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Abstract

Today we are living in the Information Age. Amount of data influences reliability
of models, validity of decisions and forecasts at any level from the one’s everyday
life to global economy. Information is a valuable resource of great demand in
any sphere today.

Physics is not an exception from this general rule. Any experiment or finding
increases our knowledge about reality. Any additional piece of information we
collect improves our physical models and provides a deeper level of understanding.

It is easy to estimate how much we know about some process. This can
be represented as the number of bytes encoding the data we have collected.
For example, the LHC experiment generates more than 30 PB (O

(
1016) bytes)

annually.
Therefore, one comes to the obvious conclusion: the more we know, the more

we understand. But how about what we do not know? Can we estimate our
unawareness about a physical system? How can it help us to improve, validate
or discard our models of some phenomena?

There is an answer to the first two questions: information entropy. It serves
as a measure of how much we do not know. Attempts to find the answer to
the third one have induced this study. It is focused on entropy and its role
in relativistic heavy ion collisions and in the physics of black holes. Despite
the items seem to differ a lot, both of them do have something in common:
probability distributions of observables. And in what follows we will find out
how our lack of information can be useful for expanding our knowledge about
nature.

The main idea of this thesis is to demonstrate how both quantum and classical
information entropies may help us to solve modern problems of high energy
physics and astrophysics.

The thesis is a collection of eight papers, presented in chronological order
separately for each of the considered topics. These are preceded by Part I, which
is an introductory one. It contains reviews of topics serving as motivation for
the research and brief discussions of open problems. A concise description of
models and formalisms used throughout the study is included also. The papers
can be found in Part II.

Information entropy is a basic tool used throughout the study. In order to set
up the background, some basics and necessary concepts of information theory
for entropy quantification are presented in Chapter 1. It includes also a brief
discussion of entropy interpretation.

A deconfined state of matter, known as quark-gluon plasma, its signatures
and fluid properties are discussed in Chapter 2. The chapter is accompanied
by a brief description of equilibration and early entropy generation problems in
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Abstract

collision experiments; these are presented in Chapter 3. It also discusses particle
momentum distributions and how these can be used to extract entropy even in
a far-from-equilibrium state.

Chapter 4 contains models and formalisms used to study viscous properties
of the plasma. The description of the performed investigation and main results
on specific viscosity can be found in Chapter 5.

Chapter 6 is devoted to black hole thermodynamics, information loss and
black hole entropy problems. These are deep issues inspiring a vast amount of
theoretical findings with far-reaching consequences for modern physics. To give
a taste, the Chapter briefly discusses popular approaches to some problems and
open questions in gravity quantization.

Unruh effect is suggested as a promising solution for the black hole problems.
Its description and the discussion of Unruh radiation entropy can be found in
Chapter 7. The main results for this part of the study are presented in Chapter 8.

Finally, Chapter 9 contains the summary. It concludes on the role of
information entropy in resolving the studied problems and efficiency of such a
tool. At the end, one can find a brief outline of possible improvements and issues
for further research.

ii



Sammendrag

Vi lever i informasjonsalderen. Datamengden påvirker påliteligheten til modeller,
gyldigheten av beslutninger og prognoser på alle nivåer fra ens hverdag til global
økonomi. Informasjon er en verdifull ressurs med stor etterspørsel på alle områder
i dag.

Fysikk er ikke et unntak fra denne generelle regelen. Ethvert eksperiment
eller funn øker vår kunnskap om virkeligheten. All tilleggsinformasjon vi samler
inn forbedrer våre fysiske modeller og gir et dypere nivå av forståelse.

Det er lett å anslå hvor mye vi vet om en prosess. Dette kan representeres
som antall byte som koder for dataene vi har samlet inn. For eksempel genererer
LHC-eksperimentet mer enn 30 PB (O

(
1016) byte) årlig.

Derfor kommer man til den åpenbare konklusjonen: jo mer vi vet, jo mer
forstår vi. Men hva med det vi ikke vet? Kan vi anslå vår uvitenhet om et fysisk
system? Hvordan kan det hjelpe oss å forbedre, validere eller forkaste modellene
våre for noen fenomener?

Det finnes et svar på de to første spørsmålene: informasjonsentropi. Denne
fungerer som et mål på hvor mye vi ikke vet. Forsøk på å finne svaret på det
tredje spørsmålet er motivasjonen bak denne avhandlingen. Den er fokusert på
entropi og dens rolle i relativistiske tungionekollisjoner og i fysikken til sorte
hull. Til tross for at disse to emnene kan virke veldig ulike, har de noe viktig til
felles: sannsynlighetsfordelinger av observable. Og i det følgende skal vi finne ut
hvordan vår mangel på informasjon kan være nyttig for å utvide vår kunnskap
om naturen.

Hovedideen med denne oppgaven er å demonstrere hvordan både kvante- og
klassiske informasjonsentropier kan hjelpe oss til å løse moderne problemer innen
høyenergifysikk og astrofysikk.

Oppgaven er en samling av åtte artikler, presentert i kronologisk rekkefølge
separat for hvert av hovedemnene. Del I er avhandlingens innledende del. Den
inneholder en gjennomgang av bakgrunn og motivasjon for forskningen, samt
korte diskusjoner av åpne problemer. En kortfattet beskrivelse av modeller og
formalisme brukt gjennom hele studien er også inkludert. Selve artiklene utgjør
Del II.

Informasjonsentropi er et grunnleggende verktøy som brukes gjennom hele
studiet. For å gi den nødvendige bakgrunnen, presenteres grunnleggende begreper
innen informasjonsteori for entropikvantifisering i Kapittel 1. Dette inkluderer
også en kort diskusjon om tolkning av entropi.

Kvark-gluon plasma (en tilstand til materie hvor kvarker og gluoner kan
bevege seg relativt fritt), dens signaturer og væskeegenskaper er diskutert i
Kapittel 2. Kapittelet er ledsaget av en kort beskrivelse av ekvilibrering og prob-
lemer rundt tidlig entropigenerering i kollisjonseksperimenter; disse er presentert
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i Kapittel 3. Dette kapitlet diskuterer også partikkelmomentumfordelinger og
hvordan disse kan brukes til å trekke ut entropi selv i en tilstand langt fra
likevekt.

Kapittel 4 inneholder modeller og formalisme som brukes til å studere viskøse
egenskaper til plasma. Beskrivelsen av utført undersøkelse og hovedresultater på
spesifikk viskositet finnes i Kapittel 5.

Kapittel 6 er viet til sorte hulls termodynamikk, informasjonstap og entropien
til sorte hull. Dette er dype problemstillinger som inspirerer en enorm mengde
teoretiske funn med vidtrekkende konsekvenser for moderne fysikk. For å gi en
smakebit, diskuterer kapitlet kort populære tilnærminger til noen problemer og
åpne spørsmål i gravitasjonskvantisering.

Unruh-effekten er foreslått som en lovende løsning for problemene med sorte
hull. Beskrivelsen og diskusjonen om Unruh-strålingsentropi kan finnes i Kapittel
7. Hovedresultatene for denne delen av studien er presentert i Kapittel 8.

Til slutt inneholder Kapittel 9 sammendraget. Det konkluderer med
informasjonsentropiens rolle i å løse de studerte problemene og effektiviteten til
et slikt verktøy. Helt til slutt finnes en kort oversikt over mulige forbedringer og
problemstillinger for videre forskning.
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Chapter 1

Information entropy

1.1 Information theory

In 1948, Claude Shannon proposed to consider entropy as a measure of
information [Sha48]. Together with Harry Nyquist [Nyq24; Nyq28] and Ralph
Hartley [Har28] this allowed to establish information theory. Its development
caused the emergence of entire technological industries related to information
processing, computing and communication.

The concept of information has been widely accepted in physics. Usually it is
used in thermodynamics via both entropy and Landauer’s principle. Direct study
of the role of information in statistical physics and thermodynamics begins with
such works as [Jay57]. In such a relatively new field as quantum thermodynamics
[VA16] active research is being conducted on the fusion of quantum mechanics and
statistics. Information theory is also widely applied in probability theory, which,
in turn, is a must have tool for studying various problems from non-equilibrium
phenomena [Bla+20; ZMR96; ZMR97] to particle physics.

As Shannon demonstrated, information is strongly related to entropy; both
concepts complement each other. Naively, information may be interpreted
as negative entropy. The relation allows to analyze a wide range of physical
phenomena going far beyond its common usage as a measure of information lack.
It may be used as a useful instrument to analyze different phenomena far beyond
information theory.

1.2 Basic concepts

Let us have a message E and some alphabet Aq consisting of q symbols. Then E
may be encoded with a word EAq

containing

n = O
(
logq E

)
, q > 1 (1.1)

symbols of the Aq. Quantity n represents amount of information contained in E
which is encoded with Aq.

Expression (1.1) may be transformed as

n = O
(
logq E

)
= O

(
logq′ q · logq E

)
= O

(
logq′ E

)
. (1.2)

This means that translation to another alphabet Aq → Aq′ does not influence
the amount. In other terms, the size of E is determined up to some arbitrary
constant factor depending on q only. The case q = 1 is degenerate and should
be omitted: as one can see from (1.1), any unary alphabet A1 is inefficient for
encoding.
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1. Information entropy

So, without any loss of generality the amount of information may be expressed
in bits (q = 2) or in any other units. The symbol O absorbs any finite constant,
so in what follows, the base of the logarithm in (1.1) will be set equal to e.

Within the formalism, an arbitrary number N > 1 may be interpreted as
some message (word) E ≡ N . So, N contains O (lnN) units of information.
This means that N may be encoded with the sequence consisting of n = O (lnN)
symbols.

Any non-negative number p < 1 is mutually and uniquely related to its
inverse 1

p > 1. The problem of finding the inverse reduces to translation from one
alphabet to another and, therefore, does not change the amount of information.
So, p may be encoded with

ln 1
p

= − ln p (1.3)

symbols.

1.3 Probability distributions and entropy

Let us have some distribution {X} of quantity x with discrete unnormalized
probability d (x). For example, one may interpret {X} as the set of events where
each outcome x is observed with frequency d (x).

Shannon entropy (information entropy) H (X) for the distribution {X} is
defined as follows

H (X) = −
∑

x

d (x)
DX

ln d (x)
DX

= lnDX − 1
DX

∑
x

d (x) ln d (x) ,
(1.4)

where
DX =

∑
x

d (x) (1.5)

is the norm, i.e. the number of all events from {X}.
As one can see from (1.4), H (X) is invariant with respect to scaling. That is,

for any constant α ̸= 0 it does not change under d (x) → αd (x). So, frequencies
may be normalized in any convenient way, and DX may be equal to any non-
negative number.

From (1.4) it follows that for the uniform distribution Shannon entropy
reaches its maximum and equals to

max [H (X)] = ln DX

d
⇔ d (x) = d = const ̸= 0. (1.6)

Expression (1.6) is valid only if our knowledge is minimal: all x ∈ {X} are
equally likely. We are completely unaware about exact value of x.

Due to the scaling invariance, one can set d = 1 in (1.6). Then DX is
simply equal to the number of possible states our system can be found in, and
H (X) = lnDX .
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Similarly, one may define information entropy H (X,Y ) for a joint distribution
{X,Y } of two quantities, x and y, with probability d (x, y):

H (X,Y ) = −
∑
x,y

d (x, y)
DX,Y

ln d (x, y)
DX,Y

= lnDX,Y − 1
DX,Y

∑
x,y

d (x, y) ln d (x, y) ,
(1.7)

where
DX,Y =

∑
x,y

d (x, y) (1.8)

is the number of events where all possible x and y are being observed.
In case of {X,Y } one may define also the conditional distribution {X|y}

with the corresponding conditional probability d (x|y)

d (x|y) = d (x, y)
d (y) , (1.9)

where
d (y) =

∑
x

d (x, y) . (1.10)

Here d (x|y) defines the probability to find x if y has been observed.
Shannon entropy H (X|y) for {X|y} reads

H (X|y) = −
∑

x

d (x|y) ln d (x|y) , (1.11)

where it has been taken into account that, due to (1.9) and (1.10), DX|y = 1.
Substitution of (1.9), (1.10) and (1.11) into (1.7) leads to the well known

expression

H (X,Y ) = H (Y ) + ⟨H (X|y)⟩Y

= H (X) + ⟨H (Y |x)⟩X ,
(1.12)

where
⟨ζ⟩Z = 1

DZ

∑
z

ζd (z) . (1.13)

From (1.12) it follows that if H (Y |x) = H (Y ) then

H (X,Y ) = H (X) +H (Y ) . (1.14)

Expression (1.14) is valid if and only if the quantities x and y are independent.
So, entropy is additive when d (x, y) = d (x) d (y) ∀x, y. In that case there is no
correlation between x and y: knowledge about one of them has no influence on
the other.

If at least some of x and y are correlated, then (1.14) is not valid, and one
has to apply (1.12) instead.
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1. Information entropy

All the formulae above are applicable to discrete distributions only.
For continuous distribution {Xp} with a probability density function p (x)
information entropy H (Xp) becomes dimensionally dependent and, therefore,
should be re-defined [Jay63; Jay68] as follows:

H (Xp) = lnDXp
− 1
DXp

∫
p (x) ln p (x) dx− ⟨ln dx⟩Xp

, (1.15)

where

DXp
=
∫
p (x) dx

⟨ζ⟩Xp
= 1
DXp

∫
p (x) ζdx.

The last term in the rhs of (1.15) defines the so-called limiting density of discrete
points. It estimates information lost under the transition from continuous to
discrete distributions. Expression (1.15) is useful when one is working with
numerical calculations on continuous distributions.

1.4 Information entropy: interpretation

Entropy (1.4) may be interpreted as a measure of uncertainty. It estimates how
much one does not know about the system to determine it completely. If this
information were known, the system would have been in some certain state with
the probability d (x) = DX . There would be no need in distribution then, and
the entropy H (X) itself would have been equal to zero.

As known from information theory, any number p (x) = d(x)
DX

due to (1.3)
may be encoded with − ln d(x)

DX
units of information. Therefore, the distribution

{X} may be represented by numbers p (x), each requiring a sequence consisting
of − ln d(x)

DX
symbols, with ⟨p (x)⟩X ≡ H (X) on average (1.13).

Thus, we conclude that Shannon entropy (1.4) is just an average size of the
sequence one needs to encode the distribution

{
d(x)
DX

}
≡ {d (x)} ≡ {X}. Any

correlations inside {X} may be used to re-encode the distribution so that the
length of the sequence does not exceed H (X). If {X} is uniform, i.e. it has no
correlations, then, due to (1.6), information entropy reaches its maximum.

One may argue that entropy exhibits behavior depending on which system
is under consideration. For example, entanglement entropy seems to differ a
lot from its extensive counterpart from thermodynamics. However, information
entropy allows to build a bridge between both.

Any information encoded by correlations among subsystems is expected to
be determined by their common boundary. Discarding any of these subsystems
results in losing this information, that can be quantified by the corresponding
entropy. Therefore, entanglement entropy is expected to obey some kind of area
law [ECP10].
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In thermodynamic equilibrium entropy is an extensive quantity. It exhibits
bulk properties thus opposing to the area law. This obvious discrepancy origins
from the absence of any correlations in a thermal system. In such case all
conditional distributions vanish, and one should apply (1.14) instead of (1.12)
thus resulting in additive entropy behavior.

One may argue that entropy calculation with the help of (1.12) is hard.
Indeed, the proper use of the expression requires knowledge about all conditional
distributions contributing to the process. And this may be computationally
costly. Given this, it seems much easier to apply the Zubarev’s non-equilibrium
statistical operator that has already proved its efficiency [Bla+20].

However, the method is heavily based upon the Jayne’s principle of maximum
entropy [Jay57]. The last one imposes a strong restriction on the trajectory
in N -parametric space, where N is the number of different outcomes for some
distribution. Being the consequence of our inability to know all necessary
information, the principle seems to be incompatible with a strict mathematical
treatment. Moreover, its application to open systems, for which the relevant
phase space is ill-defined, may be questioned too. From this one may conclude
that, despite its considerable success, the Zubarev’s formalism should be applied
with great care under certain circumstances.

Contrary to this, conditional distributions may be extracted directly from
the measurements. This makes the use of information entropy approach more
attractive, especially in case of far-from-equilibrium and open systems.

It should be noted that the discussion above refers only to the Shannon
entropy. Other entropy measures, e.g. the Tsallis entropy [Tsa88], might exhibit
the properties different from those of (1.4). This may affect (1.12) in such
manner that the extensiveness (1.14) is not guaranteed and should be verified
separately. In what follows, we will focus on the Shannon entropy and its
quantum counterpart, the von Neumann entropy.
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Chapter 2

Shear viscosity and entropy in
heavy ion collisions

2.1 Quark-gluon plasma as a primordial matter

Since the very beginning humanity has wanted to know what governed our
Universe after it appeared to existence. Even now we wonder about the Big
Bang and properties of the substance permeating early spacetime. Thanks to
atomic and nuclear physics we know a lot about matter, but how did it evolve
in times when neither atoms nor even hadrons could exist?

Astronomy is an obvious way to look for the answers. But despite large
data supply it cannot provide us with a controllable experiment. To date,
high energy physics is the only one to study primordial matter in a laboratory.
Ultrarelativistic heavy ion collisions is the unique instrument allowing to recreate
the conditions which were typical in the early Universe and orchestrated its
evolution at temperatures higher than a few hundred MeV. Being too harsh for
hadrons [CP75; Lin79], they imply the presence of a new state of matter, quark-
gluon plasma (QGP). Color deconfinement at high energies uncovers new degrees
of freedom (DOF) and causes up the emergence of new properties differing a lot
from those of common hadron matter.

For a gas of massless non-interacting particles at temperature T one has

Ndof = 2π2

45
s

T 3 , (2.1)

where Ndof is the number of DOF and s is entropy density. So, the ratio s/T 3

should experience a distinct change at some critical temperature, when new
degrees of freedom come into play. Similar behavior should be observed for the
specific energy density ε/T 4 and pressure p/T 4.

Indeed, lattice quantum chromodynamics (lattice QCD) calculations demon-
strate a steep increase of the involved DOF [Baz+14; Bor+14; Kar02]. A direct
manifestation of the transition from hadron QCD matter to QGP is shown in
Fig. 2.1 depicting the ratios as functions of T . In the vicinity of T ≈ 150 MeV
(yellow region) one meets a continuous crossover, in full accord with cosmological
observations and data from accelerators such as RHIC or LHC. The scaled
pressure, entropy density and energy density tend to the Stefan-Boltzmann limit.
The last one represents the non-interacting regime, which is achievable in the
limit of asymptotic freedom only. The ratios reach approximately 80% of the
level thus indicating intense coupling among the constituents.

Modern theoretical and experimental knowledge about QCD matter and its
dependence on temperature and baryonic chemical potential µB is summarized
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2. Shear viscosity and entropy in heavy ion collisions

Figure 2.1: Lattice QCD calculations of the scaled pressure 3p
T 4 , energy density

ε
T 4 and entropy density 3s

4T 3 of hot QCD matter. Figure taken from [Baz+14].

Figure 2.2: (T, µB) QCD phase diagram. Figure taken from [Nay20].

in Fig. 2.2. Vacuum state is represented by the point T = 0, µB = 0. The thick
dot at T ≈ 0, µB ≳ 900 MeV represents common nuclear matter. To the right
from it one can see the line rising with temperature and bending to smaller
densities. It represents the first order phase transition. The line is expected to
end at a critical point, where a phase transition of the first order becomes a
phase transition of the second order, and one meets with the smooth crossover
familiar from the RHIC and LHC experiments. Hadrons can exist below the line
only, whereas quark-gluon DOF are released above it. The lower right corner of
the picture represents high baryon densities and low temperatures, at which the
matter is believed to be in a color superconductor state. Such extreme conditions
might be reproduced inside neutron stars.
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Experimental evidence of QGP

2.2 Experimental evidence of QGP

Due to the large amount of processes involved in heavy ion collisions, there is no
definite unambiguous evidence of QGP. At the same time, experimental data
propose plenty of signals favoring its existence. Below we will get acquainted
with some of QGP signs. Comprehensive reviews on the topic can be found in
[BRS18; EM22].

2.2.1 Colorless probes

Colorless probes are of great interest for both theoreticians and experimental
physicists. The reasons for that are their indifference to strong interactions
and low interaction probabilities as compared to hadrons. This means that
electromagnetic and lepton probes can almost freely escape the hot QCD medium
at any stage of its evolution, including the earliest times. Being undisturbed,
they retain information about their production, and that should be of great help
while studying thermodynamic properties of the collision fireball.

Fig. 2.3 is a typical example of such signal readout; it depicts temperatures
extracted by fitting the direct photon yields at RHIC and LHC energies.
Estimates are mostly located within the interval T ∈ 174 ÷ 289 MeV/c. This
clearly indicates that the photons were emitted by the medium too hot for
hadrons to exist.

Figure 2.3: Inverse slopes for direct photons from collisions at √
sNN =

{39, 62.4, 200, 2760} GeV. Figure taken from [Abd+23].

From this example one may conclude that the colorless probes are of
great advantage to study quark-gluon plasma. Unfortunately, low interaction
probability implies small production rates thus making their detection a
challenging problem. Moreover, multiple sources (e.g. hadron decays,
annihilation, scatterings) contribute to a large background noise, so that any
specific signal readout becomes model-dependent. For example, Fig. 2.4 depicts
mass distribution for e+e− pairs from the PHENIX Collaboration. It clearly
demonstrates how a large mixture of dilepton sources may complicate the data
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2. Shear viscosity and entropy in heavy ion collisions

analysis. Therefore, both extraction and interpretation of any signal with
the probes require taking into account multiple processes and heavily rely on
theoretical description.

Figure 2.4: e+e− yields for p + p collisions as functions of pair mass mee at√
sNN = 200 GeV. The inset represents the low mass domain. Figure taken from

[Ada+09].

2.2.2 Baryon stopping power

Amount of stopping in heavy ion collisions determines how much of the initial
beam energy is being released. Measurements of the net-baryon rapidity
distribution dN/dy together with the initial data from the beam allow to estimate
the stopping power. Fig. 2.5 depicts dN/dy for AGS, SPS and RHIC central
collisions and clearly establishes its dependence on energy. AGS data demonstrate
a narrow distribution which is centered around y = 0. Therefore, at low collision
energies baryons release almost all initial momentum. For SPS one observes a
dip with two humps that represent escaping remnants. This shape indicates
that at higher energies nuclei become transparent, and their constituents tend
to escape from the central region. At top RHIC energies the mid-rapidity net
baryon density is small and decreases even more for LHC [Abe+13b].

Having obtained the rapidity loss, one is able to estimate the energy deposited
for particle production. It was found that for RHIC about 73% out of initial 100
GeV per participant can be released [Bea+04]. As follows from [Ars+05], total
amount of produced particles is about 7000; this estimates the initial energy
density to be lower bounded by ε ≈ 5 GeV/fm3. Calculations from the PHENIX
Collaboration [Adc+05] indicate even higher values, ε ≥ 15 GeV/fm3. These
largely exceed the average energy density inside hadrons or the deconfinement
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Experimental evidence of QGP

Figure 2.5: Net proton rapidity distribution for central collisions at AGS, SPS
and RHIC energies. Figure taken from [Ars+05].

threshold from lattice QCD. Therefore, the data unambiguously hint at the
emergence of a new state of matter in collision experiments.

2.2.3 High pT suppression

High momentum particles are expected to lose a fraction of their own energy
while traversing a medium [GP90; WG92]. The loss can be quantified by the
nuclear modification factor

RAB (pT ) = d2NAB/dpT dy
⟨Ncoll⟩ d2NNN/dpT dy , (2.2)

where d2NAB/dpT dy is the differential yield in the A+B collision, and ⟨Ncoll⟩
is the average number of binary collisions in A + B which is required for
normalization reasons.

In heavy ion collisions, particle scattering results in significant changes of
their momenta. The effect depends on the coupling; it should be larger for strong
interactions, for which one expects RAA < 1. On the other hand, photons and
other colorless probes interact with the QGP medium much less intensively and
thus experience no suppression [Adl+06].

Naive kinematics dictates that momentum loss increases with a path length
in the medium. So, the nuclear modification factor should be a function of
centrality. Indeed, Fig. 2.6 indicates the presence of a dense medium influencing
the high-pT particles. For central collisions RAA takes the lowest values and rises
up with impact parameter exhibiting its path-length dissipation dependence.

2.2.4 Quarkonium probes

Color deconfinement in QGP should prevent heavy quark binding, similarly
to the Debye screening [MS86]. Namely, the bound states cannot exist if the
screening length is too short as compared to their radius. So, heavy quarkonia,
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2. Shear viscosity and entropy in heavy ion collisions

Figure 2.6: Nuclear modification factor for jets at different centralities as a
function of pT . Figure taken from [Aab+19].

once being produced, should experience melting in QGP that results in their
suppression. On the other side, for a small number of participants Npart the
medium cannot emerge and no suppression is expected. The effect may be
expressed in terms of a nuclear modification factor and its dependence on Npart.
Indeed, as follows from [Ada+12], for J/ψ mesons RAA > 1 for a small number
of participants, but falls below 0.5 for Npart > 50.

As shown in Fig. 2.7, the bottomonium Υ (1S) suppression rate is distinct
from that of Υ (2S) or Υ (3S). The ground state dissolves at the lowest rate,
and the higher excited ones are more suppressed. This phenomenon has much in
common with the Mott transition [HKR96] and is known as “sequential melting”.
The effect manifests itself also during hadronization and may be responsible for
the “sequential regeneration” of, e.g., J/ψ and ψ (2S) mesons [DR15].

Figure 2.7: Nuclear modification factor as a function of the average number of
participants ⟨Npart⟩ for different Υ meson states. Figure taken from [Sir+19].

From this one concludes that the emergence of a QGP droplet may be
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witnessed via the suppression of quarkonia yields. Naively it can be explained
by low coalescence probabilities for heavy quarks in the medium. However,
high energy densities induce copious production of heavy quarks, such as cc
pairs. This increases binding probabilities during hadronization and enhances
charmonium production.

2.2.5 Anisotropic flow

The nuclei from a beam are considered to be thin Lorentz-contracted disks of
finite radii. For these, geometry requires the introduction of impact parameter b
and, consequently, of angular anizotropy of the entire collision. In such case it is
reasonable to use Fourier decomposition of particle distributions [VZ96]

E
d3N

dp3 = 1
2π

d2N

pT dpT dy

{
1 + 2

∞∑
n=1

vn cos [n (ϕ− ψn)]
}
. (2.3)

Here ϕ denotes the azimuthal angle, vn are Fourier coefficients and ψn defines
the symmetry plane for the nth harmonic.

Coefficients vn carry useful information about properties of the collision
fireball and are of great interest for both theoreticians and experimental
physicists.

The first one is known as a directed flow. Being defined as v1 =
〈

px

pT

〉
, it

describes the particles’ behavior in the reaction plane. The interest to it is
stipulated by its sensitivity to a fireball expansion from early times. This allows
to deduce information about the equation of state for hybrid model calculations
[Ada+14; RR97].

The most studied among the coefficients is v2, also known as elliptic flow
[Oll92]. In non-central collisions the initial almond shape of an overlapping zone
induces angular dependence of the pressure gradient in transverse directions.
This transforms into momentum anisotropy, which is expressed with v2. Being
dependent on the impact parameter, elliptic flow should vanish for central
collisions, and this can be clearly seen from experimental data [Ack+01].

Other harmonics vn encode information about more detailed scale structure
of the fireball. However, being the corrections of higher order, they rapidly
decrease with increasing n. Specifying the relevant planes to extract ψn makes
the problem even more complicated. So, one needs highly sophisticated and
computationally costly techniques to estimate the higher order anisotropies. In
spite of that, flow coefficients vn are of great interest due to their sensitivity to
the medium properties.

Fig. 2.8 depicts two- and three-particle cumulants for charged hadrons at
different centralities for RHIC and LHC energies. Both panels demonstrate
minima for central collisions as expected. The flow develops with b, reaches
maximum at 35 ÷ 60% centralities and degrades for peripheral collisions.

Such behavior is explained by collective effects, as can be clearly seen from
the good agreement of fluid dynamics with experimental data. For a hadron
gas with rare enough scatterings one expects fast momentum randomization.
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Figure 2.8: Left panel: centrality dependencies of charged hadron anisotropies
of the 2nd, the 3rd and the 4th order for √

sNN = 2.76 TeV Pb+Pb collisions.
Right panel: coefficients v2, v3, v4 from two- and three-particle cumulants for√
sNN = 200 GeV Au+Au collisions as functions of centrality. Hydrodynamic

calculations are shown with colored lines. Figure taken from [NEP16].

In this case, any information about the initial spatial distribution rapidly
evanesces that results in the reduction of any anisotropies. This makes gas
dynamics incompatible with the observed anisotropic flow in heavy ion collisions:
coefficients vn are significant enough to witness intense coupling in the medium.
Therefore, one concludes that experimental data clearly pronounce formation of
the state with behavior typical for a hydrodynamic system.

2.3 QGP as a liquid

Both theoretical predictions and experimental results confirm the emergence of
QGP fluid in ultrarelativistic heavy ion collisions. And its properties differ a lot
from those of hadron matter due to new DOF getting into the play.

Surprisingly enough, QGP does not look like an almost free quark-gluon gas,
as it was expected at such high energy densities. RHIC data indicate rather the
presence of strongly-coupled fluid, with a low transparency for energetic colorful
probes [MN06].

Asymptotic freedom allows to expect a bit different picture at higher energies.
However, LHC data, despite some quantitative differences, unambiguously
confirm the RHIC results: properties of the medium are typical for almost
perfect liquid with strong interactions among its constituents [MSW12].

Full relativistic hydrodynamic calculations, with a fluid being close to
equilibrium soon after the collision, are required mainly to explain the magnitude
of observed anisotropies. Within the linear response approximation, relativistic
fluid can be described by its energy momentum tensor Tµν with the following

16



QGP as a liquid

gradient expansion

Tµν = εuµuν + p∆µν − η

(
∇µuν + ∇νuµ − 2

3∆µν∇αu
α

)
− ζ∇αu

α∆µν , (2.4)

where ε is the energy density, uµ is the four-velocity and p is the pressure.
Here ∆µν = gµν + uµuν , with metric tensor gµν = diag (−1,+1,+1,+1) and
∇µ = ∆µν∂ν , where ∂µu

ν is the covariant derivative. Coefficients η and ζ denote
the shear and bulk viscosity correspondingly. Heat transport and the higher
order terms have been omitted; these are relevant to large net baryon density
and causality [HS13].

Ideal fluid is governed by the first two terms in (2.4), which are of the zeroth
order in gradients. Any dissipative processes are completely determined by the
remaining two terms in (2.4), which are of the first order in gradients.

Fig. 2.9 depicts coefficients vn as functions of transverse momentum pT

at both RHIC and LHC energies. The plot clearly establishes the peak at
pT ∈ [2.5, 4] GeV/c. Ideal fluid dynamics cannot explain the data; it implies a
linear growth for vn without any distinct peaks. In order to explain the data, one
should take dissipation into account, which is governed by transport coefficients
η and ζ.

Figure 2.9: Coefficients vn as functions of pT at RHIC and LHC energies for
30 − 40% centrality. Figure taken from [Abe+13a].

Having introduced the equation of state p = p (ε), transport coefficients, initial
energy and velocity, one can process the evolution of QGP till the hadronization
phase. These quantities are the input data; they cannot be specified within
hydrodynamics itself and should be extracted from the initial state.

2.3.1 Specific viscosity

It turns out that bulk viscosity becomes essential if the system is not scale
invariant [BRS18]. The condition is fulfilled near the deconfinement region,
when the number of its DOF varies. Beyond this case ζ can be neglected, and
shear viscosity remains the only one to encompass any corrections to Tµν within
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the linear approximation (2.4). Physically η describes dissipation in a fluid via
momentum transfer and its conversion into heat.

Applicability of hydrodynamics is measured by the Knudsen number

Kn = λ

L
, (2.5)

where λ is the mean free path and L is the characteristic scale on which the
liquid properties can change. The standard requirement is Kn ≪ 1, which is
equivalent to λ ≪ L due to (2.5). In terms of (2.4) this implies the dominance
of ideal fluid contribution over the viscous one.

A fireball is expected to be a highly dynamic system, for which it is hard to
expect the gradients to be small. However, the smallness of Kn can be naively
fulfilled in other form

η

ε+ p
= η

Ts
∝ λ ≪ L, (2.6)

where T is the temperature and s is the entropy density of the fluid. A more
rigorous analysis requires different sophisticated techniques such as divergent
series resummation, hydrodynamics attractors etc. [RR17].

The ratio η/s from (2.6) is known as specific shear viscosity (or specific
viscosity for simplicity). It should be noted that for strongly coupled fluids,
despite η/s being well-defined, one cannot determine λ as soon as it may be
smaller than the de Broglie wavelength 1/T .

Within the first-order approximation, specific viscosity defines how close
our system is to an ideal liquid state. It controls any features of a medium
(sound propagation, flow decay, fluctuations etc.) contributing to the heat via
dissipation. For heavy ion collisions the ratio is expected to be small, otherwise
the information about collective effects will dissipate in the medium before
reaching a detector. At the same time, strongly coupled quantum field theories
establish a lower limit for η/s to be equal to 1/4π [Cre11; KSS05].

2.3.2 The critical point

Due to Enskog, the minimum of specific viscosity should be observed at the
transition between gaseous and liquid phases. Quite simple explanation of that
can be done as follows.

For a fluid the ratio η/s quantifies its momentum transfer properties and
is proportional to the mean free path λ. In the gaseous phase λ grows with
temperature, that should increase specific viscosity due to (2.6).

On the other side, when the particles are close-packed, λ ∝ 1/ρ1/3, with ρ
being a particle density. Lowering the fluid’s temperature reduces the chaotic
motion in it, thus leading to the increase of ρ and to the decrease of entropy
density s simultaneously. Therefore, for a liquid its specific viscosity should rise
up when the temperature falls down.

Altogether this leads to the minimum of specific viscosity between the phases,
with a cusp at the critical point. Such behavior is typical for the majority of
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substances and can be extrapolated to the transition between hadron and QGP
phases of the QCD matter [CKM06].

The dependence of η/s on temperature, with T = Tc at the critical point, is
depicted in Fig. 2.10. Open symbols represent estimates for the QCD matter, for
which Tc = 170 MeV is assumed. The red hexagon (η/s = 0.09±0.015, T = 165±3
MeV) corresponds to the RHIC elliptic flow measurements for Au+Au collisions
at √

sNN = 200 AGeV [Lac07].

Figure 2.10: Specific viscosity for various substances as a function of temperature
T . The critical point is located at T = Tc. Figure taken from [Lac+07].

So, one concludes that specific viscosity is an important indicator to pinpoint
the critical point of QCD matter. Estimation of η/s and its minimum especially
are interesting problems comprising both experimental studies (RHIC BES,
FAIR etc.) and theoretical calculations.

2.3.3 Specific viscosity and particle spectra

An elementary analysis dictates the dependence of particle spectra on fluid
properties. Dissipation processes wash out any correlations in the system via
interactions among its constituents. The corresponding decay rates should
depend on specific viscosity. Besides, the effect is expected to depend on the
volume of liquid.

Fig. 2.11 depicts pion and proton spectra from the STAR and PHENIX
Collaborations at different centralities and compares them to hybrid VISHNU
model calculations. The discrepancies between the pion data and theoretical
estimations become significant for large impact parameter only. This confirms
the applicability of hydrodynamic description to the particle yields. However,
the plots demonstrate poor susceptibility to initial conditions. Moreover, varying
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η/s within the range [0, 3/4π] seems to have almost no effect, thus confirming
the earlier results [RR07].

Figure 2.11: Comparison of VISHNU calculations at different initial conditions
with transverse momentum spectra for pions (left panel) and protons (right
panel) at √

sNN = 200 AGeV. Different centralities are shifted by multiplicative
factors for visibility reasons. Figure taken from [Son+11b].

Particle multiplicities dN
dy or mean transverse momenta ⟨pT ⟩ were expected

to be good indicators for viscous effects. However, data fits at top RHIC
energies reveal poor correlation with specific viscosity within the range η/s ∈
[0, 2/4π] [RR07]. Fig. 2.12 depicts the dependencies of pion, kaon and proton
multiplicities and mean transverse momenta on centrality at LHC energies.
Hybrid hydro+transport calculations are presented also. As one may notice,
shear viscosity by itself cannot reproduce all the data, even if the switching
between the models is involved. The plots clearly indicate the importance of
bulk viscosity making the distinction between η and ζ somewhat ambiguous.

This leads to the conclusion that particle spectra are good for general
hydrodynamics verification only, while the extraction of QGP fluid properties
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Figure 2.12: Multiplicity (left panel) and mean pT for pions, kaons and protons
from ALICE experiment as functions of centrality. The bands indicate the
influence of switching between hydrodynamics and transport calculations. Figure
taken from [Ryu+15].

requires more sensitive observables.
It turns out that azimuthal anisotropy is a good tool to extract η/s from

data [RR07]. This can be interpreted within a highly non-trivial hydrodynamic
response to geometry initial fluctuations [TY12]. As follows from Fig. 2.13, the
ratio of elliptic flow v2 to initial source eccentricity ε =

〈
y2 − x2〉 / 〈y2 + x2〉 is

highly sensible to specific viscosity and, therefore, may stand for the desired
observable.

Figure 2.13: Eccentricity-scaled elliptic flow v2/ε from the STAR Collaboration
data and VISHNU calculations as functions of charged hadron rapidity density
at MC-KLN (left) and MC-Glauber (right) initial conditions. Figure taken from
[Son+11a].
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Cumulants from Fig. 2.8 exhibit the susceptibility to η/s too. The largest
response is observed for the elliptic flow. At the same time, higher order
coefficients are much less sensitive to the specific viscosity. Such behavior is a bit
surprising as one would have expected a strong dilution of subtle contributions
due to dissipation.

The situation drastically changes for the ratios of anisotropic coefficients at
different viscosities vn (η/s) /vn (η/s = 0), as one can see in Fig. 2.14. The plot
clearly heralds the suppression of higher order corrections with n increasing. Here
the decay is more pronounced for larger η/s, in full accord with expectations.

Figure 2.14: Normalized higher flow coefficients vn for different values of η/s.
Figure taken from [SJG12].

The matter created in heavy ion collisions is not a stationary state but rather
a highly dynamical open system. For it one would expect rapid evolution of its
thermodynamic properties. Therefore, for the QCD matter its specific viscosity
should not be constant; it must change as the whole system evolves. This agrees
with [SH08] concluding that η/s should be temperature-dependent in order to
fit experimental data.

Hybrid approaches incorporating both hydrodynamics and transport models
are widely applied to describe the data. Fig. 2.15 depicts the values of η/s used
in combined UrQMD and viscous hydrodynamic calculations. These were used
to reproduce the observed pseudorapidity and transverse momentum hadron
distributions within the range 7.7 < √

sNN < 200 GeV. As one can see, the ratio
does not exceed 0.2 at low energies and falls down to the theoretical minimum
for √

sNN ≳ 40 GeV.
Instead of evolving parameters, one may suggest to consider the combination

of different fluids, each being parameterized in its own way. Following this idea,
effective viscosity was extracted within the three-fluid dynamics calculations
[IS16]. The model predicts 0.05 ≲ η/s ≲ 0.5 for central Au+Au collisions at√
sNN ∈ [3.3, 39] GeV.

There are plenty of other approaches aiming to extract η/s, which incorporate
more sophisticated techniques. These encompass correlations of symmetry plane
angles Ψn [QH12], two-particle pT correlations [GBM21] etc; comprehensive
reviews can be found in [BRS18; EM22; HS13].
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QGP as a liquid

Figure 2.15: Specific viscosity as a function of √
sNN from hybrid 3 + 1-

dimensional hydro + UrQMD calculations. The uncertainty arising from variation
of model parameters is depicted by the band. Figure taken from [Kar+15].

To summarize, it turns out that specific viscosity should be close to the
KSS bound in order to fit the elliptic flow data. The preferred range is
η/s ∈ [1/4π ÷ 3/4π] and should not exceed 0.4 [TEA10].

2.3.4 Vorticity and spin polarization

Polarization is one more option where viscous hydrodynamics may be of great
help. Due to conservation laws, non-central relativistic heavy ion collisions
initiate a large angular momentum in the fireball. Dissipation transfers it to
fluid vorticity at the rate which depends on its viscous properties. The rotation
is distributed among angular momentum DOF of the produced particles. These
include particle polarization [BPR08; LW05] and, therefore, can be measured
experimentally.

Fig. 2.16 depicts the average polarization of Λ, Λ as a function of
collision energy in Au+Au collisions for 20 ÷ 50% centrality measured by the
STAR Collaboration. Similar measurements were performed by the ALICE
Collaboration in Pb+Pb collisions at √

sNN = 2.76 and 5.02 TeV; experimental
data confirm the decreasing trend for polarization at higher energies [Ach+20].

Fitting polarization data with pure and hybrid hydrodynamic calculations
allows to extract the ratio η/s [BL20]. It should be noted, however, that the field
is still under development. There are some inconsistencies between experiment
and theoretical predictions (e.g., the sign problem or transverse polarization
azimuthal dependence). These stimulate new proposals and theoretical studies
incorporating more subtle effects, such as higher order corrections to the shear
and stress-energy tensors [BBP21].

2.3.5 Specific viscosity calculations

Perturbative methods are of great help at high energies, when quarks are
almost free. But such conditions are barely fulfilled for liquid QGP in the
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2. Shear viscosity and entropy in heavy ion collisions

Figure 2.16: Polarization for Λ (stars) and Λ (circles) from 20 ÷ 50% central
Au+Au collisions as a function of collision energy. Figure taken from [Ada17].

transition region, where the gauge coupling is not small enough. Despite that,
the calculation of the ratio η/s at the leading order was performed [AMY03].
More recent results are shown in Fig. 2.17 depicting specific viscosity as a
function of temperature for different values of running coupling. The plot clearly
demonstrates the smallness of the next-to-leading order correction as compared
to the dominating one at high temperatures. The terms seem to overlap in
the vicinity of the Hagedorn temperature, which is of great interest for the
study. Besides, it is still unclear whether the next terms are small at relevant
temperatures too; the convergence verification is a challenging problem that
requires highly sophisticated calculations.

Lattice QCD calculations provide reliable insight into the QGP matter and
its properties. And it seems reasonable to apply the technique for specific
viscosity estimations. The extracted ratio appears to be small [Bor+18], in full
accord with anisotropic flow estimations. But the implementation of Euclidean
lattice calculations is a challenging task while dealing with time-dependent
phenomena. And viscosity is not an exception from the rule: it is responsible for
the information dissipation in the medium, so its extraction within the lattice
QCD methods should be done with great care. Typical problems one is meeting
with can be seen in Fig. 2.18. The plot depicts spectral functions ρ/ω ∝ η and
the ratio of the corresponding correlators C1/C2. As one can notice, even a
small correlator deviation (by less than 1%) causes large changes (by up to a
factor of 10) for ρ/ω. Therefore, lattice QCD estimations of η/s turn out to be
computationally costly and require keeping divergences under the strict control
[Mey11].

But lattice QCD calculations are not the only option available. There is a
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QGP as a liquid

Figure 2.17: Specific viscosity as a function of temperature at leading and next-
to-leading orders. Figure taken from [GGD18].

Figure 2.18: Upper panel: spectral function ρ (ω) /ω as a function of ω/T . Lower
panel: ratio of two different Euclidean correlators specifying the corresponding
ρ (ω) /ω from the panel above. Figure taken from [Bor+18].

wide variety of numerical models that can be used for the extraction of QGP
transport coefficients. Some of the most popular approaches are described
in [Wol+22]. Explicit control over system parameters in these models is an
advantage allowing to study any region of the phase diagram.

In [Plu+12] shear viscosity and the ratio η/s were calculated from
ultrarelativistic Boltzmann transport equation with tree methods: the Green-
Kubo formalism, the Chapman-Enskog approach and the relaxation time
approximation [Gav85]. Comparing the results authors conclude that the first
two are in a good agreement, while the last one underestimates η. However,
it does not imply one should exclude the method: the PHSD transport code,
which belongs to the same family, shows no significant discrepancies between
the Green-Kubo and the relaxation time calculations [Ozv+13b]. Hence, it is
not clear which of the formalisms is the best choice for this family of codes.
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2. Shear viscosity and entropy in heavy ion collisions

Parton cascade BAMPS calculations demonstrate a significant decrease
of dissipative effects for 2 ↔ 3 perturbation-QCD gluon bremsstrahlung as
compared to elastic scatterings [Wes+11]. At the same time, the ratio η/s
exhibits no dependence on temperature if the coupling is kept constant.

Contrary to the BAMPS, GiBUU transport model predicts a rapid drop of
specific viscosity at Hagedorn temperature [RGG20].

The approach utilizing quasiparticles and detailed balance can be found in
[CK11]. The method may take into account any amount of hadron particle types
and predicts the minimum for specific viscosity of relativistic QCD matter.

Thermodynamic parameters of light mesons at zero net baryon density within
UrQMD infinite matter calculations were estimated in [Mur04]. Results clearly
pronounce the growth of the ratio η/s with temperature, in full accord with
expectations.

In [Mot+18] an equilibrated gas of nucleons with no inelastic scattering was
studied. Calculations were performed within a wide range of parameters with
the help of UrQMD model. Authors conclude that η < 0.17 fm−3; the result
mostly coincides with the one obtained from the Chapman-Enskog approach
[CC52].

Specific viscosity calculations within the same model for a relativistic hadron
gas are shown in Fig. 2.19. From it one may conclude that the ratio η/s cannot
reach the region required by viscous relativistic fluid dynamics (the shaded
region) even at large pion and kaon fugacities. Being unable to provide the
necessary conditions within the model, this confirms the necessity of introducing
QGP with low specific viscosity [DB09].

Figure 2.19: UrQMD calculations of specific viscosity for hadron gas as a function
of temperature at different values of baryochemical potential µB. λπ and λK

denote fugacities for pions and kaons correspondingly. Figure taken from [DB09].

The study [GHM08] predicts low specific viscosity. The investigation was
performed for hadron resonance gas within the van der Waals excluded volume
approach. The ratio η/s exhibits a rapid decline as temperature tends to the
critical value. The minimum is reached at T = 180 MeV and exceeds the KSS
bound approximately by a factor of 3. It should be kept in mind, however,
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QGP as a liquid

that dissipative properties of the fluid may be strongly affected by the excluded
volume. Particle radius influences both the ability of momentum transfer and
entropy density, thus leading to a non-trivial dependence of transport coefficients
on the repulsive core size. This can be clearly seen in Fig. 2.20 depicting η/s at
various radii: the ratio behaves in a significantly different manner while the core
size changes by a factor of 2.5.

Figure 2.20: Specific viscosity as a function of temperature computed within the
hadron resonance gas model. The repulsive radius for hadrons is denoted by r.
Figure taken from [NHNG12].

Specific viscosity as a function of temperature and baryochemical potential
was calculated in [Ros+18] within the SMASH model. Authors compare results
with other approaches and conclude that interactions among particles have a
large impact on transport coefficients.

To sum up, there are plenty of approaches which may be applied to calculate
viscous properties of the QCD matter. But despite a vast variety of the models, all
of them have some common features. Microscopically, any fluid consists of some
particles with interactions among them. Viscosity is related to energy dissipation
and momentum transfer which are encoded with the corresponding distributions.
As shown above, calculations within various approaches predict different behavior
for η, thus exhibiting its strong susceptibility to the momentum exchange in the
medium. Viscosity extraction requires rigorous analysis of particle re-scattering
in the medium.
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Chapter 3

Entropy in heavy ion collisions

3.1 Early equilibration problem

As soon as one needs thermodynamic quantities to estimate the ratio η/s,
some kind of equilibrium should be assumed. After that one is able to extract
temperature T and entropy density s within the statistical model [BL56; Fer50]
or any other technique, in order to calculate specific viscosity.

Both experiments on ultrarelativistic high energy collisions and their
theoretical interpretations indicate that the produced matter should reach
equilibrium quickly enough [NPA19; NPA21]. In particular, to explain the
data one expects to start hydrodynamics as early as possible, at times within
the interval t0 ∈ [0.2, 1] fm/c.

There is no doubt that fluid dynamics successfully describes high energy
collisions. But being in a fluid state means that a system is determined by some
averaged quantities retaining no memory about its initial state. This one is
highly correlated: colliding constituents occupy the domain in a phase space
which cannot be described by a spherical momentum distribution. And all
this information should be erased at early times, so the justified description of
hydrodynamization is required.

The “bottom-up” scenario, which is built upon perturbative QCD, was
suggested as a possible solution to the problem [Bai+01]. Within the approach
thermalization occurs due to elastic scattering of soft gluons which dominate over
the hard ones. Combining this with the linear response to energy-momentum
fluctuations allows one to establish hydrodynamization within t0 ≈ 1 fm/c
[Kur+19].

Another popular approach advocates the solution in terms of the AdS/CFT
correspondence. Relaxation rates in a weakly-coupled system are expected to be
low because of slow isotropisation of its phase space. Therefore, one may consider
the option of rapid QCD matter thermalization due to strong interactions among
the particles. Indeed, the study for non-Abelian plasma within the linear response
theory [Hel+12] predicts the isotropization to occur at times t0 ≃ 1/T , where T
is the temperature. The hydrodynamization rate is depicted in Fig. 3.1 as the
deviation of pressure from hydrodynamic predictions. It clearly indicates that
plasma exhibits fluid properties at times τ ≥ 0.35 fm/c. The similar estimate
of the equilibration rate is obtained in [SRP13] and other studies. Basing on
these, one may conclude that the transition to hydrodynamic stage occurs at
early times after the collision.

As shown in [CY10], for the strongly-coupled N = 4 supersymmetric Yang-
Mills theory hydrodynamic treatment becomes valid at times t0 ≥ (1 ÷ 2) /T .
However, the same paper also concludes that non-hydrodynamic DOF from
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3. Entropy in heavy ion collisions

Figure 3.1: Scaled pressure deviation of non-equilibrium state from first-order
hydrodynamics as a function of proper time τ and transverse distance ρ. Viscous
effects are depicted by red lines. Figure taken from [Sch13].

the initial stage experience an exponential decay. So, despite the fast decline,
non-equilibrium effects may contribute even at late times. Even more on that,
for the momenta exceeding some threshold value pc non-hydrodynamic modes
dominate, and fluid description becomes questioned [Rom17].

From this one may infer that the fireball is a mixture of both equilibrated
and correlated components. As soon as entropy is not maximal for the last
one, this implies the presence of correlations in the system. The corresponding
information may affect particle spectra analysis, thus attracting much attention
to the framework [KTH22].

For the system in a far-from-equilibrium state evolution equations dictate to
lose knowledge about its initial conditions before it reaches equilibrium. One
may prepare different states at the beginning, but any of them evolves to the
same state with high entropy. So, the system ends up in the same behavior
irrespective of the starting point. Such observation has drawn much attention to
hydrodynamic attractors and their possible role in heavy ion collisions [Sol22].

Many important issues and other approaches to hydrodynamization are
discussed in detailed reviews [FHS18; HL14; Str15]. However, despite various
approaches to the problem, none of them has been widely accepted yet.

Washing out initial information is a physical process, that cannot be instant;
this should take some finite amount of time. At the abstract level, equilibration
may be interpreted as the relaxation of charge deviations to their average values.
In a given reference frame any such change should obey the diffusion equation
and, therefore, cannot violate causality [SS01]. This prohibits a too early start
for fluid description, since otherwise equilibration would contradict relativity.

Lattice calculations is a powerful tool that has answered many questions
about the QCD matter. Unfortunately, nonperturbative real-time evolution is a
hard problem for the method, so QCD hydrodynamization is a challenging task
for lattice QCD.

Fireball is an open system, for which it seems incorrect to establish the same
conditions anywhere inside. Instead, the notion of locally equilibrated matter
may be considered. In this case, the central collision region is expected to fit the
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requirements for equilibrium state.

UrQMD calculations for the central cell of the collision system at AGS and
SPS energies pronounce isotropization of hadron distributions at times t ≃ 8
fm/c only [Bra+06; Bra+99a; Bra+99b]. This demonstrates the inability to
reach kinetic equilibrium too early; similar results are obtained for thermal and
chemical equilibration times. Particle yields deviate from the statistical model
predictions up to 14 fm/c even at the top RHIC energies [Bra+01].

Other models, such as the QGSM, predict similar dynamics. Fig. 3.2 depicts
the time dependence of pressure anisotropy in the central cell at top RHIC
energies for different centralities. The ratio for hadrons with pseudorapidity
|η| ≤ 1 is shown by green symbols. As follows from the plot, the pressure
becomes isotropic only at t ≥ 12 fm/c.

Figure 3.2: QGSM calculations of pressure anisotropy as a function of time in
the central cell for Au+Au collisions at √

sNN = 200 GeV. Figure taken from
[Ble+06].

Formation of locally equilibrated matter in the cell within both UrQMD
and QGSM models is discussed in [Bra+08]. The study concludes that local
equilibrium can be reached only for t ≃ 10 fm/c.

So, on one hand, hydrodynamics should be started early in order to explain
experimental data. On the other hand, the validity of fluid description should
be provided by preliminary thermalization, and this cannot violate causality.
Within this context, to define temperature and entropy density of the medium
one needs accurate analysis. These are required for the proper extraction of
specific viscosity, so the problem seems to be a challenging task.
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3. Entropy in heavy ion collisions

3.2 Infinite matter simulations

One may argue that any heavy ion collision is an open system evolving all the
time since the very beginning and, therefore, cannot be in equilibrium at all.
This leads to the following issue: how to determine thermodynamic quantities in
the absence of stationary stage?

Infinite matter simulation at charge and energy densities coinciding with
those from an open cell seems to be a reasonable ansatz. Such approach omits
the boundary conditions problem and allows to expect the system will end up in
some stable state close to equilibrium. The concept was studied with various
transport models in the box.

UrQMD calculations at fixed baryon density clearly pronounce the isotropiza-
tion of energy spectra at the same temperature for different hadronic species
[Bel+98].

More detailed study within the model was performed in [Bra+00b].
Calculated partial entropy densities as functions of cell time for nucleons and
pions are shown in Fig. 3.3. Despite being close enough, the results for central
cell and box differ a bit from the statistical model predictions. The manuscript
concludes that hadron distributions for both open cell and infinite matter coincide
at t ≥ 10 fm/c. The agreement is observed at different energies. However, this
does not mean reaching thermal equilibrium: some discrepancies between the
UrQMD and statistical model predictions can still be observed.

Figure 3.3: Time dependencies of partial entropy densities for nucleons and pions.
Histograms denote UrQMD predictions for the central cell; statistical model
and UrQMD box calculations are shown by asterisks and circles correspondingly.
Figure taken from [Bra+00b].

BUU transport model box calculations show that thermal equilibrium is
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achieved at t ≃ 5 fm/c [Bra+00a]. This estimate is the lower bound and is
observed at SIS energies only; increasing the collision energy leads to larger
equilibration times.

Thermal equilibrium is heralded if a system can be described by some constant
temperature. Following this definition, the study of equilibration dynamics for
infinite matter within the SMASH model was performed [Ros+18]. The results
can be found in Fig. 3.4 depicting temperature as a function of box time. As
follows from the plot, under some circumstances equilibration time may exceed
the lifetime of a fireball.

Figure 3.4: Temperature dynamics in the box within the SMASH model for
different initial temperatures. Black bars indicate the time at which equilibrium
is established. Figure taken from [Ros+18].

However, it would be wrong to conclude that equilibration needs a lot of
time and is not achievable in the cell. Highly energetic particles may quickly
escape the open system, thus contributing to the rapid cooling of the medium.
Such scenario is impossible in the box, where large momenta are forced to be
re-scattered among all the constituents, that leads to large equilibration times
[Bra+00b]. The box differs a lot from the cell; it cannot help to extract the
rate of relaxation to equilibrium in the open system. Reproducing only some
stationary state within the chosen model, infinite matter calculations allow us
to study its proximity to thermal equilibrium or other properties.

Naive kinetic analysis predicts that equilibration should take a long time for
a diluted medium: the probability of momentum re-distribution rapidly falls
down at low particle densities. Similar tendency is typical for slow particles.
QGP is a system of high energy and particle densities; it does not belong to any
of these cases, and one may expect fast thermalization rates for it. Furthermore,
for the system with a linear response the relaxation rate is expected to obey
exponential time dependence. It means that any deviation of some observable
quantity from its average should be proportional to e−t/τ , where τ is relaxation
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time. And the decrement rate τ cannot be equal to zero for causality reasons.
Indeed, τ ≥ 2 fm/c for different components of the QCD matter even in the box
regime [Ozv+13a]. This can significantly postpone the equilibrium stage, forcing
t0 to go far beyond the required range.

To sum up, fast equilibration seems to be a challenge for the microscopic
treatment of a system possessing some information about its initial state. The
problem cannot be completely eradicated even within infinite QCD matter
simulations. Therefore, QGP thermodynamic quantities such as temperature
and entropy density require careful calculations. Any estimate of equilibration
time requires an accurate investigation of correlations among the relevant DOF.
The decay rates for these may be extracted from the corresponding conditional
distributions. So, one can see that information entropy may be of great help in
high energy physics.

3.3 Entropy density in non-equilibrium

An overlapping stage during the collision requires some finite amount of time
equal to O (1) fm/c, so that the projectiles could have passed through each other.
Kinematics dictates the nuclei’s constituents to scatter at different moments of
time. This means that information about their initial (before the scattering)
quantum numbers cannot be instantly distributed over all the phase space
available. Additional restrictions follow from the conservation laws, which imply
correlations among the scattered particles (total momentum, energy, charges).
They carry some information, which cannot be dissipated quickly enough. To
sum up, kinematics and conservation laws prohibit an instant (or in a too
short time) occupation of the maximal phase space volume accessible with any
finite-sized system.

Statistical equilibrium means that the probability for a system to occupy
some state at energy E is proportional to e−E/T , where T is the temperature of
the medium. Taking spin statistics into account results in the Bose-Einstein or
Fermi-Dirac probability distribution function f (p,mi). So, in order to describe
the equilibrium state of matter, one should apply the statistical model, which is
discussed below in Section 4.3, within which entropy density s reaches maximum.

Microscopically an early state (right after the collision) of the particles of
the i-th type cannot be described by the distribution f (p,mi) in the central
cell: even at the zero impact parameter the momentum distribution will not be
homogeneous. To take this into account, let us define a microscopic distribution
function f (−→p ,mi) as

f (−→p ,mi) = (2π)3

V gi

dNi

d3p
, (3.1)

where the index i defines the type of particles, mi is their mass, gi is the
corresponding degeneracy factor and dNi is the number of particles carrying
the momentum from the interval [−→p ,−→p + d−→p ]. The constant multiplier in the
front of distribution guarantees f (−→p ,mi) to coincide with f (p,mi), once the
equilibrium is achieved.
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Entropy density for the particles defined with the distribution (3.1) reads

si = gi

(2π)3

∫
f (−→p ,mi) [1 − ln f (−→p ,mi)] d3p. (3.2)

Let us consider this expression in details. By substituting (3.1) into (3.2) we
obtain

si = 1
V

∫ [
1 − ln (2π)3

V gi
− ln dNi

d3p

]
dNi

d3p
d3p

= 1
V

[
1 − ln (2π)3

V gi

]∫
dNi + 1

V

∫
ln
(
d3p
)

dNi − 1
V

∫
ln (dNi) dNi.

Particle density ρi is being defined via (3.1) as

ρi = gi

(2π)3

∫
f (−→p ,mi) d3p = Ni

V
, (3.3)

thus resulting in

si

ρi
= 1 − 3 ln (2π) − ln ρi + ln gi +H

(
dNi

d3p

)
, (3.4)

where
H

(
dNi

d3p

)
= lnNi − 1

Ni

∫
ln (dNi) dNi +

〈
ln d3p

〉
dNi/d3p

(3.5)

is the Shannon entropy for the momentum distribution
{

dNi

d3p

}
generalized to

the continuous distributions (Jayson entropy), see (1.15). The last term in (3.5),
which is equal to〈

ln d3p
〉

dNi/d3p
= 1
Ni

∫ dNi

d3p
ln
(
d3p
)

d3p = 1
Ni

∫
ln
(
d3p
)

dNi, (3.6)

takes into account information encoding the transition from discrete to continuous
quantities [Jay63; Jay68], in full accord with (1.15).

Total entropy density may be defined as

s =
∑

i

si. (3.7)

It should be mentioned that (3.7) is governed by the set of general distributions
(3.1). One extracts these straight from the experimental data. In general case the
observed system is not required to be in equilibrium, so f (−→p ,mi) ̸= f (p,mi).

Total particle density of the system is simply

ρ =
∑

i

ρi. (3.8)
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Let us introduce an averaging over types of the particles involved

⟨ζ⟩ρ = 1
ρ

∑
i

ζρi ≡ 1
N

∑
i

ζNi.

Then, after multiplying (3.4) with (3.3) and substituting the result into (3.7)
one gets

s

ρ
= 1 − 3 ln (2π) − ln ρ+ ⟨ln gi⟩ρ +H

(
dNi

d3p
, ρi

)
. (3.9)

Here the term ⟨ln gi⟩ρ takes into account entropy related to the degeneracy factor,
and H

(
dNi

d3p , ρi

)
equals to

H

(
dNi

d3p
, ρi

)
= ln ρ−

∑
i

ρi ln ρi + 1
ρ

∑
i

ρiH

(
dNi

d3p

)
≡ H (ρ) +

〈
H

(
dNi

d3p

∣∣∣∣ρi

)〉
ρ

,

(3.10)

i.e. stands for the Shannon entropy of joint distribution
{

dNi

d3p , ρi

}
over both

momentum and particle species and, therefore, should be expressed in the form
of (1.12).

Thereby we see that in spite of additive behavior of si in (3.7), see (1.14), the
detailed analysis of the components of total entropy density does not prohibit the
presence of correlations among different components of the system: conditional
distributions are taken into account due to (1.12).

It is worth paying attention to the dependence of entropy per particle on the
system parameters in (3.9). In particular, let us consider the situation when the
system is close to equilibrium, and momentum re-distribution has finished almost.
This corresponds to the case when the amount of re-distributions in the system
is small. Consequently, the last term in (3.9) is expected to be approximately
constant, thus making particle density ρ the only one to be responsible for any
changes of s/ρ. This dependence is determined with the term − ln ρ that weakly
depends on particle density. In such case s/ρ is expected to be almost constant
at the final phase of the momentum re-distribution [Bra+01].

Therefore, the moment when s/ρ reaches a plateau may indicate the
emergence of (quasi)equilibrium. It should be emphasized that in spite of
thermodynamic approach and phenomenological models, which are based on
equations of state, the presented result origins from the microscopic analysis and
uses techniques of information theory only. This method justifies the so-called
isoentropic expansion of excited matter without imposing equilibrium conditions
of any kind.

Obviously, an arbitrary state of the system should obey the inequality

s ≤ sSM, (3.11)

where sSM is the Boltzmann entropy density. Both sides of (3.11) are equal
if and only if one deals with equilibrium. It means that entropy reaches its

36



Entropy density in non-equilibrium

maximum when partial microscopic distributions coincide with their equilibrium
counterparts, f (−→p ,mi) → f (p,mi).
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Chapter 4

Used models and formalisms

4.1 UrQMD model

UrQMD [Bas+98; Ble+99] model is an event generator for computer calculations
of elementary particles and heavy ion collisions. It is designed to process the
collision of two hadrons, nuclei or their combination at different energies, covering
the range from Bevalac and SIS up to RHIC. One can extend this up to LHC
energies with some restrictions, and in case a hydrodynamic phase is introduced.

The model contains 55 different baryon types including a long list of
resonances, and 39 meson types. The catalog is supplemented by the
corresponding anti-particle states. Any of the enlisted particles may be produced
during collisions. To allow for subsequent re-scatterings without causality
violation, they can interact with the other participants only after some certain
time interval (formation time).

In addition to isospin DOF, baryonic and electrical charges, UrQMD takes
into account strangeness and charm as well.

Within the UrQMD model particle production is realized via the color string
mechanism, as some excitation or decay process. The strings themselves are
being produced through the momentum exchange among the participants in
every single event. The strings are being initialized among quarks and may be
stretched with the tension factor of about 1 GeV/fm. When the critical energy
level is reached, the color tube experiences the Schwinger decay thus producing
quark-antiquark pairs and, consequently, particles.

Within the model elementary particles obey classical equations of motion.
An interaction among participating hadrons occurs only at the distances not
exceeding the range r ≤

√
σ/π, where σ is the total cross section of the process.

It depends on such DOF of colliding particles as isospin, flavor and energy. To
ensure the calculations are correct, the relevant values of σ and decay widths
are taken from experiments. In case the data are incomplete, the model applies
various approaches, such as detailed balance conditions, single boson exchange,
spin and isospin symmetries, Pauli principle etc. In total, this allows UrQMD to
implement O

(
104) different elementary particle-particle interactions.

UrQMD can be run in two different regimes. The first one is the “open regime”
implementing open boundary conditions: elementary particles and ions can freely
leave the interaction volume and pass to infinity. The situation corresponds to
real scattering processes which one may detect in reality.

The second regime is know as “box” [Bel+98; Bra+00b]. It is designed to
calculate particle interactions in a cubic-shaped domain of space. To increase
the precision, one may vary the linear size parameter of the cube. In this
regime, the constituents cannot freely escape the interaction volume. Depending

39



4. Used models and formalisms

on the initial conditions, once any of them reaches the volume boundary, it
can be reflected (mirror mode) or injected (transparent mode) at the opposite
border with the same momentum. The regime allows to implement infinite
matter calculations. Interpreting microscopic perturbations inside the box as
thermodynamic fluctuations, one may investigate stationary quasi-equilibrium
states of infinite QCD matter.

4.2 Green-Kubo formalism and viscosity

The study of system’s response to external forces is a common problem in
physics. This may be done with the help of Green-Kubo formalism [Gre54;
Kub57]. It is applicable for the states close to equilibrium, thus implying that
the disturbances caused by the forces are small. This allows to develop a
linear response approximation; in a more general case, the differentiability
of distribution functions in equilibrium should be fulfilled. The method
interconnects the microscopic background of to macroscopic properties of a
medium so that transport coefficients can be calculated via the corresponding
correlation functions.

Viscosity is being understood as the dissipation of momentum that causes a
fluid to turn back into its equilibrium state. This may be interpreted also as the
decay of information about momentum correlations. Within the Green-Kubo
formalism this establishes that shear viscosity η can be calculated as follows:

η = V

T

∫ ∞

t0

⟨π (t)π (t0)⟩t dt, (4.1)

where V is the volume of the liquid, T is its temperature, t0 denotes initial time
to start estimation of the correlator ⟨π (t)π (t0)⟩t. The last one reads:

⟨π (t)π (0)⟩t = 1
3

3∑
i,j=1

i̸=j

[
lim

tmax→∞

1
tmax − t0

∫ tmax

t0

πij (t+ t′)πij (t′) dt′
]
. (4.2)

Here quantities πij (t) represent off-diagonal components of the stress-energy
tensor. One can express them via averaged momenta pi (t) , pj (t) and energy
E (t) of the particles calculated at time t:

πij (t) = 1
V

N∑
k=1

pi
k (t) pj

k (t)
Ek (t) , (4.3)

where the sum takes into account all particles in V .
From the Abel theorem it follows that in equilibrium arbitrary fluctuations

decrease exponentially with time [Kub57]. So, the correlator (4.2) undergoes the
following evolution

⟨π (t)π (t0)⟩t = ⟨π (t0)π (t0)⟩ e−(t−t0)/τ , (4.4)
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where τ is the relaxation time determining a decrement in the medium.
Expression (4.4) implies the evanescence of any information, which is encoded
by the correlator, with time. For example, one may transfer information to the
fluid in a form of induced current or a wave. Gradually, multiple interactions will
redistribute (re-code) this collective initial momentum among all the constituents.
Equation (4.4) allows to estimate the rate of this decay.

Substituting (4.4) into (4.1) one gets

η = V

T
τ ⟨π (t0)π (t0)⟩ . (4.5)

Equation (4.5) reduces the problem of viscosity estimation to the calculation
of τ assuming the fluctuation experiences an exponential decay.

A more rigorous analysis requires to use (4.1). This one is more general due
to taking into account the contribution of stochastic deviations.

4.3 Statistical model of an ideal hadron gas

Statistical model of an ideal hadron gas (SM) has been established in [BL56;
Fer50]. A detailed description and general protocol of calculations can be found
in [Bel+98; Bra+99b].

The model describes an equilibrium state of a system consisting of non-
interacting particles (ideal gas) at temperature T . Some certain type of the
particles is being defined by their mass mi, baryon and strangeness charges Bi

and Si correspondingly. The system may be a mixture of different types. The
particles themselves obey the distribution function f (p,mi)

f (p,mi) =
[

exp
(√

p2 +m2
i −BiµB − SiµS

T

)
± 1
]−1

, (4.6)

where p is the momentum, µB and µS stand for baryon and strangeness chemical
potentials correspondingly. Electrical chemical potential is small compared to
the first two and, therefore, usually is excluded from the analysis. The sign ±
takes spin statistics into account.

Partial density ρi of the i-th particle specie reads

ρi (T, µB, µS) = gi

(2π)3

∫ ∞

0
f (p,mi) d3p, (4.7)

where gi is the spin-isospin degeneracy factor.
Having obtained the distribution f (p,mi) from (4.6), one may define the

partial energy density ϵi as

ϵi = gi

(2π)3

∫ ∞

0

√
p2 +m2

i f (p,mi) d3p. (4.8)
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4. Used models and formalisms

From (4.7) and (4.8) one may construct the system of non-linear equations
ϵ =

∑n
i=1 ϵi (T, µB, µS)

ρB =
∑n

i=1 Biρi (T, µB, µS)
ρS =

∑n
i=1 Siρi (T, µB, µS) ,

(4.9)

where the total quantities such as the energy density ϵ, baryon density ρB and
strangeness density ρS are the onset data.

A numerical solution of (4.9) allows to find thermodynamic parameters of
the system in equilibrium. In particular, one may obtain temperature T , baryon
chemical potential µB and strangeness chemical potential µS.

So, SM describes the equilibrium state of matter with ϵ, ρB, ρS being fixed.
Its entropy density sSM may be estimated from the thermodynamic identity

ϵ = TsSM + µBρB + µSρS − P

and reaches the maximum value possible. Here P stands for the pressure

P =
n∑

i=1
Pi =

n∑
i=1

gi

(2π)3
1
3

∫ ∞

0

p2√
p2 +m2

i

f (p,mi) d3p.

On the other hand, sSM can be calculated via the partial distribution functions
f (p,mi) as

sSM =
n∑

i=1
si =

n∑
i=1

gi

(2π)3

∫ ∞

0
f (p,mi) [1 − ln f (p,mi)] d3p, (4.10)

where f (p,mi) is given by (4.6).
As one can see from (4.10), total entropy density sSM is a simple sum of

partial entropy densities si. Such a behavior consequences from the absence of
any correlations among the species: all partial distribution functions f (p,mi)
are statistically independent.
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Chapter 5

Specific viscosity: main results

The results of specific viscosity calculations are published in [Paper I; Paper II;
Paper III; Paper IV; Paper V].

At first, central Au+Au collisions were calculated within the UrQMD model.
Any scattering event describes an open system with no specified boundary; its
parameters experience a highly dynamical evolution with time. One expects to
meet the most close to equilibrium state in the central region of a fireball only.
So, a cubic cell from the center was chosen to extract the energy density ε and
densities of the net baryon ρB and the net strangeness ρS charges. Data analysis
was performed on the set consisting of 80 points. This includes:

• the bombarding energy range Elab = {10, 20, 30, 40} AGeV in the
laboratory frame, with the ensemble of 51200 generated Au+Au collisions
per each Elab;

• time slices from the interval tcell = 1 ÷ 20 fm/c, with the step δtcell = 1
fm/c.

Next, temperature T , entropy density sSM and other thermodynamics
characteristics of the central cell were calculated within the statistical model of
the ideal hadron gas; the corresponding protocol can be found in Section 4.3.

Typical dependencies for the quantities can be found in Fig. 5.1 depicting
their time dynamics. The upper panel represents the values extracted from the
central cell; calculations within the SM model are shown on the lower panel. It
should be noted that the cell temperature is the same for all beam energies at
late times, when tcell ≥ 7 fm/c. But, they can be distinguished with the help of
chemical potentials µB and µS.

A highly dynamical evolution in the central cell prohibits the straight
application of the Green-Kubo formalism, as mentioned in Section 4.2.
Microscopic treatment for viscosity calculations requires the knowledge of
relaxation rates in the medium. The required correlator dynamics was derived
by using of UrQMD model calculations in the box regime for the time range
tbox = 1 ÷ 1000 fm/c, with the temporal resolution δtbox = 1 fm/c. Conditions
from the central cell were reproduced by initializing the infinite matter regime
with the previously extracted densities ε, ρB, ρS.

Correlator temporal decrements τint in the box were extracted with the
help of (4.1). Fig. 5.2 depicts relaxation times τint as functions of initial time
t0 = 1 ÷ 1000 fm/c for each of 80 points from the cell. For visibility reasons, only
every tenth value of t0 is displayed. As one can see, the decrements saturate
in the range t0 ∈ [200, 800] fm/c. Smaller values of t0 refer to the initializing
state of the box, when the medium is still out of steady state. For t0 ≥ 800 fm/c
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Figure 5.1: Upper panel: energy density ε (a), net baryon density ρB (b) and
net strangeness density ρS (c) from the cell. Lower panel: temperature T (d),
baryon chemical potential µB (e) and strangeness chemical potential µS (f) from
the SM. Quantities are depicted as functions of the cell time tcell. Figure taken
from [Paper II].

the averaging temporal range is not large enough, and here an analog of the
Brownian motion may be observed.
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Figure 5.2: Correlator relaxation times τint as functions of initial time t0 at
different bombarding energies and cell times. Figure taken from [Paper I].

The plot definitely pronounces the impact of stochastic fluctuations on the
medium properties. To study the effect, similar calculations were performed by
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fitting (4.4) to extract τfit. The ratios of averaged over the plateau t0 = [200, 800]
fm/c temporal decrements are shown in Fig. 5.3. The dashed lines depict the
overlapping stage, when the whole system is in the non-equilibrium state. Data
manifest the rise of relaxation rates due to stochastic processes in the medium.
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Figure 5.3: Ratio ⟨τint⟩ / ⟨τfit⟩ as a function of the cell time. Figure taken from
[Paper I].

This suggests to take τint as the upper bound for shear viscosity calculations.
The corresponding results can be seen in Fig. 5.4. Similar to temperature, η
weakly depends on the collision energy at times tcell = 7 ÷ 20 fm/c.
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Figure 5.4: Shear viscosity η for hadron matter in Au+Au collisions as a function
of the cell time. Figure taken from [Paper I].

Finally, specific viscosity as the ratio η/sSM was extracted. Fig. 5.5 represents
the results for each of 80 points from the set. The statistics per point consists
of 12800 box calculations that requires approximately 5 ÷ 8 Tbytes of data on
average. Statistical errors are smaller than the size of symbols. Panels depict
specific viscosity as a function of time tcell and thermodynamic quantities derived
within the SM model T, µB and µS. The blue dashed line at the bottom stands
for the KSS bound.

Results indicate the minima of specific viscosity at tcell = 4 ÷ 5 fm/c for
all beam energies. The lowest value reaches about 0.3 for Elab = 10 AGeV, i.e.
for the baryon-dominated medium. After that it starts rising up with time as
expected.

As one can notice, the minimum is not sharp but exhibits a smooth U-shaped
behavior. The lowest values are observed in the dashed region, when nuclei
overlap and the cell experiences the most dynamic evolution.
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Figure 5.5: The ratio η/sSM for hadron matter in the central cell as a function
of: (a) cell time tcell, (b) temperature T , (c) baryon chemical potential µB and
(d) strangeness chemical potential µS. Figure taken from [Paper II].

In general, the method to study the evolution of shear viscosity and its ratio
to entropy density has been developed. The approach allows to extract the
quantities at every point of the fireball. As discussed in Section 2.3, usually these
quantities are being extracted as functions of either temperature or chemical
potential, with the other one to be constant. Such situation seems to differ from
what is expected for colliding nuclei, when all thermodynamic characteristics
evolve with time. Compared to previous studies, the presented self-consistent
protocol allows to investigate shear viscosity and its ratio as functions of time,
temperature, baryon chemical potential and strangeness chemical potential for a
dynamical medium simultaneously.

Both viscosity η and entropy density sSM decrease with time tcell. This
correlates with the rise of baryon chemical potential and the drop of both
strangeness chemical potential and temperature. For the ratio η/sSM smooth
minima are observed for all bombarding energies.

The obtained U-shaped pattern may originate from the assumption about
equilibrium in the central cell. One may argue that such treatment is not valid,
especially at early times when the nuclei overlap. To study the hypothesis,
microscopic entropy density s was extracted with the help of the technique
discussed in Section 3.3. Both entropy densities, sSM and s, should coincide in
thermal equilibrium. However, they differ for a system carrying correlations
among any of its DOF. The discrepancy may affect the ratio’s behavior at
the critical point of QCD matter. This was the main motivation to compare
both the microscopic and the statistical model predictions. The corresponding
calculations were performed in [Paper II; Paper IV].

Fig. 5.6 presents the ratio of shear viscosity to microscopic entropy density
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s. The extremes are higher as compared to η/sSM due to the lower entropy
density. However, the minima become more pronounced: the V-shaped pattern
is observed at tcell ≈ 5 ÷ 6 fm/c. Compared to η/sSM, the non-equilibrium ratio
manifests larger discrepancies with respect to the bombarding energy.

Figure 5.6: The ratio of shear viscosity to microscopic entropy density η/s
for hadron matter in the central cell as a function of: (a) cell time tcell, (b)
temperature T , (c) baryon chemical potential µB and (d) strangeness chemical
potential µS. Figure taken from [Paper II].

So, the microscopic analysis recovers the expected behavior and makes the
extremes more distinct. This allows to pinpoint the critical point with much
higher accuracy.

The procedure above estimates specific viscosity for the whole medium. But
the fireball consists of different particle species. One may consider this as a
mixture of pure components, each contributing separately to dissipative processes
in the substance. To study the case, partial viscosities for nucleons and pions
were analyzed separately in [Paper III]; the extension to a larger list of particle
types one can find in [Paper V].

For example, Fig. 5.7 shows the partial shear viscosity for all baryons from
the cocktail. Its dependence on tcell and thermodynamic quantities is similar to
the one observed for the medium as a whole.

The same behavior was observed for all mesons and separate particle species.
For example, Fig. 5.8 and Fig. 5.9 depict partial viscosities ηN for nucleons and
ηΛ+Σ for Λ + Σ baryons respectively.

As one can notice from Fig. 5.8, ηbar manifests the uprising trend with the
bombarding energy. Similar dependence, however not so distinct, is observed for
Λ + Σ hyperons, while meson and pion components recover the typical energy
trend of the cocktail [Paper V].
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Figure 5.7: Partial shear viscosity ηbar for baryons. Figure taken from [Paper V].

Figure 5.8: Partial shear viscosity ηN for the nucleon component. Figure taken
from [Paper V].
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Figure 5.9: Partial shear viscosity ηΛ+Σ for Λ + Σ baryons. Figure taken from
[Paper V].

Partial specific viscosities ηbar/sSM for baryon and ηmes/sSM for meson
components are depicted in Fig. 5.10 and Fig. 5.11 respectively. Baryon sector
seems to be mostly indifferent to the beam energy, while mesons indicate a much
higher sensitivity. Both plots manifest the uprising dynamics with time, similarly
to the whole cocktail. At the same time, partial ratios go beyond the minima
observed for the substance.

Figure 5.10: Partial specific viscosity ηbar/sSM for baryons. The blue dashed
line shows the KSS bound. Figure taken from [Paper V].

The results indicate that the uprising trend with energy for the hadron
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Figure 5.11: Partial specific viscosity ηmes/sSM for mesons. The blue dashed
line shows the KSS bound. Figure taken from [Paper V].

specific viscosity should be ascribed to its meson component. This conclusion
might be useful for hydrodynamic calculations in the considered energy range.

Also, the following common tendency may be drawn out from the pictures
above: partial viscosities tend to be much lower compared to the combined
quantity. The most significant drop is observed for ηΛ+Σ. This may lead to
dramatic results: specific viscosity for this component is expected to break the
KSS bound.

Such behavior is explained as follows. Partial microscopic correlator
⟨π (t)π (t0)⟩t takes into account momentum re-distribution over some certain
particle specie only. All other information, being encoded with mutual
interactions among the constituents of different types, is left behind. This
results in much smaller temporal decrements τ and may break the theoretical
minimum for the specific viscosity in a strongly coupled medium.

So, the hadron substance consists of different particles which cannot be
considered separately. Information dynamics is of great importance in heavy ion
collisions and requires the proper microscopic analysis of all involved correlations.
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Chapter 6

Black hole radiation

6.1 Black hole thermodynamics

Both general relativity and quantum mechanics claim to be the most verified
theories in physics. They provide a strong basement for any field of modern
science. The application range encompasses our reality at any level, from the Big
Bang theory and particle accelerators to pharmacy industry and GPS navigation
in our cell phones. But, despite a prominent success, merging both of them
into the single theory of quantum gravity is still a challenge for modern science
[Add+22; Sch14].

At the fundamental level both theories seem to differ so much that they result
in opposite conclusions. Black holes may serve as an evidence of discrepancies
between general relativity and quantum physics.

In general relativity, a black hole is the object with such strong gravity force
that even light cannot escape it after reaching its event horizon. It may be
interpreted as a one-way sink of spacetime. Being unable to emit anything from
the inside, black hole cannot decrease; it is really black.

Despite that, it turned out to have much in common with thermodynamics.
In 1973 Bekenstein [Bek73] revealed that entropy HBH of a spherically symmetric
Schwarzschild black hole equals to the area A of its event horizon multiplied by
some unknown coefficient. The laws similar to those from thermodynamics have
been formulated in [BCH73]:

• The 0th law: the black hole’s surface gravity κ is constant over its event
horizon.

• The 1st law: close to the horizon, the rate of mass change δM equals to
the same of its surface area δA times κ

8π , plus some other terms defining
the work.

• The 2nd law: the area of the event horizon is either constant or increasing;
it cannot shrink, δA ≥ 0.

• The 3rd law: the surface gravity cannot be decreased to zero by any process
consisting of finite amount of steps.

So, the properties of a black hole resemble the properties of any thermal
system. The laws do look like those from thermodynamics. However, any thermal
system should exchange energy with its surrounding in both directions, via
absorption and emission. Processes of the first type are typical for gravitational
collapse, but how about the second? Is this just the similarity leading to no new
effects? Can gravity induce emission at the presence of horizon?
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Quantum physics answers affirmatively: black holes should emit particles
[Haw75]. Loosely speaking, due to quantum fluctuations a pair of virtual particles
may pop out of the vacuum at different spacetime domains with respect to the
event horizon. Then, the outer particle is allowed to escape to infinity, while its
partner is doomed to be trapped under the horizon. For an outside observer the
process looks like an outgoing flux of particles, which is generated at the cost of
black hole’s energy. So, due to quantum effects, any black hole should eventually
evaporate.

Therefore, for the infalling matter a black hole is not a one-way trip as the
general relativity dictates. Quantum laws establish that it is not absolutely
black: there should be particle emission from its event horizon.

6.2 Information loss problem

General relativity states that a black hole has no hair: one can derive no
information about it but except its mass, angular momentum and electric charge.
Any other data about an object falling down inside cannot be extracted; once it
crosses the event horizon, it is lost forever for the outer world.

Quantum evaporation at the event horizon is not of great help here because
the outgoing radiation is completely thermal [Haw75]. Therefore, it should be
described by a mixed state rather than by a pure one [Haw76], with no useful
information inside.

At the same time, any object or particle falling down the horizon carries some
information about its structure and properties. It is encoded by the correlations
among the relevant degrees of freedom. And all this information is expected to
be lost completely, as soon as the black hole evaporates away. This is the essence
of the famous information loss problem, which was formulated by Hawking
[Haw05].

The situation becomes even more dramatic if one considers a collapsing set
of particles as some scattering process. Quantum mechanics dictates that any
closed system obeys unitary evolution. However, if the collapse results in the
formation of a black hole then the detected radiation will be in a mixed state.
Therefore, one may conclude that gravity violates unitarity.

6.3 Black hole entropy

In 1975 S. Hawking revealed the famous area law [Haw75]. In Planck units it
reads

HBH = A/4, (6.1)

where HBH is the entropy of a black hole and A is the area of its event horizon.
The law seems to be strange for several reasons.
At first, for any system, once it is in equilibrium, its entropy should be an

extensive quantity. Therefore, if black holes obey thermodynamics then their
entropy is expected to exhibit bulk properties, but not the area law.
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The second problem origins from the black hole evaporation itself. Quantum
particle emission from the hole is supplied at the cost of its own mass M .
Therefore, the black hole’s radius r = 2M decreases with time thus resulting in
entropy reduction. But this contradicts the second law of thermodynamics. One
may argue that taking an environment into account will cause the entropy to
change in the right direction. Unfortunately, some estimates indicate this might
not work in the case of black holes [Sto18].

One more important issue is the magnitude of HBH. One can easily figure out
that for an ordinary black hole of stellar mass its entropy is large. For example,
even for the Sun HBH⊙ ∼ 1077. And it is a challenging task to explain physical
phenomena generating so large amount of entropy.

Thermodynamics asserts that for any system its entropy is bounded from
above with the logarithm of the number of possible states. So, for a black hole
the number should be of order eHBH . This leads to the related but even a more
dramatic challenge: where should the corresponding degrees of freedom originate
from?

6.4 Main approaches to solve the problems

Attempts to solve the aforementioned problems have caused the development
of different approaches and investigations. It should be kept in mind that it is
hard to encompass such a vast topic, so only some typical trends suggesting the
solutions are discussed below. In addition, the classification is rather blurred
due to multiple interconnections among the techniques.

6.4.1 Counting microstates

Entropy is determined by the occupied volume in the system’s phase space.
Thus, counting over all available microstates allows to calculate its entropy.

Loop quantum gravity is one of such approaches that offers a solution to
the entropy problem. Due to it, the area law (6.1) is obtained through the
introduction of the black hole’s phase space with its consequent quantization
[Ash+98]. Within the approach, the area spectrum of a spherical shape can be
quantized [Khr02]; in Planck units it reads

A = 8πγ
n∑

i=1

√
ji (ji + 1), (6.2)

where γ is the Barbero-Immirzi parameter and ji (ji + 1) is the eigenvalue of an

operator −̂→
j

2

i , which is governed by the algebra of angular momentum. Quantum
numbers ji may take either integer of half-integer positive values. They are
associated with the set of n edges determining the geometry. Having the area
from (6.2) and taking the degeneracy factor gi = 2ji + 1 ∀ji into account, one
can calculate the amount of possible surface states N and derive the entropy
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as its logarithm. The method implies that the contribution of ji = 0 should be
discarded, otherwise the entropy cannot be determined unambiguously.

From (6.2) it follows that the quantized surface is governed by −̂→
j . This

allows to represent the system in the form of a closed chain, as can be seen in
Fig. 6.1.

Figure 6.1: Left panel: tessellated quantized surface representing the horizon.
Right panel: polymer chain, which is isomorphic to the surface. Figure taken
from [Bia11].

Therefore, counting of black hole’s microstates can be mapped to the problem
of conformal configurations for a polymer chain [Bia11; LT12]. Within the analogy
statistical physics bridges to gravity and its possible entropic origin [Ver11].

Black hole area quantization also leads to another important issue. The
procedure influences its radiation spectrum and establishes its dependence on
black hole’s angular momentum and charge [Khr08]. As the author states, this
provides the opportunities for verification of the whole framework with the help
of existing gamma-ray telescopes.

As known, by varying the potential one may influence the spectrum of a
quantum system. The changes might results in significant differences of the
system’s radiation entropy from that of a black body. Similarly, the emission
spectrum of a black hole might exhibit time dependence once its area is quantized,
as shown in Fig. 6.2. The spectrum is expected to become less entropic as the
black hole evaporates away [SL11]. This implies the possibility of information
extraction thus suggesting a solution to the information loss problem.

The resulting entropy (6.2) depends on the Barbero-Immirzi parameter
corresponding to a set of different quantum theories. The study [Khr04] concludes
that the exact value of γ is crucial for the whole black hole entropy estimate. On
the other hand, its influence may be argued in case of a specific renormalization
[Jac07]. So, the role of the parameter needs clarification.

One more candidate to explain the puzzles is string theory. For a highly
excited string state its entropy is proportional to

√
N , where N is the

corresponding excitation level [Hor07]. Recalling that the amount of possible
states in equilibrium is just eH , where H is entropy, one reduces the problem
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Figure 6.2: The area spectrum of a black hole within the topology change model.
Figure taken from [SL11].

to the estimation of available string configurations. From this perspective, the
approach has much in common with the loop quantum gravity.

At first, the area law was recovered at the leading order for a charged five-
dimensional black hole [SV96]. Calculations within the M-theory framework
recover the area law (6.1) for the Kaluza-Klein black hole [EH06]. The result
turns out to depend on the mutual orientation of branes and their rotational
DOF, which contribute via the tensor product of relevant Hilbert spaces. The
extension to extremal Kerr black holes was also fruitful [EM07; HR07]. These
and other successful entropy calculations for a variety of black hole types have
inspired further investigations in different directions [Gom11; Pre08] and revealed
that there is still much to be investigated. In addition, a whole concept still
lacks of unambiguous experimental verification [LMT07].

6.4.2 Event horizon contribution

For a system in thermal equilibrium, one expects all its volume to contribute
to entropy. But in the case of a black hole one has the area law (6.1), which
indicates that the event horizon is responsible for its entropy. Therefore, it seems
reasonable to study the DOF located in the vicinity of the horizon.

In 1985 ’t Hooft proposed an efficient method known as the brick wall model
[’t 85]. It assumes that wave functions should vanish at the horizon’s nearby.
So, the black hole’s boundary behaves much like an ideal mirror. Estimating
the total number of available modes via the well-known WKB approximation
in the vicinity of the horizon, one arrives at the area law for entropy. However,
vanishing field implies the impenetrable horizon. This makes it detectable in the
infalling frame and, therefore, seems to contradict the equivalence principle.

Despite seemingly naive simplicity and coordinate non-invariance, the model
predicts that quantum properties of the black hole are caused by its horizon.
The approximation allows even to find the higher order corrections [WS13].

The brick wall model suggests the presence of sharp boundary. From the
Heisenberg’s uncertainty principle it follows then that momentum can take an
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value, so the density of states becomes infinite at the horizon. This results in
the divergence of total energy and entropy, which can be treated by smoothing
the edge [BK11].

In relativity, particles cannot escape a black hole after crossing its surface.
So, one may consider it as a potential barrier for the inside quanta and calculate
the tunneling probability p of its emission. Within the WKB approximation it
reads [VAC11]

p ∝ e∆H , (6.3)

where ∆H = −8πME
(
1 − E

2M

)
is the entropy change induced by the tunneling

of a particle at energy E, and M is the black hole’s mass. Calculations for
different masses and spins [Li11] show that the corresponding entropy contains
both area and logarithmic correction terms. The last ones are suggested to
be responsible for back-reaction effects, thus indicating the possible impact
of emitted particles on the background metric. In such case, one is expected
to analyze the relevant conditional distributions, which might go beyond the
imposed approximations.

6.4.3 Entanglement entropy

As follows from general relativity, there is no access to information about the
intrinsic region of a black hole from the outside. Its event horizon separates a
whole spacetime into observable and non-observable domains. Therefore, any
remote observer has access to some part of a state only, which, in turn, cannot
be represented by a single vector. The relevant density matrix ρ is derived by
partial tracing over all the inaccessible quantum DOF. But projecting the state
onto the corresponding Hilbert subspace implies neglecting any data encoded
with quantum correlations at the horizon. Being measured by the von Neumann
entropy

Hent (ρ) = −Trρ ln ρ, (6.4)

this information depends on the size of boundary among the domains, as discussed
in Section 1.4. So, the entanglement at the event horizon should be responsible
for the area dependence of the black hole entropy [Sre93].

The problem may be analyzed at an abstract algebraic level. For example,
one may consider a tensor product of two subspaces for a D = 1 + 1 spacetime,
with bosonic modes in each of them. Then, algebraic deformation, which
can be associated with some Bogoljubov transformation [ILV02], recasts the
vacuum state as a Schmidt decomposition of coupled modes. The corresponding
entanglement entropy Hent is extracted by tracing out the “non-accessible”
subspace.

Specific calculations for a spherical shell in the vicinity of black hole horizon
clearly indicate the area-like behavior for the upper bound for Hent [ILV04], in
case total entropy is extensive. The method proposes a qualitative estimate for
the entanglement entropy and clearly exhibits its surface dependence, as one
would expect for an entangled system. However, the exact value 1/4 for the
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coefficient still requires clarification. The approach has much in common with
the Unruh effect [Unr76], which will be discussed later.

Similar results were derived within lattice calculations [DS07b]. Namely, for
a massless scalar field its Hamiltonian may be discretized and transformed to
the one of a set of N coupled harmonic oscillators in the form

H = 1
2

N∑
i=1

p2
i + 1

2

N∑
i,j=1

xiKijxj , (6.5)

where Kij is the operator determining pairwise interactions. Event horizon is
introduced by partial tracing over n < N modes of the total density matrix. Due
to the entanglement caused by the coupling among the oscillators, one results in
the non-zeroth entropy for the accessible modes. The area law is recovered for
the ground state of the field, as shown in Fig. 6.3.

Figure 6.3: Dependence of entropy S on the radius R of the horizon. Figure
taken from [DS07a].

Excited field states modify the entropy dependence due to the contribution
of DOF far from the event horizon. This concludes that the area law (6.1)
origins from DOF at the horizon. The extension to a massive fields modifies the
interaction matrix Kij and also exhibits deviations from the area law [DSS08].
These corrections indicate some underground correlations, which might origin
from conservation laws, even in the case of oscillator potentials.

As mentioned above, quantum fluctuations are responsible for the black hole
evaporation. However, only a tiny fraction of produced particles can escape
to infinity. The major part is doomed to fall back into the black hole thus
forming some kind of atmosphere close to its event horizon. Conservation laws
entangle these particles to their counterparts, which cannot be observed from the
outside, and produce an equilibrated medium. Entropy Hatm of the emerging
thermal atmosphere becomes extensive, in full accord with Section 1.4, and can
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be represented as [JP07]

Hatm =
∫

dE
∑

l

(2l + 1)nE,lHE . (6.6)

Here E is the mode energy, l is the angular momentum, nE,l is the density of
outer modes, and HE stands for the entropy per mode. The area dependence is
recovered because

∑
l (2l + 1) ∝ r2, where r is the horizon radius. Due to its

additive behavior, Hatm suffers spectrum divergences, so a careful regularization
analysis ir required. In order to analyze all possible momenta, one needs a
rigorous quantum description.

6.4.4 Information depository

As known, quantum entanglement represents non-classical correlations among
subsystems. It is a quantum resource which may be quantified in different ways,
and entanglement entropy is the one estimating amount of information between
the partitions. It takes into account correlations only among the subsystems.
Any information encoded entirely inside any of them has no effect on the
entanglement entropy. Even more on that, in case the boundary is removed it
vanishes completely.

Within the context, it seems natural to suggest an event horizon as a
depository of this information. The key essence of this approach is depicted in
Fig. 6.4. Here the arrow of time t is directed upwards, so that any horizontal
slice represents some certain moment of time, and the red-shaded boundary
represents an enclosed system. The red domain obeys unitary evolution due to
the absence of outer environment and, therefore, its information is a conserved
quantity. This means that any data from the inside should be available at any
moment of time, otherwise one would be able to detect its fluctuations and this
violate the unitary dynamics of the boundary.

Figure 6.4: The red-shaded boundary as an information depository. Figure taken
from [Raj22].
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As soon as the boundary area A is finite, it should encode some certain
amount of information only, with the upper bound suggested to be A/4 [Bou99].
This allows to interpret entanglement and the corresponding entropy within the
AdS/CFT correspondence and to study extensions of black hole entropy [RT06a;
RT06b].

Mapping this to black hole unambiguously binds together its inner dynamics
and surface area. In other words, any information about its interior is encoded
by the event horizon acting as some kind of a screen.

The approach implies an elegant solution to the black hole’s information and
entropy problems. Unfortunately, this does not mean one is able to extract any
data about the interior domain: being the smallest screen possible, horizon packs
any information at the most efficient way and makes it look highly encrypted.
Black hole evaporation might suggest the way to decipher the data, providing
more room at the screen so that one could find some repeatable patterns.
Unfortunately, any such particle emission is processed at the cost of the black
hole’s energy and the corresponding shrinkage of its horizon.

So, despite the whole concept suggests various fruitful and intriguing insights
[Sus95], there is still much to be understood [NRT09; Raj22].

6.4.5 Information outflow

Existence of an unobservable domain is equivalent to a restricted data access.
Having no possibility to read all information implies averaging over states of the
inaccessible partition. The state of the available domain becomes uncertain due
to its dependence on the hidden one. Entropy of the corresponding distribution
serves as the measure of such uncertainty. In general case, this entropy vanishes
if and only if one gains full access to the data. In such case, all information
about the system is known, so the probability distribution reduces to the only
state available.

This is exactly what one observes for any finite entangled system. Having
no access to some subsystem implies partial tracing over it, thus neglecting any
correlations between it and the rest. In general case, the observed partition will
be in some mixed state with non-zeroth entropy. Gradual gain of access means
one is able to read more data so that the amount of unobservable correlations
shrinks down. In short, available information increases due to the uncertainty
reduction. But this does not mean that additional information can be generated:
the capacity of the whole system is bounded. So, moving the boundary between
its subsystems just induces information flow from one partition to another
[Pag93b].

From this perspective, the black hole entropy is a bit virtual quantity in the
sense that it might reduce with time. Indeed, as the black hole’s mass becomes
smaller, its radius diminishes. Due to the area law, its entropy shrinks which
equals to gaining more access as the black hole evaporates away. From this one
concludes that gravity must not cause the loss of information, and there should
be some mechanism allowing it to escape.
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Information Iout, which is carried out by radiation during the evaporation
process, reads [Pag93a]

Iout = lnNout −Hent, (6.7)
where Nout stands for the amount of microstates of the emitted particles, and
Hent is entanglement entropy between the black hole and outgoing quanta. Hent
is defined by its density matrix ρout and can be quantified with (6.4).

Fig. 6.5 depicts both Iout and Hent as functions of thermodynamic entropy
lnNout. It can be clearly seen that information encoded by the outgoing states
increases, while entanglement between the black hole and its radiation goes down.
Thermodynamic entropy can never decrease and depicts the arrow of time.

Figure 6.5: Entanglement entropy Hent and information Iout as functions of
thermodynamic entropy lnNout. Figure taken from [Pag93a].

Therefore, the Bekenstein-Hawking radiation, despite its thermal-like
behavior, favors non-zeroth data flow from the black hole. The analysis above
estimates information but does not prescribe the recipe for its escape. Obviously,
this should be encoded in some correlations of the outgoing radiation, but what
are these DOF?

The answer may be the energy of the radiation itself [Zha+09]. In brief, the
idea exploits information theory methods as follows.

Let us consider consequent emission of particles with probabilities d (Ei) at
energies Ei, where the i-th quantum is being emitted after the i′-th one if i > i′.
For the first particle from the sequence one has

d (E1) = e−8πE1(M−E1/2), (6.8)

with M being the black hole’s mass. Energy conservation dictates that any other
probability should be correlated with the previous one

d (Ei+1, Ei) = d (Ei) d (Ei+1|Ei) , i = 1, n− 1. (6.9)
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Here d (Ei+1|Ei) is the conditional probability (1.9). Suggesting the logarithm
of these probabilities with negative sign as the corresponding entropy allows
to reproduce the area law (6.1) exactly. The method relies on the tunneling
mechanism that specifies conditional distributions in (6.9). Unfortunately, one
cannot be sure these are correct until the exact evolution of the black hole since
the very beginning is known.

Besides, the analysis above exploits energy conservation only within the
context of correlations among the quanta. Similar treatment may be built upon
conditional distributions over other DOF. So, conservation laws seem to be of
great importance for unitary evolution of gravity, and entanglement may play
here a crucial role [Sol11].

Summing up, attempts to connect quantum mechanics and relativity have
inspired various studies of the black hole physics, fabric of spacetime and unitarity
of gravity [Har16; Pol16; Sto18; UW17; Wal18]. Despite endeavors, both the
entropy and the information loss problems are still unsolved. The key issue here
is the poor understanding of black hole physics at the microscopic level [Car09;
Pag05]. To date, there is no agreement about which of the approaches is correct
if any. The only point everyone agrees on is that we need quantum gravity to be
able to find the solutions. Such a theory requires merging of quantum mechanics
and physics of curved spacetimes, which is a highly non-trivial task, as can be
seen from Fig. 6.6.
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Figure 6.6: Logical structure of thermodynamics in the spacetimes with horizons.
Figure taken from [Pad05].
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Chapter 7

Unruh effect

7.1 Unruh radiation and its temperature

Considering a system embedded into a spacetime implies merging together
both quantum physics and relativity. Usually this is done within the relativistic
quantum mechanics and thus does not seem to be a problem at all. Unfortunately,
a rigorous quantum-mechanical treatment is not an easy problem: the number
of particles turns out to be non-invariant. In 1976 Unruh demonstrated that the
definition of vacuum state depends on the observer’s reference frame [Unr76]. In
brief, it may be described as follows.

Let us consider an inertial reference frame in empty space. The observer who
is at rest in this frame does not detect any particles and concludes a field to be
in its vacuum state |0⟩ at any point in space. She or he is located at the center
of Fig. 7.1; the corresponding light cones are depicted by straight diagonal lines.
The conclusion about the vacuum state |0⟩ will be shared among all inertial
observers moving at constant speeds with respect to each other.

Now, let us introduce an accelerated observer moving at some constant
acceleration a, who is depicted by the red curve in Fig. 7.1. It can be clearly
seen that the accelerated observer has no access to events from the future light
cone of the first one. Similarly, she or he cannot (at any past moment of time)
send a signal into the corresponding past light cone: any message may reach
the inertial one in the future light cone only, with no chance to read the reply.
Therefore, the accelerated observer will have restricted access to any event inside
the cones. Due to the finitude of the speed of light, the corresponding spacetime
domain will be hidden behind some kind of an event horizon, which is marked
with blue dashed lines.

But having no access means inability to take into account any correlations
crossing the horizon. So, the accelerated observer will detect some other state
differing a lot from the vacuum |0⟩. Indeed, he or she will detect thermal
radiation at (Davies-Unruh) temperature T , which in Planck units reads [Dav75;
Ful73; Unr76]

T = a

2π , (7.1)

while any inertial observer will see no particles at all. Today this is known as
the Fulling-Davies-Unruh effect, or shortly the Unruh effect.

So, the number of particles and temperature appear to be functions of
acceleration. Consequently, thermodynamic properties of any system become
non-invariant: they depend on a reference frame.

At first, the Unruh effect was derived for spinless particles. From this one
may conclude that it refers to bosons only, since fermions have different statistics.
However, the effect may be obtained from exact solutions of the Klein-Gordon
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1/a
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Figure 7.1: Unruh horizon

and Dirac equations as the consequence of quantum tunneling through the
horizon. It was shown that the treatment is valid for both bosons and fermions
[BM09; Roy09].

Moreover, even the tunneling is not required: path integral formalism provides
similar results [UW84] for various statistics and interacting fields.

From this one concludes that Unruh radiation is not a specific issue which is
valid in some certain cases only. It is a general phenomenon emerging from the
fusion of relativity and quantum mechanics.

One may argue that the effect relies upon an everlasting constant acceleration,
with no dependence on time. But this is a somewhat artificial situation: the
eternal acceleration requires an infinite energy supply. More realistic scenarios
should consider observers being accelerated during finite time. In such case,
when the acceleration is limited in time, the situation looks a bit different
because of switching dynamics coming into the play. Proper calculations of
the probability to detect the Unruh radiation predict logarithmic ultraviolet
divergences [HMP93]; the extension to a wider class of switching functions can
be found in [LS08; SP96]. The studies clearly show that the Unruh effect cannot
be eradicated for realistic finite non-zeroth accelerations.

Time duration is not the only option available. In its simplest form the
Unruh effect utilizes a D = 1 + 1 spacetime. This is valid till other spatial
dimensions contribute via a tensor product and, therefore, may be excluded
with no consequences for the final result. However, the statistics inversion of the
power spectrum is reported for odd dimensions [Tak86], so the situation is not
as simple as it seems.

Imposing additional spatial dimensions extends the phenomena to arbitrary
trajectories. The corresponding analytical and numerical calculations of the
Unruh particle’s detection probability can be found in [OM07]. If a rotation is
taken into account, the vacuum non-invariance resembles a typical behavior of
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rotating black holes [KL04].
At the first glance, the concept of non-invariant vacuum seems to be tricky a

bit. One expects that thermodynamic properties of any system should not depend
on the reference frame in such a dramatic manner. This favors to consider the
Davies-Unruh temperature as a virtual quantity. However, any particle emission
can be measured by a detector. This, in turn, may be interpreted as some
two-level quantum system, and Unruh particles should cause its transition from
one state (ground) to another (excited). This is a real process taking some finite
amount of time. Therefore, the detector’s excitation probability should depend
on its acceleration [SS92] and influence the measurement results, as has been
already discussed above.

But, as follows from (7.1), it may be hard to notice any changes: the impact
is small until one reaches the Planck scale. A large acceleration is required
in order to make the effect detectable, otherwise any changes to the thermal
bath’s temperature will be too tiny. Estimates reveal that the signal-to-noise
ratio does not exceed unity even for electrons accelerated by O

(
1015)W power

laser [CT99]. So, how can one measure so tiny effect? As shown in [BL83],
polarization measurements for the accelerated fermions may be of great help
here. This suggests an implementation of the Unruh effect for thermometry,
with spin DOF serving as temperature probes.

Even more on that, the effect was suggested to be responsible for
thermalization in high energy collisions [KT05]. In such case, the vacuum
non-invariance may be tested with the help of existing particle accelerator
facilities. Fig. 7.2 depicts some color string fragmentation process. The world
lines of initial quarks are shown by red curves. String formation causes their
deceleration, so the quarks are associated with non-inertial reference frames.
Emitted hadrons are being formed at the blue hypersurface and are interpreted
as the Unruh radiation.

Figure 7.2: Hadronization as the Unruh radiation. Figure taken from [CKS07].

Estimating the momentum rate loss via the string tension σ, one arrives at
a =

√
2πσ [Sat07]. Together with (7.1) this recovers the Hagedorn temperature

of QCD matter. Strong interaction among the quarks induces large acceleration
rates thus making the whole concept very perspective for solving the early
equilibration problem, which is discussed in Section 3.1. Unfortunately, the
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suggested analysis turns out to be phenomenological mostly, so a rigorous
description is still underway. Besides, an unambiguous test for the Unruh
radiation requires dealing with the mixed states in the relevant basis, which
seems to be out of scope for existing elementary particle detector facilities.

Due to the Unruh effect, a system seen by accelerated and inertial observers
exhibits different properties. Once one is dealing with acceleration, the
phenomenon will cause an impact on thermodynamic properties of the system.
But, how to interpret the effect exhibiting dependence on a reference frame?

The answer was suggested in [Bec18]. Basing on the Zubarev’s nonequilibrium
density operator [ZPS79], it was shown that relativistic fluid cannot have
temperature lower than a/2π, with a being the local acceleration. So, (7.1)
specifies the lower bound for any temperature measurements, as can be seen
from Fig. 7.3.

Figure 7.3: Fluid temperature as a function of acceleration A. Allowed values
are shaded with red. Figure taken from [Bec18].

Determining entropy via the logarithm of partition function, one arrives
at its extensiveness for the non-degenerate lower-bounded spectrum of non-
equilibrium operator [BR19]. The study reveals that under such circumstances,
an accelerated medium thermalizes due to the Unruh effect. This allows to extract
entanglement entropy at the horizon and other thermodynamic properties in
non-inertial frames. It should be noted that the approach is built upon the
Jayne’s principle [Jay63], so it should be used with care for unbounded systems,
as discussed in Section 1.4.

Interconnecting quantum physics and relativity, the Unruh effect has induced
a broad study of quantum gravity and related topics [CHM08].

Substituting the surface gravity κ to (7.1), one easily obtains the temperature
of a Schwarzschild black hole. At the same time, at the absence of acceleration
an inertial observer will detect no particles in vacuum, as it should be for a
free-falling observer crossing the event horizon. Therefore, one may conclude
that the Unruh effect is responsible for the black hole thermodynamics. But, in
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such case one should be able to reproduce the area law from the Unruh radiation.
Moreover, the information loss problem is expected to be solved as well.

In order to do this one should properly estimate the relevant DOF. Non-
invariant number of particles means that the phase space is seen in a different
manner by inertial and accelerated observers. Consequently, one concludes that
entropy is a subtle quantity, which is observer-dependent [MMR04]. But even
knowing the number of particles and their energy does not mean one is able to
calculate the entropy. Any change of a reference frame causes re-distribution
of entanglement among the modes due to the change of the preferred basis in
Hilbert space [AFSE07], thus contributing to the total entropy. The situation is
complicated by the dependence on spin statistics effecting multiplicity [Als+06;
FSM05] and requires a delicate study.

To sum up, the quantum physics of curved spacetimes is within the scope of
thermodynamics. And the Unruh effect may serve as a useful tool to look into
the origin of black hole entropy and the information loss problem. However, the
framework requires correct estimate for all the DOF involved, and information
theory methods can help a lot here.

7.2 Density matrix of Unruh radiation

As one can see from Fig. 7.1, the observers from inertial and accelerated reference
frames have access to different spacetime domains. From quantum physics it
follows then that Hermitian operators for each of them may differ and are not
required to commute. In other terms, any observer defines her or his own
complete sets of basis vectors to describe common Hilbert space.

In particular, the accelerated observer feels comfortable with the basis of
states which are separated to the accessible (above the horizon) and inaccessible
(below the horizon) domains. The inertial one will detect no event horizon,
therefore having no need in such distinction among the states. For example,
bosonic creation and annihilation operators from different reference frames are
connected via the Bogoliubov transformation [Unr76]

â† = 1√
1 − e−E/T

b̂†
out − e−E/2T

√
1 − e−E/T

b̂in

â = 1√
1 − e−E/T

b̂out − e−E/2T

√
1 − e−E/T

b̂†
in,

(7.2)

where â† and â are responsible for mode excitation and annihilation in the
inertial frame; b̂†

in(out) and b̂in(out) are the creation and annihilation operators for
the accelerated observer, E is the energy of the quanta generated at the horizon
at Unruh temperature T . Here the subscripts in(out) denote quanta generated
inside and outside with respect to the horizon (Rindler modes).

Then the Minkowski vacuum state |0⟩ reads [CHM08]

|0⟩ =

√
1 − e−E/T

1 − e−NE/T

N−1∑
n=0

e−nE/(2T ) |n⟩in |n⟩out , (7.3)
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for which â |0⟩ = 0. Here N − 1 is the maximum number of particles at energy
E. Expression (7.3) is valid for both bosons and fermions [BM09; Roy09]. The
last case is obtained by formal setting N = 2.

In case of bosons the common assumption is N → ∞. This ensures the
completeness of the chosen basis. But such choice describes a bit idealized
situation, which cannot happen in reality. The non-inertial observer is able
to detect only finite number of particles, thus implying the finitude of N in
any realistic physical situation. As follows from conservation laws, the energy
of Unruh radiation cannot exceed the energy supply necessary to provide the
observer’s acceleration.

It should be mentioned that (7.3) implies no influence of the states |n⟩in , |n⟩out
on the background metric (the so-called quasiclassical approach). In other words,
Rindler modes do not affect the temperature T .

Obviously, the state (7.3) is pure in both reference frames. In the chosen
basis it is exactly the Schmidt decomposition, for which the Rindler number
equals to N − 1. For any N > 1 the inside and outside modes are entangled.
But the accelerated observer cannot measure the inside modes. Having access to
the outside domain only, she or he should take the partial trace of ρ = |0⟩ ⟨0|
over the DOF below the horizon. Doing so, the observer loses all information
about correlations among the modes from different domains. The resulting state
is represented by density matrix ρout

ρout = Trin |0⟩ ⟨0| = 1 − e−E/T

1 − e−NE/T

N−1∑
n=0

e−nE/T |n⟩out ⟨n|out (7.4)

and describes particles emitted at the horizon. The source of radiation is the
horizon itself. Therefore, the Minkowski vacuum state |0⟩, which is pure in the
inertial reference frame, is seen as the mixed one in the accelerated frame.

The density matrix ρout is diagonal in the chosen basis. Its eigenvalues
determine the probability to emit n particles at some fixed N , energy E and
temperature T . In other terms, ρout describes the conditional multiplicity
distribution {n|N,E, T}.

7.3 Entropy of Unruh radiation

For any density matrix ρ one can estimate its von Neumann entropy with the
help of (6.4).

For any pure state ρ has only one non-zeroth eigenvalue. In this case one
knows everything about a system, and H (ρ) = 0 as it should be.

In case of a mixed state density matrix contains more than one non-zeroth
eigenvalue. This means that one has no access to complete information about
the state. Therefore, it should be described by some distribution consisting of
the non-zeroth eigenvalues of ρ in its own basis. Consequently, the von Neumann
entropy for the mixed state is non-zeroth and estimates the amount of unavailable
information.
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Substituting (7.4) and

N−1∑
n=0

ne−nE/T = − 1
E/T

∂

∂α

N−1∑
n=0

e−αE/T

∣∣∣∣
α=1

=
(
1 − e−NE/T

)
e−E/T −N

(
1 − e−E/T

)
e−NE/T(

1 − e−E/T
)2

to (6.4) one obtains that for Unruh radiation its von Neumann entropy reads

H (ρout) = H (n|N,E, T ) = E/T

eE/T − 1 − NE/T

eNE/T − 1 − ln 1 − e−E/T

1 − e−NE/T
. (7.5)

As it should be, H (ρout) depends on three parameters: the maximum number
of particles N − 1, their energy E and the temperature T of the source.

Quantities N , E and T serve as external parameters of the multiplicity
distribution. The first of them can be estimated via statistical measurements.
The horizon’s temperature T is completely determined with the observer’s
acceleration due to (7.1). As for E, here the situation is not so simple. The
Unruh effect cannot produce more energy than provided by the source generating
the acceleration itself. So, there should be some correlation between parameters
N and E. Any exact value of E is defined by some distribution {E} governed
by conservation laws.

As one can see, entropy H (ρout) is an even function with respect to the
energy E and temperature T :

H (n|N,E, T ) = H (n|N,±E, T ) = H (n|N,E,±T ) . (7.6)

Asymptotics of H (n|N,E, T ):

lim
E/T →0

H (n|N,E, T ) = lnN = max [H (ρout)] ,

lim
E/T →∞

H (n|N,E, T ) = 0.
(7.7)

To sum up, the von Neumann entropy of Unruh radiation will go to its
maximum value lnN for large temperatures T of the Unruh source or for small
energies E of the emitted particles. This means that in the case of E/T → 0
the Unruh radiation is described with the uniform distribution over the Fock
states. Decomposing the eigenvalues of ρout from (7.4) into Taylor series with
respect to E/T → 0, one may easily notice that the emission probability at small
energies (as compared to the temperature T of the source) approaches constant
value. Such a behavior originates from the system’s indifference to the amount
of emitted particles until conservation laws are fulfilled.

In the case of large energies E or small temperatures T Unruh entropy tends
to zero. It can be explained as follows. As one can see from (7.4), for any
number of emitted particles the corresponding eigenvalues decline exponentially
due to the factor e−E/T . The state |0⟩out ⟨0|out is the only exception from this
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general rule. So, for E/T → ∞ all the eigenvalues tend to zero, but except the
one for which n = 0, i.e. describing the absence of radiation at all. Such a case
determines the pure state, for which the von Neumann entropy is zero. The
situation is a consequence of energy conservation law: the probability to emit
a particle at energy E by the source at the temperature T ≪ E diminishes to
zero.

Also one should keep in mind that for any finite T total entropy of radiation
is governed by a joint distribution {n,E|T}. Due to (1.12), it reads

H (n,E|T ) = H (E|T ) + ⟨H (n|E, T )⟩E (7.8)

and may be large even if some of H (n|E, T ) are small.

70



Chapter 8

Unruh entropy of a black hole:
main results
The results regarding the Unruh entropy calculations are published in [Paper VI;
Paper VII; Paper VIII].

The case of a Schwarzschild black hole, which is embedded into D = 3 + 1
spacetime, was considered in [Paper VI; Paper VII].

Unruh entropy (7.5) does not take into account the amount of spatial
dimensions: the corresponding Schmidt decomposition (7.3) is valid even for a
D = 1 + 1 spacetime. Other two spatial dimensions contribute via the tensor
product and can be traced out with no impact on the eigenvalues of density
matrix ρ̂out. To estimate how the effect contributes to the entropy of an object
having two additional dimensions, angular DOF were taken into account.

The analysis suggested homogeneous distribution {l, µ} over angular
momentum l and its projection µ. For a spherically symmetric black hole
its emission spectrum should not contain any correlations induced by angular
momentum conservation. So, the total radiation entropy H becomes additive
with respect to quantum numbers l and µ:

H =
∑
l,µ

H (ρout) = (lmax + 1)2
H (ρout) , (8.1)

where lmax is the maximum value of l.
Neglect of backreaction on the background metric within the quasiclassical

approach implies the radiation entropy to be additive with respect to the energy
of outgoing quanta. In such case, the probability of particle emission is constant
and obeys the energy conservation only. This imposes the upper bound of the
emission spectrum equal to the black hole’s mass MBH.

Within the aforementioned assumptions, total Unruh entropy was estimated
for the spinless quanta of mass m covering the range of all known elementary
particles. The analysis for Schwarzschild black holes of mass MBH > 1 in Planck
units can be found in [Paper VI].

For mMBH ≪ 1 it was found that the Unruh entropy exhibits the following
dependence

H

HBH
≈ 1.452 × 10−3 (1 − 4.348m2M2

BH
)
, (8.2)

thus reproducing the area law (6.1) in the case m = 0 only.
The asymptotic analysis for the case mMBH ≫ 1 predicts that

−2π − 1
3π4 m2M2

BHe
−8πmMBH ≲ H

HBH
≲ m2M2

BH
3π4 e−8πmMBH . (8.3)
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So, the Unruh contribution to the entropy of a heavy black hole is exponentially
suppressed.

Both estimates include the negative terms for massive particles. This reduces
the total Unruh entropy, thus favoring the information outflow from the horizon,
in full accord with the discussion in Section 6.4.5. On the other hand, the
observed tendency may originate from the applied restrictions.

The study of small black holes, for which MBH ≤ 1, was reported in
[Paper VII]. In addition to the previous assumptions, the multiplicity of emitted
particles was assumed to be upper bounded with N − 1. It was shown that in
this case the Unruh entropy approximately reads

H

HBH
∝ −

(
N∑

n=1

e−8πMBHEn

n
− e−8πMBHEN

)∣∣∣∣∣
E=MBH

E=m

, (8.4)

where the following notation is used:

f (x)
∣∣∣x=b

x=a
= f (a) − f (b) . (8.5)

Together with the subleading terms the ratio H/HBH transforms to the
sum of polylogarithms of different orders and cannot reproduce the area law
dependence.

Similarly to the black holes with MBH > 1, here massive particles reduce the
total entropy.

In both cases, MBH > 1 and MBH < 1, the contribution of the Unruh
radiation to HBH does not exceed 0.15%.

A more subtle analysis should include energy correlations and, therefore, must
be governed by (7.8). This requires the knowledge of probability emission at some
fixed value of energy E. Such information seems to be hardly available: there is
no access to DOF under the horizon. So, one should make some assumptions
about the energy distribution {E} instead. The corresponding ansatz with the
emission probability p (E) ∝ e−E/T , where T is the temperature of the source,
was considered in [Paper VIII] for the case of D = 1 + 1 dimensions.

Fig. 8.1 depicts the total entropy H (n,E|N = 2, T ) of Unruh radiation as a
function of m/T and M/T . Here m is the mass of particles, M it their maximum
energy, and T is the temperature of the Unruh horizon. Parameter N = 2
describes the fermion case, when maximum one particle can be emitted at energy
E.

As one can notice, H (n,E|N = 2, T ) is large if m/T is small. The entropy
vanishes for m → M , in full accord with the energy conservation.

From Fig. 8.2 one concludes that the same tendency is observed for larger N .
The increasing particle multiplicity leads to the expected rise of total entropy
and makes the maximum for small m/T more pronounced.

Asymptotic estimates reveal different behavior of the total Unruh entropy
for cold and hot horizons. As shown in Fig. 8.3, for T → 0 the quantity exhibits
indifference to spin statistics: the entropy is independent of N . It has a maximum
at m/T ≈ 1/2 and exponentially decreases to unity for large m/T .
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Figure 8.1: Total entropy of Unruh radiation for N = 2 as a function of m/T
and M/T in the 2-dimensional case. Figure taken from [Paper VIII].

Figure 8.2: Total entropy of Unruh radiation for bosons as a function of m/T
and M/T in the 2-dimensional case. Left panel: N = 100; right panel: N = 1000.
Figure taken from [Paper VIII].

Figure 8.3: H (n,E|N,T ) as a function of m/T at low temperatures of the
horizon. Figure taken from [Paper VIII].
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For hot horizons, when T → ∞, the dependence on particle multiplicity is
retained. As one can see from Fig. 8.4, H (n,E|N,T ) weakly depends on the
mass of emitted quanta, but rapidly rises up with the increase of their maximum
energy. The slope demonstrates a steeper trend at large N due to the growth of
available phase space.

Figure 8.4: Total entropy of Unruh radiation for T → ∞ as a function of m
and M in the 2-dimensional case. Left panel: fermion case, N = 2; right panel:
boson case, N = 100. Figure taken from [Paper VIII].
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Chapter 9

Conclusion and outlook
The present study is focused on ultrarelativistic heavy ion collisions and
astrophysics. So, the conclusion consists of two separate sections for each
of them and is accompanied with the outlook of forthcoming research.

9.1 Specific viscosity

Specific viscosity of QCD matter is calculated within microscopic transport
calculations. The method consists of three major blocks:

1. UrQMD model calculations for nuclear collisions were performed at collision
energies from the range Elab = {10, 20, 30, 40} AGeV. To eliminate any
effects from the boundary, the central cell of a fireball is selected for data
extraction at different stages of its evolution. The obtained values of energy
density, net baryon and net strangeness densities serve as input for the
next two blocks.

2. Calculations within the statistical model of an ideal hadron gas. This allows
to determine thermodynamic properties of QCD matter at equilibrium,
namely its temperature, entropy density sSM and chemical potentials.

3. UrQMD model box calculations at the same densities as in the open regime.
The approach is designed to extract relaxation rates for the infinite nuclear
matter, which is reproduced via periodic boundary conditions.

It is shown that momentum fluctuations increase relaxation rates approxi-
mately by 20%. However, the noise contribution falls below 10% for late stages
of the fireball evolution.

The ratio of shear viscosity to entropy density η/sSM for hadron matter is
calculated in the vicinity of the expected critical point. Specific viscosity exhibits
a smooth minimum at times when the colliding nuclei experience an overlap
or right after that [Paper I]. The minimum is slightly deeper at lower collision
energies. The smallest value of specific viscosity is reached at the bombarding
energy Elab = 10 AGeV, when the matter is baryon-rich and the contribution
of quark-gluon DOF is expected to be small. The ratio η/sSM exceeds the KSS
bound approximately by a factor of 3.5.

Taking into account microscopic momentum distributions slightly increases
the ratio [Paper II; Paper IV]. The maximum of microscopic entropy density
s is achievable in thermal equilibrium only. In any other state the calculated
values of s are lower and tend to rise with the cell time, in full accord with
expectations. This indicates the presence of correlations in the fireball at early
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times: the microscopic transport approach cannot provide an instant emergence
of equilibrated matter without causality violation.

The extreme of the ratio η/s itself is sharper (closer to the V-shaped pattern)
as compared to η/sSM (U-shaped). Therefore, highly dynamical evolution in
the cell makes the minimum more pronounced. Taking correlations into account
via the microscopic entropy density s allows to pinpoint the critical point with
higher precision.

Similar calculations were performed separately for different particle species
from the fireball. The results are presented in [Paper III; Paper V]. Partial
viscosities demonstrate the similar behavior to the total one. However, the values
are small for baryon or meson matter; their contribution to η slightly exceeds
50%. For Λ and Σ baryons the situation becomes even more dramatic: they
exhibit almost ideal fluid behavior.

Low partial viscosity does not mean that the corresponding constituents give
no contribution to momentum transfer in the medium. Conversely, the observed
behavior is explained by multiple interactions among the particles of different
species. As a result, momentum correlations cannot be traced back within some
certain particle type. Representing the QCD matter as a mixture of separate
fluids may violate the KSS bound as soon as this does not take into account
relevant conditional distributions.

9.2 Unruh entropy

The contribution of the Unruh effect to the Bekenstein-Hawking radiation entropy
HBH of the Schwarzchild black hole is calculated. General assumptions for the
study included additive entropy behavior with respect to angular momentum
DOF.

Entropy dependence on various combinations of the relevant parameters has
been investigated. This includes:

1. The maximum number of emitted particles N − 1.

2. The black hole’s mass MBH within a wide range, from the stellar to the
sub-Plank scale.

3. The mass of emitted particles m covering the mass spectrum of the known
particle species.

Asymptotic behavior of the calculated Unruh entropy with respect to MBH
and m was analyzed in details. Any other DOF of the particles, such as spin or
charges of outgoing quanta, have not been taken into account.

Within the aforementioned assumptions, the obtained results pronounce the
presence of negative terms in the expression for entropy. Despite being small,
they reduce total entropy of emitted quanta. So, the outgoing radiation might
encode information about the internals of the black hole, as one would expect
for an entangled system within the Page formalism.

76



Outlook

Negative entropy terms vanish for massless particles. This might witness that
the law of energy conservation causes correlations among different spacetime
domains. On the other hand, the terms may origin from the absence of radiation
back-reaction on the background metric. Therefore, the situation is not clear
and a more sophisticated analysis is required.

The results indicate the inability to reproduce the Bekenstein-Hawking
entropy with the Unruh effect only. In the case of MBHm < 1 the Unruh
contribution is upper bounded by 0.15% [Paper VI; Paper VII]. Moreover,
the radiation entropy is exponentially suppressed by the factor e−8πMBHm for
MBHm ≫ 1 even for an infinite particle multiplicity [Paper VI].

The smallness of the contribution is caused by the neglect of conditional
distributions during entropy estimates. Within the considered approximation,
the Unruh entropy is additive with respect to energy. This means that all field
modes contribute independently to the total entropy; they are disentangled with
the background. In other words, the assumption implies that emitted particles
are not correlated. However, this is valid for the massive black holes only; a
more strict analysis requires the presence of correlations among the field modes
due to energy conservation at least.

Due to (1.12), these correlations lead to the non-additivity of entropy for
different modes and require knowledge about the emission probability at given
energy. The exponential energy distribution was studied in [Paper VIII] for the
D = 1+1 spacetime. Even in the such relatively simple case the entropy exhibits
a highly non-trivial dependence of its parameters.

The exact energy distribution {E} can be extracted only from the black
hole’s Hamiltonian that encompasses its internal dynamics. Unfortunately, such
information is inaccessible according to the general relativity.

The analysis does not take into account the influence of quantum effects
on the background metric. Such restriction origins from specific assumptions
while obtaining the density matrix (7.4), namely the quasiclassical approach.
Neglect of any back-reaction on the black hole excludes the impact on the Unruh
temperature as well. However, imposing the metric dependence on the Unruh
radiation is a non-trivial problem and requires gravity quantization.

9.3 Outlook

Extracting viscosity within the Green-Kubo formalism implies small deviations
from thermal equilibrium. The protocol requires the temperature of a fluid
to be known. A common procedure of its extraction in ultrarelativistic heavy-
ion experiments utilizes spectra of produced particles. But strictly speaking,
temperature is a well-defined quantity only in equilibrium. Contrary to this,
collision experiments generate a state which is governed by a dynamical evolution.
To solve the problem, one may suggest to use the Zubarev non-equilibrium
statistical operator formalism. Unfortunately, its applicability may be questioned
for far-from-equilibrium open systems, such as a collision fireball.

77



9. Conclusion and outlook

Moreover, it is unclear whether the amount of produced particles suffices for
an ensemble. If multiplicity is not large enough, one should deal rather with
a density matrix. In such case, a temperature extraction becomes ambiguous:
matrix eigenvalues may be governed by different distributions for each Hermitian
operator from a pairwise commuting set. The problem has much in common
with the one from mesoscopic physics, where one has to deal with a set of
temperatures within the same system [Gia+06].

So, it seems interesting to construct some function, which is well-defined at
any stage of the fireball’s evolution and reaches the conventional temperature
for a stationary state.

One more important issue is the entropy density of the fireball itself.
Section 3.3 describes how it can be extracted from microscopic momentum
distributions even if the medium is out of equilibrium. However, the technique
implies the homogeneity of spatial particle distribution. The calculated entropy
density s is just the upper bound for the real one at early times: neither spatial
nor momentum DOF provide spherically symmetric phase space volume for
the emerging fireball. Therefore, the analysis of spatial-momentum correlations
since the very beginning is a challenging problem for further study. And the
information entropy may become of great utility here.

As known, the amount of possible microstates depends on intrinsic DOF
contributing to the available phase space of a system. Regarding to the Unruh
radiation, additional quantum numbers (charges, spin etc.) might significantly
increase its contribution to the black hole entropy. This is one more interesting
item for investigation.

Intrinsic quantum numbers impose additional conservation laws of angular
momentum and charges. These affect relevant conditional distributions and,
consequently, the total entropy of Unruh radiation. A side effect of such
correlations is their impact on the background metric, that cannot be eradicated
by the aforementioned quasiclassical approach. For example, particles with spin
or non-zeroth electrical charge might change the black hole’s type and the metric
as well. All this significantly complicates the problem. On the other hand, such
correlations may be responsible for the information outflow from the black hole
[CHS23].

Therefore, intrinsic DOF of Unruh particles and their possible impact on the
metric are intriguing issues to study within information entropy techniques.
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Shear viscosity in microscopic calculations of A + A collisions at energies available at the
Nuclotron-based Ion Collider fAcility (NICA)
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Time evolution of shear viscosity η, entropy density s, and their ratio η/s in the central area of central gold-
gold collisions at energies available at the Nuclotron-based Ion Collider fAcility (NICA) are studied within the
ultrarelativistic quantum molecular dynamics (UrQMD) transport model. The extracted values of energy density,
net baryon density, and net strangeness density are used as input to (i) the statistical model of an ideal hadron
gas to define temperature, baryochemical potential, and strangeness chemical potential, and to (ii) a UrQMD
box with periodic boundary conditions to study the relaxation process of highly excited matter. During the
relaxation stage, the shear viscosity is determined in the framework of the Green-Kubo approach. The procedure
is performed for each of 20 time slices, corresponding to conditions in the central area of the fireball at times
from 1 to 20 fm/c. For all tested energies the ratio η/s reaches its minimum, (η/s)min ≈ 0.3 at t ≈ 5 fm/c. Then
it increases up to the late stages of the system evolution. This rise is accompanied by the drop of both temperature
and strangeness chemical potential and by the increase of baryochemical potential.

DOI: 10.1103/PhysRevC.101.014904

I. INTRODUCTION

Relativistic heavy-ion collisions have been intensively
studied both theoretically and experimentally to obtain infor-
mation about the properties of highly excited nuclear matter.
To date, these collisions are the only means to study the
conditions of early Universe in the laboratory, thus leading
to the term “little big bang” [1]. According to the theoreti-
cal estimates and lattice quantum chromodynamics (lQCD)
calculations, nuclear matter under certain extreme conditions
should experience a deconfinement phase transition into a new
phase of matter, a quark-gluon plasma (QGP). The expanding
hot fireball should, however, rapidly cool off, and the plasma
will undergo hadronization. Experiments show that in heavy-
ion collisions at the ultrarelativistic energies of the Relativistic
Heavy Ion Collider (RHIC),

√
s = 200 GeV, and of the Large

Hadron Collider (LHC),
√

s = 2.76 and 5.02 TeV, there is a
crossover type of the phase transition. In contrast, at much
lower energies the transition might be of the first order. In
this case the line of the first-order phase transition in the
nuclear phase diagram ends up in the tricritical point, where
the transition becomes of second order. The search for the
tricritical point is in the agenda of experiments with heavy-ion
beams at the forthcoming Nuclotron-based Ion Collider fAcil-
ity (NICA) and the Facility for Antiproton and Ion Research
(FAIR), and within the beam energy scan (BES) program at
RHIC. Therefore, one has to look for the observable most

*Also at Taras Shevchenko National University of Kyiv, UA-01033
Kyiv, Ukraine.

†Also at Skobeltsyn Institute of Nuclear Physics,Moscow State
University, RU-119991 Moscow, Russia.

sensitive to the QGP-hadrons transition. One such observable
is the ratio of shear viscosity η to entropy density s, η/s. This
ratio drops to a minimum at critical temperatures for all known
substances [2], and in relativistic heavy-ion collisions it is
expected to be of order of its theoretical lower bound, 1/4π

[3]; for details see, e.g., [4] and references therein.
Despite the interest in this topic, it is still difficult to

estimate the value of the ratio exactly due to the high calcu-
lation complexity required by QCD simulations. Therefore,
various works in the field have explored different approaches
and approximations for the conditions expected to prevail
near the phase transition; see e.g., [5–14]. For example, in
[5] thermodynamic quantities of hadronic matter are studied
for a system of light mesons embedded in a box with pe-
riodic boundary conditions generated by the ultrarelativistic
quantum molecular dynamics (UrQMD) model. A relativistic
hadron gas in thermal and chemical equilibrium and with zero
baryon and strangeness chemical potentials was considered
in [6]. In [11] the authors obtain viscosity η by solving the
ultrarelativistic Boltzmann transport equation and compare it
to the one obtained via the Chapman-Enskog approximation.
Recently, the shear viscosity and its ratio to entropy density
were calculated for a gas of Hagedorn states [15] with masses
up to 10 GeV/c2. It was found that, because of the rapid
growth of s in the vicinity of Hagedorn limiting temperature
TH = 165 MeV, the ratio η/s came close to and was even be-
low the bounding 1/4π given by anti–de Sitter and conformal
field theory (AdS-CFT) [3]. Among the other papers on the
topic are [16], where viscosity is extracted within the SMASH

transport model, and [17], where the UrQMD model was
employed for system of nucleons at intermediate temperatures
between 10 and 50 MeV. In the latter case the nucleons were
allowed to experience only elastic collisions.
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Definitely, heavy-ion collisions at energies of NICA and
higher are more complex. As mentioned in [18], the ratio
η/s cannot be constant during the evolution of the fireball.
To provide better fits to the experimental data, this ratio
should depend on both temperature and chemical potentials.
Consequently, it is essential to explore the time dynamics of
the ratio η/s from the very beginning of a relativistic heavy-
ion collision.

In the present paper we investigate fluctuation relaxation
time τ and shear viscosity η, as well as its ratio to entropy
density, η/s, for central Au + Au collisions calculated in the
UrQMD model [19,20] within the NICA energy range. Com-
pared to the previous researches, we study the evolution of η,
s, and η/s in heavy-ion collisions, where all characteristics are
quickly changing, and not, e.g., the temperature dependence
of the η/s ratio at constant chemical potentials. Investigation
of dynamics of the relaxation process in a box with periodic
boundary conditions allows us to estimate both the lower and
upper bounds of the time interval at different energies, where
it is possible to extract τ .

The paper is organized as follows. Section II describes
briefly the features of the UrQMD model and the UrQMD box
calculations. To extract the thermodynamic quantities, such as
temperature T , baryochemical potential μB and strangeness
chemical potential μS, one has to compare microscopic model
calculations with the results provided by the statistical model
(SM) of an ideal hadron gas with essentially the same degrees
of freedom. This model is also explained in Sec. II. The
formalism employed to determine the shear viscosity of hot
and dense nuclear matter is presented in Sec. III. Section IV
contains results of our study, including the time evolution of
η and η/s in the central area of heavy-ion collisions, and
dependencies of η/s on T , μB, and μS. Finally, conclusions
are drawn in Sec. V.

II. MODELS EMPLOYED FOR THE ANALYSIS

In our study of shear viscosity we employ three computa-
tional models. The first one is the microscopic transport model
UrQMD to calculate A + A collisions at a given energy and
get the bulk characteristics of hot and dense nuclear matter,
namely, energy density ε, net baryon density ρB, and net
strangeness density ρS. The second model is the UrQMD
box with periodic boundary conditions to study the relaxation
process and find the relaxation time τ . Finally, to determine
thermodynamic parameters of the equilibrated system, i.e.,
temperature T , baryon chemical potential μB, and strangeness
chemical potential μS, we apply the statistical model of an
ideal hadron gas. The main features of all three models are as
follows.

A. UrQMD model

This is a well-known model [19,20] widely used for the
analysis of heavy-ion collisions in a broad energy range.
UrQMD is based on covariant propagation of hadrons on
classical trajectories, stochastic binary interactions of these
hadrons if the distance between them is less than d � d0 =√

σ tot/π , where σ tot is the total cross section, formation and

decay of resonances, and, when a certain collision energy
limit is exceeded, formation and subsequent fragmentation of
specific colored objects, strings. For the treatment of strings
UrQMD employs classical Lund model [21]. As independent
degrees of freedom the model considers 55 different baryon
states with masses up to mmax

B � 2.25 GeV/c2 and 39 dif-
ferent meson states, including the charmed ones. The list
of particles is supplemented by corresponding antiparticles
and isospin-projected states. Cross sections of hadron-hadron
(hh) interactions are taken from the available experimental
data [22]. If this information is missing, the model relies on
the unitarity, the additive quark model, and detailed balance
considerations.

B. Calculation of nuclear infinite matter: UrQMD box

The box with finite volume and periodic boundary con-
ditions serves to simulate the properties of infinite nuclear
matter [23,24]. All particle interactions assumed in UrQMD
are allowed in the box as well. However, if any particle leaves
the box, another particle with absolutely identical parameters
enters it, thus ensuring the preservation of initial energy
density, net baryon density, and net strangeness density in the
box. The initial state in the box can be generated as mixture of
baryons and antibaryons, or a baryon-free gas of mesons, or
even a system of strings and resonances. In the case of nonzero
net baryon charge and zero net strangeness it is convenient to
initialize the box containing neutrons and protons only. All
nucleons can be uniformly distributed in the space, whereas
their momenta are randomly distributed in a Fermi sphere
and then rescaled to ensure the required energy density. Note
also that relaxation to equilibrium in the box proceeds much
longer compared to, e.g., that in the central cell in heavy-ion
collisions [24]. In an open-system-like cell, the most energetic
particles leave it earlier, and the whole system is cooling
down. In a closed-system-like box, one has to wait until the
kinetic energy of the most “hot” particles will be redistributed
among other particles and also converted to the mass of newly
produced hadrons.

Finally, we have to determine temperature and chemical
potentials in the system. This is done by multiple fits of hadron
abundances and energy spectra in UrQMD to those calculated
within the statistical model.

C. Statistical model of ideal hadron gas

If the system of hadrons containing 1 � i � n different
species is in equilibrium at temperature T , all many-particle
correlations in it are reduced to a set of distribution functions
(in system of natural units c = h̄ = kB = 1)

f (p, mi ) =
[

exp

(
εi − μi

T

)
+ C

]−1

. (1)

Here C = +1 for fermions and C = −1 for baryons, and
p, mi, εi, and μi are hadron momentum, mass, energy, and
chemical potential, respectively. The last depends on chemical
potentials assigned to baryon charge Bi, strangeness content
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Si, and electric charge Qi of ith hadron. However, the chem-
ical potential μQ of electric charge is usually much smaller
compared to baryochemical potential μB and strangeness
chemical potential μS. Therefore, we will consider the linear
combination of two terms for the full chemical potential of a
hadron:

μi = BiμB + SiμS. (2)

The partial number density ni, the energy density εi, and the
entropy density si read

ni = gi

2π2

∫ ∞

0
f (p, mi )p2d p, (3)

εi = gi

2π2

∫ ∞

0

√
p2 + m2

i f (p, mi )p2d p, (4)

si = − gi

2π2

∫ ∞

0
f (p, mi )[ln f (p, mi ) − 1]p2d p, (5)

where gi is the spin-isospin degeneracy factor. The values of
T , μB, and μS should satisfy the set of nonlinear equations

ε =
∑

i

εi(T, μB, μS), (6)

ρB =
∑

i

Bi ni(T, μB, μS), (7)

ρS =
∑

i

Si ni(T, μB, μS), (8)

where ε, ρB, and ρS are taken as input from microscopic
model calculations.

III. SHEAR VISCOSITY DETERMINATION PROCEDURE

We calculate central Au + Au collisions in the laboratory
frame at energies Elab = 10A, 20A, 30A, and 40A GeV, cor-
responding to

√
s from 4.5 to 8.8 GeV in the center-of-mass

frame. From the whole system the central cell with volume
5 × 5 × 5 = 125 fm3 is selected. Then, the energy density ε,
the net baryon density ρB, and the net strangeness density ρS

in the cell are extracted at times tcell = 1–20 fm/c with the
time step of 1 fm/c. In order to minimize statistical errors an
ensemble of 51 200 Au + Au central collisions at each energy
has been generated.

The extracted data are inserted in the statistical model of
the ideal hadron gas to obtain temperature T , entropy density
ssm, baryon chemical potential μB, and strangeness chemical
potential μs. After that we start UrQMD box calculations. The
box with volume V = 10 × 10 × 10 = 1000 fm3 is initialized
with the same values of ε, ρB, and ρS as extracted from
the cell analysis. Baryon density is provided by protons and
neutrons taken in equal proportion, Np : Nn = 1 : 1. Nonzero
strangeness density is generated by the admixture of kaons.
The box data are analyzed for times tbox = 1–1000 fm/c with
the time step 1 fm/c. The box ensemble consists of 12 800
box simulations for each of 80 points.

To extract η the Green-Kubo [25,26] formalism was used.
The formalism requires the existence of an equilibrated state
in the medium in order to provide exponential damping of de-
viations from the equilibrium with time. Thus, the verification

of equilibrium or of exponential damping of fluctuations is the
necessary condition to be checked.

From the Green-Kubo formalism it follows that shear
viscosity η may be defined as

η(t0) = V

T

∫ ∞

t0

dt〈π (t )π (t0)〉t , (9)

where t0 and t denote moments of time in the box, and
correlator 〈π (t )π (t0)〉t can be cast in the form

〈π (t )π (t0)〉t =
3∑

i, j = 1
i �= j

1

3

[
lim

tmax→∞
1

tmax

×
∫ tmax

t0

dt ′π i j (t + t ′)π i j (t ′)
]

(10)

with π i j being nondiagonal part of the stress-energy tensor
T i j

π i j (t ) = 1

V

∑
i �= j

pi(t )pj (t )

E (t )
. (11)

Here pi( j) and E are the i( j)th components of momentum and
energy of the particle, respectively. t0 is the initial cutoff time
indicating the beginning of the extraction of quantities from
the box. The coefficient 1/3 in the sum

∑
i, j means averaging

over the directions, which allows one to reduce the statistical
errors. Usually the cutoff time t0 is set to zero. We have left
it here on purpose to explore the influence of the onset of
data extraction from box calculations on the extracted value
of shear viscosity.

If the system is in equilibrium, the correlator (10) is
expected to experience an exponential drop with time, i.e.,

〈π (t )π (t0)〉t = 〈π (t0)π (t0)〉 exp

(
− t − t0

τ

)
, (12)

with τ being an effective relaxation time of the system.
Inserting Eq. (12) in Eq. (9), one gets

η(t0) = τV

T
〈π (t0)π (t0)〉. (13)

As follows from Eq.(13), the problem of evaluation of η is
reduced to estimation of τ . Shear viscosity may be obtained
then in two different ways: (i) by direct calculation of integral
from Eq. (9), which is equivalent to taking into account
all time contributions to the correlator, or (ii) by fitting the
correlator to Eq. (12) in some selected time interval and
applying Eq. (13). The key difference here is the influence
of fluctuations. The first case takes them into account and
assumes that they are mostly mutually extinguished, whereas
the second one cuts off fluctuations at times t 
 τ when the
correlator is too small compared to the fluctuations (white
noise) [11]. In what follows we compare the relaxation times
τ for both cases.

IV. RESULTS

First, we study the time evolution of the bulk characteristics
in central cell of Au + Au collisions at four energies in
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FIG. 1. Time evolution of (a) energy density ε, (c) net baryon
density ρnet

B , (e) net strangeness density ρnet
S , (b) temperature TSM,

(d) baryon chemical potential μB, and (f) strangeness chemical
potential μS in the central cell with V = 125 fm3 in central Au + Au
collisions calculated within UrQMD at energies Elab = 10A GeV
(circles), 20A GeV (triangles), 30A GeV (squares), and 40A GeV
(diamonds). Lines are drawn to guide the eye.

question. Entropy density, net baryon density, and net
strangeness density obtained in the cell from the micro-
scopic calculations at time 1 � t � 20 fm/c are displayed in
Figs. 1(a), 1(c), and 1(e). At lowest bombarding energy Elab =
10A GeV the maximum values of ε and ρB are reached at t ≈
5 fm/c, corresponding to complete overlap of two colliding
nuclei. With rising bombarding energy, the nuclei overlap
occurs earlier, thus the maxima of the distributions are shifted
to times t ≈ 1–3 fm/c. With the net strangeness in the cell
the situation is more peculiar. Copious production of strange
particles takes place between 4 fm/c and 8–10 fm/c when the
matter in the cell is baryon rich. As mentioned in [27–30],
K+’s can leave the selected volume a bit earlier compared
to the K−’s because of the smaller interaction cross sections.
Therefore, the net strangeness in the cell is always negative,
though small. Applying the procedure explained in Sec. III

FIG. 2. (a) Entropy density ssm and (b) its ratio to net baryon
density ssm/ρb,net for different collision energies E in UrQMD central
cell calculations. Lines are drawn to guide the eye.

we insert the values of {ε, ρB, ρS} as an input in the SM to get
{T, μB, μS} corresponding to an ideal hadron gas in chemical
and thermal equilibrium. Evolutions of these parameters are
shown in Figs. 1(b), 1(d), and 1(f). It is worth noting that
the local equilibrium in the cell at energies between 10A and
40A GeV is reached not earlier than t ≈ 6–8 fm/c. Therefore,
one should treat the SM parameters obtained for earlier times
with great care. Large baryon and energy densities observed
at t � 6 fm/c are caused by interpenetration of two Lorentz-
contracted nuclei. This leads to extra-high temperatures of
the ideal hadron gas, seen in Fig. 1(b). For the extraction
of more reliable values of T and μB we have to wait until
the remnants of colliding nuclei will pass through each other
and leave the tested volume. From here, we will indicate the
thermodynamic results related to the early phase of the matter
evolution in the cell by dashed lines in the figures.

Despite the differences in the cell initial conditions, all
four temperature curves sit on the top of each other after
t = 7 fm/c. Both baryon and strangeness chemical potentials
drop with increasing bombarding energy, in full accord with
the SM analysis of experimental data. However, μB increases
whereas μS decreases, while the temperature in the cell drops
and the matter becomes more dilute.

Figure 2(a) presents the evolution of the entropy density
in the central cell in the studied reactions. This behavior
is qualitatively similar to that of ε(t ) seen in Fig. 1(a).
Note, however, that the entropy density here is calculated
within the SM implying the maximum values for s. For the
nonequilibrium state at t � 6 fm/c the entropy density is
lower than the sSM. The ratio of entropy density to baryon
density, s/ρB, shown in Fig. 2(b), also should be lower during
the stage of relaxation to equilibrium. It drops slightly, about
15% between 6 and 20 fm/c, indicating that the expansion
proceeds nearly isentropically.

We are switching now to the box calculations. Figure 3
shows correlators defined by Eq. (10) calculated for all four
collision energies. The input data ε, ρB, ρS were extracted
from the central cell of Au + Au central collisions at times
from 1 fm/c up to 20 fm/c after the beginning of the col-
lision. To see the differences between the distributions more
distinctly, each correlator was multiplied by the factor 10tcell −1.
Recall, that the results of the box calculations are shown for
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FIG. 3. Correlators 〈π (t )π (t0)〉t for initial cutoff time t0 = 300 fm/c in the UrQMD box calculations. Initial conditions for the boxes are
taken from the central cell with V = 125 fm3 of Au + Au collisions at (a) Elab = 10A GeV, (b) 20A GeV, (c) 30A GeV, and (d) 40A GeV at
times t = 1–20 fm/c. Each distribution is multiplied by factor 10tcell−1.
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FIG. 4. UrQMD box calculations of the correlators 〈π (t )π (t0)〉t .
Initial conditions in the box correspond to those in the central
cell of Au + Au collisions at Elab = 10A GeV (circles), 20A GeV
(triangles), 30A GeV (squares), and 40A GeV (diamonds) taken at
time tcell = 7 fm/c. Lines are drawn to guide the eye.

times tbox � 300 fm/c. This timescale has nothing to do with
the typical relaxation times of hot and dense matter in heavy-
ion collisions [24]. One can see that all correlators reveal
exponential falloff with time in accordance with Eq. (12).
However, for the conditions corresponding to early cell times,
the relaxation rates are several orders of magnitude slower
compared to those corresponding to late times. This cannot be
explained entirely by large baryon and energy densities in the
central cell at early tcell, when nuclei overlap. Here one has to
initialize the box with one or two very ultrarelativistic kaons
that cannot redistribute their energy and momenta quickly
enough. This circumstance results in a slow relaxation of the
appropriate correlators. In order to extract the correct data
corresponding to the overlap of nuclei, one has to process
the box calculations for longer periods of time; see, e.g., [16].
Note also that microscopic transport models usually lack the
inverse reactions to multiparticle processes 2 → N (N � 3).

In this case the matter in the box will relax to the steady state
rather than to the pure equilibrium; see, e.g., [23,24,31,32].
However, the matter in the central cell at t � 6 fm/c in heavy-
ion collisions at energies below Elab = 40A GeV becomes
dilute very quickly. Its energy density drops, and the many-
particle inelastic reactions in the box with similar ε, ρB, and
ρS rapidly cease, thus leading to equilibrium similar to that of
the SM.

At late times of the box calculations it appears that the
correlations are rising. This is a technical effect. Namely, at
the end of the UrQMD box calculations the program forces
decay of all strongly decaying resonances, which may lead to
some momentum correlations.

Typical behavior of the correlator dynamics on shorter
timescales is demonstrated in Fig. 4, where the correlators for
different collision energies are depicted. Again, as in Fig. 3,
the initial cutoff time in the box is t0 = 300 fm/c. The initial
conditions in the box correspond to that in the cell at tcell = 7
fm/c. The exponential falloff with time occurs within t �
t0 + 30 fm/c. After that time the correlators become too weak,
and fluctuations start to dominate the system. Domination of
the fluctuations leads to the necessity of cutting off the dataset
while fitting the correlator 〈π (t )π (t0)〉t to Eq. (12), as was
proposed in [11,16].

The necessity for dataset cutoff raises the question of direct
applicability of Eq. (9) in numerical calculations. In order to
investigate the problem, we compare next the relaxation times
extracted both from the integral in Eq. (9), τint (t0), and by
fitting the correlator to Eq. (12) within the time interval cutoff
t0 � t � (t0 + 30) fm/c, τfit (t0).

Figure 5 depicts the dependence of relaxation time τint ,
extracted from the integral in Eq. (9), on the initial cutoff
time t0, with every tenth point being shown. As one can see,
the relaxation usually takes a longer period for t0 shorter
than 200 fm/c and vanishes for t0 � 900 fm/c. For the
initial times between these two limits the relaxation time

FIG. 5. Relaxation time τint (t0) for the collision energies (a) Elab = 10A GeV, (b) 20A GeV, (c) 30A GeV, and (d) 40A GeV and for all cell
times 1 � tcell � 20 fm/c in the UrQMD box calculations.
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FIG. 6. The same as Fig. 5 but for relaxation time τfit (t0).

is rather constant. The only exceptions are at the early cell
times.

Figure 6 displays the dependence of relaxation time τfit

extracted by fitting over the time interval tbox ∈ [t0, t0 + 30].
The behavior of τfit is pretty similar to that of τint. However,
the results presented in Fig. 6 have no stochastic oscillations,
in contrast to those shown in Fig. 5. This can be explained
by the influence of fluctuations on τint. It is worth mention-
ing that, as one can notice, the plateau demonstrates some
slope in Fig. 6 at t0 � 200 fm/c as compared to the results
shown in Fig. 5. The slope may significantly influence the
determination of η values, because for early cell times with
minimum values of τfit it may vary approximately by 40%
for 200 � t0 � 800 fm/c. Small values of τint(fit) at large t0
are dealing with the small averaging interval; see Eq. (10).
Namely, the time resolution at large t0 is too high to observe
the correlator falloff, and one finds a kind of Brownian motion
instead.

For the midrange of the initial cutoff time t0 at the
plateau—see Figs. 5 and 6—the falloff rate does not change
significantly. Thus, the values of t0 from this range are well
suited for our task. In the following we average the value
of τint(fit) over the plateau in order to reduce statistical er-
rors. Large values of the relaxation time τint/fit for some
early cell times tcell are explained by the copious production
of new hadrons and their subsequent rescatterings in very
hot and dense baryon-rich matter at the very beginning of
the collision. Additional time delay is caused by energetic
single negative kaons. Combination of these factors forces
the extension of the box calculations up to 2000 (sometimes
3000) fm/c.

Figure 7 shows ratio of the relaxation times determined by
Eqs. (9) and (12), 〈τint〉/〈τfit〉. As we see, τint exceeds τfit by
25% at t = 6 fm/c. For the cell conditions at later stages the
relaxation times converge and agree with each other within

10% accuracy at t � 15 fm/c. Thus, taking the fluctuations
into account results in increase of τ , as well as in its noise-
like oscillations. The only difference, except for the general
slope of τfit, is observed at the early cell times, when the nuclei
overlap.

Shear viscosity η(t0), calculated with τint , is presented in
Fig. 8. Since η is proportional to τint due to exponential falloff
behavior of the correlator, distributions in Figs. 5 and 8 have
many similar features. Shear viscosity shows larger values for
the initial box fluctuations at small times t0. It is reduced
significantly at large t0, and has a plateau at intermediate
times.

After averaging over the plateau, which we define as t0 ∈
[200, 800] fm/c, one may obtain shear viscosity for different
cell times at all the collision energies considered. Results are
shown in Fig. 9. The statistical errors are smaller than the
symbol sizes. We see that shear viscosity reaches its maximum

FIG. 7. Ratio 〈τint〉/〈τfit〉 for the collision energies 10A GeV
(circles), 20A GeV (triangles), 30A GeV (squares), and 40A GeV
(diamonds) for all cell times tcell. Errors are smaller than the symbol
sizes.
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FIG. 8. Shear viscosity η(t0 ) for the collision energies (a) Elab = 10A GeV, (b) 20A GeV, (c) 30A GeV, and (d) 40A GeV for all cell times
1 � tcell � 20 fm/c within the UrQMD box calculations.

at the very beginning of the heavy-ion collision. Then it
gradually drops almost to zero at the late cell times. Decrease
of η with time is explained by the fact that at the late stages
of the evolution of nuclear matter in the central cell there
are only (quasi)elastic processes, i.e., soft scattering modes,
remaining [29]. All energetic hadrons with large momenta
have already left the cell. This circumstance results in the fast
redistribution of momentum and energy of soft hadrons over
the system, and, consequently, in small relaxation rate τ of the
correlator.

At early times the shear viscosity is larger for heavy-ion
collisions at larger energies. But after t ≈ 6 fm/c all curves
representing four different energies quickly converge. This
behavior is very similar to the drop of the cell temperatures
shown in Fig. 1(d). Both effects are caused by the faster loss
of energy and baryon density in the central cell of central
collisions with increasing bombarding energies.

FIG. 9. Shear viscosity η(tcell ) of hadrons in the central cell of
central Au + Au collisions at (a) Elab = 10A GeV, (b) 20A GeV, (c)
30A GeV, and (d) 40A GeV within the UrQMD box calculations.
Lines are drawn to guide the eye.

Finally, Fig. 10 displays η/s dependencies on the evolution
of the cell parameters, i.e., time [Fig. 10(a)], SM tempera-
ture [Fig. 10(b)], baryon chemical potential [Fig. 10(c)], and
strangeness chemical potential [Fig. 10(d)]. The statistical
errors are smaller than the symbol sizes. For all energies the
ratio η/s reaches its minimum at t ≈ 5 fm/c, when the nuclei
are expected to overlap. Despite being small enough, the min-
ima are about four times larger than the theoretical minimum
value 1/4π . After that the ratio η/s in the cell increases with
time. The lower the collision energy, the smaller the ratio. It is
also increasing with the drop of temperature and strangeness
chemical potential, as shown in Figs. 10(b) and 10(d), and
with the rise of baryochemical potential; see Fig. 10(c). It is
worth noting that at t � 5 fm/c the matter in the cell is still
out of equilibrium, whereas the estimates of T , μB, and μS are
done for fully a equilibrated system of hadrons. Therefore,
all distributions at early times are indicated by the dashed
curves.

Comparing our results to those calculated within the
SMASH model in [16], one can notice a qualitatively different
dependence of η/sSM on the temperature. In contrast to the
rise of η/s with the temperature drop in the UrQMD cell
calculations, SMASH demonstrates almost constant behavior of
this ratio within the same temperature range. However, in the
latter case the calculations were performed for a fixed baryon
chemical potential, whereas in the UrQMD calculations it
increases with the cell time tcell. Another reason for deviations
is the nonzero strangeness chemical potential in our calcula-
tions. Nevertheless, as shown in [16], the ratio η/s increases in
SMASH calculations with rise of baryon chemical potential, in
accord with our results. Both UrQMD and SMASH indicate that
shear viscosity decreases with decreasing temperature. This
agreement is not accidental because of the conceptual similar-
ity between UrQMD and SMASH. Further analysis concerning
the influence of details of the system’s internal dynamics,
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FIG. 10. Shear viscosity to SM entropy ratio η/ssm as functions
of (a) time, (b) temperature, (c) baryon chemical potential, and
(d) strangeness chemical potential in the UrQMD calculations of cen-
tral cell of central Au + Au collisions at Elab = 10A GeV (circles),
20A GeV (triangles), 30A GeV (squares), and 40A GeV (diamonds).
Lines are drawn to guide the eye.

particularly, the role of lifetimes of resonances, on the η/s
ratio can be found in [16].

V. CONCLUSIONS

We have studied the shear viscosity of highly excited
nuclear matter produced in the central area of central Au + Au
collisions at energies Elab = 10A, 20A, 30A, and 40A GeV.
Calculations are done within the UrQMD model. At the first
stage, the energy density, the net baryon density, and the net
strangeness density are determined for a cubic central cell
with volume V = 125 fm3. After that, the obtained values
are used as input to the statistical model of an ideal hadron
gas to calculate temperature, baryon chemical potential and
strangeness chemical potential, as well as entropy density. The
extracted values of ε, ρB, and ρS are used also for initialization
of the UrQMD box with periodic boundary conditions to study
the relaxation of hot and dense nuclear matter to equilibrium.
The Green-Kubo formalism is explored to calculate the shear
viscosity.

It is shown that equilibrium in the box is achieved ap-
proximately after t � 200 fm/c for all but very high baryon
and energy densities, corresponding to the overlap of the
nuclei. The influence of initial cutoff time t0 on momentum
correlators is studied. Finally, the shear viscosity and its ratio
to entropy density are calculated. We found that, for all four
tested energies, η and s in the cell drop with time. Their
ratios η/s, however, reach minima about 0.3 at t ≈ 5 fm/c,
irrespective of the bombarding energy. Then the ratios rise to
η/s = 1.0–1.2 at t = 20 fm/c. This increase is accompanied
by the simultaneous rise of baryon chemical potential and
drop of both temperature and strangeness chemical potential
in the cell.

ACKNOWLEDGMENTS

Fruitful discussions with K. Bugaev, Yu. Ivanov, D. Olyn-
ichenko, and O. Teryaev are gratefully acknowledged. The
work of L.B. and E.Z. was supported by Russian Foundation
for Basic Research (RFBR) under Grants No. 18-02-40084
and No. 18-02-40085, and by the Norwegian Research Coun-
cil (NFR) under Grant No. 255253/F50, “CERN Heavy Ion
Theory.” M.T., O.P., and O.V. acknowledge financial support
of the Norwegian Centre for International Cooperation in
Education (SIU) under grant “CPEA-LT-2016/10094 - From
Strong Interacting Matter to Dark Matter.” This work was
also performed within the European network COST Action
CA15213 “Theory of hot matter and relativistic heavy-ion
collisions” (THOR). All computer calculations were made
at Abel (UiO, Oslo) and Govorun (JINR, Dubna) computer
cluster facilities.

[1] E. V. Shuryak, The QCD Vacuum, Hadrons and Superdense
Matter, Lecture Notes in Physics, Vol. 71 (World Scientific,
Singapore, 2004).

[2] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev.
Lett. 97, 152303 (2006).

[3] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.
94, 111601 (2005).

[4] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301
(2007).

[5] A. Muronga, Phys. Rev. C 69, 044901 (2004).

014904-9



M. TESLYK et al. PHYSICAL REVIEW C 101, 014904 (2020)

[6] N. Demir and S. A. Bass, Phys. Rev. Lett. 102, 172302 (2009).
[7] P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906

(2011).
[8] C. Wesp, A. El, F. Reining, Z. Xu, I. Bouras, and C. Greiner,

Phys. Rev. C 84, 054911 (2011).
[9] S. Cremonini, Mod. Phys. Lett. B 25, 1867 (2011).

[10] J. Noronha-Hostler, J. Noronha, and C. Greiner, Phys. Rev. C
86, 024913 (2012).

[11] S. Plumari, A. Puglisi, F. Scardina, and V. Greco, Phys. Rev. C
86, 054902 (2012).

[12] V. Ozvenchuk, O. Linnyk, M. I. Gorenstein, E. L. Bratkovskaya,
and W. Cassing, Phys. Rev. C 87, 064903 (2013).

[13] Iu. A. Karpenko, P. Huovinen, H. Petersen, and M. Bleicher,
Phys. Rev. C 91, 064901 (2015).

[14] Yu.B. Ivanov and A. A. Soldatov, Eur. Phys. J. A 52, 117
(2016).

[15] J. Rais, K. Gallmeister, and C. Greiner, arXiv:1909.04522.
[16] J. B. Rose, J. M. Torres-Rincon, A. Schäfer, D. R.

Oliinychenko, and H. Petersen, Phys. Rev. C 97, 055204 (2018).
[17] A. Motornenko, L. Bravina, M. I. Gorenstein, A. G. Magner,

and E. Zabrodin, J. Phys. G 45, 035101 (2018).

[18] H. Song and U. Heinz, Phys. Rev. C 78, 024902 (2008).
[19] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
[20] M. Bleicher et al., J. Phys. G 25, 1859 (1999).
[21] B. Andersson, G. Gustafson, and B. Nilsson-Almqvist, Nucl.

Phys. B 281, 289 (1987).
[22] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[23] M. Belkacem et al., Phys. Rev. C 58, 1727 (1998).
[24] L. V. Bravina, E. E. Zabrodin, S. A. Bass, M. Bleicher, M.

Brandstetter, S. Soff, H. Stöcker, and W. Greiner, Phys. Rev.
C 62, 064906 (2000).

[25] M. S. Green, J. Chem. Phys. 22, 398 (1954).
[26] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[27] L. V. Bravina et al., Phys. Lett. B 434, 379 (1998).
[28] L. V. Bravina et al., J. Phys. G 25, 351 (1999).
[29] L. V. Bravina et al., Phys. Rev. C 60, 024904 (1999).
[30] L. V. Bravina et al., Phys. Rev. C 78, 014907 (2008).
[31] L. V. Bravina et al., Nucl. Phys. A 661, 600 (1999).
[32] E. L. Bratkovskaya, W. Cassing, C. Greiner, M. Effenberger,

U. Mosel, and A. Sibirtsev, Nucl. Phys. A 675, 661
(2000).

014904-10



II





Calculation of shear viscosity in Au+Au
collisions at NICA energies

E Zabrodin1,2, M Teslyk1,3 , O Vitiuk1,3 and L Bravina1,2

1Department of Physics, University of Oslo, PB 1048 Blindern, N-0316 Oslo, Norway
2 Skobeltsyn Institute of Nuclear Physics, Moscow State University, RU-119991 Moscow, Russia
3 Taras Shevchenko National University of Kyiv, UA-01033 Kyiv, Ukraine

E-mail: zabrodin@fys.uio.no

Received 2 March 2020, revised 28 April 2020
Accepted for publication 5 May 2020
Published 14 May 2020

International Conference on New Frontiers in Physics (ICNFP19)August 2019

Abstract
Shear viscosity of hot and dense nuclear matter, produced in the central zone of central gold-gold
collisions at energies of NICA, is calculated within the UrQMD model. Besides the microscopic
simulations of heavy ion collisions, the procedure assumes the application of statistical model to
determine the temperature and chemical potentials in the system, and study of the relaxation
process within the UrQMD box with periodic boundary conditions. The latter is used for
calculation of the correlator which enters the Green-Kubo formula for shear viscosity. The
fluctuations at early and late stages of the system evolution are studied. Results are compared to
predictions of other models.

Keywords: relativistic heavy-ion collisions, microscopic transport model, box calculations, shear
viscosity, Green-Kubo formalism
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1. Introduction

Experiments on heavy-ion collisions at relativistic and ultra-
relativistic energies are the only means to study the properties
of hot and dense nuclear matter in the laboratory. Analyzing
the data obtained at RHIC (BNL) physicists came to the
conclusion that the created substance possessed the properties
of perfect fluid [1–4]. However, it became clear soon that one
had to employ the nonzero shear viscosity η for the correct
description of differential elliptic flow v2 of hadrons as
function of transverse momentum pT within the framework of
hydrodynamics. Recall, that the absolute minimum for the
ratio of η to the entropy density s, h s, estimated in the AdS-
CFT formalism, equals p1 4 [5] in system of natural units,
= = =c k 1B . Hydrodynamic calculations use a bit higher

values to describe the experimental data, i.e. h =s 0.12 at

RHIC for Au+Au collisions at =s 200GeV, and 0.20 at
LHC (CERN) for Pb+Pb collisions at =s 2.76 TeV [6].

As was pointed out in [7], the ratio h s reaches minimum
in the vicinity of tricritical point for all known substances. It
appears that at energies of LHC the phase transition between
the quark-gluon plasma (QGP) and hadrons is a smooth
crossover. The phase transition QGP−hadrons is expected to
be of the first order at much lower energies accessible for
beam energy scan (BES) at RHIC and future facilities NICA
(JINR) and FAIR (GSI). The search for the tricritical point,
where the first order phase transition becomes the second
order one, is in the agenda of all experiments planned at the
aforementioned accelerators. In the present work we would
like to study the shear viscosity and its ratio to entropy
density in the midrapidity range of central heavy-ion colli-
sions at energies between =E 10lab and 40AGeV generated
by the microscopic transport model UrQMD [8, 9]. Note, that
except of [10], h s ratio was studied in various models for
closed systems with fixed values of energy density and bar-
yon density [11–22]. We are going to extend the results of
[10], obtained within the equilibrium approach for calculation
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of the entropy density, to the nonequilibrium case. The paper
is organized as follows. Determination of shear viscosity by
means of Green-Kubo approach is described in section 2.
Section 3 presents the basic ingredients of model calculations
including the UrQMD model, statistical model (SM) of an
ideal hadron gas, and UrQMD box, which is a closed system.
Results of our study obtained both with equilibrium and
nonequilibrium entropy are discussed in section 4. Conclu-
sions are drawn in section 5.

2. Determination of shear viscosity. Green-Kubo
formalism

To determine the shear viscosity one usually employs the
Green-Kubo method [23, 24]. It assumes the exponential
damping of fluctuations whereas the closed system relaxes to
equilibrium. The shear viscosity for the system with volume V
and temperature T reads

( ) ( ) ( ) ( )òh p p= á ñ
¥

t
V

T
t t td , 1

t

ij ij
t0 0

0

where t0 and t is the initial time and final time, respectively.
The correlator in the integrand is
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It contains the traceless parts of the energy-momentum
tensor T ij
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Here ( )( )p tk
i j and Ek(t) denote the i( j)-th components of

momentum and energy of k-th particle. The sum in Eq.(3)
runs over all particles. The correlator (2) should drop expo-
nentially with time in the vicinity of equilibrium, therefore, it
can be approximated by the exponential
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containing the effective relaxation time τ. Thus, to find the
shear viscosity one has to determine both T and τ, because
Eq.(1) is reduced to

( ) ( ) ( ) ( )h t p p= á ñt
V

T
t t . 5ij ij

0 0 0

Calculation of these parameters is explained in the next
section.

3. Model setup

From the description of the method of shear viscosity
extraction it becomes clear that we have to organize several
steps to complete our task. First, while running the transport
string model for heavy-ion collisions at given energy, we
should determine the volume to search for local equilibrium.

Previous studies reveal [25–28] that central cubic cell with
volume V=5×5×5=125fm3 is well suited for our
analysis. But the cell is an open system and particles can leave
it freely. The initially hot and dense fireball quickly expands,
and its bulk characteristics are promptly changing. In order to
investigate how far is the matter in the cell from local equi-
librium one has to extract three basic parameters, namely,
energy density ε, net baryon density rB, and net strangeness
density rS, and insert it as an input to the statistical model of
an ideal hadron gas. If the abundances of hadronic species and
their energy spectra in the microscopic model calculations are
close to those given by the SM, we can conclude that the
matter is in the vicinity of chemical and thermal equilibrium.
This procedure enables us to determine the temperature T,
baryochemical potential mB, and the strangeness chemical
potential mS. Finally, the behavior of the correlator

( ) ( )p pá ñt tij ij
t0 in a system with fixed parameters e r r, ,B S

should be studied. This can be done with the help of box with
periodic boundary conditions to keep key system parameters
constant. At this stage we get the value of shear viscosity at
given m mT , ,B S. The basic principles of the three stages are
presented below.

3.1. Microscopic transport model

The UrQMD is formulated as Monte-Carlo event generator
allowing to perform various analyzes of the measurable
quantities by introducing all necessary experimental cuts. The
model is designed to describe hadronic, hadron-nucleus, and
nucleus-nucleus collisions in a broad energy range. In the
hadronic sector UrQMD treats the production of new particles
via formation and fragmentation of specific colored objects,
strings. Strings are uniformly stretched, with constant string
tension k » 1 GeV/fm, between the quarks, diquarks and
their antistates. The excited string is fragmenting into pieces
via the Schwinger-like mechanism of ¯qq-pair production, and
the produced hadrons are uniformly distributed in the rapidity
space.

In contrast to models which rely on the color exchange
mechanism of string excitation, like QGSM [29, 30] or
NEXUS [31], the UrQMD model employs the longitudinal
excitation of strings. Here the string masses arise from the
momentum transfer. Tables of the experimentally available
information, like hadron cross sections, resonance widths,
their decay modes, and so forth are implemented. In case of
lacking the information, the model employs the detailed
balance considerations, the one-boson exchange model, and
isospin symmetry conditions. The propagation of particles is
governed by Hamilton equation of motion. Newly produced
hadrons can interact further only after a certain formation
time. The Pauli principle is taken into account via the
blocking of the final state, if the outgoing phase space is
occupied.

3.2. Statistical model of an ideal hadron gas

If the system is in thermal and chemical equilibrium, its
macroscopic characteristics are fully determined by particle
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distribution functions
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where p and mi is the momentum and the mass of the hadron
species i, respectively. Sign − stands for bosons and + for
fermions. One has to know just three parameters, namely,
temperature T and chemical potentials assigned to the con-
served charges, i.e. baryon chemical potential mB and stran-
geness chemical potential mS. Chemical potential of i-th
hadron depends on its baryon and strangeness content,
m m m= +B Si i B i S. The dependence on chemical potential mQ
associated with electric charge is disregarded here, because
mQ is usually an order of magnitude weaker compared to mB
and mS. Then, the expressions for particle number density ni,
energy density ei and pressure P read
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with gi being the spin-isospin degeneracy factor. The entropy
density si can be calculated either from the Gibbs thermo-
dynamic identity

( )e m r m r= + - -Ts P , 10i i i B B S Si i

or via the distribution function
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The total energy density ε, baryon density rB and stran-
geness density rS calculated microscopically within the cell at
time t are inserted into the set of nonlinear equations
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to determine temperature T, baryon chemical potential mB and
strangeness chemical potential mS. After that all characteristics
of the system in equilibrium are known and particle spectra
can be compared with those obtained from microscopic model
calculations.

3.3. Box for simulation of infinite nuclear matter

The standard choice for such a simulation is a cubic box with
periodic boundary conditions [32–34] to ensure the energy
and momentum conservation. If one particle leaves the box,
another particle, fully identical to the first one, enters the box
from the opposite side. The box should be neither too big nor
too small, e.g. = ´ ´ =V 10 10 10 1000 fm3 [32] or

= ´ ´ =V 5 5 5 125 fm3 [33]. The energy density ε, the
net baryon density rB, and the net strangeness density rS are
fixed at the initial stage. Recall, that for the infinite nuclear
matter the net strangeness is zero, but for the central cell in
relativistic heavy-ion collisions, which is an open system, rS
can differ from zero [25, 27]. In case of r = 0S the initial
configuration in the box consists of protons and neutrons
uniformly distributed in the configuration space. Their
momenta are then rescaled to get the required energy density.
If r ¹ 0S certain admixture of kaons can be added. When the
system is prepared, hadrons start to interact, and one can
follow the microscopic model calculations to trace the system
evolution and study the relaxation of hadron-string matter in
the box to equilibrium.

4. Results

A bit more than 50.000 Au+Au collisions were generated at
each of four bombarding energies. Figures 1(a)–(c) shows
energy density, net baryon density, and net strangeness den-
sity obtained from the microscopic calculations in the central
cell at times between 1 and 20fm/c. Within first few fermi-
seconds the colliding nuclei fully overlap. This moment
corresponds to highest energy density and baryon density in
the fireball. The fireball expands, and both characteristics
drop. Strangeness demonstrates another behavior. It is nega-
tive for all four energies. After reaching minimum, rS is
relaxing to zero at late times. This behavior is explained by
domination of baryons over antibaryons in the cell. Therefore,
according to [25–28], positive kaons can leave the cell earlier
than negative kaons because of the smaller interaction cross
sections, thus maintaining the negative though small net
strangeness. Inserting the values of { }e r r, ,B S as an input in
the SM we obtain { }m mT , ,B S corresponding to equilibrated
ideal hadron gas. Evolutions of these parameters are shown in
figures 1(d)–(f). Since the matter in the cell at the very
beginning is far from the equilibrium, one should treat the SM
parameters obtained for earlier times with great care. Large
baryon and energy densities observed at t 5 fm/c are
caused by interpenetration of two Lorentz-contracted nuclei,
thus leading to very high temperatures of the hadron gas.
Chemical and thermal equilibrium of nuclear matter in
microscopic calculations in this energy range takes about
6-8fm/c. After this time, as seen in figure 1(d), the temp-
erature obtained at all four energies sit on the top of each
other. Both chemical potentials tend to rise with decreasing
energy of the collisions. However, mB in all cells increases
with time, whereas mS decreases.

We are ready now to start the box calculations. Figure 2
shows correlators defined by equation (1) calculated for all
four collision energies. The input data again are e r r, ,B S
extracted from the central cell of Au+Au central collisions at
times 1, 3, 6, 9, 12, 15, 18, and 20fm/c after the beginning of
the collision. The results of the box calculations are shown for
times t 300box fm/c, which are typical relaxation times of
hot and dense nuclear matter in the box [33]. All correlators
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reveal exponential falloff with time in accordance with
equation (5). For few of them, corresponding to early cell
times, the relaxation rates are significantly slower compared
to those corresponding to late times. One can see such
behavior in figure 2(c) and (d) for calculations with initial
conditions similar to those at t=3fm/c in the central cell of
central Au+Au collisions at =E 30lab and 40AGeV. This
occurs because of initialization of one (or two) very ultra-
relativistic kaons. It takes quite long time to redistribute their

energy and momenta among other particles in the box. The
correlators appear to rise at late times. These momentum
correlations arise because the UrQMD forces decay of all
strongly decaying resonances at the end of the box calcula-
tions. Figure 3 displays the relaxation time tint, determined by
means of equation (2), as function of the initial cutoff time t0.
The relaxation takes a longer period for t0 shorter than
200fm/c and vanishes for t 9000 fm/c. For the initial
times within the interval  t200 9000 fm/c the relaxation
time is constant, except for very early cell times.

Figure 1. Time evolution of (a) energy density ε, (b) net baryon density rB
net , (c) net strangeness density rS

net , (d) temperature TSM, (e) baryon
chemical potential mB, and (f) strangeness chemical potential mS in the central cell with V=125fm3 in central Au+Au collision calculated
within UrQMD at energies =E 10lab AGeV (circles), 20AGeV (triangles), 30AGeV (squares), and 40AGeV (diamonds). Lines are drawn
to guide the eye.

Figure 2. Correlators ( ) ( )p pá ñt t t0 for initial cutoff time =t 3000 fm/
c in the UrQMD box calculations. Initial conditions for the boxes are
taken from the central cell with V=125fm3 of Au+Au collisions at
(a) =E 10lab AGeV, (b) 20AGeV, (c) 30AGeV, and (d) 40AGeV
at times =t 1, 3, 6, 9, 12, 15, 18, 20 fm/c. Each distribution is
multiplied by its own factor 10n.

Figure 3. Relaxation time ( )t tint 0 for the collision energies (a)
=E 10lab AGeV, (b) 20AGeV, (c) 30AGeV, and (d) 40AGeV for

the cell times =t 1, 3, 6, 9, 12, 15, 18, 20cell fm/c in the UrQMD
box calculations.
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The behavior of tfit, obtained after fitting our results to
equation (3), is presented in figure 4. It is very similar to that
of tint, but it has no stochastic oscillations. Note that the
distributions demonstrates some slope in the plateau region at
t 2000 fm/c as compared to the results shown in figure 3.

This slope may somehow influence the determination of η

values. Therefore, we average the value of ( )tint fit over the
plateau in order to reduce statistical errors. Large values of the
relaxation time ( )tint fit for some early cell times tcell are
explained by the abundant production of new particles and
their rescattering in very hot and dense baryon-rich matter at
the very beginning of the collision. Additional time delay is
caused by the aforementioned single negative kaons. Com-
bination of these factors leads to the extension of the box
calculations up to 2000-2500 fm/c.

Results, obtained after averaging over the plateau, are
displayed in figure 5. Note that the statistical errors are

smaller than the symbol sizes. One can see that shear visc-
osity distributions for all four energies converge to each other
at »t 6 fm/c. The matter in the cell becomes very dilute at
the late times, and η drops almost to zero. This behavior is
almost identical to the decrease of the cell temperatures seen
in figure 1(d). Recall that the chemical potentials of net bar-
yon charge and net strangeness are different, as shown in
figure 1(e)-(f). It means that shear viscosity is predominantly
determined by the temperature and not by mB and mS. The
entropy density, however, does depend on both temperature
and chemical potentials.

To show this we present in figure 6 the dependencies of
ratio h s on (a) time, (b) temperature, (c) baryon chemical
potential, and (d) strangeness chemical potential for all four
reactions in question.

The nonequilibrium stages of the system evolution are
shown by dashed lines. We see that this ratio decreases with

Figure 4. The same as figure 3 but for relaxation time ( )t tfit 0 .

Figure 5. Shear viscosity ( )h tcell of hadrons in the central cell of central Au+Au collisions at (a) =E 10lab AGeV, (b) 20AGeV, (c)
30AGeV, and (d) 40AGeV within the UrQMD box calculations. Lines are drawn to guide the eye.
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increase of the bombarding energy. Since the shear viscosity is
almost the same, this circumstance implies the drop of entropy
density with rising Elab. It can be explained by faster loss of
energy density in the central cell in case of more energetic
collisions. Also, no distinct minima are observed. Recall,
however, that we used the entropy density, calculated for the
hadron gas in thermal and chemical equilibrium, even for the
early stages of the collision when the matter in the cell was far
from equilibrium. Obviously, the entropy density of none-
quilibrated system should be lower than that of the equilibrated
one. To estimate the nonequilibrium entropy, we insert in Eq.
(11) instead of the equilibrium distribution functions (6)

another ones provided by the hadron momentum distributions

( ) ( ) ( )p
=f p

Vg

dN

d p

2
15i

i

i
3

3

It is worth noting that the temperature at nonequilibrium
stage is determined as average of partial temperatures of
hadron species. Time evolution of h snoneq in the cell together
with its dependencies on temperature, on baryon chemical
potential, and on strangeness chemical potential are shown in
figure 7. Here the minima for all four energies are clearly
seen. This occurs at time » -t 5 6 fm/c corresponding to
maximum baryon density in the system. The lower the

Figure 6. Shear viscosity to entropy ratio h ssm as function of (a) time t, (b) temperature T, (c) baryon chemical potential mB, and (d)
strangeness chemical potential mS in the UrQMD calculations of central cell of central Au+Au collisions at =E 10lab AGeV (circles),
20AGeV (triangles), 30AGeV (squares), and 40AGeV (diamonds). Lines are drawn to guide the eye.

Figure 7. The same as figure 6 but for ratio of shear viscosity to nonequilibrium entropy density, h snoneq.

6

Phys. Scr. 95 (2020) 074009 E Zabrodin et al



bombarding energy, the deeper the minimum in of h s dis-
tribution. The study should be extended to lower energies in
order to see where the ratio of shear viscosity to entropy
density will stop to decrease. We are in the energy region
where the equation of state (EOS) is expected to be changed
because of the formation of non-hadronic objects, quark-
gluon strings.

5. Conclusions

The self-consistent procedure for determination of shear visc-
osity and its ratio to entropy density within the microscopic
model calculations is developed. It includes three steps. First,
we define the volume in A+A collisions to look for the local
equilibrium. This is a very important condition, because the
Green-Kubo formalism employed for determination of shear
viscosity implies the relaxation of out-of-equilibrium matter to
the equilibrated state. The central cubic cell with volume
V=125fm3 is well suited for our analysis. Second, we extract
the energy density, net baryon density, and net strangeness
density out of the tested volume. The procedure is repeated
with the time step D =t 1 fm/c. The extracted values are
inserted into a system of non-linear equations of the statistical
model of an ideal hadron gas with essentially the same number
of degrees of freedom, as in the microscopic model. This
allows one to determine temperature, baryon chemical poten-
tial, and strangeness chemical potential in the tested volume in
case the hadron yields and energy spectra, calculated micro-
and macroscopically, are close to each other. Finally, the
values of m mT , ,B S are used to initialize the box with periodic
boundary conditions in the framework of the same microscopic
transport model. Here the Green-Kubo formalism is applied to
determine η, ratio h s, and so forth.

The developed procedure was used to study the shear
viscosity of hot and dense nuclear matter in the central zone
of central gold-gold collisions at energies =E 10, 20, 30lab

and 40AGeV, accessible for BES, NICA, and FAIR facil-
ities. For calculations we employ the UrQMD model. We
found that, for all four tested energies, the temperatures and
shear viscosities are very close to each other after 5-6fm/c.
Both T, η and s in the cell drop with time, whereas the ratios
h s, however, reach minima at »t 5 fm/c, irrespective of the
bombarding energy. Then the ratios rise until the very late
stages of the system evolution. The minima in h s become
more pronounced if the nonequilibrium entropy density is
used. The rise of h s is accompanied by the simultaneous
increase of baryon chemical potential and decrease of both
temperature and strangeness chemical potential in the cell.
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Abstract. The shear viscosity is calculated microscopically via the Green-Kubo relation for
the series of snapshots in the central region in an ongoing relativistic collision simulated via
the UrQMD framework for various bombarding energies in the anticipated NICA experiments.
In previous works the shear viscosity was calculated as function of temperature, while the
chemical potential of baryon charge was kept constant. In present work we extract, in various
time windows, the average energy density, the net baryon density and the small though
nonzero net strangeness density. By fitting these parameters to statistical model, one can get
temperature and both chemical potentials of baryon charge and strangeness. Simultaneously,
these parameters are used as input to simulations in a box, again within the UrQMD transport
model. The autocorrelations in time of the energy stress tensor are extracted, and subsequently
via the Green-Kubo identities the shear viscosity coefficient of that equilibrium hadronic system
is obtained. Then we calculate partial viscosity both for nucleons and pions for five collision
energies from Elab = 5 to 40 AGeV. It appears that substantial part of the contribution to total
shear viscosity of the system comes out from pion-nucleon and other correlators.

1. Introduction
The main aim of experiments on heavy-ion collisions at ultrarelativistic energies is the study of
properties of a new state of matter called quark-gluon plasma (QGP). - For present status of the
field see, e.g., [1] and references therein. - Nowadays the QGP is considered as an almost perfect
strongly interacting fluid rather than ideal gas of non-interacting partons. When the hot fireball
with QGP expands it experiences phase transition to hadronic matter at a certain transition
temperature. The order of this transition depends on the energy of the collision. Analysis
of experimental data on Au+Au and Pb+Pb collisions at energies of

√
sNN = 200 GeV at

RHIC and
√
sNN = 2.76 and 5.02 TeV at LHC indicates that the matter experiences a smooth

crossover. In contrast, at intermediate energies, say, above few GeV, the deconfinement phase
transition should be of first order. The curve of the first order phase transition on the QCD
phase diagram ends up at the tricritical point, where the phase transition becomes of the second
order. Exact position of the tricritical point should be determined experimentally. Its search for
is among the primary goals of experiments at beam energy scan (BES) at RHIC, SPS at CERN,
and at coming in a nearest future FAIR and NICA facilities.

Shear viscosity, η, is a promising signal to probe the tricritical point on the phase diagram
because its ratio to entropy density, η/s, reaches there minimum for all known substances [2].
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It is interesting to study also how close is this ratio for hot and dense nuclear matter to the
absolute limit, estimated within the AdS/CFT correspondence as 1/(4π) [3]. These issues were
studied by means of microscopic models in, e.g., [4–15]. Usually, the temperature dependence
of η/s was investigated at fixed baryochemical potential and zero chemical potential. In our
analysis we will use technique developed in [16–18] which permits us to study the evolution of
the η/s ratio during the course of heavy-ion collision as a function of temperature T , baryon
chemical potential µB, and strangeness chemical potential µS simultaneously.

2. Technique and method
The Green-Kubo formalism [19,20] is employed to determine the shear viscosity in the system.
Its important assumption is that the closed system, which is initially out of equilibrium, should
evolve towards the equilibrated state. Then, in system of natural units c = ~ = kB the shear
viscosity reads

η (t0) =
V

T

∫ ∞

t0

〈π (t)π (t0)〉tdt (1)

Here V and T is the volume and the temperature of the system, respectively, t0 is initial time
and t is the final time. The correlator in equation (1) can be calculated as

〈π (t)π (t0)〉t = lim
tmax→∞

1

tmax − t0

∫ tmax

t0

πij
(
t+ t′

)
πij
(
t′
)

dt′ (2)

≈ 〈π (t0)π (t0)〉 exp

(
− t− t0

τ

)
, (3)

with τ being the effective relaxation time. Finally, the tensor πij(t) is the non-diagonal part of
the stress energy tensor T ij

πij (t) =
1

V

particles∑

k=1

pik (t) pjk (t)

Ek (t)
, (4)

where Ek and p
i(j)
k is the energy and i(j) components of momentum of particle k. Inserting

equation (3) into equation (1) we get

η (t0) =
V τ

T
〈π (t0)π (t0)〉 , (5)

indicating that one needs to determine the correlator 〈π(t0)π(t0)〉, the relaxation time, and the
temperature to find the shear viscosity.

We employ the well-known UrQMD model [21,22] for our calculations. The model successfully
describes various features of hadronic and nuclear interactions in a broad energy range. The
bombarding energy of central Au+Au collisions studied in our paper varies from Elab = 5 to
40 GeV, accessible for NICA. Because even in most central heavy-ion collisions the net baryon
charge is not distributed uniformly within the whole volume, we opted for the central cubic cell
with volume V = 5 × 5 × 5 = 125 fm3. Previous studies [23–28] revealed that such cell is well
suited for the investigation of the relaxation process in hot and dense nuclear matter. - Recall,
that we have to determine temperature of the (sub)system, and there is no rigorous definition
of the temperature for the out-of-equilibrium systems. - To do this, we employ the formalism
developed in [23, 25]. Namely, one has to extract values of the energy density, the net baryon
density, and the net strangeness out of the microscopic calculations and insert it then to system
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of nonlinear equations provided by the statistical model (SM) of ideal hadron gas

εmic =
∑

i

εSMi (T, µB, µS) (6)

ρmicB =
∑

i

Bi n
SM
i (T, µB, µS) (7)

ρmicS =
∑

i

Si n
SM
i (T, µB, µS) , (8)

where both partial number density nSMi and energy density εSMi of hadron specie ”i” are just
functions of temperature T and both chemical potentials, µB and µS . Total chemical potential
of specie ”i” depends on its baryon Bi and strangeness Si content

µi = BiµB + SiµS . (9)

In the statistical model of ideal hadron gas the values of εSMi , nSMi , and partial pressure PSMi
are derived via the distribution function f(p,mi) as

nSMi =
gi

(2π)3

∞∫

0

f(p,mi)d
3p (10)

εSMi =
gi

(2π)3

∞∫

0

εif(p,mi)d
3p (11)

PSMi =
gi

(2π)3

∞∫

0

p2

3εi
f(p,mi)d

3p (12)

f(p,mi) =

[
exp

(
εi − µi
T

)
± 1

]−1
. (13)

Here gi is the spin-isospin degeneracy factor, p is the hadron momentum, εi =
√
p2 +m2 is the

hadron energy, and m is its mass. Sign + in equation (13) stands for fermions, and sign − is
for bosons. Comparing the particle yields and energy spectra, obtained in microscopic model
calculations, to those given by the SM we can find the beginning of equilibrium and determine,
therefore, values of T, µB, and µS . Then, we have to determine (i) the effective relaxation time
τ and (ii) the correlator 〈π(t0)π(t0)〉. This can be done by studying the relaxation process in
the UrQMD box with periodic boundary conditions [29, 30], which preserve the energy density
and the net quark content in the box. To initialize the box with volume 10×10×10 = 1000 fm3

we use again the values of ε, ρB, ρS extracted from the cell. Net baryon density is provided by
neutrons and protons, taken in equal proportion, whereas the nonzero strangeness density can
be generated by admixture of Lambdas or kaons. Relaxation process in the box takes much
longer times compared to the cell calculations [29, 30], therefore we run the calculations until
tbox = 1000 fm/c.

3. Results
Results of our calculations of the shear viscosity and the ratio η/s in the central cell of central
gold-gold collisions at Elab = 5, 10, 20, 30 and 40 AGeV can be found elsewhere [16–18]. In
present paper we would like to study partial contributions of nucleons and pions to the total
shear viscosity. To do this we replace the summation over all particles in equation (4) to the
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summation over either all nucleons or all pions in the system. For each of 5 bombarding energies,
the central cell parameters were extracted at times from t = 1 fm/c up to t = 20 fm/c with the
time step ∆t = 1 fm/c.

Figure 1 displays the partial shear viscosity of nucleons ηN as a function of initial time t0.
For small values of t0 and for early times in the cell corresponding to the overlap of colliding
nuclei, the values of ηN are large. They quickly drop to an approximately constant value for
200 ≤ t0 ≤ 800 fm/c. In order to reduce statistical errors, therefore, we averaged the values of
ηN over the plateau t0 ∈ [200, 800] fm/c. Another interesting feature is the decrease of ηN for
all times with increasing bombarding energy, whereas pions demonstrate the opposite trend.

200500800
t0 (fm/c)

0.0

0.1

0.2

0.3

0.4

N
 (f

m
3 )

(a)  5 AGeV

tcell = 1 fm/c
tcell = 2 fm/c
tcell = 3 fm/c
tcell = 4 fm/c

200500800
t0 (fm/c)

(b)  10 AGeV

tcell = 5 fm/c
tcell = 6 fm/c
tcell = 7 fm/c
tcell = 8 fm/c

200500800
t0 (fm/c)

(c)  20 AGeV

tcell = 9 fm/c
tcell = 10 fm/c
tcell = 11 fm/c
tcell = 12 fm/c

200500800
t0 (fm/c)

(d)  30 AGeV

tcell = 13 fm/c
tcell = 14 fm/c
tcell = 15 fm/c
tcell = 16 fm/c

200500800
t0 (fm/c)

(e)  40 AGeV

tcell = 17 fm/c
tcell = 18 fm/c
tcell = 19 fm/c
tcell = 20 fm/c

Figure 1. Shear viscosity of nucleons ηN (t0) for five collision energies from 5 AGeV to 40 AGeV
and for the cell times t ∈ [1, 20] fm/c.

The total shear viscosity of nuclear matter calculated within the aforementioned initial time
interval is shown in figure 2. For early cell conditions the total η seems to increase with rising
energy. - Note, however, that the matter is out-of-equilibrium here. Therefore, results for the
very beginning of nuclear collisions should be treated with great care. - At t ≥ 6 fm/c, when
the matter approaches equilibrium, all curves η(tcell) sit on the top of each other.

Figure 3 depicts the partial contributions of nucleons and pions to the total shear viscosity.
Results concerning the non-equilibrium stages are shown by dashed lines. The ratios of ηN/η and
ηπ/η are quite peculiar. At lower bombarding energies, Elab = 5 and 10 AGeV, the contribution
of nucleons, which dominate the particle spectrum, is more than 50% for early times of the
collision. It drops to 15-25% at the late stages. For higher energies, the nucleon contribution
to η does not exceed 10-15%. Pions, as seen in figure 3, make rather modest though stable
contribution at any times for all considered energies. Their part does not exceed 10-15% of total
η. Where is the missing 60%? It would be interesting, therefore, to study the role of π − N
correlators, as well as resonances, in the formation of shear viscosity of hadrons.
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Figure 2. Shear viscosity of hadrons as function of time in the central cell in gold-gold collisions
at energies from 10 AGeV to 40 AGeV.
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Figure 3. Time evolution of the ratio of shear viscosity of nucleons (a) and pions (b) to total
shear viscosity in the cell for Au+Au collisions at energies from 5 AGeV to 40 AGeV.

4. Conclusions
The UrQMD model is employed to study the partial shear viscosity of nucleons and pions in the
central zone of central Au+Au collisions at energies between Elab = 5 and 40 AGeV accessible
for NICA. The self-consistent procedure to determine η at temperatures and chemical potentials
corresponding to those in heavy-ion collisions is developed. It is based on (i) application of the
statistical model to determine temperature T , baryon chemical potential µB, and strangeness
chemical potential µS , and (ii) UrQMD box calculations to determine the relaxation rates and
correlators, employed further within the Green-Kubo formalism to calculate η.

The developed procedure was used to calculate partial shear viscosity of nucleons and pions
based on nucleon-nucleon and pion-pion correlators. At lower energies the shear viscosity of
nucleons is about 50-70% of total η right after beginning of the equilibrium. At late stages of the
matter evolution it drops to 15-25%. For higher bombarding energies ηN is below 20% regardless
of time. Pion contribution does not practically depend on collision energy or evolution time.
However, pions contribute just 10-15% to the total shear viscosity. It means that substantial
part of η comes out from other correlators. This question deserves further investigations.
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Abstract

Equilibration of highly excited baryon-rich matter is studied within the microscopic model calculations in A+A colli-
sions at energies of BES, FAIR and NICA. It is shown that the system evolution from the very beginning of the collision
can be approximated by relativistic hydrodynamics, although the hot and dense nuclear matter is not in local equilib-
rium yet. During the evolution of the fireball the extracted values of energy density, net baryon and net strangeness
densities are used as an input to Statistical Model (SM) in order to calculate temperature T , chemical potentials μB and
μS , and entropy density s of the system. Also, they are used as an input for the box with periodic boundary conditions
to investigate the momentum correlators in the infinite nuclear matter. Shear viscosity η is calculated according to the
Green-Kubo formalism. At all energies, shear viscosity to entropy density ratio shows minimum at time corresponding
to maximum baryon density. The ratio dependence on T, μB, μS is investigated for both in- and out of equilibrium cases.

Keywords: transport models, heavy-ion collisions at BES/FAIR/NICA energies, Green-Kubo formalism, η/s ratio

1. Introduction

One of the goals of experiments on heavy-ion collisions at intermediate energies below
√

s = 20 GeV
is the search for the predicted tricritical point of the QCD phase diagram. At this point the first-order de-
confinement phase transition between the quark-gluon plasma (QGP) and hadronic matter should become
of the second-order. Various signals of such a phenomenon were predicted. The ratio of shear viscosity
to entropy density, η/s, looks very prominent, because for all known substances this ratio reaches mini-
mum value in the vicinity of critical point [1]. The absolute limit for η/s estimated within the AdS/CFT
correspondence is 1/(4π) [2]. Except of Ref. [3], this ratio was usually studied in microscopic models as
function of temperature T taken at fixed baryochemical potential and zero chemical potential of strangeness
[4, 5, 6, 7, 8].

The standard procedure of η determination by means of a transport model relies on the Green-Kubo
formalism. The system of hadrons is inserted into a box with periodic boundary conditions. The shear
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viscosity is calculated in system of natural units c = � = kB = 1 as

η (t0) =
V
T

∫ ∞
t0

dt〈πi j (t) πi j (t0)〉t (1)

Here V and T is the box volume and temperature, and t0 and t denote moments of time, respectively. The
correlator 〈. . .〉t reads

〈πi j (t) πi j (t0)〉t = lim
tmax→∞

[
1

tmax

∫ tmax

t0
dt′πi j (t + t′

)
πi j (t′)

]
(2)

containing the nondiagonal parts πi j of the energy-momentum tensor

πi j (t) =
1
V

Npart∑
k=1

pi
k (t) p j

k (t)
Ek (t)

. (3)

The formalism requires that the initially out-of-equilibrium system is relaxed to the equilibrium state. The
developed procedure and the results of our study are presented below.

2. The method

First, we have to define the area in heavy-ion collision most appropriate for studying the relaxation
process. Previous studies show that the central cell with volume V = 125 fm3 is most suitable for our
research [9, 10]. To determine whether or not the equilibration takes place, one has to employ the statistical
model (SM) of an ideal hadron gas with essentially the same number of degrees of freedom as in the transport
model. In equilibrium, all characteristics of the system are determined via a set of distribution functions

f (p,mi) =
[
exp
(
εi − μi

T

)
± 1
]−1

(4)

Here p is momentum of a hadron specie i, mi is its mass, εi and μi is energy density and chemical potential,
respectively. The last depends on the particle’s baryon charge Bi and strange charge S i, μi = BiμB + S iμS .
Due to its smallness, we consider zero electric chemical potential. Plus and minus signs stand for Fermi-
Dirac and Bose-Einstein statistics. The number density and the energy density can be found as the first and
the second moments of f (p,mi), and the entropy density is

si = − gi

2π2

∞∫
0

f (p,mi)
[
ln f (p,mi) − 1

]
p2dp (5)

where gi is the degeneracy factor. In the vicinity of equilibrium the particle yields and energy spectra in the
cell should be close to those provided by the SM. To find the shear viscosity the extracted cell parameters
ε, ρB, and ρS should be used as an input to initialize the box with periodic boundary conditions [11, 12].
The UrQMD model [13, 14] is employed for both the cell and the box calculations. The cubic box with
volume V = 1000 fm3 was initialized. At this stage the correlator given by Eq. (2) is calculated. Because
of the ceaseless change of the energy density, net-baryon density, and net-strangeness density in the tested
volume, one has to perform a series of snapshots of the system bulk conditions. We opted for 20 time slices,
from t = 1 to 20 fm/c, with the time step Δt = 1 fm/c.

3. Results

About 50 000 central Au+Au collisions were generated at each of four energies, Elab = 10, 20, 30, and
40 AGeV. The calculations show that the matter in the cell expands with almost constant entropy-per-baryon
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Fig. 1. Shear viscosity to SM entropy ratio η/ssm as function of (a) time t, (b) temperature T , (c) baryochemical potential μB, and (d)
strangeness chemical potential μS in the UrQMD calculations of central cell of central Au+Au collisions at Elab = 10 AGeV (circles),
20 AGeV (triangles), 30 AGeV (squares), and 40 AGeV (diamonds). Lines are drawn to guide the eye.

ratio already after t = 1 fm/c. Pressure in the cell also appears to be very close to the pressure calculated
within the SM for the hadronic gas in equilibrium. Both observations strongly support application of hy-
drodynamics to very early stages of nuclear collisions [15]. Relaxation to equilibrium in the box, however,
takes much longer times compared to the cell case. The results of the calculations were averaged over the
time period between 200 and 800 fm/c, where the correlator has a plateau. Figure 1 shows the dependen-
cies of η/s on (a) time, (b) temperature, (c) baryochemical potential, and (d) strangeness chemical potential.
The statistical errors are smaller than the symbol sizes. The parts of the spectra related to nonequilibrium
stages of the evolution are shown by the dashed lines. We see that the ratio η/s decreases with decreasing
bombarding energy from 40 to 10 AGeV. Also, it increases with the drop of temperature in the cell, accom-
panied by increasing μB and decreasing μS . The smaller the bombarding energy, the lower the η/s ratio.
No distinct minima are observed. However, the entropy density and other macroscopic characteristics were
calculated for the ideal hadron gas in equilibrium, whereas the system was out of equilibrium within the first
few fm/c after beginning of the collision. The entropy density in the equilibrated system is larger than that
in the non-equilibrated one. To account for this circumstance, we replace the distribution functions given by
Eq. (1) to those provided by the momentum distributions of hadrons

fi(p) =
(2π)3

Vgi

dNi

d3 p
(6)

In equilibrium, results obtained by both methods should coincide. Time evolution of η/s in the cell and tem-
perature dependence of this ratio, where the entropy density is calculated via Eq. (6), is shown in Fig. 2(a,b).
Here all distributions reveal clear minima at t ≈ 5 − 6 fm/c corresponding to maximum baryon density
in the system. The minima become deeper with the decreasing energy of the collision. It would be im-
portant to study this effect at lower energies, say, up to

√
s = 2 − 3 GeV. If the dip in the ratio η/s will

stop to drop further, it could be taken as indication of change of the equation of state due to formation of
non-hadronic objects, i.e., quark-gluon strings. These strings can be considered as a precursor of the QGP
formation. Also, the larger entropy density in the QGP phase could change the temperature dependence of
η/s at T ≥ 155 MeV.
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Fig. 2. Shear viscosity to nonequilibrium entropy ratio η/snoneq. as function of (a) time t and (b) temperature T in the UrQMD
calculations of central cell of central Au+Au collisions at Elab = 10, 20, 30 and 40 AGeV. Lines are drawn to guide the eye.

4. Conclusions

The following conclusions can be drawn from our study. We calculated the shear viscosity, the entropy
density, and their ratio in the central cell with volume V = 125 fm3 of central Au+Au collisions at energies
from Elab = 10 to 40 AGeV within the UrQMD model. First, the entropy density was estimated for an
ideal hadron gas in equilibrium. Then, the entropy density of nonequilibrium state was calculated via the
momentum distribution functions. For both cases shear viscosity and entropy density in the cell drop with
time, whereas their ratio η/s reaches minimum at t ≈ 5 − 6 fm/c regardless of the collision energy. At later
times this ratio increases. The lower the energy, the smaller the ratio. Further studies at lower energies are
needed to check where η/s will stop to decrease.
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Abstract: We calculated the shear viscosity of hot and dense nuclear matter produced in a symmetric
system of central gold–gold collisions at energies of BES RHIC, FAIR and NICA. For calculations of
the collisions, the transport model UrQMD was employed. The shear viscosity was obtained within
the Green–Kubo formalism. The hadron resonance gas model was used to determine temperature
and chemical potentials of baryon charge and strangeness out of microscopic model calculations. In
contrast to our previous works, we determined the partial viscosity of the main hadron species, such
as nucleons, pions, kaons and Lambdas, via the nucleon–nucleon, pion–pion and so forth, correlators.
A decrease in the beam energy from Elab = 40 to 10 AGeV leads a to rise in baryon shear viscosity
accompanied by a drop in the shear viscosity of mesons. The ratio of total shear viscosity to entropy
density also decreases.

Keywords: relativistic heavy-ion collisions; transport models; HRG model; shear viscosity; η/s ratio

1. Introduction

The interest in this topic is due to several reasons. The theory of strong interactions,
quantum chromodynamics (QCD), predicts the transition of nuclear matter to a new state,
called quark–gluon plasma QGP, at extremely high density and temperature; see, e.g., [1,2]
and references therein. Such transition may take place in, e.g., neutron stars; however,
the only means to get the nuclear matter under extreme conditions in the laboratory are
heavy-ion collisions at (ultra)relativistic energies. Although the first hydrodynamic model
of multiparticle production was proposed almost 70 years ago [3], its further modifications
have become very popular nowadays because of the successful description of experimental
results obtained for heavy-ion collisions at energies of RHIC BNL (up to

√
s = 200 GeV)

and LHC CERN (up to
√

s = 5.02 TeV). After analysis of RHIC data, it was announced by
all four RHIC collaborations, BRAHMS, PHENIX, PHOBOS and STAR, that the created
hot and dense nuclear substance behaved similarly to a perfect fluid [4–7]. At the same
time, theoretical calculations of the shear viscosity to entropy density, made within strongly
coupled conformal gauge theory by means of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence [8], set the lower limit for this ratio, η/s ≥ 1/(4π), for all
physical systems. Additionally, more thorough study of differential elliptic flow v2 [9,10] of
charged particles, produced in A+A collisions at energies of RHIC and LHC, as a function
of transverse momentum pT , has revealed that a small but nonzero value of the ratio η/s is
needed for the correct description of the signal at pT ≥ 2.5 GeV/c. Recall that for all known
substances the shear viscosity over entropy density should reach minimum if the system is
in the tricritical point [11].

Since then, the values of η/s began to be intensively estimated. Hydrodynamic
models are macroscopic ones; therefore, a dissipative term such as shear viscosity en-
ters the equations of viscous hydrodynamics as an external parameter, which should be
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obtained somehow. One way to do so is fitting the calculations performed within the
viscous hydrodynamic model, or hybrid model, to the experimental data [12–18]. For
the sake of simplicity, these calculations imply the constant ratio of η/s, although several
works have tried to take the temperature dependence of this ratio into account [19,20].
The computation of transport coefficients of hadronic systems, consisting of mixture of
hadron species, is possible within the microscopic kinetic theory. However, this is a non-
trivial task from an analytic point of view [21,22] because one has to know cross-sections
of various hadronic collisions and mean fields. Therefore, lattice QCD calculations of
η/s are usually done for gluons at zero net baryon density and at temperatures around
160 MeV [23,24]. Microscopic transport models are better suited for such study. In the
past, the shear viscosity and its ratio over entropy density were studied in, e.g., the ultra-
relativistic quantum molecular dynamics (UrQMD) model [25–29], the parton-hadron-
string dynamics (PHSD) model [30], the simulating many accelerated strongly interacting
hadrons (SMASH) model [31] and the parton cascade (PC) models to solve various types
of Boltzmann collision processes [32–35]. Many of these calculations were performed at
conditions corresponding to those of heavy-ion collisions at energies of RHIC and LHC. In
this domain, the transition between QGP and hadronic matter is just a smooth crossover.

The modern trend in high-energy physics nowadays is to search for the critical point,
at which the deconfinement first-order phase transition becomes a second-order one, at
much lower collision energies accessible to the Beam Energy Scan (BES) program at RHIC
and at soon-to-open facilities NICA at JINR and FAIR at GSI. Our study is devoted to the
beam energies between Elab = 10 AGeV and Elab = 40 AGeV. In this energy range, the
temperature of deconfinement phase transition is expected to be lower compared to that
at higher energies, but the baryon chemical potential is quite significant and cannot be
neglected. The transition from meson-dominated to baryon-dominated hadronic matter
with decreasing beam energy takes place here as well. The main aim of the present paper
is to the evolution of partial shear viscosities of the most abundant hadronic species in
an expanding and cooling hadronic mixture formed in a symmetric system of centrally
colliding gold nuclei. We used the UrQMD model [36,37] and employed the technique
developed in [28,29,38]. Section 2 describes the Green–Kubo formalism for determination
of the shear viscosity. Within this approach, one has to know the correlator, the relaxation
time and the temperature of the system. Determination of these parameters, and baryon
chemical potential and strangeness chemical potential, is explained in Section 3. Section 4
presents the calculations of evolution of partial shear viscosity and its ratio over entropy
density for nucleons, pions, kaons and Λ + Σ in the central area of central Au+Au collisions
at four different beam energies, Elab = 10, 20, 30 and 40 AGeV. Finally, conclusions are
drawn in Section 5.

2. Calculation of Shear Viscosity within Green–Kubo Formalism

In classical thermodynamics, one can determine the shear viscosity by means of
Chapman–Enskog method [39]. Microscopic transport models, however, allow calculation
of the shear viscosity by using the Green–Kubo formalism [40,41] during the study of
relaxation process in the disturbed system. Note that the formalism relies on assumption
of existence of the equilibrated state. Therefore, one has to study the relaxation of the
system to equilibrium before calculation of shear viscosity. The whole formalism is quite
straightforward. It is convenient to use Planck, or natural, units: h̄ = kB = c = 1. The shear
viscosity in these units is

η(t0) =
V
T

∫ ∞

t0

〈π(t)π(t0)〉tdt (1)

containing the volume V and temperature T of the system, and initial (t0) and final (t) time
of the calculation. The correlator in the integrand reads

〈π(t)π(t0)〉t = lim
tmax→∞

1
tmax − t0

∫ tmax

t0

πij(t + t′
)
πij(t′

)
dt′ (2)
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where πij(t) is the non-diagonal part of the energy-momentum tensor Tij.

πij(t) =
1
V

particles

∑
k=1

pi
k(t)pj

k(t)
Ek(t)

. (3)

Here pi(j)
k is the i(j)th components of momentum of particle k and Ek is its energy, respec-

tively. The correlator (2) can be approximated by [40,41]

〈π(t)π(t0)〉t ≈ 〈π(t0)π(t0)〉 exp
(
− t− t0

τ

)
, (4)

where τ is the effective relaxation time. By combining Equation (4) with Equation (1), we
get the final expression to calculate the shear viscosity:

η(t0) =
Vτ

T
〈π(t0)π(t0)〉 . (5)

By looking at Equation (5), it becomes clear that, besides of calculation of the correlator, one
has to determine simultaneously temperature of the substance T and the relaxation time
τ. Since the procedure to define unambiguously temperature of out-of-equilibrium media
is absent, it is necessary to check that the hot and dense nuclear matter in an expanding
fireball is in the vicinity of the local equilibrium. After that, temperature, relaxation time
and the correlator itself should be determined somehow. The algorithm describing all steps
in detail is presented in next section.

3. The Three-Component Method

First of all, one has to choose one of the event generators designed for description of
nucleus–nucleus interactions in the investigated energy range. For this purpose, we employ
the UrQMD model [36,37]. Some very useful data for our study came from a rich table of
particles, antiparticles and resonances from the Particle Data Group (PDG) [42] with masses
up to 2.25 GeV/c. The UrQMD describes both hadronic and nuclear collisions at energies
ranging from one hundred MeV (Bevalac) to several hundred GeV (RHIC) [36,37] and a few
TeV (LHC) [43]. Compared to energies of RHIC and LHC, the energy range selected for the
present study is rather modest. We studied very central gold–gold collisions, with impact
parameter b = 0 fm, within the energy interval from Elab = 10 to 40 AGeV. This energy
range is accessible for the Beam Energy Scan (BES) at RHIC and for planned facilities,
such as FAIR and NICA. As was shown in previous studies within the UrQMD [44–47],
there is no global equilibrium within the whole volume of the fireball, even in very central
heavy-ion collisions because, for instance, the net baryon charge and net strangeness are
not uniformly distributed. A local equilibrium, however, is very likely [46,48–51] at least
in the central zone of a rapidly expanding fireball. The investigations revealed that the
central cubic cell with volume V = 5× 5× 5 = 125 fm3 is appropriate for investigating the
process of relaxation to equilibrium of hot and dense nuclear matter produced in relativistic
heavy-ion collisions. It is worth mentioning that the picked-up volume should be neither
too large to provide uniform distribution of energy density and conserved charges nor too
small to contain enough particles. However, the cell is an open system, and hadrons can
leave it freely, thereby decreasing its energy density and particle densities. Therefore, to
prove that the matter in the cell is in the vicinity of equilibrium, the following procedure
was developed; see, e.g., [44,46,49]. Three main parameters characterizing the cell—namely,
the energy density, εmic; the net baryon density, ρmic

B ; and the net strangeness density, ρmic
S —

were extracted from the microscopic calculations of the fireball evolution. The time step
was just ∆t = 1 fm/c. These parameters were inserted into the statistical model (SM) of an
ideal hadron gas containing precisely the same set of degrees of freedom as the microscopic
model. The set of nonlinear equations reads
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εmic = ∑
i

εSM
i (6)

ρmic
B = ∑

i
Bi nSM

i (7)

ρmic
S = ∑

i
Si nSM

i , (8)

containing partial energy density εSM
i and partial number density nSM

i of hadron specie “i,”
and its baryon Bi and strangeness Si content. Both nSM

i and εSM
i are just first and second

moments of the distribution function

f (p, mi) =

{
exp

(
εi − µi

T

)
± 1
}−1

, (9)

namely,

nSM
i =

gi
(2π)3

∞∫

0

f (p, mi)d3 p (10)

εSM
i =

gi
(2π)3

∞∫

0

εi f (p, mi)d3 p (11)

where mi is particle mass and p is its momentum, and gi is the spin-isospin degeneracy
factor. Sign “−” in Equation (9) stands for bosons and sign “+” stands for fermions. The
total chemical potential of the hadron is a linear combination of chemical potentials, related
to conserved charges in strong interactions, µB and µS, respectively. It depends on particle’s
baryon Bi and strangeness Si content:

µi = BiµB + SiµS . (12)

As follows in Equations (9)–(12), the ideal gas of hadrons in the statistical model is fully
determined by three parameters, temperature, baryon chemical potential and strangeness
chemical potential. If partial particle abundances and energy spectra given by the SM are
close (within 10% accuracy) to those of the cell in microscopic model’s calculations, one
can conclude that the matter in the cell is in the vicinity of local equilibrium. Then, we are
able to determine temperature of the system which enters the expression for calculation of
shear viscosity.

However, this is not a full story yet, because we have to determine both the correlator
〈π(t0)π(t0)〉 and the effective relaxation time τ. This study cannot be done within the
analysis of an open system, such as our cell, because of permanently changing conditions
in the cell. These conditions must be fixed somehow. Therefore, the third component of
the scheme is the box with periodic boundary conditions [52–54] preserving both the total
energy and the net baryon and net strangeness composition. Namely, the particles are free
to leave the box; however, other particles with the same characteristics (masses, momenta,
quantum numbers) enter the box immediately. Elastic and inelastic interactions of hadrons
in the box proceed similarly to those in model generated hadronic or nuclear collisions.

The volume of the box can be Vbox = 5 × 5 × 5 = 125 fm3, similar to that of the
central cell, or larger—e.g., Vbox = 10× 10× 10 = 1000 fm3—to reduce the fluctuation
effects. The box is initialized with the values of energy density, net baryon density and
net strangeness density, which are extracted from the cell at a certain moment. Its initial
hadron composition consists usually of protons and neutrons with the admixture (in case
of nonzero strangeness density) of kaons or Lambdas. It is worth noting that the relaxation
process to a stationary state in the box is quite long; see [52,53]. The typical time scale for
the box calculations is about 1000–2000 fm/c. One can study the relaxation process and
determine both the correlator(s) and relaxation time τ.
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The method developed for determination of shear viscosity in microscopic calculations
consists of three steps. The first step includes the generation of heavy ion collisions within
the microscopic transport model; determination of volume, in which the occurrence of a
local equilibrium is expected; and extraction of three key parameters, i.e., energy density,
net baryon density and net strangeness density, out of it. These three parameters are used
as an input for the statistical model of ideal hadron gas. This is the second step of the
proposed scheme. If the partial yields of hadrons and their energy spectra in the selected
volume are close to those given by the SM, one can conclude that the matter is in the
vicinity of a local equilibrium. The SM provides us with the values of thermodynamic
characteristics, such as temperature, baryon chemical potential and strangeness chemical
potential. At the third step we use the extracted values of ε, ρB and ρS to initialize the box
with periodic boundary conditions. The correlators and the relaxation times are determined
during the study of the matter evolution in the box towards equilibrium.

4. Results: Total and Partial Shear Viscosity of Hadrons

Version 3.4 of the UrQMD model in default cascade mode was employed. Calculations
were performed for central gold–gold collisions at four beam energies, Elab = 10, 20, 30
and 40 AGeV. At each energy, ca. 50 thousand collisions were generated. Figure 1 displays
the evolution of energy density (a), net baryon density (b) and net strangeness density (c)
in the central cubic cell of the collision with volume V = 125 fm3.
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Figure 1. Distributions of (a) energy density, ε; (b) net baryon density, ρB; and (c) net strangeness
density, ρS, of central Au+Au collisions generated within UrQMD model at Elab = 10 AGeV (black
circles), 20 AGeV (blue triangles), 30 AGeV (green squares) and 40 AGeV (red diamonds) in the
central cell, 125 fm3 in size. The values of (d) temperature, T; (e) baryochemical potential, µB; and
(f) strangeness chemical potential, µS were calculated from the fit to SM of ideal hadron gas. Lines
were drawn to guide the eye (From [29]).

We can see that at early times, t ≤ 5 fm/c, the energy density in the cell is larger for
collisions with larger bombarding energies. However, both remnants of colliding nuclei
and very energetic particles leave the central area quickly. After t ≈ 6 fm/c, the drop of
energy density proceeds with similar rates for all four energies. Net baryon density drops
with time also, but here one can observe the clear energy dependence: the lower the beam
energy, the higher the net baryon density. The net strangeness density in the cell is small,
though negative, at 1 ≤ t ≤ 20 fm/c, as shown in Figure 1c, in line with the previous results;
see, e.g., [38,46,49]. This fact can be explained by different cross-sections of positive and
negative kaons in baryon-dominated medium. After that, we acquired the temperatures
(Figure 1d), baryon chemical potential (Figure 1e) and strangeness chemical potential
(Figure 1f) of an ideal hadron gas by inserting the extracted values of ε, ρB and ρS into the
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SM equations. Note that matter in the cell reaches chemical and thermal equilibrium in
the investigated energy range not earlier than after t = 6–8 fm/c. Therefore, parameters
T, µB, µS obtained at earlier times should be treated with great care. It is interesting that at
t ≥ 7 fm/c and until t = 20 fm/c, temperatures in the cell shown in Figure 1d coincide for
the studied beam energies. Baryon chemical potentials, shown in Figure 1e, increase with
time, whereas chemical potentials of strangeness decrease, as displayed in Figure 1f.

As was shown in [28], shear viscosity in the box calculations reveals a remarkable
plateau for initial times (see Equation (2), 200 fm/c ≤ t0 ≤ 800 fm/c. The extracted values
of η averaged over the plateau are shown in Figure 2. It is worth mentioning that, because
of the high number of events used for the box generation at each timestep and averaging
over the plateau, the statistical errors in this figure and in the subsequent ones are less than
the symbol sizes. Data points corresponding to early times in the cell, τcell ≤ 6 fm/c, are
connected by the dashed lines. At these times the energy density in the cell is not distributed
evenly throughout the cell volume, and hadron abundances and energy spectra, compared
to these of the SM of ideal hadron gas, indicate that the matter in the cell is still out of
equilibrium [46,49]. Determination of shear viscosity in the cell at t ≤ 6 fm/c is, therefore,
ambiguous. However, when remnants of colliding nuclei and most energetic particles leave
the cell, the chemical and thermal equilibrium sets in quickly. One can see that all four
distributions η(tcell) sit practically on the top of each other at 7 fm/c ≤ t ≤ 20 fm/c, fully
resembling the temperature drop shown in Figure 1d. The explanation of the decrease
in η is as follows. After t = 6 fm/c, inelastic collisions in the cell rapidly cease, and
(quasi)elastic interactions start to dominate. The soft scattering modes quickly redistribute
the energy and momentum of hadrons, which leads to a decrease in the relaxation time τ,
and consequently, the shear viscosity in the cell.

0 5 10 15 20
tcell (fm/c)

0

2

4

6

η 
(f

m
−

3
)

t0 ∈ [200,800]
10 AGeV

20 AGeV

30 AGeV

40 AGeV

Figure 2. Shear viscosity of hadrons in the UrQMD box with initial conditions corresponding to those
of the central cell of UrQMD-generated central Au+Au collisions at Elab = 40 AGeV (red diamonds),
30 AGeV (green squares), 20 AGeV (blue triangles) and 10 AGeV (black circles). Dashed lines indicate
the out-of-equilibrium stage, whereas solid lines correspond to the (nearly) equilibrium stage. See
text for details.

In what follows, we study the partial shear viscosities of the main hadron species in
the central cell, namely, nucleons, pions, kaons and Λ + Σ, and the combined viscosities
of baryons and mesons. This means that only the correlators for the appropriate type of
hadrons, e.g., 〈πNπN〉, are considered. The analysis of the thermodynamic conditions in the
cell starts from time t = 8 fm/c when the hadronic matter is close to thermal and chemical
equilibrium. Shear viscosity of nucleons in Au+Au collisions at all four beam energies is
shown in Figure 3. It smoothly decreases with time, and therefore, with temperature for all



Symmetry 2022, 14, 634 7 of 14

reactions. Additionally, the lower the energy of nuclear collision, the higher the nucleon’s
shear viscosity. Since temperatures in the cell after t = 8 fm/c are practically the same at
different timesteps for all four beam energies, the difference in η values can be attributed to
different values of baryon chemical potential and to dominance of baryon fraction in the
particle spectrum.

Figure 3. Upper row: Shear viscosity of nucleons, ηN , calculated in the central cell as function of time
tcell after the beginning of nuclear collision (left), and temperature T of the cell (right). Bottom row:
The same as the upper one but for baryon chemical potential, µB, (left) and for strangeness chemical
potential, µS, (right). Beam energies and labeling of the curves are the same as in Figure 1.

The partial shear viscosity of the combined spectrum of Lambdas and Sigmas, dis-
played in Figure 4, also demonstrates this tendency, although very weak. The calculated
distributions ηΛ+Σ(tcell) and ηΛ+Σ(T) are close to each other within the studied energy
range. One can see also that the values of shear viscosity of Λ + Σ hyperons are almost two
times lower compared to those of nucleons. The plausible explanation is that the yield of
hyperons in Au+Au collisions at 10 AGeV ≤ Elab ≤ 40 AGeV is relatively low. Therefore,
hyperons interact mainly with other hadrons and the genuine correlation between them is
lost quite early.

Figure 4. The same as Figure 3 but for shear viscosity of Λ + Σ.

Pions are the most abundant mesons among the produced particles. In contrast to
nucleons, the partial shear viscosity of pions drops with decreasing beam energy for the
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distributions ηπ(tcell) and ηπ(T), as shown in Figure 5. Recall that temperatures in the cell
at all four energies are almost the same within the time interval 8 ≤ tcell ≤ 20 fm/c, and
that pions are not affected by chemical potentials of the baryon charge and strangeness. The
spectrum of hadrons in heavy-ion collisions at low and intermediate energies is dominated
by baryons, and less pions are produced at lower energies. The decrease in pion shear
viscosity with time in the cell proceeds faster compared to that of the nucleon one.

Figure 5. The same as Figure 3 but for shear viscosity of pions.

The next group of mesons in particle spectrum is kaons. Figure 6 displays their
shear viscosity in the central cell. Here. one can see no difference between ηK(tcell)
and ηK(T) for beam energies between 10 and 40 AGeV despite the different strangeness
chemical potentials. It seems that chemical potentials play a minor role in the (partial) shear
viscosity of hadrons. The latter is mainly determined by temperature of the system and
particle abundances.

Figure 6. The same as Figure 3 but for shear viscosity of kaons.
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The combined shear viscosity of baryons in the central cell is presented in Figure 7,
and Figure 8 shows that of mesons. Both figures reveal the same trends observed earlier
for individual hadron distributions. Namely, the shear viscosities of both baryons and
mesons, in the central cell drop with time, and therefore, with decreasing energy density
and temperature of the cell. However, for baryons the shear viscosity increases with
decreasing beam energy, whereas shear viscosity of mesons demonstrates the opposite
tendency. When the beam energy goes down from Elab = 40 to 20 AGeV, the difference in
meson or baryon shear viscosities for neighbor beam energies is about 10% or less. Note
also that at Elab ≈ 30 AGeV the partial shear viscosities of baryons and mesons are about
the same. Significant rise of ηbaryons is observed at Elab = 10 AGeV; see Figure 7. Here the
total spectrum of hadrons is heavily dominated by baryons.

Figure 7. The same as Figure 3 but for combined shear viscosity of baryons.

Figure 8. The same as Figure 7 but for combined shear viscosity of mesons.

This energy range is very interesting. If heavy ions are colliding with the beam energies
of hundred MeV, one deals merely with hadrons and their excited states, resonances. When
the energy of nuclear collisions increases to several GeV, new objects, called strings, come
into play. Strings are not hadrons and can be considered as precursors of quark–gluon
plasma. With a further increase in bombarding energy, mesons (mainly, pions) become
the most abundant part of the hadronic spectrum, and therefore, a transition from baryon-
dominated to meson-dominated matter takes place. Thus, it is important to check the
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possible fingerprints of these transitions on the ratio of shear viscosity to entropy density.
The latter is determined in the SM for a hadronic specie “i” as

si = −
gi

2π2

∫ ∞

0
f (p, mi) [ln f (p, mi)− 1] p2dp , (13)

Bearing in mind the ratio limit η/s ≥ 1/4π [8], we plotted the ratio 4πη/s for all
hadrons as a function of tcell , T, µB and µS in Figure 9. One can see that this ratio for
all hadrons in the system decreases with decreasing beam energy of Au+Au collisions.
However, even for the collisions with Elab = 10 AGeV the minimum of 4πη/s is four
times larger than unity. It is worth mentioning that open symbols in Figure 9 indicate the
results obtained at early times for out-of-equilibrium stage. These results, therefore, are
ambiguous and should be treated with great care, and the indications on shallow minima
of η/s around tcell ∼ 5 fm/c.

Figure 9. The same as Figure 8 but for ratio of total shear viscosity of hadrons to their entropy density,
4πη/s.

A direct comparison of the obtained results with the results of other models is difficult,
since the latter were obtained at a constant (most often, zero) value of the baryon chemical
potential. The general trend, however, is qualitatively correct. The ratio of the shear
viscosity over the entropy density increases (i) with decreasing temperature and (ii) with
increasing baryon chemical potential. A more detailed comparison of the predictions of
different models can be found in [31].

The last step is to study the partial contributions of baryons and mesons to η/s ratio.
Figures 10 and 11 display the ratios 4πηbaryons/s and 4πηmesons/s, respectively. Figure 10 indi-
cates that the evolution of partial ratio η/s for baryons in the cell at 8 fm/c ≤ tcell ≤ 20 fm/c
proceeds similarly for all four beam energies. However, a very weak rise in this ratio with
dropping beam energy seems to take place. The reduction in the ratio of total shear viscosity
to entropy density in the medium is caused by the decreased contribution of mesons, as
shown in Figure 11. In stark contrast to baryons, the mesonic ratio ηmesons/s demonstrates
distinct separation in terms of temperature and chemical potentials. Note also that this
ratio varies slightly in the cell within the considered time interval.



Symmetry 2022, 14, 634 11 of 14

Figure 10. The same as Figure 9 but for shear viscosity of baryons to the entropy density ratio.

Figure 11. The same as Figure 10 but for shear viscosity of mesons to the entropy density ratio.

5. Discussion and Conclusions

We studied evolution of shear viscosity η of hot and dense nuclear matter produced in
the central area of gold–gold collisions at beam energies ranging from Elab = 10 to 40 AGeV.
The main goal was to study the partial contributions to η of main hadron species, such as
nucleons, pions, kaons and lambdas/sigmas. The general procedure for determination of
the shear viscosity in microscopic transport calculations consists of three main parts; see,
e.g., [28,29]. Firstly, a central cubic cell 125 fm3 in size was selected. Then, energy density,
net baryon density and net strangeness density in the cell were determined. Secondly, our
statistical model of ideal hadron gas employed the extracted values of ε, ρB, ρS to determine
temperature T, baryon chemical potential µB and strangeness chemical potential µS of
hadron resonance gas in thermal and chemical equilibrium. If the yields and energy spectra
of hadronic species in microscopic calculations are close to those given by the SM, the
matter in the cell can be considered to be in the vicinity of local equilibrium. Thus, one gets
T, µB and µS of the system. Third, we determined the shear viscosity of the system with
the Green–Kubo approach. To do this, one has to initialize the box with periodic boundary
conditions with essentially the same values of ε, ρB, ρS as given by the cell calculations at
each time snapshot.

The obtained physical results can be summarized as follows. Temperatures in the
central cell at each time step between t = 8 fm/c and t = 20 fm/c are similar for all four
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energies. The total shear viscosities in the central areas of the four different reactions are also
similar within this time interval. Partial shear viscosities, however, demonstrate different
tendencies. The lower the beam energy, the higher the nucleon shear viscosity. Hyperons
Λ + Σ also reveal this trend, but to a much lesser extent. In contrast, shear viscosity of
pions decreases with decreasing beam energy, whereas kaon shear viscosity is almost
independent on the beam energy within the investigated interval. The contributions of
baryons and mesons to the total shear viscosity are approximately the same at beam energy
30 AGeV. At higher and lower beam energies, this symmetry between the baryon and the
meson sectors is broken. The ratio of shear viscosity of hadrons to their entropy density
also declines with decreasing collision energy. This drop is attributed to mesons. For
baryons, the distributions of ηbaryons/s(tcell) increase slightly, though remaining very close
to each other, with dropping Elab. Our results might be useful also for the development of
sophisticated hydrodynamic models for heavy-ion collisions at intermediate energies.
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Abstract: The Unruh effect can be considered a source of particle production. The idea has been
widely employed in order to explain multiparticle production in hadronic and heavy-ion collisions at
ultrarelativistic energies. The attractive feature of the application of the Unruh effect as a possible
mechanism of the multiparticle production is the thermalized spectra of newly produced particles. In
the present paper, the total entropy generated by the Unruh effect is calculated within the framework
of information theory. In contrast to previous studies, here the calculations are conducted for the
finite time of existence of the non-inertial reference frame. In this case, only a finite number of
particles are produced. The dependence on the mass of the emitted particles is taken into account.
Analytic expression for the entropy of radiated boson and fermion spectra is derived. We study also
its asymptotics corresponding to low- and high-acceleration limiting cases. The obtained results can
be further generalized to other intrinsic degrees of freedom of the emitted particles, such as spin and
electric charge.
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1. Introduction

As was demonstrated by Unruh [1], the observer comoving with the non-inertial
reference frame (RF) with the acceleration a will detect particles thermalized at temperature

T =
a

2π

in Planck units, whereas the observer in any inertial RF will see bare vacuum. If the
acceleration a equals the surface gravity of some Schwarzschild black hole (BH), when the
observer is at the horizon, T coincides with the temperature TBH of the Bekenstein–Hawking
radiation [2–4] of the horizon.

This peculiar non-invariance of the vacuum has raised a lot of interest in the topic
(for review see, e.g., [5] and references therein). Recall that the Unruh effect was initially
derived for scalar particles. Here, the change in the ratio between the negative and positive
frequency modes of scalar fields in the noninertial RF was considered [1]. Generalizations
to arbitrary trajectories of the observer is discussed in [6,7], whereas the generalization to
the accelerated reference frames with rotation can be found in [8,9]. The emergence of the
Unruh effect in the Rindler manifold of an arbitrary dimension and its relationship to the
vacuum noise and stress are investigated in [10]. Various methods and approaches have
been employed. For instance, an algebraic approach was used to extend the Unruh effect to
theories with arbitrary spin and with interaction [11,12], whereas the path integral approach
was applied to derive the effect for fermions within the framework of quantum field
theory [13]. Among the recent studies, one can mention the relativistic quantum statistical
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mechanics approach [14–16] based on the application of Zubarev’s density operator [17,18].
Within this approach, the Unruh effect was obtained first for the scalar particles [14] and
then generalized to the gas of massless fermions [16]. In the present study, we employ the
approach based on the application of the information theory, which is a promising tool to
study the black hole information dynamics, as one may see in [19] or reviews [20,21].

Usually, the non-inertial observer is assumed to accelerate forever. However, such an
assumption implies the availability of an infinite energy supply and ever-lasting particle
emission. The more sophisticated scenario, which considers the Unruh effect at finite time
interval, is analyzed in papers [22–25].

There are a lot of proposals for the detection and application of the Unruh effect, see,
e.g., [26–28]. The paper [29] discusses the possibility of eavesdropping in the non-inertial
reference frame. The production of the entangled photon pairs from the vacuum with the
help of the Unruh effect was investigated in [30], whereas, in [31], the creation of accelerated
black holes by means of the Unruh effect was studied. In [32], the authors discuss the
possibility of using accelerated electrons as thermometers; more on the topic can be found
in Refs. [33,34]. Generated bosons and fermions were considered to be produced via the
quantum tunneling mechanism at the Unruh horizon in [35,36].

The Unruh effect can be considered as a source for the creation of new particles. This
idea has been widely employed [37–44] in order to explain multiparticle production in
hadronic and heavy-ion collisions at ultrarelativistic energies. The attractive feature of
the application of the Unruh effect as a possible mechanism of multiparticle production is
the thermalized spectra of newly produced particles. Experiments with ultrarelativistic
hadronic and heavy-ion collisions and their theoretical interpretations indicate that the
produced matter seems to reach equilibrium extremely quickly, see, e.g., [45,46] for the
present status of the field. The mechanism of this fast equilibration is still debated; therefore,
the Unruh effect might be of great help. At the same time, since the Unruh source is
thermal, it results in the observer-dependent entropy generation [47]. In the present paper,
we also consider the Unruh horizon as a thermal source of particles. These particles are
characterized by thermal distribution. Our aim is to estimate the entropy of the distribution
and to define its dependence on any intrinsic degrees of freedom of the emitted particles.

In this paper, we consider Unruh radiation at some fixed energy E, which is assumed
to be a parameter. It can be argued that such an analysis is incorrect because we should
have taken into account the all-energy modes Ei via the product ∏Ei

in the corresponding
density matrix, see, e.g., [5]. This approach implies an independent emission of modes
at different energies. In other words, in that case, one deals with the energy modes via
the tensor product of the corresponding subspaces. However, such a generalization is not
mandatory for the Unruh effect. For instance, in [35,36], the authors demonstrate that one
can obtain the Unruh effect for some fixed energy without any need to take a product of all
the modes to encompass the all-Unruh thermal bath states. This circumstance allows us
to consider energy E of the mode as a parameter and, therefore, to take into account any
correlations between the modes originating from the finite energy supply and restrictions
imposed by energy conservation.

The paper is organized as follows. Section 2 presents the necessary basics from the
probability theory and the information theory. Section 3 briefly describes the Unruh effect
and the density matrix of the emitted quanta. The total entropy of the Unruh source is
estimated in Section 4. Here, the general expression for the entropy of fermion and boson
radiation is derived, as well as its analytic series expansion. In Section 5, one is dealing with
the analysis of temperature asymptotics of the entropy. Two limiting cases corresponding to
low and high temperatures, or, equivalently, the acceleration of the observer, are considered.
Section 6 is devoted to the contribution of intrinsic degrees of freedom of the produced
particles. Final remarks and conclusions can be found in Section 7.



Particles 2022, 5 159

2. Probability and Entropy

Let us consider some distribution {X} with the unnormalized distribution probability
d(x). In other words, d(x) is a number of events in which x is being observed. Shannon
entropy H(X) may be written as

H(X) = −∑
x

d(x)
DX

ln
d(x)
DX

= lnDX −
1
DX

∑
x

d(x) ln d(x) , (1)

where DX = ∑x d(x). H(X) encodes the amount of information we need in order to
completely describe {X}, i.e., this is amount of information we are lacking. Therefore, we
should deal with the distribution {X}. It is scale-invariant, so it does not change under the
transformations d(x)→ αd(x) for any α = const.

Similarly, for joint distribution {X, Y} with the unnormalized distribution probability
d(x, y), one can write down Shannon entropy H(X, Y) as

H(X, Y) = −∑
x,y

d(x, y)
DX,Y

ln
d(x, y)
DX,Y

= lnDX,Y −
1
DX,Y

∑
x,y

d(x, y) ln d(x, y), (2)

where DX,Y = ∑x,y d(x, y).
In the joint case, one may define the conditional probability d(x|y) as

d(x|y) = d(x, y)
d(y)

, d(y) = ∑
x

d(x, y). (3)

It defines the amount of events with x from the set of events in which y occurs. Using
Equation (1), Shannon entropy H(X|y) becomes

H(X|y) = lnDX|y −
1
DX|y

∑
x

d(x|y) ln d(x|y) = −∑
x

d(x|y) ln d(x|y), (4)

where DX|y = ∑x d(x|y) = 1, as follows from Equation (3).
Finally, substituting Equations (3) and (4) into Equation (2), one obtains

H(X, Y) = H(Y) + 〈H(X|y)〉Y = H(X) + 〈H(Y|x)〉X , (5)

where averaging taken over X or Y reads

〈A〉Z =
1
DZ

∑
z

d(z)A , Z ≡ X, Y.

Recall that all the formulae above are valid for the discrete distributions only. In the
continuous case, one should use the probability density function (PDF) p(x) instead of d(x).
Shannon entropy becomes dimensionally incorrect and should be re-defined, as shown
in [48,49].

For the distribution {X} with the PDF p(x), the entropy given by Equation (1) is
generalized to

H
(
Xp
)
= lnDXp −

1
DXp

∫
p(x) ln p(x)dx− 〈ln dx〉Xp

, (6)

where DXp =
∫

p(x)dx is the norm and

〈A〉Xp
=

1
DXp

∫
p(x)Adx.

The last term in Equation (6) is related to the limiting density of discrete points and takes into
account the amount of information encoding a discrete-continuum transition (see [48,49] for
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details). The term originates from the fact that the PDF p(x) is not dimensionally invariant
compared to the discrete probability d(x). The last one can be set to be dimensionless—see
the explanation below Equation (1)—while p(x) cannot. In any realistic computational task,
the term determines the contribution of the bin widths dx of the distribution to the entropy.
Note that one may formally reduce H

(
Xp
)

to H(X) by substituting
∫

p(x)dx into ∑x d(x)
and setting 〈ln dx〉Xp

to zero; the same procedure is valid in the opposite direction.

3. Unruh Effect

From here, we will use Planck (or natural) units, c = G = h̄ = kB = 1. Furthermore, we
restrict our analysis to 1 + 1-dimensional space-time because two other spatial dimensions
play no role and, therefore, can be neglected.

As was already mentioned in Section 1, vacuum is non-invariant with respect to the
reference frame [1]. In the non-inertial RF determined with the acceleration a, one meets
the appearance of horizon that separates space-time into the inside and outside domains.
As a result, the non-inertial observer detects the radiation going out from the horizon,
while the inertial one detects the Minkowski vacuum state |0〉 only. For bosons, the latter
reads [5,35,36]

|0〉 =
√

1− exp (−E/T)
1− exp (−NE/T)

N−1

∑
n=0

exp (−nE/2T)|n〉in|n〉out , (7)

whereas, for fermions, one obtains

|0〉 = 1√
1 + exp (−E/T)

1

∑
n=0

exp (−nE/2T)|n〉in|n〉out (8)

Here, E is the energy of the quanta emitted at the Unruh horizon with the temperature
T = a/(2π). The denominator for bosons stands for the normalization reasons. Parameter
N, as can be seen from Equation (7), encodes the maximum amount of quanta at energy E
plus 1. Loosely speaking, N is the number of dimensions of the corresponding Fock space
at the given energy E and temperature T of the source. The subscripts in and out denote
the components of the field (Rindler modes) with respect to the horizon.

Usually, N is assumed to be infinite. One may argue that the finiteness of the parameter
N in the boson case is incorrect from a mathematical point of view since one deals with
the incomplete basis then. However, in any real physical situation, one is dealing with the
finite number of produced particles, bosons and fermions. Taking N → ∞ in Equation (7),
as it is widely used in the literature on the topic, seems to be too strong of an assumption
because the source produces an infinite amount of energy, (N − 1)E→ ∞. This is valid in
the case of everlasting acceleration or the non-zero probability of detecting N → ∞ amount
of particles at some finite time interval; both scenarios can be provided with the infinite
energy supply only. This is because the infinite sum for bosonic modes—see Equation (7)—
contains an arbitrary amount of particles: despite being exponentially suppressed, the
probability for any n 6= ∞ in the sum for bosons is non-zero. Such a scenario seems to
be rather unlikely from the physical point of view, especially when one considers the
application of the Unruh effect for the description of particle production in relativistic
hadronic or heavy ion collisions. Therefore, we assume the maximum number of particles
to be finite in all calculations below.

Furthermore, let us consider only boson production in what follows because the
expression for the fermions given by Equation (8) can be derived from Equation (7) by
setting N = 2.

Expression (7) is the Schmidt decomposition [50]. The outgoing radiation is described
by the density matrix
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ρout = Trin|0〉〈0| =
1− exp (−E/T)

1− exp (−NE/T)

N−1

∑
n=0

exp
(
−nE

T

)
|n〉out〈n|out , (9)

where we have traced over the inaccessible degrees of freedom (in- modes). Thus, the pure
vacuum state from the inertial RF has transformed into the mixed one in the non-inertial
RF. Here, the geometric origin of the Unruh effect appears. Namely, finiteness of the speed
of light leads to the appearance of the horizon dividing the all modes in Hilbert space
into the accessible (out-) and non-accessible (in-) ones. The complete state is obviously
pure and follows unitary evolution. However, because one has limited access to it in the
non-inertial RF, it looks like a decoherence. The eigenvalues of the density matrix ρout
define the emission probability of a certain number of particles at energy E and temperature
T. Therefore, Equation (9) describes the conditional multiplicity distribution {n|N, E, T} at
any given N, E and T.

One may assume that once we have the distribution, it is possible to calculate the
corresponding Shannon entropy due to the formulae presented in Section 2. However, to
deal with the density matrix ρ, one should use the von Neumann entropy H(ρ) instead,
which is defined as

H(ρ) = −Trρ ln ρ.

The key difference of the von Neumann entropy from its classical analog, Shannon entropy,
is related to its meaning: H(ρ) defines the amount of information encoded with the
correlations between the system described by ρ and the rest of the world. From this
point of view, the density matrix ρ defines the projection of some larger system, which
was determined in the larger Hilbert space, to the space in which the observed system
is being defined. The projection might result in a loss of information encoded with the
corresponding correlations between the Hilbert subspaces. The von Neumann entropy is
the quantity to estimate the amount of this information. Due to its origin, it can be equal to
zero for the entire space and non-zero for its subspace. This is not the case for the Shannon
entropy because classical entropy of the whole system cannot be less than that of some part
of it. However, the von Neumann entropy can be set as equal to its Shannon counterpart
provided that the Schmidt decomposition coincides with the basis of the detector [51].

4. Unruh Entropy

For the emission probability ρout from Equation (9), the von Neumann entropy is
defined as

H(ρout) = −Trρout ln ρout = H(n|N, E, T) = σ(qE/T)
∣∣∣
q=1

q=N
, (10)

where we use the following notations

σ(qE/T) =
qE/T

exp (qE/T)− 1
− ln

[
1− exp

(
− qE

T

)]
, (11)

f (x)
∣∣∣
x=a

x=b
= f (a)− f (b) . (12)

As one may notice, H(n|N, E/T) is an even function of E/T, i.e., H(n|N, E/T) =
H(n|N,−E/T). The asymptotic behavior of the entropy (10) with respect to E/T is
the following

lim
E/T→0

H(n|N, E, T) = ln N = max(H) lim
E/T→∞

H(n|N, E, T) = 0 . (13)

Expression (10) defines the entropy of the emitted quanta, as well as the quanta inside
the horizon, for some mode of the radiated field only, which is determined by parameter N,
energy E and temperature T. Parameter N depends on the amount of time during which
the observer is being described by the non-inertial reference frame. It follows from the fact
that the longer one is observing the horizon, the more particles at any fixed energy may
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be detected. Therefore, we conclude that N should increase with time. Temperature T is
completely determined by the acceleration a, see [1]. However, E cannot be considered
as a fixed parameter. The non-inertial observer is expected to detect particles at different
energies. The energy range for the particles may be written as

m ≤ E ≤ M , (14)

where m is the invariant mass of the particles, and M is the maximum energy to be observed,
respectively. We assume M to be limited by the acceleration a since the observation of the
high-energy particles is very unlikely due to energy conservation law: one cannot extract
more energy from the vacuum than is being spent to sustain the observer’s acceleration.

Unfortunately, the definition of the energy range does not mean we know the spectrum
distribution {E}. It is determined by the unnormalized PDF p(E) of the emission of a
particle from the vacuum at energy E.

In order to figure out p(E) somehow, we use the following procedure. As can be
noticed from Equation (9), for any particle number n > 0, the emission probability is
proportional to the factor exp (−E/T). The case with n = 0 means no emission at all.
Therefore, one should expect exponential behavior for p(E)

p(E) = C exp (−E/T) , (15)

where prefactor C is responsible for any corrections that might depend on the particle type
and its quantum numbers. For the sake of simplicity, we assume C = const and, therefore,
drop it due to normalization reasons (see Section 2) in what follows. It is worth noting that
such assumption results in Schwinger-like mechanism of particle production [52]. Thus,
we recovered Schwinger-like particle production from the properties of Hilbert space and
space-time only. Recall, however, that this result is generated by the Unruh effect after
neglecting all possible corrections.

Now, we have the spectrum distribution {E} as given by Equation (15). Without
any loss of generality, we assume energy to be defined within the range m ≤ E ≤ M
(Equation (14)). From Equations (5) and (6), one obtains

H(n, E|N, T) = −〈ln dE〉Ep
+ lnDEp −

1
DEp

∫ M

m
p(E) ln p(E)dE

+
1
DEp

∫ M

m
p(E)H(n|N, E, T)dE , (16)

where the subscript Ep implies that the energy distribution is not discrete but rather a
continuous one, i.e., it is defined with some PDF—see the text concerning Equation (6).
In order to obtain the analytic expression, we substitute Equations (15) and (10) into
Equation (16) and obtain, after the straightforward calculations, the total Unruh entropy
H(n, E|N, T) in a form

H(n, E|N, T) = −〈ln dE〉Ep
+ 1 + lnDEp +

m exp (−m/T)−M exp (−M/T)
DEp

+
T
DEp

∞

∑
k=1

{[
2kq + 1

k(kq + 1)
+ q

E
T

]
× exp [−(kq + 1)E/T]

kq + 1

∣∣∣∣
E=m

E=M

}∣∣∣∣∣

q=1

q=N

, (17)

where

DEp =
∫ M

m
p(E)dE = T

[
exp

(
−m

T

)
− exp

(
−M

T

)]
(18)
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and σ(qE/T) from Equation (10) is represented by the following series

σ(qE/T) =
∞

∑
k=1

(
1
k
+ q

E
T

)
exp

(
− kqE

T

)
. (19)

The first term in Equation (17) is responsible for encoding the discrete-continuum
transition, see [48,49]. It is expected to depend neither on any quantum numbers of outgoing
particles nor on the reference frame. Therefore, we assume 〈ln dE〉Ep

to be constant.
Expression (17) defines entropy for the distribution {n, E|N, T} of the particles being

detected by the observer associated with non-inertial RF moving with acceleration a = 2πT.
Recall that in the case of fermions, one should use N = 2. For the bosons, N may take any
positive integer value obeying the energy conservation law. The entropy calculated for the
Unruh radiation of fermions and bosons is presented in Figures 1 and 2, respectively. One
can see the distinct maximum in the region of small values of the m/T ratio. The maximum
increases with rising the M/T ratio and becomes more pronounced with the increase in
radiated particles (see Figure 2).

Figure 1. (Color online) The entropy H(n, E|N, T) of Unruh radiation given by Equation (17) for
fermions (N = 2) as function of m/T and M/T.

The considered example seems to be straightforward. However, one should keep in
mind that the whole analysis above is valid for 1 + 1-dimensional space-time. Other spatial
dimensions do not contribute to the density matrix ρout or to its von Neumann entropy
because the corresponding subspaces of the Hilbert space contribute to ρout via the direct
tensor product and, therefore, can be traced out with no consequences to the analysis above.
This simple direct extension to additional spatial dimensions for the Unruh effect may lead
to the widely spread conclusion that the Unruh effect results in the appearance of thermal
bath all over the space. In our opinion, this conclusion needs to be clarified. Namely, in the
last case, the non-inertial observer, as well as the horizon itself, should be considered as an
infinite plane in the additional spatial dimensions being accelerated alongside the normal
to the plane. However, the observer should be finite and, therefore, cannot detect particles
from the half-space defined by the horizon. Otherwise, it would lead to faster-than-light
speed communication and causality violation because the transition to inertial RF cannot
cause the immediate disappearance of the Unruh radiation from the horizon occupying
the half-space.
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Figure 2. (Color online) The same as Figure 1 but for bosons. The spectrum of bosons contains
(a) N = 100 and (b) N = 1000 particles.

To overcome the difficulties, we have to assume that

• In order to obey, the energy conservation law N should be finite;
• In the case of (2 + 1) or (3 + 1)-dimensional space-time, the Unruh horizon should be

considered as a radiation source of finite size.

Due to the axial symmetry of the non-inertial reference frame, the horizon should
be a disk shape with some radius r. The radius can be determined by the observer’s size
and causality, i.e., the finiteness of light speed. Such an assumption leads to an observer-
dependent size of r. The problem may be cured, e.g., if one considers the observer’s
acceleration a as a surface gravity of the corresponding black hole and obtain some efficient
scale r = (4πT)−1.

One might be confused by the fact that since the Unruh effect describes the thermal
bath, its entropy should be maximal. As can be easily noticed from the eigenvalues of the
density matrix (9), all of them exponentially depend on the total energy of the emitted
number of particles and thus generate a well-known partition function. Note, however, that
ρout is defined for some fixed value of energy. Therefore, E can be considered a parameter
of the conditional distribution {n|N, E, T}. Dealing with the joint distribution {n, E|N, T}
over multiplicity n and energy E of the emitted quanta, one should take into account
energy conservation. It results in some correlations between the possible number of emitted
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particles and their energy. Thus, the entropy H(n, E|N, T) describes not a completely
thermal source but some other one.

5. Asymptotics of Unruh Entropy

Let us analyze the asymptotic behavior of the total Unruh entropy in Equation (16)
for (i) small and (ii) large acceleration of the observer. The case of small acceleration is
analogous to T → 0; therefore, we will drop all but the leading term in Equation (16). At
small temperatures, Equation (18) transforms into

DEp

∣∣∣
T→0
≈ T exp (−m/T) , (20)

where we have neglected the term exp (−M/T) since M is the upper bound for the energy
spectrum; therefore, M > m. The Unruh entropy becomes

H(E)
∣∣∣
T→0

= lnDEp −
1
DEp

∫ M

m
p(E) ln p(E)dE ≈ ln T − m

T
+ 1 +

m
T

= ln T + 1 . (21)

Because the entropy H(n|N, E, T) equals zero when N = 1, we consider the case
with N > 1 for T → 0. Neglecting all the higher-order exponents, one obtains from
Equation (10) that

H(n|N, E, T)
∣∣∣
T→0
≈ E

T
exp (−E/T) . (22)

Substituting Equations (21) and (22) into Equation (16), we obtain

H(n, E|N, T)
∣∣∣
T→0
≈ −

〈
ln

dE
T

〉

Ep

+ 1 +
1
4

(
1 +

2m
T

)
exp (−m/T) , (23)

where all the higher-order exponents are omitted. This distribution is displayed in Figure 3.
The entropy reaches a quite distinct maximum at m/T ≈ 0.5 and quickly drops to unity at
larger values of this ratio.

Figure 3. (Color online) Asymptotic behavior of entropy H(n, E|N, T) given by Equation (23) at
T → 0 as function of m/T.

In the case of large acceleration a→ ∞⇔ T → ∞, one obtains from Equation (18)

∫ M

m
p(E)

∣∣∣
T→∞

dE =
∫ M

m

(
1− E

T
+

E2

2T2

)
dE +O

(
1/T3

)

= (M−m)

(
1− M + m

2T
+

M2 + Mm + m2

6T2

)
+O

(
1/T3

)
, (24)
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and, therefore,

H(E) = lnDEp −
1
DEp

∫ M

m
p(E) ln p(E)dE = ln (M−m)− (M−m)2

24T2 +O
(

1/T3
)

. (25)

Thus, the conditional entropy H(n|N, E, T) from Equation (10) becomes

H(n|N, E, T)
∣∣∣
T→∞

= ln N − N2 − 1
24T2 E2 +O

(
1/T4

)
, (26)

which, together with Equation (24), gives us

1
DEp

∫ M

m
p(E)H(n|N, E, T)dE = ln N − M2 + Mm + m2

72T2

(
N2 − 1

)
+O

(
1/T3

)
. (27)

Finally, substituting Equations (25) and (27) into Equation (16), we obtain the desired
asymptotics at high acceleration (or temperature)

H(n, E|N, T)
∣∣∣
T→∞

= − 〈ln dE〉Ep
+ 1 + ln (M−m) + ln N

−
(

N2 + 2
)(

M2 + m2)+
(

N2 − 7
)

Mm
72T2 +O

(
1/T3

)
. (28)

The entropy asymptotics at T → ∞ calculated according to Equation (28) is presented
in Figure 4 for fermions (N = 2) and in Figure 5 for the boson spectra with N = 100 and
1000 particles, respectively. At high temperatures, the entropy weakly depends on m and
quickly increases with an increase in the value of M. The larger the number of particles, the
steeper the rising slope. For N = 1000, the entropy seems to saturate at M ≥ 5.

Figure 4. (Color online) High-temperature asymptotics of the entropy H(n, E|N, T) of Unruh radia-
tion given by Equation (28) for fermions (N = 2) as a function of m and M.
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Figure 5. (Color online) The same as Figure 4 but for bosons with (a) N = 100 and (b) N = 1000 par-
ticles in the spectrum.

6. Generalization to Intrinsic Degrees of Freedom

Expression (17) is valid for some mode of the radiated field only, which is defined by
the joint multiplicity-energy distribution {n, E}, temperature T and parameter N. However,
since the emitted particles may have additional degrees of freedom {λ}, such as electric
charge, spin, polarization, etc., they have to be taken into account too. This is equivalent to
the following modification of the total distribution

{n, E|N, T} → {λ, n, E|N, T} .

Using Equation (5), we then obtain

H(λ, n, E|N, T) = H(λ) + 〈H(n, E|N, T, λ)〉λ . (29)

However, such a generalization is not an easy task at all. Let us consider a simple
example, while detecting a particle at some E, one should measure its energy. Such a
process results in the consumption of the particle’s momentum. One may argue that
calorimetry is not required. The observer can build some source of similar particles and
carry out interference experiments to determine the energy of the particle to be detected.
However, any such interference will result in the re-distribution of the momenta during
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the interference and therefore will change the observer’s momentum as well. Thus, one
concludes that measuring the particle’s energy E leads to a change in the observer’s
acceleration a. It implies a change in the Unruh temperature T = a/(2π) of the source the
observer is dealing with.

One may also note that the Unruh effect is being considered within the quasi-classical
approach. It means that the density matrix ρout in Equation (9) is obtained under the
assumption that the outgoing radiation has no influence on the background metric (see
[5,35,36]). Such a remark is correct, but what about other degrees of freedom λ? For instance,
taking into account the spin of the particles emitted by the Unruh horizon may lead to a
change in the observer’s angular momentum. In this case, the observer’s acceleration a can
not be constant due to the conservation of the total angular momentum anyway and thus
implies a change in T in Equation (29) during particle identification.

Thus, the situation seems to be simple only if one neglects any influence of the outgoing
particles during the Unruh effect. In this case the entropy H(n, E|N, T, λ) does not depend
on {λ}, and Expression (29) is reduced to the sum

H(λ, n, E|N, T) = H(λ) + H(n, E|N, T). (30)

7. Conclusions

The Unruh effect is considered from the point of view of the information theory.
We estimated the total entropy of the radiation generated by the Unruh horizon in the
non-inertial reference frame for the state verified as vacuum by any inertial observer.
Usually such a case is treated as von Neumann entropy of the corresponding density
matrix. However, this is just the starting point of our study because the density matrix
of the outgoing radiation describes the conditional multiplicity distribution at the given
energy and Unruh temperature. As a result, it allows one to estimate the total entropy of
the Unruh source by taking into account both the multiplicity and energy distribution of
the outgoing quanta. We show how it can be calculated even without the exact knowledge
of the corresponding Hamiltonian. In particular, such a lack of information results in the
Schwinger-like spectrum of the emission (see Equation (15)).

The case of a finite amount of particle emission is considered. It allows us to utilize the
results for realistic particle emission spectra. The asymptotics of the general expression for
entropy with respect to low and high values of the Unruh temperature are also investigated.
We found that in the case of small acceleration corresponding to a low temperature, the
entropy of the radiation does not depend on the maximal amount of emitted particles in the
leading order (see Equation (23)). The dependence on N is recovered for large accelerations
when T → ∞ (see Equation (28)). It can be explained by the abundant emission of particles
from the hot Unruh horizon when the amount of the emitted quanta may be considered as
an extra degree of freedom contributing to the total entropy.

Another interesting point is that the total entropy H(n, E|N, T) quickly drops to zero
with the increase in the mass m of the quanta. It can be explained by the energy conservation
law: the more energy is being spent on the creation of particle’s mass, the less of it may be
used to generate the total distribution. At the same time, total entropy of the Unruh source
slightly increases with the maximum allowed energy M because the distribution widens
with the increase in M, thus leading to the total entropy increase.

The obtained results can be applied to the analysis of particle distributions in inelas-
tic scattering processes at high energies. Furthermore, they may be generalized to other
degrees of freedom of the emitted particles, such as spin, charges, etc. However, such a gen-
eralization may significantly complicate the analysis. For instance, additional conservation
laws originating from the other degrees of freedom might change the metric. Therefore,
one may be forced to take a distribution {T} into account too.
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