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Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy 
production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabo-
lism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed 
to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized 
due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid spe-
cies. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. 
This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the 
lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the 
endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, 
several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, 
challenges in mapping organelle lipidomes are discussed.
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LPC	� Lysophosphatidylcholine
LPE	� Lysophosphatidylethanolamine
LPG	� Lysophosphatidylglycerol
LPI	� Lysophosphatidylinositol
LPS	� Lysophosphatidylserine
MG	� Monoacylglycerol
MS	� Mass spectrometry
MUFA	� Monounsaturated fatty acids
MVB	� Multivesicular bodies
NPC1	� Niemann-Pick type C1
OH-Cer	� Hydroxylated ceramide
OH-HexCer	� Hydroxylated hexosylceramide
PA	� Phosphatidic acid
PC	� Phosphatidylcholine
PE	� Phosphatidylethanolamine
PG	� Phosphatidylglycerol
PI	� Phosphatidylinositol
PI3P	� Phosphatidylinositol 3-phosphate
PI(3,5)	� P2, phosphatidylinositol 3,5-bisphosphate
PI(3,4,5)	� P3, phosphatidylinositol 

(3,4,5)-trisphosphate
PI4P	� Phosphatidylinositol 4-phosphate
PI(4,5)	� P2, phosphatidylinositol 4,5-bisphosphate
PLA2	� Phospholipase 2
PS	� Phosphatidylserine
PUFA	� Polyunsaturated fatty acids
QIT	� Quadrupole ion trap
ROS	� Reactive oxygen species
SFA	� Saturated fatty acids
SM	� Sphingomyelin
TG	� Triacylglycerol
TLC	� Thin layer chromatography
TOF	� Time of flight

Introduction

Over the years, increasing attention has been directed to the 
composition, organization and function of lipids in mamma-
lian cell membranes and internal compartments. Although 
cell compartmentalization has been traditionally thought to 
be the main purpose of lipids, it is clear now that lipids 
exhibit functions in addition to those related to their struc-
tures. Indeed, lipids are involved in processes ranging from 
energy production, defensive antioxidative responses and 
cell signaling [1–4] to epigenetic control, temperature regu-
lation and inflammation [5, 6]. Unsurprisingly, it has been 
estimated that more than 1000 different lipids compose the 
lipidome of a single mammalian cell [7–9]. The elucidation 
of the functions of individual lipid species is a challenging 
scientific goal due to the large variety of lipids and because 
the role of a particular lipid molecule is intrinsically con-
nected to the cooperative nature and specific properties of 

lipid assemblies, such as bilayers. The functions of these 
highly dynamic structures have been largely defined by their 
specific lipid compositions and dynamic functional changes 
in response to signaling events, changes in metabolic flux, 
and microenvironmental conditions. Hence, lipids play 
pleiotropic roles but also a multitude of context-dependent 
specific roles.

To address the increasing amount of data generated by 
the lipid research community, the LIPID MAPS consortium 
has been working on uniformizing both the classification and 
categorization of lipids [10–12]. The Consortium defines 
lipids as ‘hydrophobic or amphipathic small molecules 
that may originate entirely or in part by carbanion-based 
condensations of ketoacyl thioesters and/or by carbocation-
based condensations of isoprene units. Depending on their 
structure and properties, lipids are distributed into 8 distinct 
categories: fatty acyls, glycerolipids, glycerophospholipids, 
sphingolipids, sterol lipids, prenol lipids, saccharolipids 
and polyketides (Fig. 1). A complete description of each 
of these classes is beyond the scope of this review and can 
be found elsewhere [10–13]. In general, mammalian cell 
lipids comprise mainly glycerophospholipids (Fig. 2), glyc-
erolipids, sphingolipids and sterol lipids, with other classes 
represented to a lesser degree [14]. However, the specific 
lipid composition depends on each particular membrane/
organelle. Clearly, lipid synthesis and metabolism, as well 
as intracellular trafficking, characterize lipid homeostasis 
and, thus, the specific organelle lipidome. Notably, lipids 
are asymmetrically distributed in the outer and inner leaflet 
of cellular membranes.

Fig. 1   Schematic representation of the main lipid classes, including 
one example per class, as characterized by the LIPID MAPS consor-
tium
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In addition to the intracellular variation in lipid profiles, 
the lipidome of mammalian cells deviates significantly 
across different tissues [15–17]. In mice, lipidome has 
been previously shown to be more similar among tissues 
with related functions, e.g., liver and kidney, spleen and 
thymus, or cardiac and skeletal muscle [16]. In all tissues, 
glycerophospholipids constitute the most abundant class 
(phosphatidylcholine (PC) > phosphatidylethanolamine 
(PE) > phosphatidylinositol (PI) > phosphatidylserine (PS)), 
although the fingerprint of specific glycerophospholipid spe-
cies differs, as does that among lipid classes [18, 19]. In rat 
models, sphingolipids and sterol lipids are most abundant 
in the kidney, followed by the liver and heart, while glyc-
erolipids are present in higher amounts in adipose tissue, 
followed by the kidney and liver [19]. However, more stud-
ies are needed to understand whether this abundance pat-
tern applies to other mammals. The content of ether lipids 
(Fig. 2), glycerophospholipids in which the acyl chain at 
the sn-1 position of the glycerol backbone is attached by an 
ether bond, is highest in the rat brain and heart, followed by 
skeletal muscle, adipose tissue, the kidney and the liver [18]. 
In regard to the fatty acyl chains, polyunsaturated chains 
have been shown to be enriched in neuronal membranes [20, 
21]. Similarly, Hunt and coworkers concluded that PC mol-
ecules in the liver were highly unsaturated, and lungs were 
enriched in highly saturated PC species [22, 23]. Overall, 
despite great accomplishments over the years, the lipid fin-
gerprint of each organelle/cell/tissue is still far from being 
fully characterized and remains challenging, especially when 
we consider the differences in human lipidomes in health 
and disease context. There have only been a few compara-
tive studies that have provided information on the amount 
of lipids in distinct organelles; therefore, future quantitative 

comparative lipidomic investigations are required to gain a 
better understanding of subcellular lipidomes.

In this review, we present the information available about 
the lipid composition of cellular organelles in mammalian 
cells. In particular, the lipidome of the nucleus, mitochon-
drion, endoplasmic reticulum, Golgi apparatus, plasma 
membrane and organelles in the endocytic pathway are 
described. In addition, we also include information about 
cell-derived extracellular vesicles and lamellar bodies, 
which are lysosome-related organelles found in some spe-
cialized cells. Preparation of pure organelles is essential to 
obtain reliable information about their respective lipidomes, 
and meeting this criterion is considered a main challenge 
to studies aiming to profile the specific molecular profiles 
of organelles and is discussed in this review. Finally, as the 
cellular lipidome is extremely dynamic and because the lipid 
composition changes in response to various factors, several 
examples of lipidome dynamics under physiological and 
pathological are described.

Lipid composition and organelle function, 
dynamics and integrity

Most lipids are synthesized in the endoplasmic reticulum, 
and distal organelles such as the plasma membrane have 
very limited capacity to produce the lipids that form them 
[24, 25]. Notably, the endoplasmic reticulum produces struc-
tural phospholipids, cholesterol (Chol) and ceramide (Cer), 
the building blocks of more complex sphingolipids (Fig. 3) 
[24]. The subsequent modification and sorting of each lipid 
species to distant organelles are mainly realized in the secre-
tory pathway, specifically within the Golgi apparatus. Lipid 

Fig. 2   Basic structure of glyc-
erophospholipids. Those with 
either ester or ether versions, 
as well as the most common 
headgroups, are presented
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transport from the endoplasmic reticulum to the Golgi and 
other organelles, such as the plasma membrane, lysosomes 
and lipid droplets is mediated by both vesicular and nonve-
sicular transport mechanisms [26, 27]. The latter include 
direct contact of different organelles with the reticular mem-
brane and the transfer of lipids at specific locations called 
membrane contact sites [28, 29]. Interestingly, the endoplas-
mic reticulum and the plasma membrane are the organelles 
that present the most difference in terms of lipid composi-
tion, with the Golgi presenting an ‘intermediate’ lipidome. 
In fact, although the nuclear envelope, lipid droplets and 
the cis-Golgi compartment share lipidomic features with the 
endoplasmic reticulum, the lipidome in the trans-Golgi net-
work and the organelles in the endocytic pathway are more 
similar to the of the plasma membrane [4, 30]. These simi-
larities and have contributed to the idea that eukaryotic cells 
are fundamentally organized into two membrane territories 
with different lipid compositions and distinct membrane-
recycling systems with primary involvement of either the 
endoplasmic reticulum or plasma membrane [30–32]. In 
addition to this spatial organization of the cellular lipidome, 
all these lipid synthesis processes that are orchestrated in a 
timely manner in a cell, depend on the cell cycle, external 
stimuli, circadian rhythm and, overall, the life cycle of the 
organism [33–35].

Why is the cellular lipid composition important, and 
how does it affect organelle function? First, lipid com-
position determines the biophysical properties of lipid 
assemblies. For example, membrane phospholipid satura-
tion depends on the relative amounts of saturated, mono-
unsaturated, and polyunsaturated fatty acyl chains. The 
mobility, rigidity and size of these chains determine the 
bilayer fluidity and bending properties [36] (Fig. 4a), 
thus influencing several membrane-associated processes 
within a cell; these include, among others, membrane–pro-
tein interactions and protein function, the speed of signal 
propagation (ligands, products and substrates) in the two-
dimensional plane of a membrane, and various membrane 

Fig. 3   Schematic representation 
of different sphingolipids. a 
Ceramide is the building block 
of more complex sphingolipids. 
b Sphingomyelin is one of the 
most common sphingolipids in 
mammalian cells. c Examples of 
ganglioside headgroups. Gan-
gliosides are glycosphingolipids 
with a ceramide backbone and 
headgroups with different sugar 
unit combinations. Blue circle: 
glucose; yellow circle: galac-
tose; yellow square: N-acetylga-
lactosamine; and red diamond: 
N-acetylneuraminic acid

Fig. 4   Lipid composition affects organelle function, dynamics and 
integrity. a The composition of fatty acyl chains and polar head-
groups in membrane phospholipids determine biophysical membrane 
properties, such as packing, bending and fluidity. b Lipids control 
protein binding to organelles. The composition of the hydropho-
bic lipid droplet core determines the affinity of amphipathic helix-
containing proteins for the organelle (not to membrane bilayers) or 
to subsets of cellular lipid droplets with a specific oil composition. 
c Phospholipase A2 (PLA2) enzyme releases polyunsaturated fatty 
acids (PUFAs) from membrane phospholipids. PUFAs are converted 
into bioactive lipid mediators, such as eicosanoids, via various oxyge-
nase enzymes, including lipoxygenases (LOXs) and cyclooxygenases 
(COXs). d The proportion of saturated fatty acids (SFAs), monoun-
saturated fatty acids (MUFAs) and PUFAs in membrane phospho-
lipids is crucial to membrane and organelle function and integrity. 
Excess SFAs may cause endoplasmic reticulum stress, and excess 
PUFAs can be oxidized into toxic lipid peroxides that can cause fer-
roptotic cell death. Both stress-producing processes are mitigated by 
MUFAs
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fusion and fission processes that are required for orga-
nelle synthesis and growth, tubular dynamics and vesicular 
transport [17, 30, 37]. The sterol content levels determines 
the rigidity of the plasma membrane (as well as its 2D 
diffusion) and directly affects the formation of raft-like 
domains, which act as transient platforms for the assem-
bly of protein complexes involved in signal transduction 
and other processes [38]. Second, specific lipids local-
ized at certain subcellular locations function as signaling 
molecules that activate enzymatic or signaling processes 
or as anchors for the attachment of proteins to specific 
membranes/organelles. Notably, in addition to polar lipids, 
neutral lipids can control protein binding and activity. For 
example, the composition of neutral lipids in the hydro-
phobic core of lipid droplets determines the affinity of 
the droplet for amphipathic helix-containing proteins to 
lipid droplets [39, 40] (Fig. 4b). Third, some lipids can 
be biochemically converted into soluble signaling mol-
ecules that act in the extracellular milieu. For example, 
membrane-resident polyunsaturated fatty acids released 
from phospholipids by phospholipase A2 are converted 
by oxygenases into a large family of bioactive signaling 
molecules [41] (Fig. 4c). Finally, we are only beginning to 
understand how lipid modifications, such as oxidation [42, 

43], impair membrane and organelle function and trigger 
both specific and general cellular responses that contribute 
to membrane and cellular integrity maintenance (Fig. 4d) 
[44–46].

Lipid composition of subcellular 
compartments

The plasma membrane contains the highest abundance of 
lipids, followed by the endoplasmic reticulum, mitochon-
dria, nuclei and microsomes, while the cytoplasm accounts 
for the lowest levels of lipid molecules [47, 48]. Although 
several similarities have been found between the lipidomes 
of different subcellular compartments (e.g., PC is the most 
abundant phospholipid in many organelles, see the sections 
below), the number of individual lipid species and some-
times even the abundance of lipid classes vary considerably. 
The subcellular organelles covered in this review along with 
their characteristic lipids are shown in Fig. 5.

In the sections below, we provide an overview of the sub-
cellular fractionation protocols often used to separate cel-
lular organelles and their lipid constituents.

Fig. 5   Main lipid-related characteristics of cellular compartments in 
mammalian cells. The figure outlines the main lipid-related character-
istic of the nucleus, endoplasmic reticulum, Golgi apparatus, plasma 
membrane, organelles of the endosomal pathway, mitochondria, lipid 
droplets, lamellar bodies and exosomes. Figure created with BioRen-
der.com. BMP bis(monoacylglyceryl)phosphate. Chol, cholesterol, 
CL cardiolipin, GSL glycosphingolipids, PC phosphatidylcholine, 

PE phosphatidylethanolamine, PG phosphatidylglycerol, PI phos-
phatidylinositol, PI3P phosphatidylinositol 3-phosphate, PI(3,5)P2 
phosphatidylinositol 3,5-bisphosphate, PI4P phosphatidylinositol 
4-phosphate, PI(4,5)P2 phosphatidylinositol 4,5-bisphosphate, PL 
phospholipids, PS phosphatidylserine, SM sphingomyelin, TG tria-
cylglycerol. The figure is based on the information and the references 
included in the paper
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Subcellular fractionation — an essential step 
in mapping subcellular lipidomes

The tools for studying lipids include various research meth-
ods, with mass spectrometry (MS)-based lipidomics among 
the most popular tool used in recent years for lipid profiling 
[49]. These tools allow the analysis of lipid classes, their 
localization, determination of lipid structure and quantita-
tion [37, 50]. This lipid analysis usually starts with subcel-
lular fractionation (Fig. 6) and lipid extraction, followed by 
lipid species separation, detection, and identification.

To understand the involvement of the subcellular lipi-
dome in cellular processes in complex samples, such 
as tissues, the lipids first need to be mechanically and 
enzymatically but gently processed to obtain single-cell 
suspensions. When necessary, different cell types can be 
separated into distinct cell fractions (e.g., by fluorescence-
activated cell sorting), such that each sample is composed 
of a specific cell type of interest. Cell suspensions are sub-
sequently homogenized on ice. In the classical approach, 
organelle separation for lipid analysis is performed via dif-
ferential or density gradient centrifugation protocols simi-
lar to those used for protein-oriented research [51]. Since 
the nucleus is the heaviest organelle in the cell, nuclear 
fraction together in cell debris is usually the first fraction 
to be collected using low-speed centrifugation (Fig. 6) 
[52–54]. The specificity of the final product, however, 
strongly depends on the lysis protocol and/or purification 
of the nuclei. The type of cell lysis procedure (depending 
on the cells) as well as the use of Triton X-100 might influ-
ence the degree of nuclear fraction contamination with 
other cellular components, especially the endoplasmic 

reticulum. Interestingly, Triton X-100 has is also used to 
separate nuclear matrix lipids from the nuclear envelope 
pool [7]. Additional centrifugation can help eliminate 
cell debris that initially coprecipitates with nuclei. After 
nuclear separation, the application of a higher centrifugal 
force (e.g., 8000×g) produces mitochondrion- and mito-
chondria-associated membrane pellets, while the plasma 
membrane, endosomes/lysosomes, endoplasmic reticu-
lum and Golgi apparatus are among the organelles that 
remain in the supernatant [48]. The plasma membrane and 
associated membranes are the next fraction to be pelleted 
when the remaining supernatant is subjected to high-speed 
centrifugation, e.g., 25,000×g. The use of gradient cen-
trifugation is a critical step for separating mitochondria 
from mitochondria-associated membranes or the plasma 
membrane from plasma membrane-associated fractions. 
A comparison of different methodologies for mitochon-
dria isolation demonstrated that the purest mitochondria 
samples are obtained via differential centrifugation fol-
lowed by ultracentrifugation in a density gradient, while 
lower purities are obtained with magnetic bead-assisted 
isolation or differential centrifugation alone [55]. Ultra-
centrifugation of the final supernatant at or higher than 
100,000 × g results in the separation of cytoplasm from 
the organelles remaining in the sample. Due to their low 
density, lipid droplets float on top of the aqueous gradi-
ent after ultracentrifugation. The lipid droplet fraction can 
be collected at this stage and washed via centrifugation 
at 20,000×g several times to remove contaminant mem-
branes and proteins, and thus, the desired purity is reached 
[56]. The ultracentrifugation speed can be modified to 
isolate lipid droplets of specific sizes, i.e., lower speed 

Fig. 6   Schematic representa-
tion of a typical subcellular 
fractionation protocol with 
tissues and cell cultures. The 
approximate centrifugation 
force (g) used for fractionation 
of subcellular compartments 
via differential and density 
gradient centrifugation is shown 
at the top of the figure. For 
extracellular vesicles, sequential 
centrifugation is used. Notably, 
EVs can be isolated from tissue. 
CYT​ cytoplasm, ER endoplas-
mic reticulum, EV extracellular 
vesicle, GA Golgi apparatus, 
MAM mitochondrion-associated 
membrane, MITO mitochondria, 
NUC nucleus, PAM plasma 
membrane-associated mem-
branes, PM plasma membrane
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ultracentrifugation (e.g., 10.000×g) is sufficient for the 
isolation of large lipid droplets, such as those present in 
the liver and white and brown adipose tissue [57, 58]. The 
endoplasmic reticulum fraction is usually isolated using a 
discontinuous sucrose gradient. By loading the superna-
tant onto a three-layered sucrose gradient, the endoplasmic 
reticulum fraction is separated by high rotational speed 
centrifugation, higher than 100,000×g [59]. To obtain the 
Golgi apparatus-enriched fraction, density gradient sepa-
ration at ultrahigh speed is required [60–63]. The purity 
of the fractions is analyzed by measuring the levels of 
marker proteins and/or lipids known to be enriched in the 
organelle of interest [37].

The separation of the organelles in the endocytic path-
way is challenging due to their similar sizes and/or densi-
ties. However, several strategies have been used to increase 
yield [64, 65]. For example, Tharkeshwar et al. isolated 
multivesicular bodies (MVBs)/lysosomes and the plasma 
membrane using superparamagnetic iron oxide nanopar-
ticles, and then the lipidome of these organelles was ana-
lyzed via liquid chromatography with tandem mass spec-
trometry (LC‒MS/MS) [64].

Extracellular vesicles are released by cells. They are 
formed via two main mechanisms: direct budding from the 
plasma membrane (ectosomes/microvesicles) or fusion of 
the limiting membrane of MVBs with the plasma mem-
brane (exosomes). In fact, exosomes correspond to the 
intraluminal vesicles of MVBs that fuse with the plasma 
membrane. These two types of extracellular vesicles are 
often been separated by sequential centrifugation on the 
basis of their different sizes (Fig. 6) [66–71]. However, 
their sizes have recently been shown to overlap more than 
previously thought, and they can be co-pelleted to some 
extent. Several studies have identified proteins that are 
enriched in specific populations of extracellular vesicles 
and their levels can be measured to characterize the purity 
of a sample [66, 72, 73]. In addition, a combination of dif-
ferent strategies, such as immunoaffinity purification uti-
lizing antibodies specific for markers abundant in fractions 
of interest, may be employed to increase the validity of 
organelle lipidome study results. These processes include, 
for example, immunoaffinity purification of the endoplas-
mic reticulum [74], Golgi [75] or plasma membrane [76].

Following subcellular fractionation and lipid isola-
tion from subcellular compartments, gas chromatography 
coupled to mass spectrometry (GC‒MS) or LC‒MS and 
shotgun lipidomic analysis are among the most popular 
methods used for lipid analysis in the past decade [49]. To 
characterize the lipid composition of cellular organelles 
completely, MS and other advanced methods need to be 
used [37]. The methods used for the lipidome profiling of 
subcellular compartments are given in Table 1. However, 

a detailed discussion of these methods is beyond the scope 
of this review and can be found elsewhere [49, 77–80].

Lipid composition of the nucleus

In the mammalian nucleus, lipids are not only constituents 
of nuclear envelope membranes but are also present in the 
nucleolus, nuclear matrix and chromatin [7–9]. They have 
even been shown to organize (within the nucleoplasm) into 
structures called nuclear lipid microdomains [7]. In gen-
eral, nuclear lipids play both structural and functional roles, 
depending on their specific location. They contribute to the 
maintenance of some of the fundamental structural features 
of nuclei. For example, nuclear lipids regulate the fluidity of 
both the nuclear envelope and nuclear matrix (PC/SM/Chol 
ratio) and function as anchorage points for chromatin (e.g., 
PS, facilitating the renucleation of the nuclear envelope 
after cell division) [24, 81–83]. Moreover, nuclear lipids are 
involved in the regulation of DNA replication, transcription 
and gene expression, and they also function as platforms in 
signal transduction pathways related to hormone and vitamin 
signaling [8, 24, 84, 85]. Notably, the nucleus carries some 
of the enzymatic machinery required for autonomous lipid 
metabolism [86, 87]. Several enzymes involved in sphin-
golipid metabolism, for example, can be found in the eukar-
yotic nucleus; these enzymes include sphingosine kinase, 
sphingomyelinase and sphingomyelin (SM) synthase, among 
others [24, 84, 87]. Although nuclear lipids seem to be vital 
for proper cell maintenance and health, studies on the mam-
malian nuclear lipidome are rare, and few have reported on 
the same lipid pools [88]. This death of information may 
be, at least in part, attributed to the efficiency of nucleus 
isolation and purification, which are essential for subsequent 
profiling of lipids. Unfortunately, information on the final 
characterization of purified nuclei is frequently missing 
in the reported studies, making it virtually impossible to 
directly compare the lipidomic results. Nevertheless, some 
features of the mammalian nuclear lipidome have been com-
monly reported in most studies [9, 33, 84, 87, 89–91]. Glyc-
erophospholipids compose the bulk of nuclear membranes, 
with PC constituting 30–50% of the all nuclear lipids and 
PE constituting ~ 20%. Other nuclear glycerophospholipids 
include PI, phosphoinositides (such as phosphatidylinositol 
4,5-bisphosphate, PI(4,5)P2) and PS, phosphatidylglycerol 
(PG) and lysophospholipids. SM is the main sphingolipid, 
but Cer, a-series gangliosides (GM1 and GD1a) and other 
minor sphingolipid species have also been detected (see fig-
ure Fig. 3 for a schematic representation of these structures) 
[7, 8, 84]. The nuclear lipidome also includes Chol (with 
its hydroxyl and oxygenated derivatives), dolichol and ether 
lipids [24, 47, 92]. Interestingly, TG seems to be more abun-
dant in the nuclear compartment than in other organelles, 
possibly due to the lipid metabolism that has recently been 
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characterized in the inner nuclear membrane and the subse-
quent formation of nuclear lipid droplets [86, 89, 93].

For the reasons described above, the lipidome of the 
mammalian cell nucleus still has not been fully described, 
and differences among the pools of nuclear lipids are largely 
uncharacterized. For example, Cascianelli et al. concluded 
that nuclear lipid microdomains have a distinct lipid compo-
sition compared with that of nuclear membranes, especially 
regarding the proportions of PC, SM and Chol, which are 
1.5/0.6/1 in the latter and 1/1/1 in the former [7].

Overall, although the main mammalian nuclear lipidome 
has previously been described, future studies will help to 
clarify and uniformize existing data, identify specific lipid 
species and characterize different lipid pools since they play 
fundamental roles in maintaining nuclear architecture and 
function.

Lipid composition of the plasma membrane

The plasma membrane plays an essential role as a barrier 
between the cytoplasm and the extracellular milieu, as well 
as in energy storage, maintenance, transport, signal trans-
duction and extracellular communication [24, 94, 95]. The 
mammalian plasma membrane consists mainly of glycer-
ophospholipids, including PC, PE and PS, as well as SM, 
ganglioside and approximately 20–50% sterol [95]. PI is pre-
sent in small quantities and is involved in cell signaling [50]. 
Moreover, PI(4,5)P2, a phosphorylated PI, is enriched at the 
plasma membrane compared to its level in the membranes of 
other organelles. Plasma membrane lipids are important cell 
signaling messengers and are involved in cell proliferation, 
survival and migration, apoptosis, inflammation, insulin 
activation, angiogenesis, regulation and the organization of 
integrins [50, 96].

Several studies have been performed to determine the 
lipid profile of the plasma membrane. For example, isola-
tion and gradient centrifugation of cell organelles, includ-
ing the plasma membrane, followed by LC‒MS analysis, 
have resulted in the identification of various lipid species, 
including glycerophospholipids, sphingolipids and sterols 
[48]. Although cell lines derived from different origins share 
similar lipid profiles, the lipidome of the plasma membrane 
varies slightly between cell types [97]. For example, human 
embryonic kidney cells and Madin-Darby canine kidney 
epithelial cells harbor greater amounts of PS in the plasma 
membrane, while the amount of sphingolipids is lower in 
the plasma membrane of rat basophilic leukemia cells com-
pared to other cells studied to date, e.g., mesenchymal stem 
cells (MSCs) and immortalized human mammary epithelial 
(HMLE) cells [97]. Similarly, the cell membrane of HMLE 
cells does not contain significant amounts of PUFA-con-
taining lipids, while the plasma membrane in MSCs carries 
high levels of fully saturated and PUFA-containing lipids 

[97]. The outer leaflet of the plasma membrane is composed 
mostly of PC, SM and glycolipid, while the inner leaflet 
contains PE and PS. Moreover, due to membrane lipid flip-
flop, Chol is unevenly distributed between the two leaflets, 
with the outer leaflet containing more Chol in mammalian 
cells, that is thus packed more tightly than it is in the inner 
leaflet [95]. Similar findings on different distributions of 
Chol in the outer and inner leaflets of the plasma membrane 
have been reported in another study [98]. Chol in the inner 
leaflet is presumed to be involved in various cell functions, 
including signal transduction through its interaction with 
cytosolic proteins [98]. Furthermore, the plasma membrane 
is characterized by relatively ordered membrane nanodo-
mains, so-called lipid rafts, in the plane of the membrane 
formed by interactions between certain lipids such as choles-
terol, relatively saturated lipids and glycosylated lipids, that 
recruit other lipids and proteins and have specific functions 
[38, 99–101]. The cell cycle, changes in lipid metabolism 
over time, variations in sample preparation, and other fac-
tors influence the biophysical and lipidomic properties of 
the plasma membrane and are all potential causes of plasma 
lipidome variability. The observed cell-specific variations in 
the plasma membrane lipidome, although minor, highlight 
the need for further studies to understand the impact of these 
variances on cell function and encourage further research 
into the still-unknown functions of the plasma lipidome.

Changes in the lipid profile of plasma membranes might 
lead to irregular signaling that causes the development of 
various symptoms characteristic of certain disorders. Some 
examples are given later.

Lipid composition of mitochondria

Mitochondria are essential for sustaining cellular energy 
production and cell metabolism. They play vital roles in the 
production of ATP and as a source of  building blocks for 
biosynthetic pathways, regulation of intracellular calcium, 
production and scavenging of intracellular reactive oxygen 
species (ROS) and regulation of apoptosis. Mitochondria 
are composed of two membranes that change in response 
to different factors, such as aging and apoptosis, thus alter-
ing normal redox metabolism and various physiological and 
pathological processes [102–104]. Mitochondrial lipids, 
especially those with high PUFA content, such as cardiolipin 
(CL), are prone to ROS-induced damage that affects lipid 
composition and mitochondrial function. The effects of dif-
ferent factors on lipidome remodeling are discussed later.

The mitochondrial lipidome of liver cells is predomi-
nantly composed of phospholipids, with less than 15% 
comprising free fatty acids (FFAs), acyl glycerols and Chol 
[105]. Interestingly, brain mitochondria carry a much higher 
amount of Chol, which comprises more than 20% of the total 
lipid content [106]. Mitochondria have a higher abundance 
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of PGs and ether-linked phospholipids than other subcellular 
compartments and contain majority of the cellular ubiqui-
nones [47]. CL is primarily present in mitochondria and 
mitochondria-associated membranes [48]. In addition, the 
most abundant phospholipid species reported in macrophage 
mitochondria are PC(36:2), PC(36:1), PC(38:0), PE(38:4), 
PE(36:1), PE(38:3), and PG(36:2) [47]. Moreover, some 
lipids, such as phosphatidic acid (PA) and PI, are present 
at higher amounts in mitochondria-associated membranes 
compared to mitochondria themselves, a distribution that is 
opposite that of PE [48].

A previous study identified ceramide glucosyltransferase, 
glucosylceramide galactosyltransferase and sialyltransferase 
in mitochondria-associated membranes and showed that 
these enzymes were instrumental in in the synthesis of gan-
gliosides GM3, GD3 and GM1 (Fig. 3). This finding suggests 
that at least a portion of glycosphingolipids in mitochondria 
originate from mitochondria-associated membranes [107].

The levels of lipids in different classes in the mitochon-
drial lipidome vary depending on the tissue of origin. Hence, 
CL, lysophosphatidylethanolamine (LPE) and PG are pre-
sent at higher abundance in skeletal mitochondria than in 
the liver [108]. CLs carrying 18:2 acyl chains are the most 
abundant CLs in both skeletal muscle and liver mitochon-
dria, although their presence is higher in skeletal muscle, 
with CL(18:2)4 being the most abundant. Moreover, among 
the CLs present in skeletal muscle mitochondria, those 
containing 20:0 and 22:6 acyl chains constitute the largest 
group, while the level of CLs with 18:1, 20:4 and 22:2 acyl 
chains are higher in liver mitochondria [108]. Interestingly, 
the same study reported PG with 22:6 acyl chains are almost 
exclusively found in liver mitochondria. Moreover, although 
the absolute levels of the main phospholipid classes in mito-
chondria (PC and PE) appear to be the same among organs, 
PC and PE plasmalogens are present in higher amounts in 
skeletal muscle mitochondria than in the liver [108].

A detailed qualitative analysis of fatty acyl levels in rat 
liver mitochondria led to the identification of only 7 types 
of FFAs belonging to branched fatty acid chains, namely, 
acylcarnitines, octadecanoids and acylamide species. The 
same study reported a large variety of glycerophospholipids, 
sphingolipids and glycerolipids in the mitochondrial lipi-
dome and only 3 different prenols [109].

Lipid composition of the endoplasmic reticulum

The endoplasmic reticulum is a continuous and dynamic 
membrane system that is considered to be a major site for 
the production and modification of many proteins and lipids 
[4, 110]. Most membrane proteins are targeted and trans-
located to the endoplasmic reticulum, which acts as the 
point of entry to other endomembrane compartments [111]. 
The endoplasmic reticulum is crucial to the biosynthesis 

of structural phospholipids and Chol. The most abundant 
membrane lipids, PC and PE, as well as the least abundant 
lipid, PI, are produced in the endoplasmic reticulum [112]. 
These phospholipids are also the main lipid components of 
the endoplasmic reticulum, with PC being the most abun-
dant (approximately 54%), followed by PE (approximately 
20%) and PI (11%) [24]. Although Chol is produced in the 
endoplasmic reticulum, the abundance of Chol in this orga-
nelle is less than 8% because it is transferred to the plasma 
membrane immediately after synthesis [24]. Additionally, 
the endoplasmic reticulum carries minor lipids, including 
diacylglycerol (DG), cytidine diphospho-DG, PA, lysophos-
pholipid, and dolichol [4, 25]. The reticulum plays an impor-
tant role in the production of nonstructural lipids, such as 
TGs and cholesteryl esters [113]. Cer, the hydrophobic 
backbone of sphingolipids, originates from the endoplasmic 
reticulum [114] along with galactosylceramide [115], the 
major constituent of myelin. The lipids that are synthetized 
in the endoplasmic reticulum are distributed throughout 
the cell via secretory pathways and/or specialized domains, 
such as organelle contact sites. TG is transferred to lipid 
droplets that are formed on the reticulum membrane and 
subsequently associate with other organelles through mem-
brane contact sites [112]. Membrane contact sites between 
the endoplasmic reticulum and other organelles, including 
the Golgi complex, mitochondria and the plasma membrane, 
have been recently observed [116]. These findings have led 
to the conclusion that the endoplasmic reticulum is physi-
cally and functionally connected to other organelles, compli-
cating the study of separate subcellular fractions.

Venugopal et al. investigated subcellular lipid localization 
during steroidogenesis using steroidogenic MA-10 mouse 
tumor Leydig cells [48]. The authors aimed to determine the 
reorganization of membrane lipids at the subcellular level 
during steroidogenesis. They analyzed lipid species in orga-
nelles, including plasma membrane-associated membranes 
(plasma membrane, endoplasmic reticulum, and mitochon-
dria) and mitochondrion-associated membrane (endoplas-
mic reticulum and mitochondria) microdomains. Venugo-
pal et al. measured and compared 221 lipid species in cells 
treated with dibutyryl cyclic adenosine monophosphate with 
or without the steroidogenesis inhibitor cycloheximide and 
untreated control cells. They measured glycerophospholipid 
(PC, PE, PS, PI, PA, and CL), sphingolipid (SM, Cer), and 
neutral lipid cholesteryl ester levels to elucidate the roles 
of these lipids in steroidogenesis and membrane reorgani-
zation. They found that the endoplasmic reticulum exhib-
ited increased levels of PA after hormonal stimulation, and 
this effect was attenuated by cycloheximide treatment. The 
authors also reported a significant decrease in PE and PS 
content in the endoplasmic reticulum, but the levels of these 
lipids were increased in the plasma membrane-associated 
membranes following hormonal stimulation, suggesting 
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lateral movement of these lipid species. The data suggest 
that plasma membrane-associated membranes and mito-
chondrion-associated membrane microdomains are crucial 
in the process of lipid trafficking and that these membranes 
undergo dynamic reorganization during hormone-induced 
steroidogenesis.

Veyrat–Durebex and colleagues combined metabolomic 
and lipidomic approaches to identify metabolites and lipids 
involved in endoplasmic reticulum-mitochondrion metabo-
lism [117]. They detected lipids belonging to 12 different 
lipid classes: PC, PE, PG, PI, PS, lysophospholipid, SM, CL, 
Cer, DG, ganglioside, and TG. PC and PE accounted for 60% 
of the total concentration of detected lipids and were present 
in both the endoplasmic reticulum and mitochondria. Their 
abundance was followed by that of SM, TG and Cer.

Lipid composition of the Golgi apparatus

The Golgi apparatus is a cellular organelle that plays a key 
role in processing lipid cargo synthesized in the endoplas-
mic reticulum and its subsequent sorting in vesicles at the 
trans-Golgi network [118]. The Golgi apparatus is composed 
of aligned stacks of cisternae that are highly polarized, ena-
bling cargo to be received at the cis-Golgi site and guided 
to the trans-Golgi, where it is exported. The distribution 
of enzymes, resident proteins and lipid composition in the 
Golgi apparatus differs throughout, from the cis-Golgi to the 
trans-Golgi. Similarly, the luminal pH, is gradually changed, 
from pH 6.7–6.0, which is essential for cargo processing 
[118, 119].

Glycosphingolipids [120–122], phosphatidylinositol 
4-phosphate (PI4P) [123] and DGs [124] are primary and 
secondary messengers related to signaling involving the 
Golgi. PI4P turnover at the Golgi complex is regulated by 
sphingolipid metabolic flux, revealing a two-way relation-
ship between sphingolipids and phosphoinositide metabo-
lism in this organelle [125]. In vitro studies based on HeLa 
cells and by confocal microscopy revealed the colocalization 
of the cis-Golgi protein marker G95 and a PI4P marker.

Cer is produced de novo in the endoplasmic reticulum 
and, when transported to cis-Golgi, may be converted to 
glucosylceramide. PI4P mediates the transfer of glucosyl-
ceramide to the trans-Golgi network, where it is converted to 
SM or glycosphingolipid [126, 127]. Glycosphingolipids are 
synthesized de novo in the Golgi apparatus and in the endo-
plasmic reticulum and then transported to the outer leaflet of 
the plasma membrane, where they play a key role in numer-
ous signaling processes [128]. Glycosylation in the Golgi 
apparatus is essential for glycosphingolipid biosynthesis. 
The synthesis of glucosylceramide takes place on the cyto-
solic surface of the Golgi, and a floppase must be transported 
to the Golgi lumen [126] to convert glucosylceramide into a 
glycosphingolipid. The synthesis of glucosylceramide in the 

Golgi apparatus has been shown to be a process independ-
ent of the Cer transfer protein [127]. Other lipids along with 
different sensors and effectors are transported within the 
Golgi apparatus to trans-Golgi membranes [50]. The lipid 
composition of the Golgi inner membrane differs from that 
of the trans-Golgi network. For example, in the trans-Golgi 
network, some of the Golgi PC is replaced by newly syn-
thetized glycosphingolipids, accompanied by an enrichment 
in Chol due to the preferential interaction of this lipid with 
sphingolipids [129, 130], facilitating Golgi vesicle budding 
[50]. After separating the membrane and the interior content 
fractions of the Golgi, Howell and Palade concluded that PC 
is the most abundant phospholipid in both the membrane and 
interior of the Golgi, while PS and PE are more abundant 
in the membrane fraction [131]. In contrast, the majority of 
Golgi TGs is found in the content fraction. Moreover, Chol 
is heterogeneously distributed throughout the Golgi appara-
tus, with the highest amount at the trans-Golgi [132]. Fur-
thermore, the GM3, GD3 and GT3, precursors of more com-
plex gangliosides of the a-, b- and c-series, are synthesized 
in the proximal Golgi, although in different compartments. 
GM3 and GD3 have been identified in the cis/medial Golgi, 
while the specific synthesis of GT3 is located in the trans 
Golgi compartment [133].

Lipid composition of lipid droplets

Lipid droplets are structurally unique among organelles with 
a dense hydrophobic core comprising neutral lipids and 
enveloped with a phospholipid monolayer [134]. Although 
they have long been regarded as passive energy repositories, 
in the last decade, the dynamic functions of lipid droplets 
have been revealed, as they have been found to be immersed 
in all aspects of cellular function [1, 135]. Lipid droplets 
are formed in the endoplasmic reticulum, where the size 
of a nascent neutral lipid lens composed of newly synthe-
sized TGs and sterol esters increases between the two leaf-
lets of the endoplasmic reticulum membrane [136]. These 
nascent lipid droplets bud from the reticulum membrane 
and are released into the cytosol, where their size further 
increases or decreases and where they contact other orga-
nelles [137–140].

One of the essential biological functions of lipid drop-
lets involves their dynamic responses to changes in cellular 
nutrient requirements, which fluctuate, and environmental-
induced signaling to coordinate lipid metabolism and thus 
meet the energy demands for membrane biosynthesis, cell 
growth and survival [138, 141]. Lipid droplets are continu-
ously formed and broken down in a cell, functioning simul-
taneously as sinks that protect membranes and organelles 
from lipid overload and as sources of lipids for essential 
processes, such as those needed for balancing membrane 
saturation levels and fatty acids needed for mitochondrial 
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energy production [142–144]. In stressed cells, lipid droplet 
size, subcellular location, and lipid and protein composition 
can rapidly change [145]. For example, low calorie intake 
has been reported to result in the enrichment of hepatocyte 
lipid droplets with TGs containing long-chain PUFAs, while 
hepatocyte lipid droplets from mice fed a high-fat diet con-
tained fewer unsaturated TGs [146]. Lipid droplets provide 
lipids that may directly function as signaling molecules, 
such as fatty acids, or as biosynthetic precursors for other 
bioactive lipid mediators, such as eicosanoids, retinoic acid, 
endocannabinoids, and Cer [147–149]. Remarkably, lipid 
droplets sequester and release various proteins, thereby 
affecting protein turnover, signaling pathways and gene 
transcription [45, 150]. Lipid droplets may store lipophilic 
drugs and control drug efficacy by altering their subcellular 
distribution [151].

The neutral lipid droplet core primarily stores lipids in 
their esterified storage forms; e.g., fatty acids are stored as 
TGs, sterols are stored in the form of sterol esters, retinoic 
acid is stored as a retinyl ester, and Cer is stored as an acyl-
Cer [147, 152, 153]. Lipid droplets may also harbor vary-
ing amounts of lipid intermediates produced during neutral 
lipid biosynthesis and breakdown, most notably DG but also 
lysophosphatidic acid and PA. Lipid droplets can also store 
significant amounts of ether lipids [154]. In alignment with 
tissue-specific functions and storage requirements, lipid 
droplets in different cells and tissues may exhibit significant 
differences in the relative proportions of these major lipid 
species. Lipid droplets in adipocytes are predominantly com-
posed of TGs, whereas lipid droplets in steroidogenic cells 
or macrophage foam cells carry mostly cholesteryl esters 
[155–157]. On the other hand, hepatic stellate cells, which 
are specialized in the storage of retinol (vitamin A), harbor 
LDs that are enriched with retinyl esters [158, 159]. The 
surface monolayer of mammalian cell lipid droplets includes 
electroneutral phospholipid species as well as some sterols. 
It is primarily composed of PC, followed by PE and PI, and 
significant amounts of corresponding lysophospholipid spe-
cies may also be found [154].

Lipid droplets play major roles as regulators of fatty 
acid trafficking, metabolism and signaling. Consistent with 
these functions, the fatty acyl chain composition of neu-
tral lipids stored within lipid droplets differs between cell 
types and is dynamically altered during cell state transitions. 
For instance, channeling of SFAs into TGs may reduce TG 
availability for conversion into Cer, thus limiting both pal-
mitate- and Cer-induced lipotoxicity and inflammatory sign-
aling [160–162]. In addition, the esterification and release 
of Cer from lipid droplets modulates the activation of Cer-
induced signaling pathways in a cell [153]. Lipid droplets in 
hypoxic kidney cancer cells release unsaturated fatty acids 
that replace saturated acyl chains in cell membranes, pre-
venting endoplasmic reticulum stress [142].

Lipid droplets may function as sinks for PUFAs, which 
limit the availability of PUFAs needed as pro-inflammatory 
lipid mediators, preventing inflammation [163–166]. How-
ever, when cells undergo PUFA overload that exceeds the 
storage capacity of lipid droplets, the lipolytic release of 
PUFAs from lipid droplets induces oxidative stress and cell 
damage, which can lead to ferroptotic cell death [166–169]. 
Finally, the presence of oxidized lipids in lipid droplets 
may alter their function and disrupt other cellular processes 
[164–166]. For example, oxidized and truncated TGs alter 
dendritic cell function by covalently immobilizing the chap-
erone proteins required for antigen presentation to the lipid 
droplet surface [45]. Additionally, peroxidized lipids have 
been found in lipid droplets of Drosophila glial cells, and 
they have been associated with mitochondrial dysfunction 
and neurodegeneration [170]. Lipid droplets are thus emerg-
ing as active regulators of lipid trafficking, which affects 
a wide range of cellular processes, but much remains to 
be learned about the lipid droplet lipidome, its dynamic 
changes and functions.

Lipid composition of the organelles 
in the endosomal pathway

Through the endocytic pathway, extracellular material 
is taken up by cells, sorted and transported via vesicles 
to their destination [171]. Endocytosis takes place at the 
plasma membrane, the lipid composition of which was dis-
cussed above. In addition, the endocytic pathway involves 
three main organelles: endosomes, late endosomes/MVBs 
and lysosomes. The luminal pH of these organelles becomes 
gradually increasingly acidic, reaching a value of 4.5–5 in 
lysosomes [172]. Several differences in the lipid composition 
of these organelles have been identified [173, 174], includ-
ing distinct membrane components of MVBs [175, 176], 
which include the MVB limiting membrane and intraluminal 
vesicles (ILVs) formed by invaginations of this membrane.

The amount of Chol varies in the organelles of the endo-
cytic pathway. The plasma membrane contains the highest 
Chol-to-phospholipid ratio, which is approximately equal to 
one, in cells [4]. Using immunoelectron microscopy, Möbius 
et al. found that MVBs, particularly ILVs, contained high 
amounts of Chol, with lower levels in recycling endosomes 
and lysosomes, where Chol is largely absent [176].

Phospholipids constitute a large fraction of the total lipids 
in cellular membranes. Leventis and Grinstein summarized 
the percentage of the phospholipid classes PC, PE, PI and 
PS in terms of their percentage in the total phospholipid 
composition in different cellular compartments, including 
the plasma membrane, early endosomes and late endosomes 
[177]. PC was the most abundant phospholipid (42–49%), 
followed by PE (18–25%). The most remarkable difference 
between these compartments was the level of PS, which was 
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12% in the plasma membrane, 8.5% in early endosomes and 
2.5–3.9% in late endosomes. In addition, higher amounts of 
PI were found in early and late endosomes than were found 
in the plasma membrane. The phospholipid composition of 
rat liver lysosomes and the plasma membrane has also been 
summarized [178]. In this study, PC was also shown to be 
the most abundant phospholipid (~ 40% of total phospho-
lipids), followed by PE (~ 20% of total phospholipids). The 
main difference between these compartments was that the 
SM and PS percentages were higher in the plasma mem-
brane [178]. However, as mentioned by the authors of these 
papers, these results are based on subcellular fractionation 
(Fig. 6), which can lead to data distortion caused by the pos-
sible isolation of impure fractions and disruption of lipids 
during assay procedures [177, 178].

Some phosphoinositides, which are derivatives of PI 
that are phosphorylated at one, two or three positions of 
the inositol ring, are enriched in the organelles of the endo-
cytic pathway due to the functions of specific lipid kinases 
and phosphatases. Therefore, these lipids are often used to 
identify these compartments; for example, PI(4,5)P2 and 
phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) are 
often enriched on the plasma membrane, phosphatidylino-
sitol 3-phosphate (PI3P) is enriched on the membranes of 
early endosomes, and phosphatidylinositol 3,5-bisphosphate 
(PI(3,5)P2) is enriched in MVBs [179–181]. Moreover, 
phosphoinositides are involved in different cellular processes 
involving these organelles by recruiting proteins with spe-
cific binding domains to the cellular compartment where 
these lipids are located; for example, PI3P recruits proteins 
containing FYVE and PX domains to endosomes [182, 183].

Interestingly, in the cells of mammals and other higher 
eukaryotes, MBVs and lysosomes contain an atypical ani-
onic phospholipid called bis(monoacylglyceryl)phosphate 
(BMP), also known as lysobisphosphatidic acid. This lipid 
is found in large amounts in these organelles (15–20 mol% 
of all phospholipids), mainly in ILVs, but are absent at other 
cellular locations [184–186]. In fact, ILVs may consist of at 
least two different populations, with one population with PC 
and the with BMP as the main phospholipid [175]. A main 
function of BMP lipid is control of the endosomal levels of 
Chol and sphingolipids, and it has also been shown to play 
a role, together with the Alix protein, in the formation of 
ILVs [185, 186].

Overall, we have acquired an understanding of the lipid 
classes and how they differ in the organelles of the endocytic 
pathway, but few studies have sought to identify the spe-
cific lipid species that comprise these organelles. As previ-
ously mentioned, these organelles are difficult to separate, 
which makes the preparation of pure samples for lipidomic 
analysis difficult. However, some strategies have been used 
to increase the purity of samples [64, 65]. For example, 
Tharkeshwar et al. isolated MVBs/lysosomes and plasma 

membranes using superparamagnetic iron oxide nanoparti-
cles. Then, the lipid composition of these organelles in HeLa 
wild-type and Niemann-Pick type C1 (NPC1)-deficient cells 
was analyzed by LC‒MS/MS [64]. In this study, 17 lipid 
classes and 551 lipid species were quantified. MBVs/lys-
osomes were found to be composed of approximately 60% 
glycerophospholipids (PC, PE, PI, PS, PG, ether-linked PC/
PE (PC O-/PE O-), PA and DG; 4.6% sphingolipids (Cer, 
hexosylceramide (HexCer) and SM); 7.5% storage lipids 
(TGs and Chol esters); and 28% Chol. The proportion of 
these lipids in the plasma membrane were approximately 
62%, 4%, 0.5% and 32%, respectively. Differences in the 
amounts of individual lipid species between these two com-
partments were not specifically analyzed, but several differ-
ences were found in the lipid species of MVBs/lysosomes 
when control cells and NPC1-deficient cells were compared. 
In addition, an MS/MS lipidomic analysis of lysosome-
enriched liver fractions in wild-type and granulin mutant 
mice was performed and the lipidomes were compared 
[187]. Approximately 500 lipid species were identified, 
and the proportions of TG, PS, PE and DG were compared, 
but the lysosomal lipid composition of the lysosomal frac-
tions from the wild-type mouse liver was not individually 
analyzed.

In conclusion, there is still much to learn about the lipid 
species in the organelles of the endocytic pathway, and hope-
fully, future lipidomic studies will reveal the full lipid com-
position of these organelles.

Lipid composition of extracellular vesicles

Extracellular vesicles are vesicles that are released by cells 
into the extracellular environment [188–191]. Living cells 
release two main populations of vesicles known as exosomes 
and microvesicles, which are named based on the mecha-
nism underlying their release: exosomes correspond to the 
ILVs of the MVBs that fuse with the plasma membrane, and 
microvesicles bud directly from the plasma membrane. The 
sizes of exosomes and microvesicles overlap to some extent, 
with exosomes in the smaller range (~ 30–150 nm in diam-
eter; ILVs have a mean diameter of approximately 50 nm 
in mammalian cells [192]) compared to that of microves-
icles (~ 50–1000 nm in diameter) [193, 194]. It can then 
be expected that the lipid composition of exosomes and 
microvesicles resembles the composition of ILVs and the 
plasma membrane, respectively.

Lipids are essential molecular components of extracel-
lular vesicles. They affect membrane physical properties 
[17, 25] and may play roles in maintaining the stability of 
vesicles in the extracellular environment. The lipid composi-
tion of extracellular vesicles has been a subject of interest 
for many years. In addition to the abovementioned chal-
lenges in the separation of different extracellular vesicles 



	 M. J. Sarmento et al.

1 3

237  Page 16 of 27

populations, little is known about how different preanalytical 
variables affect the lipid composition of extracellular vesi-
cles in biofluids, and some of these factors may be relevant 
to their effective isolation [195]. Most of the lipidomics 
studies have so far focused on extracellular vesicles pelleted 
by 100,000×g centrifugation. This fraction is expected to 
contain mainly exosomes and will be referred here as such.

The lipid composition of exosomes in seminal fluid and 
released by reticulocytes was investigated in the late 1980s 
[196, 197]. Extracellular vesicles in human seminal fluid 
(prostasomes) exhibited a very high Chol/phospholipid ratio 
[196]. Similarly, exosomes released by B-lymphocytes were 
enriched in Chol and sphingolipids [198]. Over the years, 
several MS lipidomic studies have reported the identity of 
several hundred lipid species in more than 20 lipid classes 
[199–202]. Regardless of the method used for lipid analysis, 
several studies have shown the enrichment of Chol, SM, gly-
cosphingolipid (GSL), PS, PC and PI in exosomes from cells 
also enriched with these lipids; in contrast, the content of PE 
was found to be similar in the cells and exosomes isolated 
from their supernatants [70]. It has also been shown that 
exosomes contain relatively more saturated and less mono-
unsaturated fatty acids than the cells from which they are 
released [201, 202]. Exosomes from seminal fluid exhibit 
a high degree of fatty acid saturation [203]. Recently, lipi-
domic analyses of extracellular vesicles in blood and urine 
have been performed [204, 205], which has supported the 
use of lipid species in extracellular vesicles as noninva-
sive biomarkers for identifying several diseases. The lipid 
composition of urinary extracellular vesicles pelleted at 
100,000×g indicated a very high level of Chol; all the PE 
species identified were PE ethers; and PS 18:0/18:1 were the 
lipid species found at high levels after Chol [204].

Only a few studies have compared the lipid composition 
of different extracellular vesicle populations released from 
the same cell line [206, 207]. The lipid composition of sev-
eral populations of extracellular vesicles released by plate-
lets was found to vary, with the exosome-enriched fraction 
containing the highest content of Chol and SM [207]. The 
enrichment of these lipids in exosomes suggests that they 
have a higher lipid order than other extracellular vesicles 
populations, a supposition that has been supported by several 
studies [208, 209].

As mentioned in the previous section, the anionic phos-
pholipid BMP is abundant in MVBs/late endosomes and 
are found in ILVs [175, 176, 185]. Therefore, whether this 
lipid is found in exosomes has been a research topic. If this 
is the case, then BMP can be used as a marker to differen-
tiate exosomes from vesicles formed at the plasma mem-
brane. Some studies have reported that BMP is not present 
in exosomes [176, 198, 210]. However, a prior study identi-
fied this lipid in vesicles attached to follicular dendritic cells 
[211]. In addition, several species of BMP have recently 

been identified by MS in vesicles released by cultured corti-
cal neurons (although the absolute levels of BMP were not 
reported [212]), in urinary extracellular vesicles and in vesi-
cles released by HEK293 kidney cells [213]. Furthermore, 
phosphoinositides, known to be enriched in the plasma 
membrane and in MVBs, also show the potential to be useful 
to differentiate exosomes from microvesicles. Interestingly, 
methods are currently available to detect the presence of 
different phosphoinositides in extracellular vesicles [214].

In conclusion, lipidome analyses of extracellular vesicle-
shave provided useful information to understand the lipid 
composition of ILVs and the plasma membrane.

Lipid composition of epidermal lamellar bodies

Epidermal lamellar bodies are secretory organelles belong-
ing to a class of lysosome-related organelles that are exclu-
sive to epithelial cells, including alveolar cells in the lungs 
and skin and oral keratinocytes. They play important physi-
ological functions, such as breathing and epidermal barrier 
formation. Here, we focus on the lamellar bodies in the skin.

The epidermal barriers is composed of the outermost 
layer of the skin epidermis—the stratum corneum [215]. 
Keratinocytes gradually differentiate and form stratified lay-
ers, simultaneously producing proteins and lipids. While the 
keratinocyte proteins polymerize inside the cells, forming an 
envelope, the lipids are secreted through lamellar bodies to 
create a hydrophobic barrier comprising protein-lipid com-
posites [216]. The lipid composition of the stratum corneum 
consists mainly of equimolar concentrations of Cer, Chol, 
and FFA, with the lipid mass consisting of approximately 
50% Cer, 25% Chol, 15% FFA and a small percentage of 
phospholipids [217–219].

Lamellar bodies are unique membrane-bound organelles 
composed of one or several tightly packed bilayer mem-
branes (reviewed in [220]). They are round or oval with a 
diameter of approximately 200–300 nm and originate by 
budding off from the trans-Golgi tubuloreticular membrane 
system of the outermost epidermal granular cells [221, 222].

Several groups have isolated lamellar bodies-enriched 
fractions based on their low buoyancy, low density, or small 
size [223, 224]. Based on these studies, it was shown that 
lamellar bodies contain, in addition to lipids, enzymes 
involved in lipid metabolism, chymotryptic enzymes (kal-
likreins), protease inhibitors, cathepsins, and antimicrobial 
peptides, which are all essential for the formation of various 
skin barriers [225–228].

A direct lipid analysis of lamellar bodies-enriched frac-
tions from rodent and pig epidermis showed that lamel-
lar bodies contain Chol, phospholipid, glucosylceramide, 
and SM [229, 230]. The glucosylceramides in lamellar 
bodies are structurally heterogeneous, the most unique 
of which is linoleate-rich w–O-acyl-glucosylceramide, 
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which has been implicated in the assembly of lamellar 
bodies [231]. This w–O-acyl-glucosylceramide consists 
of 28- to 34-carbon w-hydroxy acids with amide links to 
sphingosine and dihydrosphingosine bases, with glucose 
beta-glycosidic attachments to a primary hydroxyl group 
of a long chain base and linoleic acid ester links to the 
w-hydroxyl group. The w–O-acyl-glucosylceramide con-
tains 74–75% ester-linked linoleate, making it a major 
linoleic acid carrier in viable epidermis, the layer of the 
skin underlying the stratum corneum. Approximately 80% 
of w–O-acyl-glucosylceramide has been estimated to be 
associated with the limiting membrane of lamellar bod-
ies, while approximately 20% has been found in internal 
lamellae [232].

In addition to its composition, the lamellar body mem-
brane, another feature distinguishes lamellar bodies from 
other organelles. In most biological membranes (e.g., 
plasma membrane and membranes of biological vesicles), 
glycolipids are synthesized with glucose attached to the 
outer surface, but in the lamellar bodies, the glucosyl 
moiety of acyl-glucosyl Cers in the limiting membrane is 
located on the inner side of the membrane [220].

At the boundary between the uppermost granular cells 
and the stratum corneum, lamellar bodies fuse with the 
plasma membrane, and the contents of the lamellar bodies 
are released into the intercellular space.

While enzymatically modified w–O-acyl-Cers in the 
limiting membrane of lamellar bodies replace the lipids in 
the plasma membrane, forming a cornified lipid envelope, 
and the extruded contents are metabolized in the intercel-
lular space by enzymes that are cosecreted from lamellar 
bodies. At this time, beta-glucocerebrosidase converts glu-
cosylceramides into Cer, acidic sphingomyelinase converts 
them into sphingomyelin, and phospholipases convert 
phospholipids into FFAs and glycerols [233].

Although the formation, structure, and secretion of 
lamellar bodies in epidermal keratinocytes have been the 
most extensively studied, lamellar bodies have also been 
reported in other epithelial cells (reviewed in [234]). In 
the keratinized oral epithelia, gingiva, and hard palate, 
lipids are packaged in lamellar bodies similar to those in 
the skin epidermis; however, the volume and density of 
the lamellar bodies in these tissues are lower than those 
in the epidermis. The Cer profile of the oral stratum 
corneum is similar to that of the skin stratum corneum, 
with the exception that although linoleate is the major 
(70–80%) ester-linked fatty acid in epidermal Cer, in pala-
tal Cer, linoleate constitutes only 8.8% of the ester-linked 
fatty acids [235]. Because the oral stratum corneum con-
tains fewer lipids than the epidermal stratum corneum 
and because these lipids are organized more loosely, the 
permeability of the oral epithelium is higher than that of 
the skin [236].

In summary, the lamellar bodies deliver lipids and other 
components that are essential for the formation of various 
epidermal barriers.

Lipidome dynamics under physiological 
and pathological conditions

The cellular lipidome is highly dynamic, and the lipid com-
position changes in response to various factors under both 
physiological and pathological conditions. Altered lipid 
metabolism, ongoing inflammation, and oxidative stress are 
among the conditions that can cause cellular lipidome altera-
tions. Moreover, subcellular lipidome dynamics have been 
associated with both physiological (aging) and pathologi-
cal conditions, leading to a wide spectrum of neurological 
disorders with different etiologies. To date, changes in the 
lipid profile of organelles have been reported in many dis-
orders, including cancer, metabolic and inflammatory dis-
eases, aging, and neurodegenerative disorders. In this sec-
tion, we provide a few examples illustrating the lipidome 
alterations in health and disease contexts. Understanding 
lipidome remodeling under both physiological and patho-
logical conditions might aid in finding biomarkers and iden-
tifying potential therapeutic targets for diverse pathological 
conditions.

Lipidome dynamics under physiological conditions

The organelle lipidome commonly changes during vari-
ous physiological processes. Herein, examples of lipidome 
dynamics in steroidogenesis, thermoregulation, and inflam-
matory cells are presented.

During steroidogenesis induced in vitro, the lipidome 
undergoes dynamic remodeling. Although the total PC abun-
dance remains unchanged, the levels of specific PCs differ. 
For example, the levels of PC(28:0) and PC(32:1) increase, 
while the level of PC(34:0) profoundly decreases during 
steroidogenesis in mitochondria, mitochondrion-associated 
membranes and plasma membrane-associated membranes, 
and the opposite changes have been reported for the afore-
mentioned PC pieces in plasma membranes [48]. In contrast, 
steroidogenesis induced in vitro leads to elevated the levels 
of CL and Cer in mitochondria and the plasma membrane, 
as well as in their respective associated membranes, and the 
PA level is elevated in the endoplasmic reticulum [48].

A study on Mongolian gerbils pointed to suggested an 
important role for mitochondrial membrane lipidome remod-
eling with respect to mitochondrial respiration during acute 
thermoregulation [242]. The brown adipose tissue mitochon-
drial membrane phospholipidome was found to be prone 
to changes during acute thermoregulation. The most sig-
nificant changes were recorded for PS(30:0), PS(40:2), and 
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lysophosphatidylglycerol LPG(16:0) in brown adipose tissue 
mitochondria and for LPE(24:1) and PC(44:4) in muscle 
mitochondria [242]. In addition, the amount of n-6 FFA was 
higher in mitochondrial membranes at high temperatures, 
which may be attributable to an increase in a specific spe-
cies, FFA(18:2). In contrast, the levels of FFA(21:5) and 
FFA(22:5, n-3) were reduced at high temperature [242].

Finally, lipidome perturbations in subcellular compart-
ments is induced after inflammatory cell activation, such as 
after the activation of macrophages induced by lipopolysac-
charide and mediated via Toll-like receptor 4 [47]. The lev-
els of Chol precursors and Cer were increased in all fractions 
of macrophage-like RAW264.7 cells. However, unsaturated 
ether-linked PE decreased only in the endoplasmic reticulum 
and could be associated with the release of arachidonic acid 
from the endoplasmic reticulum after cell activation [47].

Lipidome dynamics during aging 
and neuropathology development

Lipids are highly susceptible to excessive ROS, which may 
cause oxidative damage. Lipid peroxidation and its implica-
tion in physiology [104, 250] and the development and pro-
gression of major stress-associated diseases have been well 
documented [251, 252]. Among lipids, plasmalogens, a class 
of glycerophospholipids (Fig. 2), terminate lipid peroxida-
tion and thus are sometimes termed endogenous antioxidants 
[253]. The development of sensitive methods for performing 
lipidome analysis has led to the identification of associated 
changes with plasmalogens under pathological conditions. 
The mitochondrion-endoplasmic reticulum lipidome as well 
as the whole-cell lipidome of amyotrophic lateral sclerosis 
fibroblasts exhibit changes in the level of docosahexaenoic 
acid 22:6(n-3) in phospholipids. Moreover, plasmalogens 
containing FFA(22:6) are major phospholipids useful for 
discriminating between amyotrophic lateral sclerosis and 
control samples [241]. Additionally, amyotrophic lateral 
sclerosis fibroblasts exhibit changes in the sphingolipid 
composition of the mitochondrion-endoplasmic reticulum 
lipidome [241].

Aging and Parkin loss mediate brain mitochondrial lipi-
dome remodeling, which affects several cellular functions 
[243]. Aging is accompanied by increases in the levels of 
hydroxylated hexosylceramide (OH-HexCer) and PE and a 
reduction in PC and Cer in mitochondrial membranes. The 
age-induced increase in hydroxylated Cer (OH-Cer), HexCer 
and CL levels and the decrease in LPE, PI, PS and lysophos-
phatidylcholine (LPC) levels in mitochondrial membranes 
are specific to parkin loss [243]. The levels of specific lipids 
in mitochondria are significantly reduced during aging, 
namely, Cer(74:8), HexCer(40:1), HexCer(42:1), and Hex-
Cer(44:2), while the levels of Cer(72:6), OH-HexCer(41:1), 
OH-HexCer(42:2), OH-HexCer(43:2) are increased; these 

changes may be attributable, at least in part, by aging-related 
oxidative stress [243].

Alterations in the plasma membrane lipidome have been 
observed in patients with autism spectrum disorder [254]. A 
study showed that certain processes, including the response 
to oxidative stress, influence PS level in the plasma mem-
brane, causing morphological alterations in red blood cells. 
Decreased levels of PUFAs have been observed in children 
with autism spectrum disorder compared with children with 
normal development [239, 254, 255]. Notably, glutamate 
excitotoxicity in autism spectrum disorder might be associ-
ated with changes in lipid rafts in the plasma membrane, 
particularly alterations in the sphingolipid and Chol com-
position [254].

A study published by Bolognesi and colleagues identified 
several phospholipid fatty acids in human neuroblastoma 
cell membranes and reported alterations to their levels after 
palmitic acid supplementation [240]. Hyperactivation and 
alterations in several signaling pathways leads to changes in 
the plasma membrane lipidome of in cancer cells; for exam-
ple, the desaturation rate of palmitic to palmitoleic acid by 
stearoyl-CoA desaturase is increased. These lipid composi-
tion alterations imply a potential association between cancer 
and membrane biosynthesis [256]. MIN6 β-cells exposed to 
palmitate exhibited a small increase in the levels of the Cer 
species C18:0, C20:0, and C22:0 and a significant decrease 
in the level of the SM species C25:1 and C26:1 [257]. The 
same study showed that chronic palmitate exposure reduced 
SM and Chol content in the endoplasmic reticulum and dis-
rupted its lipid rafts, supporting the hypothesis suggesting 
that disruption in endoplasmic reticulum-to-Golgi apparatus 
trafficking leads to protein overload and induces endoplas-
mic reticulum stress.

Lipidome dynamics in cancer cells

Neoplastic cells exhibit altered lipid metabolism, impacting 
the membrane lipidome, which allows these cells to with-
stand immune system responses. Studies on normal colon 
cells and four colon cancer cell types revealed distinct 
lipidomic signatures in both the membrane lipidome and 
their extracellular vesicles between the healthy and cancer 
cells [258]. All cancer cells showed an altered profile in 
glycerophospholipids containing ethanolamine, diacyl-PC, 
diacyl-PE or PE plasmalogen [258]. Moreover, a study on 
melanoma revealed that melanoma cells with low metastatic 
potential are enriched in PIs with saturated and short fatty 
acid tails compared to those with high metastatic potential, 
while the membranes of melanoma cell-derived exosomes 
contained higher amounts of LPC, PA and SM compared to 
the cells from which they originated [259]. Furthermore, a 
distinct tumor subtype-specific lipidome signature has also 
reported for breast cancer cells [260].
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Although this section describes only a few examples, it 
is clear that changes in the lipidomic landscape of cancer 
cell membranes and tumor cell-derived extracellular vesi-
cles may lead to the discovery of promising biomarkers 
for designing novel therapeutic and diagnostic techniques.

Final remarks

The variability in the lipid profile between different cell 
types and/or the distribution of lipid species within sub-
cellular organelles is poorly understood. To date, only a 
few comparative studies have provided information on the 
amount of lipids in different organelles, and therefore, to 
gain a better understanding of the subcellular lipidome, 
future quantitative comparative lipidomic studies are 
essential. In addition, changes in the cellular and orga-
nelle lipid profile over time or in response to either physi-
ological or pathological stimuli make this task even more 
challenging. Another extremely complex issue for which 
new solutions are urgently needed is related to the anno-
tation of lipids and the management of data pertaining to 
the curation of lipid structures in subcellular organelles. 
MS is an indispensable tool for lipidomic analysis and it 
should be performed with sample that have been efficiently 
extracted and separated. Obtaining pure lipid samples spe-
cific to each organelle is a prerequisite for accurate map-
ping of subcellular lipidomes, and the extraction methods 
available today need to be improved to enhance the purity 
of different subcellular fractions. In addition, without the 
ability to separate the most abundant lipid species, it is 
challenging to provide accurate identification of lipids or 
quantification data on lipids in low abundance. The resolu-
tion of this problem largely depends on instrument capa-
bilities and sensitivities, highlighting the need for further 
development of MS, which may increase the understand-
ing of lipidome variabilities and perturbations in health 
and disease and in elucidating the cellular functions of 
different lipid species.
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