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UNITS OF RING SPECTRA AND THEIR TRACES IN
ALGEBRAIC K-THEORY

CHRISTIAN SCHLICHTKRULL

ABSTRACT. Let GL1(R) be the units of a commutative ring spectrum
R. In this paper we identify the composition
nr: BGL1(R) — K(R) — THH(R) — Q% (R),

where K(R) is the algebraic K-theory and THH(R) the topological
Hochschild homology of R. As a corollary we show that classes in
mi—1R not annihilated by the stable Hopf map n € 75(S°) give rise
to non-trivial classes in K;(R) for ¢ > 3.

1. INTRODUCTION

Given a connective (symmetric) ring spectrum R, we follow Waldhausen
and define the units GL;(R) to be the union of the components in 2°°(R)
that correspond to units in the discrete ring mgR. With this definition
GL1(R) is a group-like monoid whose group of components equals G L1 (7o R).
As in the case of a discrete ring there is a natural map BGLi(R) — K(R)
to the algebraic K-theory of R. If R is a commutative discrete ring this
is split by the determinant, but the definition of the determinant does not
generalize to the setting of ring spectra and the above map is in general
not split, even if R is commutative. For example, Waldhausen shows [21]
that this fails quite badly for the sphere spectrum. However, it turns out
that the notion of traces of matrices does generalize to ring spectra. This
gives rise to the trace map tr: K(R) — THH(R), where the target is the
topological Hochschild homology first defined by Bokstedt [6]. The purpose
of the present paper is to identify the composition

(1.1.1) nr: BGLi(R) — K(R) & THH(R) 5 Q®(R)

when R is a commutative ring spectrum. The first two arrows are defined
for any (symmetric) ring spectrum, whereas the definition of the last map
depends on R being commutative. By definition, THH(R) is the infinite loop
space associated to the realization of the cyclic spectrum [k] — RMNE+D) with
Hochschild type structure maps. We shall use Bokstedt’s explicit definition
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of the smash products R"*+1) If R is commutative, the degree-wise multi-
plication R +1) — R defines a map to the constant cyclic spectrum. This
gives rise to the infinite loop map r in the definition of 7.

In order to state our main result, we need the fact that GL;(R) has the
structure of an infinite loop space when R is commutative, i.e., that there
exists a spectrum g¢l; (R) such that Q*°(gl1(R)) ~ GL1(R). (We follow the
convention to use small letters for the spectrum associated to an infinite
loop space written in capital letters). It will be convenient for our purpose
to give an explicit construction of gl;(R) using Segal’s notion of I'-spaces.
Let 1 € 75(S%) denote the stable Hopf map.

Theorem 1.2. The composite map nr admits a factorization
BGLy(R) — GL1(R) — Q(R),

in which the second map is the natural inclusion and the first map is mul-
tiplication by n in the sense of the following commutative diagram in the
homotopy category of spaces,

BGL:(R) —  GLi(R)
|- |-

Q> (4d,
Q% (gly (R) A §Y) UL o1, (R)).

In the case where R equals the sphere spectrum this result is due to
Bokstedt and Waldhausen [8] (with a completely different proof).

It is clear from the definition that there is an isomorphism of abelian
groups m;igli(R) = mR for i > 1, but since the spectrum structures are
different this is not an isomorphism of 7¢(S°)-modules. However, using that
7 is realized as an unstable map n: S® — S2, it is not difficult to check that
the actions of 7 are compatible in degrees ¢ > 2. The following is then an
immediate corollary of Theorem 1.2.

Corollary 1.3. For i > 3, the composition
mi-1R = mBGL1(R) — m K(R) — m THH(R) — mR
is multiplication by n € 75(S0).

It thus follows that classes in ;1R not annihilated by 7 give rise to
non-trivial elements in m; K(R).

Ezample 1.4. Let R = ko, the real connective K-theory spectrum. In this
case GLi(ko) ~ {£1} x BOg, where ® indicates that the H-space structure
is the one corresponding to tensor products of vector bundles. Using the
cofibration sequence ko —» ko — ku, [18, V.5.15], we see that

Z = gy (ko) > w1 (ko) = Z/2
is surjective and that

Z./2 == mgj 1 (ko) = w2 (ko) = Z,/2
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is an isomorphism. We conclude that for k£ > 1,

o 75,11 BBOg = 7 maps non-trivially to msx1 K(ko);
o msk+2oBBOg = 7/2 injects as a direct summand in mgg42 K(ko).

This example is interesting in view of the attempts [1], [2], to relate
algebraic K-theory to elliptic cohomology and the chromatic filtration of
homotopy theory. Another major source for the interest in algebraic K-
theory in the non-linear setting is the relation to high dimensional manifold
theory via Waldhausen’s work on stable concordances [20)].

Ezample 1.5. Let R = ¥°°(G) be the suspension spectrum of a commuta-
tive (or Es) group-like monoid G. By definition, the algebraic K-theory
of this spectrum is Waldhausen’s A(BG). In this case, m BGL1(R) =
¢ 1(G4), and thus classes in the stable homotopy that are not annihilated
by 1 map non-trivially to m; A(BG) in degrees ¢ > 3.

Remark 1.6. Given a discrete ring R, the algebraic K-theory of the associ-
ated Eilenberg-MacLane spectrum H R reduces to Quillen’s K(R). Starting
with a ring spectrum R and R = 7R, the linearization map R — HR gives
rise to a fibration sequence

F —K(R) — K(R),

where by definition F' is the homotopy fibre. Let SLi(R) be the unit com-
ponent of GL1(R). Using that BSLi(R) = * we get a map BSLi(R) — F
which is important in the understanding of how algebraic K-theory behaves
under linearization.

The proof of Theorem 1.2 breaks up into two parts. The first part is to
give a description of nr in non-K-theoretical terms as the composition

BGLy(R) — L(BGL{(R)) < BYGL(R) = GL1(R) C Q*®(R).

Here L(BGL1(R)) denotes the free loop space of BGL(R) and BYGL(R)
is Waldhausen’s cyclic bar construction, see Section 3. The first map is the
inclusion of the constant loops and the map r: BYGL(R) — GL1(R) is
given by iterated multiplication in GL;(R). The fact that GLi(R) is an
infinite loop space ensures that it is sufficiently homotopy commutative for
the latter map to be well-defined.

The second part of the proof is then to show that the composite map
BGLi(R) — GL;(R) is multiplication by n. This follows from a general
analysis of how the free loop space of an infinite loop space relates to the
cyclic bar construction. Let us say that a sequence of maps of based spaces
F — X — Y is a homotopy fibration sequence if (i) the composition is
constant and (ii) the canonical map from F' to the homotopy fiber of the
second map is a weak homotopy equivalence. (This definition is most useful
if Y is connected). Given a well-pointed group-like topological monoid G,
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there is a commutative diagram of homotopy fibration sequences
G —— BYG —— BG

[~ [ |
Q(BG) —— L(BG) —— BG,

in which the lower sequence is split by the inclusion of the constant loops
BG — L(BG). If furthermore G admits the structure of an infinite loop
space, then the upper sequence has a natural splitting BYG — G given by
the iterated product in G. The failure of these splittings to be compatible
is measured by the fact that the composition

BG — L(BG) ~ BYG — G
is multiplication by 7 in the sense described above for GL{(R).

The paper is as a whole fairly self-contained, and in particular we present
in Section 4 a new explicit construction of the trace map tr: K(R) —
THH(R). This version of the trace map is used here to identify the action
on BGL1(R), but there are many other applications of this combinatorial
construction. In Section 2 we recall the definition of symmetric ring spec-
tra and their units and in Section 3 we recall Waldhausen’s definition of
algebraic K-theory in this framework. The Sections 2-4 can be read as a
self-contained account of the topological trace map.

In Section 5 we explain the infinite loop structure of GL;{(R) used in
the formulation of Theorem 1.2, and in Section 6 we construct the splitting
r: THH(R) — Q°°(R) and complete the first part of the proof. Finally, in
Section 7 we consider the relationship between the free loop space and the
cyclic bar construction of an infinite loop space and finish the second part
of the proof.

1.1. Notation and conventions. Let 7 be the category of based spaces.
In this paper this can be understood as either the category of compactly
generated Hausdorff (or weak Hausdorff) topological spaces or the category
of based simplicial sets. However, we will usually use the topological termi-
nology and talk about topological monoids etc. In both cases equivalences
mean weak homotopy equivalences. In the topological case we will some-
times have to assume that base points are non-degenerate in the usual sense
of being neighborhood deformation retracts.

We let S™ denote the n-fold smash product of the circle S' = I/01. By a
spectrum E we understand a sequence {E,: n > 0} of based spaces together
with based maps 0: S'AE,, — E, 1. Again this may be interpreted either
in the topological or simplicial category. A map of spectra f: £ — F'is
a sequence of based maps f,: E, — F, that commute with the structure
maps. We say that f is an equivalence if it induces an isomorphism on spec-
trum homotopy groups, the latter being defined by 7, E = colimy mp 1 E.
All spectra we consider will be connective, i.e., 7, = 0 for n < 0. We
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shall also assume that the spectra we consider are convergent in the sense
that there exists an unbounded, non-decreasing sequence of natural numbers
{An: n >0} such that S' A E,, — E, 1 is as least n + Ap-connected for all
n. This is not a serious restriction as any connective spectrum is equivalent
to a convergent one.

2. UNITS OF RING SPECTRA

In this section we recall Waldhausen’s definition of the space of units
associated to a ring spectrum. We shall work in the framework of symmetric
spectra and begin by recalling the relevant definitions from [12] and, for the
version with topological spaces instead of simplicial sets, [16].

2.1. Symmetric spectra. A symmetric spectrum is a spectrum in which
each of the spaces E, is equipped with a base point preserving left X,,-action,
such that the iterated structure maps

o™: S"NE, — Epin
are Y, X Yp-equivariant. A symmetric ring spectrum is a symmetric spec-
trum equipped with X,-equivariant maps 1,: S™ — FE, for n > 0, and

Ym X Yp-equivariant maps fimn: Em A Ep — Epypy for myn > 0. In order
to formulate the axioms, let " be the composite

. tw o™ Tn,
O'n: Em/\Sn—>Sn/\Em—>En+mﬂ m-+ns

where tw twists the two factors, and 7, ,, is the (n, m)-shuffle i — i +m for
i1 < n,i+—i—mn for i >n. Notice that " is X, X X,-equivariant. Also, let
o S°A\NE, — E, and 5°: E, A S° — E,, be the canonical identifications.
These maps are required to satisfy the following relations for all I, m,n > 0:

(a): Lypgn =0Mo (S™ A 1,),

(b): 0 = pmpn o (Lin A Epn), 6" = pmpn o (Em A ly),

(©): pitmm © (Him A En) = pimin © (Ei A pan,n)-
Here condition (a) states that the maps 1,, assemble to give a map of spectra
1: S — E, where S denotes the sphere spectrum. Notice that (b) and (c)
imply that

Pmtn © (BLA0™) = tipmn o (6™ A Ey)

as maps Ej AS™ A E, — Ej1mi, and that

ol o (Sl A fmn) = [tmn © (Ul A Ey).

These are exactly the conditions for the maps p,, to produce a map of
spectra u: ENE — E, where the domain is the internal smash product
in the category of symmetric spectra. Condition (b) then says that 1 is a
two-sided unit, and (c) is the condition that the multiplication is associative.
(These comments on the internal smash product are only to motivate the
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definitions; we shall not make explicit use of the internal smash product in
this paper). We say that R is commutative if the diagrams

Rm A Rn m’ Rern

ltw le,n

Rn A Rm M’ Rner

are commutative.

2.2. T-spaces and Z-monoids. In order to define the units of a symmetric
ring spectrum we need a combinatorial framework to keep track of the sus-
pension coordinates. Let Z be the category whose objects are the finite
sets n = {1,...,n} and whose morphisms are the injective (not necessarily
order preserving) maps. The empty set 0 is an initial object. The concate-
nation m U n defined by letting m correspond to the first m elements and
n to the last n elements of {1,...,m + n} gives Z the structure of a sym-
metric monoidal category. The symmetric structure is given by the shuffles
Tmp: MUN — nlm.

We define an Z-space to be a functor X: Z—7. Given an Z-space X, we
write X,z = hocolimz X. The homotopy type of Xz can be analyzed using
the following lemma due to Bokstedt. For published versions see [15, 2.3.7]
and [9, 2.5.1]. Let F,Z be the full subcategory of Z containing the objects
of cardinality at least n.

Lemma 2.1 (Bokstedt). Let X be an Z-space and suppose that each mor-
phism n; — ny in F,7Z induces a A,-connected map X (ny) — X(ng2). Then,
given any object m in FpZ, the natural map X (m) — Xpz given by the in-
clusion in the 0-skeleton is at least (A, — 1)-connected. O

Let us say that an Z-space X is convergent if there exists an unbounded,
non-decreasing sequence of natural numbers {\,: n > 0} such that any
morphism n; — np in F,Z induces a A,-connected map X (ni) — X(n2).
It follows from Bokstedt’s lemma that in this case X}z is equivalent to the
usual telescope of the sequence of spaces X (n) obtained by restricting to the
natural subset inclusions in Z. In particular, m. X7 is the usual directed
colimit of the groups 7. X (n) if X is convergent.

We say that an Z-space X is an Z-monoid if it comes equipped with an
associative and unital natural transformation

Pmn: X(m) x X(n) = X(m+n),

where both sides are considered functors on Z2. The unital condition means
that the basepoint in X (0) acts as a unit and associativity means that the
identity

Him+4n © (Xl X Nm,n) = Hl+mmn © (Nl,m X Xn)
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holds for all I, m,n > 0. By definition an Z-monoid X is commutative if the
diagrams

X(m)x X(n) 2% X(m+n)

ltw l’rm,n

X(n) x X(m) 22" X(n+m)
are commutative. If X is an Z-monoid, then X}z inherits the structure of a
topological monoid. The product is given by the composition

Xpz ¥ Xpz = hocolim X (m) x X (n) & hocolim X (m + n) — Xpz,
IXT IXT

in which the last map is induced by the monoidal structure of Z. We say that
X is group-like if this is the case for Xz, i.e., if the monoid of components
mpXpz is a group. We will show in Section 5 that if X is commutative and
group-like, then X7 has the structure of an infinite loop space.

Remark 2.2. For Z-spaces X that are not convergent, the homotopy type of
Xpz may well differ from that of the usual telescope. Consider for example
the Z-monoid n — BY,. In this case the associated homotopy colimit is
equivalent to the base point component of Q(S°). To see this one uses that
the natural map BY o — hocolimz BY,, induces an isomorphism on integral
homology. By the universal property of Quillen’s plus-construction and the
fact that the target is a connected H-space, it follows that the latter is
equivalent to BXZ. The conclusion then follows from the Barratt-Priddy-
Quillen-Segal Theorem. As a second example, let R be a discrete ring and
consider the Z-monoid defined by the classifying spaces BGL,(R). By an
argument similar to the above, the associated homotopy colimit is equivalent
to the base point component of the algebraic K-theory space K(R). In these
examples (and many more), evaluating the homotopy colimit over Z thus
has the same effect as Quillen’s plus-construction.

2.3. Units of ring spectra. Given a symmetric ring spectrum R, the
sequence of spaces Q"(R,) defines an Z-space as follows. A morphism
a: m — n in Z induces a map Q™ (Ry,) — Q"(Ry) by taking f € Q™(Ry,)
to the composition

I l —
(2.2.3) sn 2 gn = gt pasm I §UA R, 25 R, -5 R,

Here &: n =1Um — n is the unique permutation that is order preserving
on the first | = n — m elements and acts as a on the last m elements.
The action on S™ is the usual left action. The multiplication in R gives a
multiplicative structure

Hmm Q"™ (Rpm) x Q"(Rp) — Qm+n(Rm+n)a
Nm,n(fa 9)3 S™AS™ m]’ Ry N Ry m R,

which is commutative if R is. We let Q"(R,,)* be the union of the compo-
nents in Q"(R,,) that have stable multiplicative homotopy inverses in the
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following sense: For each f in Q"(R,)* there exists an element g € Q™ (R,,)
such that gy m(f,g) and fumn(g, f) are homotopic to the unit 1,,1, in
QM (Ryyiy). We consider Q"(Ry,)* as a based space with base point 1,
and restricting the above structure maps gives an Z-monoid Q"(R,)*. We
define

GLi(R) = hOC(I)lim O (Ry)"

with the monoid structure explained above. If R is convergent so is the Z-
space Q"(R,)*, and by Lemma 2.1, mo(GL1(R)) = GL1(mo(R)). If further-
more R is commutative, the general construction in section 5 will produce

a spectrum ¢l (R) such that Q°°(gl1(R)) ~ GLi(R).

3. K-THEORY AND CYCLIC K-THEORY OF RING SPECTRA

In this section we recall the definition of the algebraic K-theory K(R) and
the cyclic algebraic K-theory K“(R) of a symmetric ring spectrum R. We
also recall the inclusion of the units BGLi(R) — K(R). This material is due
mainly to Waldhausen. Let M,(R) be the symmetric ring spectrum whose
mth space is Map, (n4, ny A Ry,). The multiplication resembles multiplica-
tion of n x n matrices over an ordinary ring. (In this case the “matrices”
in question have at most one non-base point entry in each column). We
let GL,(R) = GL;(My(R)) with the monoid structure coming from the
multiplication in M,,(R). Using the natural maps

Map, (my A S¥, m, A Ry) x Map,(ny A S,ny ARy
- Map*((m U n)+ A Sk+lv (m U n)+ A R/H-l)

we have a notion of block sum of matrices and corresponding monoid homo-
morphisms

GLy(R) x GLy(R) — GLpin(R).
These homomorphisms are associative in the obvious sense and thus the

induced maps of classifying spaces give [[, -, BGL,(R) the structure of an
associative topological monoid. By definition K(R) is the group completion

K(R) = QB( 11 BGLn(R)).

n>0

Notice that this is the version of algebraic K-theory with mo K(R) = Z.
The classifying space of the units BGLi(R) embeds in the 1-simplices of
Bo(I1,,50 BGL,(R)) and since there is just a single 0-simplex there is an
induced map

S'A BGLy(R), — B( 11 BGLn(R)>
n>0

whose adjoint is the requested map BGL;(R) — K(R). The image is con-
tained in the 1-component of K(R).
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There is a variant of all this using the cyclic bar construction BYGLy,(R).
Recall that for a topological monoid G, BYG is the realization of the cyclic
space [k] — G**1 with simplicial operators

05«3 GiGitls---sgr), for0<i<k
(g ) = {0 B0t i), OTO 2
(91905 - - -5 Gr—1), fori=k%

S’i(goa"'agk) = (QOa"'ag’iala"'agk)a fOI‘OSZS ka

and cyclic operator tx(go, - - -, 9k) = (gk, 9o, - - -, gk—1). We refer the reader to
[13] for background material on cyclic spaces. The degree-wise projections
(gos---5s9k) = (91,---,9k) define a simplicial map p: B'G — B,G, and
if G is group-like and has a non-degenerate unit there results a homotopy
fibration sequence
G — BYG — BG.

Since BsYG is a cyclic space its realization has a canonical action of the
circle group T. Consider the composite map T x BYG — BYG RN BG@G,
where the first map is given by the T-action. Letting L(—) denote the free
loop space, the adjoint is a map BYG — L(BG). It is immediate from the
definition that this is a T-equivariant map when the action on L(BG) is
by multiplication in T. The following proposition is well-known and follows
easily from the definition of the T-action. We shall prove a related result
in Proposition 7.1 with a proof that can easily be adapted to the present
situation.

Proposition 3.1. There is a commutative diagram

G _t BYG — . BG

J J H

Q(BG) —— L(BG) —*— BG
in which the lower sequence is the usual fibration sequence associated to
the evaluation at the unit element of T. If G is group-like and has a non-
degenerate unit, then the upper sequence is a homotopy fibration sequence
and the vertical maps are equivalences. U

Notice that the lower sequence in (3.1) is split by the inclusion of BG
in L(BG) as the constant loops. By definition the cyclic K-theory of a
symmetric ring spectrum R is given by

K% (R) = QB( 11 BCyGLn(R)).

n>0
The projections p: BYGL,(R) — BGL(R) induce a map p: KY(R) —
K(R) which has a section in the homotopy category. The quickest way to
see this is to consider the diagram of monoid homomorphisms
I[ BGL#(R) — ] L(BGL.(R)) <= ] BYGL(R),

n>0 n>0 n>0
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where the equivalence is a consequence of Proposition 3.1. After group
completion there results a well-defined homotopy class K(R) — K%(R),
giving a section of p up to homotopy.

4. TOPOLOGICAL HOCHSCHILD HOMOLOGY AND THE TRACE MAP

In this section we present an explicit construction of the topological trace
map tr: K(R) — THH(R), where the target is the topological Hochschild
homology. In order to motivate the construction we first recall the linear
trace map for an ordinary discrete ring tr: K(R) — HH(R) with target the
Hochschild homology of R. The latter is the realization of a cyclic abelian
group HH4(R): [k] — R®*+! with cyclic structure maps similar to BgYG.
The multi-trace tr: HHq(M,(R)) — HH4(R) is the cyclic map given in
degree k by

tr(A%® --- @ AF) = Z agk’so ®--@ak where A" = (aéyt).

Sk—1,5k’
80,---,Sk
Composing with the obvious inclusions BeY GL,(R) — HH4 (M, (R)) we get
a cyclic map

[[ BYGL.(R) — ] HH. (M, (R)) — HH,(R).

n>0 n>0

This is a monoid homomorphism with respect to block-sums of matrices on
the domain and the abelian group structure on the target. After realization
and group completion we get maps

K% (R) — QBHH(R) & HH(R).

The linear trace map tr: K(R) — HH(R) is the homotopy class obtained
by composing with the homotopy section K(R) — K% (R).

4.1. Topological Hochschild homology. Topological Hochschild homol-
ogy is obtained by replacing the tensor products in HH4(R) by smash prod-
ucts of spectra. We shall follow Bokstedt [6] in making this precise. Given
a sequence of symmetric spectra E', ..., E”, we consider the smash product
as a multi-indexed spectrum in the natural way,

(B"A+ANE")pyn, = Ey A+ NED .

In general an r-fold multi-indexed symmetric spectrum E = {E,,, ., } has
an associated infinite loop space

Q% (E) = hocolim Q™ (Bny .. n,)-

The functoriality underlying this definition is analogous to that in (2.2.3).
We shall always use the symbol Q°°(E) in this precise way. Notice that the
monoidal structure of Z" makes 2°° a functor from multi-indexed spectra
to topological monoids. The topological Hochschild homology of a ring
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spectrum R is the topological realization of the cyclic spectrum THe(R),
defined in spectrum degree n by

Ho(R,n): [k] — Q®°(RA--- NRAS™).
k+1

The spectrum structure maps are defined in the obvious way involving only
the S™-factor. This construction represents Bokstedt’s solution to the prob-
lem of how to turn the multi-indexed spectrum R 1) into an equivalent
singly-indexed spectrum. The cyclic structure maps are analogous to those
in BY(G) and HH4(R). Thus for example dy: TH;(R) — THo(R) is the
composition

hocIOQIim QTR A Ry, AS™) — hocIOQIim QTR AS™)

— hOC(I)liIn Q" (Ry,),

where the first map uses the multiplication in R and the second map is
induced by the monoidal structure U: Z x Z — Z. It follows from the
version of Bokstedt’s approximation Lemma 2.1 with Z#+1 instead of Z that
TH(R) is an Q-spectrum, and we let THH(R) be the Oth space.

In order to define the spectrum level multi-trace, we need to model the
additive structure of a spectrum in a very precise way. We next explain how
this can be done.

4.2. The cyclic Barratt-Eccles construction. Let F,X, be the cyclic
set [k] — XF+1 with simplicial operators

di(o0,...,0r) = (00, ..., 0i—1,0i41,---,0k), 0<1i<k,
$i(00y -« -y0r) = (00, -+, 0i=1,04, T4y . . ., 0),  0< 1 <k,
and cyclic operator tg(ag,...,ar) = (g, a0, ..., ap_1). We let E® be the

cyclic Barratt-Eccles operad with nth space EoX,, see [3], [17, 6.5]. This
is an F operad in the sense that the realization EY, of the nth space is
Y.n-free and contractible. We use the notation ES° for the associated functor
from based spaces to simplicial based spaces,

(4.4.1) EX(X) = (H E.%, X X")/ ~,
n>0

where the equivalence relation ~ is defined as follows. Notice first that the
correspondence n — E.Y,, defines a contravariant functor from Z to simpli-
cial sets: Given a morphism a: m — ninZ and o € ¥,,, the composition o«
has a unique factorization ca = o.(a)a* (o) with o.(a): m — n injective
and order preserving and a*(o) € X,,. In this way a induces a simplicial
map,

o EgYy — EdX,  (00,...,0k) — (a*(00),...,a"(ok))

and given 3: 1 — m it is clear that (af3)* = f*a*. Secondly, given a based
space X the correspondence n — X" defines a covariant functor on Z by
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letting a morphism a: m — n act on x € X™ by a.(x) =y, where

i if a(i) =7
Yi {* if j ¢ a(m).

With this notation the equivalence relation in (4.4.1) is generated by the
relations

(e,a4(x)) ~ (a*(e),x) foree€ EpX,, x€ X™ and a: m — n.

In other words, ES°(X) is the tensor product of the functors n — E.%,
and n — X" over Z, i.e., the coend of the Z°P x Z-diagram EY,, x X", cf.
[14, IX.6]. We let E*°(X) be the realization. (Barratt and Eccles use the
notation I'* (X), but we want to avoid this since we also use I'-spaces in the
sense of Segal). We write the elements of E{°(X) as [0, x| where 0 € E 3
and x € X*. Block sums of permutations give E°(X) the structure of a
simplicial topological monoid,

[0,x] - [0/, %] = [o @ o, (x,%)].

The homotopy theoretical significance of the functor E*°(X) is that it pro-
vides a combinatorial model of Q°°%*°(X) for non-degenerately based con-
nected X. In more detail, it is proved in [3] that in the diagram

E*(X) — colim Q"E>*(S™ A X) < colim Q" (S™ A X),

the left hand arrow is an equivalence for connected X and the right hand
arrow is an equivalence in general.

We extend E* to a functor on (symmetric) spectra by applying it in each
spectrum dimension, i.e., E*°(FE), = E*°(E,) with structure maps

S'AE®(E,) = EX(S'AE,) — E®(E,1).

Since we assume spectra to be connective and convergent, it easily follows
that the natural map E — E*(FE) is an equivalence. Similarly, given a
simplicial spectrum, we may apply EJ° degree-wise to get a bisimplicial
spectrum and then restrict to the simplicial diagonal. This is in effect what
we shall do when defining the spectrum level multi-trace.

4.3. The spectrum level multi-trace. The multi-trace for a symmetric
ring spectrum R is a natural map of multi-indexed spectra
(4.4.2) tr: Mp(R)A---ANMy(R) — EZX(RA---A\R).

Let us first explain how to define this when R is a spectrum of based sim-
plicial sets. In this case tr is based on a natural transformation

tr: Mn(Xo) VANRERIAN Mn(Xk) — ]EIZO(XO ARER /\Xk;),

where X, ..., X are based sets and M, (X;) = Map,(n4,ny AX;). Suppose
given an element (A°,..., A¥) in the domain and use matrix notation to
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write A = (z!,). Let D be the set of multi-indices corresponding to the

non-trivial summands in the multi-trace formula, i.e.,

D={(s0,...,85): a0 o F*....xk o Fx)

Since by definition the matrices have at most one non-base point entry in
each column, the projections (sg,...,sg) — s; give rise to injective maps
pi: D — n. Suppose that D has cardinality m and order the elements by
choosing a bijection v: m — D. The composition p;v: m — n is injective
for each 7 and admits a unique factorization p;y = «;0;, where q; is injective
and order preserving and o; € X,,,. Consider the natural map

D—>Xo/\"'/\Xk;, (80,...,Sk)l—>(x0 (Ek )

SkyS0? "t Y YSEp_1,Sk
and let x be the composition
x:m—D— XgA---ANXp.
The first observation is that the element
[(00,...,0%);x] € ZFH g (Xo Ao A Xp)™

is independent of the ordering v used to define it. By definition the multi-
trace is the image in E°(Xo A -+ A X)),

(4.4.3) tr(A% ..., A%) = [(0g,...,0k);X] € EP(Xo A -+ A Xp).

The second observation is that because of the base point relations in the
target this construction is natural with respect to based maps in Xy, ... Xk.

Ezxample 4.4. As an example to illustrate the construction we calculate

0 1
x x
tr ([ 0 i2] ) [ 1 f]) = [(12,7)3(3331’33%2)’ (33(1)2#3%1)],

21 21
where 7 € ¥y is the non-identity element.

The spectrum level multi-trace (4.4.2) is defined by degree-wise extend-
ing the above natural transformation to a natural transformation between
functors of simplicial sets. We then extend this to a natural transformation
of multi-indexed spectra by applying it in each multi-degree. This gives the
required maps

tr: Mp(Rng) A=+ ANMy(Rp,) = ER°(Rpg A+ A Ry,).

In the case where R is a spectrum of topological spaces we observe that the
expression in (4.4.3) also makes sense if X,..., X} are (non-degenerately)
based topological spaces, and we define tr by the same formula.
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4.4. The topological trace map. We define a combinatorially enriched
version THT (R) of topological Hochschild homology by applying Bokstedt’s
construction to the multi-indexed spectrum on the right hand side of (4.4.2),
ie.,
+ . o0 (ES0 ... n
TH(R,n): [k] — Q¥(EP(RA---ANRAS™)).
k+1

This is in a natural way the cyclic diagonal of a bicyclic spectrum. The
+ decoration indicates that TH} (R,n) is a homotopy commutative cyclic
monoid. Using the natural inclusion X — E°(X) we get a degree-wise
equivalence THy(R) — TH}(R) and thus an equivalence of realizations
TH(R) = TH'(R). The spectrum level multi-trace has formal properties
similar to the linear multi-trace and in particular there results a cyclic map

tr: THe(M,(R)) — THJ (R).

(One can show that the realization can be extended to give an equivalence of
T-equivariant spectra, but we shall not use this here). The definition of the
topological trace map is now completely analogous to the linear case. There
is an obvious embedding of cyclic spaces By’ GL,(R) — THH(M,(R))
induced by the natural transformation

Qno(Mn(Rno))* X e x 1k (Mn(Rnk))*

(445) _, Qrottng (Mn(Rno) VASERRIA Mn(Rnk))

that sends a tuple of maps to their smash product. Composing with the
multi-trace we get a cyclic map

1] BoGLn(R) — [] THH.(M,(R)) — THH{ (R).

n>0 n>0

This is a monoid homomorphism with respect to block sums of matrices
on the domain and the simplicial monoid structure on the target. After
realization and group completion we get maps

K%(R) — QB(THH"(R)) < THH'(R) < THH(R).

The topological trace map tr: K(R) — THH(R) is the homotopy class
obtained by composing with the homotopy section K(R) — K (R).

Remark 4.6. It is not difficult to extend this definition of the trace map
to a map of spectra or to refine it to a version of the cyclotomic trace
trc: K(R) — TC(R), cf. [7]. However, this is not the purpose of the
present paper. A construction of the trace map from a more categorical
point of view has been given by Dundas and McCarthy [11] and Dundas
[10].

Letting n = 1 in (4.4.5) gives a map BYGL (R) — THH(R). The fol-
lowing proposition is immediate from the definitions
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Proposition 4.7. There is a strictly commutative diagram of spaces

BYGL(R) ——  THH(R)

(4.4.8) J J~

K%R) —%— QBTHH'(R).

5. I'-SPACES AND UNITS OF COMMUTATIVE RING SPECTRA

In this section we show that if R is a commutative (and convergent) ring
spectrum, then GL;(R) is the Oth space of an Q-spectrum. The same is true
for the group-like monoid Xp7 associated to a commutative and group-like
Z-monoid X, and we formulate the construction in this generality.

5.1. I'-spaces. We first recall Segal’s notion of I'-spaces and the Anderson-
Segal method for constructing the associated homology theory. The paper
by Bousfield and Friedlander [4] is the basic reference for this material. Let
I'° denote the category of finite pointed sets and pointed maps. A I'-space is
a functor A: I'° — 7 such that A(x) = . We say that a [-space is special
if given pointed sets S and 7" the natural map A(SVT) — A(S) x A(T) is
an equivalence. This implies in particular that A(S°) has the structure of a
homotopy associative and commutative H-space with multiplication

A(SY) x A(S°) ~ A(SY v 8%) — A(S?).

We say that A is very special if A(S®) is group-like, i.e., if the monoid of
components is a group. A I'-space A extends to a functor on the category
of pointed simplicial sets in a two stage procedure. First A is extended
to the category of all pointed sets by forcing it to commute with colimits.
Given a simplicial set X we then apply A degree-wise to get a simplicial
space [k] — A(X}) with realization A(X). The main result is that if A is
very special then the resulting functor is a homology theory: Applying A
to a cofibration sequence of pointed simplicial sets X — Y — Y/X gives a
homotopy fibration sequence

AX) — AY) - A(Y/X)

in the sense that the inclusion of A(X) in the homotopy fiber of the second
map is an equivalence. In particular, a very special I'-space gives rise to a
symmetric Q-spectrum {A(S™): n > 0}, in which the structure maps are the
realizations of the obvious (multi)-simplicial maps S¢ A A(SP) — A(SPH).

5.2. I'-spaces associated to commutative Z-monoids. In order to mo-
tivate the construction we recall the definition of the I'-space associated to a
commutative topological monoid G. Given a finite based set S, let S be the
subset obtained by excluding the base point. Then G(S) = G, and a based
map «: S — T induces a map G(S) — G(T') by multiplying the elements
in G indexed by a~!{t} for each t € T.
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Implementing this idea for a commutative Z-monoid requires some prepa-
ration. Given S as above, let P(S) be the category of subsets and inclusions
in S. A based map a: S — 7T induces a functor a*: P(T) — P(S) by
letting a*(U) = a 1(U) for U C T. We define a category D(S) of S-indexed
sum diagrams in Z as follows. An object is a functor §: P(S) — T that takes
disjoint unions to coproducts of finite sets, i.e., if U NV = (), then the dia-
gram 0y — Oy < Oy represents Oyyuy as a coproduct of finite sets. (The
category 7 itself does of course not have coproducts). Notice in particular
that 3 = 0. A morphisms in D(S) is a natural transformations of functors
(not necessarily an isomorphism). This construction is clearly functorial in
I'?: A based map a: S — T induces a functor aw.: D(S) — D(T') by letting

af = 0 o a*. Notice that an object 6 in D(S) is determined by

e its values 0, for s € S;

e a choice of injective map 0y, — 6y whenever s € U such that the
induced map Ugepfs — Oy (with any ordering of the summands) is a
bijection.

Restricting to the one-point subsets of S gives a functor mg: D(S) — I,
where the latter denotes the product category indexed by S (we let 7% denote
the one-point category). This is an equivalence of categories, and specifying
an ordering of S gives a canonical choice of an inverse functor Z° — D(S),

using the monoidal structure of Z. Notice however, that Z° is not functorial
in I'? as is the case for D(S).

Lemma 5.1. Given a functor Y : 75 - T, the natural map

hocolimY o mg — hocolimY
D(S) 75

induced by wg is an equivalence.

Proof. By the cofinality criterion in [5, XI1.9.2] (or rather its dual version) it
suffices to check that for any object a € Z°, the category (a | mg) of objects
under a is contractible. But this is clear since this category has an initial
object. O

Let now X be a commutative Z-monoid and consider the 75 -diagram X s
defined by

{ng: s€ 8} HX(nS).
se8

For S = () this should be interpreted as the one-point space. We use the
notation X (S) for the D(S)-diagram obtained by composing with mg. With
this definition X (.5) is functorial in S is the sense that a based map a: S —
T gives rise to a natural transformation of D(S) diagrams

X(S) — X(T) o a,.

In order to see this fix an object 6 in D(S) and choose an ordering of the
subsets Uy = a~!(t) for each ¢t € T. The map in question is then a product
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over T of maps of the form

H X(0s) — X( |_| 0s) — X(0u,),

seUy seUyg

where the first arrow comes from the multiplication in X and the second
arrow is induced by the bijection Lserp,0s — 0y, determined by the sum
diagram 6. The main point is that since X is commutative the composite
map does not depend on the ordering of U; used to define it.

By definition the I'-space associated to X is given by

Xnz(S) = hog(osl)im X(S).

Given a based map a: S — T, the induced map a..: Xpz(S) — Xpz(T) is
the composition
hocolim X (§) — hocolim X (T") o ax — hocolim X (7'),
D(S) D(T) D(T)

where the first map is induced by the above natural transformation and the
second map is the map of homotopy colimits determined by the functor a..

It follows immediately from the definition that X;7(S°) = Xjz. In order
to compare X;7(S') to the usual bar construction of Xz we specify an
ordering of the k-simplices in S} by letting

5.5.2 w;=(0,...,0,1,...,1), forj=0,... k
(5.5.2) i = . ) J

j
Then ug is the base point and S} = {uy, ... ux}.

Proposition 5.3. The I'-space associated to a commutative Z-monoid X is
always special and is very special if and only if the underlying monoid Xpz
is group-like. In general there is a natural equivalence BXpr — Xpz(SY).

Proof. Using Lemma 5.1 we get an equivalence

: S ~
Xnz(S) = hol():g)sl;mX(S) — hocoth H Xnz.
seS
which is the condition for X7 to be special. The statement about being
very special follows from the definition. In order to define the equivalence
we use the ordering of the simplices of S} given by (5.5.2). As noted earlier
this ordering determines an equivalence

hocolim X (n1) x --+ x X(ng) — hocolim X (S
cqlim X (n1) (n4) — geolim X (5})
using the monoidal structure of Z. Identifying the left hand side with the k-
simplices of B, X,z we get a simplicial map Be Xy — Xp7(S1). Since this is
an equivalence in each simplicial degree its realization is also an equivalence
as required. O
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Remark 5.4. This construction of I-spaces based on the category D(S) dif-
fers from that of Segal [19, §2] in that we allow all natural transformations,
not only the natural isomorphisms. Consequently, our definition of the I'-
space associated to a commutative Z-monoid takes into account all the maps
X(m) — X(n) induced by morphisms in Z. As an example, consider the
commutative Z-monoid given by the classifying spaces BO(n) of the orthog-
onal groups. In this case Segal’s construction produces a special I'-space
with underlying space [[ BO(n), whereas our construction produces a very
special I'-space with underlying space hocolimz BO(n) ~ BO. The last
equivalence follows from Bokstedt’s Lemma 2.1. Thus the two construc-
tions respectively produce models of the (—1)-connected and 0O-connected
topological K-theory spectrum.

Definition 5.5. Given a commutative (and convergent) symmetric ring
spectrum R, let GL1(R) be the I'-space associated to the Z-monoid Q"(Ry,)*
considered in Section 2.3, and let gl1(R) be the associated spectrum.

It will always be clear from the context whether GL;(R) denotes a I'-space
as above or the underlying group-like monoid as in Section 2.

6. COMMUTATIVE RING SPECTRA AND SPLITTINGS

Let R be a commutative symmetric ring spectrum. In this section we show
that the natural inclusions GLi(R) — BYGL;(R) and Q> (R) — THH(R)
have compatible left inverses in the homotopy category, where by compat-
ible we mean that these splittings are related by a homotopy commutative
diagram

BYGL{(R) —— GLi(R)
(6.6.1) l l
THH(R) —— Q>®(R).
We then define ng to be the composite homotopy class
nr: BGLi(R) — K(R) 5 THH(R) = Q®°(R).

Using the diagrams (4.4.8) and (6.6.1) we get an alternative description as
follows.

Proposition 6.2. The homotopy class ngr is represented by the composition
BGL{(R) — L(BGL1(R)) < BGL1(R) = GL1(R),

(where the first map is the inclusion of the constant loops), followed by the
inclusion of GL1(R) in Q>®°(R). O

This concludes the first part of the proof of Theorem 1.2. In order to moti-
vate the construction, consider the cyclic bar construction of a commutative
monoid G. In this case the inclusion G — B%(G) is split by degree-wise
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multiplication in G. This can also be expressed in terms of the I'-space as-
sociated to G: The sequence G — BYG — BG is the effect of evaluating G
on the cofibration sequence S° — S! L= S!, and the splitting is induced by
the projection S}, — S° that maps S to the non-base point in S°. Let now
GL1(R) be the I'-space defined in Definition 5.5. The next Lemma shows
that we may replace BYGL1(R) by GL1(R)(S}) up to homotopy.

Proposition 6.3. Let X be a convergent and commutative Z-monoid. Then
there exists a space W and equivalences

BYXpr S WY & Xr(Sh).
Proof. Let WY be the cyclic space

[k] —  hocolim X(’rlo U 90) X oo X X(nk L Gk),
THHIxD(S],)

where 6 is an object of D(S}, ) and we write 6; = 0,,. We have functors
IFHE — IR x D(S},) — D(S},) obtained by fixing the initial object in
one of the factors. The cyclic structure of W, is the obvious one such that
the induced maps

B Xpz — WY — Xpz(Sey)

become maps of cyclic spaces. Since we assume that X is convergent, it
follows from Bokstedt’s approximation lemma 2.1 (with Z¥*! instead of ),
that these maps are equivalences in each simplicial degree. After realization
we thus get a pair of equivalences relating BY X7 and X hI(S_l|.)- O

Remark 6.4. The condition that X be convergent is necessary for the argu-
ment in Proposition 6.3, since otherwise the map
hocolim X (m) — hocolim X (m Un)
T TxT
induced by the functor I — I2, m — (m, 0) need not be an equivalence. The
Z-monoid X (n) = X™ considered in Section 4 provides a counter example.
It should also be noted that the construction of the simplicial map B¢ Xp7 —

Xp1(S)) in the proof of Proposition 5.3 cannot be applied to give a cyclic
map B Xz — XhI(S,1+).

Using the above equivalences, we define the splitting r to be the composite
homotopy class

r: BYGL1(R) ~ GL1(R)(S}) — GL1(R),

where the last map is induced by the projection S} L= S0,

We next consider a version TH'(R) of topological Hochschild homology
that relates to TH(R) as GL1(R)(S}) relates to BYGL1(R). By definition
this is the realization of the cyclic spectrum

TH,(R,n): [k] — h{))g};lir)n QPO (R A -+ A Ry, AS™),
k+
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where 6 denotes an object in D(S} ) and we again write ; = 0,,. The cyclic

structure maps are defined as for GL;(R)(SL, ). For example, in spectrum

degree zero, dy: THH)(R) — THH{(R) is the composition

hocolim Q%1 (R, A Ry.) — hocolim Q%' (Ry..) — hocolim Q¥ (R,,.).
QeD(Sll+) ( 90 91) GE'D(S%_’_) ( 901) weD(Sé+) ( 11)0)

Here 6y — 6o < 6; denotes an object in D(S},) and the first map is
induced by the natural transformation that takes f € Q%Y1 (Ry A Ry,) to
the element in Q%1 (R ,) given by the composition

-1 Hog .0
go Ly 5000 = g% £ 5% L Ry, & Ry, 0% Ryy g, T Ry,

where o: 0yl 60; — 6y is the bijection determined by 6. The second map
is induced by the natural transformation do: D(S1,) — D(Sj, ). With this
definition we have the equality

do = dy: TH}(R) — TH{(R)

and consequently the iterated boundary maps give a well-defined cyclic map
r: TH,(R) — TH{(R), where the target is considered a constant cyclic
spectrum. In spectrum degree zero we thus get a cyclic map of spaces

r: THH,(R) — Q%®(R).
The next proposition is the analogue of Proposition 6.3.

Proposition 6.5. The spectra TH(R) and TH'(R) are related by a pair of
equivalences.

Proof. Letting Wo¥ = {W¥(n): n > 0} denote the cyclic spectrum

[k] = Ikl}r?g%l(ig )Qnougoumunkugk(RnolJ@o ARERNA RnkU9k N Sn)’
k+

the proof proceeds exactly like the proof of Proposition 6.3. O
As in the definition of the trace map we consider the transformation
Q%(Rpy)* x -+ x Q(Rg,)* — QIO 0% (Ry A+ A Ry,)

that sends a tuple of maps to their smash product. Viewing these maps as
natural transformations of D(S} . )-diagrams we get a cyclic map

GL1(R)(S,;) — THH,(R).
It follows immediately from the definitions that this map is compatible with
the splittings of BYGLi(R) and THH'(R) in the sense of the following
proposition.
Proposition 6.6. There is a strictly commutative diagram of spaces
GLi(R)(SL) —— GL:(R)

| |

THH'(R) —— Q®(R).
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O

The homotopy commutative diagram (6.6.1) in the beginning of this sec-
tion is derived from this using the equivalences in Proposition 6.3 and Propo-
sition 6.5.

7. THE HOPF MAP AND FREE LOOPS ON INFINITE LOOP SPACES

In this section we finish the proof of Theorem 1.2 by showing that the
composite homotopy class

BGL,(R) — L(BGL(R)) = BYGL{(R) = GL(R)

is multiplication by 1 in the sense explained in the introduction. More
generally, let G be a very special I'-space and let g = {G(S™): n > 0} be
the associated Q-spectrum. By [4, 4.1], the I'-space G is determined by ¢ in
the sense that the diagram

G(X) = hocolim Q"G (S™ A X) < hocolim Q"(G(S™) A X)) = Q®°(g A X)

specifies a natural equivalence G(X) ~ Q*°(g A X). Evaluating G on the
based cyclic set S! | gives a cyclic space G (S} +). The realization G(S}L)
then has a T-action and, as in the case of the cyclic bar construction, we
consider the composite map

T x G(SL) — G(S%) — G(S")

with adjoint G(S1) — L(G(S')). In the next proposition we analyze the
homotopy fibration sequence obtained by evaluating GG on the cofibration
sequence S — S,IJr — Sl

Proposition 7.1. There is a commutative diagram of homotopy fibration

SEqUENCES

G(s") —— G(SL) —— G(8")

(7.7.2) lN lN H
QG(S")) —— L(G(S") —— G(S1)

in which the the vertical maps are equivalences.

Proof. The commutativity of the right hand square is immediate since we
evaluate a loop at the unit element of T. In order to prove commutativity
of the left hand square we recall that for any cyclic space X, the T-action
on the zero simplices Xy C |X,| has the following description. If z is an
element of Xg and u € T,

u-z = [t1soz,u] € | X,

Here ¢4 is the cyclic operator in degree one and we make the identification
T = A'/OA!. Using this, it is easy to check that the composition

T x G(S") = T x G(S}) — G(S}) — G(Sh)
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is given by (u,z) +— [2/,u], where 2/ € G(S]) is the image of z under
the homeomorphism induced by the based bijection S® — S1. The above
composition clearly equals the composition

T x G(S%) — S' A G(S?) — G(S),

which shows that the left hand square in the diagram is also commutative.
O

In Diagram (7.7.2) the map L(G(S})) — G(S) in the lower sequence is
split by the inclusion of the constant loops, and the map G(S°) — G(S1) in
the upper sequence is split by evaluating G on the projection r: S} L= S0
that maps S} to the non-base point of S°. The next proposition expresses the
fact that these splittings are not compatible in general. As usual n € 75 (S°)
denotes the stable Hopf map.

Proposition 7.3. Using the natural equivalences Q°°(g A S1) ~ G(S1) and
0%°(g) ~ G(SY), the composite homotopy class
G(S') — L(G(S")) &= G(S}) = G(8°),
is given by (g A n).
Proof. We first observe that (7.7.2) is in fact a diagram of infinite loop spaces

and infinite loop maps, and that as such it is equivalent to the following
diagram of spectra

gAS°  — g/\S}L — gA St

| [ |
F(S1,gnSY) —— F(SL,gASY) —— F(S%gnSh.
Here F(—,gAS?') is the obvious function spectrum and the upper and lower
cofibration sequences are both induced from S — S_1|r — S1. These cofi-
bration sequences have canonical stable splittings induced by the projection
r: Si_ — SY and the associated stable section s: S! — Si_. The vertical
map @ in the middle is the adjoint of
St AgASL —gASL —gnS

where the first map uses the action of S! on itself given by the group struc-
ture. It is clear that the above diagram is equivalent to the one obtained by
smashing g with

S0 e 541_ —_ St
e
F(S', 8" —— F(S,8") —— F(S° 8.

Here the definition of ® is analogous to the definition given above. We must
prove that the stable map

St =F(s°, 81 5 F(st, sty 2 st L g0
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represents 7. Using the canonical splittings to represent ®~! as a 2 x 2
matrix, this composition represents the off diagonal term. It is therefore the
negative of the composite stable map starting in the upper right corner of
the diagram,

S5 st 2 p(st, 51 5 F(st, Ssh.
The adjoint of this is the stable map

SIASTE S ASL -8t 5t

where the second map is the group multiplication in S*. It is well-known that
this composition represents 7. For example, one can see this by considering
the equivariant splitting £8' — S! A 541_, whose domain is the unreduced
suspension of S', and then use that the map of homotopy colimits induced
by the diagram

(*<—Slx51—>*)—>(*<—5’1—>*)

represents a generator of m3(S52), cf. [22, XI.4]. The result now follows since
7 has order two. U

Proof of Theorem 1.2. The only thing left to prove is that the homotopy
class BGL1(R) — GL1(R) considered in Proposition 6.2 agrees with the one
in Proposition 7.3 when the I'-space in question is GLi(R) and we use the
canonical equivalence BGL1(R) = GL1(R)(S"), cf. Proposition 5.3. Let W
be the realization of the simplicial space

[k] — hocolim X (n; U 6;) x -+ x X (ng U 6y).
Tk xD(S})

Since the space W considered in Proposition 6.3 is the realization of a
cyclic space it has a T-action, and the adjoint of the composition

Tx WY - WY - W

gives an equivalence W< — L(W). It easily follows that we have a commu-
tative diagram of equivalences

BYGLi(R) —— W% «—=— GL{(R)(S.)
L(BGL{(R)) —— L(W) «—~— L(GL{(R)(SY)).
It thus suffices to check that the homotopy class defined by the diagram
BGL(R) =W & GL1(R)(SY)
is compatible with the canonical equivalence BGLi(R) — GL1(R)(S!).

We do this by exhibiting an explicit homotopy inverse of the equivalence
GL1(R)(S') — W. Let W’ be the realization of the simplicial space

[k] — hocolim X (¢ U6y) X -+« x X (¢ U6b).
D(SL)xD(SE)
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Ordering the k-simplices S,i as in the proof of 5.3 gives an equivalence W =
W'. Moreover, using the monoidal structure of Z we get a functor D(S}) X
D(S}) — D(S}). Varying k this is a transformation of simplicial categories
and consequently there is an induced simplicial map W, — GL1(R)(S1).
It is easy to check that the composition W — W' — GL{(R)(S!) is a
homotopy inverse of the map in question and that the composition with
BGLi(R) — W is the canonical equivalence. This completes the proof. O

Remark 7.4. The discussion in the above proof can be generalized to any
commutative Z-monoid X. If X is convergent, B¥ X,z and X,z(S}) are
related by cyclic equivalences as in Proposition 6.3, and if X is group-like
we get equivalences relating the same spaces by comparing them to the
relevant free loop spaces. In case X is both convergent and group-like, the
two equivalences agree by an argument similar to the above.
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