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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of Professor John
Grue and Dr. Johannes Röhrs. This work was supported by the Norwegian
Research Council under the "ECOPULSE" project, grant number 300329.

The thesis is a collection of three papers presented in practical order. The
first two papers are related to internal waves and tracer particle motion induced
by these waves, and the last paper concerns a study regarding air bubbles as
tracers in the ocean to measure the two-dimensional velocity field of water. The
common theme is the investigation of fluid dynamics, wave characteristics, and
the evaluation of wave-induced vertical and horizontal particle motion.

The papers are preceded by five chapters that provide relevant background
information, motivation for the work, and a perspective on future directions.
Chapter one introduces the topic Internal Waves and briefly reviews the internal
wave field. Chapter two provides the background information and motivation
for the work conducted in Papers I and 2. The third chapter introduces internal
waves on the Norwegian continental shelf. It highlights the importance of
conducting in-situ measurements along the coast to measure internal waves. The
new methodology, field work, and laboratory work conducted in Paper III are
presented at the end of the third chapter. Chapter four summarizes each paper’s
main findings, and chapter five provides a summary and perspectives on future
directions. Two Appendices follow after the papers. I am the first author of the
two first papers and the second author of the third paper. The third paper is a
collaboration with Dr. Trygve Løken and colleagues, where I have conducted the
fieldwork and been involved in all stages of the experimental work and analysis.

Thea Josefine Ellevold
Oslo, October 2023

iii





Acknowledgements
I would like to thank my main supervisor, Professor John Grue, who has provided
great guidance through my doctoral studies and for always having time to explain
and discuss the field of internal waves. I am grateful for all the knowledge you
have shared with me.

I am grateful for the help and support I have gotten from my co-supervisor,
Dr. Johannes Röhrs, at the Norwegian Meteorological Institute (MET). Thank
you for introducing me to the science group at MET and including me in the
PhD/PD group. Those meetings have been of great value.

I want to thank the whole team within my research project, Ecopulse. Thanks
to Trygve Halsne, Øystein Skagseth, Henrik Søiland, Tina Kutti, and all the
other scientists and researchers making fieldwork a reality.

I want to express my gratitude to Olav Gundersen, our lab Senior Engineer,
for his invaluable help, regardless of what it should be, the countless cups of
coffee, and the long conversations that kept me sane, grounded, and motivated
during my PhD journey.

I want to acknowledge our IT staff, Terje Kvernes and Lucy Karpen, for their
tremendous service. It would not have been without the IT help that Terje has
provided through my journey with Basilisk that this thesis would have come to
an end.

I want to express my gratitude to all of my exceptional colleagues in the
Mechanics Section for making my past three years very enjoyable. A special
thanks to Jarle, my office mate (in my office?), for tolerating my personality.
Also, a big thank you to Stephane, Jarle, and Vanessa for valuable feedback on
my thesis. Thanks to Lars Olsen for all the strolls in the hallways, with needed
conversations, reading articles aloud, and boosting my motivation.

I would also like to thank all the co-authors on the articles created during
my master’s and the beginning of my PhD journey.

Last but most importantly, I want to thank my partner Morten for always
supporting me the way you know best. I cannot wait to start the post-PhD
life with you! To my family for always having my back and cheering me on.
Thank you Mom for all the things you have done for me during my years at the
University; they have been invaluable. Immense gratitude to my closest friend,
trusted confidant, and companion on every remarkable journey in life, Linda
Johansen.

Thea Josefine Ellevold
Oslo, October 2023

v





You are not where you want to be.
You feel like you are supposed to be somewhere else.

Well, say you could snap your fingers and be wherever you wanted it to be.
I bet you would still feel this way.

Not in the right place.
Point is, you cannot get so hung up on where you would rather be that you

forget how to make the most of where you are.
Take a break from worrying about what you cannot control.

Live a little.
−Passengers, the movie
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Abstract

English

Internal waves are a phenomenon present inside the stratified ocean. They are
commonly observed, e.g., over continental shelves where stratification, strong
currents, and tides coexist over various topography. When internal waves
interact with other physical processes and/or move through a varying background
environment, they may alter their form and possibly become unstable. Nonlinear
internal solitary waves owe their existence due to a delicate balance between the
nonlinear wave-steepening and the linear dispersion. This balance sustains the
wave shape and velocity while propagating with amplitudes varying from a few
to tens of meters. Understanding the behavior and dynamics of internal solitary
waves is essential for comprehending their role in the oceanic ecosystem. This
phenomenon has also proven essential in the oceans by causing vertical exchange
and transport of particles and sediments. On the other hand, internal waves can
be dangerous and pose numerous threats to, for instance, offshore installations.

Research on internal waves has been conducted for decades through field
observations, numerical simulations, and laboratory experiments. Numerous
studies have examined internal solitary waves of depression propagation over a flat
bottom through laboratory experiments and numerical simulations. Despite the
long-standing study of these waves, there are still some qualitative discrepancies
between the results of these two methods.

In this thesis, we investigate internal solitary waves of depression propagating
over flat bottom through high-resolution direct numerical simulations. Utilizing
a two-dimensional laminar numerical model, we replicate and reproduce well-
known laboratory experiments conducted in a three-dimensional wave tank.
Throughout the study, we have addressed three central objectives: ascertain how
well a laminar numerical model can reproduce laboratory measurements, gain
further insight into the instabilities induced by the internal solitary waves in
the bottom boundary layer, and ascertain an understanding of how Lagrangian
tracer particles behave in scenarios where vortices in the bottom boundary layer
arise. In addition, the effect of scale is systematically investigated throughout
the study, where the kinematic viscosity of the water is varied. Hence, our
calculations are presented for the wave Reynolds number Rew in the range
Rew = 1.9× 104 − 6.5× 105, where the wave Reynolds number is a function of
the linear long wave speed, the kinematic viscosity of the water, and the total
water depth H. The non-dimensional amplitude of the internal waves is in the
range of a/H ∼ 0.19− 0.33.

When the internal solitary waves propagate, they create a wave-induced
velocity field that can cause instability and vortex shedding in the bottom

ix



Abstract

boundary layer. An essential part of this thesis regards the threshold when the
separation bubbles formed due to flow separation in the bottom boundary layer
are experiencing instability. The stability border is investigated as a function
of the wave amplitude and the wave Reynolds number and as a function of
the adverse pressure gradient and the momentum-thickness Reynolds number
estimated at the flow separation point. With a strong emphasis on convergence,
including the resolution of the bottom boundary layer, we obtained a very good
agreement with laboratory experiments for the transition to instability. We find
that the threshold from the stable to unstable regime depends on the depth of
the pycnocline. The same outcome was also observed in previous laboratory
experiments. The present calculations of the transition to instability, fitting
with the laboratory experiments, imply that previous numerical simulations have
overestimated the instability border. Hence, the instability occurs much earlier
for internal waves of considerably smaller amplitude than previously suggested.
When examining the created vortex formation in the bottom boundary, the
numerical calculation matched the vortices generated in the three-dimensional
laboratory experiment. The results indicate that the instability observed in
the laboratory experiments was predominantly two-dimensional up to a certain
distance behind the wave trough. The results contribute to the ongoing debate
about whether laboratory-observed instabilities are primarily three-dimensional.

The interchange between the internal wave-induced velocity field, vortex
formation, and Lagrangian tracer particle motion in the bottom boundary layer
is also investigated. A cloud of tracer particles is implemented in the bottom
boundary upstream of the internal solitary wave. The internal solitary wave
intercepts the tracer particle cloud twice: first, during propagation along the
undisturbed fluid and second, as a reflected wave from the right end of the tank.
The tracer particles’ displacement and trajectories are computed and seen to be
affected by both the wave and the vortices. The tracer particles’ vertical height
reached up to approximately 23% of the total water depth after the second
interception, independent of the wave Reynolds number.

In this thesis, most of the work involves performing direct numerical
simulations of internal solitary waves. However, in addition to this, fieldwork
has been conducted outside Lofoten, Vesterålen, Norway, to measure this
phenomenon. A train of internal waves was measured, where the leading wave
had a nondimensional amplitude of 0.4H.

Leaving the internal wave topic, a different study regarding measuring water
motion has been conducted. A new methodology is presented to measure the
two-dimensional velocity field of water near a heaving ice floe in the marginal ice
zone in the Barents Sea. The new system consists of an open-source remotely
operated vehicle (ROV) functioning as an optical instrument to record the two-
dimensional velocity field by tracking seeded air bubbles. The methodology was
successfully tested in the Barents Sea and validated under controlled settings in
the laboratory.
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Norsk

Indre bølger er et fenomen tilstede inne i det lagdelte havet. De er ofte observert
for eksempel over Norges kontinentalsokkel hvor lagdeling, sterke strømmer og
tidevann eksisterer side om side over forskjellige topografier. Når indre bølger
interagerer med andre fysiske prosesser og/eller beveger seg gjennom et varierende
bakgrunnsmiljø, kan de endre form og muligens bli ustabile. Store havgående
indre bølger, solitoner, kan forplante seg over store avstander hvor bølgeformen
og bølgens hastighet opprettsholdes, med bølgeamplituder som varierer fra noen
få til titalls meter. Å forstå atferden og dynamikken til indre solitære bølger er
en viktig faktor for å skjønne deres rolle i økosystemet i havet og hva dem kan
forårsake. Indre bølger har vist seg å yte en viktig mekansisme i havene ved for
eksempel å forårsake vertikal utveksling og transport av partikler og sedimenter.
På den annen side kan indre bølger være farlige og utgjøre en rekke trusler mot
for eksempel offshoreinstallasjoner.

Forskning på indre bølger har blitt utført i flere tiår gjennom feltobservasjoner,
numeriske simuleringer og laboratorieeksperimenter. Atskillige studier har
undersøkt indre solitære bølger av depresjon over en flat bunn gjennom
laboratorie eksperimenter og numeriske simuleringer. Til tross for den langvarige
studien av disse bølgene, er det fortsatt noen kvalitative avvik mellom resultatene
av disse to metodene.

I denne oppgaven undersøker vi indre solitære bølger av depresjon som
forplanter seg over flat bunn gjennom høyoppløselige direkte numeriske
simuleringer. Ved å bruke en todimensjonal laminær numerisk modell, replikerer
og reproduserer vi velkjente laboratorie eksperimenter utført i en tredimensjonal
bølgetank. Gjennom hele studien har vi adressert tre sentrale mål: forstå
hvor godt en laminær numerisk modell kan reprodusere laboratoriemålinger, få
ytterligere innsikt i ustabilitetene indusert av de indre solitære bølgene i det
nederste grenselaget, og forstå hvordan Lagranske sporpartikler oppføre seg i
scenarier der virvler i det nederste grensesjiktet oppstår. I tillegg er effekten
av skala systematisk undersøkt gjennom hele studien, hvor den kinematiske
viskositeten til vannet varieres. Derfor er våre beregninger presentert for bølge
Reynolds tallet Rew i området Rew = 1.9 × 104 − 6.5 × 105, hvor bølgens
Reynolds tall er en funksjon av den lineære langbølgehastigheten, den kinematiske
viskositeten til vannet, og den totale vanndybden H. Den ikke-dimensjonale
amplituden til de indre bølgene er i området a/H ∼ 0.19− 0.33.

Når de indre solitære bølgene forplanter seg, skaper de et bølgeindusert
hastighetsfelt som kan forårsake ustabilitet og virvelavgivelse i det nederste
grensesjiktet. En vesentlig del av denne oppgaven omhandler grensen når
separasjonsboblene som dannes på grunn av strømningsseparasjon i det
nederste grensesjiktet opplever ustabilitet. Stabilitetsgrensen undersøkes
som en funksjon av bølgeamplituden og bølge Reynolds tallet og som en
funksjon av trykkgradienten og momentum-tykkelsen Reynolds tallet estimert
ved strømningsseparasjonspunktet. Med sterk vekt på konvergens, inkludert
oppløsningen av bunngrensesjiktet, oppnådde vi en meget god overensstemmelse
med de fysiske eksperimentene for overgang til ustabilitet. Grensen fra stabilt
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Abstract

til ustabilt regime avhenger av pyknoklindybden, og samme utfall ble også
observert i laboratorieundersøkelsene. De nåværende beregningene av overgangen
til ustabilitet, i samsvar med laboratorieeksperimentene, antyder at tidligere
numeriske simuleringer har overestimert denne grensen. Ustabiliteten oppstår
mye tidligere for indre bølger med betydelig mindre amplitude enn tidligere antatt.
I undersøkelsen rundt virvelformasjonen i bunngrensesjiktet, samsvarer den
numeriske beregningen med virvlene generert i det tredimensjonale laboratorie
eksperimentet. Resultatene indikerer at ustabiliteten som ble observert i
laboratorieforsøkene var hovedsakelig todimensjonale opp til en viss avstand
bak bølgebuken. Resultatene bidrar til den pågående debatten om hvorvidt
laboratorieobserverte ustabiliteter primært er tredimensjonale.

Samhandlingen mellom det indre bølgeinduserte hastighetsfeltet, virveldan-
nelse og Lagranske sporpartikkelbevegelser i det nederste grensesjiktet er også un-
dersøkt. En sky av sporpartikler er implementert i bunngrensesjiktet oppstrøms
for den indre solitære bølgen. Den indre solitære bølgen passerer sporpartiklene
to ganger: Den interne ensomme bølgen fanger opp sporpartikkelskyen to ganger:
første gangen når den forplanter seg i det uforstyrrede fluidet og andre gang som
en reflektert bølge. Sporpartiklenes forflytning og baner er beregnet og ses å bli
påvirket av både bølgen og virvlene. Sporpartiklenes vertikale høyde nådde opp
til omtrent 23% av den totale vanndybden etter at den reflekterte bølgen hadde
passert, uavhengig av bølgens Reynolds tall.

I denne oppgaven innebærer det meste av arbeidet å utføre direkte numeriske
simuleringer av interne solitære bølger. Men i tillegg til dette er det utført
feltarbeid utenfor Lofoten, Vesterålen, Norge, for å måle dette fenomenet. Et tog
av interne bølger ble målt i 2021, hvor den ledende bølgen hadde en dimensjonsløs
amplitude på 0.4H.

En annen studie angående måling av vannbevegelse er utført, hvor vi nå
også forlater indre bølger emnet. En ny metodikk er presentert for å måle et
todimensjonalt hastighetsfelt av vannet nær et isflak i den marginale issonen
i Barentshavet. Det nye systemet består av et fjernstyrt kjøretøy (ROV)
som fungerer som et optisk instrument for å registrere det todimensjonale
hastighetsfeltet ved å spore luftbobler som sporpartikler. Metodikken ble
vellykket testet i Barentshavet og validert under kontrollerte omgivelser i et
laboratorium.
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Chapter 1

Introduction

1.1 Internal waves and the present thesis

1.1.1 Internal waves as a phenomenon

The movement of waves in the ocean is truly remarkable and can be a gorgeous
sight, but they can also be quite dangerous. When people think of ocean
waves, they generally only consider those moving on the surface of the ocean.
Nevertheless, underwater waves exist beneath the surface, called internal waves.
Internal waves are a spectacular phenomenon and can grow significantly larger
than surface waves. They can reach amplitudes of up to hundreds of meters,
compared to less than twenty meters for surface waves, and can travel long
distances without breaking up (Helfrich and Melville 2006).

Internal waves appear in stratified waters which arise, e.g., in the ocean basin
(Holligan, Pingree, and Mardell 1985; Zhao and Alford 2009), the coastal ocean
(Bogucki, Dickey, and Redekopp 1997; Dokken et al. 2001; C. Jackson 2007;
Klymak and Moum 2003), in fjords, riverbeds, and in lakes (Boegman, Imberger,
et al. 2003; D. M. Farmer 1978; Thorpe 1971). Internal waves can also occur in
the atmosphere (Christie 1989; Christie and White 1992) (not discussed in this
thesis).

The stratification occurs due to differences in density (ρ) within the water
column. The density of the water depends on a combination of the local water
temperature and the salinity content. A pycnocline describes the localized change
in the density of the water column and provides the waveguide. The density
variation along the vertical is sometimes abrupt and other times gradual. The
density jump across the pycnocline (∆ρ/ρ) is typically one in one thousand
(10−3), which applies to both deep and coastal oceans. Occasionally, instead of
the term pycnocline, this is referred to as a thermocline or a halocline in the
case of temperature gradients or salinity gradients, respectively.

The pycnocline separates an upper layer of light water from the denser water
below. The upper layer is usually thin, while the lower layer is deep. There are
several types of wave motion created on the pycnocline. One type is a train of
periodic sine waves, whereas another is pulse-like waves, termed solitary waves.
The waves may appear in groups. The sine- and pulse-waves are shown in
Figure 1.1. The pulses described are depression waves that occur when the upper
layer is thinner than the lower layer (Figure 1.1b). Conversely, they are waves
of elevation when the lower layer is thinner than the upper (Figure 1.1c). The
waves propagating along the pycnocline have a spectrum of modes. In this thesis,
we only discuss internal waves of mode 1. Internal waves in the continuously
stratified oceans may also propagate in the form of beams (Mathur and Peacock
2009). Such propagation is not discussed here.

1



1. Introduction

(a)

(b)

(c)

Figure 1.1: Schematics of (a) periodic sine waves, (b) an internal solitary wave
of depression, (c) an internal solitary wave of elevation. The vertical excursion
(the amplitude a) and the middle depth d of the pycnocline are visualized in (b).

Internal waves typically have a large vertical excursion of the pycnocline,
the amplitude a, for depression and elevation waves. The kinetic energy of the
wave-induced velocity field is in balance with the potential energy. This implies
that a large amplitude is required to compensate for the small density differences
across the pycnocline. Internal solitary waves are finite-amplitude waves due to
the delicate dynamic balance between nonlinear wave-steepening (ratio between
wave amplitude and water depth) and linear dispersion. They can propagate
without any temporal evolution in shape or size when the reference frame is
moving with the wave (Stanton and Ostrovsky 1998).

2



Internal waves and the present thesis

1.1.2 Typical internal wave speed

The internal waves we consider in this thesis are driven by gravity (characterized
by the gravitational acceleration g) and are termed internal gravity waves. The
propagation speed of the waves is roughly proportional to the square root of the
relative density jump across the pycnocline, times the acceleration of gravity,
times the middle depth d of the pycnocline (more elaborate estimates of the wave
speed are given below Section 1.2). Accordingly, the wave speed is estimated by
c0 =

√
(∆ρ/ρ)gd. Here d = h1 + h2/2 where h1 is the thickness of the thinner

layer, and h2 is the thickness of the pycnocline (see Figure 1.2 for a schematic
representation (three-layer model)). The middle depth of the pycnocline may
be at d = 200 m in the deep oceanic waters. In the coastal sea, for instance,
along the Norwegian continental shelf, the seasonal pycnocline is approximately
at a middle depth of d = 25 m. The pycnocline in the Norwegian fjords, where
the density jump separates fresh river water from salty sea water, is typically
found at a middle depth of d = 5 m (unpublished computations). The speed
in the different cases becomes c0 = 1.5 m s−1 with d = 200 m, c0 = 0.5 m s−1

with d = 25 m, and c0 = 0.22 m s−1 with d = 5 m, where ∆ρ/ρ is in the range
1− 2× 10−3 in all cases.

In this context, it is worth mentioning that the Norwegian Atlantic Current
flows along the Norwegian shelf northward. With a temperature of approximately
8 degrees Celcius, this current flows on top of the cold, dense Arctic water of
temperature −0.5 degrees Celcius on the shelf/slope. The pycnocline is located
at approximately 550 m depth with a relative density jump across the pycnocline
of ∆ρ/ρ ' 0.5 × 10−3. The corresponding local internal wave speed becomes
1.6 m s−1. The motion of the pycnocline caused strong currents at the Ormen
Lange gas field development of Equinor, a complete sub-sea development in
the deep water on the Norwegian shelf/slope (Grue and Sveen 2010). Concerns
regarding large amplitude internal waves and their potentially damaging effects
were communicated by the offshore industry on the Norwegian Continental Shelf,
and elsewhere worldwide, during the 1990s and onwards (Grue, Friis, et al. 1997).

1.1.3 Generation mechanisms

The primary generation source of internal waves is wind or tide (Helfrich and
Melville 2006). See further the review by C. R. Jackson, Da Silva, and Jeans
2012 regarding internal solitary wave generation mechanisms in the ocean.

When wind is acting on the ocean surface, it pushes (lifts) the pycnocline
downwards (upwards), inducing internal waves of depression (elevation) (Boeg-
man and Stastna 2019). When tidal disturbances travel over topography, under-
water mountains, or along the continental shelf, the blockage will lower (rise)
the pycnocline and induce internal waves of depression (elevation) (Alford et al.
2012; Grue 2015; Maxworthy 1979).

Internal waves commonly occur in wave groups, where the tidal period
regulates the distance between the groups. The period of the waves within a

3
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group is typically 10-30 minutes (Alford et al. 2012; Dokken et al. 2001; Stanton
and Ostrovsky 1998).

1.1.4 The present thesis

The main part of this thesis represents an effort to conduct detailed numerical
simulations of internal solitary waves of depression propagating over a flat bottom
to gain further insight into the physical mechanisms these waves govern. While
most of the work considers direct numerical simulations of internal solitary waves
(Papers I and II), fieldwork has been conducted outside Lofoten, Vesterålen,
Norway, to measure this phenomenon (Chapter 3). The project is a part of
the Ecosystem structuring by pulses of internal wave breaking ("ECOPULSE"
2020-2023), where the goals are to quantify the impact of tidally forced (breaking)
internal waves on marine productivity, plankton distribution, and on cold-water
coral reefs, in addition to enable a mechanistic understanding of how internal
waves can increase the vertical mixing locally. Accordingly, internal waves can
significantly impact the marine ecosystem as a driver of sediment movement on
continental margins (R. Bøe et al. 2009; Sandstrom and Elliott 1984).

Another study regarding measuring water motion has also been conducted.
In this study, internal waves were not investigated, but the two-dimensional
velocity field of water next to a heaving ice floe in the Barents Sea. To conduct
the investigation, a new methodology is presented, which utilizes a remotely
operated vehicle and air bubbles seeded in the water as tracers.

The present thesis aims to achieve several key objectives:

(i) Conduct numerical simulations of fully nonlinear internal waves by
replicating the laboratory experiments by Carr, Davies, and Shivaram
2008. Additionally, to provide a (until now lacking) comparison between
simulations and lab experiments (Boegman and Stastna 2019).

(ii) Gain further insight into the bottom boundary layer instability bor-
der/threshold induced by internal solitary waves of depression propagating
over a flat bottom.

(iii) Examine the behavior of Lagrangian tracer particles in the bottom
boundary layer vorticity field induced by the wave.

(iv) Use the improved understanding of internal waves from the numerical
calculations for theoretical background, reference model, and a tool for
interpreting field measurements undertaken at the Hola Reef in Vesterålen,
Norway (unpublished results are in progress).

(v) Obtain the water’s two-dimensional velocity field next to an ice floe.

Throughout the numerical work, the following questions have been asked:

(vi) How well can a two-dimensional laminar numerical model reproduce
laboratory measurements conducted in a three-dimensional wave tank?
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(vii) How can the numerical model be used to evaluate quantities which have
not been measured in the laboratory?

As described above, the main work conducted in this thesis analyzes internal
solitary waves of depression propagating over a flat bottom and the instabilities
emerging in the bottom boundary layer. However, it is important to note that
this particular research only covers a small portion of the broader field of internal
waves and the diverse instability mechanisms that they may exhibit.

The rest of this chapter will give a short but broader overview of the internal
wave field and different instability mechanisms (Section 1.3). Before all else,
a section of some mathematical model descriptions of internal wave motion is
provided (Section 1.2).

Subsequently, Chapter 2 outlines the main research conducted in this thesis
and our contribution to the field. The first part of Chapter 3 will provide insight
into internal waves on the Norwegian continental shelf and why Vesterålen,
Norway, was chosen as the fieldwork site to measure this phenomenon. The last
part of Chapter 3 regards the new methodology and a validation of the method.
A summary of the articles, their main findings, author contribution, and an
integrated view of the articles are presented in Chapter 4. Summary and future
perspectives can be found in Chapter 5

1.2 Mathematical models of internal wave motion

Internal waves are i) long compared to the depth of the pycnocline and
ii) nonlinear with amplitudes comparable to the pycnocline depth. Long
internal waves are weakly dispersive. Initially, weakly nonlinear and dispersive
wave theories were developed, with the weakly nonlinear Korteweg-de Vries
(KdV) equation being the most frequently referenced example. This equation
demonstrates that a balance can be achieved between nonlinearity and dispersion,
enabling the existence of solitary wave solutions. A review written by Grue 2006
is further followed regarding the calcualtions presented in Section 1.2.1.

1.2.1 KdV theory

In 1847, Stokes derived the linear theory of internal waves in the form of the
motion of two fluids. In the 1870s, Boussinesq expanded the theory with a
nonlinear extension. The equations for nonlinear motion in a stratified fluid were
derived by Dubreil-Jacotin in 1932. Subsequently, Keulegan 1953 and Long 1956
provided differenciations of the KdV equation for the motion in two-layer fluids.

The development of weakly nonlinear theory of internal waves in continuous
stratified fluids was derived by Benney 1966. Later, it was extended to the
KdV equation and its higher-order extension, see the review by Grue 2006.
The KdV theory arises from the assumption that nonlinearity (ε = a/H) and
nonhydrostatic dispersion (µ = H2/λ2) are small and of same order of magnitude
µ = O(ε)� 1. Here, λ is the wavelength and H is the total water depth. A step-
by-step calculation outline is provided in the Appendix A. The KdV equation
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is a simple two-layer model, where at a certain depth, the density undergoes
a stepwise variation, while the density above and below this depth is constant,
as visualized in Figure 1.2. The KdV equation describes then a long wave
propagating along the horizontal x-axis as follows:

At + c0Ax + εα0AAx + µβ0Axxx = 0. (1.1)

Here, A(x, t) is the amplitude function, the constants α0 (nonlinear coefficient)
and β0 (measure of dispersion) are given in equations A.72 and A.74, respectively,
and c0 is the linear wave speed corresponding to the lowest mode. The notation
x and t denotes derivation with respect to the horizontal direction and time,
respectively.

When having a sharp pycnocline separating an upper layer of depth h1 and
density ρ1 from a lower layer of depth h2 (h2 > h1) and density ρ2 (ρ2 > ρ1)
(two-layer interfacial case), the coefficients in equation 1.1 (ε = µ = 1) become

α0 = −3
2

c0(ρ1h
2
2 − ρ2h

2
1)

h2h1(ρ1h2 + ρ2h1) ≈ −
3
2
c0(h2 − h1)

h2h1
, (1.2)

β0 = 1
6
c0h2h1(ρ2h2 + ρ1h1)

ρ1h2 + ρ2h1
≈ 1

6c0h2h1, (1.3)

c20 = gh2h1(ρ2 − ρ1)
ρ1h2 + ρ2h1

≈ g′h2h1

h2 + h1
, (1.4)

where g′ = g(ρ2 − ρ1)/ρ1 is the reduced gravity, and the approximations on the
right hand sides are valid for (ρ2 − ρ1)/ρ2 � 1. Equation 1.4 is the two-layer
approximation of the linear long wave speed and is often used as the reference
speed in calculations, e.g., Carr and Davies 2006; Carr, Davies, and Shivaram
2008.

Equation 1.1 has a solitary wave solution of permanent shape when there is
a balance between the effects of nonlinearity and dispersion. Hence, we obtain

A0 = a0 sech2[(x− cnlt)/λ] (1.5)

as a solution for the longest wave mode, where cnl = c0 + ∆c is the nonlinear
wave speed and ∆c denotes the nonlinear excess speed. For an interfacial soliton
in a two-layer case, the coefficients ∆c and λ are related by

∆c = − a0c0(ρ1h
2
2 − ρ2h

2
1)

2h1h2(ρ1h2 + ρ2h1) ≈ −
1
2a0c0

h2 − h1

h2h1
, (1.6)

1
λ2 = − 3a0[1− ρ2h

2
1/(ρ1h

2
2)]

4h2
1h2(ρ2/ρ1 + h1/h2) ≈ −

3a0

4
h2 − h1

h2
2h

2
1
, (1.7)

with c0 in equation 1.4 and the approximation (ρ2 − ρ1)ρ2 � 1.

Interfacial solitary waves have an upper theoretical limit on the wave speed
and amplitude when h1 and h2 are finite (Grue, Jensen, et al. 1999):

c2max = g(h2 + h1)(ρ2 − ρ1)
(ρ1/2

2 + ρ
1/2
1 )2

amax = h2ρ
1/2
1 − h1ρ

1/2
2

ρ
1/2
2 + ρ

1/2
1

. (1.8)
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Figure 1.2: The figure presents a schematic of the two- and three-layer model
setups. The two-layer model has an upper layer thickness h1 and density ρ1
and a lower layer thickness h2 and density ρ2, separated by a sharp pycnocline
visualized by a dotted line. The three-layer model has an upper layer thickness
h1 and density ρ1 and a lower layer thickness h3 and density ρ3. The layers
are separated by a pycnocline (visualized by dotted lines) of thickness h2 and
density ρ(z) that varies linearly within the pycnocline. The variable d visualizes
the middle depth of the pycnocline in each case.

Alternatively, cmax can be expressed on the form c2max = gh′2h
′
1(ρ2−ρ1)/(ρ2h

′
1 +

ρ1h
′
2), with h′1 = h1 − amax and h′2 = h′2 + amax (h1 < h2).

Experimental and numerical studies show that the KdV theory provides a
valid description of solitary waves with small amplitude (Diamessis and Redekopp
2006; Grue, Jensen, et al. 2000). An extended variant of the KdV equation, the
eKdV equation, is a useful variant which includes cubic nonlinearity. See e.g.,
Fructus and Grue 2004; Grimshaw, Pelinovsky, and Poloukhina 2002; Lee and
Beardsley 1974; Miles 1981; Stanton and Ostrovsky 1998.

1.2.2 KdV theory versus fully nonlinear theory

Models based on weakly nonlinear and weakly dispersive theories are useful for
describing the motion of internal waves when the lines of constant density do
not deviate too much from their resting level and the waves are long compared
to the water depth. However, based on field observations, it was found that the
waves were (highly) nonlinear and remained coherent with a finite amplitude
for long distances. The waves possess characteristics that can only be explained
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through fully nonlinear models. Nevertheless, KdV-type theories, even in their
weakly nonlinear form, have played an essential role in exposing fundamental
properties of internal waves, despite falling short of exact quantitative outcomes.

Fully nonlinear two-layer models, where an interface separates two homoge-
neous fluid layers of constant depth, have had the most extensive development
theoretically (Amick and Turner 1986; Grue, Friis, et al. 1997), experimentally
(Koop and Butler 1981; Michallet and Barthelémy 1998), and numerically (Ca-
massa et al. 2006; Fructus and Grue 2004; Grue, Friis, et al. 1997; Grue, Jensen,
et al. 2000).

Grue, Friis, et al. 1997 derived a time-stepping method for a two-layer
fluid fully nonlinear two-dimensional motion. They found good agreement when
comparing their fully nonlinear interface model to available experiments. Further,
in comparison with weakly nonlinear theories like KdV, Benjamin-Ono, and
finite-depth theories (see e.g., Grue 2006 for definitions), their results indicated
that in many cases, weakly nonlinear theories have a limited application. They
showed that these theories could lead to inaccurate wave shapes when the
maximum elevation of the wave becomes comparable to the thinner layer’s
thickness. Consequently, weakly nonlinear theories have a limited range of
validity. This was further explored by Grue, Jensen, et al. 1999. They conducted
laboratory experiments of large-amplitude internal waves over various depth
layers and wave amplitudes. The laboratory results were compared against the
fully nonlinear interface model presented by Grue, Friis, et al. 1997 with good
agreement. In addition, a comparison to the weakly nonlinear KdV theory was
conducted, where their results show that the KdV theory deviates systematically
when the waves’ amplitude exceeds approximately 0.4 times the thinner layer’s
thickness, as seen in Figure 1.3. Please be advised that in the figures, the
upper layer is labeled h2 from their experiment, which is h1 described here.
Figure 1.3a illustrates the wave profile as the non-dimensional wave amplitude
increases, and Figure 1.3b displays the evolution of the excess speed computed
from Equation (1.6). Nevertheless, the KdV theory was found valuable for all
the different depth ratios experimented with as long as the wave amplitude was
small.

1.2.3 Linear long wave speed of a three-layer model

Following Fructus and Grue 2004, linear (lin.) internal waves (waves of small
amplitude) can be described by the stream function on the form ψ(x− clint, z) =
a0φ(z) exp(ik(x− clint)), where a0 denotes the amplitude, z denotes the vertical
axis, and clin is the linear long-wave speed. The wave train is assumed periodic
with a wavenumber k, propagating with a linear wave speed. The vertical
structure function φ(z) satisfies the Taylor-Goldenstein equation

(d2/dz2 +N2/c2lin − k2)φ = 0, (1.9)

with the boundary conditions φ(0) = φ(H) = 0, and at the two interfaces
the functions φ and dφ/dz are continuous. The solution takes the form
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(a) (b)

Figure 1.3: a) Comparisons of experimental wave profiles (squares) to fully
nonlinear theory (solid lines) and KdV theory (dashed lines). The subfigures in
a) have non-dimensionless wave amplitudes of (a) a/h1 = 0.22, (b) a/h1 = 0.36,
(c) a/h1 = 0.91, (d) a/h1 = 1.23, and (e) a/h1 = 1.51. b) Comparison of the
excess speed ∆c = c/c0 − 1 versus non-dimensionless wave amplitude of the
measured waves (square) to fully nonlinear theory (solid lines) and KdV theory
(dashed lines). Please be advised that in the figures, the upper layer is labeled h2
from their experiment, which is h1 described here. Images adapted from Grue,
Jensen, et al. 1999.
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Figure 1.4: The solution of the three first modes, Ym1, Ym2, and Ym3, respectively,
from Equation (1.11). The blue lines represent the first term in the equation,
and the black line is the second term. The circles mark the intersections.

Aj cos(K̂jz)+Bj sin(K̂jz) in each layer (j = 1, 2, 3). Here, K̂j =
√
N2
j /c

2
lin − k2,

Aj and Bj are constants, and N2
j = −(g∆ρj)/(ρhj) is the Brünt-Väisälä

frequency. By using the boundary conditions at z = h1 + h2 + h3, z = h1 + h2,
z = h1, and z = 0, the dispersion relation clin(k) can be obtained, providing

K̂2
2 − T1T2 − T1T3 − T2T3 = 0, Tj = K̂j cot(K̂jhj). (1.10)

By letting k → 0 in Equation (1.10), the linear long wave speed clin is obtained.
The three-layer model presented here is a case where N1 = N3 = 0 (see Fructus
and Grue 2004 regarding other cases). Then Equation (1.10) simplifies to

cot(Y )− [(Y h1)/h2 − h2/(h3Y )] / [1 + (h1/h3)] = 0, (1.11)

where Y = (N2/clin)h2. The Brünt-Väisälä frequency in the pycnocline is
constant (at rest) and given by N2

∞ = g(ρ3 − ρ1)/h2ρ3, where (ρ3 − ρ1)/ρ3 � 1.
The longest wave mode (m1) is obtained for Y = N∞h2/clin in the interval
(0, π). The speed of the mode 2 (m2) wave is found in the interval (π, 2π). See
Figure 1.4.

1.3 Internal waves - a brief review

1.3.1 Early observations

There is an old phenomenon related to internal waves known as dead-water. In
the Arctic Ocean during Nansen’s Polar expedition (1893-96), with the boat
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Fram, Nansen encountered internal tides (Nansen 1897). At the time, he did not
know it was the internal tide he had measured but described this as the dead-
water phenomenon. When the ship entered the water with a thermocline close
to the surface, internal waves were generated by the ship, and they experienced
a considerable reduction in the ship’s speed, hence the term dead-water. This
phenomenon was first known amongst the seamen. Ekman 1904 presented the
findings of Nansen with more details, in addition to carrying out theoretical
and experimental work. In 1909, the Swedish oceanographer Otto Pettersson
discovered internal tides in Gullmarfjorden and described the phenomenon (Grue
2006). It is important to mention that proper credit by Otto Pettersson was
given to Nansen for being the first to describe internal tides in this field.

Internal solitary waves and wave trains in marginal seas, straits, and coastal
waters are undoubtedly present, as confirmed by numerous in-situ and remote-
sensing observations (for a short review, see, for instance, Ostrovsky and
Stepanyants 1989 and references therein). In the 1960s, the development
of oceanography equipment, e.g., fast internally recording vertical arrays of
thermistors, led to observations of large ocean-going internal pulse waves (Helfrich
and Melville 2006). In 1965, Perry and Schimke (Perry and Schimke 1965)
recorded groups of internal waves with amplitudes reaching 80 m and with
wavelengths of 2000 m, propagating on a thermocline at 500 m where the local
water depth was 1500 m. Other early observations were conducted in the Strait
of Gibraltar (Ziegenbein 1969; Ziegenbein 1970), in the Massachusetts Bay
(Halpern 1971; Haury, Briscoe, and Orr 1979), in Lock Ness (Thorpe 1971),
and in the Seneca Lake in New York (Hunkins and Fliegel 1973). From field
observation, Ziegenbein 1969; Ziegenbein 1970 measured short-period internal
waves, propagating in the pycnocline as groups, with steepness (the amplitude-
length ratio) occasionally reaching considerable large values implying that these
waves may be significantly nonlinear. Even though internal solitary waves may
become highly nonlinear, they may remain stable at the same time, as measured
by Duda et al. 2004 in the South China Sea.

1.3.2 Observing internal waves from above

Even though internal waves cannot be seen with the naked eye, Ziegenbein 1969
demonstrated that the scattering of short surface waves observed by marine radars
could be inferred as internal waves. Internal waves strongly modulate the surface
wave spectrum on the ocean’s surface. They can be seen as alternating bands of
smooth and rough water appearing as dark and light stripes on images taken
by, e.g., synthetic aperture radar (SAR). Apel, Proni, et al. 1975 successfully
combined and correlated images from the ERTS-1 spacecraft and measurement
from ship. However, it was first in 1978, with the launch of SEASAT, SAR images
of the coastal ocean showing packets of internal waves propagating shoreward,
separated by tidal periods, were taken (Apel, Holbrook, et al. 1985). The images
proved that internal waves are a common phenomenon in the oceans. Dokken
et al. 2001 studied 2600 SAR images taken over nine years along the Norwegian
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Figure 1.5: ERS-1 SAR image (30× 100 km) of internal waves outside Andøya,
Norway, where the white arrow indicates the North direction. A total of 8 wave
trains, with an average distance of 10.8 km between the trains, can be seen
propagating against the coastal current. Image adapted from Dokken et al. 2001,
with permission from Wiley.

continental shelf. Figure 1.5 presents one SAR image showing eight internal
wave trains outside Andøya, Norway.

Consequently, SAR images, sunlight images, and Moderate Resolution
Imaging Spectroradiometer have been used to study internal wave behavior
and properties (Hsu, A. K. Liu, and C. Liu 2000; C. Jackson 2007; Nash and
Moum 2005). Remote imaging has accelerated our understanding and mapping
of internal waves. We now have a much bigger picture and a better idea of how
widespread internal waves are in our oceans (C. Jackson 2007). Identifying such
internal wave patterns also holds great significance in oceanography and has
implications for various industries, such as marine transportation and offshore
engineering.

1.3.3 Evolution scenarios of internal waves

Internal waves can evolve in various manners. The following sections will touch
upon three different scenarios before introducing various instability mechanisms
the waves experience and or induce (Section 1.3.4) and how these instability
mechanisms affect sediment motion in the bottom boundary layer (Section 1.3.5).
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Figure 1.6: The left figure shows the evolution of an observed internal solitary
wave of depression propagating up a slope moving past the turning point, evolving
into waves of elevation, measured by Bourgault et al. 2007. The right figure
displays the results of a numerical simulation showing the density field variations
of an internal solitary wave exhibiting similar characteristics as the observed wave
in the left figure. Image adapted from Bourgault et al. 2007, with permission
from Wiley.

1.3.3.1 Depression to elevation waves during shoaling

The highly nonlinear wave structure, characteristics, and behavior of internal
solitary waves from deep-depth sites propagating towards the shore are still
poorly understood (Lamb 2014; Vlasenko and Hutter 2002). On the Continental
slope in the Northern South China Sea, Duda et al. 2004 conducted field
measurements observing both transbasin waves and waves at or near tidal
frequencies. Transbasin waves are large-amplitude solitary waves of depression
and may be considered the largest internal gravity waves in terms of their
amplitude (Duda et al. 2004). Duda et al. 2004 measured stable waves of nearly
permanent form with amplitude a up to 165 m (a/d ∼ 3.7, mid-depth of the
pycnocline d ∼ 45 m ) at a 350 m depth site propagating with a nonlinear
speed of c ∼ 1.27 m s−1. When the waves encountered the slope, they were
seen to undergo rapid changes when propagating from 350 m to 80 m depth.
Nevertheless, the waves appeared to be stable.

When waves of depression propagate up weak slopes, where at a particular
position the upper and lower layer may be of equal height (known as a turning
point (Knickerbocker and Newell 1980)), the waves may go from a single
depression wave to break up into one or a series of dispersive elevation waves
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due to a steepening of the rear part of the depression wave (see Figure 1.6).
Bourgault et al. 2007 conducted field measurements in the St. Lawrence Estuary,
measuring shoaling internal wave trains to quantify the evolution of waves from
depression to elevation (change of polarity). Figure 1.6 presents their results of
the evolution of the internal solitary wave as it propagates up the slope. The left
figure illustrates the results from their field observation, whereas the right figure
shows the results from a numerical simulation of the field observations. They
observed waves of elevation (note: they term these waves for boluses) generated
from shoaling waves of depression where the properties amplitude, nonlinear
wave speed, and wavelength (L) remained almost constant prior to the polarity
change but started to decrease rapidly and linearly afterward. However, they
showed that the boluses aspect ratio a/L = 0.4± 01 remained constant during
the run-up.

Numerous studies have examined the breaking process of shoaling internal
solitary waves of depression, both in laboratory experiments (Boegman and
G. N Ivey 2009; Boegman, G. N. Ivey, and Imberger 2005; Helfrich 1992;
Helfrich and Melville 1986; Michallet and G. N. Ivey 1999; B. R. Sutherland,
Barrett, and G. N. Ivey 2013) and numerical simulations (Aghsaee, Boegman,
and Lamb 2010; Arthur and Fringer 2014; Nakayama et al. 2019; Vlasenko
and Hutter 2002; Xu and Stastna 2020). When waves of depression travel over
steeper slopes, the waves will break instead of fission into packets of elevation
waves (Xu and Stastna 2020). Waves with large enough amplitude propagating
over slopes where there is no turning point will also break (e.g. Kao, Pan, and
Renouard 1985). Hartharn-Evans et al. 2022 conducted a combined study of
numerical simulations and laboratory experiments of internal solitary waves of
depression propagating up a linear slope. They investigated how the effect of
stratification would have on the shoaling characteristics of the wave. The studies
were conducted with three different stratifications, where they found that the
form of stratifications affects the breaking type associated with the shoaling
wave.

1.3.3.2 Depression waves

The majority of the published field studies are on waves of depression. Waves of
depression propagating over near-flat topography have been observed by, e.g.,
Stanton and Ostrovsky 1998 over the Continental Shelf offshore from Oregon.
Quaresma et al. 2007 conducted in-situ observations at the northern shelf of
Portugal, over the Nasaré sub-marine canyon rim, where the semi-diurnal tide
drives the waves. Nonlinear internal waves of depression with amplitude in the
range a ∼ 10−30 m (a/d ∼ 0.68−1.98, d ∼ 15 m) with periods of 8−25 minutes
were propagating where the local water depth was 80 m (see Figure 1.7).

Field observations of nonlinear internal waves of depression over a low-gradient
topography on Australia’s Northwest Shelf have been conducted by Zulberti,
N. L. Jones, and G. N. Ivey 2020. The semi-diurnal tide drove the measured
internal waves, and the wave groups had amplitude in the range of a ∼ 37 m
(a/d ∼ 0.75, d ∼ 50 m) up to 70 m (a/d ∼ 1.4, d ∼ 50 m) where the local
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Figure 1.7: a) Isotherms contoured for five nonlinear internal solitary waves
propagating from left to right observed by Quaresma et al. 2007. b) The echo
intensity displays the motion of sediments. c) Vector plot of the measured
eastward velocity. d) Velocity vectors of the near-surface short-period current
showing. Image adapted from Quaresma et al. 2007, with permission from
Elsevier.

water depth was 250 m. The waves had periods of 20 minutes and a measured
propagation speed of c = 0.95 ms−1.

Numerous laboratory investigations, such as those carried out by Carr and
Davies 2006; Carr, Davies, and Shivaram 2008; Grue, Jensen, et al. 1999 and
Aghsaee and Boegman 2015, along with several numerical simulations conducted
by Aghsaee, Boegman, Diamessis, et al. 2012; Diamessis and Redekopp 2006;
Ellevold and Grue 2023; Fructus, Carr, et al. 2009; Grue, Friis, et al. 1997;
Thiem et al. 2011; Zahedi, Aghsaee, and Boegman 2021, have been undertaken.

We will examine internal solitary waves of depression in detail in Chapter 2.

1.3.3.3 Elevation waves

Research on internal solitary waves of elevation has been carried out both in
laboratory settings (Carr and Davies 2010) and through the use of numerical
simulations (Bogucki and Redekopp 1999; Diamessis and Redekopp 2006; Stastna
and Lamb 2002; Stastna and Lamb 2008; Wang and Redekopp 2001). Due to
the difficulties of measuring and observing them in nature, these studies aim to
gain a deeper understanding of the nature of these waves and their effects.

Waves of elevation propagating over near-flat topography have been observed,
e.g., on the Continental Shelf by Ostrovsky and Stepanyants 1989. Ostrovsky and
Stepanyants 1989 provide additionally a review of various field observations. On
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the shelf of Palos Verdes (California, LA), Bogucki, Dickey, and Redekopp 1997
observed packets of internal solitary waves propagating in a bottom stratified
layer, with a well-mixed upper layer, against a shear current of speed O(1cm
s−1) at the bottom. They observed waves with leading amplitude up to 4 m
(a/d ∼ 0.2, d ∼ 20 m) with a length of 90 m, where the total water depth was
approximately 60 m. In Massachusetts Bay, Scotti and Pineda 2004 observed
trains of large-amplitude, high-frequency internal waves of elevation with trapped
turbulent cores. The waves had amplitudes nearly half the water depth (H = 25
m).

1.3.4 Instability

As seen above, various internal waves may develop, and they all evolve differently
when propagating through or encountering varying environments such as current,
topography, and stratification. Consequently, internal waves can induce and
or experience various instability mechanisms. For instance, internal waves may
induce bottom boundary layer instability (Aghsaee, Boegman, Diamessis, et al.
2012; Diamessis and Redekopp 2006; Ellevold and Grue 2023; Stastna and Lamb
2008), experience shear instability and dissipation in the interior of the water
column (Carr, Franklin, et al. 2017; Fructus, Carr, et al. 2009; Moum et al. 2003),
or overturning as they shoal (Boegman, G. N. Ivey, and Imberger 2005; Helfrich
1992; Helfrich and Melville 1986; Lamb 2014). Internal waves that break can be
highly effective in mixing water that is rich in nutrients from the lower depths
up to the more biologically active upper layer (Sandstrom and Elliott 1984).

1.3.4.1 Bottom boundary interaction

Propagating internal waves induce a velocity field that may interact with the
bottom boundary layer. This interaction can lead to the onset of several different
instability mechanisms, where the induced instability depends on whether the
wave is of depression or elevation (Boegman and Stastna 2019). However, the
velocity field along the bathymetry (relative to a frame of reference following the
wave) will, regardless of the vertical direction of the pycnocline, experience a
spatially varying acceleration (Bogucki and Redekopp 1999). The basic instability
scenarios for the different waves can be seen in Boegman and Stastna 2019
their Figure 6. An overview of the different bottom boundary layer instability
mechanisms can be found in the review by Boegman and Stastna 2019.

The internal wave-induced pressure gradient is not precisely balanced in the
bottom boundary layer (due to no-slip boundary). Hence, there is always an
adverse pressure gradient region beneath the wave trough, regardless of whether
the wave is of depression or elevation (Aghsaee, Boegman, Diamessis, et al.
2012; Boegman and Stastna 2019; Diamessis and Redekopp 2006; Stastna and
Lamb 2008). For waves of depression, the adverse pressure gradient region
occurs underneath the rear half of the wave. When the adverse pressure gradient
increases, an (unstable) reversed flow boundary jet in the same direction as the
wave propagation is formed above the bottom (Aghsaee, Boegman, Diamessis,
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et al. 2012; Carr and Davies 2006; Diamessis and Redekopp 2006; Ellevold and
Grue 2023). This jet is labeled separation bubble, an enclosed region of flow
(Gaster 1967; Pauley, Moin, and Reynolds 1990). Carr and Davies 2006 found
that flow separation will always occur, having laminar boundary layers under
waves of depression. When the wave amplitude is above a certain threshold,
instabilities will develop in the separation bubble (Aghsaee, Boegman, Diamessis,
et al. 2012; Carr, Davies, and Shivaram 2008; Diamessis and Redekopp 2006;
Ellevold and Grue 2023). Vortices may then form, grow, and shed into the water
column. The majority of the work conducted in this thesis regards this type of
instability and how it evolves, which is elaborated in Chapter 2.

For waves of elevation, the adverse pressure gradient region and separation
bubble develop now ahead of the wave crest (Bogucki and Redekopp 1999;
Stastna and Lamb 2002; Stastna and Lamb 2008). Nonlinear internal solitary
waves of elevation and their boundary layer have been investigated numerically
(Bogucki and Redekopp 1999; Stastna and Lamb 2002; Stastna and Lamb
2008) and by experiments (Carr and Davies 2010). Stastna and Lamb 2002
performed fully nonlinear simulations of the scenario described in Bogucki and
Redekopp 1999, where waves of elevation propagate against an opposing current.
Bogucki and Redekopp 1999 discusses that the bottom layer separates when the
wave amplitude is above a certain threshold, and vorticity forms and becomes
advected with the flow. However, Stastna and Lamb 2002 showed that the vortex
instability arising was not due to a boundary layer separation but due to the
interaction between the wave’s velocity field and the boundary layer vorticity of
the opposite background current. Stastna and Lamb 2008 showed further that
no instability would arise if the current was too weak or the wave amplitude was
too low. In addition, they showed that the current-driven vorticity was advected
into the footprint of the wave. In the laboratory experiments by Carr and Davies
2010, an internal solitary wave of elevation propagated in an unsheared two-layer,
stably-stratified fluid. They found conversely that the flow reversal occurred
under the wave’s rear part, in the deceleration phase where the pressure gradient
is favorable. They observed no instability in the experiments despite having
waves with amplitudes up to the theoretical maximum.

During shoaling, the waves focus wave energy and create a strong near-bottom
velocity field and adverse pressure gradient (Aghsaee, Boegman, Diamessis, et al.
2012; Aghsaee, Boegman, and Lamb 2010; Boegman and Stastna 2019). Xu
and Stastna 2020 performed a high-resolution numerical simulation of internal
solitary waves of depression, where their domain represented a tilted wave tank.
They found that boundary layer instability consistently occurred during the
shoaling process, presented as a separation bubble. As the wave turns into
packets of elevation waves, the separation bubble breaks down into two parts.

1.3.4.2 Breaking and mixing in the pycnocline

Internal wave motion, especially the breaking of internal waves, is a topic of
great importance and interest to physical oceanographers and climate modelers.
They are particularly interested in the wave-driven turbulent mixing that occurs
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Figure 1.8: Side view image of an internal solitary wave of depression from a
laboratory experiment conducted by Carr, Franklin, et al. 2017, presented in
a false color image showing light intensity. It is a composite image ( see their
Figure 4 for the sequential development of the overturning billows) providing
a qualitative view of the observed breaking dynamics. Uneven seeding caused
the vertical streaks in the upper layer and are not artifacts of the flow dynamics.
The horizontal and vertical extent of the image are ∆x = 1.81 m and ∆z = 0.42
m, respectively. Image adapted from Carr, Franklin, et al. 2017.

in the ocean. The study conducted by MacKinnon, Zhao, et al. 2017 provides a
summary of recent developments in the understanding of internal wave-driven
turbulent mixing in the ocean interior. The study presents new parameterizations
for global climate and ocean models and discusses their climate impacts.

Breaking of internal waves often occurs due to either shear-driven instability
across the pycnocline or convective instability, or, in some cases, a combination
(Carr, Fructus, et al. 2008). The occurrence of internal waves that result in
breaking can profoundly impact the surrounding environment. Their effect on
mixing is of particular significance, which can significantly alter the composition
and distribution of particles. Many different breaking criteria have been outlined
and discussed over the past decades, and we will present some of these below.

Shear instability:
When having a thin, continuously linear stratified interface in a two/three-layer
system, a shear flow characterized by the velocity gradient ∂u/∂z may occur at
the interface. Here, u is the horizontal velocity and z is the vertical coordinate.
The shear flow may become unstable, and the growth of the perturbation typically
presents as Kelvin-Helmholtz billows, which will begin to grow at the wave’s
maximum depression, hence at the trough (Lamb and D. Farmer 2011; Moum et
al. 2003). Figure 1.8 visualize an internal solitary wave of depression experiencing
Kelvin-Helmholtz instability in the pycnocline from the experiments conducted
by Carr, Franklin, et al. 2017. The front of the internal wave will always be
stable when propagating between homogeneous layers in a pycnocline that was
initially linear stratified (three-layer stratification) (Fructus, Carr, et al. 2009).

A sufficient condition for the internal waves to be stable, according to Miles
1961 when having steady shear flows, the Richardson number should exceed a
value of 1/4 everywhere. The Richardson number provides an estimate of the
inverse ratio between the stable density profile and the unstable velocity profile
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(Grue, Jensen, et al. 1999): Ri = − gρ
∂ρ
∂z /(

∂u
∂z )2.

Grue, Jensen, et al. 1999 investigated the properties of internal waves of
large amplitude and documented the breaking of internal solitary waves through
laboratory experiments. They estimated the Richardson number given by Miles
1961 for different experiments and found that for a breaking wave Ri = 0.07 and
Ri = 0.23 or larger for stable waves.

Further analysis and studies under different conditions (Almgren, Camassa,
and Tiron 2012; Barad and Fringer 2010; Fructus, Carr, et al. 2009; Lamb and
D. Farmer 2011; Troy and Koseff 2005) show that the criterion for the formation
of Kelvin Helmholtz billows cannot solely be based upon the Richardson number
alone. Having Ri < 1/4 is a necessary condition for shear instabilities but
insufficient (Lamb 2014). For a comprehensive investigation of the shear-induced
billows generated, see e.g. Carr, Franklin, et al. 2017.

Fructus, Carr, et al. 2009 conducted laboratory experiments to examine
this stability threshold when having internal solitary waves of large amplitude
and Ri < 1/4. In addition, they compared their results with fully nonlinear
calculations in a three-layer fluid with good agreement. Based on the derivation
conducted by Bogucki and Garrett 1993, a novel stability criterion was
obtained for the shear instability of the Richardson number in the form of
Rimin = −0.23Lx,p/λ+ 0.298± 0.016, in the (Lx,p/λ,Rimin)-plane. Here λ is
the wave’s half-width, and Lx,p is the horizontal length of a small region, a
pocket, of a finite lateral extent present in the wave (see Fructus, Carr, et al. 2009
their Figure 9). In addition, they presented an even sharper breaking threshold
than Rimin: Lx,p/λ > 0.86 (breaking) and Lx,p/λ < 0.86 (stable). Accordingly,
Lx,p/λ = 0.86 provides a more suitable threshold. This threshold also takes the
minimum values of the Rimin into account since it is viewed in a fixed frame of
reference; thus, the pocket will have a Rimin less than 1/4 within its horizontal
domain.

When internal solitary waves of depression propagate on a slope, the wave
may break in its rear face. If breaking, it results in mixing the pycnocline
and generating multiple boluses (i.e., a turning point is present). The boluses
will continue propagating up the slope, past the pycnocline-slope intersection.
The boluses transport denser water and enhance the mixing of the pycnocline.
Laboratory experiments (Boegman, G. N. Ivey, and Imberger 2005; Helfrich
1992; Helfrich and Melville 1986) have been performed on internal solitary
waves of depression incident on a uniform slope to measure and describe the
kinematics and conversion into boluses and to find a breaking criterion. Three
different types of wave breaking were identified: when the rear face of the wave
overturns, it is identified as plunging breakers, whereas when the rear face begins
to overturn but collapses on itself, it is labeled collapsing breakers, and the
third type of wave breaking is spilling (Boegman, G. N. Ivey, and Imberger
2005). Aghsaee, Boegman, and Lamb 2010 expanded this classification to four
different types: surging, collapsing, plunging, and fission breaker. Studies have
explored a coherent classification scheme of the four given different types of
key-breaking processes (Aghsaee, Boegman, and Lamb 2010; Hartharn-Evans
et al. 2022; Nakayama et al. 2019; B. R. Sutherland, Barrett, and G. N. Ivey
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2013). There has been an interest in classifying the breaking mechanisms based
on the full range of incoming wave and slope conditions. Boegman, G. N. Ivey,
and Imberger 2005 introduced a classification system based on the internal
Iribarren number, a function of the bathymetric slope, wave amplitude, and the
wavelength of the solitary wave. Studies have further shown that only having
the internal Iribarren number is insufficient to classify the different types of
breakers, and different alternative classifications for these breakers have been
proposed (e.g., Aghsaee, Boegman, and Lamb 2010; Hartharn-Evans et al. 2022;
Nakayama et al. 2019; B. R. Sutherland, Barrett, and G. N. Ivey 2013)

From the fieldwork of Duda et al. 2004, the aspect ratio (amplitude-
wavelength) of the induced boluses remained constant during the run-up and
was concluded to prevent the attainment of the kinematic instability-breaking
criterion given by Vlasenko and Hutter 2002. Vlasenko and Hutter 2002
conducted numerical research on the transformation of large amplitude internal
solitary waves over a slope-shelf topography. They documented the changes
and development of the waves as they moved up the slope. Their calculations
indicate that the wave breaking is mainly caused by the kinematic overturning
of the wave’s trailing face.

Convective instability:
Convective instability occurs when the local fluid velocity exceeds the wave
velocity. Grue, Jensen, et al. 2000 conducted laboratory experiments on internal
solitary waves of depression in a two-layer configuration with a thin linear
stratified layer above a thicker homogeneous layer and having a free surface
as the upper boundary (note: this two-layer configuration differs from the
one presented in Figure 1.2. See Figure 2a in Grue, Jensen, et al. 2000 for a
visualization of their configuration). From their experiments, convective breaking
was seen to occur in trapped cores in the waves, where the instability arose
in the leading part of the wave as small vortices. Carr, Fructus, et al. 2008
also conducted laboratory experiments on internal solitary waves of depression
for the same two-layer configuration. From the experiments, they observed a
combination of shear and convective instability, which had never been seen before.
However, they conducted their experiments with different upper boundaries (free
surface, a rigid lid, and a wetting agent added to the free surface). They showed
that the type of upper boundary chosen directly affects convective instability and
wave amplitude (but does not affect the shear instability). Hence, they pointed
out that the rigid lid approximation is the cause of the discrepancy between
the laboratory experiments by Grue, Jensen, et al. 2000 and the fully nonlinear
theoretical predictions by Fructus and Grue 2004.

1.3.5 Sediment motion

As briefly presented above, internal waves may feel and interact with the bottom
boundary, creating complex instabilities. These instability mechanisms provide
potential for significant mixing and transport of sediments across the bottom
boundary layer (Boegman and Stastna 2019).
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The primary goal of the fieldwork conducted by Bogucki, Dickey, and
Redekopp 1997 was to understand the function of the present internal solitary
wave of elevation regarding resuspension and mixing of sediments. During
their fieldwork, they observed enriched concentrations of particles, resuspension,
and transport. Based on their data, they proposed a two-reason resuspension
mechanism hypothesis; due to the adverse pressure gradient on the leading edge
of the wave, a reverse flow - separation bubble - is present, and the resulting
sediment resuspension and transport are a result of instabilities destabilizing the
separation bubble. They measured a flow reversal up to ∼ 13% of the total water
column above the sea bottom and discussed that by having sufficiently large
waves, the wave train would behave as a pump by lifting and mixing sediments.

Quaresma et al. 2007 investigated the ability of the internal waves of
depression to resuspend particles. Their results showed that only the strongest
measured waves could resuspend sediments. One of the most substantial local
sediment concentrations measured was as high up as 56% of the total water
column below the leading wave. This interaction can be seen in Figure 1.7,
showing a nonlinear internal wave group of five nonlinear waves, where the echo
intensity visualizes the sediments. A vertical pumping mechanism was associated
with the compression underneath the wave trough that was immediately followed
by a subsequent layer expansion and was seen as one of the factors driving the
resuspension mechanism observed by Zulberti, N. L. Jones, and G. N. Ivey 2020.

Comparison between laboratory experiments/simulations and the ocean
still has a long way to go (Boegman and Stastna 2019; Stastna and Lamb
2008). However, numerical simulations and laboratory experiments of internal
solitary waves-sediment interaction are beneficial for visualization and idealized
investigations (Aghsaee and Boegman 2015; Aghsaee, Boegman, Diamessis, et al.
2012; Boegman and G. N Ivey 2009; Stastna and Lamb 2008). Aghsaee and
Boegman 2015 conducted laboratory experiments of internal solitary waves of
depression propagating over a flat bottom, investigating sediment transport and
resuspension. Their results showed that the primary resuspension mechanism
was the induced instabilities in the separation bubble, i.e., the generated vortices
(bursts of vertical velocities). The work conducted in this thesis regarding the
displacement of particles under the influence of internal waves of depression is
further discussed in Paper II and Section 2.4.
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Chapter 2

Internal solitary waves of
depression

In this thesis, we investigate nonlinear internal solitary waves of depression
propagating over a flat bottom. Our study focuses on the impact these waves
have on the bottom boundary layer, inducing instabilities and vortex formations.

We examine internal solitary waves using high-resolution direct numerical
simulations in two dimensions. The simulations are performed on a laboratory
scale, while variations of the wave Reynolds number (defined below) provide
insight for upscaling the results to the field scale. The work conducted in Paper
I is directed towards the points (i), (ii) and (vi), (vii) stated in Section 1.1.4.
Hence, regarding point (i), we numerically simulate and follow the setup and
wave-generation procedure as conducted in the laboratory experiments by Carr,
Davies, and Shivaram 2008, and provide answers to point (vi), in addition
towards point (ii) where we have scrutinized the stability border in terms of
different parameters, where as well point (vii) comes into play. Paper II considers
point (iii) where the focus is on the internal wave-vortex-induced motion of
Lagrangian tracer particles, in addition to points (vi) and (vii).

Papers I and II provide additional details on the method and procedure used
in this thesis. The following overview will complement the Papers and present
additional information and results.

The chapter is structured as follow: firstly, Section 2.1 will shortly present
some motivation. Section 2.2 will briefly explain the solver used, the numerical
wave tank, and wave characteristics. Then, we will continue with the wave-
induced instability and stability borders in Section 2.3 where we also touch upon
the generated vortices (Section 2.3.3) and the shear stress (Section 2.3.5) in the
bottom boundary layer. Particle motion is examined in Section 2.4.

2.1 Motivation

Internal solitary waves of depression propagating over a flat bottom have been
investigated through experiments performed in laboratory settings (Aghsaee
and Boegman 2015; Carr and Davies 2006; Carr, Davies, and Shivaram 2008;
Carr, Fructus, et al. 2008; Grue, Jensen, et al. 1999), numerical computations
(Aghsaee, Boegman, Diamessis, et al. 2012; Camassa et al. 2006; Diamessis
and Redekopp 2006; Fructus, Carr, et al. 2009; Fructus and Grue 2004; Grue,
Friis, et al. 1997; Thiem et al. 2011; Zahedi, Aghsaee, and Boegman 2021), and
field observations (Quaresma et al. 2007; Stanton and Ostrovsky 1998; Zulberti,
N. L. Jones, and G. N. Ivey 2020).
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To perform numerical simulations of non-hydrostatic features as internal
solitary waves, one requires high-resolution and small time steps to produce
accurate simulations, making it a challenging task (Boegman and Stastna 2019).
Various methods and solvers have been used in numerous studies to simulate
internal solitary waves. Diamessis and Redekopp 2006 conducted two-dimensional
direct numerical simulations using the Navier-Stokes equations combined with
weakly nonlinear Korteweg-de Vries (KdV) theory. Whereas Aghsaee, Boegman,
Diamessis, et al. 2012 solved the Navier-Stokes equations in combinations with
fully nonlinear wave formulations. Their simulations were initialized with a
single mode-1 internal solitary wave by solving the eigenvalue problem Dubreil-
Jacotin-Long (DJL) equation in terms of streamline displacement.

The numerical model used in this thesis is the second-order finite-volume
solver Basilisk (Popinet and collaborators 2013–2023), which solves the two-
phase incompressible Navier-Stokes equations. Instead of providing a background
density profile as a tanh-profile to approximate a laboratory-generated two-layer
stratified fluid, as implemented by, e.g., Aghsaee, Boegman, Diamessis, et al.
2012, we follow the same setup of the wave tank and wave generation procedure
as conducted in the laboratory experiments of Carr, Davies, and Shivaram 2008.
The choice to utilize this specific configuration and wave generation mechanism
in the numerical model was influenced by the following statement by Boegman
and Stastna 2019: "While DNS provide much richer flow field data relative
to experiments, to finally allow meaningful comparisons, one needs to address
numerical simulations’ long-standing inability (since Carr, Davies, and Shivaram
2008) to directly reproduce experimental observations".

Carr, Davies, and Shivaram 2008 conducted laboratory experiments of internal
solitary waves of depression moving along a flat bottom, investigating the flow
separation and vortex formation induced in the bottom boundary layer having
the wave Reynolds number in the range Rew = 5.8 × 104 − 6.6 × 104. The
wave Reynolds number is determined by the total water depth H, the linear
long-wave speed c0, and the kinematic viscosity ν, obtaining Rew = c0H/ν
(Aghsaee, Boegman, Diamessis, et al. 2012; Carr, Davies, and Shivaram 2008;
Diamessis and Redekopp 2006). Carr, Davies, and Shivaram 2008 studied and
measured the threshold of when instability in form of vortices emerged in the
bottom boundary layer by varying the wave amplitude from small amplitudes
where no instability was present to large amplitudes where instability occurred.

In the two-dimensional numerical study by Aghsaee, Boegman, Diamessis,
et al. 2012, they investigated the wave-driven instability over flat and sloping
bottoms. Regarding their flat bottom cases, having Rew = 1.2× 104 − 4.9× 105,
they were not able to reproduce the threshold of instability found by Carr,
Davies, and Shivaram 2008, which occurred much earlier than what was found
in the simulations. Aghsaee, Boegman, Diamessis, et al. 2012 suggested possible
reasons for this discrepancy, which was also repeated in the review by Boegman
and Stastna 2019. Two of the reasons proposed were that the laboratory-observed
instabilities are primarily three-dimensional and that the wave-generation method
causes a flow that may influence the vortex generation. The conflicting results
are addressed in Papers I and II, where we respond to the ongoing discussion.

24



Model setup in this thesis

2.2 Model setup in this thesis

The studies carried out in Papers I and II are described in each paper. Below,
we briefly describe the finite volume solver, the creation of the numerical wave
tank in Basilisk, and the various grid methods utilized in this thesis. We then
explain and define the setup of the numerical wave tank, wave generation, wave
characteristics and parameters, followed by an introduction to the parameter
range of the numerical simulations.

2.2.1 Finite volume solver

2.2.1.1 The numerical solver

Fluid dynamics research is ever-evolving, focusing on creating faster and more
precise numerical modeling algorithms. The numerical solver used in this thesis
is Basilisk, the successor of Gerris (Popinet 2003; Popinet and collaborators
2013–2023). Basilisk is an open-source program for solving partial differential
equations on adaptive Cartesian meshes. Accordingly, Basilisk is a second-order
finite-volume solver where we can solve the two-phase incompressible Navier-
Stokes equations (Popinet 2009). The field equations are solved by means of a
multilevel Poisson solver, a second-order upwind scheme (Bell-Colella-Glaz Bell,
Colella, and Glaz 1989) integrates the momentum equation, a geometric volume-
of-fluid (VOF) method is used to describe the variable-density two-phase flow
where the interfaces are immiscible, and the viscous terms are treated implicitly.
The spatial discretization of the domain utilizes a quadtree-grid discretization
scheme. The crucial part of the calculations is to resolve the wave-driven viscous
boundary layer effect at the bottom of the fluid domain. We refer the reader
to Paper II for a description of the time integration and spatial discretization
used in this thesis. Some complementary descriptions of the discretization of the
wave tank, the different grid structures, and the resolutions used in this thesis
will be briefly described below. The solver has been widely documented in, e.g.,
López-Herrera, Popinet, and Castrejón-Pita 2019; Popinet 2003; Popinet 2009;
Popinet 2011; Popinet 2015; van Hooft et al. 2018. See also references in Paper
I.

The Basilisk framework includes OpenMP/MPI parallelism capability. The
simulations conducted in this thesis were run in parallel (except for parts of
the convergence study in Paper II) using shared memory (OpenMP). The
computations were conducted on the Norwegian Research and Education Cloud
(NREC) (http://nrec.no).

2.2.1.2 Spatial discretization - creating the numerical wave tank

Basilisk defines a spatial, quadratic domain of size L×L (Figure 2.1a) by default.
The numerical wave tank is defined as a part of this domain, with the horizontal
length L and a vertical height H (< L) as seen in Figure 2.1b. Hence, the region
above L = H is masked out (marked by slanted lines). At L = H we implement
a rigid lid (see Section 2.2.2).
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(a) (b) (c)

Figure 2.1: Schematic of (a) the default quadratic domain generated in Basilisk,
(b) the domain where the shaded area visualizes the area masked out, and the
non-shaded area becomes the numerical wave tank, (c) the numerical wave tank
(further visualized in Figure 2.3).

(a)

(b) (c)

Figure 2.2: Example of a quadtree discretization and structure: (a) visualization
of a non-uniform grid with high resolution in the bottom transitioning over to a
coarser resolution, (b) a logical tree representation, with the grid cells’ respective
spatial structure with varying refinement levels in (c).
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2.2.1.3 Grid

In Basilisk, three different mesh/grid methods are available. These are Uniform
Grid, Non-Uniform Grid, and Adaptive Grid, where each method will give rise
to different grid structures. For uniform grids, the grid spacing in the whole
domain is uniform, meaning that the grid level N is constant throughout. For
a non-uniform grid, the grid spacing can vary throughout the domain. Hence,
there can be regions of higher or lower grid refinement. An example is shown
in Figure 2.2a where smaller squares indicate a finer grid. The adaptive grid
aims to efficiently allocate computational resources by dynamically refining and
coarsening the computation grid in space and time.

Basilisk uses a tree-based grid, i.e., a quadtree (in two dimensions), to
maintain a Cartesian grid structure while facilitating local (adaptive) refinement
and coarsening. The quadtree configuration establishes a hierarchy between cells
at integer levels of refinement. Illustrations are displayed in Figure 2.2, where
2.2b shows a quadtree representation where the respective spatial structure of
the grid cells with varying levels of refinement is seen in 2.2c.

The grid is composed of finite-volume cells, where each cell is identified with
a grid-level N that is related to the size of the cell. Accordingly, the size of the
cell, at a given level, is ∆N = L/2N . The grid resolution in Papers I and II
are discussed relative to the boundary layer thickness (defined in Section 2.2.5
below), i.e., ∆N/δ. Near the bottom of the numerical wave tank, parts of
the computational domain may have a finer discretization (higher N) than the
rest, with a transition between the finest grid and a coarser grid (quadtree
configuration) as visualized in Figure 2.2a showing part of the domain with three
different resolutions. The combined grid in this thesis is presented asN = N1−N2
where N2 > N1. The highest/finest resolution (N2) developed near the bottom
is enforced up to a vertical height 0.015H in runs with ν = 10−6, 10−6.5 and
10−7 m2 s−1, and up to 0.02H having ν = 10−5.5 m2 s−1. Thus, N = 12− 14
when having ν = 10−5.5 and ν = 10−6 m2 s−1, N = 12 − 15 when having
ν = 10−6.5 m2 s−1, and N = 11− 16 when having ν = 10−7 m2 s−1. See further
Section 2.2.6 for the parameter range used in this thesis.

In Papers I and II, the non-uniform grid is applied, as visualized in Figure 2.2a,
where a finer discretization is applied in the bottom boundary layer. However,
in Paper II, the uniform and adaptive grid structures are tested out in the
convergence study, where the uniform grid and the adaptive grid are referred
to as "refine" and "adapt", respectively. In the study, it was not a priori clear if
using the adaptive grid algorithm would have improved the representation of
the flow field, even though the adaptive grid is an essential algorithm since the
computational resources can be focused on the regions that require them the
most (lowering the computational costs) (van Hooft et al. 2018).

2.2.2 Numerical wave tank

The numerical wave tank is filled with a stratified fluid. A pycnocline of thickness
h2 and density ρ(z) that varies as a linear function within the pycnocline, is
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Figure 2.3: Sketch of the numerical wave tank. Image from Ellevold and Grue
2023

sandwiched between an upper layer of thickness h1 and density ρ1 and a lower
layer of thickness h3 with density ρ3. The density is continuous throughout the
vertical. A schematic of the wave tank is visualized in Figure 2.3.

The two-dimensional wave tank has length L and depth H, where the
physical length of 6.4 m and depth of 0.38 m provide a non-dimensional length
of L/H = 16.84. The total water depth is provided as H = h1 + h2 + h3. The
physical depth provides the dimensional length scale, characteristic velocity

√
gH,

and the ratio
√
H/g the characteristic time, where g denotes the acceleration

due to gravity.
The horizontal x−axis is along the bottom of the wave tank, where the

horizontal position of the gate defines x = 0. The vertical coordinate is z = 0
at the bottom, and at z=H, a rigid lid is placed. Free-slip condition is used at
the upper boundary, vertical end walls, and gate for wave generation. A no-slip
condition is applied at the lower horizontal boundary.

2.2.3 Wave generation

A gate is located ∆x0 = 0.6 m from the left tank wall, where a volume V
(= x0 × (d0 − h1)) of density ρ1 is added behind the gate. Upon release of the
added volume, the fluid motion is locally rather violent. However, the initial
disturbance develops into a leading nonlinear solitary wave of mode 1 after a
short time. The amplitude a of the wave is defined as the maximum excursion
of the interface separating the pycnocline and the lower layer. Variations of
the depth d0 provide waves with different amplitudes. In physical experiments,
the gate is lifted vertically out of the wave tank as quickly as possible. In our
numerical simulations, the gate is imposed before time zero, and we assume it is
instantaneously removed after time zero.
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2.2.4 Wave characteristics

The linear long-wave speed for the two-layer approximation (introduced in
Section 1.2.1) is used as reference speed. Hence, c0 = (g′d(H − d)/H)1/2, where
g′ = g(ρ3 − ρ1)/ρ3 and ∆ρ/ρ3 � 1. This definition is as well utilized in the
calculations by Aghsaee, Boegman, Diamessis, et al. 2012; Carr, Davies, and
Shivaram 2008; Diamessis and Redekopp 2006. The fully nonlinear speed c of
the wave is used to connect the time and wave propagation, both in experiments
and simulations.

The wave frequency is estimated by ω0 = c0/Lw, where the wavelength of
the internal solitary wave is defined by

Lw = (1/a)
∫ ∞
−∞

η(x)dx. (2.1)

Here, η is the vertical excursion of the isoline separating the pycnocline and the
lower layer.

2.2.5 Boundary layer thickness

The Stokes boundary layer thickness δ at the bottom beneath the wave phase
is characterized by the viscosity of the water ν and the wave frequency ω0,
providing

δ = (2ν/ω0)1/2. (2.2)
Evidently, as the wave Reynolds number increases, the thickness of the boundary
layer decreases.

The Stokes boundary layer thickness provides a length scale. A boundary
layer thickness-based Reynolds number can then be defined as

Reδ = δU∞
ν

, (2.3)

where the free-stream velocity U∞ underneath the trough, above the bottom, is
used as the velocity scale.

2.2.6 Parameter range

The numerical simulations are conducted with non-dimensional amplitude in
the range a/H ∼ 0.19 − 0.33 and wave Reynolds number Rew = c0H/ν ∼
1.9 × 104 − 6.5 × 105. A small side note: in Paper I, the Reynolds number is
referred to as the stratification Reynolds number, whereas in Paper II, it is
referred to as the wave Reynolds number. The variation of the Rew is obtained
by varying the kinematic viscosity by ν = 10−n, with 5.5 < n < 7. The main
simulation parameters are summarized in Tables 2.1 to 2.4, and whether the
simulations are experiencing instability or not. The simulations with n = 6
are provided in Tables 2.1 and 2.3 and with n = 5.5, 6.5 and 7 are provided
Tables 2.2 and 2.4. In addition, the simulations provided in Table 1 in Paper
I are listed in the Tables here with the same numbers in parentheses, and the
simulations provided in Table 1 in Paper II are marked with (∗∗).
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Date h3/h2/h1 a Lw xsep/Lw θsep×10−4 δ×10−3 Rew Inst.
(cm) (cm) (m) (m) (m)

050207 (1a) 30.2/2.7/5.2 10.17 0.977 -0.264 3.831 3.51 60579 Y
140207 (1b) 30.8/2.5/4.7 10.02 0.884 -0.268 3.667 3.40 58140 Y
(1c) 30.8/2.5/4.7 9.41 0.817 -0.284 3.656 3.27 58140 Y
(1d) 30.8/2.5/4.7 9.14 0.823 -0.277 3.649 3.28 58140 Y
(1e) 30.8/2.5/4.7 8.63 0.801 -0.276 3.655 3.24 58140 N
080207 29.3/5.2/3.5 12.51 1.459 -0.235 4.334 4.34 58900 Y
(2∗) (∗∗) 29.3/5.2/3.5 11.36 1.043 -0.261 3.970 3.68 58900 Y
(2c) 29.3/5.2/3.5 8.94 0.791 -0.273 3.633 3.19 58900 Y
(2d) 29.3/5.2/3.5 8.47 0.770 -0.286 3.670 3.15 58900 N
060307 (2a) 29.0/5.2/3.8 9.41 0.881 -0.256 3.694 3.30 61560 Y
090207 (2b) 29.2/5.3/3.7 9.24 0.838 -0.275 3.726 3.27 59974 Y

29.2/5.3/3.7 8.47 0.801 -0.282 3.736 3.19 59974 N
29.2/5.3/3.7 7.99 0.774 -0.291 3.766 3.14 59974 N

210207 27.6/5.3/5.0 10.02 1.189 -0.222 4.010 3.75 64051 Y
(3a) 27.6/5.3/5.0 8.59 0.988 -0.241 3.897 3.42 64051 Y
230207 (3b) 28.0/4.7/5.5 8.29 0.950 -0.266 3.945 3.33 65322 Y
(3c) 28.0/4.7/5.5 7.81 0.917 -0.273 3.960 3.27 65322 N

28.0/4.7/5.5 7.29 0.890 -0.279 3.972 3.23 65322 N

Table 2.1: Numerical simulation number and date in Carr, Davies, and Shivaram
2008 (their Table 1), stratification, and amplitude. Numerical values of Lw,
xsep/Lw, θsep, δ, and Rew defined in the text. Instability (Inst.). The simulations
are conducted with ν = 10−6 m2 s−1 and resolution N = 12 − 14 (see
Section 2.2.1.3).

2.3 Wave-induced instability

2.3.1 Wave-induced velocity field

Figure 2.4 presents an internal solitary wave of depression traveling from left
to right with a propagation speed c. The internal wave visualized is labeled in
Table 2.1 as (2c). The stratification is visualized in Figure 2.4a. Figure 2.4b
shows the horizontal velocity field, whereas the vertical velocity w is presented in
Figure 2.4c. The horizontal velocity u above the pycnocline moves in the same
direction as the wave (u > 0). The induced horizontal velocity field beneath
the trough, outside the bottom boundary layer, moves in the opposite direction
(u < 0). The velocity field varies from a maximum underneath the wave trough,
decreasing to zero horizontal velocity behind the wave.

In the deceleration phase behind the trough, the pressure gradient is adverse
(−px > 0), and the horizontal acceleration is positive (Du/Dt > 0). Due to a
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Date h3/h2/h1 a Lw xsep/Lw θsep×10−4 δ×10−3 Rew Inst.
(cm) (cm) (m) (m) (m)

140207 30.8/2.5/4.7 11.42 1.053 -0.265 6.766 6.60 18385 Y
30.8/2.5/4.7 10.94 0.968 -0.262 6.577 6.33 18385 N

080207 29.3/5.2/3.5 11.27 1.048 -0.260 6.295 6.54 18626 Y
29.3/5.2/3.5 10.88 0.968 -0.255 6.172 6.28 18626 N

230207 28.0/4.7/5.5 10.95 1.469 -0.209 7.424 7.37 20657 Y
28.0/4.7/5.5 10.80 1.388 -0.217 7.330 7.16 20657 N
28.0/4.7/5.5 10.64 1.330 -0.223 7.267 7.01 20657 N
28.0/4.7/5.5 10.17 1.220 -0.225 7.046 6.72 20657 N

140207 30.8/2.5/4.7 9.15 0.824 -0.259 1.985 1.85 183855 Y
30.8/2.5/4.7 8.63 0.798 -0.274 1.984 1.82 183855 N
30.8/2.5/4.7 8.14 0.760 -0.294 2.039 1.77 183855 N

080207 29.3/5.2/3.5 8.46 0.760 -0.262 2.002 1.76 186258 Y
29.3/5.2/3.5 8.11 0.784 -0.255 2.024 1.79 186258 N

230207 28.0/4.7/5.5 8.00 0.944 -0.240 2.114 1.87 206566 Y
28.0/4.7/5.5 7.04 0.876 -0.257 2.135 1.80 206566 N

140207 30.8/2.5/4.7 8.73 0.783 -0.282 1.150 1.01 581400 Y
30.8/2.5/4.7 7.22 0.733 -0.305 1.173 0.98 581400 N
30.8/2.5/4.7 6.28 0.711 -0.315 1.194 0.94 581400 N

080207 (∗∗) 29.3/5.2/3.5 11.29 1.147 -0.236 1.211 1.22 589000 Y
29.3/5.2/3.5 7.15 0.711 -0.300 1.171 0.96 589000 Y
29.3/5.2/3.5 6.27 0.686 -0.321 1.201 0.94 589000 N
29.3/5.2/3.5 5.00 0.653 -0.347 1.257 0.92 589000 N

230207 28.0/4.7/5.5 5.34 0.816 -0.296 1.274 0.98 653220 Y
28.0/4.7/5.5 4.09 0.799 -0.326 1.356 0.97 653220 N

Table 2.2: Numerical simulation number and date in Carr, Davies, and Shivaram
2008 (their Table 1), stratification, and amplitude. Numerical values of Lw,
xsep/Lw, θsep, δ, and Rew defined in the text. Instability (Inst.). The first eight
rows are conducted with ν = 10−5.5 m2 s−1 and resolution N = 12 − 14 (see
Section 2.2.1.3). The next seven rows are conducted with ν = 10−6.5 m2 s−1

and resolution N = 12− 15. The last nine rows are conducted with ν = 10−7

m2 s−1 and resolution N = 11− 16.
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2. Internal solitary waves of depression

no-slip boundary at the bottom, the wave-induced adverse pressure gradient
is not precisely balanced in the bottom boundary layer and velocity reversal
in the viscous bottom boundary layer where the horizontal velocity is positive
(ubottom > 0 as shown in the inset of Figure 2.4b) occurs (Aghsaee, Boegman,
Diamessis, et al. 2012; Carr, Davies, and Shivaram 2008). Thus, the adverse
pressure gradient established in the deceleration phase after the passing wave
results in flow reversal and gives rise to an inflection point in the velocity profile.
This is shown in Figure 2.5, where the Figure displays the velocity profiles in the
bottom boundary layer at different wave phase positions ξ = (x−xtrough)/H for
one case that starts to show signs of being unstable (Figure 2.5a, corresponding
to Figure 2.4, and see Figure 4a in Paper I) and two unstable cases (Figures 2.5b
and 2.5c). The flow reversal occurs close to the bottom and decreases in strength
when Rew increases. The colors in the Figure are used solely for visualization
purposes.

In the laboratory experiments by Carr and Davies 2006, they observed that
an unsteady boundary jet-like flow was always generated at a fixed reference
location shortly after the internal solitary wave had passed. This indicated
that the generation of a boundary jet is associated with the induced adverse
pressure gradient and was found to always occur having a laminar boundary
layer under internal solitary waves of depression. The wave-induced boundary
layer separation in the adverse pressure gradient region aft of the wave was
shown theoretically by Diamessis and Redekopp 2006 (note that their work is
based on weakly nonlinear theory). In all the experiments by Carr, Davies, and
Shivaram 2008, a reverse flow along the bottom boundary aft of the wave in the
adverse pressure gradient region was also observed.

2.3.2 Separation bubbles

The separated flow (shear layer) may curve back (reattachment point) to the
bottom further downstream to form a shallow reverse flow region. This region
is known as the separation bubble (Gaster 1967; Pauley, Moin, and Reynolds
1990). Hence, a separation bubble evolves in the pressure-driven bottom layer,
commencing from the separation point (∂u/∂z = 0) beneath the wave trough
and is an instability attached to the moving wave (Chomaz 2005). Aghsaee,
Boegman, Diamessis, et al. 2012 found that the separation point is located a
certain distance behind the wave trough, specifically, between 0.24Lw and 0.4Lw
in their simulations for Rew ∼ 1.2× 104 − 4.93× 105 for the flat bottom case.
In our numerical results for Rew ∼ 1.9 × 104 − 6.5 × 105, we found that the
separation point is located between 0.209Lw and 0.347Lw (Paper I), matching
the range presented in Aghsaee, Boegman, Diamessis, et al. 2012.

Carr and Davies 2006; Carr, Davies, and Shivaram 2008 measured the
boundary layer separation in their laboratory experiments. However, neither
managed to visualize the separation bubble(s) directly.

Aghsaee, Boegman, Diamessis, et al. 2012 described the separation bubble
as two contiguous parallel vortex sheets with opposite signs. The reverse flow
represents the lower sheet, while the flow above defines the upper sheet (see their
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(a)

(b)

(c)

Figure 2.4: The figure displays a section of an internal solitary wave propagating
from left to right in the numerical wave tank. Wave amplitude of a/H = 0.235.
From Table 2.1, run (2c) 080207. (a) Visualizes the stratification in terms of
the density of the water. The wave-induced velocity field is visualized, showing
the horizontal velocity field (b) and the vertical velocity field (c). The inset
in (a) visualizes the flow reversal close to the bottom as a quiver plot of the
velocity field (black arrows) (note: only a certain number of velocity arrows are
displayed). The yellow arrows are purely for better visualization of the direction
of the flow. The red line indicates the left horizontal position of Figure 2.4 (this
is the same for all three subfigures).
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2. Internal solitary waves of depression

(a)

(b)

(c)

Figure 2.5: Velocity profiles in the bottom boundary layer at different wave
phase positions, ξ = (x− xtrough)/H. a) a/H = 0.235, right above threshold for
instability, run (2c), Rew = 5.9 · 104. b) same as a) but a/H ∼ 0.30, run (2∗). c)
same as b) but Rew = 5.9 · 105.
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Wave-induced instability

Figure 2). The separation bubble grows gradually having a stable boundary
layer until the vortex sheets achieve a steady state or become unstable, leading
to vortex shedding. The description provided by Diamessis and Redekopp 2006
is quite similar, thus, they described that the separation bubble consisted, of
what they called a "tongue", where a thin region of positive vorticity was seen
close to the bottom with an overlying region of negative vorticity.

Paper I presents two separation bubbles of anticlockwise vorticity formed in
the boundary layer behind the wave trough. While in previous numerical
computations (Aghsaee, Boegman, Diamessis, et al. 2012; Diamessis and
Redekopp 2006; Sakai, Diamessis, and Jacobs 2020), only one separation bubble
has been documented. In the present results, the first bubble evolves from the
separation point and is located in the wave phase. The second bubble develops
further downstream, outside the wave phase. The bubbles are seen to separate
for the larger Reynolds number, e.g., Rew = 5.9× 105, and for smaller Reynolds
number, e.g., Rew = 5.9×104, they partially overlap. See Figure 4 in Paper I for
a visual representation of the cases. For Rew = 2× 104, they coalesce (Diamessis
and Redekopp 2006). The computed estimates regarding the separation bubbles
presented in Paper I are calculated at the onset of instability.

2.3.3 Instability growth and vortex formation

The instability starts to emerge in the back of the bubble located in the wave
phase and then moves towards the front (Aghsaee, Boegman, Diamessis, et al.
2012; Diamessis and Redekopp 2006; Ellevold and Grue 2023). Within the
separation bubble, a characteristic wavelength λ0 of the dominant unstable
mode manifests. The growth rate, visualized by the red lines in Figure 5 in
Paper I displaying the vertical velocity non-dimensionalized by c0, increases
approximately exponentially, where the growth distance is seen to be independent
of the scale (see Table 5 in Paper I). The stronger vertical velocities are
mainly confined to the wave phase when the scale increases. A series of vortex
rolls then forms (see Figures 2.6a and 2.7a) with a wavelength similar to the
initial wavelength before the growth slows down and the instability saturates
(Figures 2.6b, 2.6c, 2.7b and 2.7c). Figures 2.6a and 2.7a are Figure 6a and
6b in Paper I, respectively, however, displayed here in a different color scheme.
Diamessis and Redekopp 2006 discusses that the induced instability is global,
which imposes its own manifested length scale on the separation bubble by
creating distinct, coherent vortices within the bubble and weaker fine-scale waves
emitting away behind the bubble.

The instability in the two cases shown in Figures 2.6a and 2.7a evolves
similarly, where the dimensionless wavelength λ0/δ and the intermediate
wavelength immediately afterward, λv,0/δ, are of the same order (before the
vortices are emitted). Nevertheless, some noticeable differences stand out when
comparing the higher Reynolds number with the lower Reynolds number: i) the
boundary layer thickness is much thinner, as expected, and ii) the shed vortices
are smaller and weaker and emitted at higher frequencies into the water column
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2. Internal solitary waves of depression

(a)

(b)

(c)

Figure 2.6: Vorticity ω/(c0/H) in color scale (contour lines (black) of ω/(c0/H)).
Rew = 5.9× 104, run (2∗) 080207, illustrating the vortex roll-up (a)-(c).
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(a)

(b)

(c)

Figure 2.7: Vorticity ω/(c0/H) in color scale (contour lines (black) of ω/(c0/H)).
Rew = 5.9× 105, 080207 (∗∗) Table 2.2, illustrating the vortex roll-up (a)-(c).
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2. Internal solitary waves of depression

for the higher Rew. However, the vertical ascended height of the vortices out of
the boundary layer is of the same magnitude.

In Papers I and II, we perform convergence tests, e.g., on the resolution of
the bottom boundary layer, vortex formation, and other wave parameters. In
Paper I, we also investigates the transition from stable to unstable separation
bubbles (the stability border, presented below in Section 2.3.4). In Paper II, a
convergence study was conducted on the vortices formed in Figures 2.6a to 2.6c.
Accordingly, the study replicated the experiment labeled 080207 in Table 1 in
Carr, Davies, and Shivaram 2008 (Run 2∗ in Table 2.1 here and in Paper I,
whereas it is denoted Run 1 in Paper II). The numerical calculations agree
very well with the laboratory measurements, and convergence of the vortex
formation is documented. The results are presented in Figure 2.8. See Paper II
for more information regarding the Figures and label descriptions. The results
presented in both Papers obtain a very good agreement with the laboratory
experiments by Carr, Davies, and Shivaram 2008, where previous long-standing
computational attempts have been unsuccessful, as communicated in Aghsaee,
Boegman, Diamessis, et al. 2012 and in the conclusion by Boegman and Stastna
2019. They argued that the experiments by Carr, Davies, and Shivaram 2008
did not represent the transition to instability, implying conflicting results.

2.3.4 Stability border

During the past decades, one essential question has been regarding the stability
border for when the trailing jet in the bottom boundary layer, i.e., the separation
bubble, experiences instability. Over the years, several discrepancies have
occurred between numerical simulations (e.g., Aghsaee, Boegman, Diamessis,
et al. 2012; Diamessis and Redekopp 2006) and laboratory experiments (e.g.,
Carr and Davies 2006; Carr, Davies, and Shivaram 2008; Zahedi, Aghsaee, and
Boegman 2021). The parameters presented in the different stability borders
below are computed for the numerical experiments presented in this thesis and
provided in Tables 2.3 and 2.4.

The stability border has been discussed in terms of different parameters,
creating various criteriums. We will present three stability border thresholds
below, where Paper I addresses the first two cases, whereas the third one is
mentioned briefly here.

The first threshold is based on the wave amplitude and the wave Reynolds
number (Carr, Davies, and Shivaram 2008; Diamessis and Redekopp 2006) and
is presented here as Stability border i). The second one regards the momentum
thickness Reynolds number and the non-dimensional pressure gradient taken at
the separation point (Aghsaee, Boegman, Diamessis, et al. 2012) and is presented
as Stability border ii). In Stability border iii), the parameters in Stability
border ii) are parameterized to only be functions of wave parameters (Aghsaee,
Boegman, Diamessis, et al. 2012).
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Figure 2.8: Vortex separation distance (dist.) vs. the resolution level N . The
result from the simulation with N = 12, N+ = 14 (N = 12 − 14) is marked
by N = 14+. (a) Distance over the local area. (b) Distance over the range
−13.3 < (x − xtrough)/H < −4.3. The black lines illustrate the experimental
average local dist. and the grey-shaded area corresponds to the measured
individual separation distance in the laboratory experiment in Carr, Davies, and
Shivaram 2008 (their Figure 13, Figure 2c in Paper II). Simulations without
parallelization: refine ◦, refine∗ ∗, adapt ♦ and adapt∗∗ ◦. Simulations with
parallelization: refine 4 and adapt �. Figure (a) is Figure 3 in Paper II. See
further Paper II for more descriptions.
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2. Internal solitary waves of depression

2.3.4.1 Stability border i)

Carr, Davies, and Shivaram 2008 investigated the transition to instability for wave
Reynolds number in the range Rew = 5.8×104−6.6×104, with non-dimensional
wave amplitudes of a/H ∼ 0.216− 0.296. The laboratory experiments provide a
qualitative comparison to the theoretical and numerical work by Diamessis and
Redekopp 2006. Diamessis and Redekopp 2006 conducted numerical simulations
with wave Rynolds number Rew = 1× 104 − 1× 105 with wave amplitudes of
a/H ∼ 0.30 − 0.55. However, when investigating the stability border, in the
sense of wave amplitude and wave Reynolds number, a quantitative comparison
revealed significant differences between the laboratory experiments and the
simulations.

The internal solitary waves generated in the simulations by Diamessis and
Redekopp 2006 were based on weakly nonlinear KdV theory. In contrast, the
internal waves generated in the laboratory grow to be nonlinear, partly explaining
the disparity (see, e.g., Section 1.2.2). In addition, the parameters in both works
were also outside the range of validity of the KdV theory. Nonlinear internal
solitary waves with large amplitudes also possess different fronts and flatter
troughs than waves defined by KdV theory with the same amplitude. An example
can be seen in Figure 1.3a. This affects the onset of instability in the bottom
boundary layer. In any case, the study by Diamessis and Redekopp 2006 was
expected to capture the qualitative dynamics under consideration rather than
providing a quantitative description. They also stated that if they had higher-
order theories, they would expect instability at lower amplitudes than what they
predicted. The proposed threshold by Diamessis and Redekopp 2006 is given
as acr = 0.5(Rew/104)−0.12, where acr is the critical amplitude for instability.
Carr, Davies, and Shivaram 2008 combined their results with Diamessis and
Redekopp 2006, presenting a power law by acr = 0.5(Rew/104)−0.12 − 0.15.

The numerical simulations by Aghsaee, Boegman, Diamessis, et al. 2012
for wave Reynolds number in the range Rew = 1.2 × 104 − 4.9 × 105 provide
the same qualitative descriptions. However, they were not able to reproduce
the threshold of instability as measured in Carr, Davies, and Shivaram 2008
nor the threshold proposed by Diamessis and Redekopp 2006. See Figure 9 in
Aghsaee, Boegman, Diamessis, et al. 2012 for a comparison between those three
works. Aghsaee, Boegman, Diamessis, et al. 2012 proposed several reasons for
the discrepancy between their numerical results and the experimental results by
Carr, Davies, and Shivaram 2008. Boegman and Stastna 2019 later reiterated
those same arguments. Paper I considers the main arguments proposed by
Aghsaee, Boegman, Diamessis, et al. 2012 and responds to the possible reasons
questioned.

The calculations presented in Paper I, regarding the threshold based on
the wave amplitude versus wave Reynolds number, match the experiments
by Carr, Davies, and Shivaram 2008 with good agreement. In addition, the
computations in Paper I are conducted for a wider wave Reynolds number than
in the laboratory experiments. The instability is seen to depend on the depth of
the pycnocline and decays faster with increasing Rew for a deeper than for a
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(a)

(b)

Figure 2.9: Threshold of instability, displayed in log scale. The individual
stability borders (Paper I) in the Rew vs. a/H plane (a) and the Reθsep

vs.
Pxsep plane (b) for the different stratifications (strat.), including the threshold
proposed by Aghsaee, Boegman, Diamessis, et al. 2012 in (b). The red lines in
(a) present the adverse pressure gradient as a function of the wave Reynolds
number − parameters defined in the text. Figures from Paper I.

shallower pycnocline. For further calculations of the stability border, see Paper
I. The results are presented in Figure 2.9a, where Stratification (Strat.) 1, 2,
and 3 are referred to the three different stratifications the stability border is
computed from. Hence, Strat. 1 is the stratification provided in run (1c), Strat.
2 corresponds to the. stratification in run (2∗), and Strat. 3 is the stratification
in run (3b) in, e.g., Table 2.1.

2.3.4.2 Stability border ii)

Aghsaee, Boegman, Diamessis, et al. 2012 discusses the instability threshold
by drawing an analogy with the procedures studied in aerodynamic flows (e.g.,
Gaster 1967; Pauley, Moin, and Reynolds 1990). They point out that two
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2. Internal solitary waves of depression

main parameters will contribute to the stability characteristic of the separation
bubble. The first parameter addresses the strength of the flow separation. This
is measured by the pressure gradient (∂P/∂x), non-dimensionalized by (1/ρ0g

′),
providing

Pxsep
= (1/ρog′)(∂P/∂x)xsep

. (2.4)
Here, (∂P/dx)xsep

= −ρ0(U∞ + c)(∂U∞/∂x)xsep
and ρ0 is a reference density.

The second parameter is the momentum thickness Reynolds number

Reθsep
= U∞θsep

ν
. (2.5)

The momentum thickness θsep of the boundary layer is assessed by

θsep =
∫ Z∞

0

u

U∞
(1− u

U∞
)dz, (2.6)

where the vertical coordinate Z∞ is outside of the boundary layer at the
separation point. All the quantities evaluated at the separation point at the
bottom are denoted by the subscripts xsep or sep. In our study, the separation
point xsep refers to the separation point of the bubble in the wave phase.

Aghsaee, Boegman, Diamessis, et al. 2012 presented a unified criteria for
vortex shedding, in an arbitrary two-layer continuous stratification, based on
their numerical results. Hence, they proposed the function Pxsep

= (Reθsep
)−0.51

as the threshold for instability.
In Paper I, we compute the variables xsep, u/U∞, θsep, Reθsep and Pxsep . See

Tables 2.3 and 2.4. Throughout the calculations of these parameters, we found
that the separation point was very sensitive to the resolution in the bottom
boundary layer. Consequently, the separation evolved further downstream when
running with poor resolution. All the parameters are calculated from this location,
providing incorrect results if the resolution is too low. This gave rise to the
convergence study visualized through the momentum thickness θsep (discussed in
Paper I). Consequently, the proposed stability threshold by Aghsaee, Boegman,
Diamessis, et al. 2012 is sensitive to the numerical resolution in the bottom
boundary layer (and thereby requires high computation resources).

From the numerical simulations where the threshold lines in Figure 2.9a are
computed, the corresponding pressure versus momentum thickness Reynolds
number are visualized in Figure 2.9b with the threshold proposed by Aghsaee,
Boegman, Diamessis, et al. 2012. In addition, the non-dimensional pressure, as a
function of the wave Reynolds number instead (see Paper I for the corresponding
computations) is visualized in Figure 2.9a.

As discussed under stability border i), the threshold is found to be a function
of the relative depth of the pycnocline. Our results for stability border ii) also
illustrate this. Note also that the momentum thickness Reynolds number is a
function with parameters (U∞ and ω0) that depend upon the relative depth of
the pycnocline. A discussion of this is provided in Paper I.

The parameters Pxsep
and Reθsep

are variables that are challenging to measure
in the field. Consequently, Aghsaee, Boegman, Diamessis, et al. 2012 proposed a
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more applicable criterion to predict instability from field observations. This is
introduced here as stability border iii).

2.3.4.3 Stability border iii)

Aghsaee, Boegman, Diamessis, et al. 2012 generalized their threshold criterion
to be a threshold that is more readily computed by measurement obtained from
field observation. The parameterization of the momentum thickness Reynolds
number is conducted by parameterizing the momentum thickness by balancing
the friction with inertia in a steady flow, providing

Reθsep
≈ ReISW = |U2|

√
LW

ν(|U2|+ c) , (2.7)

where U2 = ca/(h2 − a) is the wave-induced velocity beneath the trough. The
non-dimensional pressure gradient is correlated by

Pxsep
≈ PISW = (|U2|+ c) U2

Lwg′
, (2.8)

where the relation U2/Lw ∼ −(dU∞/dx)xsep is implemented (Aghsaee, Boegman,
Diamessis, et al. 2012). Hence, the parameters are now only functions of wave
variables.

From their numerical results, they found a best-fit power law of

PISW = 50
Re1.1

ISW

, (2.9)

to be the new vortex shedding criteria.
The proposed vortex shedding criterion is only valid up to ReISW ∼ 1200, for

where the laminar boundary layer is discussed to transition over to a turbulent
regime and the criteria breaks down (Aghsaee, Boegman, Diamessis, et al. 2012).
Consequently, in-situ measurements are needed to investigate further stability in
the regime above ReISW > 1200.

Zahedi, Aghsaee, and Boegman 2021 conducted laboratory experiments of
internal solitary waves propagating over a flat bottom, studying the dissipation
of turbulent kinetic energy in the bottom boundary layer. In their research,
their calculations adopt the parameterization of ReISW and PISW . During
their study, they compared their results to the laboratory experiments by Carr,
Davies, and Shivaram 2008, the stability criterion proposed by Diamessis and
Redekopp 2006 in the Rew vs. a/H space, and the numerical results from
Aghsaee, Boegman, Diamessis, et al. 2012 in addition to the proposed criterion
by Aghsaee, Boegman, Diamessis, et al. 2012 in the ReISW vs. PISW space.
The results are visualized in Figure 5 in Zahedi, Aghsaee, and Boegman 2021.
The comparison between the laboratory experiments of Zahedi, Aghsaee, and
Boegman 2021 and Carr, Davies, and Shivaram 2008 indicates agreement in the
ReISW vs. PISW space. A shift from stable to unstable waves was seen to occur
at ReISW ∼ 200. Their results contradict the stability criterion proposed by
Aghsaee, Boegman, Diamessis, et al. 2012.
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Date h3/h2/h1 a Reθsep −Pxsep ReISW PISW Rew Inst.
(cm) (cm)

050207 (1a) 30.2/2.7/5.2 10.17 29.10 0.109 177.7 0.102 60579 Y
140207 (1b) 30.8/2.5/4.7 10.02 25.9 0.109 164.6 0.103 58140 Y
(1c) 30.8/2.5/4.7 9.41 23.8 0.102 150.8 0.104 58140 Y
(1d) 30.8/2.5/4.7 9.14 21.7 0.094 143.7 0.095 58140 Y
(1e) 30.8/2.5/4.7 8.63 19.8 0.087 146.5 0.090 58140 N
080207 29.3/5.2/3.5 12.51 53.3 0.113 286.7 0.091 58900 Y
(2∗) (**) 29.3/5.2/3.5 11.36 39.2 0.129 214.9 0.110 58900 Y
(2c) 29.3/5.2/3.5 8.94 22.9 0.098 144.3 0.100 58900 Y
(2d) 29.3/5.2/3.5 8.47 20.6 0.091 134.1 0.099 58900 N
060307 (2a) 29.0/5.2/3.8 9.41 25.7 0.104 159.4 0.096 61560 Y
090207 (2b) 29.2/5.3/3.7 9.24 24.2 0.102 152.3 0.097 59974 Y

29.2/5.3/3.7 8.47 20.8 0.089 135.6 0.089 59974 N
29.2/5.3/3.7 7.99 18.7 0.080 124.6 0.083 59974 N
27.6/5.3/5.0 10.02 35.3 0.107 206.5 0.081 64051 Y

210207 (3a) 27.6/5.3/5.0 8.59 25.7 0.090 155.7 0.075 64051 Y
230207 (3b) 28.0/4.7/5.5 8.29 23.8 0.087 147.9 0.075 65322 Y
(3c) 28.0/4.7/5.5 7.81 21.5 0.079 135.9 0.070 65322 N

28.0/4.7/5.5 7.29 19.34 0.071 123.6 0.065 65322 N

Table 2.3: Numerical simulation number and date in Carr, Davies, and Shivaram
2008 (their Table 1), stratification, and amplitude. Numerical values of Reθsep

,
Pxsep , ReISW , PISW , and Rew defined in the text. Instability (Inst.). The
simulations are conducted with ν = 10−6 m2 s−1 and resolution N = 12 − 14
(see Section 2.2.1.3).

2.3.5 Bottom shear stress

The vortices in the bottom boundary layer give rise to strong oscillating bed
shear stress τ . In the present calculations (Paper I), the bed shear stress is
non-dimensionalized by ρc20/2. The shear stress visualized in Figure 7 in Paper
I is presented here in Figure 2.10. However, the results are visualized over a
broader range. The strong oscillations in each simulation are visually highlighted
in the inset figures. By evaluating the bottom shear stress (Figure 2.10), the
stress amplitude is seen to confine to the wave phase mainly and relaxes to
smaller values afterward (Aghsaee, Boegman, Diamessis, et al. 2012; Diamessis
and Redekopp 2006). Diamessis and Redekopp 2006 also documented this sudden
growth of shear stress and vertical velocity associated with the initial formation
of the vortices. However, in their calculations, only the shear stress shared
similar increase/decrease tendencies as our results, whereas the vertical velocity
remained significantly high. The strong shear stress occurring in the wave phase
is also measured in the field (Quaresma et al. 2007; Zulberti, N. L. Jones, and
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Date h3/h2/h1 a Reθsep
−Pxsep

ReISW PISW Rew Inst.
(cm) (cm)

140207 30.8/2.5/4.7 11.42 20.11 0.127 118.0 0.108 18385 Y
30.8/2.5/4.7 10.94 18.01 0.120 107.5 0.109 18385 N

080207 29.3/5.2/3.5 11.27 19.20 0.139 120.7 0.110 18626 Y
29.3/5.2/3.5 10.88 17.58 0.132 110.2 0.111 18626 N

230207 28.0/4.7/5.5 10.95 24.42 0.112 143.4 0.083 20657 Y
28.0/4.7/5.5 10.80 23.27 0.113 136.7 0.087 20657 N
28.0/4.7/5.5 10.64 22.35 0.114 131.4 0.079 20657 N
28.0/4.7/5.5 10.17 20.18 0.109 119.3 0.080 20657 N

140207 30.8/2.5/4.7 9.15 38.32 0.093 255.6 0.111 183855 Y
30.8/2.5/4.7 8.63 34.29 0.087 238.7 0.091 183855 N
30.8/2.5/4.7 8.14 30.97 0.078 218.6 0.087 183855 N

080207 29.3/5.2/3.5 8.46 37.16 0.088 237.3 0.095 186258 Y
29.3/5.2/3.5 8.11 33.11 0.080 223.8 0.082 186258 N

230207 28.0/4.7/5.5 8.00 39.68 0.080 251.2 0.071 206566 Y
28.0/4.7/5.5 7.04 31.95 0.065 208.8 0.062 206566 N

140207 30.8/2.5/4.7 8.73 62.71 0.087 418.5 0.107 581400 Y
30.8/2.5/4.7 7.22 46.65 0.065 337.0 0.075 581400 N
30.8/2.5/4.7 6.28 38.07 0.050 287.9 0.062 581400 N

080207 (∗∗) 29.3/5.2/3.5 11.29 118.70 0.126 713.9 0.101 589000 Y
29.3/5.2/3.5 7.15 48.93 0.063 333.4 0.075 589000 Y
29.3/5.2/3.5 6.27 40.03 0.053 283.0 0.062 589000 N
29.3/5.2/3.5 5.00 29.91 0.034 214.5 0.045 589000 N

230207 28.0/4.7/5.5 5.34 38.54 0.040 263.3 0.046 653220 Y
28.0/4.7/5.5 4.09 27.76 0.026 193.7 0.031 653220 N

Table 2.4: Numerical simulation number and date in Carr, Davies, and Shivaram
2008 (their Table 1), stratification, and amplitude. Numerical values of Reθsep

,
Pxsep

, ReISW , PISW , and Rew defined in the text. Instability (Inst.). The first
eight rows are conducted with ν = 10−5.5 m2 s−1 and resolution N = 12− 14
(see Section 2.2.1.3). The next seven rows are conducted with ν = 10−6.5 m2 s−1

and resolution N = 12− 15. The last nine rows are conducted with ν = 10−7

m2 s−1 and resolution N = 11− 16.
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2. Internal solitary waves of depression

G. N. Ivey 2020).
Diamessis and Redekopp 2006 reported an increase in the shear stress up to a

factor of 5 independent of the scale, whereas Aghsaee, Boegman, Diamessis, et al.
2012 observed an increase of 2.4 in their study. The increased shear amplitudes
seen in Figure 2.10 are 1.5 and 5 for the lowest and highest Reynolds numbers,
respectively. In addition, the strength and frequencies are seen to increase with
scale. The strong variations of bed shear stress can contribute to sediment
resuspension and transport across the bottom boundary layer (Boegman and
Stastna 2019; Quaresma et al. 2007). The two-dimensional studies by Diamessis
and Redekopp 2006 and Aghsaee, Boegman, Diamessis, et al. 2012 showed that
the induced vortices in the wave phase would increase the instantaneous bed
stress, thus providing a potential mechanism for resuspension, although neither
of them directly simulated sediment resuspension.

2.4 Particle motion

2.4.1 Sediment resuspension

Field observations (Quaresma et al. 2007; Zulberti, N. L. Jones, and G. N.
Ivey 2020) have shown evidence of resuspension of particles in the adverse
pressure gradient region where bed shear stress intensification is one of the
driving mechanisms. Zulberti, N. L. Jones, and G. N. Ivey 2020 also noticed that
the sediment-layer growth occurred when the bed stress rapidly declined (see
their Figure 3). In the laboratory experiments by Aghsaee and Boegman 2015,
the resuspension of particles was also seen to not occur during the maximum
bed stress but in the phase afterward, where vortices are created, lifting the
sediments.

When estimating sediment resuspension, calculations of the mobility Shields
parameter θ are usually computed (Boegman and Stastna 2019; Quaresma et al.
2007). The parameter is described by the ratio of the force exerted by bed
shear stress to the submerged weight of the grain, which counteracts this force
(Soulsby1997), providing

θ = τ

(ρs − ρw)gd . (2.10)

Here, d is the particle diameter and ρs and ρw are the density of the grain and
bottom water, respectively.

A threshold for when the seabed grains begin to move (Quaresma et al. 2007)
is then obtained by

θcr = 0.3
1 + 1.2D∗

+ 0.055[1− exp(−0.02D∗)]. (2.11)

Here D∗ is the dimensionless grain size given by

D∗ = [g(s− 1)
ν

]1/3d, (2.12)
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(a)

(b)

(c)

Figure 2.10: Non-dimensionalized bottom shear stress τ (blue line) vs. horizontal
position and the red line is average τ . a/H ∼ 0.30 and (a) Rew = 5.0× 104, run
(2∗), (b) Rew = 5.9× 105, 080207 (∗∗), (c) Rew = 6.5× 105. The insets provide
a more detailed view of the respective non-dimensionalized shear.

47



2. Internal solitary waves of depression

where s = ρs/ρw. Reaching this threshold has shown that the incipient sediment
motion is possible, leading to bed-load transport; however, sediment re-suspension
is not guaranteed.

From the field observations by Quaresma et al. 2007, only the strongest
internal waves were seen capable of sediment resuspension. This resuspension
contributed to a measured summer bottom nepheloid layer reaching 10 − 15
m, which corresponds to a thickness of 0.13H − 0.19H. The local measured
sediments showed a concentration of 93% sandy elements. However, the median
grain size was d ∼ 214 µm (quarts). Having d = 214 µm, ρs = 2650 kg m−3,
and ρw = 1027 kg m−3, the threshold parameter θcr was calculated to be
θcr ∼ 0.049, where at this value, Quaresma et al. 2007 documented "frequent
particle movement at all locations".

In Paper II, we utilize Lagrangian tracer particles to study how particles are
affected by the velocity field and vortices induced by internal waves. Since we
utilize Lagrangian tracer particles, we cannot compute the Shields parameter for
comparisons towards field observations. However, after the second passage of the
internal wave in our simulations, the tracer particles’ vertical position is located
up to a vertical level of approximately 0.23H. Our computer-generated findings
are consistent with the observed results by Quaresma et al. 2007. However, we
note that the processes involved in moderate-scale computations and field-scale
measurements may not be directly comparable.

2.4.2 Lagrangian tracer particles

As mentioned, we implement a cloud of Lagrangian tracer particles roughly in
the middle of the wave tank near the bottom (Paper II). In order to effectively
track the Lagrangian tracer particles, a two-stage Runge-Kutta (RK2) scheme
is enforced (Sanderse and Veldman 2019). This method involves a numerical
integration technique that computes the position and velocity of the particles at
each time step. Hence, the Lagrangian dynamic of the flow is described by the
kinematic equation dx

dt = u. By utilizing this approach, we can obtain reliable
data on the movement and behavior of the tracer particles.

The results computed in Paper II are presented in a frame of reference
following the wave and a fixed frame of reference. The Paper investigates the
tracer particles’ trajectories and displacements for four different wave Reynolds
numbers, Rew = 5.9 × 104, 5.9 × 105, and Rew = 6.5 × 104, 6.5 × 105, with
non-dimensional wave amplitude of a/H ∼ 0.3. The corresponding boundary
layer Reynolds number is in the range Reδ = 490− 2080 (see Tables in Paper
II).

The tracer particles trajectories for Rew = 6.5× 104 and 6.5× 105, labeled
Runs 3 and 4 in Paper II, are not visualized in the Paper; thus they are shown
here in Figures 2.11 and 2.12. The Figures display 12 random tracer particles
where the colors are constant according to their initial vertical location. See
Paper II for more details and explanations.

In Paper II, the terminal vertical position is discussed in terms of the 50th
and 90th percentile of the vertical position of the particles in a fixed frame
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Figure 2.11: Tracer particles trajectories for Rew = 6.5 · 104. (a) and (c)
fixed frame of reference. (b) and (d) frame of reference following the wave.
In (a)-(b) wave passage one, tc0/H = 0 − 21.0. In (c)-(d) wave passage two,
tc0/H = 0− 44.7.
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Figure 2.12: Same as figure 2.11 but Rew = 6.5 · 105.

of reference. However, the evolution of the 90th percentile of the particle’s
vertical position in a reference frame that follows the wave is computed. We
refer to this as the mixed layer thickness (MLT), where Figure 2.13 visualize
the evolution of the MLT for all four simulations. The MLT exhibits the same
trend in the beginning as seen in the trajectory Figures for the same frame of
reference, in addition to the two vertical negative displacements of the MLT (a
feature provoked by the location of the particles before time zero) due to the
wave-induced velocity field right below the wave trough.
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Figure 2.13: Following the wave, the 90th percentile (MLT) evolution in a frame
of reference. Run 1−4 corresponds to the four runs in Paper II. Run 3 corresponds
also to the simulation presented Figure 2.11, whereas run 4 corresponds to the
simulation presented Figure 2.12.
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Chapter 3

The Norwegian continental shelf

In this chapter, two different studies will be presented. The first study will
concern internal solitary waves along the Norwegian coast. Four places along
the coast have been characterized as hot spots for high internal wave activity
(Dokken et al. 2001). One of these locations is near Egga and the Hola trough
in Vesterålen (see Figures 3.1a and 3.2b). Strong coastal currents and tides flow
over the shallow banks and deep valleys there (see Figures 3.1b and 3.1c). In
addition, a cold-water coral reef is located in the Hola trough (Fosså, Kutti, et al.
2015) (see Figure 3.2). Internal waves can transport nutrients, and breaking
internal waves provide vertical mixing in the water column. Thus, internal waves
might contribute to the nutrient supply for primary production in the euphotic
zone in the Hola area and supply the cold-water coral reef with food.

The second study considers the new methodology presented in Paper III. A
new methodology is introduced to measure the two-dimensional velocity field
of water near a heaving ice floe. The system is tested in the Barents Sea and
validated in the laboratory.

This chapter is presented as follow: Section 3.1 introduces the Norwegian
continental shelf, the location of interest regarding the first study, and the
dominating currents and tides. Sections 3.2 and 3.3 present some characteristics
of the marine ecosystem and observations of internal waves at the Norwegian
continental shelf. Section 3.4 describes the field campaign conducted as part of
the Ecopulse project to observe internal wave trains. What regards the second
study (Paper III) is presented in Section 3.5.

3.1 The Norwegian continental shelf

The Norwegian continental shelf is a region extending from the coastline to the
margin of the shelf break. The shelf break is a narrow zone that separates the
continental shelf from the deeper ocean. It is characterized by a steep drop in
depth and a sharp change in the water properties, such as temperature and
salinity (L. Buhl-Mortensen et al. 2012). In northern Norway, the continental
shelf is uneven with shallow banks separated by deeper troughs that were formed
during the last glaciations. Part of northern Norway is the Lofoten-Vesterålen-
Troms area. The continental shelf in this area is relatively narrow, measuring
only a width of 10 to 90 km.

In the Lofoten-Vesterålen area (the red box displayed in Figure 3.1a is within
this area), the banks and troughs slope gently in an offshore direction with water
depths varying from 40 to 270 m. One of the troughs in this area is known
as the Hola trough and is located between the bank Vesterålgrunnen to the
north and Eggagrunnen to the south, with water depths of 150 to 270 m. See
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Figure 3.2b for a visual overview. Vesterålgrunnen has a water depth of 70 to 90
m and is sloping toward the Hola trough at angles between 4 and 10 degrees.
Eggagrunnen has a water depth of 70 to 80 m and slopes towards the Hola
trough at angles of 2 to 4 degrees (R. Bøe et al. 2009).

3.1.1 Currents

The dominating currents along the Norwegian continental shelf are the Norwegian
Atlantic Current (NwAC) and the Norwegian Coastal Current (NCC). Figure 3.1b
shows these two currents and their main circulation patterns. Red arrows display
the NwAC, and green arrows show the NCC. The circulation patterns of the
NwAC and the NCC in the Lofoten-Vesterålen area are shown in greater detail
in Figure 3.1c.

Close to the coast, the NCC flows northward and comprises the coastal water
of low salinity (< 35 ppt) and variable temperature. In addition, the NCC
consists of seasonally stratified water caused by river runoff and surface heating
(Sætre 2007) and has a variable velocity along the coast (R. Bøe et al. 2009).
The speed of the current in the northern part of Norway is typically of order
0.2− 0.5 m s−1 (Sperrevik, Christensen, and Röhrs 2015).

Parallel to the edge of the continental slope and to the NCC, the NwAC flows
northwards, consisting of relatively warmer water and higher salinity (> 35 ppt).
The NwAC propagates in areas below and along the seaside of the NCC (see
Figure 4.8 in Sætre 2007). While propagating side by side, dynamic interactions
exist in addition to transporting, e.g., salt, heat, and nutrients from the NwAC
to the NCC (Sætre 2007).

3.1.2 Tides

Gravitational forces from the moon and the sun cause tides in the ocean. On
the Norwegian coast, tides originate from the Atlantic Ocean and propagate as a
tidal wave into the Norwegian Sea and along the coast northward (Sætre 2007).
The tidal motion along the coastline can sometimes be seen as a Kelvin wave
(Weber and Isachsen 2023).

Several harmonic tidal components cause temporal variation in the sea level.
Some of these are, for instance, the semi-diurnal components M2 (principal
lunar) and S2 (principal solar) and the diurnal components K1 (lunar-solar) and
O1 (principal lunar). The components M2 and S2 have periods of 12.42 and
12 hours, respectively, whereas K1 and O1 have periods of 24 and 25.82 hours,
respectively.

Different tides around the Lofoten Island were simulated with a high-
resolution tidal model by Moe, Ommundsen, and Gjevik 2002. Specifically,
the tidal components M2, S2, and K1, in addition to the semi-diurnal component
N2, were simulated, where the dominant tide was found to be the diurnal K1
current component in the Lofoten-Vesterålen area.
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(a) (b)

(c)

Figure 3.1: An overview of Northern Europe and the maritime areas of Norway,
from the Barents Sea (up north) down to the North Sea. MNS: Mid-Norway
Shelf. The red box marks the area of interest in the Lofoten-Vesterålen region,
further displayed in Figure 3.2b. Images is created in Mareano (www.mareano.no,
publicly available). The scale in the lower left corner is 100 km. Visualization
of the main circulation pattern of the Nordic Seas (b) and a schematic of the
circulation in the Vesterålen-Lofoten area (c). The blue arrows indicate the
Arctic water, the red arrows display the Atlantic Water, and the green arrow
illustrates the coastal water. Image (b) and (c) are adapted from Sætre 2007,
with permission from Fagbokforlaget.
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3.2 Characteristics of the marine ecosystem

3.2.1 Spring bloom

On the Norwegian continental shelf, there are regions where spring blooms
are prevalent. The site for primary production of nutrients is in the well-
mixed upper layer of the water column, penetrated by sunlight (the euphotic
zone). The production of phytoplankton is controlled by light availability and
nutrients to maintain a net growth (Sverdrup 1953). Estimating the quantity
of phytoplankton biomass in water can be accomplished by measuring the
concentration of chlorophyll-a. All photosynthetic organisms that produce
oxygen use chlorophyll-a, and as a result, increased chlorophyll-a concentrations
indicate a rise in nutrient loads (Silva et al. 2021).

The spring bloom usually starts in early April/May, and by the end of the
summer the upper part of the water column is partly or fully depleted of nutrients
(Osterloff et al. 2019; Silva et al. 2021). For a new bloom to take place, it is
essential to have mechanisms that bring nutrients into the euphotic zone. To
understand the transport, dispersion, and growth of plankton and nutrients, it is
necessary to comprehend the dynamics that occur throughout the water column.

Silva et al. 2021 conducted a 21-year study of phytoplankton bloom phenology
in the Barents, Norwegian, and North Seas. From their analysis corresponding to
the Lofoten-Vesterålen region, the climatology results show that the spring bloom
phenology typically starts towards the end of March and lasts approximately 40
days. Additionally, a summer bloom phenology usually begins in mid-July and
lasts approximately 41 days. Note that our data collection timeline from 2021
(see Section 3.4) was from the last day of June to early September. Hence, it
contains the whole summer bloom duration time measured by Silva et al. 2021.

3.2.2 Cold-water coral reefs

The movement of water and internal waves play a vital role in shaping the
environment on the continental shelf. They affect sediment resuspension and
deposition (R. Bøe et al. 2009). Additionally, internal waves transport nutrients
from deeper depths to the euphotic zone. This movement is believed to
significantly impact the ecosystem’s supply by facilitating the movement of
essential components and organisms, helping to maintain the delicate balance of
marine life.

Cold-water coral reefs are a threatened and fragile ecosystem in deep, dark,
colder waters. A reef is a complex structure supporting a diversity of life. One of
the cold-water corals is the Lophelia pertusa, a stony coral (Scleractinia) (Fosså,
Mortensen, and Furevik 2002). Over 1300 animal species have been recorded to
live on or near the Lophelia pertusa reefs in the northeast Atlantic (Roberts and
Hirshfield 2004).

Along the Norwegian shelf and coast, numerous deep-water coral reefs are
formed by Lophelia pertusa (Fosså, P. Buhl-Mortensen, and Furevik 2000).
Lophelia pertusa is present in the Skagerak and Oslo fjord in the south, along
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the Norwegian coastline, and up to Finnmark in northern Norway. Available
radiocarbon dating of Lophelia pertusa has yielded ages up to 8700 years (Freiwald
et al. 2002).

Most of the living Lophelia pertusa reefs are found along the continental
break and shelves at depths between 200 and 400 m (Fosså, Mortensen, and
Furevik 2002). Nevertheless, in Trondheimsfjorden, a living reef is recorded at
39 m. One of the best-known areas is the Sula Ridge Complex off Mid-Norway.
Here, more than several hundred individual reefs are recorded over a distance of
14 km, at mean depths of 300 m, where parts of the reefs reach as high as 30 m
up into the water (Fosså, Mortensen, and Furevik 2002; Freiwald et al. 2002). A
photo of a Lophelia pertusa colony is presented in Figure 3.2a. The Røst reef
southwest of Lofoten Archipelago in northern Norway is the largest recorded
Lophelia pertusa reef and is ten times bigger than the reef on the Sula Ridge
(Fosså, Lindberg, et al. 2005).

Fishermen’s statements provide anecdotal evidence that corals are vital to
fisheries, reporting a decline in fish in areas where trawling has destroyed reefs
(Fosså, Mortensen, and Furevik 2002). Fosså, Mortensen, and Furevik 2002
estimated that between 30 and 50 % of the reefs are destroyed or impacted by
trawling.

3.2.2.1 Cold-water coral reef in the Hola trough

Another biodiversity area and hot spot for the cold-water coral reef Lophelia
pertusa is in the Hola trough, where 414 reefs have been located at depths
between 150 and 250 m. The reefs are 32 to 334 m long and 27 to 114 m wide,
varying between 4 and 17 m in height (Fosså, Kutti, et al. 2015; Osterloff et al.
2019). The reefs grow mainly on the north-eastern side of the trough, where the
tidal current comes from the coast towards the shelf edge (Fosså, Kutti, et al.
2015) as well as the geostrophic current systems (the NCC and NwAC) (Bøe
et al. 2016). The study by Osterloff et al. 2019 showed that diurnal variations
and tidal currents impacted polyp activity by controlling the food supply to the
reefs. The coral reefs’ location can be seen in Figure 3.2b.

3.3 Internal waves

Internal waves and water movement are crucial components on the continental
shelf in shaping the environment, e.g., affecting sediment resuspension and
deposition (R. Bøe et al. 2009). Observations of this interaction have been seen,
e.g., on the Scotian shelf (Sandstrom and Elliott 1984), the New English shelf
(MacKinnon and Gregg 2003), and the Portuguese mid-shelf (Quaresma et al.
2007). Understanding these dynamic processes is fundamental to comprehending
the intricate nature of the marine environment (L. Buhl-Mortensen et al. 2012).
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(a) (b)

Figure 3.2: (a) Colony of Lophelia pertusa located at 40 m depth in
Trondheimsfjorden, Norway. Image from Fosså, Mortensen, and Furevik 2002,
reproduced with permission from Springer Nature. (b) Hola trough in between
Vesterålgrunnen and Eggagrunnen. The orange dots are the location of previously
observed Lophelia pertusa reefs. The stars provide the location of the stations in
2021 and 2022, and the text indicates which station (see Section 3.4 for more
information). The white lines and numbers display the contour lines of the water
depth. The image is created in fiskeri direktoratet (www.portal.fiskeridir.no,
publicly available). The scale in the left corner is 4 km.

3.3.1 Internal wave observations in the
Lofoten-Vesterålen-Tromsø area

Dokken et al. 2001 conducted a study to identify and characterize internal
waves in synthetic aperture radar (SAR) (see Section 1.3.2) images along the
Norwegian coast. The study included 2600 SAR images from 1991 to 2000.
The results indicate that internal waves occur during almost the whole year.
However, the frequency of waves is dominant from May to September/October,
with the highest frequency in the late summer when the thermal stratification
is most pronounced. Dokken et al. 2001 found four areas along the Norwegian
coast with high internal wave activity: Egga, Moskenes, Vøring Plateau, and
along the Norwegian Trench in the southern part of Norway (see their Figure 5).
The three first locations are in the Lofoten-Vesterålen area. In the Egga area,
where we can find the Hola trough, several internal wave trains were estimated
to propagate with a speed of ∼ 0.5 m s−1 almost parallel to the coastline in a
south/southwest direction. More than one tidal cycle was frequently observed in
the SAR images.

Figure 3.3 provides an example of internal waves observed by Sentinel-1 SAR
on 29 August 2019 outside Vesterålen, displaying propagating internal waves over
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the Hola trough. A total of 16 wave groups can be seen in the figure, appearing
on the seasonal pycnocline. Most of the wave groups travel in a south/southwest
direction before abruptly shifting orientation to the west, towards the deep ocean.
The distance between the wave groups is often seen to be caused by the frequency
of the tides, where the K1 current is seen to be dominating Moe, Ommundsen,
and Gjevik 2002. In addition, a smaller set of internal wave groups are seen to
originate from the coast.

Figure 3.3: Microwave backscatter intensity of internal wave groups in Vesterålen,
Norway, observed by Sentinel-1 SAR on 29 August 2019 at 16:31 UTC.

3.3.2 Tide-topography interaction - general basis

When the water is stratified and the barotropic tide encounters topographic
features, vertical displacement of the pycnocline occurs, generating internal waves
of tidal period (Alford et al. 2012; Sandstrom and Oakey 1995). Accordingly,
the baroclinic tide initiates internal waves on the pycnocline (C. R. Jackson,
Da Silva, and Jeans 2012). Numerous mechanisms involve tidal flows, e.g., see
the works by D. Farmer, Q. Li, and Park 2009; Maxworthy 1979; Nash and
Moum 2005. The induced linear internal waves are often sinusoidal, propagating
away from the generation zone. However, with sufficient energy input, the waves
grow, become steeper, and eventually develop into nonlinear internal waves
(C. R. Jackson, Da Silva, and Jeans 2012).
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3.4 Ecopulse field campaign

During the Ecopulse project 2020-2023, we have been able to conduct two field
expeditions at the Norwegian continental shelf, more specifically at the Hola
trough located in Vesterålen, Norway (see Figure 3.2b). The choice of location of
investigation is motivated in previous sections; however, a summary is as follows:
i) this area is one of four locations identified where there exists high internal
wave activity along the Norwegian continental shelf (Dokken et al. 2001), and ii)
cold-water coral reefs are located in the Hola trough (R. Bøe et al. 2009).

The aims of the field expeditions have been to i) quantify internal waves at
this specific location, ii) determine how often internal waves occur, iii) quantify
the internal wave-induced instabilities close to the bottom, and iv) quantify
vertical exchange throughout the water column. So far, the processing of all the
field data is ongoing, as the extent of complete analysis is out of the scope of
this dissertation. The sections below cover the moorings’ location, timeline, and
equipment used during the expeditions. One observation of an internal wave
train from 2021 will be shown in Section 3.4.3, and a summary and an outlook
regarding the field work will be provided at the end.

3.4.1 Location and timeline

The field expeditions were conducted on the Norwegian continental shelf at the
Hola trough, outside Lofoten in Vesterålen, Norway in 2021 and 2022. The
expeditions were conducted with R/V Kristine Bonnevie, where moorings were
deployed in June and retrieved in September both years. The data was collected
from 30 June until 11 September 2021 and from 1 July until 16 September 2022.
Five through-water-column moorings, further referred to as stations, were set
out in 2021 and four in 2022. Table 3.1 provides the specific locations and the
mean depth at the given site for the respective stations. The stations’ specific
locations are also marked in Figure 3.2b: one station is located in the valley (T4),
up to three on the slope (T2, T3, T5), and one on the bank to the southwest
(T1).

The distance between stations T1 and T2 and stations T2 and T3 are
approximately 4.04 km and 1.30 km, respectively. The slope between stations
T2 and T3 is ∼ 1.7 degrees. This is considered to be a relatively gentle slope.

3.4.2 Equipment used in the field

The equipment used during the field expeditions includes temperature probes,
conductivity-temperature-depth (CTD), and acoustic Doppler current profilers
(ADCPs) to measure the temperature, conductivity, and velocity field, respec-
tively. In addition, chlorophyll-a, oxygen, and turbidity were measured at the
station in the valley (T4).

On stations T1, T2, and T3, ten temperature probes, three CTDs, and
one 250 kHz ADCP were mounted per station in both years. See Figures 3.4a
to 3.4c for the configuration in 2021. The temperature probes and the CTDs
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(a) Station T 1 (b) Station T 2 (c) Station T 3

Figure 3.4: The configuration of the stations in 2021 with ten temperature
probes (labeled T1-T10), three CTDs and one ADCP 250 kHz mounted on per
station. (a) Displays the setup at station T1, local mean water depth of 80 m,
(b) provides the setup at station T2, local mean water depth of 100.7 m, and (c)
shows the setup at station T3, local mean water depth of 138 m. The schematics
are created by the Norwegian Institute of Marine Research, Bergen, Norway.
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Year Station Latitude Longitude Local mean depth (m)
2021 + 2022 T1 N68◦57.944 E13◦50.146 80
2021 + 2022 T2 N68◦58.282 E13◦56.109 100.7
2021 + 2022 T3 N68◦58.398 E13◦58.041 138
2021 + 2022 T4 N68◦59.400 E14◦15.828 241
2021 T5 N68◦58.197 E013◦56.030 99.8

Table 3.1: The latitude and longitude locations for the given stations and the
respective local mean water depth for 2021 and 2022.

are stationary with a measuring frequency of 10 Hz and a vertical distance
between them of 4 m. On station T1, where the local water depth is 80 m, the
uppermost CTD is approximately 57.3 m above bottom, and the lowest CTD is
approximately 9.3 m above bottom. On station T2, where the local water depth
is 100.7 m, the uppermost CTD is approximately 78 m above bottom, and the
lowest CTD is approximately 30 m above bottom. On station T3, where the
local water depth of 138 m, the uppermost CTD is approximately 118.8 m above
bottom, and the lowest CTD is approximately 70.8 m above bottom.

The velocity of the water throughout the vertical was measured with 250
kHz and 500 kHz ADCPs. The 250 kHz ADCP is a 4-beam Nortek Signature250
ADCP and is a medium-range current profiler. It provides horizontal velocity
data throughout the water column. The 250 kHz ADCP was configured to
sample average horizontal currents from the slanted beams in 2 m vertical bins
and with measuring frequency of 0.14 Hz. The 250 kHz ADCPs are situated
close to the bottom in an upward-looking position. A 1000 kHz ADCP was
mounted close to the bottom to measure the turbulence close to the sea floor. In
2021, one 500 kHz and one 1000 kHz were mounted on station T5. In 2021, the
1000 kHz ADCP was mounted on station T1. For the specific data acquisition
settings of the 500 kHz and 1000 kHz ADCPs see Appendix B

On station T4, a wire walker was deployed with a CTD and systems to
measure chlorophyll-a, oxygen, and turbidity. The wire walker moves vertically
up and down along a wire. On its way up, buoyancy regulates the speed and
is typically around 0.5 m s−1. In order to climb down, it relies upon surface
waves. It conducts three profiles every hour over a certain time interval, where
the instruments have samplings frequencies of 10 Hz.

3.4.3 Observation from 2021

3.4.3.1 Horizontal velocity

The horizontal velocity plane (u, v) corresponding to the timeline in Figure 3.7
is presented in Figure 3.5. The velocity field is measured by the 250 kHz ADCP
at station T2. The velocity components sampled are the horizontal velocity
component u in the east-west direction and the horizontal velocity component
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(a)

(b)

Figure 3.5: Horizontal plane velocities. Measurements from the 250 kHz ADCP
at station T2. (a) Horizontal velocity component u∗ parallel to the internal wave
propagation (upper panel) and horizontal velocity component v∗ perpendicular
to the internal wave propagation (lower panel). (b) The vertical averaged
horizontal velocities U∗ and V ∗. View of the timeline day of year 220.15 to
220.65, corresponding to 8 August 2021 03:36:00 to 15:36:00 UTC.
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v in the north-south direction. The velocity field (u, v) is further rotated to
the principal propagation direction of the internal wave, providing (u∗, v∗).
Accordingly, the horizontal velocity components u∗ and v∗ are parallel and
perpendicular to the internal wave propagation direction, respectively. The
upper and lower panels in Figure 3.5a show u∗ and v∗, respectively, throughout
the vertical measured column. Taking a vertical average of (u∗, v∗), we get
(U∗, V ∗), shown in Figure 3.5b in the upper and lower panels, respectively. The
absolute velocity becomes U∗tot =

√
U∗2 + V ∗2 = 0.23 m s−1. Here (·) denotes

a time-averaged over 12 hours. Only focusing on the current in the parallel
direction, we get U∗ = 0.19 m s−1.

3.4.3.2 Temperature profiles

For an optimal sampling of internal waves, it is recommended to employ a
vertical array of density measurements with close spacing through the water
column (Moulton, 2022). Utilizing time series data on density can be beneficial in
approximating parameters such as stratification, wave amplitude, and frequency.
However, in our study site, the temperature gradient is more significant than
the density gradient, and thus, the preliminary result shown here will be of the
temperature measurements from stations T1, T2, and T3 from 2021.

Figures 3.6a to 3.6c display the whole time series of the temperature
measurements taken at stations T3, T2, and T1, respectively, over the entire
measured field. The color bar shows the temperature range in degrees Celcius
(◦C). The vertical axis is the depth presented in meters above bottom, and the
horizontal axis is day of year, where day of year 0.5 is chosen to be 1 January at
noon. The red lines indicate the timeline presented in Figure 3.7. Please note
that the vertical field of view in the subfigures is about 50 m. However, it is
important to remember that the measuring location above the bottom and the
local water depth differ in all three subfigures. This means that the z-axis range
varies.

Downward vertical excursions of higher temperatures can be seen in all three
subfigures throughout the entire measurement period. Various factors, such as
wind and storms, mesoscale eddies, and internal waves, could be responsible,
but further investigation is needed to determine the exact causes for each
vertical excursion seen. Here, we only focus on one observed internal wave
train. In some areas, the isotherm’s vertical excursion within the water column
can extend beyond half the total water depth. This vertical excursion can
cause noteworthy implications, for instance, particles are regularly transported
and mixed throughout the water column because of the forces resulting in the
isotherm’s vertical movement.

3.4.3.3 Passage of one internal wave train

Multiple internal wave trains can be detected when closely examining and
analyzing the temperature field. One example of an observed internal wave train
will be presented below.
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(a)

(b)

(c)

Figure 3.6: The figures display the whole time series of the temperature field
measured throughout the vertical water column at stations (a) T3, (b) T2, and
(c) T1. The measuring period lasted from 30 June 2021 12:00:00 UTC until
11 September 2021 11:14:40 UTC. The vertical field of view in the figures is
approximately 50 m, but the local mean depth differ from each station. Hence,
the z-axis varies since the local mean depth at (a) station T3 is 138 m, (b)
station T2 is 100.7 m, and (a) station T1 is 80 m. The red lines indicate the
timeline in Figure 3.7.
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(a)

(b)

(c)

Figure 3.7: Observation of generation of an internal wave train. Same as
Figure 3.6, but now a closer view of the timeline day of year 220.15 to 220.65
which correspond to 8 August 2021 03:36:00 to 15:36:00 UTC.
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Figure 3.8: Same as Figure 3.7c, but now a closer view of the timeline day of year
220.505 to 220.555 to display the internal wave train. Black lines of temperature
contours with step size of 1 degree Celsius with corresponding numbers.

Figure 3.7 provides a closer look at the temperature field from Figure 3.6,
between day of year 220.15 to 220.65, which is precisely 8 August from 03:36:00
until 15:36:00 UTC.

When the tide flows over Eggagrunnen towards Hola, a depression of warmer
water starts to evolve downstream. This can be seen in Figure 3.7a, at station
T3, where warm water accumulates. Remember that station T3 is located on
the lower part of the slope between Hola and Eggagrunnen. Slightly further
up the slope, at station T2 (Figure 3.7b), it is more evident that warm water
is accumulating, and a leading front is starting to evolve. The depression of
warm water is growing and increasing its speed, where, at one point, it remains
almost stationary against the tide. Then, most likely, the velocity of the tide
starts to decrease, and/or the depression has gained a higher speed than the tide,
resulting in an upstream propagation, evolving into a sequence of internal waves.
It is more evident at station T1 that an internal wave group has formed, as
shown in Figure 3.7c with one leading wave and subsequent smaller ones behind.

The internal wave train seen in Figure 3.7c is further presented in Figure 3.8
with added temperature contour lines. A proxy of the leading wave amplitude is
extracted from the vertical excursion of one isotherm (8◦C) and is found to be
at 32 ± 2 m depth. The nondimensional amplitude becomes a/H ≈ 0.4. The
thickness of the pycnocline is estimated to be 16 m. The local middle depth of
the pycnocline is 15 m.

It is approximately 5.3 h between the leading front at station T2 and the
leading wave at station T1. An estimate of the nonlinear internal wave speed
is c ≈ 0.21 m s−1. The wave period is estimated to be 22 minutes. A total
horizontal velocity becomes c+U∗tot = 0.44 m s−1. An estimate of the wavelength
λ based on the total local horizontal velocity is 581 m.
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3.4.4 Summary & outlook

One of the future issue points raised in Lamb 2014 states: "Recent field work
has made it clear that the internal wave field on the continental shelf/slope is
complicated. Theoretical work, numerical simulations, and laboratory experiments
have necessarily focused on simple geometries and on isolated processes. There is
clearly a need for studies using more realistic stratifications and more complicated
geometries (e.g., canyons) as well as studies on concurrent physical processes
(e.g., shoaling internal waves in the presence of barotropic tides). Such studies
present many challenges for future investigations". This statement highlights the
importance of continuing to execute in-situ measurements along the Norwegian
continental shelf, which is of utmost importance for gaining a comprehensive
understanding of the region. Further, one of the future issue points raised
in Woodson 2018 states: "The role internal waves play in vulnerable coastal
ecosystems relative to other processes need to be better understood. Consequently,
it is imperative that we meticulously analyze and interpret all the data we
have gathered during our field studies in 2021 and 2022. The aims of the field
expeditions mentioned in the beginning were i) quantify and qualify internal
waves at this specific location, ii) determine how often internal waves occur, iii)
quantify and qualify the internal wave-induced instabilities close to the bottom,
and iv) estimate particle mixing and transport. Hence, all of these aims should
be answered in the future.

Based on the preliminary results, internal waves occur regularly at the Hola
trough. Due to their nonlinearity, one can hypothesize that they affect and
induce instabilities at the bottom, which will transport sediments and nutrients
(Boegman and Stastna 2019). In addition, instability in the pycnocline will lead
to strong mixing in the upper part of the water column. To fully analyze the
instability in the lower layer, we must examine the vertical velocities collected
from the 1000 kHz ADCP. By utilizing this equipment, we may be able to detect
structured patterns on the ocean floor through the vertical velocity field and
backscatter, such as seen in the field work by Zulberti, N. L. Jones, and G. N.
Ivey 2020. In addition, correlating the respective tide with the internal waves
and examining the corresponding induced instability at the bottom should be of
priority (Zulberti, N. L. Jones, and G. N. Ivey 2020).

When analyzing the field data, it is crucial to look for more than just internal
waves. Steep fronts, eddies, and other potential mechanisms should also be
thoroughly examined and considered.

Further calculations should include for instance shear and bed stress, turbulent
kinetic energy, and diapycnal diffusivity (G. N. Ivey, Bluteau, and N. Jones
2018).

Scrutinizing the horizontal velocity field throughout the water column will
provide a picture of whether the current is barotropic or baroclinic, in addition
to, e.g., whether we, at times, may have inertia waves materializing. In addition,
identify the additional mechanisms through the velocity field direction and
magnitude.
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3.4.5 In-situ, remote sensing and ocean model

In addition to processing all the data from our detailed in-situ measurements,
it is of interest to connect these results with satellite remote sensing and the
operational ocean model NorKyst800 at Metrological Institute (MET), Norway.
NorKyst800 is an ocean general circulation model (OGCM) and is an operational
setup of the Regional Ocean Modelling System (ROMS) (Albretsen et al. 2011).
NorKyst800 has been used to derive parameters of internal waves to compare
with SAR images. However, the model has a horizontal resolution of 800 m
with 35 vertical layers, so it has limitations in resolving the short internal waves
adequately. In addition, NorKyst800 is only a hydrostatic model.

In any case, the model has been constructed to factor in the varying depths
of the small seamounts found on the continental shelf, along with the slope of the
shelf and the physical conditions present in Norway’s coastal areas (Albretsen
et al. 2011). These conditions include, for instance, the coastal current, tides,
and a range of different wave effects (Röhrs et al. 2023).

Integrating in-situ observations, remote sensing, and NorKyst800 will provide
a more comprehensive understanding of this region’s intricate processes and
mechanisms and their effects on the coastal ecosystem.

3.5 ROV-PV: A new methodology

In this section, we will leave the internal wave topic and move over to the research
conducted in Paper III. In Paper III, a new method of measuring the velocity and
characteristics of water near a heaving ice floe is presented. The methodology
was successfully tested in the Barents Sea and, in addition, validated in the
laboratory.

The reader is referred to Chapter 4 and the comments under Author
Contribution regarding which part of the research in Paper III was conducted
during my master’s and which part was achieved during my PhD. It is also
important to note that the research group involved in Paper III is a different
team than the one working on the Ecopulse project.

3.5.1 Wave-ice interaction

The region where sea ice meets open water, known as marginal ice zone (MIZ),
is a highly dynamic environment characterized by interactions between sea ice
and waves. The MIZ is composed of various forms of ice, ranging from grease ice
to large ice floes and compact, semi-continuous ice sheets, and it spans between
fast ice and open ocean (Newyear and Martin 1997; Squire et al. 1995).

Sea ice plays a crucial role in the energy exchange between the air, ice,
and ocean of the Earth’s climate system (Smedsrud et al. 2013). The complex
interaction between ice and waves influences multiple conditions, and many of
their aspects are still poorly understood (Squire 2007). The ice will move, bend,
or even break into smaller floes when waves from the ocean enter the MIZ. The
ice floes may then scatter and dissipate the wave energy, altering wave properties.
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Hence, the interaction between waves and sea ice is a crucial mechanism, and
investigations into waves propagating through ice-covered water have increased
in interest during the past decades.

Working in the Arctic can be a difficult task due to its harsh conditions
and inaccessibility. Various in-situ methods have been used to investigate
wave propagation in ice-covered water, ice-water characteristics, interaction,
energy dissipation, and attenuation. The instruments can rely on various
sensors, allowing direct measurements of the water motion, ice motion, and
other characteristics for the purpose needed. One of the measurement methods
to measure a velocity profile below the ice is to use an ADCP (Løken et
al. 2022). Other measurement methods implemented are, e.g., Acoustic
Doppler velocimeters (ADVs) (Marchenko, Rabault, et al. 2017), Conductivity-
Temperature-Depth (CTD) (Frey et al. 2017), accelerometers (Løken et al. 2022;
Wadhams et al. 1988), and Inertial Motion Units (IMUs) (Kohout et al. 2014;
Rabault, G. Sutherland, Ward, et al. 2016). There are some limitations to the
data collected from these types of instruments. For instance, some only record
points along a single profile or a time serie of the velocity at a fixed point.
Paper III proposes a new methodology of a field measurement technique (the
ROV-PV system) adapted for the Arctic’s harsh environment, where we are able
to measure the two-dimensional velocity field of the water.

Particle tracking velocimetry (PTV) and particle image velocimetry (PIV) are
two non-intrusive optical measurement techniques used to investigate the velocity
field of a two-dimensional region within the flow (Jensen et al. 2001; Rabault,
Halsne, et al. 2016; Rabault, G. Sutherland, Jensen, et al. 2019). In recent
years, PIV and PTV systems have been successfully utilized in situ to investigate
turbulence in coastal ocean environments (Smith 2008). A submersible PIV
system was implemented at the bottom to measure two-dimensional turbulence in
the bottom boundary layer of the coastal ocean by Smith et al. 2002. They used
naturally occurring particles, such as plankton and sediments, as tracer particles.
Regardless, there is a lack of implementing such measurement technique systems
in the polar region to investigate the two-dimensional velocity field near ice-water
interaction.

3.5.2 The ROV-PV system

The setup consists of an open-source remotely operated vehicle (ROV), used as
the optical instrument recording the two-dimensional velocity field, which was
represented by rising air bubbles as tracers. The air bubbles rise approximately in
a two-dimensional plane (need to subtract the vertical buoyant bubble velocity to
get the vertical velocity of the water). The images (obtained by the ROV of the
air bubbles) were analyzed using PIV to obtain the two-dimensional velocity field
of water after removing the vertical bubble motion in post-processing. In Paper
III, this system is referred to as the ’ROV-PV system’ (PV = particle velocity).
The methodology allows for studying water kinematics around interactions of
water-ice (and ice-ice (Paper IV)) with a temporal and spatial resolution that
extends beyond traditional instruments like ADCPs.
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3.5.3 Validation in a controlled environment

In a controlled environment, two different laboratory experiments have been
conducted to examine the characteristics and behavior of the bubbles.

One study was explicitly directed toward investigating the rising bubbles
in stagnant water, specifically analyzing the relationship between the bubbles’
terminal velocity and diameter. Thus, a high-speed camera for increased accuracy
was used during this investigation, not the ROV. The study was conducted in
both fresh and salt water. The study aimed to track each bubble to investigate
their terminal velocity and size. A logarithmic curve fit was applied to the
terminal velocity results (see Figure 4 in Paper III). The result provides a
relationship between the bubble diameter and terminal velocity.

In the second investigation, the air bubbles were under the influence of
periodic waves to investigate their response in a wave field. Here, the field of
interest was directly below the wave crest in a vertical column, where the vertical
velocity of the water is known to be zero (see Figure 7 in Paper III). The tracked
bubble velocities are compared to theoretical water velocity from third-order
Stokes waves (Newman 2018) in the horizontal direction below the wave crest
(see Figures 8 and 9 in Paper III). The results show that the air bubbles were
able to reproduce the water velocity with high accuracy. The methodology’s
potential to accurately measure water velocity is demonstrated. See Paper III
for further discussion concerning the uncertainties in the measurements.

3.5.4 Field expedition

The field expedition was conducted on 26 April 2019 in the North-West Barents
Sea near Hopen Island (marked by a red dot in Figure 3.9a). The setup was
implemented close to an ice floe subjected to wave motion. The setup is shown
in Figure 3.9b. For details regarding the ice floe, see Marchenko, Zenkin, et al.
2020, and for water properties measured throughout the water column close to
our experiment site, see Fer and Drinkwater 2014.

To obtain the velocity field, PIV was applied to the images to obtain the two-
dimensional velocity field in the given field of view within the grid. It is necessary
to compensate for the bubbles’ vertical buoyancy-driven velocity component to
find the water’s vertical velocity. The original plan was to use the results from the
laboratory experiment (in stagnant water). However, the bubbles’ rise velocity in
the field was seen to be almost half of what was found in the laboratory. Hence, an
on-site calibration under relatively calm conditions was performed. Accordingly,
a mean vertical velocity was obtained from a reference image-couple taken under
calm conditions where the air bubbles’ velocity components were relatively small.
The mean vertical velocity was then subtracted from all the vertical velocities
from an instantaneous velocity field. The resulting two-dimensional velocity field
is visualized as a vector plot in Figure 3.9c.
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(a)

(b) (c)

Figure 3.9: (a) An overview of where the field work in Paper III was conducted,
where the red dot indicates the specific location. (b) Image from the ROV of
the bubble plane and the coordinate grid next to an ice floe. The instantaneous
flow field within the grid is presented in (c) as a vector plot. The images are
from Paper III.
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Chapter 4

Summary of Papers
This chapter presents an overview of the studies published during this thesis.
For each paper, a short summary, some main findings, and a comment of my
contribution to the papers are outlined. The papers are put into context, and
an explanation of how they fit together is provided at the end of the chapter.

Paper I - Calculation of internal-wave-driven instability and
vortex shedding along a flat bottom

For decades, researchers have conducted laboratory experiments and numerical
simulations to study internal solitary waves propagating over a flat bottom.
The investigations have provided valuable insights into the phenomenon of
internal waves. However, there are still some (qualitative) discrepancies between
laboratory and numerical results.

We investigate nonlinear internal solitary waves of depression propagating
over a flat bottom computed by a finite-volume solver in two dimensions. We
follow the experimental setup and wave generation as conducted in the laboratory
experiments by Carr, Davies, and Shivaram 2008.

Internal solitary waves of depression move horizontally through a stratified
fluid, creating an adverse pressure gradient along the bottom behind the wave
trough. This causes a separation bubble in the pressure-driven bottom layer,
starting from the separation point beneath the wave trough. The fluid near the
bottom moves in the direction of the wave, and as the wave amplitude increases,
the separation bubble can become unstable and lead to vortex formation. The
present work investigates the instability occurring in the separation bubbles.
Our computations exhibit two separation bubbles emerging, whereas only one
has been previously documented (Aghsaee, Boegman, Diamessis, et al. 2012;
Diamessis and Redekopp 2006). One bubble forms in the wave phase behind
the trough, while a second forms further downstream. The threshold from the
stable to the unstable regime is scrutinized and is found to depend on the depth
of the pycnocline. This result was found in previous laboratory experiments and
in our numerical computations. The effect of scale is systematically investigated
by varying the kinematic viscosity of the water. Hence, our calculations are
presented for the wave Reynolds number Rew = 1.9× 104 − 6.5× 105.

Our calculations agree very well with the laboratory experiments by Carr,
Davies, and Shivaram 2008, where the result presented suggests that the insta-
bility observed in their experiments was predominantly two-dimensional. This
result has responded to the ongoing discussion regarding laboratory-observed
instabilities being primarily three-dimensional.
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Author contribution: This is the main work of my PhD thesis. I developed the
concept and the methodology together with my supervisor J. Grue. I conducted
the model development and configuration, numerical simulations, postprocessing,
analysis, and presentation of the results with supervision from J. Grue. I
wrote the paper draft. The submitted version was written with guidance and
contribution from J. Grue.

Paper II - Tracer particle motion driven by vortex formation
in the bottom boundary layer underneath internal solitary
waves

Large amplitude internal solitary waves in coastal oceans cause significant
horizontal water velocities near the seabed, resulting in bottom boundary layer
instabilities and vortex formation. The movement of essential components and
organisms facilitated by the induced mechanisms in the bottom boundary can
resuspend sediments and, e.g., impact the ecosystem’s supply, affecting the
balance of marine life.

Using a two-dimensional laminar numerical method, we study the vortex
formation and Lagrangian tracer particle motion in the bottom boundary layer.
The instability in the bottom boundary layer is induced by nonlinear internal
solitary waves of depression, where both the wave field and vortices influence
the motion of the tracer particle cloud seeded in the numerical wave tank.

A convergence study on the numerical computations of the vortex formation
is performed and documented. We compare the wave-induced vortices with
available laboratory observations and obtain a very good match between our
numerical calculations and the measurements conducted in the laboratory.

The tracer particles’ trajectories, displacements, and vertical positions as
a function of time are calculated and illustrated. The vertical positions of the
tracer particles are compared to available field observations. Even though the
processes at the field scale and our moderate scale may not be directly similar,
our computations align fairly well with the observed data.

Author contribution: I developed the concept and the methodology together
with the co-authors. I conducted the model development and configuration
with contributions from J. Sletten. I conducted the numerical simulations,
postprocessing, analysis, and presentation of the results. I wrote the paper draft
and submitted version with guidance from J. Grue.

Paper III - Bringing optical fluid motion analysis to the field:
a methodology using an open source ROV as a camera
system and rising bubbles as tracers

To comprehend the energy exchange between the atmosphere, ice, and the ocean
in the Arctic, a thorough understanding of the water movement in the marginal
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ice zone is crucial. However, very few two-dimensional in-situ observations in
the marginal ice zone exist due to the rough and harsh environment.

The research conducted in this paper aimed to develop a setup that could
be employed in harsh environments to investigate water kinematics related to
mechanisms of wave attenuation in the marginal ice zone. Accordingly, a new
field measurement technique is presented. This paper primarily focuses on the
methodology and verification of the complete setup.

A remotely operated vehicle (ROV) with open-source software was used as
the imaging device and light source. Air bubbles were employed as tracers,
allowing typical image processing techniques to be utilized on the data obtained.
A thorough investigation was conducted in a controlled environment on the
dynamics of the bubbles to determine their suitability as tracers. Examining
how the bubbles responded in a wave field was tested in the laboratory and
compared with theory. The horizontal velocity component of the bubbles under
the influence of periodic waves was measured and found to be within 10%
accuracy of reproducing the water velocity. Laboratory test results were also
initially intended to estimate the buoyancy-driven vertical bubble velocity to
compensate for this during field experiments.

The methodology was successfully employed and tested near a heaving ice floe
in the Barents Sea. It was discovered that an on-site calibration was necessary
due to varying field conditions, such as temperature and pressure, which altered
the bubbles’ properties.

Author contribution: I built/assembled the instrumental setup with contributions
from the co-authors during my master’s. The data used for this paper was
collected during my master’s.
In the paper: The experiments in the small wave tank (stagnant water, Figure
2) were conducted during my master’s. The velocity of the rising bubbles in the
stagnant water and their shape were analyzed during my master’s (Tables 1 and
2). I conducted additional analysis from this data set for Figure 3 during my
PhD. The theory in section 2.3 (Air bubbles as tracers), down to equation 4,
originated during my PhD. (hence, it differs from the theory in my master’s). I
reanalyzed and replotted the data from the stagnant water experiments with the
new theory (Figure 4) during my PhD. The experiments in the big wave tank
(Figure 5) were conducted during my master’s. The theory from the beginning
of section 3 (Validation in a wave tank) down to equation 8 is the same as in my
master’s, but from equation 8 until equation 11 originated during my PhD. I
contributed to the analysis of the data set during my PhD. The field work was
conducted during my master’s (Figures 1 and 11). I reanalyzed and replotted
the data (Figures 12 and 13) during my PhD.
I contributed to the paper draft during my PhD.
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An integrated view of the papers

Papers I and II utilize a second-order finite-volume solver, Basilisk. Paper II
builds on a natural continuation of Paper I. In both papers, internal solitary
waves of depression propagating over a flat bottom are studied.

The purpose of the studies in Papers I and II, as well as the field study
at the Hola trough (Chapter 3), was to gain a deeper understanding of the
hydrodynamics related to internal waves, vertical mixing in the water column, and
transport of nutrients. This knowledge may contribute to a more comprehensive
understanding of the biophysical relationships between breaking waves and
ecosystems’ vertical structuring and operation.

One question regarding the internal waves in the Lofoten-Vesterålen region
has been how many of the generated internal waves will interact with the
ocean bottom to induce instabilities. From the field studies, the internal wave
generation site is on the slope between the Hola trough and Eggagrunnen before
propagating as an internal wave train over the bank. In Paper I, we found
that internal waves induce instabilities at the bottom when having a lower
wave amplitude than assumed in previous simulation studies. It is not directly
analogous to compare results from flat bottom cases with those cases where
we have a slope. Regardless, instabilities occur even earlier over slopes; hence,
only sharp fronts or weak internal waves may be necessary to induce bottom
instabilities at the slope. Once the internal waves have fully developed, they
travel over flatter topography. Even if instability can be set in motion by weak
internal waves, the question remains about how much vertical and horizontal
movement of particles occurs at this particular site. Paper II demonstrated that
the Lagrangian particles seeded in the numerical wave tank were transported
out from the bottom boundary layer δ and moved vertically as high as 70δ for
simulations having wave Reynolds number Rew = 6.5 × 105 with an internal
wave of theoretical maximum amplitude a/H = 0.3.

While neutrally buoyant tracer particles have been studied in Paper II,
"active" particles have been studied in Paper III, where the field study illustrates
the applicability of the measurement technique to measure the dynamics of
water motion in the vicinity of ice in harsh environments. Accordingly, Paper III
concerns how the fluid velocity is estimated from the motion of bubble tracers,
where Paper II examines how internal wave-vortex-induced particle transport
behaves.
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Chapter 5

Summary and future perspectives

The first part of this chapter gives a summary of this thesis and its contributions,
and the second part discusses some possible extensions to the work conducted.

5.1 Summary

This thesis explores numerical simulations of nonlinear internal solitary waves of
depression propagating over a flat bottom where Papers I and II centers around
this topic. Papers I and II explore the wave-induced instability in the bottom
boundary layer and the various occurring mechanisms.

The numerical solver utilized to simulate internal solitary waves is the second-
order finite-volume solver Basilisk (www.basilisk.fr), which solves the two-phase
incompressible Navier-Stokes equations. The two-dimensional numerical wave
tank setup and wave generation method are identical to the physical laboratory
experiments conducted by Carr, Davies, and Shivaram 2008.

When the system is set into motion, a nonlinear internal solitary wave of
depression is generated, moving horizontally along a stratified fluid. The internal
wave-induced velocity field induces an adverse pressure gradient in the bottom
boundary layer. In this pressure-driven bottom layer, separation bubbles evolve.
Only one separation bubble has been previously documented (Aghsaee, Boegman,
Diamessis, et al. 2012; Diamessis and Redekopp 2006; Sakai, Diamessis, and
Jacobs 2020). However, in Paper I, it is found that two separation bubbles of
anticlockwise vorticity are formed. One separation bubble commences from the
separation point beneath the wave trough in the wave phase, and one further
upstream outside the wave phase. Accordingly, for large Reynolds numbers, e.g.,
Rew = 5.9× 105, the bubbles are seen to separate, whereas for smaller Reynolds
numbers, e.g., Rew = 5.9× 104, they partially overlap. For Rew = 2× 104, they
are seen to merge (Diamessis and Redekopp 2006).

Paper I further scrutinizes the transition from when the separation bubbles
go from stable to experiencing instability. Both Paper I and II emphasize
convergence, including the resolution of the bottom boundary layer, vortex
formation, and other wave parameters. We obtained a very good agreement
with the laboratory experiments by Carr, Davies, and Shivaram 2008 for the
transition to instability, where long-standing computational attempts have been
unsuccessful, as communicated in the conclusion by Boegman and Stastna 2019.
They argued that the experiments by Carr, Davies, and Shivaram 2008 did not
represent the transition to instability, implying conflicting results.

Paper I discusses the transition to instability and matches the experiments by
Carr, Davies, and Shivaram 2008, implying that the instability threshold found
in the numerical simulations by Aghsaee, Boegman, Diamessis, et al. 2012 is too
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strong. Accordingly, the instability occurs much earlier for waves of considerably
smaller amplitude than what they predict. In addition, our results indicate that
the instability in the three-dimensional wave tank experiments by Carr, Davies,
and Shivaram 2008 was predominantly two-dimensional up to a distance of eight
water depths behind the wave trough.

As the amplitude a of the wave increases, the separation bubble becomes
unstable, leading to the formation of vortices. The formation of vortices causes
oscillating bed shear stress, where the strongest stress amplitude materializes
during the wave and roll-up phases, emerging over a distance of 1-1.5 water depths,
otherwise of less magnitude (Paper I). The shear stress computed in the laminar
model and measured in previous field studies has similar non-dimensional values
(scaled by ρ0c

2
0/2) when the non-dimensional amplitude and relative pycnocline

depth are equivalent (a/H ∼ 0.3, d/H ∼ 0.2).

In oceanic environments, various mechanisms may cause re-suspension of
particles at the bottom (Boegman and Stastna 2019). Paper II presents a
study of Lagrangian tracer particles and their behavior under the influence
of the internal wave-induced velocity field and vortices. Internal waves may
supply marine life with essential components and organisms, maintaining the
ecosystem (R. Bøe et al. 2009; MacKinnon and Gregg 2003; Quaresma et al.
2007; Sandstrom and Elliott 1984) as discussed in Chapter 3. Nonlinear internal
waves are expected to continue being a significant field of research in the future
due to their widespread distribution and crucial role in connecting large-scale
tides to smaller-scale turbulence (C. R. Jackson, Da Silva, and Jeans 2012).

The well-known measurement techniques particle image velocimetry (PIV)
and particle tracking velocimetry (PTV) are commonly used to trace particles in
fluids. However, installing instruments in the field to measure the velocity of the
water with the measurement techniques PIV and PTV is challenging or even
impossible in certain areas. The research in Paper III presents a new method
of measuring the velocity and characteristics of water near a heaving ice floe in
harsh environments, using an ROV as an imaging device and light source and air
bubbles as tracers. Bubbles can rise approximately in a two-dimensional plane,
eliminating the need for a light/laser sheet. The main challenge of utilizing
bubbles as tracer particles was to generate bubbles of uniform size. Small
bubbles are desired as they have a rectilinear rising path (Haberman and Morton
1953) since rise velocity is a function of the bubble diameter and needs to be
subtracted from the measured vertical velocity to obtain the water velocity. The
methodology allows for investigating the movement of water around interactions
between water-ice (and ice-ice discussed in Paper IV) with high temporal and
spatial resolution.

As experimental measurements and numerical simulations become more
precise, we can observe smaller and smaller scales in dynamical systems. This
has allowed us to understand better the flow and motion properties that were
previously difficult to quantify.
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5.2 Future perspectives

The numerical simulations presented in this thesis focus solely on internal
solitary waves of depression propagating over a flat bottom. However, there are
numerous different internal waves (as presented in Chapter 1) that could be
implemented and their various instabilities studied, such as internal waves of
elevation propagating over a flat bottom (Bogucki, Dickey, and Redekopp 1997;
Bogucki and Redekopp 1999; Carr and Davies 2010; Diamessis and Redekopp
2006; Stastna and Lamb 2002; Stastna and Lamb 2008), shoaling internal waves
of depression and elevation (Klymak and Moum 2003; Sveen et al. 2002; Xu and
Stastna 2020) where a sloping bottom is implemented in the numerical wave
tank, the wave tank is tilted, or a specific topography is implemented.

Studies could also be conducted where the primary focus is directed toward
the pycnocline and instabilities, such as overturning in the upper part of the
water column (Carr, Fructus, et al. 2008) and Kelvin-Helmholtz instability in the
shear layer (Carr, Franklin, et al. 2017; Fructus, Carr, et al. 2009; Grue, Jensen,
et al. 1999; Helfrich and Melville 2006). The stratification in the numerical wave
tank during the work of this thesis is the same as in the laboratory experiments
by Carr, Davies, and Shivaram 2008. However, this setting can be modified to
create a stratified layer close to the bottom, as measured in the field observations
by Zulberti, N. L. Jones, and G. N. Ivey 2020, or, for instance, to create a linear
stratification in the top layer, as in Carr, Fructus, et al. 2008.

In Paper II, we let the internal wave travel to the end of the wave tank and
return to study the motion of the particles after the influence of two internal
wave passages. It would have been interesting to model the numerical wave tank
with multiple gates to generate multiple waves. Changing the domain size of the
wave tank is also a possibility.

The Norwegian continental shelf and field work

In the ocean, understanding the biophysical interaction between breaking internal
waves, vertical structuring, and functioning of ecosystems is vital. A summary
and future outlook regarding internal waves on the Norwegian continental shelf
and the fieldwork conducted in the project were presented in Chapter 3. The goal
is to comprehend if there is a connection between the structure and functioning
of marine ecosystem communities living in this specific topographically complex
setting (at the Hola trough, Vesterålen) and how strongly these communities
depend on the interplay between water flow and seafloor relief. Consequently,
the main future task is to investigate the wave-induced instabilities both at the
sea bottom and in the internal wave and the vertical transport induced by the
internal waves present in Vesterålen, particularly understanding the food supply
during summer and early autumn, when the coast is depleted for nutrition.

Future studies should connect ideal internal wave models in two dimensions to
three-dimensional regional ocean model simulations at Vesterålen and elsewhere
along the Norwegian Continental Shelf. For instance, the regional ocean model
does not resolve the breaking processes. However, results from Basilisk can
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reveal how waves would break and how much mixing would occur in terms of
intensity and depth for a specific configuration in the regional model. Combining
simulations from ideal and regional models can also address the importance of
vertical mixing from internal waves compared to other local processes, such as
wind-induced mixing, bottom shear flow, and the advection of turbulent kinetic
energy.
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The instability and vortex shedding in the bottom boundary layer caused by internal
solitary waves of depression propagating along a shallow pycnocline of a fluid are
computed by finite-volume code in two dimensions. The calculated transition to instability
agrees very well with laboratory experiments (Carr et al., Phys. Fluids, vol. 20, issue 6,
2008, 06603) but disagrees with existing computations that give a very conservative
instability threshold. The instability boundary expressed by the amplitude depends on the
depth d of the pycnocline divided by the water depth H, and decays by a factor of 2.2
when d/H is 0.21, and by a factor of 1.6 when d/H is 0.16, and the stratification Reynolds
number increases by a factor of 32. The instability occurs at moderate amplitude at large
scale. The calculated oscillatory bed shear stress is strong in the wave phase and increases
with the scale. Its non-dimensional magnitude at stratification Reynolds number 650 000 is
comparable to the turbulent stress that can be extracted from field measurements of internal
solitary waves of similar nonlinearity, moving along a pycnocline of similar relative depth.

Key words: internal waves, boundary layer stability, vortex shedding

1. Introduction

Internal solitary waves are a naturally occurring phenomenon in stratified oceans.
Typically, the waves are driven by the tide or wind (e.g. Helfrich & Melville 2006). In
this paper, we study internal solitary waves of depression and the instability that they
cause in the bottom boundary layer. The processes occur in the wave phase behind the
trough where the pressure gradient is adverse. A separation bubble develops and becomes
unstable, and vortices are formed downstream of the wave when the amplitude is large
enough (e.g. Diamessis & Redekopp 2006; Carr, Davies & Shivaram 2008; Aghsaee
et al. 2012; Verschaeve & Pedersen 2014). Sakai, Diamessis & Jacobs (2020) performed
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article is properly cited. 966 A40-1
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three-dimensional large-eddy simulation of the instability, vortex formation and break-up
into turbulence.

Internal solitary waves of elevation also induce this kind of instability, where a
background current is necessary for the instability to occur. The adverse pressure gradient,
separation bubble and unsteadiness develop then in the wave phase ahead of the crest (e.g.
Bogucki & Redekopp 1999; Stastna & Lamb 2002b, 2008; Carr & Davies 2010). The
wave-driven instability of the boundary layer at the bottom causes strong variations of the
shear stress and thus contributes to re-suspension of particles (e.g. Bogucki, Dickey &
Redekopp 1997; Bogucki & Redekopp 1999; Bourgault et al. 2007; Quaresma et al. 2007;
Boegman & Stastna 2019; Zulberti, Jones & Ivey 2020). Waves of depression interacting
with a weak slope may, beyond the turning point where the layer depths are equal, break
up into a series of elevation waves, and in turn cause instabilities at the bottom (e.g. Xu
& Stastna 2020). Adverse pressure gradients, separation bubbles and their instability are
investigated in aerodynamic flows (e.g. Gaster 1967; Pauley, Moin & Reynolds 1990; Reed
& Saric 1996). Depending on the forcing and the Reynolds number, the instability may
become global (e.g. Hammond & Redekopp 1998; Diamessis & Redekopp 2006); see also
Huerre & Monkewitz (1990), Schmid & Henningson (2001) and Chomaz (2005).

1.1. Review of internal-wave-driven instability in the bottom boundary layer
Motivated by observations of re-suspension of particles at the bottom beneath internal
solitary waves (Bogucki et al. 1997), Bogucki & Redekopp (1999) investigated the
boundary layer instability made by a sheared current interacting with a weakly nonlinear
internal solitary wave of elevation moving along a shallow bottom layer of a stratified fluid.
Above a threshold amplitude, the boundary layer separated in the adverse pressure gradient
region, in the front part of the wave. Vortices were formed in the centre below the wave.
Advecting with the flow, the vortex dynamics posed an excess bottom shear stress. Stastna
& Lamb (2002b) performed fully nonlinear simulations of the scenario described by
Bogucki and Redekopp, and showed that it is the wave’s velocity field interacting with the
boundary layer vorticity of an opposing current that leads to a vortex shedding instability
beneath the wave. Neither a separation bubble nor a wave with a recirculating region was
required for vortex shedding to occur. Co-propagating waves and current did not lead to
instability. In a follow-up paper, Stastna & Lamb (2008) found that the current-driven
vorticity in the boundary layer was advected into the footprint of the elevation wave.
In its front part, a separation bubble formed, grew and subsequently broke up. When
the Reynolds number was too low or the current too weak, no instability occurred.
By laboratory experiments, Carr & Davies (2010) measured internal solitary waves of
elevation propagating in an unsheared two-layer stably stratified fluid. The amplitude was
up to theoretical maximum. No boundary layer separation or vortices beneath the front
half of the wave were found. No instabilities were measured. Velocity reversal near the
bottom in the deceleration phase of the wave where the pressure gradient is favourable
was measured.

In the case of internal solitary waves of depression moving along a (moderately) shallow
pycnocline, the pressure gradient behind the wave trough is adverse. By direct numerical
simulations of the Navier–Stokes equations combined with weakly nonlinear Korteweg–de
Vries (KdV) theory of the internal solitary waves, Diamessis & Redekopp (2006) found
that global instability emerged in the boundary layer below the wave. The downstream
vortices were created at the bottom and ascended into the water column. The stratification
Reynolds number was Rew = 2 × 104 (Rew is defined properly in § 1.2). A jet at the bottom
along the wave propagating direction corresponding to the lower part of the calculated
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separation bubble was measured experimentally for the same Rew by Carr & Davies
(2006). No instability was found in the laboratory wave tank. However, Thiem et al. (2011)
performed a numerical re-calculation of one of the physical measurements. Instability was
found when the amplitude was increased by 14 %. Carr et al. (2008) performed a new set
of laboratory experiments at higher Reynolds number. They found that the flow separation
beneath the wave occurred at essentially lower amplitudes than calculated by the weakly
nonlinear KdV theory in combination with the Navier–Stokes equations (Diamessis &
Redekopp 2006). Aghsaee et al. (2012) solved the Navier–Stokes equations in combination
with a fully nonlinear internal wave formulation. They proposed a universal criterion of the
internal-solitary-wave-driven instability of the boundary layer, for the cases of either a flat
bottom or a slope. Their very conservative stability boundary does not fit the experiments
by Carr et al. (2008) or the numerical simulations by Thiem et al. (2011).

Local instability made by internal solitary waves interacting with a variable bottom
topography may exhibit jet-like roll-up of vorticity near the crest of the topography,
as calculated in two and three dimensions at moderate Reynolds number by Harnanan,
Soontiens & Stastna (2015) and Harnanan, Stastna & Soontiens (2017). Re-suspension or
entrainment of internal solitary waves interacting with a bottom topography was modelled
numerically by Olsthoorn & Stastna (2014), and Soontiens, Stastna & Waite (2015)
calculated the viscous bottom boundary layer effects on the generation of internal solitary
waves at topography and the related instabilities in the case of a background current.

The three-dimensional large-eddy simulation by Sakai et al. (2020) showed three
regimes of the flow in the boundary layer, where below the wave phase, global
instability and transition occurred. Vortex break-up and formation of turbulent clouds,
and development of a turbulent boundary layer, took place downstream of the wave.
Two-dimensional laminar simulations were compared to the turbulent calculations.
A similar, essentially two-dimensional, vortex formation was taking place in the two
computations, in a distance of five water depths, corresponding to two wavelengths
behind the trough. The unstable simulations by Sakai et al. (2020) were performed with
a wave of large amplitude interacting with a strong counter-current. They found that
two- or three-dimensional simulations with a sufficient resolution of the near-bed scales
and no background current could not spontaneously generate any vortex shedding. We
note that Sakai et al. (2020, p. 9) write that the shed vortices appear to be initially
two-dimensional. In the abstract of the paper, they write: ‘In the separation bubble,
there exists a three-dimensional global oscillator, which is primarily excited by the
two-dimensional absolute instability of the separated shear layer.’

1.2. Motivation of the paper
Using laboratory experiments, Carr et al. (2008) investigated the flow separation and
vortex formation induced in the bottom boundary layer by an internal solitary wave of
depression moving along a flat bottom. The amplitude of the wave was varied from a large
value where instability occurred, to a small value where the instability disappeared. The
threshold wave amplitude where instability emerged was measured. Aghsaee et al. (2012)
performed numerical simulations in two dimensions of the wave-driven instability along
flat and sloping bottoms. Adopting the procedure of Pauley et al. (1990), they expressed
the inception of the instability in terms of the pressure gradient and the momentum
thickness Reynolds number of the boundary layer. However, Aghsaee et al. (2012) were
not able to reproduce the threshold of instability for the case of a flat bottom, which
occurred much earlier in the laboratory experiments by Carr et al. (2008). Aghsaee et al.
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(2012) suggested possible reasons for the discrepancy between their computations and the
experiments by Carr et al. (2008): (a) the laboratory-observed instabilities are primarily
three-dimensional; (b) errors in the estimation of the horizontal velocity below the wave
and the wavelength; (c) lack of finite-amplitude perturbations in the numerical solution
from which instabilities will grow through the phenomenon of subcritical transition; and
(d) existence of an oscillatory background barotropic flow in laboratory experiments
generated during the gate release, which may have influenced vortex generation. The
discrepancy between experiments and model calculations was repeated in the review by
Boegman & Stastna (2019). The conflicting results are addressed here.

By finite-volume solver, we simulate the experiments of Carr et al. (2008). The method
is detailed in § 2.1. We obtain very good agreement with the measurements. We also obtain
that the threshold for instability really depends on the depth of the pycnocline. The pressure
gradient and the Reynolds number of the boundary layer are evaluated and compared to
the transition proposed by Aghsaee et al. (2012). We find an essential mismatch. This is
detailed in §§ 3.2 and § 3.3.

The effect of scale is investigated systematically where the kinematic viscosity ν is
varied in the range 10−5.5–10−7 m2 s−1, where ν = 10−6 m2 s−1 for fresh water at 20 ◦C.
The variables ν, the linear internal long-wave speed of the stratified fluid c0 (defined
properly in § 2.2) and the water depth H form a stratification Reynolds number Rew =
c0H/ν. This quantity is denoted by the wave Reynolds number by Diamessis & Redekopp
(2006), Carr et al. (2008) and Aghsaee et al. (2012), and by the Reynolds number based
on the water column height by Sakai et al. (2020). Our computations are presented for Rew
in the range 1.9 × 104–6.5 × 105, while the experiments by Carr et al. were performed for
Rew ∼ 5.8 × 104–6.6 × 104.

The computations exhibit two separation bubbles, one in the wave phase behind the
trough and a second well behind the wave phase. In contrast, one separation bubble
has been found in previous computations of the flat bottom case (e.g. Diamessis &
Redekopp 2006; Aghsaee et al. 2012; Sakai et al. 2020). Note that Xu & Stastna (2020)
have found that a separation bubble below waves of elevation interacting with a slope
eventually breaks down into two parts. In the present calculations, the instability develops
in separation bubble one.

The vortex formation that emerges in the wave phase gives rise to powerful oscillations
of the bottom shear stress. We use a Froude number scaling of the velocity field outside the
boundary layer. The shear stress scaled by c2

0 times the fluid density is investigated in the
range of the Reynolds number. A similar scaling was employed by Boegman & Ivey (2009)
and Xu & Stastna (2020). The velocities of the boundary layer in the field are turbulent.
The non-dimensional shear stress in a few available measurements (Quaresma et al. 2007;
Zulberti et al. 2020) is obtained just as well and compared to the laminar calculations.
The internal solitary waves in the model and the field are of similar nonlinearity and move
along similar relative pycnocline depth.

The calculated internal solitary waves are fully nonlinear and dispersive, and agree
very well with exact interfacial methods (e.g. Michallet & Barthélemy 1998; Grue et al.
1999, 2000; Camassa et al. 2006; Fructus et al. 2009) and solutions of the continuously
stratified case (e.g. Turkington, Eydeland & Wang 1991; Stastna & Lamb 2002a; Dunphy,
Subich & Stastna 2011) (results are not shown). The Navier–Stokes equations resolve the
Stokes bottom boundary layer below the wave phase.

Section 2 describes the method, the numerical wave tank and the resolution. The
stratification of the fluid and the procedure of the wave generation are introduced. The
noise of the solver is discussed. The Stokes boundary layer thickness is presented.
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Internal-wave-driven vortex shedding

The results section (§ 3) includes comparison to the experiments by Carr et al. (2008) and
calculation of the stability border in the range of the Reynolds number (§ 3.1), evaluation of
the pressure gradient, the Reynolds number of the bottom boundary layer, and comparison
to the results by Aghsaee et al. (2012) (§ 3.2). Proposed reasons for the discrepancy
between computed and measured instability are discussed (§ 3.3). The separation bubbles,
instability and vortex rolls are calculated (§ 3.4). The non-dimensional bed shear stress is
compared to a few results extracted from field measurements, at the turbulent scale (§ 3.5).
We draw some conclusions in § 4.

2. Method

2.1. Numerical wave tank
We present direct numerical simulations of internal-solitary-wave-driven instability and
vortex roll formation in the bottom boundary layer along a flat bottom. The two-phase
incompressible Navier–Stokes equations are solved in two dimensions by the low-order
finite-volume solver Basilisk (basilisk.fr); see Popinet (2003, 2009) and Lagrée, Staron
& Popinet (2011). Details of the elliptic solve are given in Popinet (2003, 2015) (where
in Popinet (2015) the elliptic problem is different to the one studied here but the method
used is the same). Details of the finite-volume approach and the advection scheme can be
found in Lagrée et al. (2011). The advection equation is integrated by second-order upwind
scheme (the parabolic scheme of Bell, Colella & Glaz (1989); Popinet 2003. The spatial
discretisation uses a quadtree scheme (Popinet 2009; van Hooft et al. 2018). Basilisk
uses the volume-of-fluid method to describe variable-density two-phase flows where the
interfaces are immiscible. The Basilisk multi-phase flow library has been validated by
several recent papers in Journal of Fluid Mechanics, e.g. Mostert, Popinet & Deike (2022)
(breaking waves), Alventosa, Cimpeanu & Harris (2023) (droplet impact), Riviére et al.
(2021) (turbulent bubble break-up), Mostert & Deike (2020) (dissipation in waves) and
Innocenti et al. (2021) (bubble-induced turbulence). The noise of the solver is estimated
in § 2.3.

The numerical wave tank has length L and depth H. The grid is composed of square
finite-volume cells. The size of a cell is �x along the horizontal, and �z along the vertical,
where �x = �z = ΔN = L/2N . Integer N gives the resolution. The thin boundary layer
along the bottom and its effects are resolved. A coarse grid with ΔN1 well above the
boundary layer is refined sequentially according to the tree-grid structure of Basilisk, with
ΔN1 above ΔN1+1, above ΔN1+2, and so on, until a finest resolution of ΔN2 near the bottom
(N2 > N1). The combined grid is termed N1–N2. The fine grid (ΔN2) is used up to 0.015
water depths above the bottom, and up to 0.02 water depths in the runs with kinematic
viscosity ν = 10−5.5 m2 s−1. In terms of the boundary layer thickness δ (defined in § 2.4),
the finest resolution is ΔN2/δ = 0.06 (see table 3 in § 3).

The simulations were run in parallel using shared memory (OpenMP) on the Norwegian
Research and Education Cloud (NREC) with eight or sixteen cores and eight or sixteen
threads. The CPU time varied between 12 and 16 h for N = 12, between 96 and 216 h for
N = 13, between 12 and 60 h for N1–N2 = 12–14 (sixteen cores and threads), between 84
and 96 h for N1–N2 = 12–15 (sixteen cores and threads), and between 48 and 168 h for
N1–N2 = 11–16 (sixteen cores and threads).

Horizontal and vertical coordinates (x, z) are introduced, with x = 0 at the position of
the gate used for the wave generation (§ 2.2), and z = 0 at the bottom. A rigid lid is placed
at z = H. There is no motion for z > H. The viscous boundary layer is modelled along
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Figure 1. Sketches of the wave tank: (a) initial condition, and (b) with generated wave. (c) Calculated
internal solitary wave at tc0/H = 6.42, a/H = 0.189, ν = 10−7 m2 s−1. (d) Same as (c) with a/H = 0.325,
ν = 10−6 m2 s−1. Separation point indicated by the red star. Vorticity ω/(c0/H) in colour scale. Contour lines
(black) of ω/(c0/H).

the bottom where the no-slip condition applies. The free-slip condition is applied at the
upper boundary (z = H), at the vertical end walls of the tank and at the gate used for wave
generation.

2.2. Generation
The fluid is stratified with a pycnocline of thickness h2. This is sandwiched between an
upper layer of depth h1 and density ρ1, and a lower layer of depth h3 and density ρ3. The
continuous density varies linearly within the pycnocline. The physical length 6.4 m and
depth 0.38 m of the numerical tank (L/H = 16.84), and the stratification and the wave
generation process, are the same as in the experiments by Carr et al. (2008). The gate is
located 0.6 m from the left tank wall (figure 1a).

Three different stratifications used in the experiments by Carr et al. are also used in the
present computations. We denote these by Strat.1, Strat.2 and Strat.3 (table 1). Stratification
1 has middle depth d � 0.16H and a thin pycnocline with h2 � 0.07H, where d = h1 +
(1/2)h2. Stratification 2 has the same middle depth but is twice as thick (0.14H). The third
pycnocline is relatively deeper (d = 0.21H) and of thickness 0.12H.

Upon release of an added volume (x0 × (d0 − h1)) of the light fluid trapped by the gate,
a leading nonlinear internal solitary wave is generated. The amplitude a is defined by the
maximum excursion of the interface separating layers 2 and 3 (figure 1b). The two-layer
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Internal-wave-driven vortex shedding

No. Date Strat. h3/h2/h1 aL aC aC/H L C θsep/δ Reθsep −Pxsep

(cm) (cm) (cm)

1a 050207 30.2/2.7/5.2 10.4 10.17 0.268 Yes Yes 0.107 29.1 0.109
1b 140207 Strat.1 30.8/2.5/4.7 10.1 10.00 0.263 No Yes 0.108 25.9 0.109
1c 30.8/2.5/4.7 — 9.41 0.248 Yes 0.112 23.8 0.102
1d 30.8/2.5/4.7 — 9.14 0.241 Yes 0.111 21.7 0.094
1e 30.8/2.5/4.7 — 8.63 0.220 No 0.113 19.8 0.087
2* 080207 Strat.2 29.3/5.2/3.5 11.0 11.4 0.300 Yes Yes 0.108 39.2 0.129
2a 060307 29.0/5.2/3.8 9.5 9.41 0.248 Yes Yes 0.109 25.7 0.104
2b 090207 29.2/5.3/3.7 9.2 9.24 0.243 No Yes 0.113 24.2 0.102
2c 29.3/5.2/3.5 — 8.94 0.235 Yes 0.114 22.9 0.098
2d 29.3/5.2/3.5 — 8.47 0.223 No 0.116 20.6 0.091
3a 210207 27.6/5.3/5.0 8.6 8.59 0.226 Yes Yes 0.115 25.7 0.090
3b 230207 Strat.3 28.0/4.7/5.5 8.3 8.29 0.218 No Yes 0.118 23.8 0.087
3c 28.0/4.7/5.5 — 7.81 0.206 No 0.121 21.5 0.079

Table 1. Experiment number and date in Carr et al. (2008, table 1), stratification (Strat.), and amplitude
measured in laboratory (aL) or computed (aC). Instability in laboratory (L) or computation (C). Numerical
values of θsep/δ, Reθsep , Pxsep defined in the text. Resolution N = 12–14, and Rew = 5.9 × 104.

approximation of the linear internal long-wave speed, used by Carr et al. (2008), is also
used here as reference speed: c0 = [g′d(H − d)/H]1/2, where g′ = g(ρ3 − ρ1)/ρ3, and g
denotes the acceleration due to gravity. The fully nonlinear wave speed c, obtained in the
experiment or simulation, is used to connect time and propagation distance.

In each physical or numerical experiment, a leading depression wave of mode one
is generated (figure 1c). Two smaller disturbances also of mode one propagate behind
the main wave. Strong vorticity on small-scale results from the velocity shear during
the generation and disperse along the pycnocline behind a slower wave of mode two
found at approximately nine water depths behind the main trough, a feature of the
wave-making procedure. Note that the main wave and the subsequent small mode
one waves exhibit neither shear instability nor mixing of the pycnocline in this case.
The wave amplitude is right above the threshold for vortex generation in the bottom
boundary layer. Figure 1(d) shows a stronger internal solitary wave with a/H = 0.325.
The wave causes both instability and vortex generation in the boundary layer, as well
as breaking due to shear instability in the pycnocline (e.g. Fructus et al. 2009; Lamb
2014).

2.3. Noise of the solver
The truncation error of the solver is the only perturbation that creates instability in
the computations. The noise is computed from the vertical velocity variable w(xi, z =
0.402H) = wi, where xi are all of the horizontal evaluation points. We evaluate the locally
averaged variable fi = [

∑j=i+n1
j=i−n1

wi]/(2n1 + 1), where n1 = 1 or 2, and the relative error
err = ‖w − f ‖2/‖w‖2 = const. × 10−5 (here, ‖ · ‖2 is the 2-norm). The const. equals 1.3
(n1 = 1, N1 = N2 = 13), 1.8 (n1 = 2, N1 = N2 = 13) or 2.0 (n1 = 1, N1 = N2 = 12), and
shows that the growth of the unstable modes arises from the truncation error of the solver
at the fifth decimal place.
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2.4. Boundary layer thickness
The Stokes boundary layer at the bottom below the wave phase is characterised by the
thickness δ, the kinematic viscosity ν, and the frequency of the wave ω0, where

δ = (2ν/ω0)
1/2. (2.1)

The frequency is estimated by ω0 = c0/Lw, with the wave speed c0 defined in § 2.2. The
wavelength is defined by the integral Lw = (1/a)

∫ ∞
−∞ η23 dx, where η23 is the vertical

excursion of the isoline separating layers two and three.

3. Results

3.1. Stability border
Carr et al. (2008) investigated transition to instability at Reynolds number
Rew = 5.8 × 104–6.6 × 104. Seven measurements are referred to by date in table 1,
column 2. The transition expressed in terms of the measured amplitude is found between
rows 1a,b (stratification 1), rows 2a,b (stratification 2) and rows 3a,b (stratification 3).
The computations show instability at a somewhat smaller amplitude, indicated in rows
1d,e of the table (stratification 1), rows 2c,d (stratification 2) and rows 3b,c (stratification
3). The comparison is quite good. The highest stable experimental wave and the lowest
unstable computed wave in row 3b (stratification 3) are matching (a = 8.3 cm). The
similar amplitudes are a = 9.2 cm (experiment) and a = 8.94 cm (computation) for
stratification 2 (rows 2b,c), and a = 10.1 cm (experiment) and a = 9.14 cm (computation)
for stratification 1 (rows 1b,d).

The kinematic viscosity in the computations is varied in the range ν = 10−n m2 s−1

with 5.5 < n < 7. The extended Reynolds number range is Rew ∼ 1.9 × 104–6.5 × 105.
Unstable waves with the lowest possible amplitude, and stable waves with the largest
possible amplitude, are searched by trial and error for the four values n = 5.5, 6, 6.5
and 7. Unstable waves are judged by the presence of small unstable disturbances in
the computations. Two separation bubbles and the onset of instability are discussed and
visualised in § 3.4 and figures 4–6 below. A linear fit to a logarithmic relationship of the
eight calculated amplitudes of the transition obtains

log10 a = log10 a0,C − m1 log10(Rew/Rew,0), (3.1)

with results presented in figures 2(a–c). Here, a0,C estimates the computed threshold
amplitude of instability for Rew,0 = c0H/ν0, with ν0 = 10−6 m2 s−1 (fresh water at
20 ◦C) such as in the Carr et al. experiments. The computed a0,C/H (table 2, column
2) and experimental a0,L/H (table 2, column 1) – obtained by an average between the
experimental waves right above and below instability – show very good agreement. The
relative difference between computation and experiment is less than 1 % for stratifications
2 and 3, and 8 % for the thin pycnocline of stratification 1, while Carr et al. have suggested
an accuracy of 2 % of the experimental amplitude measurement. The threshold decreases
according to Re−m1

w , where exponent m1 � 0.13 in practice is the same for stratifications
1 and 2, which are of the same middle depth. The deeper pycnocline of stratification 3 has
a greater decay exponent, m1 = 0.23. The computed threshold amplitude decreases by a
factor of 1.6 for stratifications 1 and 2, and by a factor of 2.2 for the deeper stratification 3,
when Rew increases by a factor of 101.5 � 31.6.

The experimental runs of a previous paper by Carr & Davies (2006) with a
smaller Reynolds number Rew ∼ 2.4 − 3.4 × 104 showed no instability in the bottom
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Figure 2. Threshold of instability. (a–c) Plots of a/H versus Rew (both log scale). Solid line shows fit to
(3.1). (d) Plots of a0(Rew/Rew,0)

−m1 (black lines) and C0(Rew/Rew,0)
−m3 (red lines) versus n. (e–h) Plots

of Pxsep versus Reθsep (both log scale). Solid line shows fit to B0(Reθsep )
−m2 . In (h), Aghsaee et al. (2012),

Re−0.51
θsep

(thick solid line). Present computations for Strat.1 (dashed), Strat.2 (thin solid), Strat.3 (dash-dotted).

Symbols in colour with ν = 10−n m2 s−1: n = 5.5 (yellow), 6 (red), 6.5 (green), 7 (blue); unstable shown
filled, stable shown open, × threshold for instability measured by C08. In (a) and (c), unstable (•) and stable
(◦) observations: 1 (Sakai et al. 2020), 2 (Thiem et al. 2011), 3 (Carr & Davies 2006), 4 (Bourgault et al. 2007),
5 (Quaresma et al. 2007), 6 and 7 (Zulberti et al. 2020).

boundary layer. In a re-computation of one of the experiments (labelled 20538), Thiem
et al. (2011) increased the amplitude by 14 % and obtained instability. The parameters of
the unstable wave were a/H = 0.30, d/H = 0.2, Rew = 2.6 × 104, while the stable wave
measured in the experiments had a/H = 0.27, d/H = 0.2, Rew = 2.4 × 104 fitting at each
side of the predicted stability border of stratification 3 (figure 2c).

The amplitude and Reynolds number of unstable calculations (Thiem et al. 2011; Sakai
et al. 2020), field observations (Bourgault et al. 2007; Quaresma et al. 2007; Zulberti et al.
2020) and stable measurements (Carr & Davies 2006) are included in figures 2(a,c).

3.2. The pressure gradient and Reynolds number of the bottom boundary layer
Aghsaee et al. (2012) have discussed the threshold of instability in terms of the pressure
gradient and the momentum thickness Reynolds number of the boundary layer beneath
the wave. They were motivated by studies in aerodynamic flows (e.g. Gaster 1967;
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a0,L/H a0,C/H m1 B0 m2 C0 m3 Stratification d/H h2/H

0.269 0.249 0.131 0.629 0.595 0.098 0.202 Strat.1 0.16 0.07
0.245 0.243 0.135 1.082 0.752 0.102 0.231 Strat.2 0.16 0.14
0.222 0.221 0.228 1.400 0.906 0.083 0.338 Strat.3 0.21 0.12

Table 2. Wave variables at threshold for instability. Amplitude a0,L/H obtained from the Carr et al.
experiments, a0,C/H calculated from the fit (3.1), exponent m1 from (3.1), B0 and m2 from fit to Pxsep =
B0(Reθsep )

−m2 , C0 and m3 from fit to Pxsep = C0(Rew/Rew,0)
−m3 . Stratifications 1–3 with d = h1 + h2/2.

Pauley et al. 1990). Both quantities were evaluated at the separation point of the separation
bubble, at xsep at the bottom. It appears from their paper that only one separation bubble
was calculated. The present evaluation of xsep refers to the separation point of bubble one.

The pressure gradient is expressed in non-dimensional form by Pxsep = (1/ρ0g′)
(∂p/∂x)|xsep , where p denotes pressure. The momentum thickness of the boundary layer
is evaluated by θsep = ∫ Z∞

0 u(U∞ − u)|xsep dz/U2∞, where U∞ is the horizontal velocity,
and Z∞ is the vertical coordinate outside of the boundary layer at the position of xsep. The
momentum thickness Reynolds number at xsep is calculated by Reθsep = U∞θsep/ν.

The boundary layer is resolved by fine grid resolution obtaining convergence. Section
2.1 describes the discretisation of the numerical wave tank and the bottom boundary
layer. The resolution varies from N1 = 13 and N1–N2 = 12–14 for the thickest boundary
layer (ν = 10−5.5 m2 s−1) to N1–N2 = 12–15 and N1–N2 = 11–16 for the thinnest (ν =
10−7 m2 s−1). The finest resolution of the boundary layer of �x = �z = ΔN2 � 0.06δ is
used up to z = 0.015H (up to 0.02H for ν = 10−5.5 m2 s−1).

The variables xsep, u/U∞, θsep, Reθsep and Pxsep are calculated. The functions u/U∞
and u(U∞ − u)/U2∞ for the marginally unstable cases are illustrated in figure 3 for each
ν = 10−n m2 s−1 (5.5 < n < 7) with the two different resolutions. Values of Reθsep have
relative discrepancies 6.9 % (n = 5.5), 3 % (n = 6), 1.9 % (n = 6.5) and 0.8 % (n = 7)
(see table 3). Calculations of the other variables are convergent. Note from tables 1
and 3 that θsep � (0.11 ± 0.01)δ in all cases. Note further that Reθsep = 0.11U∞δ/ν �
0.16U∞/(νω0), where U∞ and ω0 both depend on the relative depth of the pycnocline;
see § 3.3.1. This questions the assertion that Pxsep is function of just Reθsep . The present
calculations document that this is not a valid assumption for the case of the bottom
boundary layer beneath internal solitary waves of depression.

The lowest possible unstable wave and the greatest possible stable wave are computed
for n = 5.5, 6, 6.5 and 7. The results fitted to Pxsep = B0(Reθsep)

−m2 show that coefficient
B0 and exponent m2 both depend on depth and thickness of the pycnocline; see
figures 2(e–h) and table 2, columns 4 and 5. A lower threshold is observed for the deeper
pycnocline or for the thicker pycnocline (figure 2h). The figure also plots the function
Pxsep = (Reθsep)

−0.51 as proposed by Aghsaee et al. (2012). This is insensitive to the depth
and thickness of the pycnocline, and suggests a very conservative threshold in terms of a
large amplitude.

Their proposed universal stability criterion is contrary to the experiments by Carr et al.
and the present computations. A corresponding fit to Pxsep = C0(Rew/Rew,0)

−m3 suggests
that C0 and m3 both depend on the depth of the pycnocline. The instability threshold is only
weakly sensitive to the thickness h2/H of the pycnocline (figure 2d). The calculated Reθsep
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Figure 3. Horizontal velocity u/U∞ and u(U∞ − u)/U2∞ in the boundary layer, for the runs in table 3. Blue
dotted line shows N = 13, black dashed line shows N1–N2 = 12−14, red dashed line shows N1–N2 = 12−15,
and blue solid line shows N1–N2 = 11−16. Evaluation at xsep.

N1–N2 ΔN2/δ aC/H xsep/H θsep/δ Reθsep −Pxsep n Rew

13–13 0.120 0.298 −0.713 0.101 20.5 0.128 5.5 1.9 × 104

12–14 0.060 0.297 −0.716 0.096 19.2 0.139 5.5 1.9 × 104

12–14 0.122 0.235 −0.568 0.114 22.9 0.098 6.0 5.9 × 104

12–15 0.061 0.235 −0.561 0.116 23.6 0.097 6.0 5.9 × 104

12–15 0.111 0.223 −0.526 0.114 37.2 0.088 6.5 1.9 × 105

11–16 0.055 0.223 −0.571 0.117 36.7 0.090 6.5 1.9 × 105

12–15 0.204 0.186 −0.461 0.113 48.5 0.062 7.0 5.9 × 105

11–16 0.102 0.188 −0.561 0.123 48.9 0.063 7.0 5.9 × 105

Table 3. Computed waves, right above the instability threshold, as function of Rew and grid refinement
(N1–N2), for Strat.2, with ν = 10−n m2 s−1.

increases according to Reθsep ∼ Re0.231
w (stratification 1), Reθsep ∼ Re0.256

w (stratification 2)
and Reθsep ∼ Re0.095

w (stratification 3), at the threshold of instability. Present calculations

disagree with Aghsaee et al. (2012, their eq. (5.2)), which suggests that Reθsep ∼ Re1/2
w .

3.3. Computed versus measured instability
Aghsaee et al. (2012) were not able to reproduce the threshold of instability as measured
by Carr et al. (2008) for the case of a flat bottom and Rew ∼ 5.8 × 104–6.6 × 104. They
proposed several reasons for the discrepancy: (a) the laboratory-observed instabilities
are primarily three-dimensional; (b) errors in the estimation of the horizontal velocity
below the wave and the wavelength; (c) lack of finite-amplitude perturbations in the
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T.J. Ellevold and J. Grue

numerical solution from which instabilities will grow through the phenomenon of
subcritical transition; and (d) existence of an oscillatory background barotropic flow in
laboratory experiments generated during the gate release, which may have influenced
vortex generation.

In response to the possible reasons suggested by Aghsaee et al. (2012), we note that
present calculations: (a) are two-dimensional; (b) solve the full Navier–Stokes equations,
and include convergent estimates of the wave-induced velocities and wavelength;
(c) do not, however, include finite-amplitude perturbations; and (d) mimic the wave
generation procedure of the laboratory experiments by Carr et al. (2008). At the threshold
of the vortex formation, the computations document that there is no vorticity at the position
of the wave resulting from the generation (figure 1c).

Our calculations obtain very accurately the threshold that was measured by Carr et al.
(2008), and suggest that the onset of instability in the wave tank was predominantly
two-dimensional. The calculated instability appears because of the truncation error of
the solver. This suggests that the instability may appear spontaneously because of small
perturbations of the experimental waves. Note that Sakai et al. (2020) calculated this
kind of instability by large eddy-simulation in three dimensions. They found that the shed
vortices were initially two-dimensional.

The instability threshold depends on the depth of the pycnocline and is found in both
experiment and computation. The instability threshold is here computed for a wider
Reynolds number range. The computed internal solitary waves of finite amplitude have
been tested with excellent fit to the exact two- and three-layer models by Michallet
& Barthélemy (1998), Grue et al. (1999, 2000), Camassa et al. (2006) and Fructus
et al. (2009) (results not shown). Our calculations document that the instability criterion
proposed by Aghsaee et al. (2012) is not universal.

3.3.1. Instability threshold dependence of the pycnocline depth
The horizontal velocity below the trough (U∞,0) depends on the depth of the
pycnocline. The dependency may be illustrated at large Reynolds number where the
instability threshold depends on the weakly nonlinear amplitude. The KdV theory
is then a valid approximation. The velocity becomes UKdV

∞,0/c0 � a/(H − d). The
velocity scale of the bottom boundary layer is δω0, with ω0 = c0/Lw. The wavelength
estimated by the KdV approximation obtains LKdV

w /d = 2(3a/4H)−1/2[1 − d2/(H −
d)2]−1/2 (�ρ/ρ � 1) (e.g. Grue et al. 1999). The dimensionless velocity estimated by
UKdV

∞,0/(δω0) is thus a function of the depth of the pycnocline d/H and the amplitude
a/H. Moreover, the Reynolds number evaluated at the separation point is a function of
d/H since Reθsep � 0.11U∞δ/ν (table 3), where U∞ and δ are functions of d/H and a/H.
Similar results for waves with a/H outside the KdV range are computed.

3.4. Separation bubbles and instability
Two separation bubbles of anticlockwise vorticity form in the boundary layer behind the
wave trough. The first is located in the wave phase, and the second is found downstream of
the wave. They are calculated at the onset of instability in figure 4. The bubbles separate for
the larger Rew = 5.9 × 105, and partially overlap for Rew = 5.9 × 104, but merge for the
smaller Rew = 2 × 104 (Diamessis & Redekopp 2006). Bubble one has width 2.2H–3.5H,
and bubble two has width 10H. The height of bubble one is slightly less than half of the
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Figure 4. Vorticity plot of separation bubbles, with ω(c0/H) in colour scale. Amplitude right above threshold
of instability in Strat.2. Instability shown by red arrow, separation point of bubble one shown by red ∗. (a) Run
2c, a/H = 0.235, Rew = 5.9 × 104; (b) a/H = 0.188, Rew = 5.9 × 105.

w1/H β1/δ w2/H β2/δ a/H Rew

3.50 0.43 10.4 0.78 0.235 5.9 × 104

2.20 0.46 10.1 0.78 0.165 5.9 × 105

Table 4. Width w and height β of the separation bubbles one (index 1) and two (index 2) calculated right
above the threshold of instability, for amplitude a/H and Reynolds number Rew, in stratification 2.

αil0 l0/δ λ0/δ λv,0/δ Reδ Rew Stratification

5.2 80 5.3 5.4 490 5.9 × 104 Run 2∗
6.6 80 4.2 3.5 1630 5.9 × 105 Strat.2
5.7 80 5.1 5.1 1650 6.5 × 105 Strat.3

Table 5. Initial instability: growth rate times distance of growth (αil0), distance of growth (l0/δ), wavelength
during growth (λ0/δ), separation length between initial rolls (λv,0/δ), Reδ , Rew and stratifications 2 and 3 for
unstable waves of amplitude a/H = 0.30.

boundary layer thickness, and the height of bubble two is 0.78 times the boundary layer
thickness. The heights do not depend on the scale (table 4). Flow reversal occurs closer to
the bottom and decreases in strength when the Reynolds number increases.

The instability emerges in the back part of bubble one and moves to the front part when
the amplitude increases. A wavelength (λ0) of the dominant unstable mode is defined
(table 5). The amplitude increases approximately exponentially according to the rate αi,
and takes place over a short distance l0, where l0/δ � 80 is independent of the scale
(figure 5). The large vertical velocity is confined mainly to the wave phase when Rew
grows. A series of vortex rolls of separation length λv,0 � λ0 forms. The growth then
slows down, and the instability saturates. The distance between the downstream vortices
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Figure 5. Vertical velocity w/c0 versus horizontal position, with a/H = 0.30 in Strat.2, where inserts show
estimated amplitude of exponential growth (red line): (a) z/H = 0.0226, Rew = 5.9 × 104, run 2∗; (b) z/H =
0.00218, Rew = 5.9 × 105.
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Figure 6. Vorticity ω/(c0/H) (colour scale), with a/H = 0.30 in Strat.2: (a) Rew = 5.9 × 104, run 2∗;
(b) Rew = 5.9 × 105.

increases. Figure 6 illustrates the instability and the vortex roll-up. The vortex rolls ascend
vertically beyond the boundary layer. The vorticity strength reduces with the downstream
position. No new instability occurs in bubble two.

3.5. Bed shear stress
The calculated bed shear stress τ is of the form τ/(ρc2

0/2) � A0 sin[kv,0(x − x̂)] and
oscillates according to the wavenumber kv,0 = 2π/λv,0 of the vortex rolls, where x̂ denotes
the forward position of the oscillation (figure 7). In the sense of Froude number scaling,
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Figure 7. Shear stress τ (blue line) at the bottom versus horizontal position, with a/H = 0.30, and averaged
τ (red line): (a) Rew = 5.9 × 104, Strat.2, run 2∗; (b) Rew = 5.9 × 105, Strat.2; (c) Rew = 6.5 × 105, Strat.3.

the linear long-wave speed is used to scale the stress (e.g. Boegman & Ivey 2009; Xu
& Stastna 2020). The stress amplitude is strong in the wave phase and during the vortex
roll-up phase, and occurs over a distance of 1–1.5 water depths but is weak otherwise.
The maximum strength A0 is �1.5 × 10−3 for the smaller Rew, and �5 × 10−3 for the
higher Rew. The fluctuating stress has a root-mean-square estimate A0/

√
2. The strength

and oscillation frequency of the stress both increase when the scale increases. A similar
growth of the bed shear stress amplitude with the scale has been found in the case of
internal waves of elevation interacting with a weak slope; see Xu & Stastna (2020). The
Rew value was 1.5–6 × 104 in their calculations.

3.5.1. Field observations
The bed shear stress has been estimated in field measurements by the Reynolds stress
method and the quadratic drag method using acoustic doppler velocimetry. Both methods
assume that a log layer exists and extends to the measurement height above the bottom.
Measurements on the Australian North West Shelf by Zulberti et al. (2020) showed
enhanced turbulent shear stress below nonlinear internal solitary waves, and maximum
stress 1 Pa. A non-dimensional shear stress becomes 1 Pa/(ρc2

0/2) � 3 × 10−3, where
c0 � 0.77 m s−1 and Rew = 1.9 × 108 are computed from Zulberti et al. (2020).
Measurements on the northern shelf of Portugal by Quaresma et al. (2007) found
maximum bed shear stress 0.2 Pa below the strong internal waves. A non-dimensional
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shear stress becomes 0.2 Pa/(ρc2
0/2) � 4 × 10−3, where c0 � 0.34 m s−1 and Rew =

2 × 107 are calculated from Quaresma et al. (2007). The strong shear stress measured in
the field occurs in the wave phase. The calculated laminar shear stress also occurs below
the wave, in the vortex roll-up phase. The relative wave amplitude and pycnocline depth
of the field measurements and the model waves are similar (a/H � 0.3, d/H � 0.2). The
non-dimensional shear stress is also similar.

4. Conclusions

Instability and vortex shedding in the bottom boundary layer beneath internal solitary
waves of depression have been calculated by finite-volume code Basilisk in two
dimensions. The modelled waves compare very well to exact solutions. The range of the
stratification Reynolds number is Rew = c0H/ν ∼ 1.9 × 104–6.5 × 105.

Our calculations obtain very accurately the threshold of instability that was measured
by Carr et al. (2008). The very good agreement suggests that the instability in their wave
tank experiments was predominantly two-dimensional. The calculated instability is caused
spontaneously by the truncation error of the solver. This suggests that small perturbations
caused the instability in the wave tank experiments. Note that Sakai et al. (2020) calculated
this kind of instability by large-eddy simulation in three dimensions. They found that the
shed vortices were initially two-dimensional.

We have computed the instability threshold and vortex formation for a wider Reynolds
number range. The instability is found to depend on the depth of the pycnocline, and
has a stronger decay with Rew for a deeper pycnocline than for a shallower pycnocline.
For example, the threshold amplitude decays according to (Rew)−m1 , where m1 = 0.23
when d = 0.21H, and m1 = 0.13 when d = 0.16H. The instability criterion proposed by
Aghsaee et al. (2012) is re-calculated. Their criterion is not universal and is also very
conservative in the sense that only waves of very large amplitude are unstable.

The computations show two separation bubbles. The first is located in the wave phase
behind the trough. The second is found well behind the wave phase. The instability
emerges as a tiny short-wave disturbance in the back part of bubble one, and moves to
the front part when the amplitude increases. Instability and vortex rolls appear in the wave
phase behind the trough. No new instability occurs in bubble two.

The vortex formation causes an oscillating bed shear stress. The stress amplitude is
strong in the wave phase and during the roll-up phase, and occurs over a distance of 1–1.5
water depths but is weak otherwise. The strong shear stress measured in the field also
occurs in the wave phase (Quaresma et al. 2007; Zulberti et al. 2020). The shear stress
computed in the laminar model and measured in the field has similar non-dimensional
value (scaled by ρc2

0/2) when the non-dimensional amplitude and relative pycnocline
depth are similar (a/H � 0.3, d/H � 0.2).
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ABSTRACT2

Internal solitary waves (ISWs) of large amplitude moving in the coastal ocean induce sizeable3
horizontal velocities above the sea bed. In turn, these give rise to instability and vortex formation in4
the bottom boundary layer (BBL), and sediment resuspension and concentration maintenance in5
the water column. We present two-dimensional laminar simulations in a numerical tank suitable for6
internal wave motion, including the processes of the BBL. The combined wave and vorticity field7
encounters a cloud of tracer particles near the bottom. The tracer particles are moved vertically8
because of the vorticity field during a first encounter. The reflected wave intercepts a second9
time with the tracer particles, which are then moved further vertically. Numerical experiments10
with a kinematic viscosity of 1/100 cm2s−1 or 1/1000 cm2s−1 are used to manipulate the scale of11
the Reynolds number at a moderate and great laboratory scale. The final vertical position of the12
tracer particles is found below a vertical level of approximately 0.23 times the water depth (H)13
after the second passage. The result is independent of the scale. This vertical position matches14
available field measurements of a summer benthic nepheloid layer reaching a height of 0.19H.15
The laminar model predictions compare very well to the ISW-driven vortex formation measured16
in a three-dimensional laboratory wave tank. Convergence of the calculated vortex formation is17
documented.18

Keywords: Internal waves, vortex formation, Lagrangian tracer particle trajectories, probability distribution, upscaling to field19
dimension20

Number of words: ∼6300. Number of figures and tables: 10 figures and 2 tables.21

1 INTRODUCTION

Internal solitary waves (ISWs) are commonly observed in the coastal ocean and are generally driven by22
the wind or the tide (Helfrich and Melville, 2006). The ISWs are driven by the acceleration of gravity23
(g = 9.81 ms−2) and may move along the pycnocline of the ocean located at a middle depth d, which is24
small compared to the local water depth H , implying the dimensionless ratio d/H . The density jump across25
the pycnocline (∆ρ) relative to the density of the water below the pycnocline (ρ3) is typically small, with a26
dimensionless value of ∆ρ/ρ3 << 1. In practice, ∆ρ/ρ3 is 1/1000. The wave motion and the velocity field27
are functions of the wave amplitude a, obtaining another dimensionless variable a/H . The wave-driven28
velocities scale according to a reference velocity c0. This is proportional to

√
dg∆ρ/ρ3 times a function of29
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d/H . As regards the bottom boundary layer effect, it is commonly characterized by the Reynolds number30
based on the total water depth, the wave speed c0, and the kinematic viscosity ν, obtaining Rew = c0H/ν.31

ISWs are often highly nonlinear. The theories, like weakly nonlinear Korteweg–de Vries (KdV) -type32
theories, have played a primary role in explaining the essential features of the observed wave, even though33
those theories do not always provide accurate quantitative details. Grue et al. (1999) conducted laboratory34
experiments of solitary waves propagating in a two-layer fluid. They compared the weakly nonlinear KdV35
theory and a fully nonlinear interface model towards the experimental results. Having a small amplitude,36
both theory and model compared excellently. However, above a certain amplitude threshold, the weakly37
nonlinear theory exhibits systematic deviation from the experiments where the fully nonlinear model still38
compared excellently for all quantities measured.39

Above the pycnocline, the velocities have a dominant horizontal component, a substantial fraction of40
the wave propagation velocity. Below the pycnocline, the horizontal velocity is opposite of the wave41
propagation and is also a substantial fraction of the wave propagation speed. The vertically integrated42
horizontal velocity is zero and satisfies the mass balance. There are also vertical velocities. These are43
proportional to the horizontal gradient of the displaced pycnocline along the wave propagation times the44
wave speed.45

The wave-induced boundary layer underneath an ISW of depression separates in the adverse pressure46
gradient region behind the trough. Strong enough instability may give rise to the spontaneous onset of47
vortex shedding (e.g., Diamessis and Redekopp, 2006; Carr et al., 2008; Aghsaee et al., 2012; Sakai et al.,48
2020). The vortex structures are formed behind the wave trough, ascend vertically into the water column,49
and then propagate downstream in the same direction as the mother wave but with a much slower speed50
(Carr et al., 2008). The instabilities in the bottom boundary layer may contribute to the resuspension of51
particles due to, e.g., substantial variation of the shear stress (e.g., Bogucki and Redekopp, 1999; Boegman52
and Stastna, 2019). The ability of nonlinear internal waves to move sediments on the bottom vertically in53
the water column has been observed by Bogucki et al. (1997), and has been further studied model-wise by,54
e.g., Bogucki and Redekopp (1999), and in field observations, e.g., Bourgault et al. (2007), Quaresma et al.55
(2007), Zulberti et al. (2020), see also the review by Boegman and Stastna (2019).56

Large eddy simulations (LES) in three dimensions (3D) of the ISW-driven separated boundary layer and its57
development were carried out by Sakai et al. (2020) for a Reynolds number similar to our (Rew = 1.6 ·105).58
A strong wave of a/H = 0.35 was moving on a counter-current of the same magnitude as the wave59
propagation speed, implying that the excitation is stronger than in our cases. The LES computations were60
compared to two-dimensional direct numerical simulations finding that the vortex generation was essentially61
two-dimensional down to a distance of six water depths behind the wave trough. Further downstream,62
vortex breakup and degeneration into turbulent clouds, and relaxation to a spatially developing turbulent63
boundary layer were found to take place.64

In this research, we investigate the ISW-driven vortex formation and tracer particle displacements in the65
bottom boundary layer. We conduct laminar two-dimensional numerical simulations of a set of laboratory66
experiments by Carr et al. (2008) where this kind of physical effect has been measured. Several questions67
are addressed, including:68

1. As regards the two-dimensional laminar method: How well can the model reproduce the laboratory69
measurements conducted in a three-dimensional (3D) wave tank? In particular, how well can the model70
calculations reproduce the measured vortices at the bottom behind the wave?71

2. As regards accuracy: How close are prediction and measurement?72
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3. As regards flow and motion properties: How can the model be used to evaluate quantities which have73
not been measured in the laboratory?74

4. As regards the tracer particle motion: The wave- and boundary-layer-induced tracer particle motion is75
of interest to study and visualize. This motion was not measured in the laboratory experiments, even76
though the experimental visual tracking method is based on neutrally buoyant tracer particles added to77
the fluid.78

5. As regards the vertical tracer particle displacements: In the shallow ocean, the particles at the sea bed79
contain organic matter that is important to the marine production taking place in the euphotic zone in80
the upper part of the water column. By the present model calculations, we investigate how high up in81
the water column the tracer particles may be transported. The wave may intercept a cloud of tracer82
particles once and twice.83

6. Finally, we compare the simulated results with available field observations.84

In section 2, we present the numerical wave tank, wave generation, wave characteristics, and the Stokes85
boundary layer thickness. Further, details of the two-dimensional numerical solver are described. The86
grid resolution and information regarding the Lagrangian tracer particles used in this study are provided.87
Section 3 presents the obtained results, including answers to the research questions posed. In section 3.1,88
similarities between the vortex formation in simulation and experiment at Rew = 5.9 · 104 are presented.89
A convergence study of the calculated vortex separation distance and the vortex strength is performed. In90
section 3.2, we present the Lagrangian tracer particle displacements and paths. The vertical tracer particle91
distribution is calculated. The results are briefly compared to available field measurements in section 3.3,92
and conclusions are given in section 4.93

2 METHOD

This article presents numerical simulations of non-linear internal solitary waves (ISWs) of large amplitude,94
as visualized in figure 1b, where the wave travels from left to right with a speed c. The wave-induced95
velocity field beneath the wave interacts with the bottom, initiating instabilities in the viscous bottom96
boundary layer (BBL) (e.g., Diamessis and Redekopp, 2006; Carr and Davies, 2006; Aghsaee et al., 2012;97
Sakai et al., 2020). Tracer particles are implemented close to the bottom in order to investigate their motion98
in the fluid induced by the wave (Boegman and Stastna, 2019).99

2.1 The numerical wave tank100

We are following the same setup of the wave tank and the wave generation procedure as conducted in101
the laboratory experiments by Carr et al. (2008). The numerical wave tank is filled with a stratified fluid.102
The upper layer has a depth of h1 and a density of ρ1. The pycnocline has a thickness of h2 and density103
ρ(z), which varies as a linear function of z. The lower layer has thickness h3 and density ρ3. The density is104
continuous throughout the vertical. The total water depth is H = h1 + h2 + h3. Figure 1a is a sketch of105
the wave tank. The amplitude a is defined as the maximum excursion of the isoline separating layers two106
and three. The middle depth of the pycnocline is defined by d = h1 + h2/2. In the present investigation,107
two different stratifications are studied, where stratification one, denoted by Strat. 1, has d/H = 0.16, and108
stratification two, denoted by Strat. 2, has d/H = 0.21. These two stratifications correspond to two of the109
pycnocline depths studied by Carr et al. (2008). In present calculations, the thickness of the pycnocline is110
h2 ∼ 0.12H − 0.14H , and the wave amplitude a/d ∼ 1.45− 1.87.111
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The physical dimensions of the 2D numerical wave tank are the same as those used in the laboratory112
setup by Carr et al. (2008). The length L = 6.4 m and depth H = 0.38 m provide a non-dimensional length113
of L/H = 16.84.114

2.2 Generation and wave characteristics115

To generate ISWs in the tank (physical or numerical), the trapped volume method is applied where a116
large volume V , given by (x0 × (d0 − h1)) of density ρ1, is added behind a gate. The gate is located at a117
distance of ∆x0 = 0.6 m from the left tank wall. Its horizontal position defines x = 0, where the horizontal118
x-axis is along the bottom. The total volume can be modified by varying the depth d0, generating ISWs119
with different amplitudes, by releasing the volume. In the laboratory, the gate is removed by quickly lifting120
it upwards. In the numerical simulations, the gate is imposed before time zero, and after time zero, we121
assume it is instantaneously removed. A leading wave of mode 1 is generated in each experiment (physical122
or numerical).123

The wave frequency is defined by ω̃ = c0/Lw, where c0 is the linear long wave speed given by the124
two-layer approximation125

c0 =

√
g(h3 + h2/2)(h1 + h2/2)(ρ3 − ρ1)
ρ1(h3 + h2/2) + ρ3(h1 + h2/2)

∼=
√
g′d(H − d)

H
, (1)

where g′ = g(ρ3 − ρ1)/ρ3 and ∆ρ/ρ3 � 1. The wavelength of the ISW is defined by126

Lw =
1

a

∫ ∞

−∞
η(x)dx, (2)

where η denotes the vertical displacement of the isoline separating layers two and three, and the amplitude127
a is defined above.128

The Reynolds number based on the water depth, alternatively denoted the wave Reynolds number, is a129
helpful quantity used by a group of researchers studying the combined wave and boundary layer effects130
(e.g., Diamessis and Redekopp, 2006; Carr et al., 2008; Aghsaee et al., 2012; Sakai et al., 2020). The131
quantity is defined by Rew = c0H/ν where ν is the kinematic viscosity of the water. In the laboratory132
experiments by Carr et al. (2008), the Rew was approximately 60 000. In the field scale, Rew is 108 (e.g.,133
Zulberti et al., 2020). The present calculations are carried out with Rew between 60 000 and 600 000. The134
calculations at Rew = 60 000 are carried out with ν = 1/100 cm2s−1 for fresh water at 20 ◦C. In the135
calculations at Rew = 600 000, the ν is manipulated with a value put to ν = 1/1000 cm2s−1. Alternatively,136
the water depth may be increased to H̃ = 102/3H , c̃0 = 101/3c0, and ν = 1/100 cm2s−1 producing137
Rew = 600 000. Additionally, we define a boundary layer Reynolds number, Reδ = δU∞,0/ν, where U∞,0138
is the free stream horizontal velocity underneath the wave trough, right above the bottom, and δ is the139
boundary layer thickness, defined in section 2.3 below.140

The wave travels along the pycnocline from left to right. The nonlinear celerity is c = ∆x/∆t. There is141
no background current. A snapshot of an ISW at time tc0/H = 6.4 is visualized by its nondimensional142
vorticity field in figure 1b (corresponding to run 1 in table 1). The simulation is run with a kinematic143
viscosity of ν = 1/100 cm2s−1. The wave drives the instability and vortex formation in the BBL, in144
addition to the shear instability in the pycnocline (e.g., Fructus et al., 2009; Lamb, 2014). As the volume is145
released, a local mixing of the fluid taking place across the gate position is confined to a small volume146
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(physical or numerical). This is set into horizontal motion along the pycnocline, generating a short and147
slower wave of mode 2, observed at approximately nine water depths behind the main wave. Such a wave148
is measured by Sveen et al. (2002, their figure 17) and more recently studied by Carr et al. (2019).149

The ISW propagating at small speed c, proportional to (∆ρ/ρ3)
1/2, implies that the effect on the free150

surface elevation is small. The vertical velocity is approximately zero at the free surface. The small free151
surface elevation may be calculated a posteriori from the Bernoulli equation giving η = (1/2g)(c2 − u2),152
where u is the horizontal speed driven by the ISW at the free surface (e.g., Fructus and Grue, 2004). On153
the laboratory scale, the wave speed is 0.26 ms−1, u/c << 1 for the waves of large amplitude (and the154
wavelength is approximately 1 m). This obtains a surface elevation of 0.3 cm while the internal wave155
amplitude is 11 cm. Corresponding estimates of ISWs in the coastal ocean are: wave speed of 0.5 ms−1, a156
surface elevation of 1 cm, while the internal wave amplitude is typically 30 m. The internal waves are 500157
m to 1000 m long.158

2.3 Boundary layer thickness159

The Stokes boundary layer thickness at the bottom beneath the wave phase is characterized by δ =160 √
(2ν/ω̃), where ω̃ is defined in § 2.2.161

2.4 Finite Volume Solver162

We present numerical simulations of ISWs, utilizing the open-source software Basilisk (Popinet and163
collaborators, 2013–2023). The important part of the calculation is to resolve the wave-driven viscous164
boundary layer effect at the bottom of the fluid domain. Basilisk is a second-order finite volume solver,165
where the two-phase incompressible Navier-Stokes equations are solved and is the successor of Gerris166
(Popinet, 2003, 2009). Basilisk provides ready-to-use finite volume solvers for fluid dynamics and has167
been widely used in calculations and simulations of several problems, i.e., tsunamies (e.g., Popinet,168
2015), shallow water, wave breaking and surface flows (e.g., Popinet, 2011; Mostert and Deike, 2020;169
Popinet, 2020), incompressible two-phase flow (e.g., López-Herrera et al., 2019), and atmospheric turbulent170
boundary layer (e.g., van Hooft et al., 2018).171

In this two-dimensional (2D) study, the incompressible, non-hydrostatic equations in a Cartesian reference172
frame become,173

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + ρa, (3)

∂ρ

∂t
+∇ · (ρu) = 0, (4)

∇ · u = 0, (5)

where ρ, u = (u,w), p and ν are the density, velocity vector, pressure and kinematic viscosity, respectively.174
The vector a = −gk = g(0,−1), where g is the acceleration due to gravity. Further, t is time, and (x, z)175
are the (horizontal, vertical) coordinates. The Navier-Stokes equations determine the pressure and the176
velocity field driven by the wave where mass conservation is included, additionally to set the effect of177
viscosity in the viscous boundary layer at the bottom.178

The field equations are solved by means of a multilevel Poisson solver. The Bell-Colella-Glaz (Bell et al.,179
1989) advection scheme integrates the momentum equation. The viscous terms are treated implicitly. The180
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solver employs a geometric volume of fluid method (VOF) to reconstruct the interfaces by the continuous181
change of the fluid properties; density and viscosity. The cells that include an interface are treated by182
introducing the volume fraction of the two fluids, f(x, z, t). The implementation of the numerical scheme183
is briefly described below. The time integration (supplied in Appendix A.1) adheres to the standard Basilisk184
setup, with a slight modification where the dynamic viscosity is harmonically averaged. For more details,185
see the Basilisk web page (basilisk.fr), Popinet (2003, 2009), and references therein.186

2.5 The domain187

By default, Basilisk defines a computational domain with sides L. Our numerical wave tank is defined as188
a part of this spatial domain, with horizontal length L and vertical height H (< L). At z = H (z = 0 at the189
tank bottom, see figure 1a), a rigid lid is placed, implying no motion in the domain z > H . The effect of190
viscosity is taken into account within the fluid and at the bottom. This means that the no-slip condition191
is applied at the lower boundary. Free-slip conditions are used at the upper boundary, vertical end walls,192
and gate. The depth provides the physical length scale in the calculations. The time and velocity scales are193 √
H/g and

√
gH , respectively.194

2.6 Discretization and grid resolution195

The discretization of the computational domain utilizes a quad-tree scheme (Popinet, 2003; van Hooft196
et al., 2018) where the user can choose to run the scheme with either a non-adaptive mesh or an adaptive197
mesh, further referred to as ”refine” and ”adapt”, respectively.198

The size of a cell is characterized by its level N where it is located. The cells are square finite volume199
cells, providing equal subdivisions vertically and horizontally, creating ∆N = ∆x = ∆z. Hence, the grid200
size of the cell at a given level is ∆N = L/2N .201

The grid resolution is discussed relative to the boundary layer thickness, i.e., ∆N/δ. A fine discretization202
with ∆N+ = L/2N+ is developed near the bottom for 0 < z < 0.015H , where the finest resolution203
becomes ∆N+/δ = 0.022 (run 3, table 1). Hence, N+ > N . This is to ensure grid independence of the204
results.205

Adaptive meshing is widely used and is known to significantly reduce the computation cost. We will206
utilize adapting meshing when exploring convergence properties of our numerical scheme. When the mesh207
is adapted, the refinement criterion is based on the discretization error of the velocities u and w, and the208
criterion for refinement of the volume fraction f is based upon a wavelet algorithm. The threshold values209
are set to εthu = εthw = 3× 10−4 and εthf = 3× 10−2. Further details are provided in the Appendix A.2.210

van Hooft et al. (2018), their figure 8, have compared the numerical dissipation in the ”refine” and211
”adapt” versions of Basilisk, finding that small discrepancies on the order of 5% were present between the212
runs with the fixed uniform grid and the adaptive grid, where this discrepancy decreased with increasing213
refinement. Numerical tests diagnosed with a lower dissipation rate were associated with lower kinetic214
energy, indicating that a small part of the dissipation was of numerical/non-physical origin.215

The advantage of the Basilisk framework is that it includes OpenMP/MPI parallelism capability. The216
simulations were run in parallel using shared memory (OpenMP), and the computations were performed217
on the Norwegian Research and Education Cloud (NREC).218
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2.7 Lagrangian tracer particles219

Tracking of Lagrangian tracer particles is performed using a two-stage Runge-Kutta (RK2) scheme. The220
seeded neutrally buoyant tracer particles are purely Lagrangian tracers, and their settling velocity, added221
mass, history effects, etc., are ignored (Necker et al., 2005; Stastna and Lamb, 2008).222

The tracer particles are seeded close to the bottom in a two-dimensional rectangular grid. More precisely,223
160×160 tracer particles are equally distributed horizontally between xp−H < x < xp+H and vertically224
between z1 < zp < z2 before time zero. Table 1 provides the xp/H values. The tracer particle positions are225
presented relative to the total water depth H and the boundary layer’s height δ (§2.3). The vertical extent is226
zp/H ∼ 0.0037− 0.0283. However, the boundary layer thickness, δ, is a better vertical scale of the tracer227
particle vertical motion, providing vertical extension between 0.31 < zp/δ < 2.93 for Rew = 5.9 · 104 and228
6.5 · 104, and 0.96 < zp/δ < 8.82 for Rew = 5.9 · 105 and 6.5 · 105.229

The tracer particles displacement rp = (xp, zp) and the path driven by the wave-induced instabilities are230
calculated by integrating:231

dxp
dt

= u(xp, zp, t), (6)

dzp
dt

= w(xp, zp, t), (7)

obtaining

xp = xp,0 +

∫ t

t0

u(xp, zp, t)dt, (8)

zp = zp,0 +

∫ t

t0

w(xp, zp, t)dt. (9)

The RK2 scheme employs

rp,n+1 = rp,n + ∆t(b1k1 + b2k2), (10)

k1 = u(rp,n, tn), (11)

k2 = u(rp,n + c2k1, tn + ∆tα), (12)

where c2 = α, b1 = 1 − 1
2α and b2 = 1

2α , and b1 + b2 = 1, b2c2 = 1/2, and b2α = 1/2 (Sanderse and232
Veldman, 2019). The tracer particles paths are visualized both in a fixed frame of reference and a frame of233
reference following the wave.234

3 RESULTS

3.1 Vortex formation235

3.1.1 Simulation of the laboratory experiments by Carr et al. (2008)236

In this section, a numerical simulation of the wave-induced instability is presented. We simulate one of237
the laboratory experiments by Carr et al. (2008), their experiment dated 080207, and directly compare238
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our results. The parameters of the numerical simulation corresponding to the experiment are provided in239
table 1, denoted by Run 1. In the table, a/H is the non-dimensionalized amplitude and is similar in the240
computation and experiment (a/H = 0.30).241

The created wave, numerically and physically, is strong enough to induce instability and vortices. Figure242
2a shows the instability and vortex ejection from the boundary layer due to the wave illustrated in figure243
1b. The horizontal axis is (x− xtrough)/H , where xtrough denotes the position of the wave trough. The244
instability grows exponentially between (x− xtrough)/H = −1.7 and −2.5, whereafter the vortices are245
formed. The series of vortex rolls in the instability growth area have a shorter separation length than the246
vortices found further downstream. The vortex formation goes on continuously, producing the vortex wake.247
Specifically, we compare to the experiment in which Carr et al. (2008) presented the vertical velocity248
corresponding to the vortices, their figure 13, reproduced here in figure 2c.249

The separation distance λv between the vortices located in the vortex wake is set to be the center-to-center250
distance between the vortices. The computational result (figure 2b) shows five vortices, the same number as251
in the experiment for the similar horizontal extension (figure 2c). In the experiment, the separation distance252
between the vortices is between 0.069H and 0.122H , with an average of λv ∼ 0.103H . The similar253
average distance in the computation is λv ∼ 0.103H , which is exactly the same result. The maximum254
vertical extent of the vortices was 8.7% of the water depth in the laboratory and 6.6% in the simulation.255
The results in figure 2 were simulated with N = 12 and N+ = 14, see section 2.6.256

3.1.2 Convergence of the separation distance, vorticity, amplitude and wave speed257

We now discuss research question two of the introduction: how close are prediction and measurement?258

Two different numerical representations are included in Basilisk, as described in section 2.6. Calculations259
using both representations are presented.260

The resolution level is in the range of N = 10− 12. When running with ”refine”, there is no additional261
refinement close to the bottom. The minimum and maximum refinement levels in ”adapt” are set to262
Nmin = N − 1 and Nmax = N .263

Each simulation was performed ten times with the same settings and executed with and without264
parallelization. The average values and standard deviations of the variables: distance, vorticity, amplitude,265
and speed were calculated over the ten runs with the same settings. Hence, a total of 120 simulations were266
run.267

The vortices measured in Carr et al. (2008) (figure 2c) exhibit an individual distance that slightly varies.268
Figure 3 illustrates the respective computational distance, calculated over the same area, further referred to269
as the local area, as a function of the resolution level N . The distance is further explored over a broader270
range in the wave tank where −13.3 < (x− xtrough)/H < −4.3 (results are not shown). The simulations271
converge for increasing resolution level. A small anomaly for N = 12 ”adapt” in the result presented in272
figure 3 is observed. However, if we increase the respective local area three times, its average distance273
reduces from 0.134H to 0.108H (marked by a green circle in the figure). When simulating with the lowest274
resolution, the vortex formation formed is the main difference between ”refine” and ”adapt”. However, this275
discrepancy decreases with increasing resolution. For our purposes, the advantages of utilizing ”adapt”276
instead of ”refine” are minor.277

An additional convergence check is conducted where the results are analyzed after a downscaling of the278
resolution in the post-processing procedure. Hence, the simulations are executed with ”refine” and N = 11279
and 12. In the post-processing procedure, the simulations conducted with N = 11 are downscaled to level280
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N = 10, and the simulations performed with N = 12 are downscaled to level N = 11. The results are281
plotted in figures 3 and 4c with black ∗ and are marked with an asterisk in the figure legend.282

The measured average amplitude a and wave speed c are visualized in figures 4a and 4b, respectively. The283
amplitude in the simulation is ∼ 3.3% higher than the amplitude measured in the laboratory experiments284
by Carr et al. (2008). The average wave speed in the computations converges to 0.262 ms−1, corresponding285
to the upper limit of the wave speed measured in the laboratory of 0.242± 0.022 ms−1.286

The vorticity in the numerical simulations is obtained by evaluating the circulation integral in each grid287
cell, divided by the area A enclosed by the integration contour obtaining ω(x, z) =

[∮
(u,w) · dl

]
/A.288

Here dl is the vector length along the side of the grid cell. An average of the non-dimensional maximum289
vorticity ω∗ = ωmax/(c0/H) is calculated over the vortices located in the local area and in the global290
area −13.3 < (x− xtrough)/H < −4.3. The results of averaging over the broader range are illustrated in291
figure 4c. The respective standard deviation of ω∗ is found to be 1% (N = 10, 11), ”refine” and adapt”, 2%292
(N = 12), ”refine”, and 3% (N = 12), ”adapt”.293

3.1.3 Proximity between prediction and measurement294

The comparison between the computations and the laboratory experiments by Carr et al. (2008), presented295
in § 3.1.1, is also included in figure 3. The simulation conducted with N = 12, N+ = 14 is marked in the296
figure by 14+.297

This subsection illustrates that the model very well reproduces the laboratory experiment in the 3D wave298
tank by Carr et al. (2008). The predictions and measurements are very close. Moreover, the 2D laminar299
calculations illustrate that the dominant processes in the laboratory experiments are dominated by 2D300
processes. The processes investigated by Carr et al. (2008) are indeed dominated by two-dimensionality.301
This correspondence lasts up to a distance of eight water depths behind the wave trough.302

The computations in this section illustrate the convergence of the method where the vorticity and the303
distance between the vortices are evaluated. The computed and measured averaged separation distance304
at 7.8 ± 0.2 water depths behind the trough correspond. The vorticity strength is computed, where this305
motion property was not measured in the laboratory. The calculated amplitude and wave speed were both306
converged. These findings respond to research points 1− 3 of the introduction.307

3.2 Tracer particles308

3.2.1 Trajectories309

As seen in section 3.1.1, the wave-induced velocity field interacts with the bottom, and vortices are being310
ejected from the bottom boundary layer (BBL). In this section we explore how the wave-induced velocity311
field moves a cloud of tracer particles, initially found in the BBL, upstream of the ISW. The tracer particles312
are located approximately between x/H = 6.4 and 8.4 before time zero, and the simulations are conducted313
with wave Reynolds number in the range Rew ∼ 5.9 · 104 − 6.5 · 105 (table 1).314

In our numerical simulations, we can only generate one wave and not a train of waves as may be observed315
in the coastal ocean (e.g., Quaresma et al., 2007; Zulberti et al., 2020). We let the wave intercept the tracer316
particle cloud twice, first during the propagation along the undisturbed fluid and second as a reflected wave317
from the right end of the tank. When the wave becomes a reflected wave, the horizontal velocity changes318
the sign, while the vertical velocity maintains the sign. During wave passage one, the time runs from 0319
to tc0/H ' 19.6 and 21.0 for Strat.1 and Strat.2, respectively, and is defined as the transit until the wave320
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encounters the right end wall. Then the wave passage two stage starts and endures until tc0/H ' 40.7 and321
44.7 for Strat.1 and Strat.2, respectively.322

The wave propagating from left to right induces a velocity of the lower fluid layer in the opposite direction323
of the wave propagation, pushing the fluid backward. The vertical velocity in the forward part of the wave324
is also negative, pushing the fluid downward. When the wave encounters the cloud of tracer particles, the325
tracer particles are first driven backward, approximately a horizontal distance of 1H for Strat. 1 (visualized326
in figures 5 and 6) and 1.5H for Strat. 2 (results are not shown). The figures display the traces of 12 random327
tracer particles out of the 25 600 tracer particles implemented. The colors are constant according to the328
vertical position of tracer particles before time zero.329

The trajectory of the tracer particles has the same shape as the wave displacement before the vortices330
intercept the tracer particles’ movement. The tracer particles are then displaced vertically. The vortices331
intercept the cloud of the leftmost tracer particles when the wave trough is at approximately xtrough/H '332
7.7 when Rew = 5.9 · 104, see figures 5a and 5b. The integration illustrates how the displacements and333
paths depend on the location of the tracer particle before time zero.334

Figures 5b and 5d illustrate the trajectories in a reference frame that follows the wave. The time period335
illustrated lies between ct/H = −10 to −69. In the figures, the black vertical line indicates when the336
wave trough is at xtrough/H = 7.6. The solid red line is a time tc0/H = 6.4 later and shows the position337
xtrough/H at this time. The dashed red line indicates xtrough/H when the wave begins its encounter with338
the wall.339

The trajectories at the beginning are almost horizontal, with some small fluctuations. The vortices behind340
the trough intercept the tracer particles, where the tracers acquire an oscillatory behavior of a range of341
wavelengths. They are in the range from 0.3H (Run 4) up to 16H (Run 1). The shortest wavelengths are in342
the same order of magnitude as the separation distance of the vortices generated behind the trough when343
the instability saturates. Run 4 exhibits very short wavelengths and a wavelength of 10H .344

The wave propagates to the end of the tank and returns. The wave intercepts again with the group of345
tracer particles, visualized in figures 5 and 6, plots c and d. During the second passage, the tracer particles346
are moved further upward. The vertical position, relative to the boundary layer δ, depends on the Reynolds347
number. In figure 6c, the uppermost position after wave passage one is z/δ ' 13 and z/δ ' 55 after wave348
passage two.349

Figures 7 and 8 show paths due to 128 tracer particles. Plots a and c display that the downstream vortices350
transport the tracer particles upwards and out of the boundary layer. In plots b and d, the second wave351
encounter and its induced instabilities move the tracer particles even higher.352

3.2.2 Displacements353

The terminal position of a number of 25 600 particles are then discussed (figure 9). The 50th (median)354
and 90th percentile of the vertical tracer particle position are evaluated. For the 90th percentile, the vertical355
height increases by a factor of three between passage one and passage two. The vertical displacement of356
the 50th percentile is similar, although there are some large variations at the moderate Rew (table 2). For357
the same percentile, the height relative to δ increases by a factor of 2.4, approximately, when the wave358
Reynolds number increases by a factor of 10. The horizontal position of the tracer particle cloud is negative359
during the first passage and positive during the second passage due to the reflected wave. The net horizontal360
displacement of the tracer particle cloud is approximately zero. The red lines in the figure indicate the361
tracer particles’ left and right most horizontal seeded position before time zero.362
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The probability density function (PDF) of the tracer particles’ vertical position as a function of time is363
illustrated in figure 10. The black line indicates the initial uppermost vertical position of the tracer particles.364
The blue line indicates the tracer particle distribution after wave passage one. The red line provides the365
tracer particle distribution when the wave has intercepted the cloud of tracer particles for the second time.366
After passage one, tracer particle distribution is below 20δ, and after passage two, below 65δ for the large367
Rew ∼ 5.9 − 6.5 · 105. The similar numbers for the smaller Rew ∼ 5.9 − 6.5 · 104 are 10δ and 25δ,368
respectively.369

The results imply that the particles are found below a vertical level of approximately 0.23H after the370
second passage for both Reynolds numbers.371

3.3 Comparison to field measurements372

Quaresma et al. (2007) conducted a field study of internal waves propagating over the northern shelf373
of Portugal over a canyon head. The local water depth was measured to be ∼ 80 m with a middle depth374
of the pycnocline of d/H = 0.19. The wave amplitudes were in the range a/H = 0.13 − 0.38. The375
measured local sediment concentration mainly consists of sandy sediments (∼ 93%) of a settling velocity376
of 2 cms−1. The remaining sediments, silt and clay components with diameters in the range ∼ 1 − 20377
µm were found to remain suspended. Their measurements showed that only the strongest waves were378
capable of suspending the sediments, contributing to a summer bottom nepheloid layer (BNL) of 10− 15379
m thickness, corresponding to 0.13− 0.19H .380

We note that the vertical height of the tracer particles after wave passage two was found to be381
approximately 0.23H in our numerical computations and was insensitive to the Rew. This tracer particle382
height is in correspondence with the height of the BNL measured by Quaresma et al. (2007).383

Quaresma et al. (2007) also measured a strong local sediment concentration up to a height of 0.56H384
below the leading wave. Our present computation does not exhibit such an effect.385

Zulberti et al. (2020) conducted field observations of nonlinear internal waves over a low-gradient386
topography on Australia’s Northwest Shelf. They observed that large-amplitude internal waves of depression387
greatly enhanced the sediment transport. From sediment grab samples, they deduced that the bed sediment388
was of typical silt. The settling velocity of silt particles of density ρs = 1350 kgm−3 and diameter of 30 µm,389
may be calculated to be U = 0.014 cms−1. They measured sediment resuspension to exceed 20 m (0.08H)390
beneath the leading wave of amplitude a/H = 0.3. However, they measured a density gradient at this391
level, limiting the advancement of bottom sediments. A direct correspondence between the measurements392
and the present computations are not realistic because we have not included a weak stratification layer393
at the bottom. One of the factors driving the resuspension mechanism in the measurement of Zulberti394
et al. (2020), was a vertical pumping mechanism associated with the compression underneath the wave395
trough followed by a subsequent expansion of the mixing-layer at the bottom. This effect is included in our396
simulations, however.397

Finally, the subjects discussed in these result sections 3.2 and 3.3 include the tracer particles, the vertical398
tracer particle displacement during the wave encounters, as well as comparison to observations in the field,399
and response to the research subject 4, 5, and 6 as presented in the introduction.400
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4 CONCLUSIONS

By a 2D laminar method, the vortex formation and the tracer particle motion in the bottom boundary401
layer of the water column of a fluid layer, driven by large internal solitary waves of depression, are402
calculated. The motion in a numerical wave tank for internal waves is simulated. Comparison is made to403
a set of available laboratory observations, and a very good match between the model and the laboratory404
measurements is found. Convergence of the numerical calculation of the vortex formation is documented.405

A cloud of tracer particles in the bottom boundary layer obtains vertical displacements because of the406
wave-driven vortices. The paths exhibit the following properties: when the wave approaches the tracer407
particle cloud, the tracer particles are first moved horizontally in the opposite direction of the wave. Behind408
the wave trough, the tracer particles are transported vertically in the water column. The wave is reflected409
and returns to the tracer particle cloud. At the second passage, the tracer particles are moved in the opposite410
direction of the wave propagation. The vortices behind the trough transport the tracer particles further411
vertically. The tracer particles are found below a vertical level of approximately 0.23H after the second412
passage, for the Reynolds number in the range Rew ∼ 5.9 · 104 − 6.5 · 105. The net horizontal transport of413
the tracer particle cloud is approximately zero.414

We have compared the results to available field observations by Quaresma et al. (2007), obtained at415
the northern shelf of Portugal, where the local depth was 80 m. The wave amplitude was in the range416
a/H = 0.13− 0.38, and a summer bottom nepheloid layer was measured to be 10− 15 m, corresponding417
to 0.13 − 0.19H . Our computational results are in a fair match with that observation. We note that the418
processes in the computations at the moderate scale and the processes at the field scale may not be directly419
similar, however. In another field measurement by Zulberti et al. (2020), large amplitude internal waves of420
depression were found to resuspend the sediments at the sea bed greatly. In their measurements, a density421
gradient at 20 m (0.08H) above the sea bottom was found to limit the vertical advancement of the bottom422
sediments. Direct correspondence to the present computations is not realistic.423

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial424
relationships that could be construed as a potential conflict of interest.425

FUNDING

The funding by the Research Council of Norway (Ecopulse, NFR300329) is gratefully acknowledged.426

ACKNOWLEDGMENTS
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FIGURE CAPTIONS

APPENDIX A: FINITE VOLUME SOLVER

A.1 Time integration508

The discretization in time is staggered and second-order accurate. The advection term is calculated using509
the Bell-Colella-Glaz scheme (Bell et al., 1989). The unsplit, upwind scheme reads:510
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Figure 1a.

Figure 1b.

Figure 1. (A) Sketch of the wave tank. (B) Vorticity field ω/(c0/H) (color scale, black contour lines of
ω) due to ISW travelling to the right at tc0/H = 6.4 with a/H = 0.30 and Rew = 5.9 · 104.

ρn+ 1
2

[
un+1 − un

∆t
+ un+ 1

2
· ∇un+ 1

2

]
= −∇pn+ 1

2
+∇ ·

[
µn+ 1

2
(Dn + Dn+1)

]
+ ρn+ 1

2
an+ 1

2
, (13)

fn+ 1
2
− fn− 1

2

∆t
+∇ · (fnun) = 0, (14)

∇ · un = 0, (15)

where D = (∇u + (∇u)T )/2 is the strain rate tensor, where ()T denotes transpose. The index n indicates511
time tn, and likewise for n+ 1, n+ 1

2 , n− 1, etc.512

An equivalent advection equation of the volume fraction replaces the advection equation of the density.513
The density and viscosity are defined using the averages ρ(f̃) = f̃(ρ1 − ρ2) + ρ2 and µ(f̃) = [f̃(1/µ1 −514
1/µ2) + 1/µ2]

−1, where ρ1, µ1, and ρ2, µ2 are the densities and dynamic viscosities of the upper and lower515
fluid layers, respectively. The field f̃ is constructed by applying a smoothing spatial filter to f . This is516
accomplished by averaging the four corner values of f obtained from the cell-centered values by bilinear517
interpolation. The fluid properties are updated by:518
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Figure 2a.

Figure 2b.

Figure 2c.

Figure 2. (A) Vorticity field ω/(c0/H) (color scale, black contour lines of ω) vs. horizontal position. (B)
ω/(c0/H) with horizontal position x∗/H = ct/H + constant corresponding to the measurement area
in c). (C) Image adapted from (Carr et al., 2008). Vortices displayed by their vertical velocity at time
tc0/H = 6.4.
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Figure 3. Vortex separation distance (dist.) over the local area versus the resolution level N . The result
from the simulation with N = 12, N+ = 14 is marked by N = 14+. The black line corresponds to
the experimental average local distance. The grey-shaded area corresponds to the measured individual
separation distance in figure 2c. Simulations without parallelization: refine ◦, refine∗ ∗, adapt ♦ and adapt∗∗
◦.Simulations with parallelization: refine4 and adapt �.
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2
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µn+ 1
2

= [f̃n+ 1
2
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−1. (17)

By using a classical time-splitting projection method (Chorin, 1968), the system is further simplified:519

ρn+ 1
2

[
u∗ − un
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, (18)

fn+ 1
2
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+∇ · (fnun) = 0. (19)

The velocity at the new time is found by combining equations (13) and (18). Hence,520

un+1 = u∗ −
∆t∇pn+ 1

2

ρn+ 1
2

. (20)

The equation for the pressure is found by requiring521

∇ · un+1 = 0. (21)

This leads to a Poisson equation for the pressure522

∇ ·
[

∆t∇pn+ 1
2

ρn+ 1
2

]
= ∇ · u∗. (22)

Frontiers 17
131



Ellevold et al.

12 11 10

0.292

0.296

0.3

0.304

Figure 4a.

12 11 10
1.67

1.68

1.69

1.7

Figure 4b.

12 11 10
0

1

2

3

4

5

6

7

refine
refine*
refine parallel

adapt
adapt parallel

Figure 4c.

Figure 4. (A) Wave amplitude a/H , (B) speed c/c0 and (C) maximum vorticity ω∗ = ω̃max/(c0/H))
versus resolution level N . Simulations without parallelization: refine ◦, refine∗ ∗, and adapt ♦. Simulations
with parallelization: refine4 and adapt �.
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Figure 5. Tracer particle trajectories for Rew = 5.9 · 104. (A) and (C) Fixed frame of reference. (B) and
(D) Frame of reference following the wave. In (A)-(B) wave passage one, tc0/H = 0− 19.6. In (C)-(D)
wave passage two, tc0/H = 0− 40.7.
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Figure 6. Same as figure 5 but with Rew = 5.9 · 105.
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The time step in each iteration is controlled by the Courant-Friedrich-Levy (CFL) condition.523

A.2 Spatial discretization524

The quadtree structure can be seen as a family tree. An important parameter is the level N of a given cell525
of the tree. The root cell is that corresponding to N = 0, from which the cells at the next level hang down.526
A parent cell (at level N ) can have zero or four children cells, where the children are at level N + 1. If527
the cell has no children it is called a leaf cell. The size of a cell is characterized by its level N , where it is528
located. Hence, the grid size of the cells at that level is ∆N = L/2N . The cells are square finite volume529
cells, providing ∆N = ∆x = ∆z, where (x, z) are the horizontal and vertical coordinates.530

Further, a few restrictions apply. For example, the maximum difference of the level between two531
neighbouring leaf cells is one; each cell has a direct neighbour at the same level; the level increases by532
one for each successive generation; the grid can be refined and coarsened dynamically (adapted) as the533
simulation proceeds, where this occurs at an affordable computational cost. We have used two central534
representations of the numerical grid, a non-adaptive (static grid) mesh and an adaptive mesh.535

1. ”Refine”:536

Refine (static grid refinement) is referred to when the simulation is run with the same level of refinement537
in the mesh hierarchy.538

2. ”Adapt”:539

The adaptive mesh hierarchy enables increase/decrease of the grid resolution where necessary. Such an540
approach can significantly reduce the memory required to obtain a given level of accuracy. The algorithm541
is based on the estimation of the numerical errors in the representation of the spatially discretized fields.542
This analysis is used to determine which grid cells require refinement, and wherein the domain cells543
can be coarsened. Following van Hooft et al. (2018) and López-Herrera et al. (2019), a scalar field gN544
discretized at grid level N , can be coarsened one level down utilizing a downsampling operation denoted by545
restriction, gN−1 = restriction(gN ). Next, the upsampled (or prolongated) operator, which upsamples546
the coarser field distribution, gN−1, to the original level, g0N = prolongation(gN−1), is defined. The547
prolongation procedure is second-order accurate. Noting that in general gN 6= g0N , a comparison provides548
an estimation of the absolute discretization error, ζN = |gN − g0N |. A particular cell i with level N in549
which the error is ζiN , will be,550

• refined if ζiN > ζ ,551

• coarsened if ζiN < 2ζ/3,552

• remain unchanged otherwise,553

where ζ is called the refinement criterion and is the error threshold set in the numerical scheme. The554
”refine” and ”adapt” procedures are used in the present study. Further details of the algorithm can be found555
in Popinet (2003) and van Hooft et al. (2018).556

Near the resolution boundaries, ghost cells are generated as virtual cells. This allows for simple Cartesian557
stencil operations, for the typically uneven grid at the boundary. The ghost cells have neighbours with the558
same refinement level N , whereas their values are defined by interpolating the original field values.559
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Table 1. Layer depths, stratification (Strat.), calculated amplitude a, numerical values for U∞,0/c0, δ, Reδ,
Rew, and xp/H . Resolution N = 12, N+ = 14 for Run 1 and 3, and N = 11, N+ = 16 for Run 2 and 4.

Run h3/h2/h1 (m) Strat. a/H U∞,0/c0 δ · 10−3 (m) Reδ Rew xp/H
1 0.293/0.052/0.035 1 0.300 0.863 3.68 490 5.9 · 104 7.42
3 0.280/0.047/0.055 2 0.300 0.833 4.44 631 6.5 · 104 7.43
2 0.293/0.052/0.035 1 0.297 0.858 1.22 1620 5.9 · 105 7.42
4 0.280/0.047/0.055 2 0.301 0.835 1.46 2080 6.5 · 105 7.43

Table 2. The vertical location z/δ corresponding to the 50th and 90th percentiles of the tracer particle
density field for wave passage one and two. Boundary layer thickness, Reδ, Rew. Runs 1− 4.

Passage one Passage two

Run 50% 90% 50% 90% δ · 10−3 (m) Reδ Rew
1 4.5 8.3 7.1 15.6 3.68 490 5.9 · 104

3 1.4 4.7 9.2 20.4 4.44 631 6.5 · 104

2 7.4 15.1 23.0 42.0 1.22 1620 5.9 · 105

4 8.9 16.2 23.5 46.4 1.46 2080 6.5 · 105
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Figure 7. Tracer particle trajectories of 128 particles. (A) Rew = 5.9 · 104. Wave passage one, tc0/H =
0− 19.6. (B) Rew = 5.9 · 104. Wave passage two, tc0/H = 0− 40.7. (C) Rew = 6.5 · 104. Wave passage
one, tc0/H = 0− 21.0. (D) Rew = 6.5 · 104. Wave passage two, tc0/H = 0− 44.7.
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Figure 8. Same as figure 7 but with (A) and (B) Rew = 5.9 · 105. (C) and (D) Rew = 6.5 · 105.

Frontiers 24
138



Ellevold et al.

5 5.5 6 6.5 7 7.5 8 8.5 9
0

20

40

60 50th p.

90th p.

Figure 9a.

5 5.5 6 6.5 7 7.5 8 8.5 9
0

20

40

60 50th p.

90th p.

Figure 9b.

5 5.5 6 6.5 7 7.5 8 8.5 9
0

20

40

60 50th p.

90th p.

Figure 9c.

5 5.5 6 6.5 7 7.5 8 8.5 9
0

20

40

60 50th p.

90th p.

Figure 9d.

Figure 9. Snapshots of the Lagrangian tracer particle density field. The black solid line indicates the
50th percentile (median depth) of the tracer particles vertical height and the black dashed line indicates
the layer containing up to 90% of all of the tracer particles. The red lines indicate the tracer particles’
left and right most horizontal seeded position before time zero. (A) Rew = 5.9 · 105. Wave passage one,
tc0/H = 19.6. (B)Rew = 5.9 ·105. Wave passage two, tc0/H = 40.7. (C) Rew = 6.5 ·105. Wave passage
one, tc0/H = 21.0. (D) Rew = 6.5 · 105. Wave passage two, tc0/H = 44.7.
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Figure 10. Probability distribution function of the vertical position of the tracer particles relative to the
boundary layer thickness δ. (A) Rew = 5.9 · 104 (dashed lines) and 5.9 · 105 (solid lines). Black line,
tc0/H = 0; blue line, tc0/H = 19.6 (wave passage one); red line, tc0/H = 40.7 (wave passage two). (B)
Rew = 6.5 · 104 (dashed lines) and 6.5 · 105 (solid lines). Black line, tc0/H = 0; blue line, tc0/H = 21.0
(wave passage one); red line, tc0/H = 44.7 (wave passage two).
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Appendix A

Mathematical calculations
In this section, we will provide a step-by-step calculation outline for the Korteweg-
de Vries (KdV) theory provided in Section 1.2.1. The present equations are
collected from the review written by Grue 2006.

A.1 The Korteweg-de Vries equation

Continuous stratification

The development of weakly nonlinear theory of internal waves in continuously
stratified fluids that led to the Korteweg-de Vries equation and its higher-order
extensions started with Benney 1966.

A coordinate system is introduced where the x is directed along the horizontal
axis, and z is the vertical axis. The internal wave motion occurs in the fluid layer
between two horizontal rigid walls at z = 0 and z = −H. Thus, the free surface
is replaced by a rigid lid. When there is no motion in the fluid, the density
field is determined by ρ̄(z). We are considering a two-dimensional motion with
velocity field perturbations w(x, z, t) = (u(x, z, t), w(x, z, t)) and density field
perturbation ρ(x, z, t) which makes the total density field ρd = ρ̄+ ρ.
Mass conservation:

ρdt +∇ · (ρw) = 0 (A.1)

Momentum conservations:

ρdwt + ρdw · ∇w = −∇p+ ρdg(−k) (A.2)

Incompressibility condition:
∇ ·w = 0 (A.3)

where p denotes pressure and g acceleration of gravity. By using Equation (A.1)
with Equation (A.3), the mass conservation becomes:

ρdt + uρdx + wρdz = 0 (A.4)

To eliminate the pressure term in the momentum equation, we take the vorticity
of the momentum equation, i.e. ∇× (Equation (A.2)):

[ρdut + ρd(uux + wuz)]z = −pxz (A.5)
[ρdwt + ρd(uwx + wwz)]x = −pxz − ρdxg (A.6)

and subtract Equation (A.5) from Equation (A.6):

[ρdut + ρd(uux + wuz)]z − [ρdwt + ρd(uwx + wwz)]x − ρdxg = 0 (A.7)
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Scaling the equations: The wave amplitude is defined by the parameter a, the
wavelength by λ, and the wave frequency by ω. Further, we introduce the scaling
parameters:

Horizontal length [m]: λ

Vertical length [m]: H
Time [s]: ω−1

Horizontal velocity [m/s]: U
Vertical velocity [m/s]: W

and dimensionless, primed variables:
x′ = x/λ,

z′ = z/H,

p′ = p/(ρ0gH),
t′ = tω,

u′ = u/U = O(ε)→ u′ = u′ε,

w′ = w/W = O(ε)→ w′ = w′ε,

ρ′ = ρ/ρ0 = O(ε)→ ρ′ = ρ′ε,

where ρ0 is the reference density. Additionally, two small non-dimensional
parameters are defined: ε = a/H and µ = H2/λ2 where ε gives a number on the
nonlinearity of the problem and µ a number for the dispersive effects. We look
for a balance between the nonlinear and dispersive effects, i.e., ε and µ are of the
same order of magnitude. From the incompressibility condition, the balance UH
= Wλ and the balance U = ωλ are chosen. Further, we introduce the inverse
Froude number G = gh/U2 and a stream function ψ′(x, z, t). Since the fluid is
assumed irrotational, we also achieve the relationship (u′, w′) = (ψ′z,-ψ′x). The
differentiations becomes now:

∂

∂t
= ω

∂

∂t′

∂

∂x
= 1
λ

∂

∂x′

∂

∂z
= 1
H

∂

∂z′

Pertubations analysis: Rewrite the total density field:
ρd(x, z, t) = ρ̄(z) + ρ(x, z, t) = ρ̄0(z) + ρ1(x, z, t), (A.8)

= ρ0ρ̄(z) + ερ0ρ
′. (A.9)

Continue with perturbation analysis on Equation (A.7) first inserting
Equation (A.8), then taking term by term:
[(ρ̄0(z) + ρ1)(ut + uux + wuz)]z − [(ρ̄0(z) + ρ1)(wt + uwx + wwz)]x − ρ1xg = 0.

(A.10)
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[ρ̄0ut]z = [ρ0ρ̄ut]z,

= [ρ0ρ̄u
′
t′ωUε]z′

1
H
,

= [ρ̄u′t′ ]z′
Uρ0ωε

H︸ ︷︷ ︸
C0

. (A.11)

[ρ̄0(uux + wuz)]z = [ρ0ρ̄(u′u′x′ε2
U2

λ
+ w′u′z′ε2

WU

H
)]z′

1
H
,

= [ρ0ρ̄(u′u′x′ε2
U2

λ
+ w′u′z′ε2

U2

λ
)]z′

1
H
,

= [ρ̄(u′u′x′ + w′u′z′)]z′C0ε. (A.12)

[ρ1ut]z = [ρ0ρ
′ε2u′t′ωU ]z′

1
H
,

= [ρ′u′t′ ]z′C0ε. (A.13)

[ρ1(uux + wuz)]z = [ρ0ρ
′ε(u′u′x′ε2

U2

λ
+ w′u′z′ε2

WU

H
)]z′

1
H
,

= [ρ0ρ
′ε(u′u′x′ε2

U2

λ
+ w′u′z′ε2

U2

λ
)]z′

1
H
,

= [ρ′(u′u′x′ + w′u′z′)]z′C0ε2. (A.14)

[ρ̄0wt]x = [ρ0ρ̄w
′
t′εWω]x′

1
λ
,

= [ρ̄w′t′ ]x′C0µ. (A.15)

[ρ̄0(uwx + wwz)]x = [ρ0ρ̄(u′w′x′ε2
UW

λ
+ w′w′z′ε2

W 2

H
]x′

1
λ
,

= [ρ0ρ̄(u′w′x′ε2
U2H

λ2 + w′w′z′ε2
U2H

λ2 ]x′
1
λ
,

= [ρ̄(u′w′x′ + w′w′z′)]x′C0εµ. (A.16)

[ρ1wt]x = [ρ0ρ
′ε2w′t′Wω]x′

1
λ
,

= [ρ′w′t′ ]x′C0εµ. (A.17)
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[ρ1(uwx + wwz)]x = [ρ0ρ
′ε(u′w′x′ε2

UW

λ
+ w′w′z′ε2

W 2

H
)]x′

1
λ
,

= [ρ0ρ
′ε(u′w′x′ε2

U2H

λ2 + w′w′z′ε2
U2H

λ2 )]x′
1
λ
,

= [ρ′(u′w′x′ + w′w′z′)]x′C0ε2µ. (A.18)

gρ1x = gρ0ρ
′
x′
ε

λ
,

= ρ′x′gρ0
ε

λ
(UH
UH

),

= ρ′x′C0G. (A.19)

From now on we are dropping the primes, and Equation (A.10) now becomes:

[ρ̄ut]z − ρxG+ ε[ρut + ρ̄(uux + wuz)]z − µρ̄wtx
+ ε2[ρ(uux + wuz)]z − εµ[ρwt + ρ̄(uwx + wwz)]x

− ε2µ[ρ(uwx + wwz)]x = 0. (A.20)

Doing the same procedure with mass conservation Equation (A.4):

ρdt + uρdx + wρdz = ∂

∂t
(ρ0ρ̄+ ρ0ρ

′ε) + u
∂

∂x
(ρ0ρ̄+ ρ0ρ

′ε) + w
∂

∂z
(ρ0ρ̄+ ρ0ρ

′ε),

= ∂

∂t′
(ρ0ρ

′ε)ω + u′εU
∂

∂x′
ρ0ρ
′ε

λ
+ w′εW

∂

∂z′
ρ0ρ
′ε

H
+ w′εW

∂

∂z′
ρ0ρ̄

H
,

= ρ0Uε

λ
(ρ′t′ + w′ρ̄z′ + ε(u′ρ′x′ + w′ρ′z′) = 0, (A.21)

providing
ρt + wρ̄z + ε(uρx + wρz) = 0. (A.22)

Next step is to include the stream function (u,w) = (ψz,−ψx). Equa-
tion (A.22) and Equation (A.20) becomes:

ρt − ρ̄zψx + ε(ρxψz − ρzψx) = 0. (A.23)

[ρ̄ψzt]ψz − ρxG+ ε[ρψzt + ρ̄(ψzψxz − ψxψzz)]ψz + µρ̄ψxxt

+ ε2[ρ(ψzψxz − ψxψzz)]ψz + εµ[ρψxt + ρ̄(ψzψxx − ψxψxz)]x
+ ε2µ[ρ(ψzψxx − ψxψxz)]x = 0. (A.24)

The rigid lid condition ψx = 0 is applied as the boundary conditions at z = 0 and
z = −1. The next step is to use separation of variables and seek wave solutions
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by introducing the amplitude function A(x, t) and expand ρ(x, z, t) and ψ(x, z, t)
on the following form:

ρ(x, z, t) = Aρ(z) + εA2ρ̃(z) + µAxxρ̂(z), (A.25)
ψ(x, z, t) = Aφ(z) + εA2φ̃(z) + µAxxφ̂(z). (A.26)

Equations (A.25) and (A.26) are introduced into Equations (A.23) and (A.24),
giving to leading order in nonlinearity and dispersion:

At + cAx + εα0AAx + µβ0Axxx = 0. (A.27)

Further, we are going to look at the linear terms and up to leading order of ε
and µ separately.

Linear terms

We are starting by looking at the linear terms in Equations (A.23) and (A.24)
first.

ρt − ρ̄zψx = 0, (A.28)
[ρ̄ψzt]ψz − ρxG = 0. (A.29)

Taking ∂/∂x of Equation (A.28)

ρxt − ρ̄zψxx = 0,
ρxt = ρ̄zψxx, (A.30)

and ∂/∂t of Equation (A.29)

[ρ̄ψztt]ψz −Gρxt = 0,
[ρ̄ψztt]ψz −Gρ̄zψxx = 0,

[ρ̄Attφz]ψz −Gρ̄yAxxφ = 0,

[ρ̄φz]ψz −
Gρ̄yAxxφ

Att
= 0,

[ρ̄φz]ψz −
Gρ̄zφ

c2
= 0, (A.31)

with the boundary conditions φ(0) = φ(−1) = 0. Additionally, we assume a linear
wave amplitude on the form A(x− ct), providing the relation At = −cAx, where
c is the phase speed. The eigenvalue problem has an infinite set of eigenvalues
c0 > c1 > c2 > ... > 0 with corresponding eigenfunctions φ0(z), φ1(z), φ2(z), ....
The eigenvalues and eigenfunctions represent the wave speed and vertical
structure of the n-th mode linear, hydrostatic internal wave motion. Further,
we are only interested in the lowest mode corresponding to c0 and φ0. These
quantities are determined from Equation (A.31) with the boundary conditions.
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Up to leading order ε

Second step is to include terms up to order ε in Equations (A.23) and (A.24).
We have now the relation:

At + cAx + εα0AAx = 0. (A.32)

Further, Equations (A.23) and (A.24) becomes

ρt − ρ̄zψx + ε(ρxψz − ρzψx) = 0, (A.33)
[ρ̄ψzt]ψz − ρxG+ ε[ρψzt + ρ̄(ψzψxz − ψxψzz)]ψz = 0. (A.34)

Mass, term by term:

ρt = Atρ+ 2εAAtρ̃,
= Ax[−cρ] + εAAx[−α0ρ− 2cρ̃]. (A.35)

−ρ̄zψx = Ax[−ρ̄zφ]− εAAx[−2ρ̄zφ̃]. (A.36)

ε(ρxψz − ρzψx) = ε(AxρAφz −AρyAxφ),
= εAAx[ρφz − ρzφ]. (A.37)

Then Equation (A.33) becomes:

Ax [−cρ− ρ̄zφ]︸ ︷︷ ︸
1

+εAAx [−α0ρ− 2cρ̃− 2ρ̄zφ̃+ ρφz − ρzφ]︸ ︷︷ ︸
2

= 0 (A.38)

Each term in the [ ] needs to be zero. From 1 : ρ = −ρ̄zφ
c . Substitute into 2 and

solve for ρ̃

−α0ρ− 2cρ̃− 2ρ̄zφ̃+ ρφz − ρzφ = 0,
α0ρ̄zφ

c
− 2cρ̃− 2ρ̄zφ̃−

ρ̄zφzφ

c
+ ρ̄zzφφ

c
+ ρ̄zφzφ

c
= 0,

α0ρ̄zφ

c
− 2cρ̃− 2ρ̄zφ̃+ ρ̄zzφφ

c
= 0. (A.39)

2ρ̃ = α0ρ̄zφ

c2
− 2ρ̄zφ̃

c
+ ρ̄zzφφ

c2
. (A.40)

Momentum, term by term:

[ρ̄ψzt]ψz = [ρ̄(Atφz + 2εAAtφ̃z)]ψz,
= [ρ̄(φz + 2εAφ̃z)]ψz(−cAx − εα0AAx),
= [ρ̄(−cAxφz − εα0AAxφz − 2εcAAxφ̃z)]ψz,
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= Ax[−cρ̄φz]ψz + εAAx[−α0ρ̄φz − 2cρ̄φ̃z]ψz. (A.41)

−ρxG = Ax[−Gρ] + ε2AAx[−Gρ̃],

= Ax[Gρ̄zφ
c

] + εAAx[−α0Gρ̄zφ

c2
+ 2Gρ̄zφ̃

c
− Gρ̄zzφφ

c2
]. (A.42)

ε[ρψzt + ρ̄(ψzψxz − ψxψzz)]ψz = ε[ρψzt]ψz + ε[ρ̄(ψzψxz − ψxψzz)]ψz,
= ε[ρA(Atφz]ψz + ε[ρ̄(AAxφ2

z −AAxφφzz)]ψz,
= ε[−cρAAxφz]ψz + ε[ρ̄(AAxφ2

z −AAxφφzz)]ψz,
= εAAx[−cρφz]ψz + εAAx[ρ̄(φ2

z − φφz)]ψz,
= εAAx[ρ̄zφφz + ρ̄(φ2

z − φφzz)]ψz. (A.43)

Then Equation (A.34) becomes:

Ax [−c(ρ̄φz)ψz + Gρ̄zφ

c
]︸ ︷︷ ︸

3

+

εAAx[−α0(ρ̄φz)ψz − 2c(ρ̄φ̃z)ψz −
α0Gρ̄zφ

c2
+

2Gρ̄zφ̃
c
− Gρ̄zzφφ

c2
+ (ρ̄zφφz + ρ̄(φ2

z − φφzz))ψz]︸ ︷︷ ︸
4

= 0 (A.44)

Each term in the [ ] needs to be zero. From 3 : (ρ̄φz)ψz = Gρ̄zφ
c2 . Substitute into

4 and solve for φ̃:

− α0Gρ̄zφ

c2
− 2c(ρ̄φ̃z)ψz −

α0Gρ̄zφ

c2
+

2Gρ̄zφ̃
c
− Gρ̄zzφφ

c2
+ (ρ̄zφφz + ρ̄(φ2

z − φφzz))ψz = 0. (A.45)

− 2α0Gρ̄zφ

c2
− 2c(ρ̄φ̃z)ψz + 2Gρ̄zφ̃

c
−

Gρ̄zzφφ

c2
+ (ρ̄zφφz + ρ̄(φ2

z − φφzz))ψz = 0. (A.46)

(ρ̄φ̃z)ψz −
Gρ̄zφ̃

c2
= −α0Gρ̄zφ

c3
− Gρ̄zzφ

2

2c3 + (ρ̄zφφz)ψz
2c + (ρ̄(φ2

z − φφzz))ψz
2c .

(A.47)
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Up to leading order µ

Third step is to include terms up to order µ in Equations (A.23) and (A.24). We
have now the relation:

At + cAx + µβ0Axxx = 0. (A.48)

Further, Equations (A.23) and (A.24) becomes

ρt − ρ̄zψx = 0, (A.49)
(ρ̄ψzt)ψz −Gρx + µρ̄ψxxt = 0. (A.50)

Mass, term by term:

ρt = ρAt + µAxxtρ̂,

= −cρAx − µβ0ρAxxx − µcAxxxρ̂,
= Ax[−cρ] + µAxxx[−β0ρ− cρ̂]. (A.51)

−ρ̄zψx = −ρ̄yAxφ− µρ̄yAxxxφ̂,
= Ax[−ρ̄zφ] + µAxxx[−ρ̄zφ̂]. (A.52)

Then Equation (A.49) becomes:

Ax [−cρ− ρ̄zφ]︸ ︷︷ ︸
5

+µAxxx [−β0ρ− cρ̂− ρ̄zφ̂]︸ ︷︷ ︸
6

= 0. (A.53)

Each term in the [ ] needs to be zero. From 5 : ρ = − ρ̄zφ
c . Substitute into 6 and

solve for ρ̂:

−β0ρ− cρ̂− ρ̄zφ̂ = 0
β0ρ̄zφ

c
− cρ̂− ρ̄zφ̂ = 0. (A.54)

ρ̂ = β0ρ̄zφ

c2
− ρ̄zφ̂

c
. (A.55)

Momentum, term by term:

(ρ̄ψzt)ψz =(ρ̄(Atφz + µAxxtφ̂z))ψz,
= (−cAxρ̄φz − µβ0Axxxρ̄φz − µcAxxxρ̄φ̂z)ψz. (A.56)

−Gρx = −GAxρ− µGAxxxρ̂,

= GAxρ̄zφ

c
− µGAxxxρ̂. (A.57)
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µρ̄ψxxt = µρ̄(Axxtφ),
= −µcAxxxρ̄φ. (A.58)

Then Equation (A.50) becomes:

Ax [−c(ρ̄φz)ψz + Gρ̄zφ

c
]︸ ︷︷ ︸

7

+

µAxxx [−β0(ρ̄φz)ψz − c(ρ̄φ̂z)ψz −
β0Gρ̄zφ

c2
+ Gρ̄zφ̂

c
− cρ̄φ]︸ ︷︷ ︸

8

. (A.59)

Each term in the [ ] needs to be zero. From 7 : (ρ̄φz)ψz = Gρ̄zφ
c2 . Substitute into

8 and solve for φ̂:

−β0(ρ̄φz)ψz − c(ρ̄φ̂z)ψz −
β0Gρ̄zφ

c2
+ Gρ̄zφ̂

c
− cρ̄φ = 0,

−β0Gρ̄zφ

c2
− β0Gρ̄zφ

c2
− c(ρ̄φ̂z)ψz + Gρ̄zφ̂

c
− cρ̄φ = 0,

−2β0Gρ̄zφ

c2
− c(ρ̄φ̂z)ψz + Gρ̄zφ̂

c
− cρ̄φ = 0. (A.60)

(A.61)

(ρ̄φ̂z)ψz −
Gρ̄zφ̂

c2
= −2β0Gρ̄zφ

c3
− ρ̄φ. (A.62)

Determine the constants α0, β0

To determine the constants α0 and β0 in At + cAx + εα0AAx + µβ0Axxx = 0,
we use the boundary value problems for φ̃(z) (Equation (A.47)) and φ̂(z)
(Equation (A.62)). Additionally we have φ̃(0) = φ̃(−1) = 0 and φ̂(0) = φ̂(−1) =
0. The boundary value problems have unique solutions provided that the
coefficients α0 and β0 have values such that:∫ 0

−1
φ[(ρ̄φ̃z)ψz −

Gρ̄zφ̃

c2
]dz = 0, (A.63)∫ 0

−1
φ[(ρ̄φ̂z)ψz −

Gρ̄zφ̂

c2
]dz = 0. (A.64)
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In Equation (A.63) and Equation (A.64), we insert the respective r.h.s from
Equations (A.47) and (A.62), and solve for α0 and β0, respectively. Starting
with Equation (A.63):

∫ 0

−1
φ[−α0Gρ̄zφ

c3︸ ︷︷ ︸
9

−Gρ̄zzφ
2

2c3︸ ︷︷ ︸
10

+(ρ̄zφφz)ψz
2c︸ ︷︷ ︸

11

+(ρ̄(φ2
z − φφzz))ψz

2c︸ ︷︷ ︸
12

]dz = 0. (A.65)

Term by term:

9:

−α0G

c3

∫ 0

−1
ρ̄zφ

2dz = −α0

c

∫ 0

−1
φ(ρ̄φz)ψz,

= α0

c

∫ 0

−1
ρ̄φ2

zdz. (A.66)

10:

− G

2c3

∫ 0

−1
ρ̄zzφ

3dz = 3G
2c3

∫ 0

−1
ρ̄zφ

2φzdz,

= 3
2c

∫ 0

−1
(ρ̄φz)ψzφφzdz,

= − 3
2c

∫ 0

−1
ρ̄(φ3

z + φφzφzz)dz. (A.67)

11:

1
2c

∫ 0

−1
φ(ρ̄zφφz)ψzdz = − 1

2c

∫ 0

−1
ρ̄zφφ

2
zdz,

= 1
2c

∫ 0

−1
ρ̄(φ3

z + 2φφzφzz)dz. (A.68)

12:

1
2c

∫ 0

−1
φ(ρ̄(φ2

z − φφzz))ψzdz = − 1
2c

∫ 0

−1
ρ̄(φ2

z − φφzz)φzdz,

= − 1
2c

∫ 0

−1
ρ̄(φ3

z − φφzφzz)dz. (A.69)

Insert back:

α0

c

∫ 0

−1
ρ̄φ2

zdz −
3
2c

∫ 0

−1
ρ̄(φ3

z + φφzφzz)dz+
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1
2c

∫ 0

−1
ρ̄(φ3

z + 2φφzφzz)dz −
1
2c

∫ 0

−1
ρ̄(φ3

z − φφzφzz)dz = 0. (A.70)

α0

c

∫ 0

−1
ρ̄φ2

zdz −
3
2c

∫ 0

−1
ρ̄φ3

zdz = 0, (A.71)

providing that α0 becomes:

α0 = 3
2

∫ 0
−1 ρ̄φ

3
zdz∫ 0

−1 ρ̄φ
2
zdz

. (A.72)

Inserting the respective r.h.s. into Equation (A.64), solving for β0:∫ 0

−1
φ(−2β0Gρ̄zφ

c3
− ρ̄φ)dz = −2β0

c0

∫ 0

−1
φ(Gρ̄zφ

c20
)dz −

∫ 0

−1
ρ̄φ2dz,

= −2β0

c0

∫ 0

−1
(ρ̄φz)psizφdz −

∫ 0

−1
ρ̄φ2dz,

= 2β0

c0

∫ 0

−1
ρ̄φ2

zφdz −
∫ 0

−1
ρ̄φ2dz = 0, (A.73)

providing that β0 becomes:

β0 = c0
2

∫ 0
−1 ρ̄φ

2dz∫ 0
−1 ρ̄φ

2
zφdz

. (A.74)
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A.1.1 Vector Group Velocity

Some additional calculations: Assume no boundaries, just seeking wave solutions.
Additionally, assume ρ̄z is constant, and from Boussinesq ∆ρ/ρ � 1. The
linear equations of momentum, Equation (A.2), in an approximate form due to
Boussinesq becomes

ρut = −px, (A.75)
ρwt = −pz − ρg, (A.76)

Taking ∂2/(∂t∂z) of Equation (A.75) and ∂2/(∂t∂x) of Equation (A.76) and
subtracting them from each other, eliminates the pressure and we get

ρ(uz − wx)tt = ρxtg. (A.77)

From earlier, we have ρxt = −ρ̄zψxx (Equation (A.30)). Inserting this we get:

(uz − wx)tt + ρ̄z
ρ
wxg = 0,

(ψzz + ψxx)tt − ψxx
ρ̄zg

ρ
= 0,

(ψzz + ψxx)tt +N2ψxx = 0. (A.78)

Here N2 = −ρ̄zg/ρ is the buoyancy frequency, also called the Brunt-Väisala
frequency. We are setting the buoyancy frequency to be constant, and thereby
possesses a plane-wave solution of the the form ψ = eiχ where χ = k · x − ωt.
Here k = kxi + kzk is the wave number vector , and k = |k| =

√
k2
x + k2

z .( ∂2

∂t2
[ ∂2

∂z2 + ∂2

∂x2

]
+N2 ∂

2

∂x2

)
ψ = 0. (A.79)

Plug in for ψ:

(
(iω)2(−k2

x − k2
z)−N2k2

x

)
eiχ = 0,

ω2(k2
x + k2

z)−N2k2
x = 0. (A.80)

Solve for ω:

ω2(k2
x + k2

z) = N2k2
x,

ω2 = N2k2
x

k2
x + k2

z

,

ω = ±Nkx
k

. (A.81)

The vector group velocity is characterized by Cg = ∇kω = ( ∂ω∂kx
, ∂ω∂kz

). Inserting
ω+:

Cg = (N
k
− Nk2

x

k3 ,−Nkxkz
k3 ). (A.82)
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The Korteweg-de Vries equation

If we take k · Cg:

k · Cg = Nkx
k
− Nk3

x

k3 −
Nkxk

2
z

k3 , (A.83)

= Nkx
k

(k
2 − k2

x − k2
z

k2 ), (A.84)

= 0, (A.85)

we see that the wave number vector k stands perpendicular on the group velocity.
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Appendix B

Equipment used in field
In 2021, a 5-beam Nortek Signature1000 (kHz) broadband ADCP was utilized
to measure the water’s velocity near the bottom topography (T5). Hence, the
1000 kHz ADCP was as well mounted close to the bottom, approximately 14
m above bottom, but in a downward position. The measuring frequency was
set to 8 Hz and a vertical resolution of 0.5 m. In addition, a 5-beam Nortek
Signature500 (kHz) broadband ADCP was mounted approximately 61.9 m above
bottom in an upward-looking position. The 500 kHz ADCP was configured to
sample average horizontal currents from the slanted beams in 0.5 m vertical bins
and a measuring frequency of 8 Hz. See Figure B.1 for the specific configuration.

In 2022, the ADCP 1000 kHz was mounted on station T1, approximately 20
m above bottom in a down-looking position. The measuring frequency was now
set to 16 Hz.
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B. Equipment used in field

Figure B.1: The configuration of station T5 in 2021 with one ADCP 1000 kHz
measuring the vertical velocity field near the topography and one ADCP 500
kHz measuring the velocity in the upper part of the water column. Local mean
water depth of 100 m. The schematics are created by the Norwegian Institute of
Marine Research, Bergen, Norway.
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