Many efficient algorithms
have been proposed. First-order methods are common. They are popular due to their simplicity
and easy implementation. Some second-order Newton-type iterative methods have been proposed,
such as Chan--Golub--Mulet method. In this paper, we propose a new Newton--Krylov solver for
primal-dual finite element discretization of the ROF model and the minimum-surface model. The
method is so simple that we just need to use some diagonal preconditioners during the iterations.
Theoretically, the proposed preconditioners are further proved to be robust and optimal with respect
to the mesh size, the penalization parameter, the regularization parameter, and the iterative step;
essentially, it is a parameter-independent preconditioner. We first discretize the primal-dual system
by using mixed finite element methods and then linearize the discrete system by Newton's method.
Exploiting the well-posedness of the linearized problem on appropriate Sobolev spaces equipped with
proper norms, we propose block diagonal preconditioners for the corresponding system solved with
the minimum residual method. Numerical results are presented to support the theoretical results.

Key words. ROF model, primal-dual, finite element method, Newton method, block precondi-
tioners
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1. Introduction. Image restoration is a fundamental and challenging task in
image processing. A surge of research has been done in variational and PDE-based ap-
proaches. The Rudin--Osher--Fatemi (ROF) model, due to Rudin, Osher, and Fatemi
[37], is one of the most successfully and widely used mathematical models. Given an
image f : \Omega \subset \BbbR d \mapsto \rightarrow \BbbR , d = 1,2,3, the ROF model is trying to solve the following
minimization problem:

min
v\in BV(\Omega )

\biggl\{ 
E(v) =

\int 
\Omega 

\alpha | \nabla v| d\bfitx +
1

2

\int 
\Omega 

(v - f)2d\bfitx 

\biggr\} 
,(1.1)
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PRECONDITIONED NEWTON FOR TV AND MS PROBLEMS 2063

where f is the observed image, \alpha > 0 is the penalization parameter which controls the
trade-off between goodness-of-fit and visibility in its minimizer u, and BV(\Omega ) denotes
the space of functions of bounded variation [4]. The Euler--Lagrange equation for the
minimization problem (1.1) can be formally written as

 - \alpha \nabla \cdot 
\biggl( \nabla u

| \nabla u| 

\biggr) 
+ u - f = 0 in \Omega , \nabla u \cdot \bfitn = 0 on \partial \Omega .(1.2)

Here and after, \bfitn denotes the unit outer normal vector of \partial \Omega . This equation in-
deed characterizes the first-order optimality condition of (1.1), which is also known
as the curvature equation [36]. As a fundamental well-studied model in the litera-
ture, the ROF model is important for many modern applications, including scientific
computing, image processing, and data sciences.

To deal with the singularity caused by the total variation seminorm minimization
in (1.1), the following regularized minimization problem is often studied:

min
v\in W1,1(\Omega )

\biggl\{ 
E\beta (v) = \alpha 

\int 
\Omega 

\sqrt{} 
| \nabla v| 2 + \beta d\bfitx +

1

2

\int 
\Omega 

(v - f)2d\bfitx 

\biggr\} 
,(1.3)

where the regularization parameter \beta > 0 is typically small and W1,1(\Omega ) is the Sobolev
space of functions with absolute integrable function values and gradients. In [1], it
has been shown that the solution of the regularized problem (1.3) converges to the
solution of (1.1) as \beta \rightarrow 0. The convergence has been established rigorously in [49].
It should be noted that this regularization technique is mostly used to compute the
minimizer of the total variation energy and its variants [12, 18].

It is well known that the first integral in (1.3) is the surface area of the graph of
function v when \beta = 1. Thus, model (1.3) is essentially the minimum surface problem
when \beta = 1. Since the regularized energy functional E\beta (v) is strictly convex for \beta > 0,
the minimizer to (1.3) exists and is unique following classical analysis for minimum
surface problems [35].

In this work, we will design a fast algorithm which has good convergence properties
uniformly with respect to \beta , which means that our algorithm works for the regularized
total variation minimization model as well as for the minimum surface model.

The Euler--Lagrange equation corresponding to the minimization problem (1.3)
reads

 - \alpha \nabla \cdot 
\Biggl( 

\nabla u\sqrt{} 
| \nabla u| 2 + \beta 

\Biggr) 
+ u - f = 0 in \Omega , \nabla u \cdot \bfitn = 0 on \partial \Omega .(1.4)

We want to emphasize once more that our proposed method works uniformly with
respect to \beta \in (0,1].

Numerical solution to the minimization problem (1.3) poses a challenging problem
due to the presence of a highly nonlinear and nondifferentiable term. To get around
this difficulty, a lot of effort has been devoted to constructing effective schemes for the
minimization problem (1.3) and the PDE problems (1.2) in the past two decades, such
as the artificial time marching scheme in [34, 37], the lagged diffusivity fixed-point
method in [20, 44], the Chan--Golub--Mulet method in [17], the Bregman iteration in
[22], the augmented Lagrangian technique in [46], the primal-dual approach in [24, 26],
and some others in [3, 5, 6, 7, 13, 25, 30, 47]. However, most of these numerical algo-
rithms are gradient-descent type and thus only first order. Thus, the main motivation
of this work is to develop an effective second-order algorithm for the model (1.4).
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2064 X.-C. TAI, R. WINTHER, X. ZHANG, AND W. ZHENG

It is well known that a ``good"" algorithm for the nonlinear problem should include
not only fast iterative methods but also fast linear solvers for the linear systems
obtained after linearization. Solving the linear systems is usually the most important,
challenging, and time-consuming part in the overall simulation, which is due to the
large-scale and ill conditions of the linear systems. For the underlying nonlinear PDE
problem (1.4), the condition number of the linear system tends to infinity when the
mesh size is approaching zero. Moreover, the variability of the parameters, such as the
penalization parameter \alpha and the regularization parameter \beta , can additionally lead to
deterioration of the condition number. However, little work has been done to develop
robust and efficient solvers for the resulting linear systems. Here, the term ``robust""
refers to the following properties: (i) The convergence rate is independent of the
mesh size and other parameters of the model, and (ii) the number of iterations shall
be independent of the mesh size and other model parameters. In this work, we achieve
these goals through designing proper preconditioners for the linearized problem.

Based on the above discussion, the purpose of this paper is to propose a pre-
conditioned Newton method for primal-dual finite element discretization of the ROF
model. We shall adopt a primal-dual formulation of the model (1.4) which contains
the primal variable u, the dual variable \bfitp , and the multiplier \bfitlambda . We first discretize the
primal-dual system using mixed finite element methods and then linearize the discrete
nonlinear system by Newton's method. Following the operator preconditioning frame-
work in [33], we develop block diagonal preconditioners for the linearized problem.
The derivation exploits its well-posedness on appropriate Sobolev spaces equipped
with proper norms. We also rigorously prove that the condition number of the pre-
conditioned operator is uniformly bounded by a constant independent of the mesh
size, the penalization parameter \alpha , and the regularization parameter \beta . Thus, the
proposed preconditioners are robust. Consequently, a second-order Newton scheme
with robust and optimal preconditioners for the model (1.4) is given for the solution
for our model. Finally, numerical experiments are supplied to test the accuracy of
our schemes and validate that the proposed preconditioners are uniform with respect
to mesh size, the penalization parameter \alpha , and the regularization parameter \beta .

We want to emphasize that the essential ideas presented in this work are rather
general and can be used for other nonlinear problems. In [27], the harmonic map
problem was considered. A uniform preconditioner for the Newton iteration was also
constructed using an operator preconditioning framework published later in [33]. All
these show that the methodology presented here can be used for a large class of
problems.

The remainder of the paper is structured as follows. In section 2, we introduce
a primal-dual formulation of the ROF model and present its Newton iterations. Sec-
tion 3 is devoted to introducing the finite element discretization and giving Newton's
linearization for the discrete problem. In section 4, we derive the well-posedness of
the discrete problem on chosen spaces equipped with subtle norms. We propose and
analyze the robust preconditioners in section 5. We carry out several numerical ex-
periments in section 6 to confirm the efficiency of our proposed algorithms. The paper
ends with a concluding remark in section 7.

2. Our proposed model and the Newton algorithm. First, we introduce
some Sobolev spaces and norms used in this paper. Throughout the paper, we shall
denote vector-valued quantities by boldface notations. Let L2(\Omega ) be the usual Hilbert
space of square integrable functions which is equipped with the following inner product
and norm:
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PRECONDITIONED NEWTON FOR TV AND MS PROBLEMS 2065

\langle u, v\rangle :=
\int 
\Omega 

u(\bfitx )v(\bfitx )d\bfitx , \| u\| := \langle u,u\rangle 1/2.

Let H1(\Omega ) be its subspace with square integrable gradients and its standard norm.
We also use the space L\infty with its canonical norm, \| v\| \infty = ess sup\bfitx \in \Omega | v(\bfitx )| . For a
vector \bfitx = (x1, x2, \cdot \cdot \cdot , xd)\in \BbbR d, we shall use the notation

| \bfitx | \beta =
\sqrt{} 

| \bfitx | 2 + \beta =

\sqrt{}    d\sum 
i=1

x2
i + \beta .

For notation simplicity, we will also use \langle \cdot , \cdot \rangle throughout this work to denote the L2-
type of inner product for vectors, functions, vector functions, and duality pairing.
From the context in which this notation is used, it is clear which inner product or
duality this notation is referring to. As usual, \nabla and\nabla \cdot will be used as (distributional)
gradient and divergence operators.

Inspired by [46], we introduce the auxiliary variable \bfitp =\nabla u and reformulate (1.3)
into an equivalent constrained minimization problem:

min
\bfitp ,u

\bfitp =\nabla u

\biggl\{ \int 
\Omega 

\alpha | \bfitp | \beta d\bfitx +
1

2

\int 
\Omega 

(u - f)2d\bfitx 

\biggr\} 
.(2.1)

The constraint condition can be enforced by use of a Lagrange multiplier \bfitmu , and we
then seek stationary points to the Lagrangian functional

\scrL (\bfitq , v,\bfitmu ) =
\int 
\Omega 

\biggl( 
\alpha | \bfitq | \beta +

1

2
(v - f)2  - \bfitmu \cdot (\bfitq  - \nabla v)

\biggr) 
d\bfitx .

Let (\bfitp , u,\bfitlambda ) be one saddle point for this problem. As in [29, 31, 40], the first-order
optimality condition for (2.1) is

\alpha \bfitp /| \bfitp | \beta  - \bfitlambda = 0, u - \nabla \cdot \bfitlambda = f,  - \bfitp +\nabla u= 0 in \Omega ,(2.2)

in conjunction with the following boundary conditions:

\bfitlambda \cdot \bfitn =\nabla u \cdot \bfitn = 0 on \partial \Omega .(2.3)

Different from the original Euler--Lagrange equation (1.4) for u, this system contains
three variables, i.e., functions u, \bfitp , and \bfitlambda . Following [17], the method is dubbed the
primal-dual method.

To solve the nonlinear system (2.2)--(2.3), we apply Newton's method as the
linearization technique. For convenience, we write this system in the compact form
F (\bfitp , u,\bfitlambda ) = 0, where F is the nonlinear map given by

F : (\bfitp , u,\bfitlambda ) \mapsto \rightarrow (\alpha \bfitp /| \bfitp | \beta  - \bfitlambda , u - f  - \nabla \cdot \bfitlambda , - \bfitp +\nabla u) .

Therefore, Newton's method to solve this problem is as follows: Given (\bfitp n, un,\bfitlambda n),
compute

\bigl( 
\bfitp n+1, un+1,\bfitlambda n+1

\bigr) 
by\bigl( 

\bfitp n+1, un+1,\bfitlambda n+1
\bigr) 
= (\bfitp n, un,\bfitlambda n) + (\delta \bfitp n, \delta un, \delta \bfitlambda n) ,(2.4)

where the correction (\delta \bfitp n, \delta un, \delta \bfitlambda n) is defined by

DF (\bfitp n, un,\bfitlambda n) (\delta \bfitp n, \delta un, \delta \bfitlambda n) = - F (\bfitp n, un,\bfitlambda n) .(2.5)
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2066 X.-C. TAI, R. WINTHER, X. ZHANG, AND W. ZHENG

As usual, DF (\bfitp n, un,\bfitlambda n) is the Fr\'echet derivative of the operator F at (\bfitp n, un,\bfitlambda n).
For a given vector field \bfitr , for simplicity, assume that \bfitr (\bfitx ) \not = 0 for all \bfitx \in \Omega , and
define the matrix valued function H(\bfitr ) =H(\bfitr (\bfitx )) by

H(\bfitr ) =
1

| \bfitr | \beta 

\Biggl( 
I - \bfitr \bfitr t

| \bfitr | 2\beta 

\Biggr) 
.

Here \bfitr t denotes the transpose of \bfitr . We have that the matrix H(\bfitr ) is symmetric and
satisfies

\beta 

| \bfitr | 3\beta 
\leq H(\bfitr )\bfitxi \cdot \bfitxi 

\bfitxi \cdot \bfitxi \leq 1

| \bfitr | \beta 
\forall \bfitxi \in \BbbR d\setminus \{ 0\} .(2.6)

The above estimate follows from the following observation:

| \bfitxi | 2| \beta 
| \bfitr | 3\beta 

\leq H(\bfitr )\bfitxi \cdot \bfitxi =
| \bfitxi | 2| \bfitr | 2\beta  - (\bfitxi \cdot \bfitr )2

| \bfitr | 3\beta 
\leq | \bfitxi | 2

| \bfitr | \beta 
.

In addition, the matrix H(\bfitr ) is uniformly elliptic provided that \bfitr \in \bfitL \infty (\Omega ). Namely,
there exists a constant c0 > 0 depending on \| \bfitr \| L\infty and \beta such that

H(\bfitr )\bfitxi \cdot \bfitxi \geq c0| \bfitxi | 2 for a.e. x\in \Omega and all \bfitxi \in \BbbR d.

Let g(t) = t/
\sqrt{} 
t2 + \beta , t \in \BbbR . Then we have g\prime (t) = 1/

\sqrt{} 
t2 + \beta  - t2/(

\sqrt{} 
t2 + \beta )3.

With this fact, direct calculation shows that the Fr\'echet derivative of the operator F
at (\bfitp n, un,\bfitlambda n) reads

DF (\bfitp n, un,\bfitlambda n) =

\left(  \alpha H(\bfitp n) 0  - I
0 I  - \nabla \cdot 
 - I \nabla 0

\right)  .

As a consequence, for the nth step of the Newton iteration, the residual system (2.5)
can be written as \left\{     

\alpha H(\bfitp n)\delta \bfitp n  - \delta \bfitlambda n = \bfitr n\bfitp ,

\delta un  - \nabla \cdot \delta \bfitlambda n = rnu ,

 - \delta \bfitp n +\nabla \delta un = \bfitr n\bfitlambda ,

(2.7)

where the right-hand sides are given by

\bfitr n\bfitp := - \alpha \bfitp n/| \bfitp n| \beta +\bfitlambda n,

rnu := f  - un +\nabla \cdot \bfitlambda n,

\bfitr n\bfitlambda := \bfitp n  - \nabla un.

In subsequent sections, additional details on the iterations will be provided.

3. Finite element discretization. In this subsection, we introduce the finite
element discretization of the system (2.2). Let \scrT h be a quasi-uniform and shape-
regular simplex mesh of \Omega with mesh size h. For any integer k\geq 0, T \in \scrT h, let Pk(T )
be the space of polynomials of degree k, and define \bfitP k(T ) = (Pk(T ))

d. We associate a
triple of piecewise polynomial, finite-dimensional spaces to approximate the solution
(\bfitp , u,\bfitlambda ):

\bfitV h :=
\bigl\{ 
\bfitq \in \bfitL 2(\Omega ) : \bfitq | T \in \bfitP 0(T ) \forall T \in \scrT h

\bigr\} 
,

Uh :=
\bigl\{ 
v \in H1(\Omega ) : v| T \in P1(T ) \forall T \in \scrT h

\bigr\} 
,

\bfitW h :=
\bigl\{ 
\bfitmu \in \bfitL 2(\Omega ) : \bfitmu | T \in \bfitP 0(T ) \forall T \in \scrT h

\bigr\} 
.
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PRECONDITIONED NEWTON FOR TV AND MS PROBLEMS 2067

Based on the above finite element spaces, the finite element approximation of the
system (2.2) is formulated as follows: Find (\bfitp h, uh,\bfitlambda h) \in \bfitV h \times Uh \times \bfitW h such that
for any (\bfitq h, vh,\bfitmu h)\in \bfitV h \times Uh \times \bfitW h,\left\{     

\langle \alpha \bfitp h/| \bfitp h| \beta ,\bfitq h\rangle  - \langle \bfitlambda h,\bfitq h\rangle = 0,

\langle uh, vh\rangle + \langle \bfitlambda h,\nabla vh\rangle = \langle f, vh\rangle ,
 - \langle \bfitp h,\bfitmu h\rangle + \langle \nabla uh,\bfitmu h\rangle = 0.

(3.1)

Since we are interested in developing fast solvers for the discrete problem, we do
not elaborate on the well-posedness of (3.1) and simply assume that it has a unique
solution.

We shall apply the Newton algorithm (2.5) to the above finite element system as
well. Let (\bfitp n

h, u
n
h,\bfitlambda 

n
h) \in \bfitV h \times Uh \times \bfitW h be the approximate solutions of (3.1) at the

nth Newton iteration. From the linearization in (2.7), for each step of the Newton
iteration, the residual equation reads as follows: Find (\delta \bfitp n

h, \delta u
n
h, \delta \bfitlambda 

n
h)\in \bfitV h\times Uh\times \bfitW h

such that for any (\bfitq h, vh,\bfitmu h)\in \bfitV h \times Uh \times \bfitW h,\left\{     
\langle \alpha H(\bfitp n

h)\delta \bfitp 
n
h,\bfitq h\rangle  - \langle \delta \bfitlambda n

h,\bfitq h\rangle =Rn
\bfitp (\bfitq h) ,

\langle \delta un
h, vh\rangle + \langle \delta \bfitlambda n

h,\nabla vh\rangle =Rn
u (vh) ,

 - \langle \delta \bfitp n
h,\bfitmu h\rangle + \langle \nabla \delta un

h,\bfitmu h\rangle =Rn
\bfitlambda (\bfitmu h) ,

(3.2)

where the residual functionals are defined by

Rn
\bfitp (\bfitq h) := \langle  - \alpha \bfitp n

h/| \bfitp n
h| \beta +\bfitlambda n

h,\bfitq h\rangle ,
Rn

u (vh) := \langle f  - un
h, vh\rangle  - \langle \bfitlambda n

h,\nabla vh\rangle ,
Rn

\bfitlambda (\bfitmu h) := \langle \bfitp n
h  - \nabla un

h,\bfitmu h\rangle .

Afterward, the new solution
\bigl( 
\bfitp n+1
h , un+1

h ,\bfitlambda n+1
h

\bigr) 
is given by\bigl( 

\bfitp n+1
h , un+1

h ,\bfitlambda n+1
h

\bigr) 
= (\bfitp n

h, u
n
h,\bfitlambda 

n
h) + (\delta \bfitp n

h, \delta u
n
h, \delta \bfitlambda 

n
h) .(3.3)

Given a \bfitr \in \bfitV h, we define the bilinear form a\bfitr (\cdot , \cdot ) as

a\bfitr ((\bfitp h, uh,\bfitlambda h), (\bfitq h, vh,\bfitmu h)) := \langle \alpha H(\bfitr )\bfitp h,\bfitq h\rangle  - \langle \bfitlambda h,\bfitq h\rangle + \langle uh, vh\rangle 
+ \langle \bfitlambda h,\nabla vh\rangle  - \langle \bfitp h,\bfitmu h\rangle + \langle \nabla uh,\bfitmu h\rangle 

and the residual functional \ell h(\cdot ) as

\ell h(\bfitq h, vh,\bfitmu h) :=Rn
\bfitp (\bfitq h) +Rn

u (vh) +Rn
\bfitlambda (\bfitmu h) .

Write Xh := \bfitV h \times Uh \times \bfitW h. Then the problem (3.2) can be equivalently written as
follows: Given (\bfitp n

h, u
n
h,\bfitlambda 

n
h)\in Xh, find (\delta \bfitp n

h, \delta u
n
h, \delta \bfitlambda 

n
h)\in Xh such that

a\bfitp n
h
((\delta \bfitp n

h, \delta u
n
h, \delta \bfitlambda 

n
h), (\bfitq h, vh,\bfitmu h)) = \ell h(\bfitq h, vh,\bfitmu h) \forall (\bfitq h, vh,\bfitmu h)\in Xh.(3.4)

For a given \bfitr \in \bfitV h, we introduce the operator \scrA h(\bfitr ) :Xh \rightarrow X\ast 
h defined by

\langle \scrA h(\bfitr )(\bfitp h, uh,\bfitlambda h), (\bfitq h, vh,\bfitmu h)\rangle := a\bfitr ((\bfitp h, uh,\bfitlambda h), (\bfitq h, vh,\bfitmu h)) ,

\forall (\bfitp n
h, u

n
h,\bfitlambda 

n
h), (\bfitq h, vh,\bfitmu h)\in Xh.(3.5)
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We remind the reader that \langle \cdot , \cdot \rangle here refers to the duality pairing between X\ast 
h and

Xh. Roughly speaking, \scrA h(\bfitr ) is the discrete version of the following operator:

\scrA (\bfitr ) :=

\left(  \alpha H(\bfitr ) 0  - I
0 I  - \nabla \cdot 
 - I \nabla 0

\right)  .(3.6)

We first note that the form \langle \scrA h(\bfitr )\cdot , \cdot \rangle is symmetric, reflecting the symmetry of the
saddle point operator \scrA h(\bfitr ). Besides that, for the nth step of the Newton iteration,
we need to solve a linear system with the operator \scrA h(\bfitp 

n
h) as the coefficient matrix.

Since the operator \scrA h(\bfitr ) is indefinite and symmetric, we solve the linear system by
the minimum residual method (MINRES) [33]. However, as one of the Krylov space
methods, the convergence rate of MINRES depends on the condition number and
the spectrum of \scrA h(\bfitr ). This motivates the study of efficient preconditioners for the
operator \scrA h(\bfitr ).

Remark 3.1. From [8], using the inverse estimate in the finite element space \bfitV h,
we have

\| \bfitp h\| \infty \leq Ch - d/2 \| \bfitp h\| .(3.7)

Thus, given a mesh size h > 0, H(\bfitp n
h) \in \bfitL \infty (\Omega ) is uniformly elliptic; see (2.6).

Accordingly, problems (3.1) and (3.2) are well-defined.

4. Well-posedness of the linear system for the Newton algorithm. Now
we discuss the well-posedness of scheme (3.4), which is the foundation of the precon-
ditioners we proposed. For this end, we will use the Babu\v ska--Brezzi theory [2, 9, 10]
to analyze the mapping properties of the operator \scrA h(\bfitr ) for any \bfitr \in \bfitV h.

As discussed in [33], ensuring that the continuity constants and the inf-sup con-
stants are independent of the physical parameters and the discretized parameters is
crucial to design robust block preconditioners for solving our problem. Note that
the natural bound on the saddle point operator \scrA h(\bfitr ) depends on the vector field \bfitr .
Therefore, we equip the space Xh with the \bfitr -dependent inner product

((\bfitp h, uh,\bfitlambda h), (\bfitq h, vh,\bfitmu h))X\bfitr ,\alpha 
:=\alpha \langle H(\bfitr )\bfitp h,\bfitq h\rangle + \langle uh, vh\rangle + \alpha \langle H(\bfitr )\nabla uh,\nabla vh\rangle 

+ \alpha  - 1\langle H(\bfitr ) - 1\bfitlambda h,\bfitmu h\rangle (4.1)

and norm

\| (\bfitq h, vh,\bfitmu h)\| 2X\bfitr ,\alpha 
:= \alpha \langle H(\bfitr )\bfitq h,\bfitq h\rangle + \| vh\| 2 + \alpha \langle H(\bfitr )\nabla vh,\nabla vh\rangle (4.2)

+ \alpha  - 1\langle H(\bfitr ) - 1\bfitmu h,\bfitmu h\rangle .

It is clear that the corresponding norm for the dual space X\ast 
h depends on \bfitr and \alpha .

Thanks to the estimate (3.7) and (2.6), the matrix H(\bfitr ) is uniformly elliptic and
invertible. Hence, the weighted norm (4.2) is well-defined in Xh.

After the introduction of these notations, we are able to show that the operator
\scrA h(\bfitr ) has the following properties.

Lemma 4.1 (boundedness of \scrA h(\bfitr )). For all (\bfitp h, uh,\bfitlambda h), (\bfitq h, vh,\bfitmu h) \in Xh, we
have

| \langle \scrA h(\bfitr )(\bfitp h, uh,\bfitlambda h), (\bfitq h, vh,\bfitmu h)\rangle | \leq 2\| (\bfitp h, uh,\bfitlambda h)\| X\bfitr ,\alpha 
\| (\bfitq h, vh,\bfitmu h)\| X\bfitr ,\alpha 

.
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PRECONDITIONED NEWTON FOR TV AND MS PROBLEMS 2069

Proof. This follows directly from the definition of the operator \scrA h(\bfitr ) and the
definition of \| \cdot \| Xr

.

We define the associated kernel space Zh \subset \bfitV h \times Uh by

Zh = \{ (\bfitp h, uh)\in \bfitV h \times Uh | \langle \nabla uh  - \bfitp h,\bfitmu h\rangle = 0 \forall \bfitmu h \in \bfitW h\} .
Note that \nabla uh \in \bfitW h and \bfitp h \in \bfitW h; thus, taking \bfitmu h = \nabla uh  - \bfitp h gives \bfitp h = \nabla uh.
Consequently, the discrete kernel space Zh is further portrayed as

Zh = \{ (\bfitp h, uh)\in \bfitV h \times Uh | \bfitp h =\nabla uh\} .
Lemma 4.2 (coercivity on the kernel space). For all (\bfitp h, uh)\in Zh, we have

\langle \scrA h(\bfitr )(\bfitp h, uh,0), (\bfitp h, uh,0)\rangle \geq 
1

2
\| (\bfitp h, uh,0)\| 2X\bfitr ,\alpha 

.

Proof. Just observe that on Zh

\langle \scrA h(\bfitr )(\bfitp h, uh,0), (\bfitp h, uh,0)\rangle = \langle \alpha H(\bfitr )\bfitp h,\bfitp h\rangle + \| uh\| 2

=
1

2
\langle \alpha H(\bfitr )\bfitp h,\bfitp h\rangle + \| uh\| 2 +

1

2
\langle \alpha H(\bfitr )\nabla uh,\nabla uh\rangle 

and that

\| (\bfitp h, uh,0)\| 2X\bfitr ,\alpha 
= \langle \alpha H(\bfitr )\bfitp h,\bfitp h\rangle + \| uh\| 2 + \alpha \langle H(\bfitr )\nabla uh,\nabla uh\rangle .

Then the desired inequality holds.

Lemma 4.3 (inf-sup condition). The following estimate holds:

sup
(\bfitq h,vh)\in \bfitV h\times Uh

\langle \scrA h(\bfitr )(0,0,\bfitlambda h), (\bfitq h, vh,0)\rangle 
\| (\bfitq h, vh,0)\| X\bfitr ,\alpha 

\geq \| (0,0,\bfitlambda h)\| X\bfitr ,\alpha 
\forall \bfitlambda \in \bfitW h.

Proof. We have that

sup
(\bfitq h,vh)\in \bfitV h\times Uh

\langle \scrA h(\bfitr )(0,0,\bfitlambda h), (\bfitq h, vh,0)\rangle 
\| (\bfitq h, vh,0)\| X\bfitr ,\alpha 

\geq sup
(\bfitq h,0)\in \bfitV h\times Uh

 - \langle \bfitlambda h,\bfitq h\rangle 
(\alpha \langle H(\bfitr )\bfitq h,\bfitq h\rangle ) 1/2

\geq 
\bigl( 
\alpha  - 1\langle H(\bfitr ) - 1\bfitlambda h,\bfitlambda h\rangle 

\bigr) 1/2
,

where the last inequality follows by taking \bfitq h = - \alpha  - 1H(\bfitr ) - 1\bfitlambda h. Since

\| (0,0,\bfitlambda h)\| X\bfitr ,\alpha 
=
\bigl( 
\alpha  - 1\langle H(\bfitr ) - 1\bfitlambda h,\bfitlambda h\rangle 

\bigr) 1/2
,

this shows that the desired inequality holds.

With the three lemmas above, we obtain the main result of this section.

Theorem 4.1. At each iteration for the Newton updating, the discretized problem
(3.2) is well-posed.

Proof. In Lemmas 4.1--4.3, we have verified Brezzi conditions for the saddle
point problem. Therefore, it is straightforward to reach the conclusion by using the
Babu\v ska--Brezzi theory.

Using adequately weighted spaces, we have that \scrA h(\bfitr ) is an isomorphism from
Xh to X\ast 

h such that \| \scrA h(\bfitr )\| \scrL (Xh,X\ast 
h)

and \| (\scrA h(\bfitr ))
 - 1\| \scrL (X\ast 

h,Xh) are bounded inde-

pendently of mesh sizes and the parameters. That is,

\| \scrA h(\bfitr )\| \scrL (Xh,X\ast 
h)

\leq C,
\bigm\| \bigm\| \bigm\| (\scrA h(\bfitr ))

 - 1
\bigm\| \bigm\| \bigm\| 
\scrL (X\ast 

h,Xh)
\leq c - 1,(4.3)

where the constants C and c are independent of \bfitr , \alpha ,\beta , and h.
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5. Robust preconditioners. In this section, we develop and analyze robust
preconditioners. Let \scrB h(\bfitr ) be the ``Riesz-operator"" mapping from X\ast 

h to Xh, which
is induced by the weighted norm \| \cdot \| X\bfitr ,\alpha 

for given (\bfitp h, uh,\bfitlambda h)\in X\ast 
h:

(\scrB h(\bfitr )(\bfitp h, uh,\bfitlambda h), (\bfitq h, vh,\bfitmu h))X\bfitr ,\alpha 
:= \langle (\bfitp h, uh,\bfitlambda h), (\bfitq h, vh,\bfitmu h)\rangle , (\bfitq h, vh,\bfitmu h)\in Xh.

By using (4.1) and (4.2), we can see that it takes the following explicit form:

\scrB h(\bfitr ) =

\left(  \alpha H(\bfitr ) 0 0
0 S\bfitr ,h 0
0 0 \alpha  - 1H(\bfitr ) - 1

\right)   - 1

,(5.1)

where the operator S\bfitr ,h : Vh \mapsto \rightarrow V \ast 
h is defined by

\langle S\bfitr ,huh, vh\rangle := \langle uh, vh\rangle + \langle \alpha H(\bfitr )\nabla uh,\nabla vh\rangle \forall uh, vh \in Vh.

In fact, S\bfitr ,h is the finite element discretization for the operator I  - \alpha \nabla \cdot (H (\bfitr )\nabla )
with Neumann boundary conditions. Note that since the matrix H(\bfitr ) is symmetric
and uniformly elliptic, the second block, S\bfitr ,h, is invertible. Following the operator
preconditioning framework [33], the operator \scrB h(\bfitr ) is proposed as the preconditioner
for \scrA h(\bfitr ).

In the following, we estimate the condition number of the preconditioned operator
\scrB h(\bfitr )\scrA h(\bfitr ) using the formula

\kappa (\scrB h(\bfitr )\scrA h(\bfitr )) = \| \scrB h(\bfitr )\scrA h(\bfitr )\| \scrL (Xh,Xh)

\bigm\| \bigm\| \bigm\| (\scrB h(\bfitr )\scrA h(\bfitr ))
 - 1
\bigm\| \bigm\| \bigm\| 
\scrL (Xh,Xh)

.(5.2)

Theorem 5.1. The condition number \kappa (\scrB h(\bfitr )\scrA h(\bfitr )) has a uniform bound, in-
dependent of \bfitr , \alpha ,\beta , and h, in the sense that

1\leq \kappa (\scrB h(\bfitr )\scrA h(\bfitr ))\leq C/c,

where C and c are defined by (4.3).

Proof. From the definition of the operator \scrB h(\bfitr ) and the definition of \| \cdot \| X\bfitr ,\alpha 
, we

note that the operator \scrB h(\bfitr ) has the property that

\| \scrB h(\bfitr )\| \scrL (X\ast 
h,Xh) =

\bigm\| \bigm\| \bigm\| (\scrB h(\bfitr ))
 - 1
\bigm\| \bigm\| \bigm\| 
\scrL (Xh,X\ast 

h)
= 1.

Using (4.3), we further have

\| \scrB h(\bfitr )\scrA h(\bfitr )\| \scrL (Xh,Xh) = \| \scrA h(\bfitr )\| \scrL (Xh,X\ast 
h)

\leq C

and\bigm\| \bigm\| \bigm\| (\scrB h(\bfitr )\scrA h(\bfitr ))
 - 1
\bigm\| \bigm\| \bigm\| 
\scrL (Xh,Xh)

\leq 
\bigm\| \bigm\| \bigm\| (\scrA h(\bfitr ))

 - 1
\bigm\| \bigm\| \bigm\| 
\scrL (X\ast 

h,Xh)

\bigm\| \bigm\| \bigm\| (\scrB h(\bfitr ))
 - 1
\bigm\| \bigm\| \bigm\| 
\scrL (Xh,X\ast 

h)
\leq c - 1.

Finally, we get the desired result using (5.2).

This theorem suggests that \scrB h(\bfitr ) is a ``good"" preconditioner for \scrA h(\bfitr ) in the
sense that the preconditioned operator has a condition number which is independent
of the mesh size h, the penalization parameter \alpha , the regularization parameter \beta , and
the iterative step n. We are using MINRES to solve the preconditioned linear system
at each Newton iteration. We have the following convergence result for MINRES.
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Theorem 5.2. If x0 is the initial value, xm is the mth iteration of the MINRES
method, and x is the exact solution, then there exists a constant \delta \in (0,1), only
depending on the condition number \kappa (\scrB h(\bfitr )\scrA h(\bfitr )), such that

\langle \scrB h(\bfitr )\scrA h(\bfitr ) (x - xm) ,\scrA h(\bfitr ) (x - xm)\rangle 1
2

\leq 2\delta m
\bigl\langle 
\scrB h(\bfitr )\scrA h(\bfitr )

\bigl( 
x - x0

\bigr) 
,\scrA h(\bfitr )

\bigl( 
x - x0

\bigr) \bigr\rangle 1
2 .

Moreover, an estimate leads to

\delta =
\kappa (\scrB h(\bfitr )\scrA h(\bfitr )) - 1

\kappa (\scrB h(\bfitr )\scrA h(\bfitr )) + 1
\leq C  - c

C + c
.

Proof. Since the operator \scrB h(\bfitr ) \in \scrL (X\ast 
h,Xh) is symmetric and positive definite,

\langle (\scrB h(\bfitr ))
 - 1 \cdot , \cdot \rangle defines an inner product on Xh. Furthermore, it is easy to see that the

preconditioned operator \scrB h(\bfitr )\scrA h(\bfitr )\in \scrL (Xh,Xh) is symmetric in this inner product.
So we shall use the MINRES method, which is defined with respect to the inner
product \langle (\scrB h(\bfitr ))

 - 1\cdot , \cdot \rangle . The estimate is obtained by applying Theorem 2.2 in [33].

The inverse of S\bfitr ,h needs to solve an elliptic linear problem. For large-scale
computations, it is prohibitively expensive and time consuming to use direct methods
to solve this elliptic problem, especially for three-dimensional problems. Thus, we
consider the following inexact preconditioner:

\widetilde \scrB h(\bfitr ) =

\left(  \alpha H(\bfitr ) 0 0

0 \widetilde S - 1
\bfitr ,h 0

0 0 \alpha  - 1H(\bfitr ) - 1

\right)   - 1

.(5.3)

Here, \widetilde S\bfitr ,h is an operator that is spectrally equivalent to the action of the inverse of
the block S\bfitr ,h in the following sense:

c1,s\langle S - 1
\bfitr ,hvh, vh\rangle \leq \langle \widetilde S\bfitr ,hvh, vh\rangle \leq c2,s\langle S - 1

\bfitr ,hvh, vh\rangle \forall vh \in Vh,(5.4)

where the constants c1,s and c2,s are independent of the mesh size, the penalization
parameter, the regularization parameter, and the iterative step. Recall that S\bfitr ,h is the
finite element discretization of the operator I - \alpha \nabla \cdot (H (\bfitr )\nabla ) with Neumann boundary
conditions. There are many methods to construct efficient preconditioners for such
a type of operator, such as the standard multigrid method [11, 23, 38], the algebraic
multigrid method (AMG) [32, 43, 48], and the domain decomposition method [21, 42].
When H (\bfitr ) is the identity matrix and \alpha > 0 (can be small), most of the mentioned
methods can guarantee that the operator \~S\bfitr ,h satisfies the requirement (5.4) uniformly
with respect to \alpha ; see [33, section 6] and references given there. However, we have
not made any attempt to establish a similar theoretical result for the more general
matrix H (\bfitr ) used here since we regard this to be out of the main scope of the present
discussion. Instead, we make the assumption that (5.4) holds, and our experiments
seem to confirm that this is indeed the case.

When using \widetilde \scrB h(\bfitr ) as the preconditioner, we have the following results regarding
the convergence estimate of the corresponding preconditioned MINRES method.

Theorem 5.3. Assume that (5.4) is satisfied. Then we have

1\leq \kappa 
\Bigl( \widetilde \scrB h(\bfitr )\scrA h(\bfitr )

\Bigr) 
\leq C\^c2

c\^c1
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

5/
23

 to
 1

29
.2

40
.4

4.
11

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2072 X.-C. TAI, R. WINTHER, X. ZHANG, AND W. ZHENG

where \^c1 =min(c1,s,1) and \^c2 =max(c2,s,1). Moreover, if x0 is the initial value, xm

is the mth iteration of the MINRES method, and x is the exact solution, then there
exists a constant \delta \in (0,1), only depending on the condition number \kappa ( \widetilde \scrB h(\bfitr )\scrA h(\bfitr )),
such that \Bigl\langle \widetilde \scrB h(\bfitr )\scrA h(\bfitr ) (x - xm) ,\scrA h(\bfitr ) (x - xm)

\Bigr\rangle 1
2

\leq 2\delta m
\Bigl\langle \widetilde \scrB h(\bfitr )\scrA h(\bfitr )

\bigl( 
x - x0

\bigr) 
,\scrA h(\bfitr )

\bigl( 
x - x0

\bigr) \Bigr\rangle 1
2

.

Furthermore, an estimate leads to

\delta =
\kappa 
\Bigl( \widetilde \scrB h(\bfitr )\scrA h(\bfitr )

\Bigr) 
 - 1

\kappa 
\Bigl( \widetilde \scrB h(\bfitr )\scrA h(\bfitr )

\Bigr) 
+ 1

\leq \^c2C  - \^c1c

\^c2C + \^c1c
.

Proof. We only need to estimate the condition number of the preconditioned
operator \widetilde \scrB h(\bfitr )\scrA h(\bfitr ); the result of the convergence of the preconditioned MINRES
method is obvious. From (5.4), we can see that \widetilde \scrB h(\bfitr ) satisfies

\^c1 (x,x)\scrB h(\bfitr )
\leq (x,x) \widetilde \scrB h(\bfitr )

\leq \^c2 (x,x)\scrB h(\bfitr )
.(5.5)

This implies that\bigm\| \bigm\| \bigm\| \widetilde \scrB h(\bfitr ) (\scrB h(\bfitr ))
 - 1
\bigm\| \bigm\| \bigm\| \scrL (Xh,Xh) \leq \^c2,

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \widetilde \scrB h(\bfitr ) (\scrB h(\bfitr ))
 - 1
\Bigr)  - 1

\bigm\| \bigm\| \bigm\| \bigm\| \scrL (Xh,Xh) \leq \^c - 1
1 .

Similar to the proof of Theorem 5.1, we have\bigm\| \bigm\| \bigm\| \widetilde \scrB h(\bfitr )\scrA h(\bfitr )
\bigm\| \bigm\| \bigm\| \scrL (Xh,Xh) =

\bigm\| \bigm\| \bigm\| \widetilde \scrB h(\bfitr ) (\scrB h(\bfitr ))
 - 1\scrB h(\bfitr )\scrA h(\bfitr )

\bigm\| \bigm\| \bigm\| \scrL (Xh,Xh)

\leq 
\bigm\| \bigm\| \bigm\| \widetilde \scrB h(\bfitr ) (\scrB h(\bfitr ))

 - 1
\bigm\| \bigm\| \bigm\| \scrL (Xh,Xh)\| \scrB h(\bfitr )\scrA h(\bfitr )\| \scrL (Xh,Xh) \leq C\^c2

and \bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \widetilde \scrB h(\bfitr )\scrA h(\bfitr )
\Bigr)  - 1

\bigm\| \bigm\| \bigm\| \bigm\| 
\scrL (Xh,Xh)

=

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \widetilde \scrB h(\bfitr ) (\scrB h(\bfitr ))
 - 1\scrB h(\bfitr )\scrA h(\bfitr )

\Bigr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \scrL (Xh,Xh)

\leq 
\bigm\| \bigm\| \bigm\| (\scrB h(\bfitr )\scrA h(\bfitr ))

 - 1
\bigm\| \bigm\| \bigm\| 
\scrL (Xh,Xh)

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( \widetilde \scrB h(\bfitr ) (\scrB h(\bfitr ))
 - 1
\Bigr)  - 1

\bigm\| \bigm\| \bigm\| \bigm\| \scrL (Xh,Xh) \leq c - 1\^c - 1
1 .

Therefore, we get the estimate of the condition number.

As a consequence, the exact methods for the block solvers in the preconditioner
\scrB h(\bfitr ) can be replaced by inexact methods and still maintain the desired properties.
So far, we have gotten a robust and effective solver when solving the linearized sys-
tems. This makes it very cheap to solve the system for each iteration for Newton
updating. Together, it yields a second-order Newton scheme with robust and optimal
preconditioners.

6. Numerical experiments. In this section, we present some numerical exper-
iments to verify the convergence rate of the finite element approximation to our model
and to demonstrate the robustness of the preconditioners. A set of two-dimensional
examples are reported below. All codes were written in MATLAB based on the open-
source finite element library iFEM [19].
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For comparison, we also implement the following fixed point method, which is also
known as the Picard method. For this method, given the nth iteration (\bfitp n

h, u
n
h,\bfitlambda 

n
h)\in 

\bfitV h \times Uh \times \bfitW h,
\bigl( 
\bfitp n+1
h , un+1

h ,\bfitlambda n+1
h

\bigr) 
\in \bfitV h \times Uh \times \bfitW h is solved by\left\{     

\langle \alpha \bfitp n+1
h / | \bfitp n

h| \beta ,\bfitq h\rangle  - \langle \bfitlambda n+1
h ,\bfitq h\rangle = 0 \forall \bfitq h \in \bfitV h,

\langle un+1
h , vh\rangle + \langle \bfitlambda n+1

h ,\nabla vh\rangle  - \langle f, vh\rangle = 0 \forall vh \in Uh,

 - \langle \bfitp n+1
h ,\bfitmu h\rangle + \langle \nabla un+1

h ,\bfitmu h\rangle = 0 \forall \bfitmu h \in \bfitW h.

(6.1)

With the notation in section 3, its residual form reads as follows: Find (\delta \bfitp n
h, \delta u

n
h, \delta \bfitlambda 

n
h)\in 

\bfitV h \times Uh \times \bfitW h such that for any (\bfitq h, vh,\bfitmu h)\in \bfitV h \times Uh \times \bfitW h,\left\{     
\langle \alpha \widehat H(\bfitp n

h)\delta \bfitp 
n
h,\bfitq h\rangle  - \langle \delta \bfitlambda n

h,\bfitq h\rangle =Rn
\bfitp (\bfitq h) ,

\langle \delta un
h, vh\rangle + \langle \delta \bfitlambda n

h,\nabla vh\rangle =Rn
u (vh) ,

 - \langle \delta \bfitp n
h,\bfitmu h\rangle + \langle \nabla \delta un

h,\bfitmu h\rangle =Rn
\bfitlambda (\bfitmu h) ,

(6.2)

where \widehat H(\bfitp n
h) := 1/ | \bfitp n

h| \beta and the residuals Rn
\bfitp (\bfitq h), R

n
u, and Rn

\bfitlambda are given in section 3.

Thus, the new solution
\bigl( 
\bfitp n+1
h , un+1

h ,\bfitlambda n+1
h

\bigr) 
is given by\bigl( 

\bfitp n+1
h , un+1

h ,\bfitlambda n+1
h

\bigr) 
= (\bfitp n

h, u
n
h,\bfitlambda 

n
h) + (\delta \bfitp n

h, \delta u
n
h, \delta \bfitlambda 

n
h) .(6.3)

Clearly, the difference of the Newton method and the Picard method lies on the matrix
H(\bfitr ) and the scalar \widehat H(\bfitr ). Note that \widehat H(\bfitr ) is bounded above by 1/\beta and below by
zero. Hence, the theory for the Newton method in sections 4--5 also applies to the
Picard method as long as we replace H(\bfitr ) by \widehat H(\bfitr ) in \scrA h(\bfitr ), \scrB h(\bfitr ), and \widetilde \scrB h(\bfitr ).
For convenience, we still use the notation \scrA h(\bfitr ), \scrB h(\bfitr ), and \widetilde \scrB h(\bfitr ) for the Picard
method. From (3.2), (6.2), (5.1), and (5.3), we know that the costs per iteration for the
Picard method and the Newton method are almost the same. Thus, for convenience,
only the iteration numbers needed by both methods are used for comparison in this
section.

6.1. Implementation of block preconditioners. First of all, we discuss some
implementation details of the proposed block preconditioners. To solve the linear
system obtained from the finite element discretization, we use the MINRES method
as an outer iterative solver, with the tolerance for the relative residual in the energy
norm set to \varepsilon = 10 - 10. The block preconditioners designed in section 5 are used
to accelerate the convergence rate of MINRES. In the following, we implement both
exact and inexact inner solvers, \scrB h(\bfitr ) and \widetilde \scrB h(\bfitr ). As we know, inverting the proposed
block preconditioners ends up with inverting diagonal blocks. Therefore, the main
difference in implementation is how to invert the second diagonal block. For the
exact preconditioner \scrB h(\bfitr ), we call direct solvers implemented in MATLAB, while for
the inexact preconditioner \widetilde \scrB h(\bfitr ), we mainly call the AMG preconditioned conjugate
gradient (PCG) method to define the operator \widetilde S\bfitr ,h. The tolerance of PCG in terms
of the l2-norm of the relative residual is \varepsilon 0 = 10 - 3. The AMG we used is the classical
AGM with Ruge--Stuben coarsening and standard interpolation [19, 48].

Without specifications, the initial guess
\bigl( 
\bfitp 0
h, u

0
h,\bfitlambda 

0
h

\bigr) 
is taken to be the zero solu-

tion, and the relative tolerances are set by 10 - 6 for the nonlinear iteration. Here the
maximal iteration number of the MINRES solver is set by N = 200. For the sake of
convenience, we denote NNewton by the number of Newton iterations, NPicard by the
number of Picard iterations, and NMINRES by the average number of preconditioned
MINRES iterations for solving the linearized problem.
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2074 X.-C. TAI, R. WINTHER, X. ZHANG, AND W. ZHENG

To ensure the global convergence of the Newton algorithm, we introduce an addi-
tional damping parameter \theta . Let \bfitb n be the vector representation of the right hand of
(3.4) at nth iteration. We use the classical backtracking line search method, which se-
lects step length \theta n to be the first number in the sequence of

\bigl\{ 
1/2k

\bigr\} \infty 
k=0

that satisfies
the following criterion: \bigm\| \bigm\| \bigm\| \bfitb k+1

\bigm\| \bigm\| \bigm\| 
l2
\leq (1 - \sigma \theta k)\| \bfitb n\| l2 ,

where \sigma is chosen as 10 - 4. Thus, the damped Newton updating is given by\bigl( 
\bfitp n+1
h , un+1

h ,\bfitlambda n+1
h

\bigr) 
= (\bfitp n

h, u
n
h,\bfitlambda 

n
h) + \theta n (\delta \bfitp n

h, \delta u
n
h, \delta \bfitlambda 

n
h) .(6.4)

6.2. Numerical results. This subsection reports on some numerical experi-
ments.

Example 6.1. This example is to test the convergence rate of finite element so-
lutions and the robustness of the preconditioners for some smooth problems. The
computational domain \Omega is set as (0,1)2. The function f is chosen so that the exact
solutions are given by

u= cos (\pi x) cos (\pi y) ,

\bfitp = - \pi (sin (\pi x) cos (\pi y) , cos (\pi x) sin (\pi y))
\top 
,

\bfitlambda = - \pi \alpha 

| \bfitp | \beta 
(sin (\pi x) cos (\pi y) , cos (\pi x) sin (\pi y))

\top 
.

We first carry out the numerical experiment with \alpha = \beta = 1. The computational
meshes are a set of uniform triangulations of \Omega . Table 6.1 shows the information for
the meshes and the number of degrees of freedom (DOFs) which we are using. From
the finite element spaces in section 3, the number of DOFs for \bfitp and \bfitlambda is the number
of elements of meshes, and the number of DOFs for u is the number of nodes of
meshes. Based on the results shown in Table 6.2, we find that the convergence rates
for (\bfitp h, uh,\bfitlambda h) are given by

| | \bfitp  - \bfitp h| | 0 \sim \scrO (h) , | | \bfitlambda  - \bfitlambda h| | 0 \sim \scrO (h) ,
| | u - uh| | 1 \sim \scrO (h) , | | u - uh| | 0 \sim \scrO 

\bigl( 
h2
\bigr) 
.

Remember that we are using the piecewise constant finite elements for discretizing \bfitp 
and \bfitlambda and the first-order Lagrange finite elements for discretizing u. This means that
expected optimal convergence rates are obtained for all variables.

Table 6.3 shows iteration counts for the Newton method with the block precondi-
tioners \scrB h(\bfitr ) and \widetilde \scrB h(\bfitr ) for different mesh sizes. We see from the relatively consistent
iteration counts that both the exact and the inexact preconditioners are robust with
respect to the mesh size. This demonstrates the optimality of the linear solver and
the efficiency of the preconditioners. Compared with using the exact block precon-
ditioners, using the inexact one results in a slight degradation in performance but
nothing significant and negligible.

Table 6.1
Mesh sizes and numbers of DOFs.

Mesh h DOFs for ph DOFs for uh DOFs for λh Total DOFs
T1 6.25e-02 1,024 289 1,024 2,337
T2 3.13e-02 4,096 1,089 4,096 9,281
T3 1.56e-02 16,384 4,225 16,384 36,993
T4 7.81e-03 65,536 16,641 65,536 147,713
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PRECONDITIONED NEWTON FOR TV AND MS PROBLEMS 2075

Table 6.2
Errors and convergence rates for (\bfitp h, uh,\bfitlambda h) (Example 6.1).

h ||p− ph|| Order ||λ− λh|| Order
6.25e-02 2.17585e-01 — 8.95410e-02 —
3.13e-02 1.08967e-01 1.00 4.52978e-02 0.98
1.56e-02 5.45105e-02 1.00 2.27351e-02 1.00
7.81e-03 2.72596e-02 1.00 1.13809e-02 1.00

h ||u− uh||1 Order ||u− uh|| Order
6.25e-02 2.17595e-01 — 7.97886e-03 —
3.13e-02 1.08968e-01 1.00 2.02665e-03 1.98
1.56e-02 5.45107e-02 1.00 5.12786e-04 1.98
7.81e-03 2.72596e-02 1.00 1.32618e-04 1.95

Table 6.3
Iteration counts for the Newton method with the block preconditioners \scrB h(\bfitr ) and \widetilde \scrB h(\bfitr )

(Example 6.1).

mesh
Bh(r) Bh(r)

NNewton(NMINRES) NNewton(NMINRES)
T1 5(21) 5(26)
T2 5(20) 5(25)
T3 5(20) 5(25)
T4 5(19) 5(25)

Table 6.4
Iteration counts for the Picard method with the block preconditioners \scrB h(\bfitr ) and \widetilde \scrB h(\bfitr ) (Example

6.1).

mesh
Bh(r) Bh(r)

NPicard(NMINRES) NPicard(NMINRES)
T1 36(19) 36(24)
T2 33(19) 33(24)
T3 30(18) 30(24)
T4 26(18) 26(23)

For comparison, we present the corresponding results for the Picard method in
Table 6.4. Observe that comparing it with Table 6.3, the linear iteration numbers of
the MINRES method for these two methods are almost the same, but the nonlinear
iteration numbers of the Newton method are much less than those of the Picard
method. Using mesh \scrT 4, we display the convergence histories of the Picard method
and the Newton method in Figure 6.1. We see that the Newton method shows a
dramatically faster convergence than the Picard method.

In Table 6.5, we further give the iteration numbers of MINRES at each Newton
step for the exact and inexact preconditioners. From the results, we see that the
iteration numbers of MINRES are almost invariant with different mesh sizes and
iteration numbers. This verifies that our preconditioners are robust with respect to
the iterative steps and mesh sizes. Besides, we again observe that the use of the
inexact preconditioners has nearly no impact on the needed number of iterations for
MINRES. Using the grid \scrT 4, we plot the convergence histories of the MINRES method
at each Newton step in Figure 6.2. It can be seen that the relative residual decrease
rapidly as we expected, which indicates that our preconditioners are effective.

Finally, we investigate the robustness of the block preconditioners with respect
to the parameters \alpha and \beta . We fix the mesh \scrT 3 and vary the parameters. The results
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2076 X.-C. TAI, R. WINTHER, X. ZHANG, AND W. ZHENG

Fig. 6.1. Convergence histories of the Picard method and the Newton method (Example 6.1).

Table 6.5
Number of MINRES iterations with the block preconditioners \scrB h(\bfitr ) and \widetilde \scrB h(\bfitr ) at each Newton

step (Example 6.1).

mesh
Bh(r) Bh(r)

1 2 3 4 5 1 2 3 4 5
T1 15 18 22 24 25 17 23 26 31 33
T2 13 18 22 24 25 17 22 26 31 31
T3 13 17 20 23 25 18 22 26 30 31
T4 13 17 19 22 25 17 22 26 29 31

Fig. 6.2. Convergence histories of the preconditioned MINRES method at each Newton step
with \scrB h(\bfitr ) (left) and \widetilde \scrB h(\bfitr ) (right).

for the Newton method with the exact and inexact preconditioners are shown in
Tables 6.6--6.7. We can see that the proposed preconditioners are very robust with
respect to the parameters and that the use of the inexact preconditioner has nearly
no impact on the required iterations for MINRES.

Example 6.2. In this example, we consider a nonsmooth problem. Let \Omega = (0,1)2,
and denote its center by x\Omega := (0.5,0.5). Write Br(x\Omega ) =

\bigl\{ 
x\in \BbbR 2 : | | x - x\Omega | | l2 < r

\bigr\} 
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PRECONDITIONED NEWTON FOR TV AND MS PROBLEMS 2077

Table 6.6
Iteration counts for the Newton method with the block preconditioner \scrB h(\bfitr ) (Example 6.1).

α

β

NNewton(NMINRES) 1e5 1e3 1 1e-3 1e-5
1 7(8) 7(10) 5(20) 2(41) 1(21)

1e-3 14(10) 13(13) 8(31) 2(28) 2(28)
1e-5 13(9) 13(10) 10(30) 2(22) 3(29)

Table 6.7
Iteration counts for the Newton method with the block preconditioner \widetilde \scrB h(\bfitr ) (Example 6.1).

α

β

NNewton(NMINRES) 1e5 1e3 1 1e-3 1e-5
1 7(12) 7(13) 5(25) 2(41) 1(21)

1e-3 14(36) 13(33) 8(34) 2(29) 2(28)
1e-5 13(23) 13(24) 10(34) 2(24) 3(30)

Table 6.8
Errors and convergence rates for uh (Example 6.2).

h ||u− uh|| Order ||u− Ihu|| Order
6.25e-02 1.12395e-01 — 1.17827e-01 —
3.13e-02 7.94646e-02 0.50 8.35176e-02 0.50
1.56e-02 6.10573e-02 0.38 6.33701e-02 0.40
7.81e-03 4.48697e-02 0.44 4.17839e-02 0.60

Table 6.9
Iteration counts for the Newton method with the block preconditioners \scrB h(\bfitr ) and \widetilde \scrB h(\bfitr )

(Example 6.2).

mesh
Bh(r) Bh(r)

NNewton(NMINRES) NNewton(NMINRES)
T1 21(35) 21(35)
T2 23(32) 23(32)
T3 40(31) 34(31)
T4 21(29) 24(31)

with r = 1/3; the function f is chosen as a characteristic function f := \chi Br(x\Omega ). Let
Ih be the standard nodal interpolation operator to Uh; the initial guess u0

h is taken
as u0

h := Ihf , and
\bigl( 
p0h,\bfitlambda 

0
h

\bigr) 
is computed by the equations (3.1).

First, we aim to investigate the convergence rates. From [39], if \alpha = 0.02, the
exact solution to the model (1.2) is given by

u=

\Biggl\{ 
1 - 2\alpha 

r = 0.94 x\in Br(x\Omega ),
2\pi r\alpha 
1 - \pi r2 \approx 0.03 x\in \Omega \setminus Br(x\Omega ).

We perform numerical tests for the primal-dual finite element discretization to (2.2)
with \beta = 1e - 5. The errors and convergence rates for u are displayed in Table 6.8. Note
that the exact solution u\in L\infty (\Omega ); thus, the convergence rates are not as perfect as the
ones in Example 6.1. Even so, the numerical results are in accord with the theoretical
results in Proposition 10.9 of [4] for the standard finite element discretization to (1.4).
The error estimate of primal-dual finite element discretization is left for further work;
we also refer the reader to [14, 15, 16, 28, 45] for some discussions on this direction.

In Table 6.9, we present the iteration numbers of the Newton method on various
meshes. As predicted from the analysis, the numbers of MINRES iterations are stable
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2078 X.-C. TAI, R. WINTHER, X. ZHANG, AND W. ZHENG

when we vary the mesh size h. Besides, the iteration numbers of the MINRES method
with \widetilde \scrB h(\bfitr ) are almost the same as those with \scrB h(\bfitr ). This is expected, and the
difference is by no means significant. One can see the phenomenon that the number of
Newton iterations with \scrB h(\bfitr ) is less than that with \widetilde \scrB h(\bfitr ) in \scrT 3, but it is the other way
around in \scrT 4. The reason we think so is that some Newton directions computed with
\scrB h(\bfitr ) may not be as good as the ones by \widetilde \scrB h(\bfitr ) in \scrT 3 for such a nonsmooth problem.
Overall, we can conclude that our preconditioners are effective and robust with respect
to the mesh size h. Figure 6.3 plots the iteration numbers of MINRES at each Newton
step. Again, we observe that the iteration numbers of MINRES are around a constant
value for different Newton iterations. This confirms the robustness of the proposed
preconditioners with respect to the iterative step. Specifically, Figure 6.4 shows the
damping parameter with respect to the iterative step on mesh \scrT 4. We find that the

Fig. 6.3. Number of MINRES iterations with the block preconditioners \scrB h(\bfitr ) (left) and \widetilde \scrB h(\bfitr )
(right) at each Newton step (Example 6.2).

Fig. 6.4. Damping parameter at each Newton iteration with \scrB h(\bfitr ) and \widetilde \scrB h(\bfitr ) on mesh \scrT 4.
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PRECONDITIONED NEWTON FOR TV AND MS PROBLEMS 2079

damping parameter \theta is very small at some iterative steps. The damping strategy is
crucial to guarantee the global convergence of the Newton method for this example.
It may diverge if we do not use this damping strategy.

As in the previous example, we vary the parameters \alpha and \beta to study the robust-
ness of the preconditioners. Tables 6.10--6.11 show the results for the Newton method
with the exact and inexact preconditioners on mesh \scrT 3. Again, we see that the pre-
conditioners show relative robustness with respect to the parameters. The inexact
preconditioner requires a slightly higher number of iterations to converge compared
to the exact one, as we saw in the previous example.

For comparison, we present the number of iterations required by Picard method
for different \alpha and \beta on mesh \scrT 3 in Tables 6.12--6.13. Compared with the results of
Newton method, we can see that the Newton iteration converges rapidly than the
Picard iteration for the considered parameters. For the case of \alpha = 1e - 2, \beta = 1e - 3,
Figure 6.5 plots the convergence histories of Picard method and Newton method with
\scrB h(\bfitr ) and \widetilde \scrB h(\bfitr ). As we conclude, the Newton iteration behaves similarly to the
Picard iteration in the early stages but converges rapidly in the end stages.

Table 6.10
Iteration counts for the Newton method with the block preconditioner \scrB h(\bfitr ) (Example 6.2).

α

β

NNewton(NMINRES) 1e-1 5e-2 1e-2 5e-3
1 22(28) 8(35) 5(46) 4(49)

1e-1 31(26) 6(31) 10(43) 9(45)
1e-2 27(21) 7(28) 9(40) 12(41)
1e-3 10(18) 8(25) 15(39) 18(37)

Table 6.11
Iteration counts for the Newton method with the block preconditioner \widetilde \scrB h(\bfitr ) (Example 6.2).

α

β

NNewton(NMINRES) 1e-1 5e-2 1e-2 5e-3
1 22(33) 8(42) 5(46) 4(49)

1e-1 31(30) 6(35) 10(44) 9(45)
1e-2 37(25) 7(30) 9(42) 12(41)
1e-3 10(22) 8(27) 18(39) 18(37)

Table 6.12
Iteration counts for the Picard method with the block preconditioner \scrB h(\bfitr ) (Example 6.2).

α

β

NPicard(NMINRES) 1e-1 5e-2 1e-2 5e-3
1 20(27) 26(31) 13(44) 9(50)

1e-1 39(22) 37(27) 18(37) 12(42)
1e-2 68(19) 52(24) 23(31) 16(35)
1e-3 90(18) 71(22) 29(29) 20(32)

Table 6.13
Iteration counts for the Picard method with the block preconditioner \widetilde \scrB h(\bfitr ) (Example 6.2).

α

β

NPicard(NMINRES) 1e-1 5e-2 1e-2 5e-3
1 20(33) 26(39) 13(45) 9(50)

1e-1 39(28) 37(34) 18(42) 12(45)
1e-2 68(24) 52(31) 23(38) 16(42)
1e-3 90(22) 71(29) 29(36) 20(39)
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Fig. 6.5. Convergence histories of the Picard method and the Newton method (Example 6.2).

Table 6.14
Iteration counts for the Picard method and the Newton method (Example 6.3).

p NPicard(NMINRES) NNewton(NMINRES)
1 66(29) 16(41)
2 67(30) 15(39)
∞ 86(29) 18(43)

Example 6.3. In this example, we consider a benchmark problem as in [3, 5, 41].
Let \Omega = (0,1)2, and denote its center by x\Omega . Given a triangulation \scrT h of \Omega , we
take the noise function \xi h \in Uh, whose coefficient vector is some random numbers
from a normal distribution with zero mean and standard deviation 1. Let Bp

r (x\Omega ) =\bigl\{ 
x\in \BbbR d : | x - x\Omega | lp < r

\bigr\} 
with r = 1/3, p \in [1,\infty ], and take f0 as the characteristic

function f0 := \chi Bp
r (x\Omega ). We then define

f = f0 + \delta \xi h with \delta = 0.1.

The parameters' values are \alpha = 5e-2 and \beta = 1e-3. The initial value for the Picard
method is set as in Example 6.2, while for the Newton method, the initial value is
produced by five iterations of the Picard method. Namely, when using the Newton
method, we first carry out five iterations of the Picard method and then switch to
using the Newton method.

To experimentally study the effectiveness of the proposed method, we run the
Picard method and the Newton method with p = 1,2,\infty on mesh \scrT 4. Figure 6.6
displays the input noise image data and the outputs of the iterative schemes. Notice
that the Newton method and the Picard method yield very similar results. However,
the Newton method converges much faster; see Table 6.14 and Figure 6.7. From the
outputs, we see that noise is removed effectively. The boundary is slightly smoothed,
especially the corners. The numerical results indeed show the inherited properties of
the ROF model.

The iteration numbers displayed in Table 6.14 for the Picard method and the
Newton method are produced with preconditioner \widetilde \scrB h(\bfitr ). The convergence histories
are further demonstrated in Figure 6.7. From the result, we see that the Newton
method converges much faster than the Picard method after a few damped Newton
updatings.
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p = 1 p = 2 p = ∞

Fig. 6.6. Noisy image, denoised image with the Picard method, and denoised image with the
Newton method (from top to bottom).

Fig. 6.7. Convergence histories of the Picard method and the Newton method for p = 1,2,\infty 
(from left to right) (Example 6.3).

7. Conclusions. In this paper, we propose a preconditioned Newton solver
for primal-dual finite element approximation of total variation minimization and
minimum-surface problems. We develop some block diagonal preconditioners for the
discrete problems at each Newton iteration, which are robust with respect to the
mesh size, the penalization parameter, the regularization parameter, and the iter-
ative step. We further prove that the resulting preconditioned MINRES converges
uniformly. The theoretical findings are demonstrated by numerical experiments. In
this work, we only use the proposed method to compute a benchmark example on
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image denoising. It is interesting to extend it to image inpainting and deblurring
problems, and we leave these as subjects of future endeavor.

Acknowledgment. We gratefully acknowledge the anonymous referees for their
pertinent and perceptive comments which have significantly improved our exposition.
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