
dept. of math. univ. of oslo
pure mathematics No. 24
ISSN 0806–2439 August 2004

Explicit Representation of Solutions of
Forward Stochastic Differential Equations
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Abstract

In this paper we present a method to derive explicit representations of
strong solutions of forward stochastic differential equations driven by a
Brownian motion. These representations open new perspectives in the study
of important topics like large time behaviour or the flow property of solutions
of such equations.
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1. Framework

1.1. Basic concepts of Gaussian white noise analysis. In this section
we briefly recollect some concepts of Gaussian white noise analysis. In Sec-
tion 2 we will employ this theory to provide explicit solution formulas of
forward stochastic differntial equations driven by a Brownian motion. For
general backround information about white noise theory the reader is re-
ferred to the books of [HKPS], [Ku] and [O].

Let S(R) be the Schwartz space on R and denote by S p(R) its dual, i.e. the
space of tempered distribution. Then the Bochner-Minlos theorem implies
the existence of a unique probability measure µ on the Borel sets of S p(R),
satisfying

(1.1.1)
∫
S p(R)

ei〈ω,φ〉dµ(ω) = e
− 1

2
‖φ‖2

L2(R)

for all φ ∈ S(R), where 〈ω, φ〉 = ω(φ) is the action of ω ∈ S p(R) on φ ∈ S(R).
The measure µ on Ω = S(R) is called (Gaussian)white noise probability
measure.
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In the following we consider a Brownian motion Bt defined on the white
noise probability space

(Ω,F , P ) =
(
S p(R),B(S p(R)), µ

)
.

Further we denote by J the set of all multi-indices α = (α1, α2, ...) with
finitely many non-zero entries αi ∈ N0. Let Index(α) = max{i : αi 6= 0}
and |α| =

∑
i αi for α ∈ J . One can construct orthogonal L2(µ) basis

{Hα(ω)}α∈J , given by

(1.1.2) Hα(ω) =
∏
j≥1

hαj (
〈
ω, ξj

〉
),

where 〈ω, ·〉 = ω(·) and where ξj resp. hj , j = 1, 2, ... are the Hermite
functions resp. Hermite polynomials. constitutes an orthogonal basis of
L2(µ). So every F ∈ L2(µ) can be written as

(1.1.3) F =
∑
α∈J

cαHα(ω)

for a unique sequence of real numbers (cα)α∈J , where

(1.1.4) ‖F‖2
L2(µ) =

∑
α∈J

α!c2
α,

with α! := α1!α2!..., if α = (α1, α2, ...) ∈ J . The Hida test function space
(S) can be described as the space of all f =

∑
α∈J cαKα ∈ L2(µ) such that

the growth condition

(1.1.5) ‖f‖2
0,k :=

∑
γ∈Jm

α!c2
α(2N)kα < ∞

holds for all k ∈ N0 with weight (2N)kα = (2 · 1)kα1(2 · 2)kα2 ...(2 · l)kαl , if
Index(α) = l. The space (S) is endowed with projective topology, based
on the family of norms (‖·‖0,k)k∈N0 in (1.1.5). The Hida distribution space,
denoted by (S)∗ is defined as the topological dual of (S). Thus we obtain
the following Gel’fand triple

(1.1.6) (S) ↪→ L2(µ) ↪→ (S)∗.

The Hida space (S)∗ enjoys the nice property to accommodate the (singular)
white noise Wt of Bt, that is

(1.1.7) Wt =
d

dt
Bt ∈ (S)∗

for all t. On (S)∗ a multiplication of distributions can be introduced by
means of the Wick product �, given by

(1.1.8) (Hα �Hβ)(ω) = (Hα+β)(ω), α, β ∈ J

The product is linearly extensible to the whole space. Since (S)∗ forms a
topological algebra with respect to the Wick product, it is possible e.g. to
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define the Wick version of the exponential function exp by

(1.1.9) exp� X :=
∑
n≥0

1
n!

X�n

for X ∈ (S)∗, where the Wick powers in (1.1.9) are defined as

X�n = X �X � ... �X (n times).

The Hermite transform H can be used to give a unique characterization of
Hida distributions (see characterization Theorem 2.6.11 in [HØUZ]). The
construction of H rests on the expansion along the basis {Hα(ω)}α∈J in
(1.1.2). The Hermite transform of X(ω) =

∑
α cαHα(ω) ∈ (S)∗, indicated

by HX , is defined by

(1.1.10) HX(z) =
∑
α

cαzα ∈ C (when convergent),

where z = (z1, z2, ...) ∈ CN, i.e. in the space of C−valued sequences, and
where zα = zα1

1 zα2
2 ... It can be shown that HX(z) in (1.1.10) converges on

the infinite dimensional neighbourhood

(1.1.11) Kq(R) :=

(η1, η2, ...) ∈ CN :
∑
α 6=0

|ηα| (2N)qα < R2


for some 0 < q,R < ∞. Since the Hermite transform maps the algebra
(S)∗ into the algebra of power series in infinitely many complex variables,
homomorphically, we find above all that

(1.1.12) H(X � Y )(z) = H(X)(z) · H(Y )(z)

holds on some Kq(R).
Finally we remark that obviously the above described white noise theory

can be established on any time interval [0, T ] instead of the complete time
line R (which is used in the next section).

1.2. Forward integrals, anticipative Girsanov theorem. We need some

concepts and results from Malliavin calculus and the theory of forward in-
tegrals to establish explicit representations of strong solutions of forward
stochastic differential equations. First we recapitulate the definition of the
forward integral for Brownian motion. Then we state an Itô-formula for for-
ward processes. We conclude this section with a version of an anticipative
Girsanov theorem.

Definition 1.1. Let φ(t, ω) be a measurable process (not necessarely adapted).
Then the forward stochastic integral of φ is defined as∫ ∞

0
φ(t, ω)d−B(t) = lim

ε−→0

∫ ∞

0
φ(t, ω)

B(t + ε)−B(t)
ε

dt

if the convergence is in probability.
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Definition 1.2. A (1-dimensional) forward process X(t) is defined as a
process of the form

X(t) = x +
∫ t

0
u(s, ω)ds +

∫ t

0
v(s, ω)d−B(s); t > 0,

where u(s, ω) and v(s, ω) measurable processes (not necessarely adapted)
such that ∫ t

0
|u(s, ω)| ds < ∞ a.s. for all t > 0

and the Itô forward integral ∫ t

0
v(s, ω)d−B(s)

exists for all t > 0.

For more information about Itô forward integrals consult e.g. [RV].

Theorem 1.3. (Itô formula for forward integrals) Let

X(t) =
∫ t

0
u(s)ds +

∫ t

0
v(s)d−B(s)

be a forward process. Further let f ∈ C2(R) and define

Y (t) = f(X(t)).

Then Y (t) is also a forward process and can be represented as

Y (t) =
∫ t

0
f p(X(s))d−X(s) +

1
2

∫ t

0
f pp(X(s))v2(s)d−B(s).

Proof. The proof is based on the same arguments as in the non-anticipating
case (see e.g. [HØ])

Next we restate the anticipative Girsanov theorem as presented in [N].
This theorem, which will be an essential in Section 2, takes place in the
context of an abstract Wiener space, i.e. a quartuple (Ω,F , µ,H) such that
Ω is a separable Banach space, µ is a Gaussian measure with full support,
F is the completion of the Borel σ-field with respect to µ, and H is a
separable Hilbert space that is continuously and densely ambedded in Ω
through i : H ↪→ Ω. Notice that our white noise space (nummer) is an
abstract Wiener space with H = L2(R) ⊂ Ω.

Definition 1.4. A random variable F is (a.s.) H-continuously differentiable
if for (almost) all ω ∈ Ω the mapping h → F (ω + i(h)) is continuously
differentiable in H.

It can be proven that H-continuously differentiability implies Malliavin
differentiability. With this notion of differentiability given, we will now
concentrate on a version of an anticipative Girsanov theorem which goes
back to ([K], Theorem 6.4). Note however that there exist other versions of
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Girsanov’s theorems involving different conditions which could be employed
instead if needed.

Theorem 1.5. Let u be an H-valued random variable, i.e. a stochastic
process, that is H-continuously differentiable, and denote by T the trans-
formation T : Ω → Ω given through T (ω) = ω + i(u(ω)). Suppose that T
is bijective and det2(I + Du) 6= 0 a.s.. Then there exists a probability Q
equivalent to µ such that Q ◦ T−1 = µ, given by

dQ

dµ̂
= η(u) := |det2(I + D u)| exp

{
− δ(u)− 1

2
‖u‖2

H

}
.

Remark 1.6. Here the notation det2 is used for the Carleman-Fredholm
determinant (see e.g. Appendix A.4 in [N]), Du denotes the Malliavin de-
rivative of u, , and δ(u) the Skorohod integral of u.

Remark 1.7. Instead of assuming T bijective we could require E[η(u)] = 1.
In case u is adapted det2(I +D u) = 1 and η(u) then reduces to the familiar
Girsanov exponential martingale.

2. Explicit Representation of a Forward Diffusion

In the sequel we fix a time interval [0, T ] and operate on the corresponding
Gaussian white noise space (Ω,F , µ) defined in Section 1.1 with associated
Brownian motion Bt.We denote by (Ω̂, F̂ , µ̂) a copy of the initial white noise
space with Brownian motion B̂t. The object of interest is the following
forward stochastic differential equation (from here on denoted by FSDE)

(2.1) Yt = Y0 +
∫ t

0
b(ω, s, Ys)ds +

∫ t

0
σ(Ys)d−Bs, 0 ≤ t ≤ T,

where Y0 is a random variable, and b(ω, s, x) : Ω× [0, T ]×R → R, σ(x) : R
→ R are measurable (possibly anticipating) mappings. We remark that the
choice of a time homogeneous difffusion coefficient σ(x) instead of σ(s, x) is
only done due to notational convenience. Further, we impose σ(x) > 0 and
σ(x) continously differentiable.

In this section we suppose there exists a square integrable F-measurable
solution Yt ∈ L2(µ) for all t ∈ [0, T ] of equation (2.1). For sufficient condi-
tions for the existence of a solution see for example [OP] (for Lévy process
driven FSDE’s see also [ØZ]). The objective of this section will then be to
give an explicit expression for Yt. To this end we adopt the methodology
from [LP] where adapted SDE’s are treated (see also [MP] for Lévy process
driven SDE’s) to the anticipative situation given in equation (2.1). First,
we reduce equation (2.1) to an equation with difffusion coefficient σ(x) = 1.
If we define the strictly increasing function Λ : R → R by

Λ(y) :=

{ ∫ y
x

1
σ(u)du, y > x

−
∫ x
y

1
σ(u)du, y ≤ x

,
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we get with the help of Itô’s Lemma for forward processes (see Theorem 1.3
) that Zt := Λ(Yt) fulfills

(2.2) Zt = Λ(Y0) +
∫ t

0
b∗(ω, s, Zs)dt + Bt,

where

b∗(ω, s, y) =
(

b(ω, s,Λ−1(y))
σ(Λ−1(y))

)
− 1

2
σp(Λ−1(y)).

Now, the essential tool to treat the anticipative situation is the use of the
anticipative Girsanov theorem (see Theorem 1.5). This requires to make the
following assumptions (for definitions see Section 1)

A1: The process u defined through u(ω, s) := b∗(ω, s, Zs(ω)) is
H-continuously differentiable.

A2: det2(I + D u) 6= 0 for a.a. ω.
A3: The transformation T : Ω → Ω given through T (ω) = ω+u(ω, ·) is

bijective, where u(ω, ·) ∈ L2([0, T ]) ⊂ Ω.
Notice (see Remark 1.7) that instead of assumption A3 we could have as-
sumed that E[η(u)] = 1, where

η(u) = |det2(I + D u)| exp
{
−

∫ T

0
b∗(ω, s, Zs)δBs −

1
2

∫ T

0
b∗(ω, s, Zs)2ds

}
,

and where δBs denotes the Skorohod integral. We then get the following
representation of the solution Yt.

Theorem 2.1. Let ρ be a Borel measurable function from R to R such that
ρ(Yt) ∈ L2(µ) for all t ∈ [0, T ]. Given A1-A3, the solution Yt of equation
(2.1) takes the explicit form

(2.3) ρ(Yt) = Ebµ [
ρ

(
Λ−1

(
Λ(Ŷ0) + B̂t

))
M�

]
where

M� = |det2(I + D u)| exp�
{∫ T

0

(
Ws(ω) + b∗(ω̂, s,Λ(Ŷ0) + B̂s)

)
δB̂t

−1
2

∫ T

0

(
Ws(ω) + b∗(ω̂, s,Λ(Ŷ0) + B̂s)

)�2
ds

}
.

Here the Wick product � is with respect to ω and the integrals occuring in
(2.3) are Bochner integrals on the Hida distribution space.

Proof. Assume first that σ(x) = 1 in (2.1). From Theorem 2.7.10 in [HØUZ]
we get that for X ∈ L2(µ) the Hermite transform can be expressed as

HX(z) = E

[
X · exp

{∫ T

0
φz(t)dBt −

1
2

∫ T

0
φz(t)

2dt

}]
,
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where φz(t) = H(Wt)(z) =
∑

k zkξk(t), z ∈ CN
c . So taking the Hermite

transform of ρ(Yt) gives

H(ρ(Yt))(z) = Eµ

[
ρ(Yt) · exp

{∫ T

0
φz(s)dBs −

1
2

∫ T

0
φz(s)

2ds

}]
= Ebµ

[
ρ(Ŷt) · exp

{∫ T

0
φz(s)dB̂s −

1
2

∫ T

0
φz(s)

2ds

}]
.(2.4)

Notice that applying Hölders inequality and Lemma 3.1 in [LP] yields that

Ebµ
[
ρ(Ŷt) · exp�

{∫ T

0
Ws(ω)dB̂s −

1
2

∫ T

0
Ws(ω)�2ds

}]
is a well defined element in S∗. So we can extract the Hermite transform in
(2.4) and get by means of the characterization theorem (Theorem 2.6.11 in
[HØUZ]) that

ρ(Yt) = Ebµ
[
ρ(Ŷt) · exp�

{∫ T

0
Ws(ω)dB̂s −

1
2

∫ T

0
Ws(ω)�2ds

}]
.

But now we get by A1-A3 and the anticipative Girsanov theorem (see frame-
work) that the law of Zt = Λ(Yt) under the probability Q defined by

dQ

dµ̂
= η(u)

is equal to the law of Λ(Ŷ0) + B̂t under the probability µ̂. So setting Yt =
Λ−1(Zt) we get

ρ(Yt) = Ebµ
[
ρ(Ŷt) · exp�

{∫ T

0
Ws(ω)dB̂s −

1
2

∫ T

0
Ws(ω)�2ds

}
· η(u) · η−1(u)

]
= Ebµ [

ρ
(
Λ−1

(
Λ(Ŷ0) + B̂t

))
M�

]
.

Remark 2.2. Let u in Theorem 2.1 be of the form u = ks(Z, ωT ). Then
under certain assumptions on k (see [BF]) the Carleman-Fredholm determi-
nant can be evaluated explicitly and we get

η(u) =
∣∣∣∣1 +

∫ T

0
kp

s(Z, ωT )ds

∣∣∣∣ exp
{
−

∫ T

0
ks(Z, ωT )δBs −

1
2

∫ T

0
k2

s(Z, ωT )ds

}
,

where kp
s(Z, y) = d

dyks(Z, y).
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