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Abstract
Problem-solving skills, especially problem-solving skills in technology-rich envi-
ronments, are critical in today’s world as one of the 21st-century skills. Interna-
tional large-scale assessments, such as the OECD’s Programme for International
Student Assessment (PISA) and the Programme for the International Assess-
ment of Adult Competencies (PIAAC), have highlighted the importance of
problem-solving and included it as a core domain in their assessments. These
assessments have been widely administered on computers, producing performance
data and process data that record a detailed history of the human-computer
interaction. Examples of process data in our studies consist of action sequences
and timestamps for each action (e.g., mouse clicks and keystrokes).

This doctoral dissertation aims to deepen the understanding of problem-
solving through the analysis of process data that capture problem-solvers’
response processes. The thesis begins with an extended abstract. The extended
abstract offers a comprehensive overview of the project and delves into a literature
review, covering topics such as problem-solving theories, process data analysis,
and latent variable model estimation. Furthermore, this abstract presents the
theoretical foundations and methods used, summarizes the main findings, and
concludes with a discussion of the contributions and limitations of the project.

The second part of this dissertation consists of four articles. To improve
the understanding of problem-solving, we analyze process data from PISA 2012
and PIAAC 2012 with the aim of identifying solution patterns (Article I) and
validating cognitive processes involved in problem-solving (Article II) within the
framework of latent variable modeling. Both Articles I and II define different
types of process-based measures, and analyzing them together increases the
computational burden. To provide a fast estimation method for high-dimensional
latent variable models, we propose to use higher-order Laplace approximations in
Articles III and IV. In addition, our approach can simultaneously account for a
mixture of ordinal, continuous, and count variables, as well as the dependencies
of observed variables from the same item.

In summary, this dissertation highlights the potential of process data to
improve the understanding of how respondents solve problems and provides tools
to increase the estimation efficiency when modeling process data and performance
data jointly within the framework of generalized linear latent variable models.
Our findings can potentially benefit educational practice by helping students
reflect on their response processes, aiding teachers in tailoring their instructions
for different students and tasks, and providing materials for test developers to
validate task design and for training programs aiming at improving problem-
solving skills.
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Chapter 1

Introduction

1.1 Background

People have been continually faced with problems in both personal and
professional contexts. For example, students need to find the answers to exam
questions and workers need to complete professional tasks such as designing a
product for customers. That is, people are often required to engage in problem-
solving activities. As a result, problem-solving skills have been identified as one of
the 21st-century skills that are highly relevant to success in today’s world. Studies
have demonstrated that problem-solving skills or competency are highly relevant
to school achievement (Veerasamy et al., 2019), job performance (Autor et al.,
2003), and well-being (Aburezeq & Kasik, 2021). In the information age, problem-
solving skills in a digital world are becoming especially important. In today’s
world, information is widespread and rapidly exchanged, and digital technologies
greatly facilitate people’s lives. This demands people acquire knowledge about
how to handle specific digital tools.

As technology has evolved, the assessment of problem-solving has experienced
a shift from self-report questionnaires to interactive, digital assessments. Tradi-
tional assessments of problem-solving have applied, for example, questionnaires
such as the Problem-Solving Style Inventory including 24 items on six dimensions
(Cassidy & Long, 1996), analytic problem-solving tests including a description
of problems and multiple-choice or open-ended questions (OECD, 2003), and
think-aloud protocols to measure the problem-solving processes (Wolcott &
Lobczowski, 2021). The development of technology has accelerated computer-
based assessments that display tasks on computer screens and allow respondents
to interact with the computer (Greiff et al., 2013). Computer-based problems
provide a digital environment for respondents to interact with the stimulus,
such as clicking on buttons with a mouse and typing text on a keyboard. All
the operations performed by individuals on the computer can be recorded in
log files along with timestamps. In effect, log files can depict the history of
human-computer interactions and allow researchers and educators to "read" re-
spondents’ problem-solving processes (i.e., how respondents approach a problem
step by step), thus playing an increasingly important role in measuring people’s
problem-solving skills. However, it is challenging to analyze log files due to their
complex structure and the integration of information from action sequences and
response times.

This Ph.D. project focuses on large-scale, computer-based assessments of
problem-solving competency and makes use of the information recorded by
computers, namely, log files. By mining the information embedded in log files,
this project aims to better understand how respondents solve problems and to
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1. Introduction

make methodological contributions to joint models of information from different
aspects of log files (e.g., response times, actions) and performance data.

1.2 Overarching aim

The overall goal of the project is to gain a deeper understanding of problem-
solving through the analysis of process data. The overarching aim encompasses
two main elements: understanding problem-solving and using process data.
Therefore, the project adopts two different perspectives. First, from a substantive
perspective, it seeks to understand problem-solving in terms of the cognitive
processes and solution strategies involved in problem-solving. Second, from a
methodological perspective, the project focuses on overcoming the challenges
of analyzing process data. This includes developing and refining methods for
structuring process data, extracting valuable features, and inferring the latent
constructs underlying these extracted features. Sound and appropriate methods
lay the foundation for reliable findings related to content understanding.

The relationships between the two perspectives and the articles in this
dissertation are illustrated in Figure 1.1. The substantive perspective revolves
around enhancing our understanding of how individuals solve problems by mining
information from log files. Specifically, we aim to identify test-takers’ solution
patterns for a given task (Article I) and to infer cognitive processes based on
features extracted from log files across multiple tasks (Article II).

On the other hand, the methodological perspective aims to overcome the
challenges associated with the analysis of process data. When synthesizing
various features such as correctness, response times, and action sequences, it
often proves challenging to incorporate them into a single model. The difficulties
arise for several reasons: a) certain variables violate specific model assumptions
(e.g., the discrete variables violate the normal distribution assumption), b) process
data exhibit complex dependencies, and c) the high dimensionality increases
the computational burden. To address these issues, Articles III and IV strive
to bridge this gap by applying computationally efficient algorithms to estimate
joint models of the features extracted from log files and performance data.

1.3 Overview of the Articles

This dissertation consists of four articles. An overview of these articles is
presented as follows.

Article I: Solution Patterns. Article I introduces an approach for identifying
solution patterns using detailed action sequences and response times. We borrow
techniques from social network analysis to visualize the process data and extract
valuable features from network graphs according to the problem-solving theory
(Mayer & Wittrock, 2006), cluster the problem-solvers based on the extracted
features using latent profile analysis (Gaussian Mixture Models), and illustrate
the proposed approach using a problem-solving task from the 2012 version of the
Programme for International Student Assessment (PISA). Our approach has the
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Overview of the Articles

Figure 1.1: The overarching aim of the dissertation.

potential to benefit educational practice. Specifically, students can review and
reflect on their individual problem-solving processes, teachers can adapt their
instructions for students with different solution patterns, and test developers
can validate their task design by comparing the solution patterns with their
expected ones.

Article II: Validating process indicators. Article II focuses on two important
cognitive processes involved in problem-solving: planning and non-targeted
exploration. Planning refers to mental simulations of future activities, and
non-targeted exploration refers to exploratory behaviors that seek information
that is not necessary to solve the problem. We examine the internal construct
validity of the process indicators for planning (based on response times) and non-
targeted exploration (based on actions) using seven problem-solving tasks from
the 2012 version of the Programme for the International Assessment of Adult
Competencies (PIAAC). In addition, we estimate the overall and task-specific
relationships between planning, non-targeted exploration, and problem-solving
competency. Confirmatory factor analysis is applied to analyze the categorized
process indicators. Our findings provide evidence for the validity of the process
indicators and offer insights into the functions of planning and non-targeted
exploration in dynamic, information problems.

Article III: GLLVMs for Categorical Data. Article III develops a computa-
tionally efficient estimation method for generalized linear latent variable models
(GLLVMs) for categorical data. The proposed estimation method applies a
second-order Laplace approximation to the marginal likelihood estimation, which
can greatly increase the estimation efficiency compared to quadrature-based
methods and recover model parameters better than a first-order Laplace ap-
proximation, according to the results of our simulation study. This approach
can deal with high-dimensional models, complex model structures including
cross-loadings, and multiple groups.

Article IV: GLLVMs for Mixed Data. Article IV proposes a computationally
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1. Introduction

efficient estimation method to jointly model ordinal data, continuous data, and
count data within the framework of GLLVMs. We apply first- and second-order
Laplace approximations to efficiently approximate the integrals of the marginal
likelihood function and investigate their performance through simulation studies.
The proposed approach can be applied to the joint analysis of performance data
(ordinal responses) and process data (response times and the number of actions)
from computer-based assessments and other measurement tools resulting in a
combination of different data types.

It can be seen that Articles I and II shed light on the problem-solving
processes and answer the question of how problem-solvers solve problems, but
the scope of the view has been broadened: a) from analyzing a single task (Article
I) to generalizing across multiple tasks (Article II), and b) from describing the
observed behavioral patterns (Article I) to inferring the unobserved cognitive
processes (Article II). Articles I and II both extract process indicators from log
files, which capture the essential information about problem-solving processes.
These indicators describe respondents’ interactions with the computer from
different aspects, but it is difficult to analyze them simultaneously and efficiently
in a single model due to high dimensionality and different data types. Articles III
and IV then aim to overcome these challenges by using Laplace approximations.
Specifically, Article III focuses on categorical data and provides a basic procedure
for applying higher-order Laplace approximations to the estimation of GLLVMs.
Article IV then applies the procedure described in Article III and extends the
type of indicators to a mixture of ordinal, count, and continuous variables.

1.4 Outline of the dissertation

The dissertation is divided into two parts: an extended abstract and four
articles. The extended abstract aims to give an overview of the dissertation,
provide theoretical and methodological reflections on the articles, and discuss
the contributions and limitations of the work.

The extended abstract consists of six chapters and is organized as follows.
Chapter 1 (i.e., the current chapter) provides a general overview of the research
topics, the overarching aims of the dissertation, and a brief summary of the
articles. Chapter 2 reviews the relevant conceptual and empirical literature on
problem-solving, process data analysis, and latent variable model estimation.
Specifically, I briefly summarize the literature on problem-solving theories from
a broad perspective, including the definition of problems and problem-solving,
research on cognitive processes and problem-solving strategies, and the assessment
of problem-solving competency. Similarly, the definition, challenges, and analysis
methods of process data are reviewed. Since the articles in the dissertation all
use latent variable models, I also present the existing approaches for estimating
latent variable models. Chapter 3 explains the theoretical foundations for the
empirical studies in Articles I and II, including the problem-solving theory that
we directly employ in the articles and the rationale for using process data to
help infer unobserved mental processes. It also describes how Articles I and II
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Outline of the dissertation

are developed from the theoretical foundations. Chapter 4 outlines the methods
used in the dissertation. Specifically, it describes the data sources, the measures
that we define from the process data, and the modeling of the measures. Some
ethical considerations are also presented. Chapter 5 summarizes the articles.
Chapter 6 discusses the theoretical, practical, and methodological contributions
of the dissertation in addition to the limitations.

5





Chapter 2

Literature Review

In this chapter, I introduce and summarize literature related to the dissertation
in terms of research on problem-solving, process data analysis, and latent variable
models.

2.1 Research on problem-solving

2.1.1 Definition of problems

The word "problem" is derived from a Greek word meaning obstacle (Jonassen,
2010). The obstacle lies between the current state (what people know) and a
desired state (what people want to achieve). This defines the first attribute of
problems. Another attribute refers to the social, cultural, or intellectual worth
embedded in achieving the goal (Jonassen, 2000). That is, the problem should
be worth solving for the problem-solvers. Problems can be, for example, how
to get good grades on school exams, how to plan a holiday trip, and how to
increase work efficiency.

2.1.2 Nature of problems

Problems vary in structuredness, dynamicity, domain specificity, routine, context,
and complexity (Jonassen, 2010). Below, I briefly describe the nature of a problem
from these aspects and give examples of problems that fall into each category.

Structuredness describes the clarity of a problem (Arlin, 1989). A well-
structured problem presents all the needed information to problem-solvers
including a well-defined initial state, the rules of operators, and a known desired
state (Wood, 1983). For example, jigsaw puzzles are well-structured problems.
An ill-structured problem, on the other hand, lacks one or more elements of
the needed information. For example, the problem of designing a house lacks
information about the desired state, and the operator rules are unclear.

Dynamics refers to how problems are displayed in the system. Problems
can be displayed in a static system or in a dynamic system. In static problems,
all information that is necessary to solve the problem is present at the outset
and will not change over time (Jonassen, 2000). In contrast, the information is
gradually revealed or changes over time in a dynamic problem (Stadler, Niepel,
et al., 2019). The problem situation of dynamic problems can be changed in
various ways, such as through the interventions of problem-solvers and the
eigendynamics of the system itself. An eigendynamic change is the automatic
increasing accrual of interest on a bank account. Dynamics is a key feature of
complex problem-solving (Stadler, Niepel, et al., 2019).
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2. Literature Review

Domain specificity indicates if the problem requires domain-related knowledge.
Some problems rely on specific strategies within a domain, such as physics and
biology, and are called domain-specific problems. The assignments in a specific
textbook are usually domain-specific problems. The other type is domain-general
problems that require a cross-curricular skill in and of itself (Greiff et al., 2014).
For example, making a trip plan within a limited budget is a domain-general
problem, which needs travelers to have basic financial management knowledge,
information searching skills, and communication skills.

Routine and non-routine problems are distinguished by whether the problem
solver has developed a ready-made solution procedure (Mayer, 1998). That is,
whether the problem is routine or not depends on the problem solver’s familiarity
with the specific problem. For instance, a calculus problem for graduates majoring
in mathematics is routine, but it is non-routine for elementary students. If we
consider the definition of a problem (Jonassen, 2000), the solution to a routine
problem is not vague; therefore, a routine problem is more like a task than a
problem. If one intends to solve a non-routine problem, the individual would
need to invent a novel way of approaching the problem. Therefore, non-routine
problems are also called creative problems (Mayer, 1999).

The context of a problem refers to the situatedness described in the problem
(Rehm et al., 2003). Namely, the situation in which the problem occurs. This
can include everyday problems, such as buying a drink from a vending machine,
or workplace problems, such as engineers trying to figure out why a factory
machine is malfunctioning.

It is worth noting that these characteristics of problems are all more or less
on a continuum rather than an absolute binary classification. For example,
a problem’s structuredness indicates the extent to which the problem is well
clarified, and a problem can contain both domain-specific and domain-general
components. For example, solving math problems requires domain-specific skills,
such as knowledge of algebra and geometry, and domain-general skills, such as
breaking a problem into subproblems and reflecting on the solution.

2.1.3 Problem-solving theories

In everyday life, at school, and at work, different types of problems always arise,
requiring people to develop strategies to solve them. The cognitive process of
transferring a given state into a goal state when the solution is opaque is called
problem-solving (Mayer & Wittrock, 2006).

Historically, the research related to problem-solving in education and
psychology is primarily rooted in three basic theoretical approaches (Mayer,
1999, 2019): associationism (Mandler & Mandler, 1964), Gestalt psychology
(Wertheimer & Wertheimer, 1959), and information processing theory (Simon &
Newell, 1971).

The associationism approach emphasizes the associations between the ele-
ments of the cognitive representations, and the associations can be strengthened
or weakened by positive or negative reinforcement (Thorndike, 1911). From
this point of view, problem-solving is essentially to apply trial-and-error until
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accidental success (Mayer, 2019), and the operations that lead to successful
solutions are reinforced. For example, to solve a word puzzle, such as solving
the anagram problem of converting "rdow" to "word", the associationists will
continually attempt to change the order of the given anagram until reaching a
known common word. In the associationism approach, problem-solving does not
involve creative thinking activities.

Different from the associationism approach, the Gestalt psychology approach
values reproductive thinking and gaining insight into the problem (Wertheimer
& Wertheimer, 1959). Reproductive thinking involves seeking a familiar problem
that is similar to the current problem and transferring the solution to the present
situation. Another key concept, insight, refers to a deep understanding of
a problem and often comes along with the Aha! experience - a sudden and
obvious revelation (Danek et al., 2016). Gestalt psychologists typically focus
on ill-structured problems that require respondents to creatively restructure
their cognitive representations of the problem. An example problem is to use six
equal-length sticks to construct four equilateral triangles (Mayer, 1999). Insight
into this problem can be gained when a respondent suddenly realizes that the
problem can be solved by constructing a pyramid in a three-dimensional space.

An extensive analysis of problem-solving begins with cognitive psychology
from an information-processing approach (Simon & Newell, 1971; Wood, 1983).
The information-process approach assumes that we can use a machine (e.g.,
computer) to simulate the cognitive processes of humans (Simon, 1979). The
information-processing theory assumes that information is processed serially,
namely one process at a time, and that the input and output of the processes
are stored in short-term memory with a limited number of symbols (Simon &
Newell, 1971). However, it is also possible to retrieve information from long-term
memory. Examples of information-processing models are the Logic Theorist
(Newell & Simon, 1956) and the General Problem Solver (Newell et al., 1959)
programs. In these programs, the objects and operators are well-defined and the
key to a program is to find the sequence of operators transforming the initial
state into the goal state. The task of a problem-solver is then to discover and
understand the information of the problem environment. To do so, problem-
solvers need to represent the problem environment in their mind as a space
(called problem space) of various possible states of the problem (Simon & Newell,
1971). There are many nodes in a problem space, each representing a particular
state of knowledge - that is, what the problem-solver understands about the
problem at a specific moment (Simon & Newell, 1971). Problem-solvers then
search for a solution throughout the problem space until they reach a knowledge
state that covers the problem solution. Therefore, diving into the structure
of problem spaces is crucial according to the information-processing approach.
Further development of the problem space is to distinguish a rule-space and an
instant-space (Simon & Lea, 1974). A rule-space refers to possible rules of the
problem, and an instant-space consists of possible states of the problem.

Based on the fundamental theories, researchers have comprehensively
explored problem-solving from diverse perspectives. Studies from an educational
standpoint have focused on testing instructional strategies to enhance students’
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problem-solving skills (Gallagher et al., 1992). Suryanto et al. (2021) investigated
the impact of social skills on problem-solving, from a perspective of social
interaction. On the neuroscience front, researchers have examined the brain
activities during problem-solving (Unterrainer et al., 2003). Additionally, from
an artificial intelligence perspective, attempts have been made to simulate the
human problem-solving process (Ouyang et al., 2023). This project aims to
gain insight into the cognitive processes when solving a problem by using the
available information in process data. In the following subsection, I summarize
relevant problem-solving models that describe the cognitive processes involved
in problem-solving.

2.1.4 Cognitive processes in problem-solving

Researchers have proposed several models to describe cognitive problem-solving
processes. Below, I introduce problem-solving models from the approaches
of Gestalt psychology, information-processing, complex problem-solving, and
mathematical problem-solving. Based on the existing theories, some international
large-scale assessments adapt their theoretical framework of cognitive processes
by combining certain processes and adjusting the focus of the cognitive processes
according to their purpose. This subsection also presents the theoretical
frameworks of the problem-solving domain in PISA and PIAAC.

2.1.4.1 Gestalt psychology perspective

Gestalt psychologists emphasize the importance of analytic thinking in problem-
solving and outline four stages of the problem-solving process (Weisberg, 2015): a)
finding a solution through transfer by comparing prior knowledge and experience
in other similar problems and applying the same solution to the current problem,
b) finding a solution through heuristic methods such as trial-and-error and
breaking down the problem into more accessible subproblems (Mayer, 2019), c)
finding a solution through restructuring by incorporating new information found
in the problem and re-analysis the problem, and d) finding a solution through
insight by creatively reconsidering a novel type of solutions. The cognitive
processes proposed by Gestalt psychologists are more relevant to solving non-
routine or creative problems. The Gestalt model is criticized because it is based
on an introspective method and lacks reliability and validity (Schoenfeld, 2016).

2.1.4.2 Information-processing perspective

The general problem-solving process in information-processing models specifies a)
the understanding process and b) the searching process (Simon & Newell, 1971).
The understanding process refers to the process in which respondents attempt
to understand a problem statement before trying to solve it (Simon, 1979). The
searching process refers to selectively searching through the problem space. The
information-processing theory assumes that respondents search sequentially and
gradually add successive accretions to the problem space (Simon & Newell, 1971).

10



Research on problem-solving

Experts outperform novices in recognizing the problem space and require less
time to complete the searching process (Jonassen, 2010).

In addition to the two cognitive processes (Simon & Newell, 1971), the
information-processing approach also developed other models of problem-solving
processes. For example, the IDEAL (identify, define, explore, act, look) Problem
Solver model (Bransford & Stein, 1984) proposed five problem-solving processes
including identifying the potential problems, defining the problems, exploring
potential strategies, acting on the strategies, and looking back to evaluate the
effects of the actions.

The information-processing models are examined using information-
processing programs such as the General Problem Solver and the Logic Theorist
programs, which differ from the introspective method in the Gestalt psychology
approach. However, these information-processing models have weaknesses
in three aspects. First, information-processing models are less suitable for
ill-structured problems because the goal state of the problem and the potential
operators are not entirely clear in ill-structured problems. Second, information-
processing models tend to propose a uniform procedure of problem-solving, but
problems vary in domain, content, and form, which is not accounted for in the
general models. Last, the models lack specific and explicit suggestions on how
to solve problems (Jonassen, 2000).

2.1.4.3 Complex problem-solving perspective

The information-processing models are more suitable for well-structured, static,
and academic problems, whereas the emphasis on problem-solving has shifted to
more ill-structured, dynamic, and everyday problems since the 1970s (Wenke
et al., 2005). Some theoretical concepts of the information-processing approach,
such as the problem space and internal representations of problems, have been
expanded and applied to complex problem-solving since the twenty-first century
(Fischer et al., 2011). In complex problem-solving, problem-solvers need to
systematically interact with the problem to acquire information about the
problem, because certain pieces of information required to address the problem
may be missing or incomplete (Funke, 2001).

The cognitive processes of complex problem-solving generally contain two
phases: knowledge acquisition and knowledge application (Funke, 2001; Greiff
et al., 2013). Knowledge acquisition, also known as system identification,
refers to finding out the details of the problem environment, such as the
functions of available buttons on the screen (similar to an instant-space in
information-processing) and the connections between the variables (called
structural knowledge) in the system that is inferred from the instant-space
(Funke, 2001). Namely, this process is exploratory and aims to gain knowledge
about the problem environment as well as the relationships among the elements
in the environment or system.

After figuring out how the machine works, knowledge application, also known
as system control, then describes applying the acquired knowledge to solving
the current problem (Funke, 2001). The knowledge application process requires
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respondents to utilize internal representations of the problem and monitor the
problem-solving progress (Fischer et al., 2011). More specifically, in this process,
problem-solvers often need to predict the dynamics of the problem system
according to prior knowledge and the knowledge acquired in the previous process.
In addition, problem-solvers need to track the progress and consider the feedback
from the problem system. Sometimes, problem-solvers may reach an impasse
(Ohlsson, 1992) or perceive that the progress rate is too slow (MacGregor et
al., 2001), and they may change or restructure their mental representation of
the problem. That is, it is possible for problem-solvers to switch back to the
knowledge acquisition process.

2.1.4.4 Mathematical problem-solving perspective

In addition to general problem-solving models and complex problem-solving
models, researchers have also delved into domain-specific problem-solving. For
example, Polya (2004) particularly focused on mathematical problems and
proposed the following four phases to solve mathematical problems. Begin by
understanding the problem and its nature. In this step, respondents identify the
initial state of the problem by asking, "What elements are present?" and the
goal state by asking, "What do I want to achieve?" They then synthesize the
information gathered into a mental representation and devise a strategy. This
may involve applying a solution from a previously known problem or creating a
new insight (Mayer, 1999). Next, they carry out the formulated plan. Finally,
respondents reflect on and evaluate the rationale for the solution. In addition to
the theory of cognitive processes in mathematical problem-solving, Polya (2004)
also offers specific strategies for solving problems, some of which are introduced
in the next subsection. These strategies have been implemented in mathematics
education.

2.1.4.5 PISA and PIAAC framework

Integrating the existing theories (e.g., Greiff et al., 2014; Mayer & Wittrock, 2006;
Polya, 2004; Simon & Newell, 1971; Wüstenberg et al., 2012), PISA and PIAAC
have adapted their theoretical frameworks of cognitive processes in problem-
solving according to their focus, and these frameworks also guide the task design
aiming at measuring problem-solving competency. Their frameworks synthesize
theories and empirical studies in problem-solving research, especially research on
complex problem-solving (Fischer et al., 2011), and combine specific cognitive
processes described in previous literature to serve as a measurement framework
(OECD, 2019). Problem-solving in PISA and PIAAC has coherent associations
and is similar in their theoretical frameworks of the problem-solving domain.
Here, I introduce the theoretical frameworks of problem-solving provided by
PISA (2003, 2012, and 2015) and PIAAC (2012, 2022).

PISA 2003. The items from the PISA 2003 problem-solving domain are based
on personal life, work and leisure, and community and society contexts and involve
a wide range of disciplines (OECD, 2003). The assessment includes relatively
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well-structured problems delivered in the form of pencil-and-paper format, which
are static problems. Six problem-solving processes were proposed in the PISA
2003 problem-solving domain: understanding the problem, characterizing the
problem, representing the problem, solving the problem, reflecting on the solution,
and communicating the problem solution (OECD, 2003). It is worth noting
that the processes may occur in different orders and may not occur for certain
problems (OECD, 2003).

PISA 2012. Creative problem-solving is a domain in PISA 2012. The
problems in PISA 2012 are based on a personal or social context and are
mainly domain-general problems. The assessment includes both static (30%)
and dynamic (70%) problems, as well as well-structured and ill-structured
problems. The theoretical framework for creative problem-solving comprises four
cognitive processes. First, explore and understand the problem by observing and
interacting with the problem situation, searching for information, and identifying
obstacles. Second, represent and formulate the problem by creating graphical
or verbal representations, developing hypotheses, and organizing information.
Third, plan and execute the solution by setting goals, devising a strategy,
and implementing the plan. Finally, monitor and reflect on the solution by
reviewing intermediate and final results, taking remedial actions, and evaluating
assumptions and alternatives (OECD, 2014b). These cognitive processes are not
sequential but rather parallel information processes that occur throughout the
problem-solving activities of the participants (Lesh & Judith, 2007), which differ
from the serial process assumed in the information-processing theory (Simon &
Newell, 1971).

PISA 2015. PISA 2015 assesses collaborative problem-solving by introducing
a computer agent that interacts with participants. All items are dynamic
and domain-general, and both well-structured and ill-structured problems are
considered. The PISA 2015 framework for collaborative problem-solving consists
of four cognitive problem-solving processes in individual problem-solving as in
PISA 2012 (OECD, 2014b) and three collaborative problem-solving aspects,
including establishing and maintaining shared understanding, taking appropriate
actions, and establishing and maintaining team organization (OECD, 2017).

PIAAC 2012. The PIAAC 2012 assessment includes the Problem Solving in
Technology-Rich Environments (PS-TRE) domain. PS-TRE uses information
problems that demand information and communication technology (ICT) skills
(OECD, 2019). All items are computer-based and dynamic, involving multiple
software applications or pages. The assessment comprises seven ill-structured
and seven well-structured problems. The PS-TRE framework includes four
cognitive processes: a) setting goals and monitoring process, b) planning and
self-organising, c) acquiring and evaluating information, and d) using information.
Compared to previous assessment frameworks, PIAAC 2012 emphasizes using
information.

PIAAC 2022. The second PIAAC cycle shifts the focus from the use
of software applications to the adaptability in concurrently solving multiple
problems (Greiff et al., 2017). The expert group recommends interactive,
dynamic, domain-general, and information-rich problems. The theoretical
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framework of PIAAC 2022 consists of three major stages within the participants’
internal world: problem definition, solution search, and solution application.
Every stage entails various cognitive processes (e.g., searching for information
and retrieving relevant background information) and meta-cognitive processes
(e.g., setting goals and monitoring progress) (Greiff et al., 2017). As participants
are expected to dynamically and flexibly adapt their strategies, the cognitive
processes involved in adaptive problem-solving are more complicated than those
of PIAAC 2012 (OECD, 2021).

As described above, researchers have proposed many theoretical frameworks
to describe problem-solving processes. The cognitive processes described by
these frameworks share great similarities but use different terminology. In this
dissertation, I primarily used the problem-solving theory proposed by Mayer
and Wittrock (2006) that describes a general framework of cognitive processes
and is widely used in the research on problem-solving now. I will introduce it in
more detail in Section 3.1.

2.1.5 Problem-solving strategies

In addition to problem-solving processes, researchers have also explored strategies
that guide problem-solving. In this subsection, I introduce several widely-used
strategies discussed in the research.

No matter which problem-solving theory is adopted, representing a problem
is the first step to take. Unlike constructing a general problem space, schema
(Gick, 1986) is a knowledge-based representation that originated from Gestalt
psychology. A schema is defined as a cluster of knowledge associated with a
particular type of problem, including knowledge of the common goals, typical
procedures for solving this type of problem, and some constraints (Gick &
Holyoak, 1983).

Schemas exist in the problem-solvers’ memory system, including domain-
specific schemas such as mathematical theorems, and domain-general schemas
such as breaking a problem into subproblems that are easier to manage. When
a schema is activated during the representing process, a problem-solver can rely
on the schema to find the solution without extensive searching activities. For
example, to solve a math problem of finding the third side of a right triangle
given the lengths of two sides, a schema that includes the Pythagorean Theorem
can be activated to guide students through the problem. However, schemas
are not always available if a problem-solver does not recognize the particular
problem type or has no prior knowledge or experience relevant to the problem
type.

The information-processing approach proposes two principal problem-solving
strategies: the mean-ends analysis and planning (Newell & Simon, 1956). The
means-ends analysis involves a) searching for the difference between the current
and desired status, b) identifying and applying operators that can eliminate
the differences, and c) if the difference proves to be particularly challenging to
eliminate, applying operators, even if they introduce new but more manageable
differences (Newell et al., 1959). The means-ends strategy works effectively
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in well-structured problems but might be infeasible in ill-structured problems.
The second strategy - planning - involves a) abstracting the initial status and
operators by omitting some details, b) trying to solve the abstracted subproblems,
and c) conceiving a plan for the original problem based on the successful solution
to the abstracted subproblems and executing it (Newell et al., 1959). Note that
the planning method may result in no, single, or several plans that may succeed
or fail to solve the problem.

Some other heuristic strategies have also been discussed. For example,
Polya (2004) introduced heuristics aiding problem-solving in mathematics, such
as inference by analogy and discovering general laws from specific examples
by induction. Another widely-used heuristic strategy is the generate-and-test
strategy (Klahr, 2000), also known as trial-and-error, which means simply
applying available operators to the current state and testing whether the problem
has been solved. If the desired state has not been achieved, the problem-solver
continues applying alternative operators and testing again until reaching the goal.
The hill climbing strategy is also heuristic and uses the metaphor of climbing
a hill (Simon & Newell, 1971). Suppose you are climbing a hill with different
paths, and your goal is to reach the summit. In that case, a helpful strategy
would be to always choose the path that leads upwards. In other words, always
select the operator that gives the greatest increment.

The varying-one-thing-at-a-time (VOTAT) strategy (Tschirgi, 1980) is often
considered an optimal strategy in complex problem-solving tests (Gnaldi et al.,
2020; Lotz et al., 2022; Stadler, Fischer, et al., 2019). The VOTAT strategy
refers to changing one input variable at a time while holding other input variables
constant in order to examine the relationship between the input variable and the
outcome. Note that the dynamics of complex problems can reflect autonomous
changes in the system over time, namely eigendynamics. The varying-nothing-at-
a-time (NOTAT) strategy is optimal for detecting such eigendynamic effects by
observing the autonomous changes without any intervention (Lotz et al., 2022).

As a complex cognitive activity, problem-solving involves a variety of
cognitive processes and may vary across problem-solvers and types of problems.
For example, prior domain knowledge such as schema and experience with
similar problems, as well as motivation, can mediate problem-solving (Jonassen,
2010). The characteristics of problems, such as well-structured versus ill-defined
problems or static versus dynamic problems, also play an important role in
explaining problem-solving. How problem-solvers approach a specific problem
and to what extent we can generalize our conclusions about the problem-solving
process to other tasks motivated the first two studies of the dissertation.

2.1.6 Assessment of problem-solving

Since problem-solving plays a vital role in our life and people differ in problem-
solving, it is necessary to develop useful tools to measure individual problem-
solving competency. Researchers have attempted to measure problem-solving
since the last century. For example, several domain-specific problem-based
exams were developed in the 1980s and 1990s. One such assessment is the
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OverAll Test (Segers, 1997) in business education, which measures students’
ability to retrieve relevant knowledge and understand conditional knowledge,
such as identifying when and where to access useful tools to solve the problem.
Similarly, the WHAT-IF Test (Swaak & de Jong, 1996) presents conditions,
actions, and predictions to measure conceptual knowledge in science education.
These tests are designed for problem-based learning in a particular curriculum,
namely domain-specific problems.

Since the late 1990s, researchers have tended to view problem-solving as
an interdisciplinary competency in realistic settings (Mayer & Wittrock, 1996).
In line with this thinking, some large-scale assessment projects develop tasks
to measure problem-solving competency in an everyday context, such as the
Programme for International Student Assessment (PISA) and the Programme for
International Assessment of Adult Competencies (PIAAC) of the Organisation
for Economic Co-operation and Development (OECD). This section introduces
problem-solving assessments in PISA and PIAAC.

2.1.6.1 Problem-solving in PISA

PISA included problem-solving assessments for 650 15-year-old German students
in 2000 (Klieme, 2000). The assessment of problem-solving was extended to 41
counties using paper-and-pencil instruments in PISA 2003 where problem-solving
is defined as "an individual’s capacity to use cognitive processes to confront
and resolve real, cross-disciplinary situations where the solution path is not
immediately obvious and where the literature domains or curricular areas that
might be applicable are not within a single domain of mathematics, science or
reading" (p.156; OECD, 2003).

In 2012, PISA began to deliver the items via computers, making it possible
for test-takers to interact with computers. Specifically, problem-solving was a
focus area in PISA 2012, denoted as creative problem-solving, which is defined
as "an individual’s capacity to engage in cognitive processing to understand
and resolve problem situations where a method of solution is not immediately
obvious" (p.30; OECD, 2014b). An example problem of PISA 2012 is presented
in Figure 2.1. In this task, the participants were asked to find the quickest route
between two locations on the map by clicking on the paths. The computer logs
the complete human-computer interaction, providing detailed records of the
participants’ response processes. Such information is used in Article I to identify
the solution patterns of the respondents.

Instead of individual problem-solving, PISA 2015 focused on collaborative
problem-solving where students can collaborate with a computer agent.
Collaborative problem-solving competency is defined as "the capacity of an
individual to effectively engage in a process whereby two or more agents attempt
to solve a problem by sharing the understanding and effort required to come to
a solution and pooling their knowledge, skills and efforts to reach that solution"
(OECD, 2017). In PISA 2015, both individual and collaborative problem-solving
are assessed.
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Figure 2.1: An example problem in the PISA 2012 problem-solving domain. The
highlighted route indicates the correct solution.

2.1.6.2 Problem-solving in PIAAC

Similar to PISA, PIAAC has also considered problem-solving in the first
cycle in 2012 and the second cycle in 2022 and 2023. PIAAC 2012 assesses
adults’ ability to solve information problems in the domain of problem solving
in technology-rich environments (PS-TRE). PS-TRE is defined as "using
digital technology, communication tools and networks to acquire and evaluate
information, communicate with others and perform practical tasks" (p. 47;
OECD, 2012). Similar to PISA 2012, the tasks in the PS-TRE domain were also
administered via computers, and the associated log files are publicly available.
The PIAAC problem-solving tasks consist of one or more interfaces (Web, email,
word processor, and spreadsheet) or pages. An example task of PIAAC 2012
is presented in Figure 2.2. In this task, five Web links are provided, and the
respondents are asked to bookmark links that fulfill specific requirements.

After ten years, the second cycle of PIAAC continues the interest in problem-
solving, but the focus has shifted from problem-solving in technology-rich
environments to adaptive problem-solving (Greiff et al., 2017). Adaptive problem-
solving is defined as "a form of problem solving that requires a series of problem
reformulations or continual re-evaluation of problem formulations in light of
changing conditions" (p.153; Mayer, 2014). An example of adaptive problem-
solving is making a trip plan for several family members with different preferences
and some constraints like budget (Greiff et al., 2017). The second cycle of PIAAC
is still in progress, and the data are not yet available (date until June 2023).
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Figure 2.2: An example problem in the PIAAC 2012 PS-TRE domain.

2.2 Process data analysis

2.2.1 Definition of process data

Many recent assessments have been implemented on computers, which are called
computer-based assessments (CBA). The item stimulus is displayed on computer
screens, and test-takers can interact with the computer by clicking on buttons
with a mouse and typing text with a keyboard. Computers can easily generate
files that capture the history of everything that test-takers did during the course
of the assessment along with timestamps of the operations.

The terminology of such files is mixed in the literature. Some parts of the
literature use the terms "click-stream data", "log-file data", or "discrete action
protocols" and these terms refer to "log files" in this dissertation. A broad
definition of log files is software-generated files that contain a historical record
of all operations, processes, events, and system messages with timestamps. An
example of log files from a website may include event logs that record users’
activities and system logs that document system changes and system errors. In
this study, we focus on event logs recording the human-computer interaction
and associated timestamps. The format of log files is typically delimited strings
of text files, such as Extensible Markup Language (XML) and JavaScript Object
Notion (JSON) files.

Text-based files are not directly usable for data analysis, thus requiring
converting the text-based strings into a data frame with each row representing a
single, time-stamped interaction. The transformed data frame is called process
data in this dissertation. It is defined as a series of recorded events with
timestamps, which provide detailed information about the process of the users’
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Figure 2.3: The definitions of log files, process data, and process indicators in
this dissertation.

operations.
From process data, researchers can further extract useful and more abstract

indicators or statistics to summarize the response process using a theory-driven
or data-driven approach (see Section 2.2.4.1 for more details). These extracted
variables are called process indicators. Process indicators can be extracted or
created based on process data at an individual item level or aggregated level. The
definitions of log files, process data, and process indicators are briefly illustrated
in Figure 2.3.

2.2.2 Challenges of analyzing process data

Process data contain much more information beyond the final task performance
(i.e., task scores). However, it is often challenging to analyze and make use of
process data. The special characteristics of process data can explain the difficulty,
and six challenges of analyzing process data are outlined below (see Figure 2.4).

First, process data typically have a large volume and include a great variety
of variables. To be specific, test-takers can actively interact with the computer,
producing hundreds of actions that correspond to many categorical variables
in single items. Furthermore, process data often contain the timestamps for
each operation. In an example from Article I, a respondent performed over 300
operations within a single task. Namely, compared to a single score indicating
task performance, process data have a larger volume and contain more details.

A challenge associated with voluminous process data is high dimensionality.
High dimensionality can be attributed to multiple resources of log files (e.g.,
time-related information, operation-related information, and multiple items) and
multi-modal data (e.g., eye-tracking data and cognitive response data). For
example, Article II considers planning, non-targeted exploration, problem-solving
competency, and the residual factors for six items. This yields nine dimensions
in the analysis. High dimensionality increases the computational demands.

The third challenge of process data is the varied lengths across test-takers,
as problem-solving strategies are mediated by individual differences (Jonassen,
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Figure 2.4: The challenges of process data analysis.

2000). Test-takers experience distinct cognitive processes, which are reflected in
their interactions with the computer and result in non-fixed lengths of action
sequences. For example, the lengths of process data for individual respondents
range from 2 (entering and exiting the item directly) to 373 (actively interacting
with the computer) on a PISA 2012 item. In contrast, a standardized test often
consists of a fixed number of items, and test-takers normally have the same
length of response data. Conventional statistical methods, such as factor analysis
and item response theory (IRT) models, are less suitable to directly apply to
process data.

Fourth, process data describe the ordered sequence of operations, resulting in
a complex dependency structure. Specifically, the current operation is related to
both the previous and next operations. Moreover, when extracting or creating
multiple indicators from the same task, the dependency of the indicators should
be taken into consideration as well.

Another characteristic of process data is that they typically contain a great
amount of noise (Tang, Wang, He, et al., 2020). For example, test-takers might
randomly conduct some actions instead of following a certain strategy. Pre-
processing process data and improving data quality are critical for drawing
reliable conclusions. A standardized procedure for pre-processing process data,
including data cleaning, data re-coding, and missing data handling, has not been
established in the literature.

Last, the interpretation and validation of the results of process data analysis
can be challenging. For example, the results from a data-driven approach such as
machine learning techniques are often difficult to interpret because the analysis
is guided by the data rather than by theory. In addition, the extent to which
the conclusion can be generalized to other tasks or samples is not well examined,
as most studies only focus on a single task and sample.

Despite the above-mentioned challenges of analyzing process data, it is
meaningful to overcome the challenges and utilize process data for various
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purposes. In the next subsection, I describe how process data have been used in
empirical studies.

2.2.3 Empirical studies of using process data

Process data can provide researchers with valuable information that improves
the understanding of respondents’ cognitive processes (OECD, 2014b), and the
analysis of process data can benefit educational and psychological measurement.
Many studies have used process data for various purposes. In general, there are
four primary purposes for using process data in the literature: validating test
design, identifying response patterns, improving the estimation of the construct
of interest, and predicting final responses.

Since process data depict the response process, validating test scores of the
assessments is an original usage of process data (Shute et al., 2016; Stoeffler
et al., 2020), which can contribute to test development (von Davier et al.,
2019). For example, Chung et al. (2002) defined a set of process measures based
on behavioral process data and verbal recordings using think-aloud protocols
and found that the process measures were significantly correlated with task
success. These process measures, such as cause-effect inferences and evaluation
of information, are relevant to the dimensions that are expected to be critical to
task performance, thus providing evidence of validity for the task.

The second purpose is to reveal response patterns. Specifically, researchers
have employed process data to a) distinguish non-effort or disengaged behavior
from solution behavior (Y. Liu et al., 2020; Sahin & Colvin, 2020; Ulitzsch
et al., 2020), b) identify common problem-solving strategies (e.g., VOTAT and
trial-and-error) and profile students (Gao et al., 2022; Gnaldi et al., 2020; Greiff
et al., 2018; Stadler, Fischer, et al., 2019), c) compare participants’ response
process with a pre-defined optimal strategy to examine the extent to which they
exhibit a similar action sequence as the expert-defined sequence (He et al., 2021),
and d) further examine the relationships between the solution patterns identified
and problem-solving competency and task performance (S. Li et al., 2022; Lotz
et al., 2022; Vörös et al., 2021) or other personal characteristics, including
demographic variables and employment-related variables such as income and
work experience (Liao et al., 2019).

Third, researchers have attempted to incorporate process data information
into the estimation of the construct of interest. For example, researchers have
proposed models to use process data to aid the estimation of problem-solving
competency (Chen, 2020; Y. Han et al., 2022; Xiao & Liu, 2023; Zhan & Qiao,
2022). Besides problem-solving competency, researchers have also attempted to
infer latent states behind observed actions during the course of problem-solving
(Xiao et al., 2021) and to measure other latent traits such as speed (De Boeck &
Scalise, 2019).

Fourth, process data have been used in predictive models to predict task
performance. That is, researchers extract or create measures/indicators based
on process data and use the process indicators as predictors for the success or
failure of the task. For example, a study of Chen et al. (2019) predicted the final
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task score and duration of test-takers based on their event history in process
data. Similarly, Z. Han et al. (2019) extracted process indicators and used these
indicators to predict the final outcome.

As described in this subsection, process data in problem-solving tasks
have gained increasing attention in the field of psychological and educational
measurement and have been used for various purposes. However, although
process data contains both action sequences and timestamps, the majority of
previous studies have centered on either action sequences (e.g., Greiff et al., 2018;
He & von Davier, 2016; H. Liu et al., 2018; Ulitzsch et al., 2020) or the time
spent on task (e.g., Bolsinova & Tijmstra, 2018; Y. Liu et al., 2020). Recently,
more researchers have started employing information from both action sequences
and response times to make greater use of log-file information (Chen, 2020; Chen
et al., 2019; De Boeck & Scalise, 2019; Ulitzsch et al., 2021; Xu et al., 2020).

This project integrates information from both actions and response times
into a single model. The model is used to identify solution patterns (Article I)
and reflect on cognitive processes (Article II) from a substantive perspective.
Additionally, we develop statistical methods to deal with the challenges of
computational burdens when modeling process data and performance data
simultaneously (Articles III and IV) from a methodological perspective. As
mentioned above, many relevant studies have only focused on a single task (e.g.,
He & von Davier, 2016; Ulitzsch et al., 2021; Xu et al., 2020; Zhan & Qiao, 2022),
and the generalizability of the conclusions is not well examined. This dissertation
includes both single-task analyses (Article I) and multiple-task analyses (Articles
II to IV).

2.2.4 Methods of process data analysis

The methods of process data analysis can be roughly categorized into two
procedures: a) extraction of valuable information from process data, and b)
application of statistical models using either observed variables only or both
observed and latent variables. In the first step, researchers aim to compress
a large amount of information contained in process data into a few process
indicators, identify the sequential pattern of process data, or visualize process
data. The process indicators mirror similar essential information in the original
massive data. With the extracted variables, researchers can apply different
statistical models for various purposes. In general, statistical modeling of process
data focuses on investigating the relationships between the observed indicators,
like whether a certain strategy can predict task success, or inferring latent
variables from the observed indicators, like whether process data can increase
the accuracy of latent ability estimation. In this section, I will briefly summarize
the two procedures with examples.

2.2.4.1 Extracting information from process data

1. Behavioral/time-related process indicators
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Multiple approaches have been applied to extract information from process
data. Various behavioral/time-related process indicators, also called features,
have been defined in the literature to reflect the response process. These process
indicators are defined either through a confirmatory approach or an exploratory
approach.

From a confirmatory perspective, feature extraction is based on a certain
theory or theoretical framework. An example is from Yuan et al. (2019), where a
set of behavioral indices were defined according to the Assessment and Teaching
of 21st Century Skills project. Such indicators require extensive effort from
experts and are highly task-dependent. Another example is the VOTAT strategy
(Tschirgi, 1980) that is described in Section 2.1.5, which has been extensively
used in empirical studies (Lotz et al., 2017, 2022; Stadler, Fischer, et al., 2019).
This strategy can be identified by inspecting the action sequence and checking if
a respondent changes only one variable at a time while keeping all other variables
constant to examine the effect of the changed variable. Time-related process
measures, such as the first move-latency (i.e., the time interval before conducting
the first operation) and the longest duration (i.e., the longest time interval
between two successive operations), are proposed to capture the information
from response times to reflect the planning process (Albert & Steinberg, 2011;
Eichmann et al., 2019). Similarly, some general process indicators at the task
level, such as time-on-task (i.e., the total time spent on a task) and the number
of actions, are also commonly used in the literature (De Boeck & Scalise, 2019;
Gao et al., 2022).

In comparison, feature extraction from an exploratory perspective relies
mainly on data rather than theories. Natural language processing (NLP) and
dimension-reduction techniques have been adopted in this approach. In NLP,
process data are regarded as text-based strings and are analogous to language. He
and von Davier (2016) proposed to employ n-grams from NLP to decompose the
complete action sequence into smaller units, such as single operations (unigrams)
and operation vectors with two (bigrams) or three (trigrams) consecutive
operations. Using the action sequence "start, action1, action2, end" as an
illustration: unigrams for this sequence are "start", "action1", "action2", and
"end"; bigrams are "start, action1", "action1, action2", and "action2, end"; and
trigrams are "start, action1, action2" and "action1, action2, end". These grams
can be used for subsequent analyses. Furthermore, some dimension-reduction
techniques have been used to extract a few latent features from high-dimensional
process data. For example, Tang, Wang, Liu, et al. (2020) used a sequence-to-
sequence autoencoder technique to transform high-dimensional process data into
low-dimensional, numerical latent feature vectors. Similarly, Tang, Wang, He,
et al. (2020) applied a multidimensional scaling framework to construct latent
features based on dissimilarities between pairwise action sequences. However,
the drawback of this approach is that it is rather challenging to interpret the
extracted features because no theory is involved in guiding the feature extraction
process. In psychology and education, the interpretation and explanation of the
results are critical.

2. Sequence-based methods
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Process data including action sequences and response time are sequential
data. Some studies are particularly interested in the sequential relationships
and apply sequence mining techniques to extract features to reflect sequential
patterns. For example, a sequence mining technique, edit distance, has been
used to analyze process data. Edit distance quantifies the distance between
two strings by counting the minimum number of operations needed to transfer
a given string to the other (Ristad & Yianilos, 1998). These operations can
include insertions, deletions, and substitutions. Based on the allowed operations,
edit distance can be categorized into, for example, the Levenshtein distance that
allows deletion, insertion, and substitution and the longest common subsequence
that allows insertion and deletion (Ristad & Yianilos, 1998). If two strings are
similar, only a few operations are needed for the transformation. Namely, edit
distance measures the dissimilarity of two strings. Viewing action sequences as
strings, edit distance techniques can measure how dissimilar two action sequences
are. This technique has been used to quantify the dissimilarity between two
action sequences of pairwise test-takers (Tang, Wang, He, et al., 2020) and
between an observed action sequence and an ideal action sequence defined by
experts (Hao et al., 2015; He et al., 2021). Similarly, the similarities between the
time sequences can be computed through the edit distance technique (Ulitzsch
et al., 2021). In this way, the action sequence and the time sequence can be
converted into distance-based dissimilarity indicators.

Similar to sequence mining, educational process mining methods have also
contributed to analyzing sequential data from educational settings. Educational
process mining is a branch of data mining, which aims at building a comprehensive
process model to reproduce log events (process discovery models), checking
behaviors that are deviated from the process model (conformance checking
models), and improving the process model (enhancement models) (Bogarín et al.,
2018). Among these models in educational process mining, process discovery
models are most widely used in practice. Process discovery techniques, such
as the fuzzy miner algorithms, construct a model to represent the most likely
control flow given the observed activities and produce a graph where vertices
represent activities, edges represent the transition between the activities, and
edges are weighted by the transition probability (Bogarín et al., 2018). The
application of educational process mining centers on online learning activities,
but the application to computer-based assessments is limited (Tóth et al., 2017).

Furthermore, the full-path sequence analysis, which is originally used for DNA
comparisons, has been applied to analyze process data (Eichmann, Greiff, et al.,
2020). In their study, actions were first coded as initial/repeated non-targeted
exploration or goal-directed behavior and resetting, and the process data were
converted to a sequence of these five categories of actions. The authors then
used a full-path sequence analysis and string-matching algorithms on the coded
action sequences to cluster participants exhibiting similar behavioral patterns
(Eichmann, Greiff, et al., 2020).

3. Visualization methods
Another approach has a focus on visualizing process data. Network graphs

from social network analysis have been used to visualize the response process

24



Process data analysis

based on process data (Vista et al., 2016; Vista et al., 2017; Zhu et al., 2016).
A network graph depicts the relationships between vertices. For example, if a
class has 30 students and they are asked to nominate their friends in the class,
then the network graph includes 30 vertices that represent the students and a
number of edges that represent the presence of friendship between two students.
The network graph provides a straightforward visualization of friendship within
the class. Next, researchers can define network statistics, such as the density of
the network that describes how closely the students are connected and centrality
that describes how popular a student is within the class.

Analogous to friendship networks, S. Li et al. (2022), Vista et al. (2016), Vista
et al. (2017) and Zhu et al. (2016) viewed individual actions in process data as
vertices and the transition between actions as directed edges that point from the
previous action to the current action. In addition to a graphical representation
of networks, researchers can also define statistics based on networks, called
network features, for further inference. For example, two studies measured the
importance of each vertex and edge based on centrality and frequencies (Vista
et al., 2016; Vista et al., 2017). They then identified the prominent action
subsequences consisting of important vertices and edges. In another paper by
Zhu et al. (2016), the authors defined other network features. To be specific, they
weighted the edges with their frequency and computed the density of the network,
the importance of the vertex, dyadic local patterns that describe the mutual
relationships between two vertices, and sixteen triadic local patterns that describe
the relationships among three vertices. Similarly, a recent study employed social
network analysis to analyze collaborative problem-solving between two students
(S. Li et al., 2022). In their study, they regarded both respondents’ operational
actions (e.g., mouse clicks) and their chat actions (e.g., ChatA/ChatB indicating
that student A/B sends texts in the chat box) as vertices, the transitions of two
actions as edges, and the frequency of the transitions as weight. They computed
network features using a similar approach as Zhu et al. (2016). These studies
showcased the potential of applying social network analysis to visualize response
processes and extract network features to reflect the essential information of
process data. However, a common limitation is that the time information was
ignored in these studies.

Another method is a graph-based data clustering technique (Ulitzsch et al.,
2021). The authors first computed the similarities between the action sequences
and the time sequences for pairwise participants using edit distance techniques.
They then plotted the similarity graph with vertices representing the participants
and edges representing their similarity. Finally, the authors performed edge
deletion to transform the similarity graph into a simplified graph with a few
clusters (Ulitzsch et al., 2021). Respondents within the same cluster were
interpreted to exhibit similar behavioral patterns.

2.2.4.2 Statistical modeling of process data

1. Statistical models using only observed variables
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After extracting or creating process indicators or measures based on process
data, researchers can apply statistical models for statistical inference. For this
purpose, traditional methods such as regression models and Analysis of Variance
(ANOVA) have been used. In regression analysis, process indicators can act as
predictors or outcome variables. For example, Liao et al. (2019) used background
variables to predict response time, whereas Ren et al. (2019) used behavioral
process indicators to predict problem-solving competency and task scores. To
compare the features of different groups, the researchers utilized ANOVA to test
whether the extracted network features differed across pair compositions (S. Li
et al., 2022) and whether the process indicators were different across the clusters
identified (Gao et al., 2022). Similarly, with the defined n-grams, researchers
applied a weighting method based on frequencies and used a chi-square selection
model to detect which grams differentiated successful and unsuccessful test-takers
(He & von Davier, 2016; Liao et al., 2019).

In addition, machine learning techniques have been applied for the purposes
of regression, classification, and clustering. For example, Z. Han et al. (2019)
viewed n-grams as mini-behavioral features and applied random forest algorithms
to select the grams that had the highest predictive capability for task success. In
a similar vein, Qiao and Jiao (2018) selected features based on their predictive
power using four supervised learning techniques including classification and
regression trees, gradient boosting, and support vector machine. K-means
techniques were applied to group participants based on their process indicators
(Gao et al., 2022; Qiao & Jiao, 2018).

2. Statistical models using both observed and latent variables
Another approach to statistical modeling is to infer latent variables based

on observed process indicators. Existing studies have attempted to incorporate
process data into the estimation of problem-solving competency along a
continuum or latent classes, infer latent states underlying the problem-solving
processes, or jointly model process data and performance data to examine the
relationships between problem-solving competency and other latent constructs
such as speed.

To incorporate process information into the estimation of problem-solving
competency, some traditional psychometric models have been adopted. For
example, the modified multilevel mixture IRT model was used to provide ability
estimates at a process level and a person level and identify latent classes of the
respondents (H. Liu et al., 2018). From a diagnostic perspective, diagnostic
classification analysis was applied to process data to estimate problem-solving
competency and classify students based on the strategies they used in the task
(Zhan & Qiao, 2022). Researchers also applied latent class analysis to profile the
respondents based on their process data (Gnaldi et al., 2020; Greiff et al., 2018).

In addition, stochastic process models have been used in process data analysis.
A dynamic Bayesian network is a type of stochastic process model, which is a
probabilistic graphical model used to model complex systems that evolve over
time (Reichenberg, 2018). It assumes that a) the observed activity (Xt) at a
certain time t is stochastically dependent on latent variables (θt), and b) the
latent variables (θt) are stochastically dependent on the latent variables at the

26



Estimation of latent variable models

previous time point (θt−1). The latent variables (θt) reflect the mastery level
of knowledge at each time point (Levy, 2019). Y. Han et al. (2022) combined
dynamic Bayesian networks and IRT models to develop a sequential response
model to estimate the continuous latent ability and the transitions of the observed
problem states, namely the response sequences. More specifically, it described
the probability of choosing the subsequent action given the individual’s latent
ability, the current action, and the tendency and correctness of the transition
between successive actions. Similarly, Chen (2020) considered log events as a
marked point process and proposed a probabilistic measurement model called the
continuous-time dynamic choice model. The model described the probability of
choosing the subsequent action given the entire event history and the respondent’s
ability. In addition, the model described the time associated with the next action
given the event history and the respondent’s speed. A further extension of the
model is to incorporate an action-level easiness parameter into the action model
(Xiao & Liu, 2023). As a special case of dynamic Bayesian networks, Hidden
Markov Models (HMMs) have also been utilized to investigate the strategies
employed by respondents (e.g. Arieli-Attali et al., 2019; Xiao et al., 2021). The
authors considered an observed response to be determined by the current latent
state of problem-solving and the previous action. Note that in HMMs, the latent
state was assumed to have a discrete and finite state space.

In recent years, joint models of process data and performance data have
also emerged. An important development in this area is the joint model of
responses and response times. This model gained traction after van der Linden
(2007) proposed a hierarchical framework. Since then, modeling responses and
response times simultaneously has remained a vibrant research topic (Bolsinova
& Tijmstra, 2018; Y. Liu et al., 2020; Zhan et al., 2023). Subsequent research
has extended the concept to other facets of process data. For example, De Boeck
and Scalise (2019) used task scores, time-on-task, and the number of actions as
indicators for the latent variables performance factor, time factor, and action
factor using confirmatory factor analysis (CFA; Jöreskog, 1969). Similarly,
Lotz et al. (2022) extracted a process measure to determine the use of the
VOTAT strategy for individual tasks. By aggregating the process indicators
through factor analysis, they sought to examine whether the latent VOTAT
variable moderated the relationships between intelligence and problem-solving
competency.

2.3 Estimation of latent variable models

As introduced in the previous subsection, statistical modeling of process data
can focus on observed indicators only or both observed indicators and latent
constructs. Since many concepts in the project, such as problem-solving
competency and cognitive processes, are not directly observable, we adopt
the latter approach. Namely, in the dissertation, we model performance data
and/or process data within the framework of latent variable modeling. However,
the joint modeling of process data and performance data becomes complicated
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in terms of its estimation, and we aim to provide a computationally efficient
estimation method in Articles III and IV. Accordingly, this section introduces
latent variable models and focuses on the estimation of latent variable models
for different types of observed indicators.

2.3.1 Introduction to latent variable models

Latent variables refer to hypothetical variables that cannot be directly observed.
Factors and constructs are equivalent terms to latent variables in social sciences
such as psychology and education. Latent variables, such as intelligence and
personality, are primarily conceptual and difficult to measure directly. To infer
the latent variable of interest, a common practice is to develop a battery of items
grounded in a specific theoretical framework. It is assumed that the responses
to these items can be primarily attributed to the latent variable. For example,
the PIAAC 2012 PS-TRE domain was developed to measure problem-solving
competency in technology-rich environments, and respondents’ answers to the
items were collected and regarded as observed indicators, also called manifest
variables, for problem-solving competency.

In the analysis of the observed indicators, researchers extract what is common
in the indicators. The latent variable that accounts for the common variability of
the observed indicators is interpreted as problem-solving competency afterward.
Similarly, other latent variables can be assumed to underlie the observed process
indicators, such as speed underlying time-on-task (De Boeck & Scalise, 2019; van
der Linden, 2007). In addition to the theoretical explanation of the response data,
the latent variable approach is attractive because it reduces the dimensionality
of multivariate data (Bartholomew et al., 2011). The purpose of dimension
reduction is to use fewer variables to capture the same essential information
embedded in the original variables. In this example, instead of focusing on
the individual score of each item in the PS-TRE domain, we can use only the
value of the latent variable to indicate the respondents’ level of problem-solving
competency.

After understanding the rationale for latent variables, the next step is to
model the relationship between the latent variables and the observed indicators.
Such models are called latent variable models. Based on the distributions
of the observed and latent variables, latent variable models can be classified
into different types. Let us classify random variables into two main categories:
metrical variables whose realization falls in the set of real numbers and categorical
variables whose value is one of a set of ordered or unordered categories. Based
on this, latent variable models can be classified as factor analysis (metrical
observed indicators and metrical latent variables), latent trait analysis/IRT
(categorical observed indicators and metrical latent variables), latent profile
analysis (metrical observed indicators and categorical latent variables), and latent
class analysis (categorical observed indicators and categorical latent variables)
(p.11; Bartholomew et al., 2011). An illustration is shown in Figure 2.5. We
employed latent profile analysis in Article I to cluster respondents’ solution
patterns. In Articles II to IV, we assumed continuous latent variables with
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Figure 2.5: Classification of latent variable models.

different types of observed indicators and applied CFA with different types of
indicators. Below, I mainly introduce the basics and estimation of CFA for
different data types.

2.3.2 Estimation of confirmatory factor analysis

In statistical modeling, we collect observed data from an unknown population
that can be represented as a probability distribution, and our goal is then to
identify the most likely population (i.e., the most likely probability distribution)
that generated the observed data (Myung, 2003). A probability distribution
contains model parameters, and therefore, we aim to find the values of the model
parameters that best fit the observed data. This process is called parameter
estimation.

Using a mathematical representation, let us denote f(y|θ) as the probability
or probability density function of observing the collected data y, given a set of
model parameters θ. Then, we aim to find the values of θ that fit best with
the observed data. Three general approaches are used to estimate the model
parameters: least squares estimation (LSE), maximum likelihood estimation
(MLE), and Bayesian methods. LSE aims to minimize the distance between
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the sample variance matrix and the model-implied covariance matrix (p.59;
Bartholomew et al., 2011). Unlike LSE and MLE which regard the unknown
parameters as fixed quantities, the Bayesian approach considers the parameters
to be varied quantities that can be expressed with a probability distribution
(p.324; Casella & Berger, 2021). Bayesian methods specify prior distributions
of the parameters based on the belief of data analysts and update the prior
distributions by including information from the collected sample. The updated
priors are called the posterior distribution and Bayesian inference is based on
the converged posterior distribution.

In this dissertation, we adopt maximum likelihood estimation and will only
introduce MLE in the following sections. MLE has the advantage of sufficiency,
consistency, efficiency, and parameterization invariance (Myung, 2003). In this
approach, we need to write the likelihood function L(θ|y) = f(y|θ). It is a
function of the model parameters and indicates the likelihood of the model
parameters θ conditional on the particular observed data y. The exact formula
needs to be updated according to a particular model specification. The next step
is to maximize the (log) likelihood function such that the desired probability
distribution makes the observed data most likely. To do so, we can make use
of the partial differential function if the maximum likelihood estimates exist
and are unique and the log-likelihood function is differentiable. Namely, we set
∂logL(θ|y)

∂θ = 0, denoted as the likelihood equation. To ensure that a maximum
has been attained it is necessary to check that the shape of the log-likelihood
function is convex. This can be done by verifying that the second-order derivatives
are negative. However, it is often not possible to solve the equations analytically.
In such cases, numerical optimization algorithms such as the Newton-Raphson
or gradient descent algorithms are often used. These algorithms start at certain
initial parameter values at random or by guessing and then iteratively update the
estimates until fulfilling the stopping rules. Since y can have different variable
types, the distribution function f(y) and the likelihood function will need to
adjust to the variable types.

Factor analysis can be categorized as exploratory and confirmatory. In this
thesis, we focus exclusively on the confirmatory approach. The reason is that
we have assumptions about the relationships between the observed and latent
variables. CFA is particularly appropriate when researchers have hypotheses
about the structure of the latent variables, namely which items are indicative of
a particular factor. These hypotheses are often based on established theories or
empirical studies. In the following subsections, I discuss the estimation of CFA
with different types of indicators using a maximum likelihood estimator.

2.3.2.1 CFA with continuous data

Here I introduce CFA with continuous indicators. Let y denote an I-dimensional
vector of observed variables, b denote an I-dimensional vector of means or
intercepts, Λ denote an I×P matrix of factor loadings, z denote a P -dimensional
vector of latent variables, and e denote an I-dimensional vector of error terms.
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Factor analysis can be expressed by the following formula,

y = b + Λz + e, (2.1)

where z ∼ N (0, Φ) and e ∼ N (0, Ψ). Ψ is a diagonal matrix, implying that
the error items are independent of each other. This model suggests that the value
of the observed indicator is determined by the average effect of a given item, the
impact of the latent variables, and the uniqueness of the item. Note that the
observed indicators y are assumed to be multivariate normally distributed and
the dispersion matrix of y can then be expressed as:

Σ = ΛΦΛ′ + Ψ. (2.2)

Σ denotes the theoretical population covariance matrix based on Equation 2.1.
Λ, Φ, and Ψ are the model parameters that we aim to estimate. In a maximum
likelihood approach, we write the log-likelihood function,

l(θ|y) = log
∫ I∏

i=1
Pi(yi|z)ψ(z; µ,Φ)dz, (2.3)

where ψ(·) is the multivariate normal density function with mean µ and
covariance matrix Φ. It can be seen that Equation 2.3 integrates over the
latent variables. This process is known as marginalization and thus referred
to as marginal maximum likelihood (MML; Bock & Aitkin, 1981). After some
operations, the log-likelihood function can be organized as (Jöreskog, 1969):

l = constant− N

2 [log|Σ| + trace(SΣ−1)], (2.4)

where S =
∑N

i=1(yi − b)(yi − b)′/N , which directly summarizes the pairwise
covariances between all pairs of observed data in the sample. To seek the model
estimates that maximize the log-likelihood function, derivative functions are
then needed. The details of the derivatives are omitted here due to the page
limitations. Maximum likelihood estimations are widely implemented in software
such as Mplus (L. K. Muthén & Muthén, 2010) and the lavaan R package
(Rosseel, 2012).

2.3.2.2 CFA with ordinal data

When the responses are categorical data such as binary or ordinal data,
Equation 2.1 cannot be applied directly. The multivariate normal distribution is
severely violated if the observed data are discrete data with a few categories. As
a result, Equation 2.2 does not hold in this situation. Applying MLE directly
to factor analysis with ordinal data can result in biased factor loadings and
standard errors and inflated chi-square statistics (C.-H. Li, 2016). To handle
this situation, item factor analysis (IFA; Mislevy, 1986) or the latent trait model
is proposed. IFA can fall into both the Underlying Response Variable framework
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(URV; Jöreskog, 1994; B. Muthén, 1984) and the IRT framework (Samejima,
1969). Both approaches will be discussed here.

The URV approach assumes that there are continuous latent responses
denoted as y∗ underlying the observed categorical responses denoted as y. Note
that the latent responses y∗ are different from the latent constructs z. The
latent constructs z dominate the latent responses y∗. The latent responses are
associated with items. For example, y∗

if indicates the underlying responses of
individual f on item i. The latent responses connect to the observed data yif

with mi categories through

yif = c, if τic−1 < y∗
if < τic, (2.5)

where −∞ = τi0 < τi1 < · · · < τimi−1 < τimi = +∞ are the threshold
parameters of item i. The latent responses y∗ are often assumed to be standard
normal distributed (Jöreskog, 1994). Under the URV approach, the probability
of a response vector can be written as,

P (y1 = c1, y2 = c2, ..., yI = cI |θ) =
∫ τ1c1

τ1c1−1

· · ·
∫ τIcI

τIcI −1

ψ(y∗; 0,Σy∗)dy∗, (2.6)

where ψ(·) is a I -dimensional normal density function with zero means and
covariance matrix

Σy∗ = ΛΦΛ′ + Ψ. (2.7)

Equation 2.6 requires computing I -dimensional integrals, which is difficult to
obtain.

Under the URV framework, the parameters to be estimated are the thresholds,
factor loadings, and the polychoric correlations - the correlations between two
latent response variables for polytomous items. The estimation can be categorized
into four main approaches: three-stage estimation methods (Jöreskog, 1994; B.
Muthén, 1984), pairwise maximum likelihood (Katsikatsou et al., 2012), robust
maximum likelihood (Yang-Wallentin et al., 2010), and full information maximum
likelihood. In the three-stage estimation methods, thresholds are estimated at
the first stage based on the univariate marginal likelihoods lici =

∫ τici

τici−1
ψ(u)du,

where ψ(u) denotes a standard normal distribution. Second, the polychoric
correlations are estimated by maximizing the bivariate marginal likelihoods lici,jcj

where i > j given the estimated threshold parameters. Third, Equation 2.7 is
fitted by imputing the results from the second stage to obtain the structural
parameters like factor loadings using the generalized least square methods(B.
Muthén, 1984) or the weighted least squares method (Jöreskog, 1994). The
second approach, pairwise maximum likelihood, only considered each pair of
items at one time and then sum over the pairwise log-likelihoods (Katsikatsou
et al., 2012). The model estimates are obtained simultaneously when maximizing
the summed pairwise log-likelihoods. This method is relatively fast because it
only requires two-dimensional integrations. Third, robust maximum likelihood
methods have been proposed to deal with data when the multivariate normal
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distribution assumption does not hold. Robust maximum likelihood methods
correct the standard errors of the maximum likelihood estimator and the chi-
square test statistics to reduce the impact of non-normality (C.-H. Li, 2016).
The first three approaches only use part of the information from the observed
data, such as the polychoric correlations, and thus falling into the category of
limited-information estimation methods. In contrast, the fourth approach uses
a full information maximum likelihood (FIML) estimator. This method seeks
estimates that maximize Equation 2.7 by using the I -dimensional integral for all
the possible response patterns. Because of the complexity of high-dimensional
integrals, FIML is not feasible under the URV framework with more than five
items (Jöreskog & Moustaki, 2001).

Another framework to model IFA is the IRT framework (Lord, 1980).
IRT refers to a set of item response models that provide a probabilistic
representation of the relationship between the observed categorical indicators
and the latent trait through item characteristic curves describing the probability
of correctly answering an item across the continuum of the latent trait, or
item response category characteristic curves describing the probabilities for
polytomous responses. Similar to the URV framework, IRT models assume the
local independence of responses given the latent traits. It is worth noting that
we can define the same model using the URV or IRT approach. This can be
achieved by using a probit rather than a logit link function in IRT models. Both
approaches can use MML estimation. An important difference between the
approaches is that the estimation methods defined for the URV approach cannot
be directly utilized to estimate the logit model.

A commonly used IRT model for binary data is a two-parameter logistic
model:

P (yi = 1|z) = 1
1 + exp [−ai(z − bi)]

, (2.8)

where z is a latent trait being measured, ai and bi are the discrimination and
difficulty parameters of item i. The discrimination parameter indicates the power
of the item to distinguish lower and higher levels of respondents. The difficulty
parameters describe the level of the latent trait that has 50% probability of
endorsing item i. For polytomous data, the graded response model (Samejima,
1969) is often used:

P (yi = c|z) = 1
1 + exp [−ai(z − bic)] − 1

1 + exp [−ai(z − bic+1)] , (2.9)

where bic indicates the boundaries between category c and category c+ 1. Note
that the item parameter estimates of IFA under the URV framework and the
IRT framework can be approximately transformed (Wirth & Edwards, 2007).

The estimation methods under the IRT framework generally rely on the raw
data and make full use of the information in the data. Two main approaches are
proposed for the estimation of IRT models. One is the joint maximum likelihood
approach (JML; Wingersky, 1983). JML focuses on the log-likelihood function
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l(z; a, b) and seeks for the person and item parameters simultaneously that
maximize the log-likelihood function. JML works best when the sample size is
large (e.g., 1000 respondents) and the test is long (e.g., 60 items). If the data
only correspond to a small number of test-takers and items, the model parameter
estimates can be biased (Lord, 1986). JML has two main drawbacks. First,
JML is computationally demanding because it estimates all the parameters
at the same time. Second, JML has the issue of consistency, which means
that, for a fixed number of items, increasing the sample size cannot guarantee
better estimates. Instead of working on the joint likelihood function, MML
integrates out the latent variables from the original log-likelihood function and
then looks for item parameters that maximize the marginal likelihood function
l(a, b|z). The person parameter estimates are obtained subsequently given the
item parameter estimates. MML reduces the computational burden compared
to JML because the estimation of item parameters and person parameters are
separated. However, when the latent variable vector has a high dimension,
the integrals become too complicated and even infeasible. In practice, we
do not compute the integrals directly; instead, we use numerical integration
methods to approximate the high-dimensional integrals, such as quadrature-based
integration, Bayesian methods, and Laplace approximations. The numerical
integration methods will be introduced more in the Methods chapter.

2.3.2.3 CFA with continuous and ordinal data

In psychology and educational measurement, it is also common to have
a combination of continuous and discrete data. For example, background
questionnaires often include questions about age, weight, and height (i.e.,
continuous variables) as well as four-point or seven-point Likert-type scales
(i.e., ordinal data). Another example is that process data often consist of
(ordinal) responses and (continuous) response times. To estimate CFA models
with continuous and ordinal data, two frameworks can be applied: the URV
(B. Muthén, 1984) framework and generalized linear latent variable models
(GLLVMs; Bartholomew et al., 2011; Huber et al., 2004; Rabe-Hesketh et al.,
2004).

The URV framework has been introduced in Section 2.3.2.2. The latent
response variables y∗ are assumed underlying the observed variables y (B.
Muthén, 1984). For continuous data, the latent response variables can be
directly observed, namely y∗ = y. For ordinal observed variables, the latent
responses are linked to the ordinal indicators via the thresholds (see Equation 2.5).
The three-stage estimation method (Jöreskog, 1994; B. Muthén, 1984) can also
be applied to this situation. Compared to analyzing ordinal data only, the
three-stage estimation method involves not only polychoric correlations between
ordinal data, but also polyserial correlations (Olsson et al., 1982) between ordinal
data and continuous data and Pearson correlations between continuous data.
Bayesian methods are also used to model a mixture of continuous and discrete
data. For example, Bayesian methods have been used to jointly model responses
and response times (e.g., Y. Liu et al., 2020).
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Another framework is GLLVMs. As the name suggests, there are three
keywords to understand GLLVMs. First, generalized means that the outcome
variable can be generalized to bounded and/or non-continuous data, such as
binary and count data. Second, linear refers to a linear combination of predictors.
Third, latent variable models imply that latent variables are introduced to capture
the common variance of a set of observed variables. Hence, the distributions of
the observed variables are conditional on the latent variables. Instead of assuming
a latent response variable underlying the observed variable, GLLVMs connect
the linear combination including item parameters and the latent variables to the
observed variable via a link function such as an identify, logit, or probit function.
Since the latent variables are not observable, we need to integrate the latent
variables out of the likelihood function. That is, the MML estimation approach
will be used. As mentioned in the estimation within the IRT framework, the
MML estimator requires complicated integrals and numerical approximation
methods are required to approximate the MML. The details of the approximation
methods will be introduced in Section 4.3.3.2.
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Chapter 3

Theoretical foundations for the
empirical studies

This chapter discusses the theoretical foundations for the empirical studies
presented in Articles I and II. There are two basic theoretical foundations: a)
the problem-solving theory directly used in the dissertation, and b) the rationale
behind process data analysis.

3.1 Mayer and Wittrock’s problem-solving theory

Although there have emerged many problem-solving theories, the theory proposed
by Mayer and Wittrock (1996, 2006) is one of the most widely used theories
in problem-solving research so far. Their problem-solving theory also lays the
theoretical foundation for this dissertation. Their theory had a domain-specific
focus, but it has been extended to domain-general problem-solving as well in
the PISA and PIAAC assessments. The theory of Mayer and Wittrock (2006)
consists of four cognitive processes, including representing, planning/monitoring,
executing, and self-regulating.

Representing refers to the process of converting a problem into a mental
representation. This involves using, for example, symbols, equations, and graphs
to formulate the problem situation (OECD, 2014b). Relevant to information-
processing theory, the representing process involves the construction of a problem
space (Simon & Newell, 1971). To get a better understanding of the problem,
problem-solvers might need to interact with the problem environment by
conducting activity-based manipulations (Jonassen, 2000). Compared with
novices, experts perform better in recognizing the problem space (Jonassen,
2010).

Planning refers to devising a method to solve a problem such as decomposing
an overarching goal into several subgoals, and monitoring describes the process
of evaluating whether the plan is appropriate and effective. The key to planning
is to construct a future action sequence and organize activities to fulfill certain
outcomes through deliberate and thoughtful considerations (Mumford et al.,
2001). Monitoring involves reflections on the conceived plans and relates to the
skills of foreseeing potential issues of the plans.

Executing refers to the process of carrying out the plan, which can be
observed directly. In this process, problem-solvers engage in a series of actions or
operations, such as writing down a formula to solve a math problem and clicking
on the buttons on a screen to solve problems presented by computers. In fact,
log files recorded by computers directly reflect the executing process.
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Self-regulating involves the modification or maintenance of cognitive activities
moving toward the goal. For example, if a problem-solver applied a plan but
failed to solve the problem, then this individual may restart the task to adopt a
new solution or revise certain operations that seemed erroneous.

The framework proposed by Mayer and Wittrock (2006) is relatively general
and applicable to many types of problems. The broad acceptance of this
framework implies its significance in problem-solving research. This framework
is related to concepts such as the problem space from the information-processing
approach and shares great similarities with the theory of Polya (2004) from a
mathematical problem-solving perspective. Because various theories use different
terms to describe their problem-solving models, the PISA and PIAAC expert
groups summarized and organized the cognitive dimensions of problem-solving.
They developed their frameworks for the problem-solving domain by synthesizing
the existing theories, particularly those by Mayer and Wittrock (2006) and
Simon and Newell (1971). The details of the framework in PISA and PIAAC
are introduced in Section 2.1.4.5. On closer inspection, PISA 2012 (OECD,
2014b) stresses the representing process, specifically highlighting the process
of exploring and understanding the problem. In comparison, PIAAC 2012
(OECD, 2012) places a significant emphasis on "using information". This stems
from its use of information items, which rely heavily on the application of
information for problem-solving. Additionally, it is evident that the frameworks
are developed and modified according to their focus in each cycle. For example,
the collaborative problem-solving dimensions are added into the framework in
PISA 2015 compared to PISA 2012 (OECD, 2017). PIAAC also shifts from
PS-TRE in the first cycle to adaptive problem-solving in the second cycle (Greiff
et al., 2017). This dissertation intends to use a fundamental and comprehensive
framework of cognitive processes in problem-solving that shares the essential
components of cognitive processes with the theoretical frameworks of both PISA
and PIAAC.

3.2 Theoretical foundations for process data analysis

The rationale behind the use of process data constitutes another central
theoretical foundation for this dissertation. We aim to gain a deeper
understanding of problem-solving utilizing insights from process data. This
section presents why process data can shed light on problem-solving processes
and provide evidence of validity.

As defined by Mayer and Wittrock (2006), problem-solving refers to cognitive
processes when the solution is not obvious, which means that problem-solving
involves sequential steps (Zoanetti & Griffin, 2017). For example, an early stage
of problem-solving often involves understanding the problem and representing
the problem in mind (Mayer & Wittrock, 1996; OECD, 2012, 2014b; Polya,
2004). This means that respondents may need to spend more time reading the
instructions or navigating through different interfaces of the task. By reviewing
individual process data, it is possible to infer if a respondent rushed to interact
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with the problem environment (e.g., the time to the first action was too short to
read through the instructions) or a respondent spent an extended time reading
the instruction or making a plan before taking actions (e.g., the time to the first
action was quite long compared to the subsequent executing process). Namely,
process data can potentially serve as a window into the black box of the mental
processes of problem-solvers (Bunderson et al., 1989; Greiff et al., 2015). If we
can identify the strengths and weaknesses of test-takers in terms of different
stages of problem-solving, it is possible to provide a more fine-grained diagnosis
of problem-solving competency (Zoanetti & Griffin, 2017) or more personalized
and real-time feedback for different test-takers during the assessment to aid
problem-based learning.

In addition, process data describe the response process that provides evidence
of validity - the extent to which the interpretation of test scores can be supported
by evidence or theory (AERA, 2014). To be specific, response processes are a
source of evidence of validity in terms of the fit between the conceptual construct
(e.g., problem-solving competency) and the actual and detailed nature of the
performance (AERA, 2014). For example, the PISA 2012 Climate Control task
has a pre-defined optimal exploration strategy - VOTAT, and the task’s validity
can be assessed by examining if the use of the VOTAT strategy benefits task
performance. In line with this thinking, Greiff et al. (2015) analyzed process
data to evaluate the degree to which students actually applied VOTAT and its
relationships with task performance. That is, process data can help interpret test
scores and enrich the definition of the construct (AERA, 2014). Besides providing
construct-relevant interpretations, process data can also provide evidence that
test scores reflect something construct-irrelevant. For example, if a respondent
did not interact with the problem environment but skipped the task (indicated
by very few interactions with the computer) or gave a random answer quickly
(indicated by a short response time and lack of necessary actions), it seems more
suitable to interpret such behavior as disengagement rather than low problem-
solving competency. For test developers, it is particularly crucial to have a clear
definition of the construct being measured (e.g., problem-solving competency)
and expectations of respondents’ behavior. Comparing the actual behavior of
test-takers and the expected behavior can help test developers validate the task
design (Zoanetti & Griffin, 2017). In summary, understanding and making use
of process data can contribute to the validation of assessments, inference of
unobserved mental processes, and the design of personalized tools to improve
problem-solving competencies.

3.3 Relationships between theoretical foundations and
articles

Figure 3.1 displays the relationships between the theoretical foundations for
the substantive perspective of the dissertation and the first two articles. Both
articles are rooted in the problem-solving theory of Mayer and Wittrock (2006)
and the rationale for using process data.
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Figure 3.1: The theoretical framework of Articles I and II.

3.3.1 From theoretical foundations to Article I

In Article I, we aim to visualize and understand the solution patterns of the
respondents. To achieve this goal, we employ social network analysis (Newman,
2018) because it can reflect the actual activities performed by the problem-solvers
and be combined with the problem-solving theory to determine the network
features to extract.

There are primarily three existing articles that provide us with a more
relevant basis for Article I. Vista et al. (2016), Vista et al. (2017) and Zhu et al.
(2016) utilized directed networks to represent action sequences with vertices
representing single actions and directed edges representing the transitions from
one action to another action. Vista et al. (2016), Vista et al. (2017) aimed
at finding the prominent interaction sequence based on the importance of the
vertices and edges. Specifically, the authors computed the eigenvector centrality
metric (Borgatti, 2005) for each vertex (i.e., action in this example). For the
edges, the importance was weighted by their frequencies. Namely, the importance
of edges was defined by the frequency of transitions between the two actions.
After filtering out less important vertices and edges, the authors then further
explored the features of the remaining paths. Similarly, Zhu et al. (2016) also
created a weighted directed network of action sequences using the frequency
of transitions as the weight of edges. Different from Vista and coauthors, Zhu
et al. (2016) extracted other features from the networks: weighted density to
capture the average frequency of action transitions, degree centrality to indicate
the frequency of each action performed, reciprocity to measure the tendency to
immediately revisit previous actions, 16 triadic patterns to exhaustively describe
the potential relationships between any arbitrary sets of three actions. After
extracting these network features, the authors then used discrimination analysis
to find the features that can significantly predict task performance scores based
on certain rules.

These studies lay the foundation for Article I of this dissertation by providing
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the rationale and application of utilizing social network analysis to analyze
process data. However, there are two main limitations: a) their studies used
only action sequences but ignored the timestamps, and b) the extraction of
network features was not based on a substantive framework. To overcome the
limitations, Article I uses information from both action sequences and response
times and extracts network features guided by the problem-solving theory (Mayer
& Wittrock, 2006). Rather than identifying the prominent action sequences or
examining the predictive power of network features, we identify typical solution
patterns with seven network features that we extract from action sequences and
response times. The number of solution patterns is determined by an exhaustive
comparison of models with one to nine clusters. That is, Article I combines
both theory-driven and data-driven approaches. A task from the PISA 2012
problem-solving domain is used to demonstrate the proposed method.

3.3.2 From theoretical foundations to Article II

In Article II, we focus on the cognitive processes of representing and planning.
These unobserved cognitive processes are inferred by process indicators extracted
from process data using a theory-driven approach. Existing studies have defined
process indicators to reflect the planning and representing processes, which are
briefly summarized below.

In the literature, both qualitative and quantitative methods have been
applied to infer planning - mental simulations of future operations and associated
outcomes (Mumford et al., 2001). Planning is resource-intensive and requires a
relatively long time compared to executing the plan. Most empirical studies that
relate to planning have focused on static problems. A commonly used measure
of planning in static problems like the Tower of London is the first-move latency
(e.g., Albert & Steinberg, 2011; Unterrainer et al., 2003). It is defined as the
time interval between the start of a problem and the first operation performed
by a respondent. This measure has been found to be positively related to task
performance (Albert & Steinberg, 2011).

However, in dynamic problems, the first-move latency may not be so
appropriate because respondents may need to interact with the computer to
perform an environment analysis to gather enough information before making a
plan. Therefore, Eichmann et al. (2019) proposed to use the longest duration
indicator (defined as the longest time interval between two successive actions)
to represent the planning process. Note that the longest duration can occur
at any time when solving the problem. In addition, Eichmann et al. (2019)
also proposed two other process indicators: the delay indicator (the time taken
before the longest duration appears) and the variance indicator (the variation
of all durations). The authors then used the three indicators to predict task
success and found a non-significant effect for the longest duration indicator and
the variance indicator but a negative effect for the delay indicator and some
interaction effects of the delay indicator with other indicators. This suggests that
early planning benefits task performance, but continuous planning or extended
longest duration can compensate for the lack of early planning (Eichmann et
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al., 2019). However, two critical questions arise: a) Do the indicators from
different tasks imply the same cognitive process of planning? and b) would the
relationships between the planning indicators and task performance vary across
tasks due to different task characteristics such as interfaces and complexities?

Another cognitive process that we focus on is representing. In order to
better represent dynamic problems, respondents need to interact with the
computer because not all the necessary information is presented at the outset.
Interactions can be categorized into goal-directed behavior or non-targeted
exploration (Eichmann, Goldhammer, Greiff, et al., 2020; Eichmann, Greiff,
et al., 2020). Goal-directed behavior refers to the operations that are required to
solve the problem, whereas non-targeted exploration refers to the operations that
are not necessary to solve the problem (i.e., not included in optimal solutions),
such as checking the help menu or resetting the task. It can be seen that
goal-directed behavior conveys similar information as task success, whereas
non-targeted exploration appears erroneous. However, it has been documented
that non-targeted exploration benefits task performance (Dormann & Frese,
1994) and meta-cognition (Bell & Kozlowski, 2008), including planning and
self-monitoring. An explanation is that non-targeted exploration assists in
representing the problem and getting a better understanding of the available
features of the problem environment (Eichmann, Greiff, et al., 2020).

Another aspect of an action is if it is conducted for the first time. If an
individual performs a non-targeted operation for the first time, the relevant
information or functions of the operation can be incorporated into the problem
space; namely, it relates to information generation (Wüstenberg et al., 2012).
If the same action is performed by the individual again, it could not bring
new information and indicates “an overestimation of the relevance of the
inspected information” (Eichmann, Greiff, et al., 2020). Eichmann, Greiff, et al.
(2020) labeled the operations with initial/repeated non-targeted exploration or
initial/repeated goal-directed behavior and applied a full-path sequence analysis
based on these categories of actions to profile students. In the study of Eichmann,
Goldhammer, Greiff, et al. (2020), initial and repeated non-targeted exploration
were not distinguished and the number of non-targeted exploration was computed
by the Levenshtein distance between the shortest correct solution path (i.e.,
optimal solutions) and the observed action sequence. Although non-targeted
exploration was viewed as a latent variable and functioned as a moderator variable
between gender/immigrant background and problem-solving competency, the
model fit of the non-targeted exploration model was not reported in their papers.

It can be seen that the above-mentioned empirical studies have extracted
process indicators from the response processes to reflect the unobserved cognitive
processes. However, the construct validity of the process indicators defined in
these studies has not been explicitly examined. To be specific, to what extent
can we interpret the longest duration as a measure of planning (Eichmann et al.,
2019), and to what extent can we interpret the number of non-targeted behaviors
as an indicator of non-targeted exploration (Eichmann, Goldhammer, Greiff,
et al., 2020; Eichmann, Greiff, et al., 2020)? Article II aims to test the construct
validity of the indicators for planning and non-targeted exploration based on
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the work of Eichmann. It additionally investigates the relationships between
problem-solving competency, planning, and non-targeted exploration at both an
overall and task-specific level.
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Chapter 4

Methods and methodological
reflections

The dissertation consists of four articles, and all of them utilize quantitative
research methods. Quantitative research methods involve quantifying numerical
data and analyzing the collected data using statistical methods for testing
hypotheses and examining relationships (Apuke, 2017). This chapter describes
the elements of the quantitative research methods used in the dissertation. These
include where we get the data (Section 4.1), how we define the numerical measures
(Section 4.2), and what methods are employed to answer our research questions
(Section 4.3). Table 4.1 outlines the methodological elements for Articles I to IV,
including the perspectives (substantive or methodological), the type of studies
(empirical or simulation), the source of data, data preprocessing including data
cleaning and recoding, the measures defined from the process data, the statistical
models, and the software used to implement the models. In addition, a short
discussion of some ethical considerations is provided in Section 4.4.

4.1 Data

This dissertation uses data from international large-scale assessments; namely,
we are conducting secondary data analysis (Johnston, 2014). International
large-scale assessments are conducted by intergovernmental organizations (e.g.,
OECD) across countries/economies to monitor the trends in cognitive skills of
interest and provide comparative results across participating countries/economies,
having important implications for policymakers. Moreover, these assessments
typically collect demographic information about the participants, which can be
used to explain individual differences in cognitive skills, for example. These
assessments provide a rich source of data for researchers, and the results provide
valuable insights for educators and policymakers. This dissertation uses data
from PISA and PIAAC. Both PISA and PIAAC have taken place in many
countries/economies, providing valuable insights into country-level performances
and comparisons among countries. Moreover, they are both repeated cross-
sectional studies that provide the trend of the skills over time by linking the
scales from different rounds using standard common item equating methods
(OECD, 2014b). Although differing in target populations and specific assessment
designs, PISA and PIAAC share similar conceptual frameworks of constructs
and methods of assessment (OECD, 2021). Below is a brief description of PISA
and PIAAC.

The overarching goal of PISA is "to measure how well 15-year-old students
approaching the end of compulsory schooling are prepared to meet the challenges
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Measures

of today’s knowledge societies" (OECD, 2014c). PISA surveys have taken place
every three years since 2000 with participation from over 40 countries/economies.
The surveys consist of two parts: a) background questionnaires, including
Student Questionnaires, School Questionnaires, and Parent Questionnaires, and
b) cognitive items. Cognitive items cover the domains of reading, mathematics,
and science in each round. Some other domains such as problem-solving and
financial literacy have been considered in certain rounds. We use PISA data in
Articles I, III, and IV as Table 4.1 indicated. As introduced in Section 3.1, the
theoretical framework of the PISA 2012 creative problem-solving domain shares
great similarities with the problem-solving theory by Mayer and Wittrock (2006)
that we use in this dissertation. Hence, it is reasonable to choose the PISA data
for our empirical studies of investigating problem-solving behavioral patterns
and cognitive processes. Although there are many items and a great number of
samples, PISA has only released a limited number of log files. We select only a
few tasks and samples in the articles to illustrate our approaches. This is mainly
due to the availability of data and datasets with a large sample size.

Unlike PISA’s target population of 15-year-old students, PIAAC is a
global assessment of adult skills, including literacy, numeracy, and problem-
solving in technology-rich environments, which are considered as a basis for
"effective and successful participation in the social and economic life of advanced
economies" (OECD, 2012). As rapid technological changes continue, it is
increasingly critical to improve the skills relevant to understanding, interpreting,
analyzing, and communicating complex information. Therefore, PIAAC 2012
particularly emphasizes Information and Communication Technology (ICT) skills
in information items. The target population of PIAAC is "non-institutionalised
adults aged 16-65 years normally resident in the national territory of the
participating country" (OECD, 2021). The institution here means, for example,
nursing homes, jails, and mental hospitals. PIAAC surveys consist of background
questionnaires, reports on skills used in the workplace, and assessments of literacy,
numeracy, and problem-solving skills (OECD, 2019). Their theoretical framework
of PS-TRE is also similar to the theory of Mayer and Wittrock (2006), providing
the rationale for connecting the PIAAC data to the fundamental problem-solving
theory used in the dissertation. The first cycle of PIAAC took place in three
rounds: 2011-2012 (24 countries), 2014-2015 (9 countries), and 2017-2018 (6
countries). The second cycle of PIAAC redeveloped the theoretical framework
of assessments according to the contemporary understanding of the skills and
the results from the first cycle (OECD, 2021). The data collection of the second
cycle of PIAAC is still undergoing (2022-2023) and the results are not available
so far (date until June 2023).

4.2 Measures

This section summarizes how the measures utilized in the dissertation are defined
and the context in which they are obtained. In general, the measures used in
the dissertation are defined based on process data, including action sequences
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and response times, to reflect valuable information about human-computer
interactions. There have been many approaches for defining such measures (see
Section 2.2.4.1). In this dissertation, we apply a network analysis approach
to obtain network features as process measures/indicators in Article I and a
theory-based approach to obtain measures in Articles II to IV. The measures
defined in the articles are introduced in the following subsections.

4.2.1 Article I: Network measures

In Article I, we apply a social network approach to visualize process data and
extract measures that reflect essential characteristics of the response process.
The rationale for employing this approach is that the operations are not isolated
but directly connected to the previous and next operations, and networks seem
to be a feasible tool to present the transitive relationships (Vista et al., 2016;
Vista et al., 2017; Zhu et al., 2016). Specifically, Article I defines process data
(i.e., action sequences and response times) as weighted directed networks with
vertices representing individual actions, directed edges representing transitions
between two actions, and the weight of the edges reflecting the response time
on the associated transitions. If the transitions are performed more than once,
the average time is utilized as the weight. The time-weighted method for edges
distinguishes our study from previous papers that use the frequency of transitions
as the weight of edges (Vista et al., 2016; Vista et al., 2017; Zhu et al., 2016).
In network graphs, the weight is reflected by the thickness of the edges. An
example network graph of process data is given in Figure 3 of Article I.

Next, we set out to define network features reflecting the cognitive problem-
solving processes (Mayer & Wittrock, 2006). First, exploration plays an
important role in the representing process (OECD, 2014b), and the exploratory
behaviors can be reflected by the vertices. Therefore, we define the vertex feature
operation diversity to indicate the extent to which a respondent performs diverse
actions to explore the problem environment. Second, we define two time-related
measures to reflect the planning/monitoring process (Eichmann et al., 2019):
average time and standard deviation of time. Subsequently, the key to the
executing process is the order/transitions of actions (Mayer & Wittrock, 2006).
Since the transitions of actions are represented by the edges in networks, we
define edge features to reflect the sequential actions at an overall level (edge
density), between two actions (reciprocity), among three actions (transitivity),
and between the correct transitions and incorrect transitions (the External-
Internal index). The reciprocity and transitivity features indicate if respondents
tend to revisit previous operations and reflect the self-regulating process. The
External-Internal index implies to what extent respondents constantly conduct
correct operations. The detailed definition and calculation of the seven network
features can be found in Table 2 of Article I.
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4.2.2 Article II: Planning and non-targeted exploration indicators

In Article II, we focus on the cognitive process of representing and planning
(Mayer & Wittrock, 2006). Process indicators for planning and non-targeted
exploration have been defined in the previous studies (Eichmann, Goldhammer,
Greiff, et al., 2020; Eichmann et al., 2019; Eichmann, Greiff, et al., 2020).
Based on these studies, we modify the indicators for planning and non-targeted
exploration, examine the internal construct validity of the indicators, and model
the overall and task-specific relationships between problem-solving competency,
planning, and non-targeted exploration.

As introduced in Section 3.3.2, Eichmann et al. (2019) proposed to use the
longest duration indicator, the delay indicator, and the variance indicator to
reflect planning. In Article II, we use only the longest duration indicator because
the three indicators are highly correlated in our data, meaning that they convey
very similar information regarding planning. The longest duration indicator is
defined as follows in our study: the time intervals between consecutive events,
excluding the time intervals for the last two events (i.e., "NEXT_INQUIRY"
and "END"). This is because the last two actions indicate exiting from the task,
and the time on these action transitions is more relevant to the reflection on
the task, rather than making a plan before executing. Note that in the study of
Eichmann et al. (2019), any time interval can be considered a planning indicator
as long as it is the longest, no matter where it occurs. To identify the longest
duration, we compute all the time intervals between two successive actions and
find the longest one among these durations except for the last two durations.

To reflect the representing process, we follow the definition by Eichmann,
Greiff, et al. (2020) and use only the number of initial non-targeted operations as
the indicator for non-targeted exploration. This is because the initial operations
are related to information generation, whereas repeated operations are related to
information integration, which would not contribute to expanding the problem
space (Wüstenberg et al., 2012). To compute the number of initial non-targeted
explorations, we first need to define goal-directed behaviors and non-targeted
operations by comparing each operation to the optimal solutions. Operations
that occur in any of the optimal solutions are categorized as goal-directed,
while the rest are non-targeted. Then we count the number of first-occurred,
non-targeted operations as the indicator for non-targeted exploration.

It is worth noting that the planning indicators are continuous variables and
highly positively skewed, and the non-targeted exploration indicators are count
variables ranging from zero to hundreds. Namely, the process indicators deviate
from the normal distribution, making it inappropriate to apply the conventional
CFA (Jöreskog, 1969). We then convert the process indicators into ordinal data
and apply item factor analysis. Specifically, we recode the two process indicators
into equal-sized categories and treat them as ordinal data. This recoding method
ensures that each category has a similar number of observations and avoids
highly unbalanced frequencies of the categories.
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4.2.3 Article III: Response scores

Article III aims to overcome the computational challenge posed by the high
dimensionality of latent variables. Specifically, we propose a fast estimation
method of multidimensional GLLVMs with multiple groups for categorical
observed data using second-order Laplace approximations of the integrals in
the marginal log-likelihood function. In particular, ordered categorical observed
variables are of interest in this article.

To test the performance of the proposed method, we conduct a simulation
study by generating samples and true model parameters ourselves under the
framework of GLLVMs. The measures that we generate are binary responses
of three or four items per dimension because previous studies have shown that
Laplace approximations perform the worst in this situation. In addition, we
employ a real dataset from PISA 2009 to illustrate our approach. We use
188 items from the domains of mathematics, reading, and science and 21672
respondents from Hong Kong, Macao, Shanghai, and Chinese Taipei. Among
the 188 items, 12 items are scored in three categories and the remaining items
are scored in two categories. More detailed information can be found in Section
4 of Article III.

4.2.4 Article IV: Response scores, response times, and the
number of actions

We extend the estimation approach of Article III to Article IV by incorporating
a collection of ordinal, continuous, and count observed variables into GLLVMs.
This extension can be applied to the joint analysis of performance data and
process data where different types of variables occur in a single model. To
efficiently estimate such models, we apply the first- and second-order Laplace
approximations to the integrals of the marginal log-likelihood function. We
conduct both an empirical study and simulations to examine the performance of
the proposed method.

The empirical study uses a task from the computer-based assessment of
mathematics (CBAM) in PISA 2012. The task consists of three subtasks,
and three observed variables are derived from each subtask: task scores (two
dichotomous scores and a three-categorical score), response times (i.e., the time
interval between entering and exiting the task), and the number of actions
(i.e., counting how many interactions a respondent conducts in the computer
environment). Response times are log-transformed to deal with the highly-skewed
issue, and outliers of the process indicators are excluded. Note that instead
of recoding the process indicators into categorical data in Article II, we treat
the observed indicators as they are in Article IV. The results of the model
parameters and the PISA item pools are then used to help us determine the
range of the true parameter values in the simulation studies. The simulations
generate three correlated latent variables, with ordinal variables (three categories),
continuous variables (normal distributions), and count variables (Poisson or
negative-binomial distributions) as indicators, respectively. We consider three or
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six items per dimension. The details of the simulation design can be found in
the Section "Simulation study" in Article IV.

4.3 Latent variable models

Latent variables are assumed to underlie the observed indicators and can explain
the common variance among the indicators that measure the same concept.
Latent variable models analyze the relationships between the observed indicators
and the latent variables and reduce the dimension of multivariate analysis. In this
dissertation, latent variable models are involved in all the studies. I introduce
the specific latent variable models that we use in each article in the following
subsections.

4.3.1 Article I: Gaussian Mixture Models

In Article I, we aim to identify the solution patterns based on the network features
extracted. We assume that there are latent subgroups of the respondents. The
respondents from the same subgroup share a common solution pattern but show
a distinct pattern compared to other subgroups (James et al., 2013). To find the
latent groups, we apply Gaussian Mixture Models (GMMs; Fraley & Raftery,
2002). In GMMs, the latent variable is discrete rather than continuous. A
multivariate Gaussian distribution is assumed for the indicators in each latent
subgroup. Because we do not have sufficient prior knowledge about the number
of subgroups, we run a number of possible GMMs with different numbers of
subgroups and the features of the covariance matrix of the indicators and decide
on the final model according to information criteria and the bootstrap likelihood
ratio test. After determining the subgroups of respondents, we then aggregate
the process data of respondents from each subgroup, construct subgroup-level
network graphs, and interpret the results from the subgroups as typical solution
patterns. In the article, we apply the proposed method to a creative problem-
solving task from PISA 2012.

4.3.2 Article II: CFA with ordinal data

In Article II, we apply CFA (Jöreskog, 1969) to examine the construct validity
of the indicators for planning, non-targeted exploration, and problem-solving
competency. Three unidimensional CFAs are conducted to test three hypotheses:
a) the latent variable planning underlies the longest duration indicator, b) the
latent variable non-targeted exploration underlies the number of initial non-
targeted operations, and c) the latent variable problem-solving competency
underlies the response scores. Since all the indicators are ordinal data and the
latent variables are assumed to be continuous, the analysis falls into latent trait
analysis or item factor analysis. As discussed in Section 2.3.2.2, there are two
main approaches for parameter estimation for item factor analysis: The URV
approach and the IRT approach. We use lavaan R package (Rosseel, 2012),
which employs the URV approach with the diagonally weighted least squares
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(DWLS) estimator. We report the model fit indices to evaluate if the models
fit the data, as well as the factor loadings to show the influences of the latent
variables on the indicators.

In addition, we investigate the relationships between planning, non-targeted
exploration, and problem-solving competency by placing the three aspects into a
single model. The overall relationships among them are reflected by the estimated
covariance of the latent variables. After considering the overall relationships, we
also add residual correlations between indicators from the same item to reflect
task-specific relationships. These task-specific relationships capture the unique
relationship between the indicators from a given item.

4.3.3 Article III & IV: GLLVMs

In Articles III and IV, we focus on the estimation of GLLVMs. GLLVMs can
be viewed as a combination of generalized linear models (GLMs; Nelder &
Wedderburn, 1972) and confirmatory factor analysis (Jöreskog, 1969). GLMs
extend ordinary linear regression models by allowing response variables to be from
an exponential dispersion family, such as Gaussian and Poisson distributions, and
by connecting linear predictors to the observed responses with a link function.
In GLMs, there is only one response variable (outcome variable) and all the
variables are observable. However, the questionnaires and scales in psychology
and education usually consist of multiple related items measuring the same
construct. Therefore, the dependencies among items should be considered,
and latent variables can be introduced to account for item dependencies, as
CFA does. By combining GLMs and CFA, GLLVMs can a) deal with various
types of response variables including continuous and discrete data, b) include
a combination of linear predictors, and c) use latent variables to explain the
common variance of the response variables. GLLVMs are flexible, but the
estimation for high-dimensional GLLVMs is computationally demanding, which
limits the application of GLLVMs. In Articles III and IV, we apply a fast
estimation method to deal with this problem. In the following, I introduce the
mathematical representations of GLLVMs and the estimation methods.

4.3.3.1 Specification of GLLVMs

Let yif denotes the observed response of individual f ∈ {1, · · · , F} on item
i ∈ {1, · · · , I}, w denoteD-dimensional predictors, and z denote a P -dimensional
latent variable vector that is assumed to follow a multivariate normal distribution.
Following Rabe-Hesketh et al. (2004), a general formula for GLLVMs can be
written as

gi(E[yif |w, z]) = bi + β
′

iw + a
′

iz, (4.1)

where bi is the intercept parameter of item i, ai is a slope parameter or factor
loading vector of item i, and βi is a D-dimensional vector of regression coefficients.
Given w and z, the observed indicator yif is linked to the right-hand of
Equation 4.1 via a link function gi. The choice of a link function depends
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on the distribution of yif . The measurement models for ordinal data (graded
response model), continuous data (normal distributions), and count data (Poisson
distributions or negative-binomial distributions) and the associated link functions
are given in the method section of Article IV.

Let y be an I-dimensional response vector. The marginal log-likelihood can
be expressed as:

l(θ|y,w) = log
∫ I∏

i=1
Pi(yi|w, z)ψ(z; µ,Σ)dz, (4.2)

where θ represent the unknown parameters, Pi defines the measurement model
for the response of item i, and ψ(·) denotes the multivariate normal density
function with mean µ and covariance matrix Σ. Equation 4.2 is a marginal log-
likelihood function that includes a marginalization process, namely an integration
over the latent variable vector z. That is, the person parameters are integrated
out of the function, and we then seek item parameters maximizing the marginal
log-likelihood function. Directly calculating the likelihood in Equation 4.2 is not
possible because the integrals do not have closed-form solutions for GLLVMs. In
practice, numerical integration methods are commonly applied to approximate the
integrals. The following subsection summarizes some approximation approaches.

4.3.3.2 Approximation approaches

For the numerical integration methods, I introduce three approaches: a
quadrature-based approach, a simulation-based approach, and Laplace approxi-
mations.

1. Quadrature-based approach. An example likelihood plot for a one-
dimensional parameter is presented in Figure 4.1. The area under the likelihood
curve cannot be calculated directly from a known formula, so it needs to be
approximated. A standard method is to use quadrature-based integration. This
approach divides the irregular area into several rectangles and sums the areas of
the rectangles with a quadrature weight function to approximate the original
area. More rectangles provide a more fine-grained approximation but with an
increased computational burden. This gives a simple concept of quadrature-
based methods, but the actual implementation is more complicated. Gauss-
Hermite quadrature (GHQ) has been applied to estimate generalized latent trait
models (Moustaki & Knott, 2000). GHQ is used to approximate an integral
by the summation of the weighted function evaluated at quadrature points
(xi, i = 1, · · · , n):

∫ ∞
−∞ e−x2

f(x)dx ≈ ∑n
i=1 wif(xi), where the weight wi and

the quadrature points are based on the Hermite polynomial. GHQ can produce
accurate approximations. However, as the dimensionality of the latent variables
increases, say more than three latent variables, the estimation becomes infeasible.
In addition, GHQ fails to find the maximum for certain functions (Huber et al.,
2004). Adaptive Gauss-Hermite quadrature (AGHQ) is an improved method
based on GHQ. Instead of using a fixed set of quadrature points and weights,
AGHQ identifies the most relevant points and weights for each response pattern.
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Although AGHQ reduces the required number of quadrature points and improves
computational efficiency compared to GHQ, it is still time-consuming for high-
dimensional models.

Figure 4.1: An example plot of computing the area under the likelihood
curve. Quadrature-based methods divide the irregular curve into multiple
small rectangles and sum the areas of the rectangles as the approximation of the
area under the curve.

2. Simulation-based approach. Simulation-based approaches such as Monte
Carlo expectation-maximization (Meng & Schilling, 1996), the Metropolis-
Hastings Robbins-Monro methods (Cai, 2010), and Markov Chain Monte Carlo
methods avoid directly computing the complicated integral in the likelihood
function. Instead, this approach generates samples to approximate the desired
integrals or distribution (i.e., a posterior distribution). These approaches can
be implemented in various ways. In general, it is relatively feasible to deal
with complex models. The computational complexity of the simulation-based
approach is linear in the dimensionality of the latent variable models (Cai, 2010),
while that of the quadrature-based approach is exponential. However, on the
other hand, this approach is time-consuming in evaluating convergence and
computing statistics like log-likelihood after the estimation procedure.

3. Laplace approximations. Another approach is to use Laplace approxima-
tions (Andersson et al., 2023; Huber et al., 2004; Niku et al., 2017) to approximate
the integrals of the marginal log-likelihood, which is efficient and computation-
ally simple (Shun, 1997). Laplace approximations are used to approximate the
integral

∫
e−Nh(x) using basic numerical operations on the statistics from the

sample and the model in addition to certain derivatives.
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The Laplace approximations for GLLVMs are derived in Articles III and IV.
The second-order Laplace approximation of the marginal log-likelihood function
for individual f can be expressed as (Shun, 1997):

l̃Lap2
f (θ|y) = P

2 log(2π) − 1
2 |Hf | − ĥ+ log(1 + ϵf ), (4.3)

with

ϵf = −1
2
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4

P∑
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 .

In this expression, hf (z) = − logP (yf |z)ψ(z; µ,Σ), ĥ = hf (ẑf ), and Hf =
∂2ĥ

∂z∂z′ . ẑf represents the posterior modes of the latent scores of individual
f ∈ 1, · · · , N . bjk represents the entry of row j and column k in H−1

f .
The first-order Laplace approximation can be obtained from Equation 4.3

by setting ϵf = 0. Although first-order Laplace approximations are simpler and
faster, second-order Laplace approximations provide a more accurate and robust
approximation (Andersson et al., 2023; Andersson & Xin, 2021). Note that
the hf function depends on the measurement model of the observed outcome
variables. Hence, the implementation of Equation 4.3 will need to adapt to
the distribution of the outcome variables yi. The relevant derivatives of hf are
derived analytically and programmed in C++ in this thesis.

So far, we have moved from the original marginal log-likelihood function
(Equation 4.2) to the Laplace approximation function (Equation 4.3). The
estimation problem is then to find estimates of item parameters that maximize
Equation 4.3. To do so, we need to derive the gradient analytically. For θ ∈ θ,
its gradient can be expressed as:

∇θ
f =

∂lLap2
f (θ|y)
∂θ

+ ∂ẑf

∂θ

∂lLap2
f (θ|y)
∂z

∣∣∣∣∣

z=ẑf

. (4.5)

Note that the estimation can be simplified based on the model structure by
filtering out zero and repeated entries (Andersson et al., 2023; Andersson &
Xin, 2021). The optimization of Equation 4.3 is realized by a quasi-Newton
method using the BFGS algorithm. The details of the iteration procedure of
the algorithm can be found on Page 5 of Article III. Andersson and Jin (2022)
implemented the proposed methods and AGHQ in an R package called lamle.

4.4 Ethical considerations

"Research ethics refer to a diversity of values, norms, and institutional
arrangements that contribute to constituting and regulating scientific activity." –
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the National Research Ethics Committee for the Social Sciences and Humanities
(NESH).

For ethical considerations, this dissertation follows Guidelines for Research
Ethics in the Social Sciences and the Humanities by the National Research Ethics
Committee for the Social Sciences and Humanities in Norway (NESH, 2016).
Some potential ethical issues regarding international large-scale assessments are
discussed based on the guidelines of NESH.

First, we use data from PISA and PIAAC that cover human participants
aged between 15 and 65 years. Before collecting personal data, researchers must
obtain informed consent from the participants or their parents/guardians in the
case of minors. It is important to note that the consent must be given freely, and
it should be easy to understand, accessible, and clear. The participants have the
right to decline or withdraw consent without any negative consequences. PISA
and PIAAC obtain documented consent from parents/guardians of students and
adult participants, respectively, prior to their participation in the surveys.

Second, the surveys collect participants’ personal data, which must be
processed and stored carefully. In PISA and PIAAC, the information of the
participants is securely and confidentially treated and stored (OECD, 2014a,
2014d). In addition, personal details such as school names and student names
are replaced with digital identifiers. We have no access to the coding scheme,
so we cannot identify participants. That is, the data are anonymous to us. In
this dissertation, the cognitive responses and log files are utilized, while the
background information of the participants is only summarized on a descriptive
level.

A third ethical concern is the impact of international large-scale assessments.
For example, many researchers, educators, and policymakers are concerned
about the results of PISA. The original aim of PISA is to monitor 15-year-old
students’ learning outcomes and figure out the factors that influence the results
(Breakspear, 2012). However, the impacts of PISA go far beyond its original
purpose. For example, policymakers seek to find the best educational practice
based on the results of PISA and hope to apply that to their country (Breakspear,
2012). Nevertheless, whether “the best practice” is universal is questionable.
Therefore, the use of the results of international large-scale assessments requires
caution, and policymakers should be aware of context differences in the results.
Considering this perspective, researchers should clearly describe methods and
carefully interpret their results. This enables practitioners to evaluate if they
can apply the results to their own practices. In this dissertation, we describe
our methods in detail in each article. The recoding scheme and R code used
in the empirical studies are accessible in the appendices of the articles or the
Open Science Framework. Regarding the interpretations of the empirical results,
we compare our results with existing research and connect the conclusions with
theory.
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Chapter 5

Summary of the articles

5.1 Article I: Identify solution patterns

Zhang, M.*, & Andersson, B. (2023). Identifying problem-solving solution
patterns using network analysis of operation sequences and response times.
Educational Assessment, 28, 172-189.

Article I investigates how respondents approach a solution to a computer-
based task by making use of information from log files. Specifically, we aim
to identify and visualize typical solution patterns of respondents. To achieve
this, we first use network graphs to represent the transitions between actions
and the time spent on the transitions. Next, we define seven network features
to extract essential information from the response process using the process
data of each respondent. These network features are determined to reflect the
cognitive processes in problem-solving (Mayer & Wittrock, 2006): representing,
planning/monitoring, executing, and self-regulating. After computing the
network features for each respondent, we cluster the respondents based on
the values of their network features through a clustering technique - GMMs.
Respondents who share a similar profile on the network features are classified
into the same group. Finally, we aggregate the process data of the respondents
from each cluster and plot cluster-level network graphs of action sequences
and response times. By combining these network graphs with the descriptive
statistics of the seven network features for each cluster, we seek to understand
and interpret the typical solution patterns.

To illustrate our approach, we use a PISA 2012 problem-solving task with a
sample from the United States. Since successful and unsuccessful respondents
may display distinct solution patterns, we apply the proposed method separately
to the two groups. The results suggest two clusters for the failure group, and we
interpret them as less-able and low-effort clusters. We also identify four clusters
for the success group and interpret them as adaptable, back-and-forth, deliberate,
and trial-and-error clusters. Students in the less-able cluster constantly tried
various operations, but they got stuck in incorrect transitions. Similarly, students
in the trial-and-error cluster randomly tried a variety of operations. Over time,
however, they distinguished the correct operations from the incorrect ones,
developing persistence in finding the correct solution. In contrast, students in
the low-effort cluster tended to try an incorrect solution and gave up. While
students from the adaptive cluster also chose incorrect solutions at first, they
persisted in modifying their solutions to reduce the difference between the current
and goal state. Students in the back-and-forth cluster tended to revisit their
previous operations, which may indicate hesitance or self-regulating. Students
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from the deliberate cluster spent a considerable amount of time developing a
strategy before putting it into action, indicating the cognitive process of planning.
The results provide a more fine-grained understanding of the problem-solving
processes that go beyond correctness/incorrectness and can potentially benefit
educational practice.

5.2 Article II: Validate process indicators

Zhang, M.*, Andersson B., & Greiff S. (2023). Generalizing process data mea-
sures of planning and non-targeted exploration: Item-level and structural
relationships in PIAAC. Journal of Intelligence, 11, 156.

Representing and planning are two important cognitive processes in problem-
solving (Mayer & Wittrock, 2006) and are closely associated with task
performance. As these cognitive processes are difficult to observe directly,
researchers have leveraged process data to gain insights into mental problem-
solving activities. Accordingly, researchers have defined certain process indicators
to infer these cognitive processes (Eichmann et al., 2019; Eichmann, Greiff, et al.,
2020). However, the extent to which the process indicators can be generalized
across different tasks has not been explicitly examined. Article II aims to validate
two pre-defined process indicators for planning (Eichmann et al., 2019) and
non-targeted exploration (Eichmann, Greiff, et al., 2020) across multiple dynamic
tasks in the PIAAC 2012 PS-TRE domain.

The process indicators used in Article II are the longest duration (the planning
indicator) and the number of initial non-targeted operations (the non-targeted
exploration indicator). Since planning is resource-intensive and time-consuming,
time-related measures have been suggested to reflect the planning process. In
dynamic problems, the longest duration indicator has been proposed to capture
the quantity of planning, which is defined as the longest time interval between two
successive operations (Eichmann et al., 2019). As for the representing process, it
is essential to collect information to get a better understanding of the nature of
the problem and expand the problem space. To gather information in dynamic
problems, respondents often need to actively engage with the computer. By
examining the interactions between the computer and the respondent, we infer the
extent to which an individual is exploring the problem environment. The human-
computer interactions can be categorized into goal-directed and non-targeted
operations depending on if they appear in any optimal solutions (Eichmann,
Greiff, et al., 2020). Goal-direct operations contain similar information as task
performance, while task scores have been included in the analysis. Non-targeted
operations are the focus of our study because they provide additional information
than task performance. Because only the initial non-targeted operations are
related to generating new information and expanding the problem space, we use
the number of initial non-targeted operations as the indicator for non-targeted
exploration in this study.

Although the indicators for planning and non-targeted exploration have
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been used in previous studies (Eichmann, Goldhammer, Greiff, et al., 2020;
Eichmann et al., 2019; Eichmann, Greiff, et al., 2020), the construct validity of
the indicators has not been explicitly evaluated. In this article, our aim is twofold:
a) to examine the construct validity of the indicators based on the dynamic
problems in PIAAC 2012, and b) to test the relationships between planning,
non-targeted exploration, and problem-solving competency. To accomplish the
goals, we extract the indicators for planning and non-targeted exploration from
the process data, recode the process indicators into equal-sized ordinal categories,
and separately apply three uni-dimensional CFA models to the process indicators
and task performance. Model fit indices and factor loadings are presented as
evidence of the construct validity of the indicators. For the second aim of
the study, we incorporate all three indicators into one model and estimate the
covariance of the latent variables while considering the residual correlations
among the indicators from the same item. The findings are summarized as
follows. First, the results provide evidence of the construct validity of the
planning indicators. Second, the non-targeted exploration indicator is less
suitable to be analyzed simultaneously. Third, non-targeted exploration is
strongly related to problem-solving competency in general, whereas planning
and problem-solving competency are weakly negatively related. Fourth, these
relationships vary substantially across tasks.

5.3 Article III: Laplace approximations of GLLVMs for
categorical data

Andersson, B.*, Jin, S., & Zhang, M. (2023). Fast estimation of multiple group
generalized linear latent variable models for categorical observed variables.
Computational Statistics & Data Analysis, 182, 107710.

Article III focuses on the issue of computational efficiency when estimating
high-dimensional GLLVM with multiple groups for categorical observed data.
Such models can be applied to analyze, for example, categorical response data
from international large-scale assessments that evaluate respondents’ abilities
across different domains such as mathematics, reading, and science, across
countries. The MML approach can be used for the estimation of GLLVMs.
The marginal likelihood function consists of intractable integrals over the latent
variables, requiring numerical approximations. Quadrature-based methods, such
as GHQ and AGHQ, have commonly been used to approximate the integrals.
They work well for models with one or two latent variables. However, when
the dimension of the latent variables exceeds three, quadrature-based methods
become infeasible since the computational difficulty increases exponentially
with the dimension. A computationally efficient approach is to use Laplace
approximations to approximate the integrals instead (Huber et al., 2004; Niku
et al., 2017; Shun, 1997).

In Article III, we consider a second-order Laplace approximation for the
integrals of marginal log-likelihood when estimating high-dimensional, multiple-
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group GLLVMs for categorical observed variables. Laplace approximations
require high-order derivatives for each measurement model for the observed
variables. The formula for the second-order Laplace approximation to the
marginal log-likelihood is presented in Section 2.2 of Article III. We demonstrate
an efficient way to implement this approach by considering the model structure
and filtering any zero or repeated entries in the formula. We analytically derive
the elements in the formula and implement the approach in an R package lamle
(Andersson & Jin, 2022).

To assess the performance of the proposed method in terms of computational
efficiency, convergence, and the recovery of item parameters, we conduct a
simulation study including four conditions: 2 (the number of observed variables:
three or four) × 2 (the type of model structure: independent-clusters model or
a cross-loading model). We generate 1000 samples under each of the conditions
with a sample size equal to 1000 and four latent variables. Second-order Laplace
approximations are used for estimation and comparison against first-order
Laplace approximations and AGHQ with three and five quadrature points.
The results suggest that a) second-order Laplace approximations achieve 100%
convergence rates. This is a significant improvement when comparing to first-
order Laplace approximation, especially for cross-loading models with fewer items;
b) second-order Laplace approximations achieve similarly accurate and precious
estimates as AGHQ with five quadrature points, and both recover the item
parameters better than first-order Laplace approximations and AGHQ with three
quadrature points; and c) Laplace approximations take much shorter time than
quadrature-based methods. In summary, second-order Laplace approximations
produce fast (compared to AGHQ) yet accurate (compared to first-order Laplace
approximations) parameter estimates for high-dimensional, multi-group GLLVMs
for binary observed variables. In addition, we illustrate the method using
empirical data from Hong Kong, Macao, Shanghai, and Chinese Taipei in the
PISA 2009 assessment of mathematics, reading, and science. The empirical study
involves four groups of respondents, 188 items in total, and the measurement of
three latent abilities. First- and second-order Laplace approximations and AGHQ
with three, five, and thirteen quadrature points are used for the estimation. The
results closely resemble those of the simulation study. Namely, second-order
Laplace approximations are computationally efficient and produce a similar
log-likelihood value as AGHQ with 5 and 13 quadrature points, as indicated by
the results.

5.4 Article IV: Laplace approximations of GLLVMs for mixed
data

Zhang, M., Andersson, B.*, & Jin, S. Estimation of generalized linear latent
variable models for performance and process data with ordinal, continuous,
and count observed variables. Submitted to British Journal of Mathematical
and Statistical Psychology.
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A mixture of discrete and continuous data often occurs in data collection. For
example, game-based assessments routinely record the number of correct/incor-
rect trials, the number of mouse clicks, time-on-screen, and performance scores.
Similarly, computer-based assessments collect the complete human-computer
interaction and provide information such as responses, response times on the
task, response time until the first interaction, and the number of interactions.
Such data consist of different types of variables: continuous, ordinal, and count
data. Although the data offer valuable insights into response processes from
various perspectives, the analysis of the data is challenging due to the complex
dependencies of the observed variables and the inherent non-continuity and
non-normality of the discrete variables. These make it difficult to directly apply
conventional factor analysis (Jöreskog, 1969) or item factor analysis such as IRT
models to the mixed types of observed variables. GLLVMs are promising to deal
with this situation. GLLVMs can handle different types of outcome variables
and link the expected value of outcome variables conditional on latent variables
to a linear combination of predictors through a link function. However, the
estimation of model parameters hinders the application of GLLVMs when the
latent variables have a high dimensionality due to the intractable integrals of
the marginal log-likelihood.

In Article IV, we use first- and second-order Laplace approximations to
estimate GLLVMs for a combination of ordinal, continuous, and count observed
variables. Similar to Article III, we analytically derive the derivatives related to
the measurement models with normal, Poisson, and negative-binomial distributed
data and program the derivatives in C++. Two simulation studies are performed
to evaluate the performance of first- and second-order Laplace approximations,
and an empirical study is conducted to illustrate the approach and provide
references to the simulation design. Specifically, we use a PISA 2012 computer-
based mathematics item that consists of three subtasks. Categorical response
scores, the time spent on the task, and the number of actions for 1029 Australian
respondents on each subtask are utilized as the observed indicators. Three
uni-dimensional measurement models are separately applied to the three types
of indicators, and the estimates provide a foundation for the range of true values
of the item parameters in the simulation studies. We also place the three types
of indicators into a single model using GLLVMs to demonstrate the application
of the proposed method. We then conduct simulation studies to examine the
estimation efficiency and parameter recovery of Laplace approximations in
GLLVMs for a mixture of continuous (X), ordinal (Y), and count (Z) observed
variables. In Simulation 1, we consider 2 (the distribution of the count data
model: Poisson or negative-binomial distributions) × 2 (the number of items:
three or six) × 2 (the covariance between the latent variables: small or large)
= 8 conditions. In Simulation 2, we further consider the dependency of the
indicators from the same item or sub-task by adding a residual factor for each
item. For example, we add a latent residual factor R1 to account for the
residual correlations between the indicators X1, Y1, and Z1 from the first item.
For the purposes of simplicity, we assume equal residual factor loadings across
the indicators from the same item. The magnitude of residual factor loadings
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(small or large) is then added to Simulation 2, resulting in 16 conditions. Both
simulations conduct 1000 replications under each condition with a sample size
equal to 1000. The results suggest that second-order Laplace approximations
achieve a higher average convergence rate and produce more accurate estimates
for the model parameters. However, they take a longer time for estimation
compared to first-order Laplace approximations, especially when the model is
complex (i.e., models involving residual factors).
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Chapter 6

Discussion and implication

This dissertation aims to use process data to better understand problem-solving
theoretically (Articles I and II) and methodologically (Articles III and IV). Four
articles are included in the dissertation.

Articles I and II focus on the cognitive processes in problem-solving through
the information present in respondents’ action sequences and response times. In
Article I, we propose a method for identifying respondents’ solution patterns
based on the network features extracted from their process data. The definition
and extraction of network features are guided by a theoretical framework (Mayer
& Wittrock, 2006) to reflect the cognitive processes in problem-solving, making
the results easier to interpret compared to the previous studies (Vista et al.,
2016; Vista et al., 2017; Zhu et al., 2016). In Article II, we examine the construct
validity of the process indicators for planning and non-targeted exploration using
the PIAAC PS-TRE problems. Additionally, we test the overall and task-specific
relationships between planning, non-targeted exploration, and problem-solving
competency.

Article III introduces a computationally efficient method for applying higher-
order Laplace approximations to the integrals of the marginal log-likelihood
of GLLVMs for categorical observed variables. Article IV further applies the
method proposed in Article III to GLLVMs for a mixture of ordinal, continuous,
and count observed variables. This allows for simultaneous analysis of task
performance, time-on-task, and the number of actions. Namely, GLLVMs enable
the joint modeling of performance data and process indicators, as well as other
scenarios with a mixture of discrete and continuous variables. However, the
estimation of high-dimensional GLLVMs is computationally demanding and the
available implementation tools are limited, which hinders the application of
GLLVMs. Our approach seeks to address the computational issue and hopes to
make GLLVMs more accessible for practitioners.

In this chapter, I review how our studies cope with the challenges in process
data analysis and discuss the contributions and limitations of the project.

6.1 Dealing with challenges of process data analysis

Section 2.2.2 discusses six challenges of analyzing process data, and here I explain
how our studies cope with these challenges. A summary is provided in Table 6.1.
The first challenge is the large volume of process data consisting of a great
variety of variables. To address this challenge, we subset the data according to
specific countries or tasks and use certain methods to recode the data in the
articles. The data preprocessing procedures are clearly described in the articles.
Second, process data usually have high dimensions. In Article I, we have seven
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network features and apply cluster analysis that can handle the challenge of high
dimensions. In Article II, we have a total of 21 observed indicators and analyze
them in the three-dimensional latent variable model. In Articles III and IV, we
propose using Laplace approximations to increase computational efficiency in
GLLVMs. This can also be applied to other situations that involve a mixture of
continuous and discrete observed variables. Third, individual process data vary
in the lengths of action sequences and response times. In our articles, we extract
a fixed number of features from the process data for each individual rather than
working on the original single actions.

Table 6.1: Dealing with challenges of process data analysis.
Challenges Solutions
Large volume &
great variety

Articles I-IV: Subset and recode the data

High dimension Article I: Use a machine learning approach (cluster analysis)
Article II: Incorporate 21 indicators into a three-dimensional
model
Articles III & IV: Use Laplace approximations to increase
estimation efficiency

Varied lengths Articles I, II, and IV: Extract a fixed number of features from
the process data for each individual

Data dependen-
cies

Article I: Use network features such as reciprocity to reflect
the dependency
Article II: Consider residual correlations of the indicators
from the same item
Article IV: Consider residual factors

Noise Article I-IV: Recode the data and data cleaning (e.g., remove
outliers)

Interpretation &
validation

Article I: Use a theory to guide the extraction of network
features
Article II: Examine the construct validity of the pre-defined
process indicators

In addition, it is important to consider the dependencies of process data.
In Article I, we defined edge density, reciprocity, transitivity, density, and the
External-Internal index to reflect the dependencies of the actions. In Articles
II and IV, we add residual correlations or residual factors to account for the
correlations among the indicators defined for the same item. Fifth, the noise
in the process data is handled through data recoding and data cleaning. For
example, we define a category of insignificant operations to cover the operations
beyond the task instructions in Article I. In Articles II and IV, we exclude
respondents with extreme values on the process indicators. Last, interpretation
and validation are challenging when analyzing process data. Unlike a purely data-
driven approach, our feature extraction is based on the problem-solving theory
by Mayer and Wittrock (2006) in Articles I and II, enhancing the interpretability
of our findings. Furthermore, we particularly examine the construct validity
of the process indicators for planning and non-targeted exploration defined in
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Figure 6.1: Contributions of the dissertation.

previous studies (Eichmann, Goldhammer, Greiff, et al., 2020; Eichmann et al.,
2019; Eichmann, Greiff, et al., 2020) in Article II.

In summary, our work provides insight into how to address the challenges in
terms of high dimensions, data dependencies, and validation. Some contributions
and limitations of this dissertation are further discussed in the following
subsections.

6.2 Contributions

Articles I and II shed light on the problem-solving processes using process data
(theoretical contributions) and provide implications for educational practice
that can positively impact students, teachers, and test developers (practical
contributions). By comparison, Articles III and IV contribute primarily from a
methodological perspective by improving the computational efficiency of GLLVMs
using Laplace approximations (methodological contributions). In this section,
I discuss the theoretical, practical, and methodological contributions of the
dissertation in detail. See Figure 6.1 for an overview.

6.2.1 Theoretical contributions

The competency of problem-solving is essential for individuals when adapting to
a rapidly changing world and is required in personal and professional contexts.
Both formal education and adult education should help individuals become better
problem-solvers. To achieve this goal, it is crucial to gain a better understanding
of how respondents solve problems. Our first two articles illuminate the cognitive
processes involved in problem-solving, deepen the understanding of respondents’
solution patterns, and provide evidence for the validity of the process indicators
that reflect the planning and non-targeted exploration processes.
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In Article I, we identify and visualize solution patterns for the respondents
based on their process data. These solution patterns distinguish the various
strategies used in the task and indicate individual differences. With an example
task from PISA 2012, we identify four solution patterns (i.e., adaptable, back-
and-forth, deliberate, and trial-and-error) used by respondents who successfully
solved the task and two patterns (i.e., less-able and low-effort) by respondents
who failed to solve the task. The characteristics and interpretations of each
pattern are described in detail in our paper, enhancing the understanding of how
successful and unsuccessful problem-solvers approach the task. Compared to
prior studies that profile students based on other behavioral indicators, such as
the use of the VOTAT strategy (Gao et al., 2022; Gnaldi et al., 2020; Greiff et al.,
2018; Stadler, Niepel, et al., 2019), our study uses network features that capture
more comprehensive information from both action sequences and response times,
and no predefined strategies are required to apply this method. In addition,
the natural advantage of using network analysis is that it provides a direct
visualization of the entire human-computer interaction. Both individual-level
and cluster-level networks of process data have been presented in Article I,
providing a straightforward illustration of the solution patterns.

In Article II, we provide evidence for the validity of the process indicators
for planning and non-targeted exploration using the PIAAC 2012 PS-TRE
tasks. Our results suggest evidence of internal construct validity of the planning
indicator, but weaker evidence for the non-targeted exploration indicator. That
is, the latent variable planning can capture a great portion of the shared variance
among the observed indicator - the longest duration, whereas the latent variable
non-targeted exploration shows varied impacts on the indicators (i.e., the number
of non-targeted operations) across tasks. We further dig into the characteristics
of the tasks to seek potential explanations for the results. In addition, we test the
relationships between planning, non-targeted exploration, and problem-solving
competency and examine whether the relationships are consistent or varied
across tasks. Our results indicate task-specific relationships, suggesting the
importance of considering the residual correlations between indicators from the
same item. This enhances the understanding of the validity of using the process
indicators defined by previous studies (Eichmann, Goldhammer, Greiff, et al.,
2020; Eichmann et al., 2019; Eichmann, Greiff, et al., 2020) and of the functions
of planning and non-targeted exploration in various tasks.

In summary, Articles I and II are grounded in the problem-solving theory
of Mayer and Wittrock (2006) and use the process data to improve the
understanding of the solution patterns and cognitive processes involved in
problem-solving. The studies provide empirical evidence for the validity of
indicators of cognitive problem-solving processes, test hypotheses about the
relationships between cognitive processes and task performance, and discover
behavioral patterns in problem-solving. The findings help researchers gain deeper
insights into the theoretical concepts of problem-solving.
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6.2.2 Practical contributions

In addition to theoretical contributions to the study of problem-solving, the
empirical findings from Articles I and II can further contribute to educational
practice. This can be viewed from four perspectives: students, teachers, test
developers, and problem-solving training programs.

The first practical contribution is directed toward students. For example,
Article I provides network graphs of process data for individuals. Students can
review their own network graphs of process data to reflect on the cognitive
processes. It is similar to a tape recording of respondents’ response processes,
but a tape recording requires more time and resources to review and analyze it.
Reviewing individual network graphs of process data can help students engage in
introspection to increase self-awareness, self-observation, self-monitoring, and self-
reflection, which can further improve problem-solving skills (Jäkel & Schreiber,
2013).

Second, our results can provide educators with materials to tailor their
instructions according to students’ solution patterns. For example, teachers can
assign easier tasks or provide explicit hints to assist less-able students in finding
solutions and improving their problem-solving skills. For low-effort students,
teachers can talk to them and inquire about the cause of their de-motivation (e.g.,
inadequate ICT skills). Teachers can also adapt their instructions for different
tasks. For example, for complex tasks with a substantial amount of information,
teachers can guide students to explore the problem environment initially and
foster the development of a plan.

Third, our approach can help test developers validate the task design. For
instance, they can compare the solution patterns identified from the process
data to the desired solution patterns. An unexpected deviation, such as many
students checking the help button, may indicate that the task instructions are
not clear enough. As another example, if a task is intended to measure the
planning aspect of problem-solving, then there should be a positive relationship
between planning and task performance. If the result shows a different direction,
the task design should be reconsidered.

Fourth, getting a better understanding of problem-solving processes can
contribute to enhancing problem-solving training programs. Consider incorpo-
rating a computer-simulated agent into a training program to provide real-time
instructions and feedback to aid problem-solving. For example, if an individual
has spent a long time planning in a dynamic problem but has not made any
interactions, the agent can offer a hint to encourage exploratory behaviors if
the individual is unfamiliar with the task environment. As another example, if
the computer agent identifies an individual’s solution pattern, it can select the
next task to facilitate targeted development in weak areas. For instance, if a
student is not good at making plans, a training program could provide additional
tasks that require planning processes and give explicit hints about planning
strategies, such as decomposing the problem. Such programs can potentially be
implemented via a virtual learning environment. A virtual learning environment
provides students with a designed information-rich and social space in which
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students can engage in a variety of learning activities (Dillenbourg et al., 2002).
Previous studies have developed a problem-based learning model through a
virtual learning environment, and the results suggest an increase in learning
interest and satisfaction (Phungsuk et al., 2017). Similarly, our study provides
materials for such programs, but the implementation requires more effort from
the expert group and technicians.

6.2.3 Methodological contributions

Compared to the theoretical and practical contributions of Articles I and II,
Articles III and IV mainly contribute from a methodological perspective. In
the last two articles, we provide useful estimation tools for researchers and
practitioners in estimating GLLVMs for various types of observed variables.

A mixture of discrete and continuous data is prevalent in various fields. In
Articles II and IV, we illustrate this situation in computer-based assessments
that include ordinal response scores, continuous response times, and counts
of interactive behaviors. A joint model of these variables poses estimation
difficulties, especially in high-dimensional models. We employ GLLVMs to
analyze different types of observed variables simultaneously and use higher-order
Laplace approximations to increase the estimation efficiency. The simulation
studies indicate a significant reduction in the estimation time compared to
quadrature-based methods and an improvement in terms of convergence rates
and parameter recovery compared to first-order Laplace approximations.

Our method can be applied to other fields where a combination of different
data types occurs. For example, it is possible to apply the method to ecological
data and patient data. Ecological data often consist of species counts and biomass
(Niku et al., 2017), and patient data typically include the presence/absence,
frequency, and severity of certain symptoms (Daniels & Normand, 2006). The
algorithms have been implemented in an R package called lamle (Andersson &
Jin, 2022), which will soon be available on CRAN. Researchers and analysts can
then directly use the package to deal with GLLVMs for continuous, ordinal, and
count data simultaneously, instead of proceeding with one data type at one time
as the gllvm package requires (Niku et al., 2017).

6.3 Limitations and future studies

Some limitations of the dissertation and implications for future studies should
be noted.

First, we extract a limited number of process indicators from the extensive
process data. For example, we extract the longest duration and the number of
non-targeted operations in Article II, which capture only limited information
of interest from the original, complete human-computer interaction. Much
information has been ignored in the feature extraction procedure. However, it is
possible to include additional process indicators to reflect other aspects of the
response process. For example, other network features such as the centrality of
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each operation and other process indicators reflecting the self-regulating process
can be included in future studies to verify the interpretations of the analytical
results.

Second, the validation of the empirical findings requires further investigation.
Specifically, the solution patterns identified in Article I are determined through a
model comparison approach and are interpreted in an ad-hoc manner. Whether
the respondents adopt the solution patterns as we interpret them in the article
cannot be verified because we use secondary data and no relevant information on
solution patterns is available in the dataset. If it is possible to collect data in the
future, it would be beneficial to incorporate qualitative research methods, such as
interviews and think-aloud protocols or questionnaires about the problem-solving
strategies used in the task.

Third, the applicability of the results of the study to different situations
and settings should be further explored in future studies. Articles I, II, and IV
consider only a single set of data from international large-scale assessments to
illustrate our approach. However, the extent to which the findings from one
country can be generalized to other countries needs careful consideration. As
an example, we identified six solution patterns using the U.S. data in Article
I, but the results using datasets from other countries, such as China or Japan,
may be different due to cultural differences. In a similar vein, the relationships
between planning, non-targeted exploration, and problem-solving competency in
Article II may vary depending on the type of problem. Therefore, examining the
generalizability of the empirical findings across countries or tasks is an interesting
direction for future studies.

Fourth, in Articles III and IV, the Laplace approximations need complex
analytical derivatives for specific distributions. For other distributions not
covered in the articles, up to fifth-order derivatives must be analytically derived.
That is, if researchers assume other distributions of the observed variables, extra
work will be required. More distributions are considered to be included and
implemented in the package lamle.

6.4 Concluding remarks

This dissertation analyzes the process data from international large-scale
assessments to understand how problem-solvers approach problems and to
reflect the cognitive processes underlying the observed response processes. In
addition, we propose to use a fast estimation method (i.e., higher-order Laplace
approximations) to jointly analyze performance data and process data within
the framework of GLLVMs.

Process data provide researchers with valuable information about respondents’
response processes and can serve as a window into their minds as they solve
problems. Our studies demonstrate the potential of using process data to
enhance the understanding of cognitive problem-solving processes. In addition,
we examine evidence for the validity of analyzing process indicators across tasks,
suggesting that it is important to examine the construct validity of process
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indicators and to consider the dependency of process indicators derived from
the same task.

A joint model of performance data and process data requires efficient
estimation algorithms. The use of higher-order Laplace approximations can
significantly increase the estimation speed, and the method is applicable to
a combination of continuous, ordinal, and count data. The method has been
implemented in the lamle package, facilitating its convenience for practitioners.
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Identifying Problem-Solving Solution Patterns Using Network 
Analysis of Operation Sequences and Response Times
Maoxin Zhang and Björn Andersson

University of Oslo, Oslo, Norway

ABSTRACT
Process data from educational assessments enhance the understanding of 
how students answer cognitive items. However, effectively making use of 
these data is challenging. We propose an approach to identify solution 
patterns from operation sequences and response times by generating net-
works from process data and defining network features that extract essential 
information from them. With these features, we group respondents to 
a problem-solving task from PISA 2012 using Gaussian mixture models. The 
results indicate the presence of two and four clusters for groups defined by 
failure and success on the task, respectively. We interpret the clusters as less- 
able, low-effort, adaptable, back-and-forth, deliberate, and trial-and-error 
clusters by considering the cluster-specific feature statistics. The proposed 
approach sheds light on students’ problem-solving mental processes, which 
can aid item development and facilitate individualized feedback to students. 
The method is applicable to many computer-based problems, but 
a limitation is that the feature definitions can be task-dependent.

Introduction

Problems are everywhere, no matter in daily life or at the workplace. Thus, problem-solving compe-
tency is highly demanded in modern society (OECD, 2014a) and has gained increasing attention in 
large-scale computer-based assessments. In such assessments, not only how well (the final perfor-
mances) but also how (problem-solving processes) participants solve a problem can be recorded in log 
files and converted to process data. This study focuses on the process data of problem-solving tasks 
and proposes an approach that combines network analysis and Gaussian mixture models to investigate 
test-takers’ solution patterns. Exploring process data helps researchers and educators understand the 
mental processes of students when solving a problem and can aid educational practices. In the 
remainder of this section, we review the problem-solving literature and then summarize the char-
acteristics and analysis methods of process data. Subsequently, we introduce network analysis and the 
details of the present study.

Problem solving

When encountering a problem without an obvious solution, problem-solvers need to engage in the 
cognitive processes of problem solving directed toward a goal (Mayer & Wittrock, 2006). Problem 
solving has four primary characteristics: (a) it is cognitive, making it hard to measure directly but 
possible to infer from the behavior of problem-solvers; (b) it is guided by certain goals; (c) it is 
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personal, meaning that individuals may handle the same problem differently; and (d) it consists of 
multiple processes (Mayer & Wittrock, 2006). Primarily four cognitive processes are relevant in 
problem-solving: representing, planning/monitoring, executing, and self-regulating (Mayer & 
Wittrock, 2006). Representing refers to converting a given external problem environment into an 
internal mental representation. As an example, respondents may need to explore the problem 
environment by conducting activity-based manipulations to better understand and represent the 
problem (Jonassen, 2000). Planning occurs when respondents devise a means of achieving the goal, 
whereas monitoring refers to an evaluation of the effectiveness and appropriateness of the planned 
solution (Mayer & Wittrock, 2006). Given that planning is a resource-intensive mental activity, 
researchers have chiefly employed information from response times to infer planning (e.g., Albert & 
Steinberg, 2011; Eichmann, Goldhammer, Greiff, Pucite, & Naumann, 2019). Executing means carry-
ing out the solution as planned while self-regulating refers to investigation and modification of the 
solution, such as checking previous actions, taking remedial actions, and potentially starting the 
problem over (Schunk, 2003).

Process data analysis

Many assessments involving problem-solving have been implemented on computers, producing a new 
type of data named process data. Process data include the whole human-computer interactive process 
and give a record of everything that a test-taker did through the course of the assessment. Depending 
on the assessment environment, this can for example be keystrokes, mouse clicks, and the timestamps 
for each such operation. These highly detailed data provide researchers with valuable information that 
can improve the understanding of test-takers’ cognitive processes (OECD, 2014a) and analyses of 
these data benefit educational measurement. For instance, by analyzing process data, we can identify 
test-taking disengagement (Sahin & Colvin, 2020), profile students (Gnaldi, Bacci, Kunze, & Greiff,  
2020; Greiff, Molnár, Martin, Zimmermann, & Csapó, 2018), improve the measurement precision of 
problem-solving proficiency (Han, Liu, & Ji, 2022; Liu, Liu, & Li, 2018), and validate the interpretation 
of test scores (Ercikan & Pellegrino, 2017).

However, it is challenging to analyze and make use of process data due to their special character-
istics. First, different test-takers experience distinct cognitive processes and differently interact with 
the computer, leading to varied lengths of process data. By comparison, a standardized test normally 
consists of a fixed number of items and responses. Second, process data contain a great amount of 
noise (Tang, Wang, He, Liu, & Ying, 2020). Furthermore, the dependencies of sequential operations in 
process data pose challenges to directly applying conventional psychometric models, such as item 
response theory, factor analysis, and regression models.

To discover the underlying processes based on event logs, researchers have primarily adopted two 
approaches. The first approach focuses on the automatic construction of models that aim to reproduce 
all the observed operations via algorithms such as the fuzzy miner (Bogarín, Cerezo, & Romero, 2018). 
In another example, Hanga, Kovalchuk, and Gaber (2020) applied recurrent neural networks to model 
the relationships among all events and predict the next event by using a process map to visualize the 
probability of the event transitions. Such methods depict the response processes well, but establishing 
connections to problem solving theory is not straightforward. Hidden Markov models (HMMs) can 
also describe the complete sequence of operations and identify latent stochastic states underlying the 
observed operation sequences. HMMs have been applied to process data to understand response 
strategies by examining the latent states and the transition between the latent states (Xiao, He, 
Veldkamp, & Liu, 2021). However, the latent states are highly task-dependent and the interpretation 
of different latent states is often difficult to ascertain.

Different from directly analyzing the complete event sequence, the second approach is to reduce the 
dimension of process data by extracting statistics (called features) and subsequently conduct analyses 
with the extracted features. Several feature extraction methods have been considered in the literature. 
Yuan, Xiao, and Liu (2019), for example, defined a set of behavioral indices according to the 
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Assessment and Teaching of 21st Century Skills project (Griffin & Care, 2014) from a theory-driven 
perspective. Such indices are easy to interpret but require substantial effort in re-coding procedures 
and are not easily applied to different types of problems. By comparison, data-driven methods 
automatically extract features via techniques from machine learning and natural language processing 
(e.g., Qiao & Jiao, 2018; Tang, Wang, Liu, & Ying, 2020). A widely-used method taken from natural 
language processing is the analysis of n-grams where the complete operation sequence is decomposed 
into smaller units, such as single operations (unigrams) and operation sequences with two (bigrams) 
or three (trigrams) consecutive operations (He & von Davier, 2016). Different tasks would lead to 
different grams, making the conclusions hard to generalize and compare across multiple tasks. In 
addition, dissimilarity measures have also been applied to capture the discrepancy of the operation 
sequences between individuals via multidimensional scaling methods (Tang, Wang, He, Liu, & Ying,  
2020) and between pre-defined optimal sequences via the Longest Common Subsequence algorithm 
(Hao, Shu, & von Davier, 2015; He, Borgonovi, & Paccagnella, 2021; Ulitzsch et al., 2021). Similarity 
and efficiency indicators are then defined to indicate the extent to which respondents follow an 
optimal strategy and the extent to which respondents conduct redundant actions (He, Borgonovi, & 
Paccagnella, 2021). However, such approaches require defining optimal strategies, have not consid-
ered that respondents may combine multiple strategies (He, Borgonovi, & Paccagnella, 2021), and can 
be computationally demanding (Ulitzsch et al., 2021). Furthermore, researchers have borrowed 
techniques from fields such as network analysis (Newman, 2010) to represent and analyze process 
data. A more detailed introduction to network analysis is presented in the next subsection.

Although response times and operation sequences can be simultaneously logged with compu-
ter-based problem-solving tasks, most studies have centered on operation sequences and have had 
less focus on response times. However, some studies have included time-on-task (e.g., Greiff, 
Niepel, Scherer, & Martin, 2016; Vörös & Rouet, 2016) and, recently, researchers have incorpo-
rated response times in operation sequence analysis (e.g., Chen, Li, Liu, & Ying, 2019; Ulitzsch 
et al., 2021; Xu, Fang, & Ying, 2020). Since response times can reflect test-takers’ mental processes, 
we aim to also utilize detailed information from response times via an approach of network 
analysis in this study.

Network analysis approach

In this subsection, we introduce the approach of network analysis. Networks are combinations of 
points (called “vertices”) connected by directed or undirected lines (called “edges”) (Newman,  
2010). Networks are widely used in varied fields. For instance, a social network can represent the 
relationships among a group of people, where the vertices represent people and the edges the 
friendships between people. Another example is the World Wide Web with vertices representing 
web pages and edges representing hyperlinks. That is, the meanings of vertices and edges depend 
on the application.

The rationale to apply network analysis to process data is that operations are directly connected 
with the previous and the next operation. Researchers have represented process data via a network 
with vertices representing operations and edges representing the transition of the operations (Vista, 
Awwal, & Care, 2016; Zhu, Shu, & von Davier, 2016). Specifically, Vista, Awwal, and Care (2016) 
treated a set of operation sequences as a directed network and proposed an exploratory network 
analysis to investigate the topology of dominant parts of the network. The dominant parts were 
determined based on the importance of the vertices and edges. In another study, Zhu, Shu, and von 
Davier (2016) weighted the edges with the frequency and computed the statistics weighted density 
(indicates how dense the network is), degree centrality (indicates how important the vertex is), and 
reciprocity (indicates the mutual relationship between two vertices). Moreover, they investigated many 
triadic patterns (the relationships among three vertices) in their process data. These studies showcased 
the potential of applying network analysis to process data. Different from previous studies that focused 
on the local patterns of dominant paths (Vista, Awwal, & Care, 2016) or triadic relationships (Zhu, 
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Shu, & von Davier, 2016), this article emphasizes the general features of the complete network based 
on different topic areas related to problem-solving theory.

Present study

In this article, we introduce an approach for identifying problem-solving solution patterns via 
techniques of network analysis and Gaussian mixture models. Our study has three aims. First, we 
describe a method for defining networks from response times and operation sequences. Second, we 
define and extract relevant network features from each participant’s process data which reflect the 
valuable and aggregated information of problem-solving processes. Third, with the extracted features, 
we classify participants into distinct solution pattern groups with Gaussian mixture models and 
present their typical solution patterns. The remainder of the article is organized as follows. The 
methods section describes how we visualize process data with networks, how we define network 
features, and introduces Gaussian mixture models. Thereafter, a case study is presented to illustrate 
the application of the proposed method with a real data set. We finally conclude with a discussion.

Methods

Network visualization of process data

We employ weighted directed networks to visualize process data in this study. Namely, we denote 
operations as vertices and the sequence of two successive operations as a directed edge. The edges are 
then weighted by the time spent on the transition. This distinguishes our study from previous studies 
that used the frequency of transitions as weights (Zhu, Shu, & von Davier, 2016). For a general 
representation of a network, we denote a set of vertices in the network as V = {ν1, ν2, · · · , νN}, where 
N denotes the number of all the possible operations; a set of edges in networks as E = {e1, e2, · · · , em}, 
where m denotes the number of edges in the network, which is potentially different for each test-taker; 
and a set of weights on the edges as T = {t1, t2, · · · , tm}, which corresponds to the response times spent 
on the transitions.

To illustrate the approach, consider the following process data example. In the example, there are 
six possible type-specific interactions (A, B, C, D, E, F) in addition to two system-defined interactions 
(Start and End). Assume that a test-taker took a set of operations (operation sequence: {Start, A, B, C, 
A, D, F, D, End}) and that the corresponding response times in seconds were {5, 3, 2, 1, 2, 3, 4, 2}. The 
operations and response times were restructured into an edge list in Table 1 and into a network graph 
in Figure 1. In this edge list, each row represents a certain transition from one operation to another. 
The first two columns (i.e., the “From” and “To” columns) refer to the operations and the third 
column indicates the time spent on each transition. If a certain edge occurred more than once, the 
average time spent on this transition was used as the weight of the edge. From Figure 1, we can get 
a more straightforward visualization of how the operations are linked. First, for the vertices, there is an 
isolated vertex labeled E in the graph, meaning that this interaction was not conducted by this test- 
taker. In contrast, some of the vertices were extensively connected with other vertices, such as vertex 

Table 1. An example of edge list.

From To RT

Start A 5
A B 3
B C 2
C A 1
A D 2
D F 3
F D 4
D End 2
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A and D. Second, for the edges, we can have an overview of the transitions of operations. In addition, it 
is easy to visualize certain transitions of operations. For example, the connections between vertex 
D and F were mutual, which indicated that the test-taker conducted operation D and revisited it after 
operation F. Such edges are called reciprocated edges. Additionally, the relationships among three 
vertices are widely discussed in network analysis. For example, in Figure 1, vertices A, B, and C have 
a transitive relationship because they are interconnected with each other. Thus, such a combination of 
three vertices is called a transitive triad. Meanwhile, the relationship among vertices Start, A, and D is 
called a structural hole where one vertex is connected with two other vertices but where those two 
vertices are not connected. Third, since the edges were weighted by the response times, a thicker edge 
indicates that more time was spent on the transition. The variations among the thicknesses of edges 
indicate how the test-taker distributed the time on the varied operations. In this example, the test-taker 
spent more time at the starting stage (indicated by the thickest edge from Start to A) and less time on 
other stages. For each respondent, the network graph can clearly illustrate the individual process data. 
However, it becomes challenging to distinguish and compare many network graphs using visual 
inspection. Instead, we need to extract informative statistics from the networks. The next subsection 
introduces the network features that we define from the network of process data.

Network features of process data

In deciding which network features to use, we set out to define variables that reflect the cognitive 
processes of problem solving. First, considering the representing process, respondents can explore the 
task environment by conducting specific operations (OECD, 2014a). To reflect the exploring aspect of 
response behavior, we defined vertex features since vertices correspond to operations. Second, since 
time-related measures have been proposed to infer the cognitive process of planning/monitoring (e.g., 

Figure 1. A network representation of process data, where the strength of the edges is weighted by the average response times.
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Eichmann, Goldhammer, Greiff, Pucite, & Naumann, 2019), we weight the transitions of operations 
by the response time. In a previous study by Eichmann, Goldhammer, Greiff, Pucite, and Naumann 
(2019), the longest duration and the variance of the durations have been proposed to measure 
planning in dynamic problems where not all the necessary information is presented at the outset 
(Stadler, Niepel, & Greiff, 2019). In the current study, we extract similar time-related measures from 
the network of process data. Third, the executing process depends on specific actions being taken in 
sequence (Mayer & Wittrock, 2006) and, hence, the sequence of operations is of high interest with 
respect to this process. Therefore, edge features are introduced as a way to capture information about 
sequential operations. To better describe the relationships between vertices, we break down the 
relationships into multiple levels: between two operations, among three operations, between two 
categories of operations (i.e., correct/incorrect operations), and among the complete network. Last, 
with respect to the self-regulating process, we consider if respondents check and modify the solution by 
revisiting previous actions. The edge features regarding two or three operations thus reflect the self- 
regulating process. In sum, we proposed network features (vertex features, edge features, and time- 
related features) that strongly relate to the cognitive processes in problem solving. Specifically, we 
define seven network features (see Table 2).

Vertex features
Operation diversity is defined as the proportion of the number of present operations to the number of 
all possible operations. A higher value of operation diversity indicates that the test-taker had more 
diverse interactions with the computer and is indicative of exploration behavior (OECD, 2014a).

Edge features
The edge features describe the relationships among the operations, reflecting the executing and self- 
regulating processes (Mayer & Wittrock, 2006). We organize the description of edge features accord-
ing to which vertices they concern. To be specific, we introduce the relationships among all vertices 
(edge density), between two vertices (reciprocity), among three vertices (transitivity), and among 
specific groups of vertices (the External – Internal index). We define edge density, the fraction of the 
possible edges that are actually present in the network (Hanneman & Riddle, 2005), to indicate the 
extent to which a respondent performed transitions among the operations. We also consider recipro-
city and transitivity, which focus on the dyadic and triadic relationships in the network, respectively. 
The reciprocity of a network is the proportion of the number of reciprocated edges to the number of all 

Table 2. The definitions and interpretations of the seven network features.

Feature Formula Notes Interpretations

Operation 
diversity

n/N n and N are the number of non-isolated and 
total number of vertices, respectively.

Indicates if the test-taker had diverse 
interactions with the computer.

Edge 
density

m/(n * (n − 1)) m is the number of edges existing in the 
network.

Captures the extent to which the test- 
taker tended to perform transitions 
among the existing operations.

Reciprocity k/m k is the number of reciprocated edges. A high value indicates that the test-taker 
tended to revisit previous operations.

Transitivity TT/(TT + SH) TT and SH refer to the number of transitive 
triads and structural holes.

A high value indicates that the test-taker 
tended to revisit previous operations 
after conducting one additional 
operation.

External- 
Internal 
index

(Co − Inco)/(Co + Inco) Co and Inco denote the number of correct 
edges (pointing to correct operations) and 
incorrect edges, respectively.

Measures whether the test-taker took 
correct operations constantly.

Average 
time

�t ¼
Pm

i¼1
ti=m

ti is the response time spent on the ith edge. Measures the average time spent on the 
transitions.

Standard 
deviation 
of time

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i¼1
ðti � �tÞ2= m � 1ð Þ

s
�t is the average time. Reflects whether the test-taker evenly 

distributed the time spent on the 
transitions.

6 M. ZHANG AND B. ANDERSSON



existing edges in the network. The transitivity feature is defined as the ratio of the number of transitive 
triads over the total number of transitive triads and structural holes. Both reciprocity and transitivity 
capture if the respondent tended to revisit previous operations, which are relevant to the cognitive 
process of self-regulating. If a network has a high level of reciprocity and transitivity, it indicates that 
the individual conducted operations back and forth; on the contrary, if the values are zero, it indicates 
that the individual conducted operations straight ahead and never revisited previous operations. 
Additionally, we employ the External – Internal (E-I) index (Krackhardt & Stern, 1988) to measure 
whether test-takers took correct operations constantly. Note that correct operations are defined by 
researchers on an item-by-item basis. The calculation of the E-I index is the difference between the 
number of correct edges and incorrect edges over the number of total edges, ranging from −1 to 1. 
A higher level of the E-I index implies that the test-taker conducted more correct operations than 
incorrect operations. Hence, the E-I index to some extent refers to the correspondence between 
a respondent’s solution and the optimal solution, and is thus similar to the efficiency indicator defined 
in He, Borgonovi, and Paccagnella (2021).

Time-related features
The last two features focus on the distribution of response times; namely, average time and standard 
deviation of time (sd of time). The former indicates how much time was spent on the transitions of 
operations on average. The latter shows the variation of response times; namely, whether the test-taker 
distributed the time equally on the transitions or not. The time-related features can be viewed as 
measures of the cognitive process of planning/monitoring (Eichmann, Goldhammer, Greiff, Pucite, & 
Naumann, 2019).

Gaussian mixture models

After extracting features from individual networks, we aim to discover hidden subgroups on the basis 
of network features and summarize the common response pattern within each subgroup. Test-takers 
in the same subgroup should be similar to each other but distinct from test-takers in other subgroups 
(James, Witten, Hastie, & Tibshirani, 2013). The question arising immediately is whether there exist 
substantially different subgroups or clusters. We assess the clustering tendency to answer the question 
via the Hopkins statistic (Lawson & Jurs, 1990), which examines the spatial randomness of the data. To 
be specific, a sample with elements xi is randomly drawn from a real dataset X; next, a simulated 
sample with elements yi is generated from a uniformly distributed dataset that has the same variation 
as the dataset X; then the distance of both xi and yi with its nearest neighbor in X is computed and 
denoted as wi and ui respectively. The Hopkins statistic is then defined as � ui= �ui þ � wið Þ. If the 
dataset X includes meaningful clusters, the distance for the real data points xi should be much smaller 
than the distance for the artificial data points yi leading to a higher value for the Hopkins statistic.

Next, to obtain the group membership for each test-taker, we apply Gaussian mixture models 
(GMMs; Fraley & Raftery, 2002). Mixture models belong to latent variable modeling and the latent 
variable is assumed to be discrete instead of the continuous latent variable in factor analysis. In GMMs, 
a multivariate Gaussian distribution of the observed variables for each cluster is assumed. Namely, 
different clusters are centered at a distinct mean vector and the covariance matrix across clusters can 
have different geometric features such as volume, shape, and orientation. To estimate the GMMs we 
used the expectation-maximization (EM) algorithm with model-based hierarchical agglomeration as 
initialization (Fraley & Raftery, 2002). Subsequently, two crucial questions arise – the number of 
clusters and the geometric features of the covariance matrix. In model-based clustering, we run 
a number of possible models and select a final model according to certain criteria. Information criteria 
such as Bayesian Information Criterion (BIC; Schwarz, 1978) and the integrated complete-data 
likelihood criterion (ICL; Biernacki, Celeux, & Govaert, 2000) have been widely used, which take 
both model fit and model complexity into consideration. Another approach is the bootstrap likelihood 
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ratio test (LRT), which compares a mixture model with k clusters and another mixture model with k +  
1 clusters via a resampling approach to obtain LRT significance (McLachlan, 1987). In short, we 
consider multiple possible models with a cluster size ranging from one to nine and where all possible 
covariance structures are considered. Our final model was selected based on information-based and 
resampling-based criteria. A complete procedure will be illustrated in the following section.

Network analysis of problem-solving tasks in PISA 2012

Data and sample

Task
In this article, we illustrate the application of the proposed approach with a creative problem-solving 
task (the traffic task, see Figure 2) in PISA 2012, which aimed to assess students’ problem-solving 
competence – the capacity to engage in, understand, and resolve problems when the solution is opaque 
(OECD, 2014a). The traffic task presents a map with 23 paths and the travel time of each path to the 
test-taker. The object is to find the quickest route from Diamond to Einstein and the shortest possible 
time is provided. Test-takers can activate or deactivate each path by clicking on it and they can also 
reset the map by clicking on the “RESET” button.

Participants
We used data from the United States. The data were retrieved from http://www.oecd.org/pisa/data. 
These are anonymized secondary data and neither consent to participate or consent for publication 
nor ethics approval were required for the current study. There were 413 students participating in the 
traffic task, but seven of them only conducted one operation and they were excluded from this 
analysis. Afterwards, there were 406 participants in our analysis: 191 of them were females and 76% 
of the participants solved the problem successfully.

Figure 2. Traffic task in the domain of creative problem-solving in PISA 2012, where the highlighted route is the solution. The figure 
is retrieved from https://www.oecd.org/pisa/test −2012/testquestions/question2/.
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Log-file data and re-coding
The PISA 2012 creative problem-solving tasks were delivered by computer. We used the sequence of 
operations and the corresponding timestamps from the log files (OECD, 2014b). The sequence of 
operations mainly consists of two parts: system-defined operations (start and end item) and task- 
specific operations (hit_path, reset). An example of a task-specific operation is “hit_DiamondSilver,” 
which means clicking on the path between Diamond and Silver, as illustrated in Figure 2. Since there 
are substantial differences between selecting and de-selecting a path, we distinguished “hit_path” 
operations as “select_path” and “cancel_path.” In addition, there were operations beyond the instruc-
tions of the task, such as clicking on the timer box or the paragraph above the map. Most studies 
ignored these operations because they contributed nothing to solving the problem. However, we 
noticed that such operations were quite common and believe these operations also provide us with 
useful information. Hence, we denoted all these operations as a new category of operation: an 
insignificant operation. In this way, the operations include 50 types: start, end, reset, insignificant 
operation, 23 path selections, and 23 path cancellations. To simplify the name of the paths, we denoted 
them from P1 to P23 (see Appendix A for details). P1 - P6 are required in the correct solution, while 
the remaining paths should be excluded. Regarding the timestamps, we computed the time difference 
between two successive operations as the response time. So far, we have reorganized the data and can 
move on to the network analysis of process data.

Example networks and descriptive statistics

The reduced process data were restructured for each student into an edge list as indicated in Table 1. 
Then, we plotted the network graph of process data for each student via the “igraph” package (Csardi 
& Nepusz, 2006) in R 4.0.2 (R Core Team, 2020). The example R code used in this study can been 
found in Appendix B. An example network is presented in Figure 3. In this graph, we colored the 
vertices according to their relationships with the correct solution: golden = correct selection (SP1 - 
SP6), red = correct cancellation (CP7 - CP23), blue = incorrect cancellation (CP1 - CP6), incorrect 
selection (SP7 - SP23) and insignificant operations, and gray = other operations (start, end and reset). 
In addition, the size of each vertex is determined by the number of edges connected with it. In other 
words, a larger vertex means that the operation was conducted more frequently. From Figure 3, we can 
see that this test-taker actively interacted with the computer. The individual conducted both correct 
and incorrect operations in the process and finally found the correct solution. This participant 
preferred canceling the paths one by one to using the reset button. Sometimes, the test-taker 
conducted insignificant operations. According to the thickness of the edges, this individual spent 
more time on the first and the last transition.

Gaussian mixture models based on network features

The next procedure is to identify solution patterns of the respondents. Given that test-takers who 
solved the problem successfully or unsuccessfully may exhibit distinct patterns, we separated the test- 
takers into a success group and a failure group according to their final performance on the task and 
then applied GMMs to them separately. We normalized Sd of time by the logarithmic function and 
then assessed the clustering tendency of the data. The Hopkins statistic was .899 and .906 in the failure 
and success groups, respectively, which were larger than the cutoff value .75 (Lawson & Jurs, 1990) and 
indicated that meaningful patterns existed in the data. Next, we used the “mclust” package (Scrucca, 
Fop, Murphy, & Raftery, 2016) to estimate GMMs in the failure and success groups. The final model 
was selected based on either of the BIC, ICL, or bootstrap LRT. All selection procedures suggested the 
same models: a two-cluster mixture with covariances having the same volume but distinct shapes and 
orientations (EVV) in the failure group and a four-cluster mixture with varying volumes, shapes, and 
orientations (VVV) in the success group.
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Subsequently, we present the results from the selected GMMs. In Table 3, we present descrip-
tive statistics of the seven network features. Additionally, we summarize the plausible values from 
the problem-solving, mathematics, and reading domains for each cluster because student problem- 
solving performance is related to the performance of mathematics and reading (OECD, 2014a), 
which potentially provide evidence for the validity of the clustering results. Plausible values 
describe the performance of the population (OECD, 2014b), with a mean equal to 500 and 
standard deviation equal to 100 across all countries. There were five sets of plausible values for 
each domain. Following Mislevy, Beaton, Kaplan, and Sheehan (1992), we aggregated the plausible 
values and estimated the mean and its standard error for each cluster in Table 3. We also plot the 
cluster-level graphs in Figure 4 by aggregating operation sequences of students in the same cluster. 
To make the cluster-level graphs clearer, we ignored the transitions that occurred less than 10% of 
the cluster size.

Combining the information from the cluster-level network graphs and network features, we then 
seek to interpret the common solution pattern in each cluster. We first focus on the failure group. 
Failure 1 actively interacted with the computer and tried various operations (operation diversity  
= .571) with relatively short (average time = 2.330) but even time (sd of time = 1.027) spent on the 
transitions. Students in this cluster tended to revisit previous operations; however, they did not 
conduct correct operations constantly (E-I index = .117). We denoted Failure 1 as the less-able cluster. 
They engaged with the task and made a great effort but might lack knowledge or the ability to learn 
from errors. Members in Failure 1 also performed below average in the three proficiency domains (see 
Table 3). In contrast, although the average time on transitions was quite long (average time = 10.541) 
in Failure 2, it seems that these students just stayed in the system but did not engage with the problem 

Figure 3. A network representation of process data (studentID = 02778) in the traffic task. rs = reset. is = insignificant operations. 
Color illustration for vertices: golden = correct selection; red = correct cancellation; blue = incorrect operations and the insignificant 
operation; gray = start, end, and reset.
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(operation diversity = .142). According to Figure 4b, students in Failure 2 tended to try one incorrect 
solution (i.e., {SP1, SP2, SP7, SP8, SP5, SP6} or {SP9, SP10, SP11, SP13, SP14}) and then gave up. We 
denoted this cluster as the low-effort cluster. Students in this cluster had the lowest value of plausible 
values, implying that these students might display a lack of effort in the whole cognitive assessment.

We subsequently describe the success groups. From Figure 4c, students in Success 1 first tried an 
incorrect solution as students in Failure 2 did. However, instead of giving up quickly, students in 
Success 1 attempted to modify their solutions by de-selecting the incorrect paths (e.g., CP7 and CP11), 
minimizing the difference between their solution and the optimal solution. Without too many trials, 
they were able to find the correct solution. They spent longer and more uneven time on transitions 
than Success 2 and Success 4, indicating that they planned more for the operation sequences that they 
executed. Consequently, their E-I index was higher than that of Success 2 and Success 4 (see Table 3). 
We denoted Success 1 as the adaptable cluster in which students performed well in the three 
proficiency domains. Students in Success 2 conducted more diverse operations than students in 
Success 1. More importantly, they were likely to conduct operations back-and-forth, indicated by 
a high level of reciprocity and transitivity in Table 3. Namely, they tended to revisit previous 
operations, and thus we named this cluster the back-and-forth cluster. The third cluster in the success 
group, Success 3, showed a highly distinct pattern. Specifically, students in this cluster did not conduct 
many operations (operation diversity = .182), but the majority of the operations were required in the 
correct solution according to Figure 4e, resulting in a high value for the E-I index (.956). Another 
striking characteristic of this cluster is that they spent a long time on the transitions and that the 
standard deviation of response times was huge (see Table 3). Figure 4e helps explain the results. There 
it can be seen that students spent quite a large proportion of time at the starting stage (indicated by 
rather thick edges pointing from “start”). After that, the students just spent a small amount of time on 
other operations. This indicates that the students first made a plan for the task, which requires 
a remarkably longer time, and then executed the plan straight ahead (indicated by low reciprocity 
and transitivity) and efficiently. Hence, we called this the deliberate cluster. Students in this cluster had 
a similar mean score in the problem-solving domain to the other clusters but the means in mathe-
matics and reading competency were lower than students in other success clusters. The last cluster in 
the success group is quite similar to Failure 1 except for a higher level of the E-I index in Table 3. 

Table 3. Means and standard errors of network features and plausible values in each cluster.

Features Failure 1 Failure 2 Success 1 Success 2 Success 3 Success 4

Size 73 26 106 54 34 113
Operation diversity .571 .142 .369 .420 .182 .668

(.025) (.009) (.009) (.013) (.007) (.015)
Edge density .064 .195 .068 .081 .117 .050

(.003) (.019) (.002) (.002) (.002) (.001)
Reciprocity .076 .132 .004 .118 .022 .058

(.008) (.037) (.001) (.013) (.008) (.006)
Transitivity .120 .049 .023 .119 .011 .115

(.010) (.024) (.004) (.013) (.008) (.006)
External-Internal index .117 −.001 .533 .362 .956 .335

(.039) (.066) (.021) (.030) (.021) (.014)
Average time 2.330 10.541 3.049 2.280 11.730 2.124

(.108) (2.476) (.134) (.078) (1.541) (.072)
SD of time 1.027 7.071 1.473 .961 8.762 .905

(.010) (.366) (.012) (.005) (.230) (.006)
PRO PV 467 420 542 521 523 542

(9.639) (13.425) (7.412) (9.232) (14.248) (7.227)
MAT PV 475 438 526 520 504 521

(9.107) (12.642) (7.589) (9.386) (12.311) (7.899)
REA PV 495 442 539 530 508 538

(9.253) (14.197) (6.842) (9.755) (14.049) (6.771)

PRO = problem-solving. MAT = mathematics. REA = reading. PV = plausible value.
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Figure 4. Cluster-level network representations of process data in the traffic task. rs = reset. Is = insignificant operations. Color 
illustration for vertices: golden = correct selection; red = correct cancellation; blue = incorrect operations and the insignificant 
operation; gray = start, end, and reset.
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Success 4 tried various (operation diversity = .668) operations quickly (average time = 2.124) until the 
correct solution was found. Their solution pattern was in line with a trial-and-error strategy (Klahr,  
2002). Hence, this cluster was denoted as the trial-and-error cluster. They were persistent to solve the 
problem, indicating high motivation in the assessment. In addition, their performances in the three 
domains were above average. So far, we have investigated the cluster-level networks of the problem- 
solving task and provided interpretations of the results, advancing the insight into students’ solution 
patterns.

Discussion

Process data from computer-based assessments provide researchers with valuable sources of inferring 
test-takers’ mental processes. However, analyzing process data is often challenging. In this article, we 
represented operation sequences and response times from process data as network graphs, providing 
a straightforward way to visualize process data. In addition, we defined specific network features to 
extract useful information from the process data and shed light on the cognitive processes in problem 
solving. Based on the network features, we then identified solution patterns for success and failure 
groups through GMMs. A case study was conducted to showcase the approach.

Discussion on the empirical study

With process data of the PISA 2012 traffic task from 406 students in the United States, we 
identified two and four clusters for the failure and success groups, respectively. We interpreted 
these clusters as the less-able, low-effort, adaptable, back-and-forth, deliberate, and trial-and-error 
clusters. Some reflections can be made based on our results. The behavior of students in the 
adaptable cluster is similar to the problem-solving technique means-ends analysis (Simon & 
Newell, 1971). This technique involves students first looking for differences between the present 
state and the desired state and then applying operators to reduce the differences. Such a strategy 
commonly occurs in human problem-solving behavior (Simon & Newell, 1971). Similarly, trial- 
and-error is also popular in problem-solving (Klahr, 2002), even though it is inefficient for 
complicated problems. Note that the less-able cluster seemingly adopted a similar approach but 
they were more likely to get stuck in incorrect operations and eventually failed to complete the 
task. By comparison, a more efficient solution pattern is manifested in the deliberate cluster where 
students first made a plan and then executed it straight ahead. It has been documented that prior 
planning plays an important role in problem-solving, but also that this effect varies across tasks 
(Eichmann, Goldhammer, Greiff, Pucite, & Naumann, 2019). For instance, in dynamic problems, 
test-takers cannot make a thorough plan at first because not all the information is provided at the 
outset. There were both static and dynamic tasks in PISA 2012. Generally applying a planning 
strategy at first does not guarantee good performance for dynamic tasks. We note that the 
deliberate cluster had only an average level of performance in the general problem-solving domain 
and other domains. This could indicate that the students who applied a planning strategy for the 
traffic task also, unsuccessfully, tried the same strategy for other tasks. Note that the traffic task 
under study represents a specific type of problem – the shortest path search problem, which has 
wide application to car navigation. To efficiently solve the problem, many algorithms have been 
proposed of which the bi-directional algorithm (Noto & Sato, 2000) is an example. It proceeds by 
finding the optimal path from both the starting point and the terminal point, which is similar to 
the strategy employed by students in the back-and-forth cluster. In short, the six clusters showed 
distinct solution patterns, and students in the clusters performed differently in the proficiency 
domains. By analyzing the response patterns we have gained insights into test-takers’ problem- 
solving processes which go beyond what the binary outcome (success or failure) can possibly 
provide. However, the validation of the results and interpretations needs additional investigation.
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Discussion on the proposed approach

Given that process data has become commonplace in many types of assessment, we believe there exists 
great potential to apply the proposed approach in diverse areas and fields. Once unique operations, 
operation sequences, and timestamps have been identified, the network based on the process data can 
be defined. However, a decision must be made regarding which network features to utilize and this 
depends on the research intentions and the type of task under analysis. In this article, we defined seven 
general network features and it is worthwhile to consider the suitable conditions for when to utilize the 
features. Here, we discuss the type of tasks and the conditions for applying the proposed features in 
Table 4. Four properties of tasks are relevant to the current study: (a) if the task requires a fixed 
number of operations or respondents are free to conduct any operations; (b) if the task allows 
respondents to conduct the same operations multiple times; (c) if the operations can be categorized 
into different groups (e.g., correct/incorrect); and (d) if respondents can freely distribute their time on 
the operations. Based on these properties, we then discuss under which conditions we can apply the 
network features. Operation diversity applies to the situation in which test-takers are free to conduct 
any operation. We take the traffic task as a viable example where test-takers can decide which paths to 
select or de-select. However, in other tasks, test-takers could be asked to conduct a fixed number of 
operations, resulting in the same operation diversity. Edge density is applicable when the number of 
operations is free and operations can be repeatedly conducted. Next, analysts can compute reciprocity 
and transitivity when test-takers are allowed to revisit previous operations. The E-I index can be used 
when analysts categorize operations into different types. Last, the time-related network features are 
meaningful when test-takers are allowed to allocate their time freely. Given respondents can usually 
conduct operations and distribute time freely, we believe that these network features have great 
potential in extracting valuable information from process data in future empirical studies.

Since there have emerged plenty of studies using process data, a brief comparison between the 
proposed approach and existing relevant methods with a focus on investigating response processes is 
described here. Compared to algorithms like fuzzy nets (Günther & van der Aalst, 2007) which reflect 
the results of process discovery models (e.g., the probability of taking a specific action subsequently), 
our approach reflects the original operation sequence and emphasizes features from networks. 
Additionally, educational process mining algorithms can automatically construct process discovery 
models, whereas the network features are pre-defined to reflect the cognitive processes of problem 
solving, making the results more interpretable. Compared to HMMs (e.g., Xiao, He, Veldkamp, & Liu,  
2021), where solution patterns based on latent states are inferred, we directly identified different 
solution patterns from observed operations and response times. Compared to studies based on 
n-grams that capture short-length sequences (He & von Davier, 2016), it is easier to grasp complex 
relationships among the operations with network analysis by considering for example the density of 
the complete network. With the possible operations rising, the number of grams, especially bi-grams 
and tri-grams, will increase to a great extent, making the analysis and interpretations more complex. In 
contrast, an increasing number of possible operations would still correspond to only seven network 

Table 4. Conditions for applying network features.

Feature
Free number of 

operations
Allowance of repeated 

operations
Operation 
categories

Free time 
allocation

Operation diversity × - - -
Edge density × × - -
Reciprocity - × - -
Transitivity - × - -
External-Internal index - - × -
Average time - - - ×
Standard deviation of 

time
- - - ×

Note. “×” indicates the property of tasks needed to employ particular network features. “-” indicates the property of tasks not needed 
to employ particular network features.
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features in our approach. Compared with the methods based on dissimilarity measures (e.g., He, 
Borgonovi, & Paccagnella, 2021) that particularly focus on the relationship between individual 
operation sequence and the optimal sequence, we considered the E-I index to reflect the extent to 
which respondents conducted necessary operations. Besides the E-I index, we also consider other 
aspects of operations and response times that are not closely related to the optimal strategies. Last, 
researchers have also utilized process data to infer respondents’ problem-solving ability (e.g., Han, Liu, 
& Ji, 2022; Shu, Bergner, Zhu, Hao, & von Davier, 2017; Zhan & Qiao, 2022). However, in the current 
study, we have focused on respondents’ solution patterns and estimation of problem-solving ability is 
beyond the scope of this article. In addition, we did not draw a conclusion about stronger and weaker 
problem-solvers among respondents who solve the task successfully.

Contributions and limitations

This article has several contributions. First, we incorporate two types of data sources from the log-files 
of computer-based assessments – operation sequences and response times – in a single study, while the 
majority of the studies on process data analysis (e.g., He, Borgonovi, & Paccagnella, 2021; Zhu, Shu, & 
von Davier, 2016) ignored the response times. Second, networks of process data provide direct 
visualization of the whole problem-solving process. Compared to the raw process data, the seven 
network features that we defined can reduce the complexity but retain the essential information in the 
data. Additionally, the features are easy to obtain due to the availability of user-friendly tools such as 
the igraph package (Csardi & Nepusz, 2006) in R. The network features utilized in this study are based 
on the global networks instead of the local networks (e.g., Vista, Awwal, & Care, 2016), making them 
easier to generalize to multiple tasks.

With respect to the empirical study, we argue that identifying solution patterns is beneficial for 
students, teachers, and test development. Students can review their own network of process data, 
which helps them reflect on their cognitive processes, and teachers can tailor their instructions for 
each student after identifying the solution patterns of students. For instance, for students that 
exhibit a low-effort behavior pattern, teachers can try to identify why they did not make an effort 
in the assessment. Two such reasons could be a lack of basic computer skills to interact with the 
computer or that a low-stake test did not motivate them. For less-able students, it would be 
beneficial to give them easier exercises and offer explicit hints. For the deliberate group, planning 
everything at first might not be the most useful strategy in dynamic problems. Rather, exploration 
behavior can play a key role in such contexts (Eichmann, Greiff, Naumann, Brandhuber, & 
Goldhammer, 2020) and teachers can encourage students with the deliberate solution pattern to 
explore more within the system. Regarding the back-and-forth pattern, besides the bi-directional 
algorithm in the shortest path search problem (Noto & Sato, 2000) and the self-regulating process, 
researchers also found a similar pattern in other types of tasks (e.g., Xiao, He, Veldkamp, & Liu,  
2021) and interpreted it as hesitation or uncertainty, which provides further information for 
teachers. For the trial-and-error and adaptable clusters, they were engaged with the test and 
performed quite well and as such would not require explicit instruction from teachers. 
Concerning test development, comparing test-takers’ solution patterns with the intended task 
design is useful for the validation of the interpretations of task performance. In summary, the 
proposed approach incorporates operation sequences and response times and delineates how test- 
takers solve problems, which has practical significance in education.

Some limitations of our study should be noted. First, the seven network features cannot reflect all 
the information available in process data. We only considered certain types of global network features 
in this study. However, there are potentially other network features that can be utilized in the network 
of process data, such as the centrality of each operation to indicate the importance of individual 
operations, if single operations are of particular interest. In addition, using average response times as 
edge weights does not entirely capture the frequency of single action transitions (Zhu, Shu, & von 
Davier, 2016) and the variation of response times for single action transitions, although we weighted 
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the vertices (e.g., operations) with associated frequencies in graphs. Deciding on what network 
features to compute depends on the specific study at hand and future studies can explore additional 
features beyond those considered here. Second, although we have shed light on the cognitive processes 
involved in problem-solving, it is not straightforward to create one-to-one connections between 
cognitive processes and network features. The cognitive processes occur in parallel (Lesh & 
Zawojewski, 2007) and the network features can reflect several cognitive processes. Third, validating 
the cluster interpretations remains a challenge. In our study, we have provided supporting evidence for 
the approach used via the computation of the average domain scores in each cluster. However, there 
are no external response patterns that can directly confirm our cluster results due to the limitations of 
the present analysis. Qualitative methods such as interviews and think-aloud protocols can offer some 
added evidence regarding the cluster interpretations for future studies with a different design and data 
collection method. Additionally, there exist graph mining techniques that aim to find the frequent 
sub-graphs and discover topological structures from a geometry-oriented perspective (Bogarín, 
Cerezo, & Romero, 2018; Ulitzsch et al., 2021), which could be a potential direction for future studies. 
Last, like other studies using single tasks, it is a question that whether the solutions patterns found in 
the study can be generalized to other tasks. The problem type (e.g., dynamic or static), task setting, and 
difficulty may influence respondents’ solution patterns. For example, the back-and-forth pattern 
would not apply to tasks that forbid revisiting previous operations. If the generalization of the solution 
patterns is of interest, it is possible to employ the proposed approach to each task separately, compare 
the cluster-level network features, and examine the extent to which the cluster members of one task are 
also grouped to the same cluster in other tasks.

Conclusions

In this article, we introduced an approach that combines network analysis and Gaussian mixture 
models to visualize process data as a network, extract network features from process data, and identify 
problem-solving solution patterns. A real data set from PISA 2012 was used to illustrate the complete 
procedure and we gained a deeper understanding of how students solve the problem beyond the 
binary final performance. Our results indicate that mining information embedded in process data 
provides an insight into the cognitive processes of students. In addition, our proposed approach 
demonstrates great potential in analyzing process data and exploring solution patterns in problem- 
solving tasks in practice.
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Abstract: Problem-solving is a critical aspect of intelligence that has become increasingly important
in modern society. Mapping out the determinants of success in problem-solving helps understand
the underlying cognitive processes involved. This article focuses on two key cognitive processes
in problem-solving: non-targeted exploration and planning. We generalize previously defined
indicators of planning and non-targeted exploration across tasks in the 2012 Programme for the
International Assessment of Adult Competencies and examine the internal construct validity of the
indicators using confirmatory factor analysis. We also investigate the relationships between problem-
solving competency, planning, and non-targeted exploration, along with the specific dependence
between indicators from the same task. The results suggest that (a) the planning indicator across tasks
provides evidence of internal construct validity; (b) the non-targeted exploration indicator provides
weaker evidence of internal construct validity; (c) overall, non-targeted exploration is strongly
related to problem-solving competency, whereas planning and problem-solving competencies are
weakly negatively related; and (d) such relationships vary substantially across tasks, emphasizing
the importance of accounting for the dependency of measures from the same task. Our findings
deepen our understanding of problem-solving processes and can support the use of digital tools in
educational practice and validate task design by comparing the task-specific relationships with the
desired design.

Keywords: log-file data; large-scale assessment; PIAAC; problem-solving; planning; non-targeted
exploration

1. Introduction

In modern societies, solving problems is a major task in our life (OECD 2014), in-
volving multiple higher-order cognitive skills such as devising plans, testing hypotheses,
remedying mistakes, and self-monitoring (Greiff et al. 2015). Thus, a high level of problem-
solving competency lays a sound foundation for future learning and prepares students to
handle novel challenges (Csapó and Funke 2017; OECD 2014). To make students better
problem-solvers, it has been suggested to explicitly embed problem-solving skills into
national curricula (Greiff et al. 2014) and use computer-based problem-solving simulations
called “microworlds” where students can explore and discover underlying rules and reg-
ulations (Ridgway and McCusker 2003). Besides acquiring problem-solving competency
in formal education, it is also important to develop such a skill over the entire lifetime
and engage in lifelong learning (Greiff et al. 2013). For example, teachers might need to
learn how to employ digital tools for long-distance education, and office workers might
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need to adapt to a different computer system. It has been documented that proficiency in
applying information and communication technology (ICT) skills to solve problems has a
positive influence on participation in the labor force (Chung and Elliott 2015). That is, the
competency of problem-solving is both a key objective of educational programs (OECD
2014) and valued in the workplace.

Hence, many educational large-scale assessments for students and adults have fo-
cused on the domain of problem-solving. For example, the Programme for the International
Student Assessment (PISA) evaluated 15-year-old students’ problem-solving in 2003, 2012,
and 2015. Another example is the 2012 Programme for the International Assessment of
Adult Competencies (PIAAC), which covers problem-solving in technology-rich environ-
ments when using ICT. Many of these assessments have been implemented on computers
where the complete human–computer interactions are recorded in log files. Just as the task
performance provides information on what respondents can achieve, the log files open a
window into how respondents approach the task. Log files offer valuable information for
researchers to understand respondents’ cognitive processes when solving problems, and
this study intends to explore the log files of problem-solving tasks to infer the cognitive
processes when solving problems.

A better understanding of the problem-solving processes has potential implications
for integrated assessments and learning experiences (Greiff et al. 2014). For example, the
analysis results from log files can provide teachers with materials on the weaknesses and
strengths of students in solving a problem, and further, teachers can tailor their instruction
for students. In this study, we aim to improve the understanding of the cognitive problem-
solving processes in the context of information processing. This can potentially benefit
educational practices related to improving problem-solving skills. For example, the analysis
of log files can inform teachers whether a student is engaged in solving a problem or applies
an efficient strategy to approach the problem (Greiff et al. 2014) and whether additional
instructional scaffolding is needed when a student is stuck.

The data availability of international large-scale assessments has stimulated studies
that explore the information from the log files. Both theory-based methods (e.g., Yuan et al.
2019) and data-driven methods based on machine learning or natural language processing
(e.g., He and von Davier 2016) have been applied to extract information called process
indicators from log files, and the relationships between these process indicators and task
performance have then been inferred. However, the majority of research has focused on
single tasks, and the generalizability of the conclusions remains unclear. In this study,
we used process indicators to analyze multiple tasks involving two cognitive aspects of
problem-solving: planning and non-targeted exploration. Specifically, we examine the
internal construct validity of the measures of planning and non-targeted exploration using
tasks from PIAAC 2012 and infer their relationships with problem-solving competency.
Next, we review the literature on problem-solving, planning, and non-targeted exploration
and describe the current study in more detail.

1.1. Problem-Solving

A problem is considered to have two attributes: (a) the difference between a given state
and the desired goal state and (b) the social, cultural, or intellectual worth embedded in
achieving the goal (Jonassen 2000). Problems can be categorized into different types accord-
ing to their characteristics. Here, we introduce three problem categories based on dynamics,
structuredness, and domain (Jonassen 2000). First, problems can be categorized as static or
dynamic problems based on the dynamics of a problem situation. In static problems, all
the information relevant to the problem is known at the outset (Berbeglia et al. 2007). In
contrast, dynamic problems (also called complex problems) do not present all the necessary
information at the outset; instead, problem-solvers must interact with the problem situation
to collect relevant information (Stadler et al. 2019). Thus, exploring the problem situation
plays a more important role in dynamic problems compared with static problems. In
addition, according to the structuredness (i.e., the clarity of a problem), a problem can be
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mapped into a curriculum with two poles representing well-structured and ill-structured
problems (Arlin 1989). Problems in textbooks tend to be well-structured problems with
a clearly defined initial and goal state and operator rules, whereas problems such as de-
signing a building are ill-structured problems. The tasks in PISA 2012 and PIAAC 2012 are
relatively well-structured problems, and the optimal solutions are predefined. Moreover,
based on the specific domain knowledge required to solve a problem, problems can be cate-
gorized as domain-specific and domain-general (Jonassen 2000). For example, physics and
biology exams typically present domain-specific problems. In contrast, finding a quickest
route between two places and figuring out why a lamp is not working are examples of
domain-general problems in everyday contexts.

The cognitive process of transferring a given state into a goal state when the solution
is not immediately accessible is called problem-solving (Mayer and Wittrock 2006). Mayer
and Wittrock (2006) argued that problem-solving involves several component processes:
representing, planning/monitoring, executing, and self-regulating. We take a problem-
solving task released from the PIAAC 2012 (see Figure 1) as an illustrative example. The
task requires participants to bookmark job-seeking websites that do not need registration or
fees. When confronted with this problem, respondents must convert the given information
into a mental representation, which includes the initial state (e.g., five website links in
this example), goal state (e.g., bookmarked websites satisfying the requirements), and the
possible intermediate states (Bruning et al. 2004). Such a process is called representing.
Planning occurs when respondents devise a way to solve the problem (Mayer and Wittrock
2006), such as decomposing it by checking the links from the first to the last to see which
require registration or a fee. Monitoring refers to the process of evaluating whether the
solution is valid and effective (Mayer and Wittrock 2006). Implementing the planned oper-
ations is called executing (Mayer and Wittrock 2006). Self-regulating involves modifying
and maintaining activities that allow respondents to move toward the goal (Schunk 2003).
While these processes are all assumed to be active in problem-solving, the importance of
each cognitive process differs across problems.
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In a technology-rich society, problems often appear because new technology is in-
troduced (OECD 2012). On the other hand, tools and technologies are widely applied
to facilitate problem-solving. Capturing the intersection of problem-solving competency
and the skills needed in ICT, the 2012 PIAAC specifically covers a domain called problem-
solving in technology-rich environments (PS-TRE), where problem-solving competency is
defined as the capacity of “using digital technology, communication tools and networks to
acquire and evaluate information, communicate with others and perform practical tasks”
(OECD 2012, p. 47). The 2012 PIAAC PS-TRE domain developed fourteen problems
that are dynamic, relatively well-structured, and domain-general information problems.
The problems are assumed to assess a single dimension—problem-solving competency
(OECD 2012). In addition to problem-solving competency, PIAAC 2012 also emphasizes
the cognitive dimensions of problem-solving. The PS-TRE domain shares similar cognitive
problem-solving processes with Mayer and Wittrock (2006) but with a particular focus on
acquiring and dealing with information in computer-based artifacts.

To acquire the relevant information, it is necessary to interact with the problem en-
vironment and explore the features or potential resources that are closely related to the
representing process. After collecting useful information, respondents may devise a plan
(e.g., to break down the problem and set sub-goals for achieving the desired state). These
two processes, exploration and planning, play vital roles in problem-solving and are
thus the focus of this study. We next introduce the definitions and measures of planning
and exploration (particularly non-targeted exploration) and their relationships with task
performance.

1.2. Planning and Problem-Solving

Planning is defined as mental simulations of future operations and associated out-
comes with the aim of achieving certain goals or guiding problem-solving (Mumford et al.
2001). An early conception of planning referred to certain predefined, fixed sequences
of operations. More recently, however, researchers have argued that adaptable cognitive
responses are at the core of planning (Mumford et al. 2001). In addition, it is assumed that
planning consists of multiple and distinguishable processes (Hayes-Roth and Hayes-Roth
1979). For example, Mumford et al. (2001) proposed a planning process model: prior to
developing an initial and general plan, environment analyses including the identification
of resources and contingencies are necessary. Then, an initial plan needs to be elaborated
into a more detailed plan, which requires searching information about potentially useful
operations and resources needed to execute these operations (Xiao et al. 1997). Based on the
forecasting of outcomes from these operations, one may refine the plan and then execute it.

Planning is a generative activity that is hard to observe directly. Early qualita-
tive studies applied think-aloud protocols and content analyses to investigate planning
(e.g., Xiao et al. 1997). Recently, quantitative measures have been used to facilitate re-
search on planning, such as evidence from functional neuroimaging (Unterrainer and
Owen 2006) and time-related measures (Albert and Steinberg 2011; Eichmann et al. 2019;
Unterrainer et al. 2003). In this study, we consider the process measure of response times as
an indicator of planning. Because planning is resource-intensive (Mumford et al. 2001), the
time spent making a plan should be much longer than the time spent actually executing the
plan. The time-related measures capture the quantity of planning. If a respondent rushes
into a problem and randomly tries different operations until a correct solution is found (i.e.,
a trial-and-error strategy), the value of the time-related measures would be relatively small,
indicating a small quantity of planning.

In the context of problem-solving, the time-related measures of planning differ be-
tween static problems and complex problems. A commonly used measure of planning
in static problems, such as the Tower of London, is the first-move latency (Albert and
Steinberg 2011; Unterrainer et al. 2003). This measure, also known as preplanning time,
is defined as the time interval between the beginning of the problem and the first action
a respondent takes. However, in complex problems, respondents need to explore the
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simulated environment to generate information before they are able to make a plan that
takes into account all relevant aspects of the problem situation at hand. In line with this
thinking, Eichmann et al. (2019) expanded the measure of planning in complex problems
from the first-move latency to the longest duration between moves. Namely, the authors
argued that planning can appear at any time during the course of complex problem-solving.
They also acknowledged that the longest duration cannot cover the entire planning process
but that the main planning activity is captured by this indicator. Research on planning in
complex problems is quite limited, and Eichmann et al.’s (2019) work seems to be the first
on this topic, thus, yielding important implications for the current study.

Planning is of interest not only because it is a cognitive process in problem-solving
but also because it influences task success or task performance (Albert and Steinberg 2011;
Eichmann et al. 2019). Theoretically, planning provides a mental model of the problem by
identifying critical issues and relevant strategies and promotes optimized and effective
solutions by organizing the chunks of operations (Mumford et al. 2001). However, previous
empirical research showed diverse results regarding the relationship between task success
and planning due to different types of problems and different indicators of planning. For
instance, and as mentioned above, Albert and Steinberg (2011) found a positive relationship
between first-move latency and task success in static problems, whereas Eichmann et al.
(2019) did not find such an effect for the longest duration indicator in dynamic problems.
Additionally, Eichmann et al. (2019) derived two other indicators of planning to describe
the time taken before the longest duration appears (the delay indicator) and the variability
in time intervals between two successive operations (the variance indicator). They found
that planning in the early stages benefited task performance (i.e., a negative relationship
between the delay indicator and task scores) and that a longer duration indicator in a later
stage or continued planning activities could compensate for a lack of early planning. Their
models implicitly indicate that each indicator from different tasks implies similar meanings
(Assumption I) and that the relationships between the planning indicators and task success
are consistent across tasks (Assumption II). However, we argue that these assumptions
(i.e., Assumptions I and II) require explicit examination. In addition, although the random
effects in their models captured the variances at the task level, the specific relationships
between the indicators and task performance at the task level remained unaccounted for.

1.3. Non-Targeted Exploration and Problem-Solving

To better understand the nature of the problem, test-takers need to explore the problem
environment (e.g., navigate through different computer interfaces or pages) to uncover
new information. Exploration refers to behaviors that investigate and seek information
that is beyond the instructions of the task (Dormann and Frese 1994). Some exploratory
behaviors are goal-oriented (goal-directed behaviors), leading to achieving a desired goal
state. On the other hand, some exploratory behaviors can be irrelevant to solving the
problem (non-targeted behaviors), such as clicking on some buttons on the interface to
check their functions and exploring some pages that do not contain useful information for
the problem (Eichmann et al. 2020a, 2020b). Note that both goal-directed and non-targeted
behaviors help test-takers understand the problem but in different ways. Goal-directed
behaviors capture the relevant points and convey similar information as task success
because the problem cannot be successfully solved without these goal-directed behaviors,
whereas non-targeted behaviors provide additional information compared to task success.

One research field related to non-targeted exploration is error management, where
errors are defined as unintended deviations from goals (Frese et al. 1991). It is found that
compared to participants who received step-by-step guidance on programming (i.e., error
avoidance or goal-directed exploration), participants who were encouraged to explore
the system, make mistakes, and learn from them (i.e., non-targeted exploration) during
the training stage performed better during the testing stage (Frese and Keith 2015). One
explanation is that non-targeted exploration plays a role in representing the problem
(Eichmann et al. 2020b; Kapur 2008). Test-takers who were encouraged to explore the



J. Intell. 2023, 11, 156 6 of 19

environment, in spite of making more errors, gained a better understanding of the problem
setting, the potential features, and resources of the interfaces. In addition, participants
who received more training on exploratory error management showed a higher level of
metacognitive activity such as hypothesis-testing and monitoring (Keith and Frese 2005).

In computer-based problems, exploration is operationalized as human–computer
interactions that refer to all the operations that respondents conduct in the computer
system and are recorded in log files, such as mouse clicks and keyboard input. For each
item, test developers and content experts have predefined one or more optimal solutions
consisting of a minimum number of operations that can successfully solve the problem
and thus represent the most efficient strategies (He et al. 2021). We can broadly categorize
individual operations into goal-directed or non-targeted operations, depending on whether
the operation is required to solve the problem or not (Eichmann et al. 2020a, 2020b). Goal-
directed operations refer to operations that must be performed to solve the problem, which
are operationalized as the operations that occur in any of the optimal solutions. In contrast,
non-targeted operations are operations that are unnecessary to solve the problem, which are
operationalized as the operations that do not occur in any optimal solutions. For example,
in the task of Figure 1, clicking on and bookmarking the websites that satisfy the task
requirements are goal-directed operations. However, clicking on the Help button in the
menu is non-targeted because it is not included in the optimal solution.

Although non-targeted operations do not directly contribute to successful task com-
pletion (i.e., not occurring in any optimal solutions) and can appear erroneous, they have
been found to benefit task performance (Dormann and Frese 1994), learning (Frese and
Keith 2015), transfer performance (Bell and Kozlowski 2008), and meta-cognition (Bell and
Kozlowski 2008). Eichmann et al. (2020a) also found that the number of non-targeted explo-
rations is positively related to problem-solving competency, and the effects are consistent
across 42 countries using the PISA 2012 problem-solving domain. The authors argued that
non-targeted explorations facilitate goal-directed behaviors. Consider the Help button as
an example. Although the Help button is not considered as a necessary operation to solve
the problem, it provides test-takers with information about the functions of the menu, such
as the function of the bookmark button, which can help test-takers better understand the
potential resources in the computer system. When test-takers find the websites that meet
the task requirements, they would know how to bookmark the websites.

A further aspect of defining an operation is whether it is performed for the first time
or repeated. Implementing an operation for the first time is associated with information
generation, whereas performing the same operation again indicates information integration
(Wüstenberg et al. 2012). As a result, Eichmann et al. (2020b) distinguished between
initial and repeated operations. Once a respondent performed a specific operation, such
as clicking on the Help button in the task in Figure 1, the individual was assumed to gain
information related to the Help button. If the respondent performed the same operation
again, there would be little new information added to the problem space. Since exploration
greatly concerns generating new information (Dormann and Frese 1994), we propose the
number of initial non-targeted operations as a measure of the latent variable: non-targeted
exploration. This differentiates our study from Eichmann et al. (2020b), who focused on
both initial and repeated non-targeted operations.

1.4. The Current Study

Previous studies by Eichmann and coauthors have deepened the understanding of
planning and non-targeted exploration based on the PISA 2012 tasks (Eichmann et al.
2019, 2020a). However, the extent to which we can apply their definitions of planning
and non-targeted exploration to the PIAAC 2012 information problems and the extent
to which the indicators measure the same constructs require further research. If there
is insufficient evidence of internal construct validity, it would be problematic to apply
this measure to different items or different samples. Therefore, validating the internal
construct of planning and non-targeted exploration across items is a crucial component
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of this study. We concurrently utilize information from multiple tasks and validate the
approach of Eichmann and coauthors by looking at a more diverse set of tasks (i.e., PS-TRE)
with a different population, namely, adults.

Furthermore, most studies analyzing process data of problem-solving tasks have only
used log data from a single item (e.g., Ulitzsch et al. 2021; Chen et al. 2019), meaning the
generalizability of the findings to other tasks is lacking. For example, it is an open question
whether or not respondents apply similar strategies (e.g., trial-and-error) across tasks.
Similarly, are the relationships between planning and problem-solving competency stable
across tasks or are the relationships task-dependent? If the relationships are generalizable,
then researchers and practitioners can use the findings across similar tasks. In this study,
we examine the general and task-specific relationships between planning, non-targeted
exploration, and problem-solving competency.

Our first set of research questions concerns the internal construct validity of the
indicators for planning, non-targeted exploration, and problem-solving competency. If
we find evidence that the same operationalization (see detailed definitions in Section 2.3)
of the indicators is applicable across different items within different contextual settings,
this implies that the indicators measure the same construct, thus providing support for
internal construct validity for the indicators. Specific to the current study, we examine the
construct validity of planning (Q1a), non-targeted exploration (Q1b), and problem-solving
competency (Q1c) using a set of tasks from the PIAAC 2012 PS-TRE domain. For each
item, we extract the indicators for planning, non-targeted exploration, and problem-solving
competency along the same rationale. To examine evidence of construct validity, we applied
confirmatory factor analysis (CFA; Jöreskog 1969) to each type of indicator. In CFA models,
multivariate data are analyzed with the hypothesis that a latent variable underlies the
observed variables (Bartholomew et al. 2011, p. 2). For example, the item response score is
considered to be the observed indicator of the latent variable problem-solving competency.
If the variations of the indicators across items can be adequately attributed to a latent
variable, we can claim that the internal construct validity is established (AERA 2014).

The second set of questions that we are interested in points to the problem-solving
competency’s relationship with planning (Q2a) and non-targeted exploration (Q2b). Al-
though previous studies have investigated such questions (e.g., Albert and Steinberg 2011;
Unterrainer et al. 2003), only limited studies have examined the findings in dynamic prob-
lems (Eichmann et al. 2019, 2020b). Given that dynamic problems are becoming more
popular in educational assessments and that the planning and exploration processes might
differ between static and dynamic problems, examining their relationships with problem-
solving competency is relevant and needed. In the research of Eichmann et al. (2019), the
overall relationship between planning and task performance across tasks was examined,
whereas if such a relationship might differ between tasks was uncounted for. Tasks differ
in complexity, the interface, and the amount of information (OECD 2013), implying that
the importance of planning and non-targeted exploration varies among the tasks. Hence,
besides the overall relationships between the latent variables (i.e., planning, non-targeted
exploration, and problem-solving competency), we also consider their task-specific rela-
tionships by adding residual correlations of observed indicators for planning, non-targeted
exploration, and problem-solving competency from the same task. The variance of the
errors can be attributed to individual differences among participants, task characteristics,
and measurement error. The residual correlations that we added account for the additional
dependence between indicators based on the same task, beyond the dependence induced
by the correlations between the main factors of planning, non-targeted exploration, and
problem-solving competency. Hence, by answering Q2a and Q2b from the levels of both
latent variables and observed variables, we can gain a more fine-grained understanding of
the research questions than Eichmann et al. (2019, 2020a). For Q2a, we hypothesized that
the overall relationship between planning and problem-solving competency is negligible
but that the relationship at the observed variable levels can be task-dependent, based on
the results from Eichmann et al. (2019) and the diversity of tasks. For Q2b, because non-
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targeted exploration helps represent the problem and acquire information from available
resources, we hypothesized a positive relationship between problem-solving competency
and non-targeted exploration. Similarly, task-dependent relationships are also expected for
Q2b because tasks differ in the extent to which respondents are allowed to interact with
the interfaces. To achieve answers for Q2a and Q2b, we included all three indicators in a
single model and considered the dependencies among the latent variables (i.e., the overall
relationships) and the pairwise residual correlations of the three indicators from the same
task (i.e., task-dependent relationships).

2. Materials and Methods
2.1. Participants and Tasks

This study uses the performance data and associated log files from the 2012 PIAAC
assessment. PIAAC is a program for assessing and analyzing adult skills and competencies
that are essential to personal and societal success (OECD 2013). The stimuli materials were
developed based on everyday life activities, and the target population was noninstitution-
alized residents between 16 and 65 years of age in the country regardless of citizenship or
language (OECD 2013). The PIAAC assessment was implemented by 25 countries (OECD
2012). All participating countries produced their sample design under the guidance of
the PIAAC Technical Standards and Guidelines. In general, probability-based sampling
methods were adopted to select an unbiased, randomized, and representative sample of the
target population (OECD 2013). Countries developed their own sampling frames according
to national situations. For example, Singapore had a full list of residents in the population
registry that was used as a qualified sampling frame, and the sample was randomly selected
based on the population registry. However, many countries like the United States adopted
a multi-stage sampling method since such population registries did not exist there. In short,
geographic domains such as provinces or states and dwelling units were randomly selected
in primary stages, and persons in the domains had an equal probability to be sampled
at the last stage of selection. After obtaining a sample, checks were conducted to ensure
that the sample met the sampling plan. For example, the noncoverage rate of the target
population was computed to indicate the portion of the target population not covered
by the sample frames. In the United States, people who live in large, gated communities
are not covered, and the noncoverage rate is 0.1%, which is the lowest in all participating
countries (OECD 2013). For a more detailed description of the sampling design, readers
are directed to the PIAAC technical report (OECD 2013). To avoid cultural heterogeneity
and render the analyses of the vast log-file data manageable, we used only data from the
United States. We chose the sample from the United States because of the low noncoverage
rate, high response rates, and the large proportion of participants in the PS-TRE domain.

The 2012 PIAAC PS-TRE domain covers dynamic information problems that include
one or more digital scenarios (e.g., email, web, word processor, and spreadsheet). Each
PS-TRE task includes two panels (see Figure 1): The left panel shows the instructions that
describe the scenario and the goal state (i.e., bookmarked websites fulfilling some require-
ments), and the right one represents the initial problem environment that corresponds to
the given state. Respondents may need to first explore the system by, for example, clicking
on the menu or a link to get to know the problem environment and then spend a relatively
long time devising a plan to solve the problem. There are two booklets in PS-TRE, and each
consists of seven fixed-order tasks. Based on the assessment design, test-takers randomly
received zero, one booklet, or two booklets. We used the second booklet (PS-TRE2). Only
participants with sufficient ICT skills in the background questionnaire had access to the
PS-TRE tasks. Sufficient ICT skills include knowing how to manipulate the mouse and
keyboard, understanding concepts like files and folders, and having experience with basic
computer operations like save, open, and close files (OECD 2013).
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2.2. Data Preparation

The log files of the 2012 PIAAC domains can be downloaded from the GESIS Data
Catalogue (OECD 2017). There were 1355 American participants in PS-TRE2, but 30
of them directly skipped all seven tasks and were excluded from the current analysis.
The raw log files were preprocessed via the PIAAC LogDataAnalyzer (LDA) tool. The
reformatted log data consisted of the following variables: respondent ID, item information,
event_name, event_type (e.g., START, TOOLBAR, TEXTLINK), timestamp in milliseconds,
and event_description, which describes the specific event (e.g., “id=toolbar_back_btn”
means clicking on the back button in the toolbar). We recoded the data by filtering the
system logs and aggregating the keyboard input and clicks in pop-up windows. A detailed
explanation of this procedure is provided in Appendix A.

2.3. Measures

For each student on each item, we extracted three indicators: task scores, longest
duration, and the number of initial non-targeted operations, from performance data and
the log files. In this subsection, we describe the three measures in detail.

Problem-solving competency. The indicators for problem-solving competency were
response scores that can be extracted from the OECD website. In PS-TRE2, three items were
scored dichotomously, and four were scored polychotomously by PIAAC. If a participant
spent less than five seconds on a task, the response was scored as missing (OECD 2012). In
the current data set, only five response scores were denoted as missing values by PIAAC. We
directly used their scoring as the measures for the construct problem-solving competency.

Planning. We used the time intervals between consecutive events from log files to
compute the longest duration, excluding the time interval for the last two events. The last
two events are always NEXT_INQUIRY (request the next task) and END (end the task)
based on the task design, and the intervals for the last two operations indicate reflection on
the executed actions rather than planning. A simulated operation sequence and associated
time intervals for the job-seeking task are presented in Table 1. Excluding the time intervals
for the last two operations, we identified the longest one—10 s—as the longest duration
indicator. For those who directly skipped a task, the longest duration was coded as missing.
In a previous study, Eichmann et al. (2019) specified three indicators of planning: the
longest duration, the variance indicator, and the delay indicator. However, we found the
Pearson correlations between the indicators were around 0.80 for the PS-TRE tasks, and the
longest duration typically occurred just after the task began, which meant that the delay
indicator was often identical to the duration indicator. That is, the three aspects of planning
from Eichmann et al. (2019) largely overlapped in our data, and we therefore used only a
single planning indicator per item for the construct planning in this study.

Table 1. A simulated example of operation sequence and response times.

Operation Notes Time
Interval

Planning
Indicator

Exploration
Indicator

START Enter the problem system - - System-defined
textlink_page1 Click on the first link 10 s Yes IniNT

toolbar_back_btn Click on the back button in the toolbar 3 s No IniNT
web_menu_help Click on the Help button in the menu 5 s No IniNT
textlink_page5 Click on the fifth link 8 s No GD

toolbar_bookmark_btn Click on the bookmark button in the toolbar 7 s No GD
bookmark_add_page5 Confirm adding the fifth page to bookmark 4 s No GD

web_menu_help Click on the Help button in the menu 3 s No RepNT
NEXT_INQUIRY Request the next task 12 s - System-defined

END End the task 4 s - System-defined

Note: IniNT = initial non-targeted. RepNT = repeated non-targeted. GD = goal-directed. We shortened the names
of the operations in the raw log files.



J. Intell. 2023, 11, 156 10 of 19

Non-targeted exploration. To define the non-targeted exploration indicators, we first
identified the unique operations for each task based on the log files of the participants.
There were on average 200 unique operations (range = [57, 446]) in each of the PS-TRE2
tasks. Operations that occurred in any of the optimal solutions were considered goal-
directed operations and the others non-targeted operations. Thereafter, we defined the
indicator of non-targeted exploration as the number of initial non-targeted operations for
each item. For the Figure 1 example, we supposed that the correct solution was {START,
textlink_page5, toolbar_bookmark_btn, bookmark_add_page5, NEXT_INQUIRY, END}. By
subsequently checking whether a given operation in Table 1 was included in the optimal
solution, we identified goal-directed or non-targeted operations. The number of initial
non-targeted operations, which was three in this example, served as the indicator of non-
targeted exploration. For those who directly skipped a task, the indicator was coded
as missing.

Data transformation. Latent variable modeling like factor analysis for continuous data
(Jöreskog 1969) normally has the assumption of multivariate normality, but both process
indicators (i.e., longest duration and the number of initial non-targeted operations) deviated
from normal distributions according to large skewness and kurtosis (see Appendix B),
requiring data transformation. One approach is the Box–Cox transformation (Box and Cox
1964). However, such one-to-one transformations do not work well when the data have
many identical values (Peterson and Cavanaugh 2019). In addition, there are some extreme
outliers in the longest duration and the number of initial non-targeted operations. Instead
of transforming the indicators into normally distributed variables, we used quantiles to
recode the process indicators into equal-sized categorical variables, which can reduce the
impact of the outliers. Specifically, if the raw value was zero, we kept the value as it was;
for the remaining values, we recoded the values as 1, 2, 3, and 4 with the 25%, 50%, and
75% quantiles as the cutoff values. Higher categories indicate that more initial non-targeted
operations were applied, or a respondent spent more time planning than other respondents.
In the following analysis, we treat the three types of indicators (response scores, longest
duration, and the number of initial non-targeted operations) as ordered categorical data.

2.4. Analysis Procedures

In this study, we apply latent variable models to analyze the process indicators and task
performance. Latent variable models are widely used in social sciences when researchers
intend to measure a conceptual construct (Bartholomew et al. 2011) such as problem-solving
competency. However, since it is difficult to measure the construct directly, researchers
instead develop instruments based on theory to infer the construct indirectly. In PIAAC
2012, a battery of items was developed to measure problem-solving competency, and
respondents’ responses to the test are collected and considered as observed indicators of
the unobserved construct (i.e., problem-solving competency). In analyzing the observed
responses, the researchers extract what is common in the indicators. The latent variable
that explains the common variability of the observed indicators is then interpreted as
the problem-solving competency afterward. A similar approach is used to measure the
latent variables of planning and non-targeted exploration, where the longest duration and
the number of initial non-targeted operations from multiple items are used as observed
indicators, respectively.

To answer the research questions related to the internal construct validity (i.e.,
Q1a/Q1b/Q1c), we applied confirmatory factor analysis (CFA; Jöreskog 1969) to each
type of indicator. CFA is widely used to examine the latent construct by specifying the
relationships between the observed indicators and latent variables on the basis of specific
hypotheses (Brown 2015). We hypothesized that latent planning would underlie the longest
duration (Model 1a), latent non-targeted exploration would underlie the number of initial
non-targeted operations (Model 1b), and latent problem-solving competency would under-
lie the observed task scores (Model 1c). That is, the latent variables govern the associated
observed indicators and thus explain the common variability of the indicators. To test these
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hypotheses, we examine if the hypothetical models fit well with the real data by check-
ing the goodness-of-fit of the models and factor loadings that inform on the relationship
between the observed indicators and the latent variable.

Regarding Q2a and Q2b, we inferred the relationships between planning, non-targeted
exploration, and problem-solving competency via multidimensional latent variable analysis
(Model 2; see Figure 2). That is, we placed the three latent variables together with their
correlations at the latent variable level (see the solid arrows between the latent variables
in Figure 2) and pairwise residual correlations at the observed variable level (see the
dashed arrows between the observed indicators in Figure 2). The covariances between
problem-solving competency and planning and between problem-solving competency and
non-targeted exploration address Q2a and Q2b at the latent variable level, respectively. A
positive covariance would imply that, generally speaking, planning more or conducting
more non-targeted operations is positively related to problem-solving competency. Given
the diversity of tasks (e.g., interfaces and complexity), the answers to Q2a and Q2b might
differ between tasks. Hence, we added pairwise residual correlations between the three
indicators if they were derived from the same task. For example, for Task 1, we included
the residual correlations between P1, E1, and PS1. These residual correlations help explain
task-specific relationships among the indicators not captured by the covariances between
the latent variables. For example, it could be possible that the overall relationship between
non-targeted exploration and problem-solving competency is positive, but for certain tasks
exploring more impairs task performance, namely negative task-specific relationships. The
specified model is similar to De De Boeck and Scalise’s (2019) model, which used time-on-
task, the number of actions, and responses as indicators of latent speed, latent action, and
latent performance, respectively, in the domain of PISA 2015 collaborative problem-solving.
They also considered specific hypotheses about relationships between the residuals of the
indicators that were based on the same tasks.
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To estimate the models, we used the lavaan package (Rosseel 2012) in R 4.1.0 (R Core
Team 2013) with the diagonally weighted least squares (DWLS) estimator and treated the
observed data as ordered categorical variables. Missing values were handled by pairwise
deletion. By convention, the means and variances of the latent variables were constrained
as zeros and ones for the purpose of model identification, respectively. We evaluated the
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model fit with a robust chi-square test of fit and used the criteria the root mean square
error of approximation (RMSEA) and the standardized root mean square residual (SRMR).
RMSEA assesses how far a specified model is away from an ideal model, and SRMR
evaluates the difference between the residuals of the model-implied covariance matrix
and the observed covariance matrix. Hence, the lower RMSEA and SRMR are, the better
the model fit with the data. The cutoff values are 0.06 and 0.08 for RMSEA and SRMR,
respectively (Hu and Bentler 1998).

3. Results

We begin this section with a description of the sample characteristics. Among the 1325
participants, the average age was 39 years old (SD = 14), and 53% were female. Around
9%, 40%, and 51% of the participants’ highest level of schooling was less than high school,
high school, or above high school, respectively. For the employment status, 66% of the
participants were employed or self-employed, 3% retired, 8% not working and looking
for work, 11% students, 6% doing unpaid household work, and 6% other jobs. PIAAC
categorized respondents’ performance on the PS-TRE domain in four levels: less than level
1 (19% in the US dataset), level 1 (42% in the US dataset), level 2 (36% in the US dataset),
and level 3 (3% in the US dataset). Higher levels indicate better proficiency.

With respect to the responses on the PS-TRE tasks, some omission behaviors were
observed for the tasks. There were on average 127 participants (range = [53, 197]) who
did not interact with single tasks and requested the next task directly. Figure 3 plots the
frequency of the derived indicators after the recoding procedure. The distributions of the
planning indicator were almost evenly distributed across the four categories. However,
the distributions of the other indicators were somewhat diverse depending on the items.
For example, only a small proportion (2.4%) of participants did not try any non-targeted
operations in Task 3, but more than one fourth (29%) did not explore Task 7.

J. Intell. 2023, 11, x FOR PEER REVIEW 13 of 21 
 

 

fit and factor loadings provided evidence of validity for the construct planning. This con-
clusion also applied to the measurement model (Model 1c) for problem-solving compe-
tency (RMSEA < 0.001 (se = 0.003); SRMR = 0.020 (se = 0.003); nonsignificant chi-square test, 
p = .901). The factor loadings ranged from 0.636 to 0.813. For the non-targeted exploration 
measurement model (Model 1b), the model fit indices (RMSEA = 0.014 (se = 0.007); SRMR 
= 0.044 (se = 0.004)) were satisfactory, and the robust chi-square test was nonsignificant (p 
= .134). However, the factor loadings varied a lot (see Table 2). Tasks 3 and 4 had the high-
est factor loadings, whereas the last two tasks had the lowest with values less than 0.2. 
That is, although the non-targeted exploration indicators in PS-TRE2 generally measure 
the same construct, the impact of the latent non-targeted exploration on the observed in-
dicators differed across tasks. 

 
Figure 3. The frequency plot of planning (P), non-targeted exploration (E), and problem-solving 
competency (PS) indicators. The longest duration could not be zero, so the categories of the planning 
indicator consisted of only four values. 

Table 2. Standardized results for the single-factor models. 

Variable Estimate SE p 
Model 1a: Robust χ2 (35) = 56.179 (p = .013), RMSEA = 0.021 (se = 0.006), SRMR = .042 (se = 

0.003) 
P1 0.531 0.028 <.001 
P2 0.648 0.025 <.001 
P3 0.691 0.022 <.001 
P4 0.662 0.025 <.001 
P5 0.491 0.029 <.001 
P6 0.639 0.027 <.001 
P7 0.663 0.023 <.001 

Model 1b: Robust χ2 (42) = 52.208 (p = .134), RMSEA = 0.014 (se = 0.007), SRMR = .045 (se = 
0.004) 

E1 0.328 0.043 <.001 
E2 0.264 0.045 <.001 
E3 0.414 0.048 <.001 
E4 0.611 0.056 <.001 
E5 0.298 0.043 <.001 
E6 0.179 0.046 <.001 
E7 0.125 0.043 .003 

Figure 3. The frequency plot of planning (P), non-targeted exploration (E), and problem-solving
competency (PS) indicators. The longest duration could not be zero, so the categories of the planning
indicator consisted of only four values.

Next, we present the results relevant to Q1a, Q1b, and Q1c based on the single-factor
CFA models for planning (Model 1a), non-targeted exploration (Model 1b), and problem-
solving competency (Model 1c). Table 2 presents the model fit indices and the standardized
results for factor models. For the planning measurement model, although the robust chi-
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square test was significant (p = .013), the model fit indices (RMSEA = 0.021 (se = 0.006);
SRMR = 0.042 (se = 0.003)) were lower than the cutoff values 0.06 and 0.08 (Hu and Bentler
1998), thus indicating good approximate model fit. All the factor loadings in Model 1a
were significant, ranging from 0.491 to 0.691. The higher factor loading indicates a stronger
relationship between the indicator and the latent variable, and thus the latent variable
can account for more of the variability of the indicator. The results for the model fit and
factor loadings provided evidence of validity for the construct planning. This conclu-
sion also applied to the measurement model (Model 1c) for problem-solving competency
(RMSEA < 0.001 (se = 0.003); SRMR = 0.020 (se = 0.003); nonsignificant chi-square test,
p = .901). The factor loadings ranged from 0.636 to 0.813. For the non-targeted explo-
ration measurement model (Model 1b), the model fit indices (RMSEA = 0.014 (se = 0.007);
SRMR = 0.044 (se = 0.004)) were satisfactory, and the robust chi-square test was nonsignifi-
cant (p = .134). However, the factor loadings varied a lot (see Table 2). Tasks 3 and 4 had the
highest factor loadings, whereas the last two tasks had the lowest with values less than 0.2.
That is, although the non-targeted exploration indicators in PS-TRE2 generally measure the
same construct, the impact of the latent non-targeted exploration on the observed indicators
differed across tasks.

Table 2. Standardized results for the single-factor models.

Variable Estimate SE p

Model 1a: Robust χ2 (35) = 56.179 (p = .013), RMSEA = 0.021 (se = 0.006), SRMR = .042 (se = 0.003)
P1 0.531 0.028 <.001
P2 0.648 0.025 <.001
P3 0.691 0.022 <.001
P4 0.662 0.025 <.001
P5 0.491 0.029 <.001
P6 0.639 0.027 <.001
P7 0.663 0.023 <.001

Model 1b: Robust χ2 (42) = 52.208 (p = .134), RMSEA = 0.014 (se = 0.007), SRMR = .045 (se = 0.004)
E1 0.328 0.043 <.001
E2 0.264 0.045 <.001
E3 0.414 0.048 <.001
E4 0.611 0.056 <.001
E5 0.298 0.043 <.001
E6 0.179 0.046 <.001
E7 0.125 0.043 .003

Model 1c: Robust χ2 (28) = 18.892 (p = .901), RMSEA < 0.001 (se = 0.003), SRMR = 0.020 (se = 0.003)
PS1 0.778 0.025 <.001
PS2 0.786 0.020 <.001
PS3 0.684 0.026 <.001
PS4 0.813 0.019 <.001
PS5 0.758 0.024 <.001
PS6 0.636 0.025 <.001
PS7 0.723 0.022 <.001

Note: P = the planning indicator; E = the non-targeted exploration indicator; PS = the problem-solving indicator.

Subsequently, we present the results of Model 2. If we ignored the residual correlations
of the indicators (i.e., the task-dependent effect), the model fit indices exceeded the cutoff
values (RMSEA = 0.071 > 0.06, se = 0.002; SRMR = 0.096 > 0.08, se = 0.002). This suggests
that only considering the overall relationships between the latent variables and excluding
the task-dependent relationships did not fit well with the data. In Model 2, the residual
correlations were included, and the model fit indices (RMSEA = 0.055 < 0.06, se = 0.002;
SRMR = 0.077 < 0.08, se = 0.002) improved and implied an acceptable goodness-of-fit (Hu
and Bentler 1998). Hence, considering the task-specific effects fit the data substantially
better. One obvious difference between single measurement models and the full model
occurred in the factor loadings of the non-targeted exploration indicators. In the full model,
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the latent non-targeted exploration could capture only the common features underlying
Tasks 3 and 4, whose factor loadings exceeded 0.4.

Regarding the relationship between planning and problem-solving competency (i.e.,
Q2a), we begin by addressing the latent variable levels, namely their overall relationship.
The correlation between latent planning and problem-solving competency was −0.093
(p = .007, se = 0.035). That is, the overall effect of planning on problem-solving was negative,
but the magnitude of the effect was rather small. This result was similar to Eichmann et al.’s
(2019) study, where the longest duration was not related to task success on average. For
Q2a on the observed data level, namely the task-dependent relationships, Table 3 presents
the relevant results that suggested the residual correlations were not negligible. Specifically,
half of the residual correlations were positive, and the other half were negative. For Tasks
3, 4, and 5, after controlling for the latent variables in the model, spending more time on
planning contributed to task performance, whereas spending more time on planning in
Tasks 1, 6, and 7 impaired task performance. That is, the relationships between the longest
duration indicator and task scores varied a lot across the tasks.

Table 3. Standardized results of the residual correlations in Model 2.

Variable Estimate SE p

PS1 with P1 −0.374 0.037 <.001
PS2 with P2 −0.068 0.034 .365
PS3 with P3 0.249 0.035 <.001
PS4 with P4 0.569 0.033 <.001
PS5 with P5 0.609 0.034 <.001
PS6 with P6 −0.181 0.035 .002
PS7 with P7 −0.155 0.033 .013
PS1 with E1 0.127 0.033 .014
PS2 with E2 0.234 0.032 <.001
PS3 with E3 0.179 0.024 <.001
PS4 with E4 0.066 0.030 .299
PS5 with E5 0.044 0.034 .428
PS6 with E6 −0.796 0.025 <.001
PS7 with E7 −0.038 0.032 .408
P1 with E1 −0.076 0.033 .057
P2 with E2 −0.002 0.033 .973
P3 with E3 0.059 0.028 .233
P4 with E4 0.240 0.031 <.001
P5 with E5 0.220 0.031 <.001
P6 with E6 0.120 0.034 .007
P7 with E7 0.208 0.032 <.001

Note: P = the planning indicator; E = the non-targeted exploration indicator; PS = the problem-solving indicator.

Regarding Q2b, as hypothesized, non-targeted exploration showed a strong positive
relationship with problem-solving competency with a factor correlation equal to 0.887
(p < .001, se = 0.034). However, the answer to Q2b on the observed data level differed across
tasks. The residual correlations between the responses and the non-targeted exploration
indicators were significant and positive in the first three tasks but negative in Task 6
(see Table 3). That is, after considering the positive relationship between non-targeted
exploration and problem-solving competency, different tasks showed distinct impacts
on task performance. In addition, the residual correlations between the indicators of
planning and non-targeted exploration by and large increased with the positions of the
tasks. Engagement might be one explanation for this result. Specifically, participants
who kept engaging in the assessment tended to invest more time in planning and more
exploratory behaviors than those who gradually lost patience.



J. Intell. 2023, 11, 156 15 of 19

4. Discussion

In this article, we focused on planning, non-targeted exploration, and problem-solving
competency using process measures and task performance in the 2012 PIAAC PS-TRE do-
main. We assessed the internal construct validity of the derived indicators and investigated
their relationships using multidimensional latent variable analysis.

4.1. Summary of the Study

Our results provide additional evidence for the internal construct validity of the
indicators of planning and problem-solving competency. It suggested that the latent
planning greatly captured the common variance of the longest duration indicators and
was relatively stable across tasks. However, the CFA results indicated that latent non-
targeted exploration exerted varied influences on different tasks. The task interfaces can
provide a potential explanation for the result. If the interfaces such as spreadsheets or emails
contained features that are commonly used by respondents, it would likely be less necessary
to explore these buttons to acquire new information. In contrast, novel information was
embedded in a web environment in Tasks 3, 4, and 7, requiring potentially more non-
targeted exploration, while Task 7 provided extra hints for non-necessary operations and
thus prevented some non-targeted behaviors. In short, the familiarity of the presented
environments and hints might weaken the influence of the latent non-targeted exploration.

After interpreting the internal construct validity of the process indicators, we then
interpret the task-dependent relationships between planning and problem-solving com-
petency. Task difficulty was not critical in explaining the diverse relationships after we
inspected the task difficulty for each item provided by PIAAC (OECD 2013), a finding
that was in line with Eichmann et al. (2019) who used the PISA 2012 problem-solving
tasks. Instead, more specific task features can provide some insights. If some tasks (e.g.,
Task 4) require respondents to integrate complex information, investing more time in
planning helps problem-solving (Mumford et al. 2001). Moreover, the relevance of informa-
tion also mattered. Being stuck with irrelevant information can lead to biased planning
(Mumford et al. 2001). For instance, we found that unsuccessful respondents tended to
spend the longest duration on irrelevant emails compared with successful respondents in
Task 6.

The other research interest of the study is the relationships between problem-solving
competency and non-targeted exploration. The positive overall relationship between non-
targeted exploration and problem-solving competency on the latent trait level indicated
that non-targeted exploration facilitated representing and further contributed to successful
task completion (Dormann and Frese 1994; Kapur 2008). However, the negative residual
correlation for Task 6 implied that exploring too much was detrimental to solving the
task. Paying too much attention to irrelevant information might complicate the problem
and result in cognitive overload (Frese and Keith 2015). A common pattern for successful
problem-solving involved actively trying some non-targeted operations or goal-directed
behaviors to expand the problem space, distinguishing the features of these operations,
and focusing on goal-directed behaviors to reach the desired state.

4.2. Contributions and Limitations

This article offers several contributions. From a theoretical perspective, we examined
the internal construct validity of process indicators across multiple tasks, whereas many
relevant studies have been limited to single items (e.g., Ulitzsch et al. 2021). Combining
data from multiple tasks utilizes the information from the assessment to a greater extent
and potentially provides more evidence for the stability of the conclusions. We found that
the process indicators differed in the extent of internal construct validity, which suggested
that researchers should carefully consider applying the measures from one task to another
task even though both tasks are designed to measure the same concept. For practitioners,
the longest duration can be employed as a good indicator for planning in other information-
processing problems similar to the PS-TRE tasks, whereas non-targeted exploration would
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be less suitable to apply to routine problems with little novel information. On the contrary,
if the task is rich in new information that respondents can explore to acquire, the amount
of non-targeted exploration would be able to capture the common pattern of exploratory
behaviors.

Regarding the research topics, our results provide evidence for the functions of plan-
ning and non-targeted exploration in problem-solving based on human–computer inter-
actions, deepening the understanding of their relationships in dynamic problems. The
insight into the processes of complex problem-solving is crucial for educational systems
since one important mission of education is to prepare students to become better problem-
solvers (OECD 2014). Our results can potentially facilitate educational practice aiming at
improving problem-solving skills. For example, it would be promising to implement a
computer-simulated agent to help problem-solvers in terms of planning and non-targeted
exploration. Specifically, if an individual has spent a long time planning in a dynamic
problem without interacting with the task environment, the agent can offer a hint to en-
courage exploratory behaviors if the individual is not familiar with the task environment.
In another circumstance, if an individual engaged in too much non-targeted exploration
rapidly, the agent can advise spending more time on planning a strategy when the task re-
quires respondents to incorporate complex information. Besides the development of digital
tools, test developers can also compare the relationships between planning, non-targeted
exploration, and task performance with the desired design to reflect on the task design. For
example, if a task is designed to benefit from planning, the relationship between the longest
duration and task performance should be positive; otherwise, test developers would need
to reconsider their design.

Some limitations of this study should also be noted. First, the indicator of non-targeted
exploration requires researchers to define goal-directed and non-targeted operations that
can be difficult for some types of problems. Second, the longest duration indicator reflects
only the quantity of the planning, which does not necessarily imply the quality of the
planning. Future studies can assess the quality of plans in dynamic problems and examine
their relationship with task performance. In addition, similar to Eichmann et al. (2019),
our definition of planning is broad in nature. Although we excluded the durations at the
end of the tasks (e.g., reflecting process) in identifying the planning process, the longest
duration can actually refer to the monitoring process. Third, although our indicators
were based on previous studies, the underlying meaning of the latent variables must be
interpreted carefully. Fourth, the current data are from the 2012 PIAAC PS-TRE domain,
the core of which is information-processing skills (Greiff et al. 2017). However, other
international assessments have various focuses, which may show different relationships
between planning, non-targeted exploration, and problem-solving competency.

5. Conclusions

This study derived process indicators of planning and non-targeted exploration from
the existing literature (Eichmann et al. 2019, 2020a, 2020b). Our results provide evidence for
the internal construct validity of the planning indicator and response scores across multiple
PS-TRE items, whereas the non-targeted exploration indicator was more challenging to be
analyzed simultaneously across tasks when considering the dependency of the indicators
from the same item. In addition, non-targeted exploration had a strong positive relationship
with problem-solving competency. The results of residual correlations provided more
detailed and diverse relationships between task performance, planning, and non-targeted
exploration on the task level.
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Appendix A

The recoding rules for log-events:
The log-events were recoded using the following rules:

• We kept only the events implemented by the respondent and deleted the system events
triggered by the respondent’s interaction event. For instance, when a respondent
clicked on the “Add page” button in the bookmark pop-up window, three events were
logged with the same timestamps: BOOKMARK_ADD, BUTTON, and DOACTION.
In this case, we kept only BOOKMARK_ADD because it was sufficient for describing
the operation implemented by the respondent.

• We aggregated the event type KEYPRESS. When a key is pressed, a KEYPRESS event
with an ASCII value is logged. Because typing a string (e.g., a name) is regarded as a
single operation, we aggregated consecutive KEYPRESS events as a single KEYPRESS
event.

• All events from a combo-box (e.g., a SORT pop-up window) with several sorting rules
were aggregated according to the final state of the SORT window.

Appendix B

Table A1. Descriptive statistics for the raw process indicators without transformations.

Raw Indicator Mean SD Min Max Skewness Kurtosis

P1 66.75 59.85 1.09 1149 7.15 101.14
P2 55.63 56.10 4.46 1317 11.51 227.32
P3 41.04 29.33 1.91 432 4.67 42.70
P4 43.32 78.19 6.12 2421 24.79 739.48
P5 48.58 33.65 1.85 313 2.41 9.84
P6 34.99 322.84 4.25 10847 33.30 1112.34
P7 27.88 65.25 3.66 2157 28.70 921.94
E1 1.94 2.28 0 38 4.61 52.76
E2 8.50 18.90 0 204 5.82 44.57
E3 7.44 3.98 0 17 .07 −1.11
E4 6.48 5.15 0 35 1.08 1.49
E5 3.81 3.56 0 30 1.91 6.51
E6 8.37 10.68 0 65 1.27 .63
E7 3.6 5.56 0 46 3.21 13.26

Note: P = the planning indicator. E = the non-targeted exploration indicator.
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A computationally efficient method for marginal maximum likelihood estimation of 
multiple group generalized linear latent variable models for categorical data is introduced. 
The approach utilizes second-order Laplace approximations of the integrals in the 
likelihood function. It is demonstrated how second-order Laplace approximations can 
be utilized highly efficiently for generalized linear latent variable models by considering 
symmetries that exist for many types of model structures. In a simulation with binary 
observed variables and four correlated latent variables in four groups, the method has 
similar bias and mean squared error compared to adaptive Gauss-Hermite quadrature 
with five quadrature points while substantially improving computational efficiency. An 
empirical example from a large-scale educational assessment illustrates the accuracy and 
computational efficiency of the method when compared against adaptive Gauss-Hermite 
quadrature with three, five, and 13 quadrature points.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

When estimating latent variable models for categorical observed variables, such as generalized linear latent variable mod-
els or item response theory models, marginal maximum likelihood estimation is typically used. With marginal maximum 
likelihood, integrals without an explicit solution must be calculated. Standard estimation methods are based on Gauss-
Hermite quadrature approximations (Bock and Aitkin, 1981), which are highly efficient for models with one or two latent 
variables but quickly decrease in efficiency with higher-dimensional problems. Adaptive quadrature (Schilling and Bock, 
2005; Cagnone and Monari, 2013), which concentrates the region of integration to the most relevant part for each integral, is 
a partial solution but with more than four dimensions the computational expense means that adaptive quadrature becomes 
impractical if high accuracy is desired. Another approach is to use a simulation-based method such as the Metropolis-
Hastings Robbins-Monro method (Cai, 2010a) or a Monte Carlo method (Zhu et al., 2005). However, the simulation-based 
methods can be slow to converge to a local maximum with small sample sizes and ensuring that proper convergence has 
been attained is often challenging and time-consuming. Efficient approximation methods such as the variational approxi-
mation have also been proposed (Hui et al., 2017; Niku et al., 2019; Cho et al., 2021), but these methods perform relatively 
poorly with few observed variables and have not been implemented for many types of models.
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Another approach is to use a first-order Laplace approximation to approximate the required integrals (Huber et al., 
2004). However, estimation methods based on first-order Laplace approximations often have convergence problems and 
high bias (Joe, 2008), especially with binary data or complex models (Andersson and Xin, 2021). To remedy this, second-
order Laplace approximations of the log-likelihood (Shun, 1997; Thomas, 1993; Bianconcini, 2014; Raudenbush et al., 2000) 
or second-order Laplace approximations of the gradient of the log-likelihood (Bianconcini and Cagnone, 2012) have been 
used. Such higher-order Laplace approximations have shown promise in providing a computationally efficient yet accurate 
estimation method for models with many latent variables, such as in Andersson and Xin (2021) where up to 12 correlated 
latent variables were used with an independent-clusters structure and ordinal observed variables. In contrast to this, some 
previous studies found that the second-order Laplace approximation was computationally much less efficient compared 
to adaptive quadrature with 5 quadrature points in each dimension for exploratory factor analysis with ordinal data with 
up to four dimensions (Bianconcini, 2014). As we will show in the present study, the efficiency of higher-order Laplace 
approximations is highly dependent on the structure of the model used and implementations that disregard the structure 
will be inefficient for most types of models. However, if the structure is exploited in the implementation of the second-order 
Laplace approximation, substantial computational gains can be obtained which makes the method highly computationally 
efficient for many types of models when compared to adaptive quadrature approximations which have the same theoretical 
approximation accuracy.

A hindrance to methods which use second-order Laplace approximations is that they require the derivation of higher-
order derivatives which depend on the type of measurement model specified. This makes higher-order Laplace approx-
imations difficult to efficiently implement and generalize across different types of models. Hence, so far, the available 
implementations of second-order Laplace approximations of the log-likelihood which are relevant to latent variable mod-
els for categorical data have been limited to generalized linear models (Raudenbush et al., 2000), generalized linear mixed 
models (Noh and Lee, 2007), confirmatory factor analysis models for ordinal data (Bianconcini, 2014; Jin et al., 2018), 
independent-clusters item response theory models (Thomas, 1993; Andersson and Xin, 2021) and nonlinear structural equa-
tion models (Jin et al., 2020). Thus, additional research is needed to implement estimation of multiple group generalized 
linear latent variable models with second-order Laplace approximations and to investigate its estimation properties.

The objective of the current work is then to develop a computationally efficient estimation method based on a second-
order Laplace approximation to estimate multidimensional generalized linear latent variable models with categorical ob-
served variables, with support for an arbitrary model structure and with multiple groups. There are three main contributions 
of the present study in relation to the existing literature. First, we derive an estimation algorithm that uses a second-order 
Laplace approximation to the marginal log-likelihood function for generalized linear latent variable models for categorical 
observed variables which supports a general model structure. Here, we also detail how the second-order Laplace approx-
imation can be highly efficiently implemented by accounting for the structure of the particular model used. Second, we 
implement the second-order Laplace approximation estimation method for multiple group models where parameter invari-
ance between groups can be established and where the mean vectors and covariance matrices of the latent variable in 
multiple groups can be estimated. Third, we compare the second-order Laplace approximation method to an implementa-
tion of adaptive Gauss-Hermite quadrature, that uses the same underlying code base as the second-order Laplace method, 
in terms of the estimation accuracy and precision and in terms of the computational efficiency.

The paper is structured as follows. We first introduce the modeling framework used and then present the second-order 
Laplace approximation estimation method along with a discussion of some of its properties with models commonly used 
in applied measurement. Then, based on a simulation study, we contrast and compare the proposed approach to adaptive 
Gauss-Hermite quadrature and discuss the advantages and disadvantages of the method based on theoretical and practical 
considerations. Subsequently, an empirical example from an international large-scale assessment is used to illustrate the 
application of the Laplace approximations and adaptive quadrature methods. Lastly, we discuss our findings and provide 
recommendations for applied work.

2. Methods

2.1. Models

With latent variable models for categorical data, we model the response probabilities for each category of a set of 
discrete observed variables i ∈ {1, . . . , I} conditional on a latent variable. Define Pic(z) as the probability, conditional on the 
p × 1 latent variable vector z, to observe category c of observed variable Yi which has mi possible outcomes. We assume 
conditional independence such that the joint probability for multiple random variables Y1 = y1, . . . , Y I = yI , conditional on 
z, can be factorized as

P (Y1 = y1, . . . , Y I = yI |z) =
I∏

i=1

Piyi (z), (1)

where the individual Piyi can be based on, for example, confirmatory factor analysis with categorical data, the general-
ized partial credit model (Muraki, 1992), the graded response model (Samejima, 1969), or the nominal response model 
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(Bock, 1972). These three specific models are all types of generalized linear latent variable models (Huber et al., 2004) and 
also fall within the framework of generalized linear latent and mixed models (Rabe-Hesketh et al., 2004). Let b i be a mi × 1
vector of intercept parameters, with entries bic such that bi1 = 0. For the graded response model, with a p × 1 vector ai of 
slope parameters, we have

Pic(z) = P∗
ic(z) − P∗

i(c+1)(z), (2)

where

P∗
ic(z) = 1

1 + exp(−a′
i z − bic)

, (3)

with P∗
i1(z) = 1 and P∗

i(mi+1)
(z) = 0. For the nominal response model, with a p × 1 vector aic of slope parameters for each 

category c such that ai1 = 0, we have

Pic(z) = exp
(
a′

ic z + bic
)

∑mi
c′=1 exp

(
a′

ic′ z + bic′
) , (4)

and for the generalized partial credit model, a special case of the nominal response model, we have

Pic(z) = exp
[∑c

v=1(a
′
i z + biv)

]
∑mi

c′=1 exp
[∑c′

v=1(a
′
i z + biv)

] . (5)

In principle any probability model that satisfies the conditional independence assumption can be used. Let N g denote the 
sample size in group g and define y f g as the I × 1 vector of observed variables for an individual f ∈ {1, . . . , Ng} in group 
g ∈ {1, . . . , G} and let N = ∑G

g=1 Ng . The marginal log-likelihood for an individual f in group g is equal to

l f g(θ g |y f g) = log
∫

P (y f g |z)φ(z;μg,�g)dz, (6)

where θ g are the unknown parameters in group g and φ is the multivariate normal density function with mean μg and 
covariance matrix �g . Define θ as the vector of all free parameters of the model across all groups. With multiple group 
models it is possible to evaluate measurement invariance across groups and estimate the mean vectors and covariance 
matrices in the groups, provided there exist some observed indicators which exhibit invariance (Muthen and Lehman, 1985). 
Typically, we cannot solve the integral in Equation (6) analytically and it must be approximated.

2.2. Likelihood approximation

We consider approximating the marginal log-likelihood with either a second-order Laplace approximation or adaptive 
Gauss-Hermite quadrature. Here, we present these two methods and outline their properties in terms of accuracy and 
computational efficiency.

2.2.1. A second-order Laplace approximation
We propose to approximate the integrals in the likelihood function with a second-order Laplace approximation 

(Shun, 1997) and implement an estimation method based on such approximations. Define the function h f g(z) =
− log P (y f g |z)φ(z; μg, �g). The second-order Laplace approximation is based on 1) the estimation of the posterior mode of 
the latent variable vector for each individual, and 2) derivatives of h f g with respect to z up to the fourth order. Let ẑ f g be 
the posterior mode, equal to the minimizer of h f g(z). Define ĥ = h f g(ẑ f g), H f g = ∂2ĥ

∂z∂z′ and let Ẑ denote the p × N matrix 
of posterior modes. We then obtain the second-order Laplace approximation to the log-likelihood as Shun (1997)

lLap2
f g (θ g |y f g) = p

2
log(2π) − 1

2
log

∣∣H f g
∣∣ − ĥ + log(1 + ε f g), (7)

where, with b jk denoting the j-th row entry of the k-th column in H−1
f g ,

ε f g = −1

2

⎡
⎣1

4

p∑
jklm

∂4ĥ

∂z j∂zk∂zl∂zm
b jlbkm − 1

4

p∑
jklrst

∂3ĥ

∂z j∂zk∂zl

∂3ĥ

∂zr∂zs∂zt
b jrbklbst (8)

− 1

6

p∑
jklrst

∂3ĥ

∂z j∂zk∂zl

∂3ĥ

∂zr∂zs∂zt

1

6
b jrbksblt

⎤
⎦ .
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Fig. 1. Illustration of a model with six observed variables and two latent variables.

Denote the sums of Equation (8) as sum A, B and C, for the first, second and third entry, respectively. Without considering 
the model structure, Equation (8) requires the computation of p4 + p6 + p6 entries which quickly becomes computationally 
demanding as the number of latent variables p increases. However, with models structured in a particular way, many of the 
terms needed for computing the entries in Equation (8) will be zero or repeated. For example, if all observed variables are 
each related to just one out of many latent variables, the expression reduces to a simple sum and a two-fold sum instead 
of the four-fold and six-fold sums in Equation (8) (Andersson and Xin, 2021; Noh and Lee, 2007). In our implementation 
of the second-order Laplace approximation, we avoid computing the same entries multiple times and identify the unique 
entries, which are products of multiple terms, in each of the sums in Equation (8). Such a procedure was also suggested in 
the supplementary material of Jin and Andersson (2020). We accomplish this with a computer algorithm at the first step of 
the estimation process which identifies the entries that must be computed and thus filters out repeated and zero entries. 
We subsequently weight the unique entries in accordance with the frequency of each entry in the sum.

In addition to avoiding zero and repeated entries in Equation (8), we exploit the expression of the function h f g(z) to 
gain further computational advantages. To illustrate this, first observe that

h f g(z) = −
I∑

i=1

log P (yif g |z;αig) − logφ(z;μg,�g), (9)

where yif g denotes the ith observed variable for individual f in group g and where αig is the parameter vector for the ith 
observed variable in group g . Define hif g(z) = − log P (yif g |z; αig). Since derivatives of logφ(z; μg, �g) with respect to z of 
order three and higher are all zero, we have

∂uh f g(z)

∂z j∂zk . . . ∂zv
=

I∑
i=1

∂uhif g(z)

∂z j∂zk . . . ∂zv
, (10)

for u > 2. The implication of expressing the higher-order derivatives in this manner is that, while the higher-order derivative 
terms in the approximation of the likelihood in Equation (8) may not be zero or equal for a combination of j, k, . . . , v , in 
many cases a term ∂uhi f g (z)

∂z j∂zk ...∂zv
for a single observed variable is indeed zero or equal for this combination of j, k, . . . , v . For 

example, consider the model with six observed variables and two latent variables displayed in Fig. 1 where the ellipses rep-
resent the latent variables and the rectangles represent the observed variables. For this model, the unique third derivatives 
of h f g are ∂3h f g (z)

∂z3
1

, ∂3h f g (z)

∂z2
1∂z2

, ∂3h f g (z)

∂z1∂z2
2

, and ∂3h f g (z)

∂z3
2

. However, for all observed variables except y3, the only non-zero third-

derivatives are ∂3hif g (z)

∂z3
1

, for i ∈ {1, 2}, and ∂3hif g (z)

∂z3
2

, for i ∈ {4, 5, 6}. We thus also account for these patterns when computing 
the entries in the main approximation, beyond accounting for the symmetries that exist for the entries in the two four-fold 
and six-fold sums in Equation (8).

The filtering process described above means that the second-order Laplace approximation can be implemented with 
substantial efficiency gains compared to using, for example, adaptive Gauss-Hermite quadrature with the same order of 
accuracy. Note that, unlike in Shun (1997), we do not remove terms from the approximation in Equation (8) to improve the 
computational efficiency. Rather, we account for zero entries and symmetries that exist for the models we use.

2.2.2. Adaptive Gauss-Hermite quadrature
Let � f g be the Cholesky decomposition of the matrix H −1

f g . The adaptive quadrature approximation to the log-likelihood 
is then (Jin and Andersson, 2020)

lAGHQ
f g (θ g |y f g) = p

2
log(2) − 1

2
log

∣∣H f g
∣∣ + log

Q∑
j1,..., jp

[ p∏
k=1

w jk exp
(

q2
jk

)]
exp

(
h f g(z)

∣∣z=√
2� f g q j1 ,..., jp +ẑ f g

)
, (11)
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where Q denotes the number of quadrature points per dimension, q jk is the jk-th Gauss-Hermite quadrature point with 
weight w jk and q j1,..., jp

= (q j1 , . . . , q jp )
′ . The theoretical approximation accuracy of adaptive Gauss-Hermite quadrature de-

pends on the number of quadrature points and the error rate is given by O  
(

I−�(Q +2)/3�) (Jin and Andersson, 2020), implying 
that using four to six quadrature points has the same theoretical accuracy as the second-order Laplace approximation.

Adaptive Gauss-Hermite quadrature requires Q p number of quadrature points, meaning that higher-dimensional models 
quickly become very computationally demanding to estimate. For example, a four-dimensional model requires a total of 
81, 625, and 2401 quadrature points for Q = 3, 5, and 7, respectively. Unlike for the number of entries required with 
the second-order Laplace approximation, the total number of quadrature points needed for a given level of accuracy is 
unaffected by the model structure.

2.3. Parameter estimation with the approximated likelihood

To estimate the unknown parameters, the gradient of the approximated log-likelihood is needed. We calculate the gradi-
ent ∇θ of Equations (7) and (11) to obtain, for each θ ∈ θ , and for each Method ∈ {Lap2, AGHQ},

∇θ =
G∑

g=1

Ng∑
f =1

⎛
⎜⎝∂lMethod

f g (θ g |y f g)

∂θ
+ ∂ ẑ f g

∂θ

∂lMethod
f g (θ g |y f g)

∂z

∣∣∣∣∣
z=ẑMethod

f g

⎞
⎟⎠ , (12)

where the second term in the expression is needed since the mode is dependent on the parameter vector θ (Huber et 
al., 2004; Jin et al., 2018), and where ẑLap2

f g = ẑ f g and ẑAGHQ
f g = √

2� f gq j1,..., jp
+ ẑ f g . Note that AGHQ requires derivatives 

up to the third-order and the second-order Laplace requires derivatives up to the fifth-order. We analytically derived the 
derivatives for the generalized partial credit model and nominal response model and give the expressions of the constituents 
of Equation (12) for each of these in the appendix. The derivatives for the graded response model can be found in the 
supplementary material of Jin and Andersson (2020). Note that, with the second-order Laplace approximation, the model 
structure and symmetry of the derivatives also impact the computation of the gradient and just like for the computation of 
the entries in Equation (8), we compute only the unique entries in Equation (12) and weight them by their frequency.

With the gradient, we implement a quasi-Newton method for parameter estimation where the Hessian matrix is ap-
proximated with either the empirical cross-product matrix (Berndt et al., 1974) or the Broyden–Fletcher–Goldfarb–Shanno 
(Nocedal and Wright, 2006, BFGS) method. Let iter denote the iteration number and define αiter as the step size in the 
quasi-Newton method. The algorithm proceeds as follows.

1. Let iter = 0 and define starting values θ̂ iter.
2. With values θ̂ iter, compute the posterior modes Ẑ and the gradient ∇

θ̂ iter
.

3. Compute the approximated Hessian matrix H iter from the gradient ∇
θ̂ iter

.

4. Update the parameter estimates with θ̂ iter+1 = θ̂ iter + αiter × H−1
iter∇θ̂ iter

and let iter = iter + 1.

5. Repeat steps 2-4 until max|θ̂ iter − θ̂ iter−1| < TOL.

We propose using starting values aijc = 1.2 for the slope parameters, an even sequence from mi − 2 to −(mi − 2) for the 
intercept parameters (hence, starting value 0 if mi = 2 and starting values 1 and -1 if mi = 3) and σ jk = 0.5, with TOL =
0.0001 and αiter = 1.0 as default settings. If max|H−1

iter∇θ̂ iter
| > 0.25, we suggest to instead set αiter = 0.25/max|θ̂ iter − θ̂ iter−1|

to avoid changing the parameter estimates too much in each iteration. Note that we directly maximize the approximated 
marginal log-likelihood function instead of using the EM (Dempster et al., 1977) algorithm. As a result, ẑ f g is treated as a 
function of θ as implied in Equation (12).

2.4. Inference with the approximated likelihood

To draw inference we suggest using the inverse of the observed information matrix. The observed information matrix can 
be approximated by a numerical approximation to the Jacobian of the observed gradient in Equation (12) or the approxima-
tion from the BFGS algorithm. The results in Andersson and Xin (2021) indicated that using the numerical approximation 
to the Jacobian was accurate with correctly specified independent-clusters models and we therefore use this method in the 
current study. The numerical approximation to the Jacobian is obtained by defining an objective function with the unknown 
parameters as a vector-valued input argument, which computes and returns the exact observed gradient of the approxi-
mated log-likelihood, given in Equation (12). Before computing the gradient, the objective function updates the mode for 
each response pattern based on the parameters of the input argument. The Jacobian of this function is then approximated 
with a finite difference approach as implemented in the R package numDeriv (Gilbert and Varadhan, 2019). This method 
thus provides an approximation of the second derivatives of the approximated log-likelihood, taking the mode estimation 
into account when doing so. It is also possible to use the sandwich estimator, based on an approximation of the observed 
information matrix and the empirical cross-product matrix, to obtain robust standard errors.
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Fig. 2. Illustration of the two models with 12 observed variables used in the simulation study.

3. Simulation study

We performed a simulation study to investigate the parameter recovery and the computational efficiency of the second-
order Laplace approximation (Lap2) method for multiple group models by comparing with the first-order Laplace approx-
imation (Lap1) and adaptive Gauss-Hermite quadrature with three (AGHQ3) and five (AGHQ5) quadrature points. The R 
package lamle (Andersson and Jin, 2022) was used for parameter estimation with all methods.

3.1. Simulation design

In the simulations, we considered models with four latent variables and four groups, with 500 participants per group. 
Two settings were manipulated in the simulation design: (1) the type of multidimensional model - an independent-clusters 
model or a cross-loading model, and (2) the number of observed variables - three or four per dimension, for a total of 
either 12 or 16 observed variables. We considered only binary observed variables because the Laplace approximation has 
been shown in previous research to perform the worst in this setting (Joe, 2008; Andersson and Xin, 2021). We consid-
ered only the case of a low number of observed variables for the same reason. The conditions of experimental setting (1) 
represent between-item and within-item multidimensional models, respectively (Wang et al., 2004). In the between-item 
case, each observed variable is assumed to measure a single latent variable while in the within-item case some observed 
variables measure more than one latent variable via cross-loadings. Specifically, in the scenario with 12 observed variables, 
we added cross-loadings to one observed variable for each latent variable, resulting in four cross-loadings. Similarly, two 
observed variables in each dimension load on another dimension in the scenario with 16 observed variables, resulting in 
eight cross-loadings. The two models in the setting with 12 observed variables are presented in Fig. 2, where the ellipses 
represent the latent variables, the rectangles represent the observed variables, the solid lines with two arrows represent co-
variances between the latent variables, and the solid lines with one arrow represent the main loadings, with cross-loadings 
represented by dotted lines with one arrow. For both types of models, the covariances for the latent variables are freely 
estimated in each group and the mean vector and variances for the latent variables are freely estimated in each group ex-
cept the first one, where the means and variances are all fixed to 0 and 1, respectively. The manipulation of the simulation 
settings led to 2 × 2 = 4 conditions. 1000 replications were conducted under each condition.

Data were generated in R version 4.1.1 (R Core Team, 2021). We simulated binary data using the graded response model 
with slope and intercept parameters given in Tables A.4-A.6 in the Appendix. We selected these parameters to have a setting 
which closely resembles real-life examples in educational and psychological measurement (Ayala, 2009). The latent vari-
ables were generated from a multivariate normal distribution with the mean vectors (−1, −1, −1, −1), (−.5, −.5, −.5, −.5), 
(0, 0, 0, 0), and (.25, .25, .25, .25) in the respective group, chosen to represent common differences in proficiency between 
age groups in practice. The covariances, which were identical for each group, were set to values between 0.4 and 0.6 and 
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Table 1
Convergence rates (in percent), average absolute bias, average coverage rate of 95% con-
fidence intervals (in percent), average root mean squared error, average estimation time 
(in seconds), and average number of iterations for the four-dimensional multiple group 
models with sample size 2000 and different numbers of variables.

Outcome measure Model J Lap1 Lap2 AGHQ3 AGHQ5

Independent- 12 100 100 100 100
Convergence clusters model 16 100 100 100 100
rate Cross-loading 12 67.6 100 98.9 99.3

model 16 99.7 100 100 100

Independent- 12 0.076 0.013 0.024 0.011
Average clusters model 16 0.050 0.010 0.017 0.009
absolute bias Cross-loading 12 0.080 0.015 0.022 0.012

model 16 0.048 0.010 0.016 0.009

Independent- 12 90.0 94.6 94.6 94.8
Average clusters model 16 92.1 95.0 94.9 95.0
coverage rate Cross-loading 12 91.3 94.7 94.8 94.9

model 16 92.4 94.8 94.7 94.8

Independent- 12 0.040 0.027 0.025 0.027
Average root mean clusters model 16 0.025 0.020 0.019 0.020
squared error Cross-loading 12 0.047 0.030 0.029 0.031

model 16 0.029 0.024 0.023 0.024

Independent- 12 23.71 31.64 271.15 2182.70
Average clusters model 16 29.32 40.17 363.10 2987.91
estimation time Cross-loading 12 78.00 88.22 372.17 2437.80

model 16 40.91 164.52 475.47 3365.19

Independent- 12 30.77 29.93 29.75 29.83
Average number clusters model 16 30.67 30.32 30.20 30.31
of iterations Cross-loading 12 113.63 35.82 42.14 34.14

model 16 38.09 31.63 31.89 31.56

Notes. J = number of observed variables, Lap1 = first-order Laplace, Lap2 = second-order 
Laplace, AGHQ3/AGHQ5 = adaptive Gauss-Hermite quadrature with 3 or 5 quadrature 
points.

are given in Table A.7 in the Appendix. The variances for the latent variables were fixed to one. Hence, the four groups 
varied in the means of the latent variables but shared the same correlations among the four dimensions. Note that we 
freely estimated the covariances in each group.

With the generated data, we employed the Lap1, Lap2, AGHQ3, and AGHQ5 estimation methods. To assess the perfor-
mance of the four methods, we examined their statistical properties in terms of convergence rate, parameter recovery, and 
computational speed. Successful convergence was determined by fulfilling all of the following three criteria: 1) the algo-
rithm stopped within 500 iterations, 2) the empirical cross-product matrix was positive definite, and 3) the approximated 
observed information matrix was positive definite. After concluding the simulation, we also inspected the parameter esti-
mates and standard errors with each method to detect outlying replications. We computed the convergence rate in percent 
for each method and setting. Regarding parameter recovery, for a parameter θ with the estimate θ̂ r in replication r, define 

the absolute bias as |bias|θ = | ∑R
r=1(θ̂

r − θ)/R| and the root mean squared error (RMSE) as RMSEθ =
√∑R

r=1(θ̂
r − θ)2/R . 

We computed overall measures of the recovery of the parameters (slopes, intercepts, covariances, variances, and means) in 
terms of average absolute bias, average RMSE, and average coverage rate of 95% confidence intervals estimated with the 
standard errors from the observed information matrix, across all parameters in a given setting. To evaluate the computa-
tional efficiency of the four estimation methods, we recorded the time information and the number of iterations required in 
the estimation. The computational efficiency is comparable between the methods since all methods are based on the same 
code base written in C++. The total simulation time exceeded 3600 core hours.

3.2. Results

In this subsection, we present the results of the simulation study. First in Table 1 are the convergence rates of Lap1, Lap2, 
AGHQ3, and AGHQ5 estimation methods for the four-dimensional multiple group models. It suggests that all the estimation 
methods attained 100% convergence for the independent-clusters models. However, with cross-loading models, the Lap2 
method outperformed the other methods and was the only method to reach a 100% convergence rate. The Lap1 method 
was particularly problematic with respect to convergence (convergence rate = 67.6%) in the cross-loading scenario with 12 
observed variables. We excluded the non-converged replications in subsequent comparisons of the methods.

Next, we evaluate the recovery of parameters and summarize the results of Table 1 concerning this. With respect to 
average absolute bias, Lap2 and AGHQ5 estimation methods produced less bias compared with Lap1 and AGHQ3. With an 
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Table 2
Number of unique nonzero 3rd and 4th derivatives and the number of unique nonzero entries in the sums 
of the second-order Laplace approximation for the four different models considered in the simulation.

Model J Unique 3rd Unique 4th Unique sum A Unique sum B Unique sum C

Independent- 12 4 4 4 10 10
clusters model 16 4 4 4 10 10

Cross-loading 12 12 16 20 170 114
model 16 16 22 28 322 214

Note. J = number of observed variables.

increasing number of observed variables, the average absolute bias decreased, especially for the Lap1 estimation method. The 
types of model, independent-clusters or cross-loading, did not impact estimation accuracy much. Regarding average coverage 
of 95% confidence intervals, Lap2, AGHQ3, and AGHQ5 showed similar results and performed better than Lap1. In addition, 
the manipulation settings barely had influence on this evaluation criterion. Besides the accuracy of parameter estimates, we 
also considered the estimation precision. The results suggest that compared with Lap1, other estimation methods produced 
more precise estimates, especially when the number of observed variables was 12. Increasing the number of observed 
variables or using a simpler model improved the average RMSE for all estimation methods. In general, the Lap2 estimation 
method exhibited similar estimation accuracy and precision with the AGHQ5 method, outperforming the AGHQ3 method 
and especially the Lap1 method.

Regarding computational efficiency, overall, the Lap1 method cost the least time (23.71 to 78.00 seconds per replication 
on average), followed by the Lap2 method (31.64 to 164.52 seconds), while the adaptive Gauss-Hermite quadrature methods 
required much longer time - over 270 seconds for AGHQ3 and more than 2100 seconds for AGHQ5 for all settings. Regarding 
the influence of the experimental factors, all the methods needed more time under the cross-loading conditions compared 
with the independent-clusters conditions. The computational time increased as the number of observed variables rose, 
except for the Lap1 method under the cross-loading conditions. The reason for this decrease is the need for additional 
iterations in the algorithm when using the Lap1 method in the cross-loading setting with 12 observed variables compared 
to 16 observed variables. It is worth mentioning that the simulation study in Bianconcini (2014) showed that Lap2 needs 
substantially more steps than AGHQ5, whereas our results show that they tend to converge within similar number of 
iterations.

To explain these computational results, it is useful to consider their relationship to the expression of the second-order 
Laplace approximation in terms of the unique quantities that are needed and the size of the sums included in the ap-
proximation. With an arbitrary four-dimensional model, the number of unique third derivatives of h f g(z) is at most 20 
and the number of unique fourth derivatives of h f g(z) is at most 35. The sums in Equation (8) consist of entries that are 
products of these derivatives and the entries of the inverse of H f g . When ignoring symmetries and zero entries, sum A 
with fourth-order derivatives has 44 = 256 entries, and sums B and C with third-order derivatives each have 46 = 4096
entries.

In Table 2, we present the number of unique derivatives that must be computed for each model we considered and 
the number of unique entries required in the sums of Equation (8). The number of unique entries does not change when 
increasing the number of observed variables for the independent-clusters model because the model structure remains the 
same. This means that the computational time is essentially a linear function of the number of observed variables. However, 
since the model structure changes for the cross-loading model when increasing the number of observed variables from 12 
to 16, there is an increased number of unique entries both for the derivatives and for the resulting sums. Nevertheless, the 
reduction in the number of entries is substantial compared to the unfiltered number since at most 28 out of the total 256 
of sum A, 322 of the total 4096 of sum B, and 214 of the total 4096 of sum C have to be computed. This illustrates that the 
number of derivatives that must be computed for these models is still quite small compared the total which explains the 
high computational efficiency of the second-order Laplace approximation. Note that the function h f g must be evaluated only 
once for each unique response pattern in the data for either the first- or second-order Laplace approximation whereas with 
adaptive quadrature it needs to be evaluated either 81 (AGHQ3) or 625 (AGHQ5) times for each unique response pattern in 
the data. As seen in the simulation study, this results in drastically increased computational time for adaptive quadrature 
relative to the Laplace approximations for the four-dimensional models considered.

In sum, the simulation study suggests that the Lap2 estimation method led to desirable outcomes in three aspects. First, 
unlike the Lap1 method, which suffered from non-convergence problems under some conditions, the Lap2 method achieved 
convergence in all the simulated data sets. Second, the Lap2 method yielded both accurate and precise parameter estimates, 
which was comparable to AGHQ5. Both Lap2 and AGHQ5 methods outperformed Lap1 and AGHQ3 methods in terms of 
parameter recovery. Third, the Laplace approximation methods greatly improved the computational speed compared to the 
adaptive Gauss-Hermite quadrature methods. Thus, we conclude that the Lap2 estimation method can produce satisfac-
tory parameter estimates with a substantial improvement of computational efficiency compared to adaptive Gauss-Hermite 
quadrature for estimation of multidimensional multiple group models.

8



B. Andersson, S. Jin and M. Zhang Computational Statistics and Data Analysis 182 (2023) 107710

Table 3
Estimated latent means (se) of 2009 PISA mathematics literacy, 
reading literacy, and science literacy in Hong Kong (the reference 
group), Macao, Shanghai, and Chinese Taipei.

Mathematics Reading Science

Hong Kong 0 0 0
Macao -0.31 (0.03) -0.58 (0.02) -0.45 (0.02)
Shanghai 0.47 (0.03) 0.20 (0.03) 0.25 (0.03)
Chinese Taipei -0.07 (0.03) -0.50 (0.02) -0.32 (0.03)

4. Empirical illustration

4.1. Data and models

To illustrate the proposed estimation method and compare against alternatives, we utilized data from Hong Kong, Macao, 
Shanghai and Chinese Taipei in the 2009 Programme for International Student Assesment (Schleicher et al., 2009, PISA). PISA 
is a large-scale educational assessment run by the Organisation for Economic Co-operation and Development (OECD) which 
aims to measure student achievement in mathematics, reading, and science, and monitor the outcomes of education systems 
internationally. We estimated three-dimensional multiple group (i.e., four regions) independent-clusters graded response 
models, where the dimensions corresponded to mathematics literacy, reading literacy and science literacy. The total number 
of respondents were 21690 but we removed 18 of these due to excessive numbers of missing values. The sample sizes 
in each region were 4792 in Hong Kong, 5948 in Macao, 5113 in Shanghai and 5819 in Chinese Taipei. There were 35 
mathematics items, 100 reading items and 53 science items for a total of 188 items, out of which 176 items were binary 
scored and 12 were scored in three categories. Due to the PISA 2009 sampling design, each respondent only answered a 
subset of the total items included in the study and missing values are assumed missing at random. The average number of 
responses to the 188 total items was 54.55 across all regions. We simultaneously estimated the item parameters and the 
mean vectors and covariance matrices in each region using the item response data. Hong Kong was set as the reference 
group and the means and variances of the latent variable were not estimated in this group. The item parameters were 
considered invariant between regions. The model had nine free mean parameters, nine free variance parameters, 12 free 
covariance parameters, and 388 free item parameters, for a total of 418 parameters that were uniquely estimated.

4.2. Estimation settings

Estimation was done by maximizing the approximated log-likelihood, where the first-order Laplace (Lap1), second-order 
Laplace (Lap2) and adaptive Gauss-Hermite quadrature with 3, 5 and 13 quadrature points (AGHQ3, AGHQ5, and AGHQ13) 
were used for the integral approximations. The most accurate method out of these according to underlying theory is the 
AGHQ13 method, which has a fifth-order accuracy (Jin and Andersson, 2020). We thus used this as the reference method 
to compare the other methods against. The methods used the same starting values and estimation settings: tolerance of 
0.0001, step size 0.5 for the first 25 iterations, maximum update direction 0.25, and maximum number of iterations 500. 
The R package lamle was used for all methods. All methods converged successfully after 36 iterations.

4.3. Results

4.3.1. Estimated distribution parameters
The estimated mean vectors and associated standard errors from the Lap2 method are shown in Table 3, where Hong 

Kong is set as the reference group and thus has a mean vector of 0 and variances equal to 1. The estimated means indicate 
that Shanghai is the highest performing region overall. The performance in reading and science are the highest in Hong 
Kong and Shanghai. Macao and Chinese Taipei have similar profiles, with slightly lower mean estimates compared to Hong 
Kong in all domains. The estimated covariance matrix for the latent mathematics, reading, and science literacy indicate that 
the domains are highly correlated, with estimated correlations between 0.86 and 0.92 in the reference group Hong Kong. 
The results for the three other regions were similar to Hong Kong and the full results are provided as covariance matrices 
in the Appendix.

4.3.2. Computational efficiency and accuracy
The log-likelihood values, estimation times and the parameter estimates were obtained after convergence. The log-

likelihood values and estimation times are given in Table 4. These statistics reflect the results from the simulation study, in 
that the Lap1 method is the fastest but which approximates the log-likelihood the worst. Meanwhile, the Lap2 method is 
almost as fast as Lap1 while having a log-likelihood value that is very close to AGHQ13. Compared to AGHQ3, Lap2 improves 
both on the accuracy in terms of the log-likelihood value and the computational efficiency. AGHQ5 gives a log-likelihood 
value that is the closest to the reference AGHQ13, but the difference to Lap2 is small. The speed improvement of the Laplace-
based methods relative to the adaptive quadrature methods is not as great for this three-dimensional model because of the 
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Table 4
Log-likelihood values and estimation times in seconds for five estimation methods with 
the 2009 PISA data from Hong Kong, Macao, Shanghai, and Chinese Taipei.

Lap1 Lap2 AGHQ3 AGHQ5 AGHQ13

Log-likelihood -627557.7 -627402.9 -627426.6 -627405.3 -627404.7
Estimation time 532.3 608.5 1800.7 6031.8 99081.1

Note. Lap1 = first-order Laplace, Lap2 = second-order Laplace, AGHQ3/AGHQ5/AGHQ13 = 
adaptive Gauss-Hermite quadrature with 3, 5, or 13 quadrature points.

Fig. 3. Differences between parameter estimates obtained from Lap1, Lap2, AGHQ3, and AGHQ5, compared to parameter estimates from AGHQ13.

fewer number of total quadrature points needed with this model compared to a four-dimensional model. Nevertheless, the 
Lap2 method was almost three times faster than AGHQ3 and almost 10 times faster than AGHQ5 in estimation.

The log-likelihood values suggested that the methods provided slightly different results but this does not necessarily 
indicate if there are substantial differences in the parameter estimates from the different methods. To illustrate potential 
differences between the methods, we plotted the differences in the parameter estimates for Lap1, Lap2, AGHQ3 and AGHQ5 
when compared to the AGHQ13 method. These differences are provided in Fig. 3, showing that Lap1 has the largest differ-
ences to the AGHQ13 method, followed by AGHQ3, Lap2, and AGHQ5. Overall, the differences in parameter estimates are 
small for all methods, differing at most by 0.0408 in absolute value for Lap1, 0.0027 in absolute value for Lap2, 0.0144 in 
absolute value for AGHQ3, and 0.0009 in absolute value for AGHQ5. This indicates that all of the methods can be considered 
sufficiently accurate in terms of parameter recovery in this particular setting, which is a consequence of the fairly large 
number of item responses by each student.

5. Discussion

Estimation of generalized linear latent variable models is computationally demanding in high dimensions which hin-
ders their usage in many practical situations. In this study we implemented a second-order Laplace approximation method 
for estimation of generalized linear latent variable models with categorical observed variables and multiple groups. The 
practical consequences of our results are that the application of generalized linear latent variable models with high di-
mensionality is possible to do in situations with large sample sizes and with many parameters and that estimation time is 
reduced compared to alternative methods in other settings. In the numerical illustration, the second-order Laplace approxi-
mation method was highly computationally efficient compared to adaptive quadrature with three and five quadrature points 
per dimension. Meanwhile, the estimation accuracy was improved in relation to the first-order Laplace approximation and 
adaptive quadrature with three quadrature points while estimation accuracy was almost identical to that attained with five 
quadrature points. Since the second-order Laplace approximation has the same theoretical error rate as adaptive Gauss-
Hermite quadrature with four to six quadrature points (Jin and Andersson, 2020), the second-order Laplace approximation 
was substantially more efficient than adaptive Gauss-Hermite quadrature at the same level of theoretical accuracy with the 
examples used in this study.

The results of this study thus imply that the Laplace approximation has a computational efficiency far above that 
of adaptive quadrature using a number of quadrature points which provides the same theoretical error rate. For the 
four-dimensional models considered here, the second-order Laplace approximation was also more efficient than adaptive 
quadrature with three quadrature points, which has a lower theoretical error rate than the second-order Laplace approxi-
mation. Generally speaking, the efficiency advantage will be lower with fewer latent variables and the efficiency advantage 
will be greater with more latent variables. The computational advantage of the second-order Laplace approximation is how-
ever also dependent on the complexity of the model structure. The highest efficiency gains are realized when each observed 
variable is related to only a single latent variable out of many correlated latent variables. The lowest gains are realized when 
specifying an unrestricted model with uncorrelated latent variables.

Our results can guide the practical use of latent variable models in the following ways. First, compared to the regular 
Laplace approximation the second-order Laplace approximation is preferred for most situations due to the added estimation 
accuracy. An exception is for the case of complex models with many indicators where the second-order method may still 
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be too time-consuming to utilize. With the most commonly used model structures, the second-order Laplace approximation 
is however fast enough to support up to 12 correlated latent variables (Andersson and Xin, 2021) which should cover 
most settings in practice. Second, we argue that the second-order Laplace approximation is especially useful for cases when 
adaptive quadrature with four or more quadrature points is impossible to practically conduct. If adaptive quadrature with 
many quadrature points is possible to employ, the second-order Laplace approximation becomes less suitable since a higher 
accuracy can be attained with adaptive quadrature by increasing the number of quadrature points.

Compared to alternatives such as adaptive quadrature and simulation-based methods, the second-order Laplace is at-
tractive because of its high computational efficiency while maintaining a high accuracy. It is also attractive relative to the 
simulation-based methods due to the highly efficient computations of the log-likelihood and the observed information ma-
trix, which can be extremely time-consuming for simulation-based methods when the sample size is large. Downsides to 
using the second-order Laplace approximation are that the computational advantage reduces for complex models and that 
the method requires the computation of a considerable amount of higher-order derivatives that do not easily generalize 
for different measurement models. It is also not straightforward with the Laplace approximation or adaptive quadrature to 
utilize the independence structure of the latent variables to improve the efficiency, as is possible with regular numerical 
quadrature (Gibbons and Hedeker, 1992; Cai, 2010b). However, regular numerical quadrature is unfeasible when the number 
of correlated latent variables is larger than three.

Future avenues of research include supporting additional types of observed variables combined with the categorical 
observed variables considered here. For example, providing an efficient yet accurate method that supports combinations of 
continuous data, count data, ordinal data and nominal data would be ideal to have. In addition, extensions of the approach 
to support mixture models and additional latent variable distributions beyond the normal distribution are possible.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2023 .107710.

References

Andersson, B., Jin, S., 2022. lamle: maximum likelihood estimation of latent variable models using adaptive quadrature and Laplace approximations. https://
github .com /bjoernhandersson /lamlepub /releases /tag /v0 .1.2 -alpha.

Andersson, B., Xin, T., 2021. Estimation of latent regression item response theory models using a second-order Laplace approximation. J. Educ. Behav. Stat. 46 
(2), 244–265. https://doi .org /10 .3102 /1076998620945199.

Ayala, R., 2009. The Theory and Practice of Item Response Theory, Methodology in the Social Sciences. The Guilford Press, New York, NY.
Berndt, E.R., Hall, B.H., Hall, R.E., Hausman, J.A., 1974. Estimation and inference in nonlinear structural models. Ann. Econ. Soc. Meas. 3 (4), 653–665.
Bianconcini, S., 2014. Asymptotic properties of adaptive maximum likelihood estimators in latent variable models. Bernoulli 20 (3), 1507–1531. https://

doi .org /10 .3150 /13 -BEJ531.
Bianconcini, S., Cagnone, S., 2012. Estimation of generalized linear latent variable models via fully exponential Laplace approximation. J. Multivar. Anal. 112, 

183–193. https://doi .org /10 .1016 /j .jmva .2012 .06 .005.
Bock, R.D., 1972. Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika 37 (1), 29–51. 

https://doi .org /10 .1007 /BF02291411.
Bock, R.D., Aitkin, M., 1981. Marginal maximum likelihood estimation of item parameters: application of an EM algorithm. Psychometrika 46 (4), 443–459. 

https://doi .org /10 .1007 /BF02293801.
Cagnone, S., Monari, P., 2013. Latent variable models for ordinal data by using the adaptive quadrature approximation. Comput. Stat. 28 (2), 597–619. 

https://doi .org /10 .1007 /s00180 -012 -0319 -z.
Cai, L., 2010a. Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. J. Educ. Behav. Stat. 35 (3), 307–335. https://doi .org /10 .

3102 /1076998609353115.
Cai, L., 2010b. A two-tier full-information item factor analysis model with applications. Psychometrika 75 (4), 581–612. https://doi .org /10 .1007 /s11336 -010 -

9178 -0.
Cho, A.E., Wang, C., Zhang, X., Xu, G., 2021. Gaussian variational estimation for multidimensional item response theory. Br. J. Math. Stat. Psychol. 74 (S1), 

52–85. https://doi .org /10 .1111 /bmsp .12219.
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc., Ser. B, Methodol. 39 (1), 1–38. 

https://doi .org /10 .1111 /j .2517 -6161.1977.tb01600 .x.
Gibbons, R.D., Hedeker, D.R., 1992. Full-information item bi-factor analysis. Psychometrika 57 (3), 423–436. https://doi .org /10 .1007 /BF02295430.
Gilbert, P., Varadhan, R., 2019. numDeriv: accurate numerical derivatives, r package version 2016.8-1.1. https://CRAN.R-project .org /package =numDeriv.
Huber, P., Ronchetti, E., Victoria-Feser, M.-P., 2004. Estimation of generalized linear latent variable models. J. R. Stat. Soc., Ser. B, Stat. Methodol. 66 (4), 

893–908. https://doi .org /10 .1111 /j .1467 -9868 .2004 .05627.x.
Hui, F.K.C., Warton, D.I., Ormerod, J.T., Haapaniemi, V., Taskinen, S., 2017. Variational approximations for generalized linear latent variable models. J. Comput. 

Graph. Stat. 26 (1), 35–43. https://doi .org /10 .1080 /10618600 .2016 .1164708.
Jin, S., Andersson, B., 2020. A note on the accuracy of adaptive Gauss–Hermite quadrature. Biometrika 107 (3), 737–744. https://doi .org /10 .1093 /biomet /

asz080.
Jin, S., Noh, M., Lee, Y., 2018. H-likelihood approach to factor analysis for ordinal data. Struct. Equ. Model. 25 (4), 530–540. https://doi .org /10 .1080 /10705511.

2017.1403287.
Jin, S., Vegelius, J., Yang-Wallentin, F., 2020. A marginal maximum likelihood approach for extended quadratic structural equation modeling with ordinal 

data. Struct. Equ. Model. 27 (6), 864–873. https://doi .org /10 .1080 /10705511.2020 .1712552.
Joe, H., 2008. Accuracy of Laplace approximation for discrete response mixed models. Comput. Stat. Data Anal. 52 (12), 5066–5074. https://doi .org /10 .1016 /

j .csda .2008 .05 .002.
Muraki, E., 1992. A generalized partial credit model: application of an EM algorithm. Appl. Psychol. Meas. 16 (2), 159–176. https://doi .org /10 .1177 /

014662169201600206.
Muthen, B., Lehman, J., 1985. Multiple group IRT modeling: applications to item bias analysis. J. Educ. Behav. Stat. 10 (2), 133–142. https://doi .org /10 .3102 /

10769986010002133.

11



B. Andersson, S. Jin and M. Zhang Computational Statistics and Data Analysis 182 (2023) 107710

Niku, J., Brooks, W., Herliansyah, R., Hui, F.K.C., Taskinen, S., Warton, D.I., 2019. Efficient estimation of generalized linear latent variable models. PLoS ONE 14 
(5), 1–20. https://doi .org /10 .1371 /journal .pone .0216129.

Nocedal, J., Wright, S., 2006. Numerical Optimization. Springer-Verlag, New York, NY.
Noh, M., Lee, Y., 2007. REML estimation for binary data in GLMMs. J. Multivar. Anal. 98 (5), 896–915. https://doi .org /10 .1016 /j .jmva .2006 .11.009.
R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-

project .org/.
Rabe-Hesketh, S., Skrondal, A., Pickles, A., 2004. Generalized multilevel structural equation modeling. Psychometrika 69 (2), 167–190. https://doi .org /10 .

1007 /BF02295939.
Raudenbush, S.W., Yang, M.-L., Yosef, M., 2000. Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate 

Laplace approximation. J. Comput. Graph. Stat. 9 (1), 141–157. https://doi .org /10 .2307 /1390617.
Samejima, F., 1969. Estimation of latent ability using a response pattern of graded scores. Psychometrika 34 (Suppl 1), 1–97. https://doi .org /10 .1007 /

BF03372160.
Schilling, S., Bock, R.D., 2005. High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika 70 (3), 533–555. 

https://doi .org /10 .1007 /s11336 -003 -1141 -x.
Schleicher, A., Zimmer, K., Evans, J., Clements, N., 2009. Pisa 2009 assessment framework: key competencies in reading, mathematics and science. OECD 

Publishing (NJ1).
Shun, Z., 1997. Another look at the salamander mating data: a modified Laplace approximation approach. J. Am. Stat. Assoc. 92 (437), 341–349. https://

doi .org /10 .1080 /01621459 .1997.10473632.
Thomas, N., 1993. Asymptotic corrections for multivariate posterior moments with factored likelihood functions. J. Comput. Graph. Stat. 2 (3), 309–322.
Wang, W.-C., Chen, P.-H., Cheng, Y.-Y., 2004. Improving measurement precision of test batteries using multidimensional item response models. Psychol. 

Methods 9 (1), 116–136. https://doi .org /10 .1037 /1082 -989X .9 .1.116.
Zhu, J., Eickhoff, J., Yan, P., 2005. Generalized linear latent variable models for repeated measures of spatially correlated multivariate data. Biometrics 61 (3), 

674–683. https://doi .org /10 .1111 /j .1541 -0420 .2005 .00343 .x.

12



Paper IV

Estimation of generalized linear
latent variable models for
performance and process data with
ordinal, continuous, and count
observed variables

Maoxin Zhang, Björn Andersson, Shaobo Jin
Submitted to British Journal of Mathematical and Statistical Psychology.

IV

141





ESTIMATING GENERALIZED LINEAR LATENT VARIABLE MODELS 1

Estimation of generalized linear latent variable models for performance and

process data with ordinal, continuous, and count observed variables

Maoxin Zhang1, Björn Andersson1, and Shaobo Jin2

1Center for Educational Measurement, University of Oslo
2Department of Mathematics, Uppsala University

Author Note

Correspondence: Björn Andersson https://orcid.org/0000-0002-9007-2440,

bjorn.andersson@cemo.uio.no. All authors declare that they have no conflicts of interest.



ESTIMATING GENERALIZED LINEAR LATENT VARIABLE MODELS 2

Abstract

A collection of different data types often occurs in psychological and educational

measurement such as computer-based assessments that record performance and process

data (e.g., response times and the number of actions). Modeling such data requires specific

models for each data type and accommodating complex dependencies between multiple

variables. Generalized linear latent variable models are suitable for modeling mixed data

simultaneously, but estimation can be computationally demanding. A fast solution is to

use Laplace approximations but existing implementations of joint modeling of mixed data

types are limited to ordinal and continuous data. To address this limitation, we derive an

efficient estimation method to simultaneously model ordinal data, continuous data, and

count data using first-order and second-order Laplace approximations. We illustrate the

approach with an empirical example and conduct simulations to evaluate the performance

of the proposed method in terms of estimation efficiency, convergence, and parameter

recovery. The results suggest that the second-order Laplace approximation achieves a

higher convergence rate and produces accurate yet fast parameter estimates compared to

the first-order Laplace approximation, while the time cost increases with the complexity of

model specification. Additionally, models that consider the dependence of the variables

from the same stimulus better fit the empirical data.

Keywords: mixed data types; Laplace approximation; estimation efficiency; high

dimensionality



ESTIMATING GENERALIZED LINEAR LATENT VARIABLE MODELS 3

Estimation of generalized linear latent variable models for performance and

process data with ordinal, continuous, and count observed variables

Introduction

Due to technological advances in data collection via digital devices, a mixture of

continuous and discrete data (e.g., binary, categorical, and count) frequently occurs in

assessment contexts (De Leon & Chough, 2013, Chapter 1). Compared to traditional

paper-and-pencil tests that only record the final answer to the items, computer-based

assessments can track the entire human-computer interaction sequence (e.g., mouse clicks

and keyboard input with timestamps) and compile such information in log files. From log

files, researchers can extract different types of indicators for further analyses, such as

scored responses (categorical), response time spent on single items (continuous), response

time until the first action (continuous), and the number of actions for each item (count).

Such information is widely available in large-scale assessments, providing abundant

research materials for understanding participants’ task-taking behaviors (De Boeck &

Scalise, 2019; Ulitzsch, von Davier, & Pohl, 2020). These data also commonly exist in

game-based assessments (Landers, Armstrong, Collmus, Mujcic, & Blaik, 2021), which

routinely collect the number of correct or incorrect trials, the number of mouse clicks, and

the performance scores. In addition, sophisticated measurement tools such as eye-tracking

devices also produce mixed data such as fixation count and fixation duration (Steinfeld,

2016). Hence, a combination of continuous and discrete data widely exists in educational

and psychological assessments, providing researchers and practitioners with valuable

information on diverse aspects of the respondents.

However, a mixture of different types of data poses challenges for conventional

statistical methods because of the complex dependence structures that often exist

(De Leon & Chough, 2013, Chapter 1). To be specific, dependence can stem from a) the

same type of indicator like the responses to a number of items, and b) different types of

indicators based on the same stimulus such as the item response and the response time
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from the same task. The former type of dependence is typically handled by introducing

latent variables, while the latter type is often ignored. However, ignoring the dependence of

indicators from the same task can lead to biased parameter estimation (De Boeck &

Scalise, 2019; Meng, Tao, & Chang, 2015). Additionally, the inherent non-normality of

categorical and count data means that traditional analysis methods that assume

continuous and normally distributed observed variables are less suitable to use.

Despite the above-mentioned challenges, multiple approaches to handling the issue

of a mixture of different types of data exist. Among them, drawing inferences for each type

of measure via separate models is the simplest approach. For example, researchers can

analyze ordinal performance data via item response theory models, continuous response

time via factor analysis, and the number of actions via count data models. However, a

multiple testing issue arises (De Leon & Chough, 2013, Chapter 2) and the approach

cannot capture relationships between the measures because they are modeled separately.

Therefore, a single multivariate model is regarded as a more appealing approach. To

estimate such models with traditional methods, data may be converted into the same type

by recoding continuous data as categorical data according to certain cutoff values or

treating discrete data as continuous. The former method causes a loss of information while

the latter violates a model assumption. Neither of these approaches are ideal and it is

instead recommended to treat the observed variables as they are (Huber, Ronchetti, &

Victoria-Feser, 2004). For joint analysis of ordinal and continuous data,

limited-information estimation with polyserial correlations may be used (Olsson, Drasgow,

& Dorans, 1982). However, such a method cannot handle count data and the existence of

missing data poses an issue in estimation.

An alternative approach is therefore to model mixed data jointly under the

framework of generalized linear latent variable models (GLLVMs; Bartholomew, Knott, &

Moustaki, 2011; Huber et al., 2004; Rabe-Hesketh, Skrondal, & Pickles, 2004). A

complicating factor for GLLVMs concerns the estimation of model parameters. Typically,
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full-information maximum likelihood or Bayesian estimation has been proposed. Bayesian

inference is based on the posterior distribution of the freely estimated parameters given the

data and priors of the parameters (Bartholomew et al., 2011, p. 30). When the dimension

is high or models are very complex, Markov Chain Monte Carlo (MCMC) methods are

often used. For example, Man and Harring (2022) and Qiao, Jiao, and He (2022) jointly

modeled ordinal, continuous, and count data with Bayesian methods. MCMC methods are

computationally demanding with many latent variables and residual dependence between

multiple observed variables related to the same stimulus or task has therefore commonly

been ignored when using Bayesian methods (Man & Harring, 2022; Qiao et al., 2022;

Ulitzsch et al., 2020).

In contrast to Bayesian estimation, full-information maximum likelihood integrates

out the latent variables from the likelihood function and maximizes the marginal

likelihood. However, the integrals do not have closed-form solutions for GLLVMs and

approximation methods are required to compute them. One approach is Gauss-Hermite

quadrature (GHQ) which has been implemented for GLLVMs with a collection of data

from different distributions in the exponential family (Moustaki, 1996; Moustaki & Knott,

2000). GHQ works well for simple models but becomes unfeasible with more than three

latent variables because the computational cost grows exponentially as the latent variable

dimension increases (Andersson & Xin, 2021; Huber et al., 2004). Adaptive Gauss-Hermite

quadrature (AGHQ) identifies integration intervals with rapid changes and reduces the

required number of quadrature points (Rabe-Hesketh, Skrondal, & Pickles, 2002). AGHQ

methods for generalized linear latent and mixed models are available in a Stata package

gllamm (Rabe-Hesketh et al., 2004) and both quadrature methods are available in Mplus

(Muthén & Muthén, 2017). Although AGHQ is faster than GHQ, it is still

computationally demanding when the dimension is high. Instead, methods using Laplace

approximations are promising to approximate the required integrals accurately and fast

(Andersson & Xin, 2021; Huber et al., 2004; Niku, Warton, Hui, & Taskinen, 2017).
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First-order Laplace approximations have been proposed to estimate GLLVMs for mixed

data with distributions in the exponential family (Huber et al., 2004). Estimation with

first-order Laplace approximations has been implemented in the R package gllvm (Niku et

al., 2017) but supports only one type of indicator at a time. It is worth noting that

first-order Laplace approximations (Lap1) are equivalent to AGHQ with one quadrature

point per dimension when using the posterior mode and Hessian, and the method thus

works highly efficiently with complex, high-dimensional models. However, this comes at the

cost of non-convergence and inaccuracy with binary data and few observed variables

(Andersson & Xin, 2021; Joe, 2008). To handle issues regarding convergence and accuracy

in parameter recovery, a second-order Laplace approximation (Lap2) can be used (Shun,

1997). Lap2 requires higher-order derivatives to obtain a more accurate approximation by

including more information but with the downside that it needs more time in estimation

(Andersson, Jin, & Zhang, 2023). A recent R package called lamle (Andersson & Jin, 2022)

has implemented AGHQ, first-order Laplace approximations, and second-order Laplace

approximations for categorical data but not for other types of data.

In this article, we propose to apply both first- and second-order Laplace

approximations to generalized linear latent variable models with mixed observed variables.

Our main interest is to apply Laplace approximations (both Lap1 and Lap2) to enable

joint modeling of ordinal, continuous, and count variables based on process data and

performance data in educational and psychological measurement, where the residual

dependence between observed variables related to the same stimulus is accounted for. This

article has three main contributions beyond the existing literature. First, we implement

estimation of joint models for count data, continuous data, and ordinal data using Laplace

approximations, extending the papers by Huber et al. (2004) and Niku et al. (2017).

Second, compared to Huber et al. (2004) and Niku et al. (2017) which only implemented

the first-order Laplace approximation, we further implement a second-order Laplace

approximation. Third, we provide a comparison between Lap1 and Lap2 in estimating
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GLLVMs with a mixture of different observed variables, extending the comparison in

Andersson and Xin (2021) and Andersson et al. (2023) from only categorical data to also

include continuous and count data.

The remainder of the article is organized as follows. We introduce GLLVMs and

derive the estimation algorithm in the Methods section. A motivating example from

Programme for International Student Assessment (PISA) is then described to guide our

simulation design. Subsequently, simulations are conducted to evaluate estimation of joint

models for ordinal, continuous, and count data without or with considering the dependence

of indicators from the same task. Finally, the article concludes with a discussion.

Methods

Generalized linear latent variable models

GLLVMs are extensions of generalized linear models (Nelder & Wedderburn, 1972,

GLMs), which are a class of regression models for discrete or continuous outcomes. GLMs

consist of three components (Nelder & Wedderburn, 1972): a) a linear combination of

predictors

ν = b+ β′w, (1)

where b and β are the intercept and regression coefficients, and w represents

D-dimensional predictors; b) the outcome variable belonging to an exponential dispersion

family; and c) a monotone and differentiable link function g such as the identity, logit, or

probit function, which relates the expected value of the outcome variable to the linear

combination of predictors ν. In GLMs, there is only one outcome variable and all the

variables are observable. When there are multiple correlated indicators that are developed

to measure the same construct, such as responses from several cognitive tasks, we can

incorporate latent variables to account for the dependence between the indicators. In social

science, it is common to develop a battery of tests to measure theoretical constructs since

they can not be directly observed.



ESTIMATING GENERALIZED LINEAR LATENT VARIABLE MODELS 8

GLM is extended to generalized linear latent variable models (Bartholomew et al.,

2011) by introducing latent variables. Let yif denote the i-th observed outcome variable for

individual f . Following Rabe-Hesketh et al. (2004), a general formula for GLLVMs can be

written as

gi(E[yif |w, z]) = bi + β
′
iw + a

′
iz, (2)

where ai is a vector of slope parameters or factor loadings of item i, βi is a D-dimensional

vector of regression coefficients, and z is a P -dimensional vector of latent variables. To link

the linear combination and the expected value of the observed variables, the link function

gi must be defined for each observed variable. For the distribution of the latent variables,

we assume a multivariate normal distribution. For identification purposes, the means and

variances of the latent variables are constrained to zeros and ones, respectively. The

observed outcome variables are assumed to be independent conditional on the latent

variables (Huber et al., 2004).

Let y be the I × 1-vector of observed outcome variables. The marginal

log-likelihood for a response vector y is then

l(θ|y,w) = log
∫ I∏

i=1
Pi(yi|w, z)ψ(z; µ,Σ)dz, (3)

where θ represents the unknown parameters, Pi defines the measurement model for

variable i and ψ(·) is the multivariate normal density function with mean µ and covariance

matrix Σ. The latent variables z are unknown and thus need to be integrated out, which

requires approximation methods.

Measurement models

Equation 3 provides a general form of the marginal log-likelihood function for

generalized linear latent variable models. As mentioned above, the measurement models Pi

and link functions gi need to be defined according to the specified distribution of the

observed variable. Recall that z is the P-dimensional vector of latent variables and let bi
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be the intercept parameter, ai be a vector of slope parameters, and ϕi be the scale

parameter, all for the observed variable i. Three types of observed data, namely ordinal,

continuous, and count data, are considered in this paper and the associated measurement

models are given below.

1. Ordinal responses. We model the probability of observing each category

c ∈ 1, . . . ,mi given the latent variables as follows (Muraki, 1992),

Pi(yif = c|z,w) =
exp

[∑c
v=1(a′

iz + biv + β
′
iw)

]

∑mi
c′=1 exp

[∑c′
v=1(a′

iz + biv + β
′
iw)

] , (4)

where biv represents threshold parameters for item i and where a logit link function is

assumed.

2. Continuous responses. Here we define Pi(yif |z,w) as a conditional density

function. Following Huber et al. (2004), we assume a normal distribution with an identity

link and obtain

Pi(yif |z,w) = exp
[
yif (bi + β

′
iw + a′

iz) − (bi + β
′
iw + a′

iz)2/2
ϕi

− y2
if/(2ϕi) − log(2πϕi)/2

]
.

(5)

If the continuous data are not normally distributed, such as positively skewed response

times, it is common to apply a log-transformation (e.g., De Boeck & Scalise, 2019; van der

Linden, 2006, 2007; Wang, Xu, & Shang, 2018) before applying Equation 5 in the field of

educational and psychological measurement.

3. Count responses. We consider Poisson and negative-binomial distributions with a

log link function for count data. In the former case, we have

Pi(yif = c|z,w) = λc
i

c! exp(−λi), (6)

where λi = exp(bi + β
′
iw + a′

iz). With a negative binomial distribution, we have the

conditional probability mass function (Niku et al., 2017)

Pi(yif = c|z,w) =
Γ
(
c+ 1

ϕi

)

c!Γ
(

1
ϕi

)


 exp(bi + β

′
iw + a′

iz)
1
ϕi

+ exp(bi + β
′
iw + a′

iz)




c(
1

1 + ϕi exp(bi + β
′
iw + a′

iz)

) 1
ϕi

,

(7)
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where Γ(·) indicates the gamma function Γ(α) =
∫∞

0 tα−1e−tdt.

Laplace approximations for GLLVMs

As mentioned above, Equation 3 does not have an explicit solution, requiring

approximation methods for parameter estimation. In this article, we utilize Laplace

approximations to approximate the integrals in the likelihood function. We define

hf (z) = − logP (yf |z)ψ(z; µ,Σ), ĥ = hf (ẑf ), and Hf = ∂2ĥ
∂z∂z′ , where ẑf represents the

posterior modes of the latent scores of individual f ∈ 1, · · · , N . The second-order Laplace

approximation of the marginal log-likelihood for an individual f can then be written as

(Shun, 1997)

l̃Lap2
f (θ|y) = P

2 log(2π) − 1
2 |Hf | − ĥ+ log(1 + ϵf ), (8)

with

ϵf = −1
2


1

4

P∑

jklm

∂4ĥ

∂zj∂zk∂zl∂zm

bjlbkm − 1
4

P∑

jklrst

∂3ĥ

∂zj∂zk∂zl

∂3ĥ

∂zr∂zs∂zt

bjrbklbst (9)

− 1
6

P∑

jklrst

∂3ĥ

∂zj∂zk∂zl

∂3ĥ

∂zr∂zs∂zt

1
6bjrbksblt


 ,

where bjk represents the entry of row j and column k in H−1
f . By setting ϵf = 0 in

Equation 8, the second-order Laplace approximation reduces to the first-order Laplace

approximation. To efficiently compute ϵf , it is necessary to consider the particular model

structure used and identify unique and zero entries of ϵf . Readers are directed to

Andersson et al. (2023) for details of the filtering procedure used to compute ϵf . We utilize

the same estimation approach that Jin and Andersson (2020) and Andersson et al. (2023)

proposed for categorical observed variables and extend it to support continuous and count

data measurement models, where the derivatives in Equation 8 and its gradient are derived

analytically. Each entry θ ∈ θ of the gradient is given by

∇θ
f =

∂lLap2
f (θ|y)
∂θ

+ ∂ẑf

∂θ

∂lLap2
f (θ|y)
∂z

∣∣∣∣∣∣

z=ẑf

, (10)
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where the second term is needed to account for the dependence between θ and ẑf . The

needed derivatives (up to the fifth order) are presented in Appendix B. A quasi-Newton

method using the BFGS algorithm is utilized to maximize the approximated marginal

log-likelihood function.

Motivating example

In this section, we provide an example based on the computer-based assessment of

mathematics (CBAM) in PISA 2012, which aims to assess 15-year-old students’

mathematical literacy and reflects the importance of using digital tools to solve

mathematics tasks (Peña-López et al., 2012). Students can, for example, rotate

representations of 3D objects and draw points and lines to facilitate their thinking

processes. The full CBAM instrument consists of 41 items from 15 units and the items are

organized into four clusters. Each student was given two clusters with 40 minutes total

testing time (Peña-López et al., 2012). PISA released three units out of 15 and the data

are available on the website of the Organisation for Economic Co-operation and

Development. We chose unit CM015 (CD Production) to illustrate the practical use of the

proposed method and to guide our simulation design. CM015 presents an interactive graph

and a price calculator and asks participants to enter the number of copies to discover its

relationship with the cost of copying CDs using duplication and replication methods.

Three items were included in CM015 with one multiple-choice and two

constructed-response items. As an example, we used the Australian data set because it had

the largest sample size (N = 1824) participating in this unit.

Three indicators were extracted: task scores, response time, and the number of

actions. We pre-processed the data by a) log-transforming and centering the response time

to deal with its positively skewed distribution and b) excluding outliers in terms of

response times and the number of actions that were beyond the range from Q1 − 3 × IQR

to Q3 + 3 × IQR, where Q1, Q3, and IQR represent the first quantile, the third quantile,
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Figure 1

Summary of observed indicators. P1 - P3, A1 - A3, and T1 - T3 represent scored responses,

the number of actions, and transformed response times of Items 1 to 3, respectively.

and the interquartile range, respectively. After excluding these outliers and missing values,

1029 respondents remained and were used for the following analysis. A summary of the

three indicators is presented in Figure 1. We then separately applied unidimensional

measurement models to responses, the number of actions, and response times using Lap2,

and used the parameter estimates as a reference for the following simulation studies.

Next, we combined the three indicators in a single model using GLLVMs with the

residual correlations of indicators from the same item considered (ModRes, see Figure 5) or

not (ModInd, see Figure 2). Equality constraints were added to residual factor loadings

from the same item for simplification. In total, we estimated 2 (model structure: ModInd

or ModRes) × 2 (count type: Poisson or negative-binomial) × 2 (algorithms: Lap1 or

Lap2) = 8 models. Lap1 failed to converge with ModRes and either type of count data
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Table 1

Model fit of generalized linear latent variable models using the empirical data.

Count data model Method ModInd ModRes

BIC SRMSR BIC SRMSR

Poisson Lap1 32925 0.127 - -

Poisson Lap2 32897 0.126 28325 0.088

Negative-binomial Lap1 28372 0.086 - -

Negative-binomial Lap2 28353 0.086 27923 0.070

Notes. Lap1 did not converge with ModRes. Lap1 = first-order Laplace, Lap2 = second-

order Laplace, BIC = Bayesian information criterion, SRMSR = standardized root mean

square residuals.

model, whereas Lap2 achieved convergence in all models. The model fit is presented in

Table 1. In the case of ModInd, a negative-binomial distribution fit better than the Poisson

distribution. The BIC of ModRes was smaller than that of ModInd. Given that ModRes

with a negative-binomial distribution using Lap2 had the lowest BIC, we concluded that

this model best represented the observed data and present item parameter estimates in

Appendix A1.

Simulation study

We conducted two simulation studies to assess the performance of Laplace

approximations in the context of mixed data using newly developed code written in C++

and R 4.1.2 (R Core Team, 2021). In Simulation 1, we considered three-dimensional

GLLVMs with three types of indicators: ordinal, continuous, and count data. In Simulation

2, we also considered residual correlations between indicators from the same task.

We evaluated the performance of the proposed methods in terms of convergence

rate, estimation time, and the recovery of model parameters. Convergence was determined
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by satisfying two criteria: a) the algorithm stopped before 500 iterations, and b) the

approximated observed information matrix was positive definite. In addition to excluding

non-converged replications, we also excluded unstable replications with extreme outliers

which were defined as replications that had estimates with absolute bias larger than 5.

Regarding parameter recovery, we computed the absolute bias and the mean squared error

(MSE) to assess the accuracy and precision of parameter estimates via

|bias|θ = |
R∑

r=1
(θ̂r − θ)/R|, (11)

and

MSEθ =
R∑

r=1
(θ̂r − θ)2/R, (12)

where θ and θ̂r represent indicates the true value and estimate of a parameter in the

replication r ∈ 1, · · · , R, respectively.

First simulation study

Simulation 1 design

In Simulation 1, we considered three correlated latent variables with ordinal,

continuous, and count data as indicators, respectively. We illustrate the model in Figure 2.

Three experimental factors were manipulated: a) the distribution of the count data model

(Poisson or negative-binomial distributions), b) the number of items (3 or 6), and c) the

covariance between the latent variables (small and large). This resulted in 2 × 2 × 2 = 8

conditions. We used 1000 replications for each condition. To determine the ranges of the

simulated parameters, we made use of the result from the motivating example and the

PISA 2018 item parameter pool. Specifically, the item pool provides the estimates of item

parameters in terms of task scores, and we used the 10% quantile and 90% quantile as the

range of the item parameters for the ordinal data model. For the models corresponding to

response time and number of actions, we generated the item parameters based on the
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above motivating example. The distributions from which we generated the true parameters

are presented in Table 2. Latent variables were randomly simulated from a multivariate

normal distribution with a zero mean vector and variances equal to one. The sample size

was fixed at 1000. The observed data were then generated based on Equations 4-7. With

the datasets generated, we estimated the measurement models for each outcome variable

and if convergence was achieved, the parameter estimates were used as the starting values

to estimate the three-dimensional model with the first- and second-order Laplace

approximation methods.

Figure 2

Model illustration of three-dimensional GLLVMs. X, Y, and Z indicate three different types

of indicators. F1-F3 indicate latent variables.

Simulation 1 results

The convergence rates and estimation times of each algorithm are presented in

Table 3. It indicates that Lap2 outperformed Lap1 under the conditions with three items

and both methods reached 100% convergence as the number of items increased. Among the

converged and stable replications, both methods accomplished the estimation procedure

within 15 seconds on average. As expected, Lap1 consumed less time than Lap2 in all

conditions, but the difference was minor. Regarding the experimental factors, Table 3

suggests that increasing the number of items or using a negative-binomial distribution took
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Table 2

Distributions of true parameters.

Data type Parameter Distribution

Ordinal data a slope parameter U(0.74, 1.69)

b1 threshold parameter U(0.2, 1.25)

b2 threshold parameter U(−1.25,−0.2)

Continuous data a slope parameter U(0.4, 0.8)

b intercept parameter U(−0.2, 0.2)

ϕ scale parameter U(0.1, 0.3)

Count data a slope parameter U(0.4, 0.8)

b intercept parameter U(1, 3)

ϕ scale parameter (negative binomial) U(0.5, 1)

Covariance parameters ρ covariance: small U(0.2, 0.4)

ρ covariance: large U(0.6, 0.8)

longer time in estimation.

Next, we summarize the recovery of parameters. Overall, the parameters showed

small absolute bias and MSE, indicating that the methods recovered the true parameters

accurately and precisely. We plot the absolute bias and MSE of model parameters with

test length three in Figure 3. Figure 3 indicated that: a) Lap2 produced less bias in

estimating the parameters regarding ordinal data, count data, and covariance than Lap1

did, and b) the absolute biases of the item parameters of the continuous data using Lap1

and Lap2 were visually indistinguishable. We also present the MSE of the estimates in

Figure 4. In general, the values of MSE were small and similar for both Lap1 and Lap2.

However, Lap1 estimated the slope parameters of ordinal data more precisely when the

correlation between the latent variables was small. The six-item conditions showed similar
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Table 3

Convergence rate and timing (seconds) of Lap1 and Lap2 in Simulation 1.

Con Type #Item ρ Convergence rate Timing

Lap1 Lap2 Lap1 Lap2

1 Pois 3 small 81.5% 86.4% 9.15 10.58

2 Pois 3 large 84.2% 84.6% 8.99 10.67

3 Pois 6 small 100% 100% 15.29 17.10

4 Pois 6 large 100% 100% 14.27 15.96

5 Negbin 3 small 82.9% 86.2% 9.25 10.79

6 Negbin 3 large 80.7% 84.8% 9.37 11.02

7 Negbin 6 small 100% 100% 17.51 20.30

8 Negbin 6 large 100% 100% 16.06 18.43

Overall 91.2% 92.8% 12.49 14.36

Notes. Lap1 = first-order Laplace, Lap2 = second-order Laplace, Pois =

Poisson, Negbin = negative-binomial, ρ = covariance of latent variables.

patterns and can be found in the supplementary material1. To illustrate the differences

between the methods, we considered the cases where the absolute average bias was larger

than .01 (i.e., slope and threshold parameters for ordinal data and slope and scale

parameters for negative-binomial distributed data) and present the results under each

simulating factor in Table 4. It suggested that a) increasing the number of items or the

covariance between the latent variables improved the accuracy of item parameter estimates,

especially for Lap1, and b) when estimating the covariance parameter, Lap2 was less

influenced by the simulating factors and recovered covariance satisfactorily under all

conditions, whereas Lap1 showed a relatively large bias.

1 Link: https://osf.io/nec8m/?view_only=fc93a3e633ea47eba597357722fe8c83
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(a) Test length is 3 and correlation between latent variables is small.
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(b) Test length is 3 and correlation between latent variables is large.

Figure 3

Absolute bias of item parameters and covariances in Simulation 1 when test length is 3,

where a, b, and ϕ represent the slope, intercept, and scale parameters, b1 and b2 are

thresholds, and a_ip represents the slope parameter of latent variable Fp on item i.
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(a) Test length is 3 and correlation between latent variables is small.
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(b) Test length is 3 and correlation between latent variables is large.

Figure 4

MSE of item parameters and covariances in Simulation 1 when test length is 3, where a, b,

and ϕ represent the slope, intercept, and scale parameters, b1 and b2 are thresholds, and

a_ip represents the slope parameter of latent variable Fp on item i.



ESTIMATING GENERALIZED LINEAR LATENT VARIABLE MODELS 20

Table 4

Absolute bias of more biased item parameters under simulating factors in Simulation 1.

Factor Level Method Ordinal model Negbin model Covariance

Slope Thresholds Slope Scale

#Item 3 Lap1 0.0512 0.0080 0.0104 0.0087 0.0251

6 Lap1 0.0286 0.0064 0.0039 0.0016 0.0096

3 Lap2 0.0124 0.0048 0.0012 0.0037 0.0013

6 Lap2 0.0070 0.0032 0.0011 0.0025 0.0008

ρ small Lap1 0.0447 0.0088 0.0069 0.0049 0.0158

large Lap1 0.0276 0.0051 0.0052 0.0030 0.0189

small Lap2 0.0114 0.0044 0.0015 0.0035 0.0015

large Lap2 0.0062 0.0031 0.0008 0.0024 0.0007

Overall Lap1 0.0362 0.0069 0.0061 0.0039 0.0173

Lap2 0.0088 0.0037 0.0012 0.0029 0.0011

Notes. Lap1 = first-order Laplace, Lap2 = second-order Laplace, Negbin

= negative-binomial, ρ = covariance of latent variables.

Second simulation study

Simulation 2 design

In Simulation 2, we considered residual correlations of indicators from the same

item. Compared to Simulation 1, we added three residual latent variables - R1, R2, and R3

- to capture the item-specific effect for single items (Figure 5). We specified that the

residual latent variables impose the same effect on the indicators, namely, we set equal

residual factor loading across indicators from the same item (e.g., equal residual factor

loadings for X1, Y1, and Z1). Accordingly, we added the magnitude of the residual factor

loadings (small or large) to the simulation design. Specifically, large residual factor

loadings were generated from U(0.4, 0.8), the same distribution as the slope parameter for
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Figure 5

Model illustration including residual latent variables, where X, Y, and Z indicate three

different types of indicators, F1-F3 are latent variables measured by the X-, Y-, and

Z-variables, respectively, and R1-R3 are residual latent variables.

the continuous data and count data, whereas the small residual factor loading was set to

half of the large one. In sum, Simulation 2 resulted in 2 (Poisson or Negative-binominal

distribution) × 2 (3 or 6 items) × 2 (small or large covariance) × 2 (small or large residual

factor loading) = 16 conditions and we generated 1000 datasets under each condition. Both

Lap1 and Lap2 were applied to analyze the datasets.

Simulation 2 results

We now summarize the result from Simulation 2. In line with Simulation 1, Lap2

reached a higher average convergence rate (98.8%) than Lap1 did (93.9%) (Table 5). The

main difference occurred when the number of items was three and the residual factor

loading was small. However, Lap2 cost much longer time than Lap1, especially as the

number of items increased. Regarding parameter recovery, Lap2 estimated item parameters

more accurately than Lap1, especially for ordinal data and count data with a

negative-binomial distribution. This conclusion was in line with Simulation 1. However,
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note that Lap1 and Lap2 differed a bit in the recovery of item parameters for continuous

data in Simulation 2 because of the addition of residual correlations. As for the added

residual factor loadings, we present their absolute biases in Figure 6. The estimation of

residual factor loadings was both accurate (average absolute bias less than .008) and

precise (average MSE less than .005).
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Figure 6

Absolute bias of residual factor loadings in Simulation 2 when the number of items is 3.

As in Simulation 1, we inspected the estimates with biases larger than 0.01 more

thoroughly. It turned out that these biases primarily referred to the slope and threshold

parameter of ordinal data, the slope and scale parameter of count data, and the covariance

of latent variables. We organized the above-mentioned estimates by the experimental

factors in Table 6. With the number of items increasing, both Lap1 and Lap2 estimated

item parameters and the covariance more accurately according to the great decrease of

average absolute bias in Table 6. Regarding the correlation of latent variables, decreasing
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Table 5

Convergence rates and timing (seconds) of Lap1 and Lap2 in simulation 2.

Type #Item ρ residuals Convergence rate Timing

Lap1 Lap2 Lap1 Lap2

Pois 3 small small 87.6% 97.1% 13.7 56.5

Pois 3 small large 93.3% 97.6% 15.1 63.5

Pois 3 large small 84.7% 95.5% 13.2 52.7

Pois 3 large large 91.1% 99.8% 15.3 59.6

Negbin 3 small small 82.9% 97.7% 14.0 61.8

Negbin 3 small large 92.0% 98.2% 15.2 69.1

Negbin 3 large small 81.7% 95.2% 14.4 60.8

Negbin 3 large large 90.5% 99.8% 15.5 66.0

Pois 6 small small 100% 100% 40.1 351.4

Pois 6 small large 99.6% 99.7% 47.4 410.8

Pois 6 large small 100% 100% 38.0 333.9

Pois 6 large large 99.2% 99.7% 48.7 423.0

Negbin 6 small small 100% 100% 44.8 413.7

Negbin 6 small large 100% 100% 44.7 416.8

Negbin 6 large small 100% 100% 43.9 405.9

Negbin 6 large large 100% 100% 45.0 415.5

Overall 93.9% 98.8% 29.32 228.81

Notes. Lap1 = first-order Laplace, Lap2 = second-order Laplace, Pois =

Poisson, Negbin = negative-binomial, ρ = covariance of latent variables.
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the correlation almost doubled the absolute bias for the slope and threshold parameters in

ordinal data for both Lap1 and Lap2. However, such an effect became minor in estimating

the slope and scale parameters in negative-binomial data. When the true correlation

increased, the average absolute bias of the covariance estimate increased using Lap1 but

decreased slightly using Lap2. The magnitude of residual loading had a small influence on

parameter recovery.

Table 6

Absolute bias of more biased item parameters under simulating factors in Simulation 2.

Factor Level Method Ordinal model Negbin model Covariance

Slope Thresholds Slope Scale

#Item 3 Lap1 0.0626 0.0089 0.0171 0.0161 0.0317

6 Lap1 0.0319 0.0067 0.0075 0.0044 0.0110

3 Lap2 0.0247 0.0090 0.0025 0.0039 0.0037

6 Lap2 0.0075 0.0033 0.0013 0.0027 0.0013

ρ small Lap1 0.0509 0.0091 0.0119 0.0085 0.0184

large Lap1 0.0333 0.0058 0.0095 0.0081 0.0243

small Lap2 0.0185 0.0070 0.0017 0.0032 0.0038

large Lap2 0.0080 0.0034 0.0018 0.0030 0.0012

Res small Lap1 0.0402 0.0075 0.0098 0.0066 0.0213

large Lap1 0.0440 0.0074 0.0116 0.0100 0.0214

small Lap2 0.0110 0.0044 0.0017 0.0030 0.0017

large Lap2 0.0155 0.0060 0.0017 0.0032 0.0033

Overall Lap1 0.0421 0.0074 0.0107 0.0083 0.0214

Lap2 0.0132 0.0052 0.0017 0.0031 0.0025

Notes. Lap1 = first-order Laplace, Lap2 = second-order Laplace, Negbin

= negative-binomial, ρ = covariance of latent variables.
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Discussion

The advent of complex measurement tools has facilitated research by providing

more detailed information of the response process. As a result, the data often consists of

different types. In this paper, we implemented first- and second-order Laplace

approximations to jointly model a mixture of ordinal, continuous, and count data within

the framework of GLLVMs. An empirical study demonstrated the usage of the proposed

methods in practice and two simulation studies were conducted to examine the

performance of both algorithms in the scenario of computer-based assessment with process

indicators and performance data. The results indicated that Lap2 had a higher

convergence rate and better parameter recovery compared to Lap1. However, Lap2 took

longer to estimate, especially with complex models that incorporated residual factors.

The experimental factors impacted the results in the following ways. First, test

length had a significantly positive influence on convergence and the recovery of item

parameters. As the number of items increases, both Lap1 and Lap2 approximated the

marginal log-likelihood better and the error of the estimators decreased (Huber et al.,

2004). Moreover, higher-order Laplace approximations have a faster rate of error decrease

(Andersson & Xin, 2021) which means that fewer indicators are needed for accurate

estimation. Second, the magnitude of covariance between latent variables had a positive

effect on the estimation. Third, the magnitude of residual factor loadings had some

influence on the convergence and estimation time but a minor effect on parameter recovery.

Larger residual factor loadings implied stronger item-specific effects, which should be

considered in the model specification. In the empirical study, we found that considering the

residual correlation improved the model fit and the residual factor loadings were not

negligible (see Appendix A1). In this study, we imposed equality restrictions on residual

factor loadings from the same item. If there are prior hypotheses about the residual factor

loadings, it is flexible to take them into account and specify such a hypothesized model as

long as it is identifiable.
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Contributions and limitations

The study makes significant contributions in several ways. First, we derived the

second-order Laplace approximation likelihood form of Poisson and negative-binomial

distributions for count data, which extended existing research that only included first-order

Laplace approximations for count data (Niku et al., 2017). Employing Lap2 can improve

the estimation accuracy in terms of the slope and scale parameters compared to using Lap1

for data with a negative-binomial distribution. Second, the current study provided a fast

yet accurate solution for a combination of count data, continuous data, and ordinal data

within the framework of GLLVMs. Compared to a Bayesian or quadrature approach,

Laplace approximations greatly increase the computational efficiency in high-dimensional

GLLVMs (Huber et al., 2004). Our research considered different types of observed variables

and potential residual correlations between the indicators in a single model. This extended

a) the study of Niku et al. (2017) by considering different types of indicators at the same

time and b) the research related to joint modeling of responses and response times within a

hierarchical framework (van der Linden, 2007) by incorporating count data. Third,

compared to Andersson et al. (2023) that only considered categorical data, we compared

the first- and second-order Laplace approximation in the case of GLLVMs with a mixture

of ordinal, count, and continuous indicators, which advanced our knowledge of the

performance of both algorithms in the mixed-data situation with different test lengths,

correlations of latent variables, and magnitudes of residual factor loadings.

On the other hand, some limitations of the paper should be noted. The first

limitation is shared with the approach of Lap2 - it is required to compute up to fifth-order

derivatives based on the selected distributions of observed indicators. This means that

substantial derivations are necessary to support additional distributions. In the current

study, only continuous, count, and ordinal data were considered. However, it is feasible to

consider other types/distributions of indicators, which is a potential direction for future

studies. Second, because of the focus on likelihood-based estimation we only compared the
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first- and second-order Laplace approximations but did not consider other approaches such

as Bayesian methods. We could also not compare our results to regular or adaptive

Gauss-Hermite quadrature due to the computational expense of these methods.

Practical suggestions

In this study, we used process data and performance data from computer-based

assessments to demonstrate the application of the proposed method. However, the method

has the potential to be applied to broader areas beyond psychological and educational

assessment. For example, a combination of different data types often occurs in ecological

data such as species counts and biomass in biology (Niku et al., 2017) and patient data

relevant to symptoms such as presence/absence, frequency, and scale scores in health

(Daniels & Normand, 2006).

For practitioners dealing with a mixture of different types of data, we offer some

suggestions. First, when there are more than two latent variables, Laplace approximations

have a great advantage over numerical quadrature or Bayesian approaches in terms of

computational efficiency. Within Laplace approximations, Lap1 is faster than Lap2 and the

efficiency advantage increases with the dimension of latent variables and the complexity of

model structures. For example, the difference between the average time for estimating

three-dimensional models (Simulation 1) was two seconds, while the value increased to 200

seconds for six-dimensional models with residual correlations considered (Simulation 2).

Second, when the number of items is small such as three items per dimension, it is

suggested to use Lap2 because it has a higher convergence rate compared to Lap1. It is

also worth noting that Lap2 significantly improves the non-convergence problem of Lap1

when the observed variables are dichotomous (Andersson & Xin, 2021). Third, starting

values have a large impact on the estimation of GLLVMs. This is because the observed

likelihood can be multimodal when GLLVMs have a complex mean and latent variable

structure (Niku et al., 2019). If researchers or practitioners have prior knowledge of the
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estimates based on existing literature or studies, it is possible to make use of that

information. If no prior knowledge is available, it is possible to make use of the data

provided to determine the starting values (Niku et al., 2019). In our simulation studies, we

first fit unidimensional measurement models and obtained the estimates as starting values

of item parameters for three- or six-dimensional models if the unidimensional models

converged. This greatly reduced the estimation time and increased the convergence rate.
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Appendix A

The results of the final model in the motivating example

Table A1

Parameter estimates (standard error) of the final model.

Indicator Slope Intercept 1 Intercept 2 Scale

Performance P1 1.361 (0.125) 0.441 (0.088) - -

P2 2.695 (0.312) -3.346 (0.317) -3.987 (0.355) -

P3 3.093 (0.288) 0.120 (0.139) -3.042 (0.264) -

Action A1 0.515 (0.087) 1.101 (0.029) - 0.080 (0.020)

A2 0.421 (0.025) 2.679 (0.025) - 0.209 (0.017)

A3 1.046 (0.039) 2.315 (0.044) - 0.272 (0.038)

Time T1 0.288 (0.019) -0.018 (0.017) - 0.108 (0.012)

T2 0.481 (0.023) 0.132 (0.021) - 0.079 (0.015)

T3 0.388 (0.018) 0.170 (0.017) - 0.009 (0.013)

Residual Item 1 0.355 (0.018) - - -

Item 2 0.382 (0.018) - - -

Item 3 0.354 (0.023) - - -

Note. P2 and P3 have three categories and thus have two intercept parameters. The

correlations between the latent variables were 0.876, 0.658, and 0.584.
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Appendix B

Derivatives

The needed derivatives in Equation 8 are presented as follows. Let hi = − logPiyif
and

define 1() as an indicator function.

Ordinal data

We adopt the generalized partial credit model (GPCM) for ordinal responses. Let

Pic represent Pi(yif = c|z,w). The derivatives of hi with respect to z are

∂hi

∂zj

= −aij

(
yif −

mi∑

c=1
cPic

)
,

∂2hi

∂zj∂zk

= aij

mi∑

c=1
c
∂Pic

∂zk

,

∂3hi

∂zj∂zk∂zl

= aij

mi∑

c=1
c
∂2Pic

∂zk∂zl

,

∂4hi

∂zj∂zk∂zl∂zm

= aij

mi∑

c=1
c

∂3Pic

∂zk∂zl∂zm

,

and

∂5hi

∂zj∂zk∂zl∂zm∂zn

= aij

mi∑

c=1
c

∂4Pic

∂zk∂zl∂zm∂zn

.

The derivatives of hi with respect to u ∈ {ai, bi2, . . . bimi
} are

∂hi

∂u
= −

∂Piyf

∂u

Piyf

,

∂2hi

∂zj∂u
= −1(u = aij)

(
yif −

mi∑

c=1
c
∂Pic

∂u

)
+ aij

mi∑

c=1
c
∂Pic

∂u
,

∂3hi

∂zj∂zk∂u
= 1(u = aij)

mi∑

c=1
c
∂Pic

∂zk

+ aij

mi∑

c=1
c
∂2Pic

∂zk∂u
,
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∂4hi

∂zj∂zk∂zl∂u
= 1(u = aij)

mi∑

c=1
c
∂2Pic

∂zk∂zl

+ aij

mi∑

c=1
c

∂3Pic

∂zk∂zl∂u
,

and

∂5hi

∂zj∂zk∂zl∂zm∂u
= 1(u = aij)

mi∑

c=1
c

∂3Pic

∂zk∂zl∂zm

+ aij

mi∑

c=1
c

∂4Pic

∂zk∂zl∂zm∂u
.

The derivatives of Pic with respect to z in the above equations are

∂Pic

∂zk

= Picaik

[
c−

mi∑

c′=1
c′Pic′

]
,

∂2Pic

∂zk∂zl

= ∂Pic

∂zl

aik

[
c−

mi∑

c′=1
cPic

]
− Picaik

mi∑

c=1
c′∂Pic′

∂zl

,

∂3Pic

∂zk∂zl∂zm

= ∂2Pic

∂zl∂zm

aik

[
c−

mi∑

c′=1
c′Pic′

]
− ∂Pic

∂zl

aik

mi∑

c′=1
c′∂Pic′

∂zm

− ∂Pic

∂zm

aik

mi∑

c′=1
c′∂Pic′

∂zl

− Picaik

mi∑

c′=1
c′ ∂

2Pic′

∂zl∂zm

and

∂4Pic

∂zk∂zl∂zm∂zn

= ∂3Pic

∂zl∂zm∂zn

aik

[
c−

mi∑

c′=1
c′Pic′

]
− ∂2Pic

∂zl∂zm

aik

mi∑

c′=1
c′∂Pic′

∂zn

− ∂2Pic

∂zl∂zn

aik

mi∑

c′=1
c′∂Pic′

∂zm

− ∂Pic

∂zl

aik

mi∑

c′=1
c′ ∂

2Pic′

∂zm∂zn

− ∂2Pic

∂zm∂zn

aik

mi∑

c′=1
c′∂Pic′

∂zl

− ∂Pic

∂zm

aik

mi∑

c′=1
c′ ∂

2Pic′

∂zl∂zn

− ∂Pic

∂zn

aik

mi∑

c′=1
c′ ∂

2Pic′

∂zl∂zm

− Picaik

mi∑

c′=1
c′ ∂3Pic′

∂zl∂zm∂zn

.

The derivatives of Pic with respect to aij ∈ ai and biv ∈ bi are

∂Pic

∂aij

=Picczj − Piczj

mi∑

c′=1
c′Pic′ ,

and

∂Pic

∂biv

=1(c ≥ v)Pic − Pic

mi∑

c′=v

Pic′ .
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Then, we have

∂2Pic

∂zk∂u
=∂Pic

∂u
aik

[
c−

mi∑

c′=1
c′Pic′

]
+ 1(u = aik)Pic

[
c−

mi∑

c′=1
c′Pic′

]
− Picaik

mi∑

c′=1
c′∂Pic′

∂u
,

∂3Pic

∂zk∂zl∂u
=1(u = aik)

[
∂Pic

∂zl

(
c−

mi∑

c′=1
c′Pic

)
− Pic

mi∑

c′=1
c′∂Pic′

∂zl

]

+ aik

[
∂2Pic

∂zl∂u

(
c−

mi∑

c′=1
c′Pic′

)
− ∂Pic

∂zl

mi∑

c′=1
c′∂Pic′

∂u

−∂Pic

∂u

mi∑

c′=1
c′∂Pic′

∂zl

− Pic

mi∑

c′=1
c′∂

2Pic′

∂zl∂u

]
,

and

∂4Pic

∂zk∂zl∂zm∂u
=1(u = aik)

[
∂2Pic

∂zl∂zm

(
c−

mi∑

c′=1
c′Pic′

)
− ∂Pic

∂zl

mi∑

c′=1
c′∂Pic′

∂zm

− Pic

∂zm

mi∑

c′=1
c′∂Pic′

∂zl

− Pic

mi∑

c′=1
c′ ∂

2Pic′

∂zl∂zm

]

+ aik

[
∂3Pic

∂zl∂zm∂u

(
c−

mi∑

c′=1
c′Pic′

)
− ∂2Pic

∂zl∂zm

mi∑

c′=1
c′∂Pic′

∂u

− ∂2Pic

∂zl∂u

mi∑

c′=1
c′∂Pic′

∂zm

− ∂Pic

∂zl

mi∑

c′=1
c′ ∂

2Pic′

∂zm∂u

− ∂2Pic

∂zm∂u

mi∑

c′=1
c′∂Pic′

∂zl

− ∂Pic

∂zm

mi∑

c′=1
c′∂

2Pic′

∂zl∂u

−∂Pic

∂u

mi∑

c′=1
c′ ∂

2Pic′

∂zl∂zm

− Pic

mi∑

c′=1
c′ ∂3Pic′

∂zl∂zm∂u

]
.

The derivatives with respect to βid are equal to the product of wd and the derivatives with

respect to bi.

Continuous data

The derivatives of hi with respect to z for continuous data (Huber et al., 2004) are

given as follows. Note that only the first and second derivatives exist in this case.

∂hi

∂zj

= aij

ϕi

(bi + β′
iw + a′

iz − yif )

∂2hi

∂zj∂zk

= aijaik

ϕi
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The derivatives of hi with respect to aij, bi, and ϕi with continuous data are

∂hi

∂aij

= zj

ϕi

(bi + β′
iw + a′

iz − yif ),

∂hi

∂bi

= (bi + β′
iw + a′

iz − yif )
ϕi

,

∂hi

∂ϕi

= 2yif (bi + β′
iw + a′

iz) − (bi + β′
iw + a′

iz)2 − t2i + ϕi

2ϕ2
i

,

∂2hi

∂zj∂aix

= aijzx

ϕi

+ 1(x = j)bi + β′
iw + a′

iz − yif

ϕi

,

∂2hi

∂zj∂bi

= aij

ϕi

,

∂2hi

∂zj∂ϕi

= −aij(bi + β′
iw + a′

iz − yif )
ϕ2

i

,

∂3hi

∂zj∂zk∂aix

= aik

ϕi

and

∂3hi

∂zj∂zk∂ϕi

= −aijaik

ϕ2
i

.

The derivatives with respect to βid are equal to the product of wd and the derivatives with

respect to bi.

Count data: Poisson distribution

The first- to fifth-order derivatives of hi with respect to z are

∂hi

∂zj

= (λi − yif )aij,

∂2hi

∂zj∂zk

= aij
∂λi

∂zk

= λiaijaik,
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∂3hi

∂zj∂zk∂zl

= aijaik
∂λi

∂zl

= λiaijaikail,

∂4hi

∂zj∂zk∂zl∂zm

= λiaijaikailaim

and

∂5hi

∂zj∂zk∂zl∂zm∂zn

= λiaijaikailaimain.

The derivatives of hi with respect to u ∈ {ai, bi} are

∂hi

∂u
= (1 − yif

λi

)∂λi

∂u
= (λi − yif )z1(u=aij)

j ,

∂2hi

∂zj∂aix

= aijλizx + (λi − yif )1(x = j)

∂2hi

∂zj∂bi

= aijλi,

∂3hi

∂zj∂zk∂aix

= aijaikλizx + λiaik1(x = j) + λiaij1(x = k),

∂3hi

∂zj∂zk∂bi

= aijaikλi,

∂4hi

∂zj∂zk∂zl∂aix

= aijaikailλizx + λiaikail1(x = j) + λiaijail1(x = k) + λiaijaik1(x = l),

∂4hi

∂zj∂zk∂zl∂bi

= aijaikailλi,

∂5hi

∂zj∂zk∂zl∂zm∂aix

= aijaikailaimλizx + λiaikailaim1(x = j) + λiaijailaim1(x = k)+

λiaijaikaim1(x = l) + λiaijaikail1(x = m),

and

∂5hi

∂zj∂zk∂zl∂zm∂bi

= aijaikailaimλi.

The derivatives with respect to βid are equal to the product of wd and the derivatives with

respect to bi.
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Count data: Negative-binomial distribution

With a negative-binomial distribution, we have that

hi = − log Γ
(
yif + 1

ϕi

)
+ log(yif !) + log Γ

(
1
ϕi

)
− yif (bi + β′

iw + a′
iz)

+ yif log
[

1
ϕi

+ exp(bi + β′
iw + a′

iz)
]

+ 1
ϕi

log [1 + ϕi exp(bi + β′
iw + a′

iz)] .

Let ηi = bi + β′
iw + a′

iz. The derivatives with respect to z are

∂hi

∂zj

= −yifaij + (ϕiyif + 1) exp(ηi)
1 + ϕi exp(ηi)

aij,

∂2hi

∂zj∂zk

= (ϕiyif + 1) exp(ηi)
[1 + ϕi exp(ηi)]2

aijaik,

∂3hi

∂zj∂zk∂zl

= − (ϕiyif + 1) exp(ηi)[ϕi exp(ηi) − 1]
[1 + ϕi exp(ηi)]3

aijaikail,

∂4hi

∂zj∂zk∂zl∂zm

= (ϕiyif + 1) exp(ηi)(ϕ2
i exp(2ηi) − 4ϕi exp(ηi) + 1)

[1 + ϕi exp(ηi)]4
aijaikailaim,

and

∂5hi

∂zj∂zk∂zl∂zm∂zn

= − (ϕiyif + 1) exp(ηi) [ϕ3
i exp(3ηi) − 11ϕ2

i exp(2ηi) + 11ϕi exp(ηi) − 1]
[1 + ϕi exp(ηi)]5

× aijaikailaimain.

The derivatives with respect to bi are

∂hi

∂bi

= −yif +
(
yif + 1

ϕi

)
ϕi exp(ηi)

1 + ϕi exp(ηi)
,

∂2hi

∂zj∂bi

= (ϕiyif + 1) exp(ηi)
1 + ϕi exp(ηi)

aij − (ϕiyif + 1) ϕi exp(2ηi)
[]1 + ϕi exp(ηi)]2

aij,

∂3hi

∂zj∂zk∂bi

= (ϕiyif + 1) exp(ηi)
[1 + ϕi exp(ηi)]2

aijaik − 2(ϕiyif + 1) ϕi exp(2ηi)
[1 + ϕi exp(ηi)]3

aijaik,
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∂4hi

∂zj∂zk∂zl∂bi
= − (ϕiyif + 1)exp(ηi)[ϕi exp(ηi) − 1]

[1 + ϕi exp(ηi)]3
aijaikail − (ϕiyif + 1) ϕi exp(2ηi)

[1 + ϕi exp(ηi)]3
aijaikail

+ 3(ϕiyif + 1)ϕi exp(2ηi)[ϕi exp(ηi) − 1]
[1 + ϕi exp(ηi)]4

aijaikail

and

∂5hi

∂zj∂zk∂zl∂zm∂bi

=(ϕiyif + 1)exp(ηi)[ϕ2
i exp(2ηi) − 4ϕi exp(ηi) + 1]

[1 + ϕi exp(ηi)]4
aijaikailaim

+ (ϕiyif + 1)exp(ηi)[2ϕ2
i exp(2ηi) − 4ϕi exp(ηi)]

[1 + ϕi exp(ηi)]4
aijaikailaim

− 4(ϕiyif + 1)ϕi exp(2ηi)[ϕ2
i exp(2ηi) − 4ϕi exp(ηi) + 1]
[1 + ϕi exp(ηi)]5

aijaikailaim.

The derivatives with respect to aic are

∂hi

∂aic

= −yifzc +
(
yif + 1

ϕi

)
ϕi exp(ηi)zc

1 + ϕi exp(ηi)
,

∂2hi

∂zj∂aic

= − yif1(c = j) + (ϕiyif + 1) exp(ηi)
1 + ϕi exp(ηi)

aijzc

− (ϕiyif + 1) ϕi exp(2ηi)
[1 + ϕi exp(ηi)]2

aijzc + (ϕiyif + 1) exp(ηi)
1 + ϕi exp(ηi)

aij

aic

1(c = j),

∂3hi

∂zj∂zk∂aic

=(ϕiyif + 1) exp(ηi)
[1 + ϕi exp(ηi)]2

aijaikzc − 2(ϕiyif + 1) ϕi exp(2ηi)
[1 + ϕi exp(ηi)]3

aijaikzc

+ (ϕiyif + 1) exp(ηi)
[1 + ϕi exp(ηi)]2

aijaik

aic

1(c ∈ {j, k}),

∂4hi

∂zj∂zk∂zl∂aic

= − (ϕiyif + 1)exp(ηi)[ϕi exp(ηi) − 1]
[1 + ϕi exp(ηi)]3

aijaikailzc

− (ϕiyif + 1) ϕi exp(2ηi)
[1 + ϕi exp(ηi)]3

aijaikailzc

+ 3(ϕiyif + 1)ϕi exp(2ηi)[ϕi exp(ηi) − 1]
[1 + ϕi exp(ηi)]4

aijaikailzc

− (ϕiyif + 1)exp(ηi)[ϕi exp(ηi) − 1]
[1 + ϕi exp(ηi)]3

aijaikail

aic

1(c ∈ {j, k, l})
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and

∂5hi

∂zj∂zk∂zl∂zm∂aic
=(ϕiyif + 1)exp(ηi)[ϕ2

i exp(2ηi) − 4ϕi exp(ηi) + 1]
[1 + ϕi exp(ηi)]4

aijaikailaimzc

+ (ϕiyif + 1)exp(ηi)[2ϕ2
i exp(2ηi) − 4ϕi exp(ηi)]

[1 + ϕi exp(ηi)]4
aijaikailaimzc

− 4(ϕiyif + 1)ϕi exp(2ηi)[ϕ2
i exp(2ηi) − 4ϕi exp(ηi) + 1]
[1 + ϕi exp(ηi)]5

aijaikailaimzc

+ (ϕiyif + 1)exp(ηi)[ϕ2
i exp(2ηi) − 4ϕi exp(ηi) + 1]

[1 + ϕi exp(ηi)]4
aijaikailaim

aic
1(c ∈ {j, k, l,m}).

The derivatives with respect to ϕi are, with ψ denoting the digamma function,

∂hi

∂ϕi

= − log[1 + ϕi exp(ηi)]
ϕ2

i

+
(
yif + 1

ϕi

)
exp(ηi)

1 + ϕi exp(ηi)
− yif

ϕi

+

ψ
(
yif + 1

ϕi

)

ϕ2
i

−
ψ
(

1
ϕi

)

ϕ2
i

,

∂2hi

∂zj∂ϕi

= yif
exp(ηi)

1 + ϕi exp(ηi)
aij − (ϕiyif + 1) exp(2ηi)

[1 + ϕi exp(ηi)]2
aij,

∂3hi

∂zj∂zk∂ϕi

= yif
exp(ηi)

[1 + ϕi exp(ηi)]2
aijaik − 2(ϕiyif + 1) exp(2ηi)

[1 + ϕi exp(ηi)]3
aijaik,

∂4hi

∂zj∂zk∂zl∂ϕi

= − yif
exp(ηi)[ϕi exp(ηi) − 1]

[1 + ϕi exp(ηi)]3
aijaikail − (ϕiyif + 1) exp(2ηi)

[1 + ϕi exp(ηi)]3
aijaikail

+ 3(ϕiyif + 1)exp(2ηi)[ϕi exp(ηi) − 1]
[1 + ϕi exp(ηi)]4

aijaikail

and

∂5hi

∂zj∂zk∂zl∂zm∂ϕi

=yif
exp(ηi)[ϕ2

i exp(2ηi) − 4ϕi exp(ηi) + 1]
[1 + ϕi exp(ηi)]4

aijaikailaim

+ (ϕiyif + 1)exp(ηi)[2ϕi exp(2ηi) − 4 exp(ηi)]
[1 + ϕi exp(ηi)]4

aijaikailaim

− 4(ϕiyif + 1)exp(2ηi)[ϕ2
i exp(2ηi) − 4ϕi exp(ηi) + 1]
[1 + ϕi exp(ηi)]5

aijaikailaim.

The derivatives with respect to βid are equal to the product of wd and the derivatives with

respect to bi.
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Appendix A

Errata

Table A.1: Errata to Part I.
Page Line Original Text Correction

Type
Corrected Text

10 20 2.1.4.1 Gelstalt psy-
chology perspective

Proofreading 2.1.4.1 Gestalt psy-
chology perspective

10 21 Gelstat psychologists
emphasize. . .

Proofreading Gestalt psychologists
emphasize. . .

11 34 . . . also knownas sys-
tem identification. . .

Proofreading . . . also known as sys-
tem identification. . .

16 34 Such information is
used in Article I uses
to. . .

Proofreading Such information is
used in Article I to. . .

25 10 . . . Vista et al.
(2016), and Vista et
al. (2017), Zhu et al.
(2016) viewed. . .

Proofreading . . . Vista et al. (2016),
Vista et al. (2017),
and Zhu et al. (2016)
viewed. . .

28 34 . . . into main two cat-
egories. . .

Proofreading . . . into two main cat-
egories. . .

34 11 . . . maximize the
marginal maximum
likelihood function. . .

Proofreading . . . maximize the
marginal likelihood
function. . .

59 33 . . . as GHQ and
AGHA. . .

Proofreading . . . as GHQ and
AGHQ. . .

63 37 . . . process data usu-
ally has high dimen-
sions.

Proofreading . . . process data usu-
ally have high dimen-
sions.
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