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DEFORMING SYZYGIES OF LIFTABLE MODULES AND
GENERALISED KNÖRRER FUNCTORS

RUNAR ILE

Abstract. Several maps of deformation functors of modules are given which

generalise the maps induced by the Knörrer functors. These maps become

isomorphisms after introducing linear equations in the target functor. In this
manner the obstruction ideal for one module occurs as obstruction ideals for

other modules over other rings. In particular we obtain a map to the deforma-

tion functor of the maximal Cohen-Macaulay approximation over a quotient
ring defined by a regular sequence.

1. Introduction

H. Knörrer introduced in 1987 a functor H which gives an equivalence between
the stable category of maximal Cohen-Macaulay (MCM) modules of the hypersur-
face singularities f and f + uv; [18]. In the author’s master’s thesis he proved that
H induces an isomorphism on deformation functors of MCM modules; [13]. The
present article is the result of an attempt to generalise Knörrer’s functor such that
one obtains an interesting map of deformation functors of modules over different
rings.

The main results have the following form (which we call the standard result).
There is a natural map DefA1

M1
→ DefA2

M2
of deformation functors of Ai-modules

Mi such that when restricting the target functor to deformations with tangential
directions coming from the source functor, an isomorphism is obtained. If source
and target both have versal families, this corresponds to an embedding of the
source versal deformation space in the target versal deformation space, where the
embedding is defined by “linear” equations in the ambient space.

The main vehicle for producing the association (A1,M1) 7→ (A2,M2) is the
syzygy. The syzygy operation is not a functor of modules, however it gives well
defined maps for the Exti if i > 0 and also a well defined map of deformation
functors. In Theorem 1 there is a surjection A2 � A1 and M2 is an iterated
syzygy module of M1 as A2-module. The number of iterations equals the length
of the regular sequence I ⊂ A2 which defines A1. The last condition is that there
should exist a (non-flat) lifting of M1 to A2/I

2. As an application of Theorem 1
the standard result is obtained in Corollary 3 where M2 is the maximal Cohen-
Macaulay approximation of M1 as A2-module, and M1 is a MCM A1-module.

Theorem 2 introduces a flat A1-algebra B with surjections A2 � B � A1. Then
M2 is the nth syzygy ofM1⊗A1B as A2-module where n = pdimA2

B. The existence
of a lifting is implied by the condition that the equations which define A2 should be
perturbations of the equations which define A1 such that the parameter-monomials
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only occur with minimal degree at least two, as in f(x) 7→ F = f(x)+uv·g(x). In the
proof a free resolution is constructed from the “sum” tensor product of “Eisenbud
systems”, and the degree > 2-assumption implies that many differentials vanish
at the central fibre. Theorem 2 gives the standard result in a fairly wide class of
situations beyond Theorem 1, in particular it covers Knörrer’s H-functor for which
the result holds without the tangential restriction, see Theorem 3.

As an application of the standard results we show that if M1 is smoothable so
is M2, see Corollary 5.

Some definitions used throughout the article: A local k-algebra A is (possibly
the Henselisation of) a local k-algebra essentially of finite type where k is a field.
An A-module M is (usually) a finitely generated A-module. For a Noetherian k-
algebra A, let AS be the Henselisation of A⊗kS in the ideal A⊗kmS where S is
an object in the category Hensk of local (in particular Noetherian), Henselian k-
algebras with residue field k. A deformation of M to S is an AS-module MS , flat as
S-module, together with an AS-linear map π : MS →M inducing an isomorphism
π⊗AS

k : MS⊗Sk
'−→M . The deformation functor DefAM : Hensk → Sets associates

to S the set of equivalence classes of deformations MS of M to S. Two deformations
are equivalent if they are isomorphic overM , i.e the isomorphism is compatible with
the πs. Maps are induced by tensorisation.

Some references on deformation theory of modules: In [26, 2.4] H. von Essen
shows that the existence of a versal family (R,MR) for DefAM in the case A is a
local k-algebra and M is an A-module which is locally free on the complement of the
closed point, follows from R. Elkik’s [7, Thm. 3] and M. Artin’s [2, 3.3], see also [17,
2.6]. A formally versal formal family exists quit generally if Ext1A(M,M) has finite
k-dimension, see [23]. A. Siqveland gives the degeneracy diagram of torsion free
rank 1-modules on the E6-singularity by explicit calculation of the Massey products
in [25], and extends his result to the compactified Jacobian in [24], elaborating A.
Laudal’s setup in [19]. The author develops a change of rings formalism for the
obstruction theory in [12], and proves a non-trivial dimension estimate in the case
of rank 1 MCM modules on hypersurface singularities in [15]. A. Ishii gives a
stratification of the versal deformation space of a reflexive module on a rational
surface singularity in [17] by proving representability of certain moduli functors of
(semi-)full sheaves on the resolution of the singularity. T. S. Gustavsen and the
author find these moduli spaces in the case of a cone over a rational normal curve,
see [10], and in [11] they prove irreducibility of the versal deformation spaces in the
case of rational double points.

Most of the results in this article will suitably adapted hold for the graded case
as well.

2. Deforming higher syzygies of a liftable module

Theorem 1 gives the standard result for the nth iterated syzygy of a module
liftable along a regular sequence of length n. In Lemma 4 cohomology conditions
are given which imply that the syzygy map gives an isomorphism of deformation
functors.

The following two lemmas and definitions are vital prerequisites for the rest of
the article.

Lemma 1. Suppose A is a local k-algebra and M a finitely generated A-module,
then there is a map

DefAM −→ DefAΩAM
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defined by sending π : MR → M to ΩAπ : ΩAMR → ΩAM . The map is functorial
for isomorphisms in M and in particular independent of the choice of minimal
resolution.

Proof. Fix a minimal A-free resolution F of M , in particular ΩAM ⊆ F0. If
π : MS → M is a deformation of M to S, let FS be a minimal AS-free resolution
of MS . Then there is lifting π· : FS → F of π, by S-flatness of MS one has
an isomorphism π·⊗Sk : FS⊗Sk

'−→ F , and in particular π· is surjective. Define
[Ωπ : ΩMS → ΩM ] ∈ DefAM (S) as the equivalence class of π0 restricted to ΩMS :=
ΩAS

MS . Remark that ΩMS is S-flat since ToriS(ΩMS ,−) ∼= Tori+1
S (MS ,−) = 0

for i > 0. Any other lifting of π has the form π′0 = π0 + d1h where h : FS0 → F1.
Let h̃ : FS0 → FS1 be a lifting of h. Then [Ωπ] = [Ωπ′] since π0(id+dS1 h̃) =
π0 + (π0d

S
1 )h̃ = π0 + d1(π1h̃) = π0 + d1h = π′0.

If ρ· : GS → F is another AS-free resolution of π : MS → M , then there
is a lifting ϕS· : FS → GS of the identity of F , i.e. ρS· ϕ

S
· = πS· . Remark that

ϕS· is an isomorphism. Then ϕS0 induces an isomorphism ΩFMS
'−→ ΩGMS over

ΩM and [ΩFMS ] = [ΩGMS ] ∈ DefAΩM . It follows that the syzygy operation on
deformations factors through the equivalence: If ϕS : MS → M ′

S with π′ϕS = π,
and ε : FS → MS is a resolution of MS above F , then ϕSε : FS → M ′

S is a
resolution of M ′

S above F and idFS is a comparison map over F commuting with
ϕS .

Given an A-module isomorphism ϕ : M '−→ N and minimal A-free resolutions
F →M and G→ N . Then there is a map of complexes ϕ· : F → G above ϕ . Let
Ωϕ be the map ΩM → ΩN induced by ϕ0 : F0 → G0 . Let (Ωϕ)∗ : DefAΩM → DefAΩN
be given by π0 : ΩMS → ΩM 7→ ϕ0π0 : ΩMS → ΩN . The diagram

(1) DefM //

ϕ∗��

DefΩM
(Ωϕ)∗��

DefN // DefΩN

commutes: If π· : FS → F lifts π, we choose ϕ·π· as the lifting of ϕ∗(π). Then
Ω(ϕ0π0) = (ϕπ)0 = ϕ0π0 = (ϕ0)∗π0 = (Ωϕ)∗(Ωπ). Moreover; (Ωϕ)∗ is unique,
independent of the choice of chain map ϕ· . If ϕ′0 = ϕ0 +d1h and h̃ : FS0 → FS1 lifts
h, then one calculates ϕ0π0(id+dS1 h̃) = (ϕ0 +d1h)π0 and thus (ϕ0)∗π0|ΩMS

→ ΩN
and (ϕ0 + d1h)∗π0|ΩMS

→ ΩN are equivalent liftings of ΩN .
The situation is summarised in the following diagram:

MS

π

��

FS0
oo

id

yyrrrrrr

π0��

h̃

))

FS1
dS
1oo

id

yyrrrrrr

π1

��

FS0

ϕ0π0

��

FS1
dS
1

oo

ϕ1π1

��

M
∼=

ϕ

~~||
||

||
||

F0
oo

ϕ0

∼=

}}{{
{{

{{
{{

h
''NNNNNNNNNNNNN F1

d1oo

∼=
ϕ1

}}{{
{{

{{
{{

N G0
oo G1

d1

oo

In particular we have proved that Ω : DefAM → DefAΩM is independent up to a
canonical isomorphism of the chosen resolution F of M . �

Lemma 2. Suppose C → A is a map of k-algebras and N is a finitely generated
C-module, let M = N⊗CA. If TorC1 (N,A) = 0 then there is a natural map DefCN →
DefAM given by [NS ] 7→ [NS⊗CA].
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Proof. The map respects the equivalence relation, we have to show that MS :=
NS⊗CA is S-flat. By the local criterion of flatness, cf. [20, 22.3], it is sufficient
to show that TorS1 (MS , k) = 0. We claim that TorC1 (NS , A) = 0 which follows by
inspecting the commutative diagram (for i = 1)

(2) TorCi (NS , A)⊗SSe //

∼=��

TorCi (NS , A) //

=
��

TorCi (NS , A)⊗Sk //

ϕi��

0

TorCi (NS⊗SSe, A) // TorCi (NS , A) // TorCi (N,A)

with exact upper row obtained from an S-free presentation of the residue field k;
Se → S → k → 0. We find that ϕi is surjective if and only if it is an isomorphism.
In particular; TorCi (NS , A) = 0 if TorCi (N,A) = 0.

If FS � NS is a CS-free resolution of NS , then FS⊗CA � MS is an AS-free
complex without homology in degree less than or equal to one since TorC1 (NS , A) =
0. Thus TorS1 (MS , k) = H1(FS⊗CA⊗Sk) ∼= H1(F⊗CA) = 0 since F = FS⊗Sk is a
C-free resolution of N , and the assumption. �

Definition 1. Suppose C → A is a map of rings with kernel I and M is an A
module. Then M has a lifting to C if there is a C-module N and a C-linear map
π : N →M such that TorC1 (N,A) = 0 and π⊗A : N⊗CA→M is an isomorphism.

Recall that if we restrict attention to deformations MS with m2
S = 0 then

there is a universal family M1 ∈ DefAM (H1) where H1 = k[Ext1A(M,M)∗] =
k ⊕ Ext1A(M,M)∗ and the Zariski tangent space DefAM (k[ε]) ∼= Ext1A(M,M) is nat-
urally a k-vector space (if Ext1A(M,M) is of countable and not finite k-dimension,
one has to introduce a topology on the vector space, take the continuous dual,
and the universal tangential family becomes a pro-object, cf. [12]). The universal
tangential family is given by the universal extension

(3) M1 : 0 −→M⊗kExt1A(M,M)∗ −→M1
π1−→M −→ 0 .

Since S = k⊕mS , MS is the pushout induced by the k-linear map Ext1A(M,M)∗ →
mS corresponding to H1 → S. One has DefAM (S) ∼= Ext1A(M,M)⊗kmS canonically,
see [23, 2.10].

Definition 2. Let V be a k-sub-vector space in DefAM (k[ε]) ∼= Ext1A(M,M). Then
DefA(M,V ) is the sub-functor of DefAM of deformations MS such that [MS⊗AS

AS1 ] ∈
V⊗kmS1 where S1 = S/m2

S .

It follows that [MS⊗AS
AS′ ] ∈ V⊗kmS′ for all S → S′ with m2

S′ = 0. Remark
that DefA(M,V ) satisfies condition (H2) and therefore also condition (H1) in [23,
2.11].

Theorem 1. Let π : C → A be a surjective map of local k-algebras. Set I = kerπ,
and assume I is generated by a regular sequence of length n and M is a finitely
generated A-module which has a lifting to C/I2. Then there is an isomorphism of
deformation functors

σ : DefAM
'−→ DefC(Ωn

CM,V )

where V = im DefAM (k[ε]).

Example 1. If L is any A-module, set N = ΩnCL. Then M = N⊗CA satisfies
the conditions of Theorem 1 since TorC1 (N,A) = TorCn+1(L,A) = 0 implies that

TorC/I
2

1 (N⊗CC/I2, A) = 0.

With the notation in Definition 1 we furthermore have:
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Lemma 3. Suppose C → A is surjective. There exists an obstruction class

(4) o(C/I2,M) ∈ Ext2A(M,M⊗AI/I2)

such that o(C/I2,M) = 0 if and only if M has a lifting to C/I2. If C → A in
addition is a map of local rings and I is generated by a regular sequence, then for
any n > 0 there is an nth syzygy map

(5) Ext2A(M,M⊗AI/I2) −→ Ext2A(ΩnAM,ΩnAM⊗AI/I2)

which takes o(C/I2,M) to o(C/I2,ΩnAM), and in particular

o(C/I2,M) = 0 =⇒ o(C/I2,ΩnAM) = 0 .

Proof. [16] contains the first part, in [12, Thm. 1] a representative in the Yoneda
complex is given, only the construction is repeated here. If F � M is an A-
free resolution of M with differential d, lift F and d to a map d̃ of a graded
module F̃ which in each degree is C/I2-free such that (F̃ , d̃ )⊗C/I2A = (F, d).
Since there is short exact sequence of graded modules commuting with “differ-
entials”; 0 → F⊗AI/I2 ι−→ F̃

π−→ F → 0, we get that (d̃ )2 is induced by a
map σ ∈ Hom2

A(F, F⊗AI/I2) which is a cocycle: ι∂(σ)π = ι(d⊗I)σπ − ισdπ =
d̃ι(σπ) − (ισπ)d̃ = d̃(d̃ 2) − (d̃ 2)d̃ = 0. Via the map η : F⊗I/I2 � M⊗I/I2 we
get a class o(C/I2,M) = [ησ2] ∈ H2 HomA(F,M⊗AI/I2) = Ext2A(M,M⊗AI/I2)
which is independent of the choices involved.

For all i > 0 there are quite generally natural maps

(6) ωi : ExtiA(M,M)→ ExtiA(ΩAM,ΩAM)

obtained by composing the connecting map ExtiA(M,M)→ Exti+1
A (M,ΩAM) with

the inverse of the connecting isomorphism ExtiA(ΩAM,ΩAM) '−→ Exti+1
A (M,ΩAM)

which are obtained by applying HomA(M,−) and HomA(−,M) to the defining
sequence 0 → ΩAM → F0 → M → 0. If I is generated by a regular sequence
then I/I2 is A-free of finite rank and Ext2A(M,M⊗AI/I2) ∼= Ext2A(M,M)⊗AI/I2.
The map in the lemma is ω2 iterated n times tensored with I/I2. In the Yoneda
complex this is simply to chop off the n first maps, clearly σn+2 composed with
Fn⊗AI/I2 � ΩnAM⊗AI/I2 represents o(C/I2,ΩnAM). �

Remark 1. Let MS be a deformation of M in DefAM (S) and π : R → S a small
surjection (i.e. mR · kerπ = 0), then there is a an obstruction class oA(π,MS) ∈
Ext2A(M,M)⊗k kerπ which vanish if and only if there exists a deformation MR

of M to R such that MR⊗RS is equivalent to MS , cf. Theorem 1 and Remark 4
in [12]. Since −⊗k kerπ may be taken outside the Ext2, it follows analogously
to the argument in Lemma 3 that ω2⊗ idkerπ(oA(π,MS)) = oA(π,ΩAS

MS) ∈
Ext2A(ΩAM,ΩAM)⊗k kerπ.

Proof of Theorem 1. A deformation of M as A-module is also a deformation of M
as C-module, hence there is map DefAM → DefCM . By Lemma 1 there is a map
DefCM → DefCΩn

CM
, and by Lemma 2 there is a map DefCΩn

CM
→ DefAΩn

CM⊗CA
since

TorC1 (ΩnCM,A) = TorCn+1(M,A) = 0. The composition DefAM → DefCΩn
CM

factors
through σ : DefAM → DefC(Ωn

CM,V ) via the inclusion. By [4, 3.6] ΩnCM⊗CA containes
M as a direct summand if M is liftable to C/I2 with the additional assumption
that TorC/I

2

i (N,A) = 0 for all i > 0. However we claim that TorC/I
2

1 (N,A) =
0 ⇒ TorC/I

2

i (N,A) = 0 for all i > 0. From the proof of Lemma 3 we see
that since I/I2 is A-free we have o(C/I2,M) = [σ] ∈ H2 HomA(F, F )⊗AI/I2 =
Ext2A(M,M)⊗AI/I2. Since o(C/I2,M) = 0, there is a τ ∈ Hom1

A(F, F )⊗AI/I2

with ∂τ = σ. Adjusting d̃ with τ gives a differential d̃′ on F̃ , i.e. (d̃′)2 = 0, hence
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0 → F⊗AI/I2 ι−→ F̃
π−→ F → 0 is a short exact sequence of complexes and by the

long exact homology sequence, (F̃ , d̃′) is a resolution of N . Tensoring (F̃ , d̃′) by A
gives F and hence TorC/I

2

i (N,A) = 0 for all i > 0. We have obtained a natural
map

(7) τ : DefAM → DefA(M⊕Y,V ′); MS 7→ τMS = ΩnCS
MS⊗CS

AS

where ΩnCM⊗CA ∼= M⊕Y for some finitely generated A-module Y , and V ′ =
im(id, η1) where

(8) (id, ηi) : ExtiA(M,M) ↪→ ExtiA(M⊕Y ,M⊕Y ) i > 0

is the composition of ExtiA(M,M) → ExtiC(M,M), the nth iterate (ωi)n of (6),
and the natural map ExtiC(Ω,Ω) → ExtiA(Ω,Ω) obtained by tensorisation and
the collapse of the spectral sequence Epq2 = ExtpA(TorCq (Ω, A),Ω) ⇒ Extp+qC (Ω,Ω)
(where Ω = ΩnCM and Ω = Ω⊗CA).

For formal smoothness of σ, let σ also denote the natural map ExtiA(M,M) →
ExtiC(Ω,Ω) (for i > 0). From TorCi (σM,A) = 0 for all i > 0, it follows that
(id, η2)(oA(π,MS)) = oC(π, σMS)⊗CA = oA(π, τMS). Since (id, η2) is injective,
oC(π, σMS) = 0⇒ oA(π,MS) = 0.

Given a deformation LS in DefC(Ωn
CM,V )(S) there in particular exists a defor-

mation Mi of M to Si = S/mi+1
S and an isomorphism ϕi : σMi

'−→ Li for all
i > 0. We show that the isomorphisms ϕi can be chosen compatible. Suppose
compatibility is achieved up to ϕi−1 . The “difference” between Li and the via
σMi → σMi−1 composed with ϕi−1 induced deformation σMi of Li−1 is an el-
ement σ(ξ) ∈ Ext1A(σM, σM)⊗kJ where J = ker(Si → Si−1), as follows by
the definition of DefC(Ωn

CM,V ), see [23, 2.17] and [12, Thm. 1]. Then we “add”
ξ ∈ Ext1A(M,M)⊗kJ to the deformation Mi of Mi−1 to obtain a deformation M ′

i

such that the induced deformation σM ′
i of Li−1 is equivalent to Li, i.e. there exists

an isomorphism ϕ′i : σM ′
i
'−→ Li compatible with ϕi−1 . By induction and [20, 22.1]

we get an Ŝ-flat ÂŜ := A⊗̂kŜ-module M̂Ŝ and an isomorphism ϕ̂ : Ωn
ĈŜ

M̂Ŝ

'−→ L̂Ŝ .

Let L = LS⊗CS
AS , and let L̂ = L⊗AS

ÂS be the completion of L. Via the
isomorphism induced from ϕ̂ and the splitting M̂Ŝ ⊕ Y = Ωn

ĈŜ

M̂Ŝ⊗ĈŜ
ÂŜ , there is

a map L → M̂Ŝ . Let MS be defined as the image of L under this map. Then MS

is a finitely generated AS-module, and the completion of MS is M̂Ŝ . From [20,
7.11] it follows that there exists a map ϕS : σMS → LS inducing ϕ1. By [20, 22.5]
ϕ is injective and cokerϕ is S-flat. Since ϕ⊗Sk is an isomorphism, it follows that
cokerϕ = 0 and ϕ is an isomorphism. Hence σMS is equivalent to the deformation
LS and σ is surjective.

To get injectivity of σ we prove injectivity of τ . Assume ϕ : τMS
'−→ τM ′

S . Re-
stricting ϕ to the direct summand MS and composing with the projection τM ′

S →
M ′
S gives a map ψ : MS →M ′

S compatible with the structure maps to M . By [20,
22.5] ψ is an isomorphism as above, hence τ is injective and so is σ. �

Remark 2. One similarly shows that τ in (7) is an isomorphism. Moreover; we have
maps

(9) DefAM
α−→ DefC(M,V1) → DefC(Ωn

CM,V2) → DefA(Ωn
CM⊗CA,V3)

β−→ DefAM

(where the Vi are the images of DefAM (k[ε])) which all except β exist without the con-
dition o(A/I2,M) = 0 in Theorem 1. Let M and M ′ be A-modules and A = C/I

any quotient ring. In [12] an obstruction theory for DefAM as a sub-functor of
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DefCM is given. Let MS be a deformation of M as A-module. If the obstruc-
tion class oC for deforming MS along a small surjection R → S as C-module is
zero, there exists a secondary class oI which vanish if and only if there is a de-
formation of MS as A-module, see [12, Thm. 1]. Moreover, there is a change
of rings spectral sequence Epq2 = ExtpA(M,ExtqC(B,M ′)) ⇒ Extp+qC (M,M ′) with

d2-differential HomA(M,Ext1C(A,M ′)) d2−→ Ext2A(M,M ′) induced by cupping with
o(C/I2,M) ∈ Ext2A(M,M⊗BI/I2) via the isomorphism HomA(M⊗AI/I2,M ′) ∼=
HomA(M,Ext1C(A,M ′)), see [12, Prop. 3]. In [12, Thm. 4] it is shown that oI is
in the image of d2 , hence is zero if o(C/I2,M) = 0. It follows that α in (9) is an
isomorphism in this case.

If A and C are algebraic k-algebras (i.e. the Henselisations of local k-algebras)
with residue field k, then one can show that A as an AA-module gives a versal family
for DefAk . If C has the same embedding dimension as A, then DefC(k,V1) = DefCk ,
so by Theorem 1 and sequence (9) one has maps A → C → A such that the
composition is idA. If C is smooth and A is not, this cannot happen. One can show
directly that o(C/I2, k) 6= 0, see Lemma 7.

The following result gives modules of different depths and dimensions which have
isomorphic deformation functors.

Lemma 4. Let M be a finitely generated A-module where A is an algebraic k-
algebra. If ExtiA(M,A) = 0 for all 0 < i < g, and g > 3, then

(10) DefAM
'−→ DefAΩM

'−→ . . .
'−→ DefAΩg−2M .

In particular

(11) DefAk
'−→ DefAm

'−→ . . .
'−→ DefAΩd−2k

where d = depthA. If A is the AA-module defined via the multiplication map
AA

m−→ A then (A,ΩiAA
A) is a (mini-)versal family for DefAΩik for all 0 6 i 6 d−2.

Proof. Assume Ext1A(M,A) = Ext2A(M,A) = 0, we show that DefAM → DefAΩAM in
Lemma 1 is an isomorphism. For surjectivity, let (ΩM)S ∈ DefAΩAM (S) and choose
a minimal AS-free resolution . . . → FS2 → FS1 � (ΩM)S , then a minimal A-free
resolution . . . → F2 → F1

d1−→ F0 � M is obtained by extending FS⊗Sk. By
dualisation of the syzygy of (ΩM)S one obtains a map ϕ : (Ω(ΩM)S)∨ → (Ω2M)∨.
The cokernel of F∨1 → (Ω2M)∨ is Ext2A(M,A) = 0, and so ϕ is surjective which
is equivalent to ϕ⊗Sk being an isomorphism by an argument as in (2). Since the
map ϕ1 : coker((FS1 )∨

ρ1−→ Ω(ΩM)S)∨) = Ext1AS
((ΩM)S , AS) → Ext1A(ΩM,A) =

0 is surjective, it is an isomorphism, and ρ1 is surjective. Then it follows that
((ΩM)S)∨ → (ΩM)∨ is surjective since ϕ⊗Sk is injective. We can therefore lift
the map F∨0 → (ΩM)∨ to a map ρ0 : FS0 → (ΩM)S)∨ where FS0 is AS-free of
the same rank as F0 . Let σ be the composition of ρ0 with the natural inclusion

((ΩM)S)∨ ↪→ (FS1 )∨. Define dS1 := σ∨ and MS := coker dS1 . Then . . . → FS1
dS
1−−→

FS0 � MS gives an AS-free resolution of MS which lifts F � M since the natural
map H1(FS)⊗Sk → H1(F ) = 0 is an isomorphism if it is surjective. In particular
TorS1 (MS , k) = 0 and so MS is S-flat and a deformation of M . We have ΩMS =
(ΩM)S .

For the injectivity, let ψ : ΩMS → ΩM ′
S be an isomorphism of deformations.

Dualisation of the inclusions in FS0 gives surjective maps since Ext1A(M,A) = 0.
There is a lifting τ : (FS0 )∨ → (FS0 )∨ of ψ∨ with τ⊗Sk = idF0 . Let ψ0 := τ∨, then
ψ0 induces an isomorphism MS → M ′

S of deformations since it is compatible with
ψ.



8 RUNAR ILE

For the final statement one checks that A as AA-module is a (mini-)versal family
for DefAk , cf. [12, Ex. 4]. �

3. Duality and maximal Cohen-Macaulay approximation

Various dualities induce isomorphisms of deformation functors which together
with Theorem 1 relates the deformation functors of a MCM A-module and its
maximal Cohen-Macaulay approximation as C-module in Corollary 3.

Lemma 5. Let MS and NS be S-flat deformations of finitely generated A-modules
M and N , for a local k-algebra A. Fix an n > 0. If ExtiA(M,N) = 0 for i = n −
1, n+ 1, then the NS-dual Mν

S := ExtnAS
(MS , NS) is a deformation of ExtnA(M,N)

to S. In particular MS 7→Mν
S gives a map of deformation functors

(12) DefAM −→ DefAMν .

If ExtiA(M,N) = 0 for 0 6 i < n and for i = n + 1 and ExtiA(Mν , N) = 0 for
i = n − 1, n + 1, there is a natural map to the double dual ; cS : MS → (MS)νν .
If c : M → Mνν is an isomorphism, then cS is an isomorphism too, (12) is an
isomorphism and DefAMν → DefAM is the inverse.

Proof. The first part is a special case of [1, 1.9]. Since the composition πν :
ExtnAS

(MS , NS)→ ExtnAS
(MS , NS)⊗Sk → ExtnAS

(MS , N) '−→ ExtnA(M,N) is func-
torial in the map π : MS →M , and since Mν

S is S-flat, the map DefAM → DefAMν is
well defined.

For the second part; choose minimal AS-free resolutions F →MS and G→Mν
S .

We use the notation Mν0
S := HomAS

(MS , NS). Since 0 → F ν00 → . . . → F ν0n−1 →
(ΩnMS)ν0 → ExtnAS

(MS , NS)→ 0 is exact, there is a lifting of the identity map to
a map of complexes τ with τ0 : G0 → (ΩnMS)ν0 and τi : Gi → F ν0n−i for 0 < i 6 n.
Dualising in NS and (pre-)composing with the natural map F → F ν0ν0 gives a map
of exact sequences where cS is the 0th-cohomology:

(13) 0 MS
oo

cS
��

F0
oo

��

F1
oo

��

. . .oo Fn−1
oo

��

ΩnAS
Moo

��

0oo

0 Mνν
S

oo (ΩnAS
Mν)ν0oo Gν0n−1

oo . . .oo Gν01
oo Gν00

oo 0 .oo

If c is an isomorphism, coker(cS)⊗Sk = 0, i.e. coker cS = 0 and since Mνν
S is S-flat

cS too has to be an isomorphism. �

Definition 3 ([8, 9]). Let A be a local Noetherian ring and K and M finitely
generated A-modules. Set GK- dimM = 0 ifM isK-reflexive, i.e.M →Mν0ν0 is an
isomorphism, where Mν0 = HomA(M,K), and ExtiA(M,K) = 0 = ExtiA(Mν0 ,K)
for all i > 0. K is called suitable if GK- dimA = 0, and then let

GK- dimM = inf{n | 0→ Pn → . . .→ P1 → P0 →M → 0}
where the sequence is exact and GK- dimPi = 0 for all i.

An A-module M is GK-perfect if gradeM = GK- dimM where gradeM =
inf{i |ExtiA(M,K) 6= 0}.

We obtain the following corollary of Lemma 5:

Corollary 1. If M is GK-perfect of GK-dimM = n, then ExtnAS
(MS ,K⊗AAS)

is a deformation of ExtnA(M,K) and (12) is an isomorphism.
In particular ; if A is a Cohen-Macaulay and K = ω is a dualising module for A,

then for any Cohen-Macaulay A-module M of codimension n, ExtnAS
(MS , ω⊗AAS)

is a deformation of the codimension n Cohen-Macaulay A-module ExtnA(M,ω) and
(12) is an isomorphism.
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Proof. Generally GK- dimM <∞ implies that GK- dimM = sup{i |ExtiA(M,K) 6=
0}; cf. [9]. Moreover, since M is GK-perfect of GK- dimM = n one has that
ExtnA(M,K) is GK-perfect of GK- dimMν = n and M '−→Mνν is an isomorphism;
cf. [9]. Hence the strongest conditions in Lemma 5 are satisfied for M . If A is a
Cohen-Macaulay ring, then M is GK-perfect if and only if GK- dimM <∞ and M
is a Cohen-Macaulay module, and then GK- dimM = depthA − depthM ; cf. [9].
We have GK- dimM <∞ for all modules M if (and only if) K = ω. �

In the case GA- dimM = 0 there is a Tate resolution which is a minimal complex
F of free A-modules which is exact and withM = coker(F1 → F0) . It is constructed
by splicing a minimal resolution of M with the dual of a minimal resolution of M∨.
Define ΩnAM = coker(Fn+1 → Fn) for all n ∈ Z.

Corollary 2. Suppose M is a finitely generated A-module. If GA-dimM = 0 then
DefAM ∼= DefAΩn

AM
for all n ∈ Z.

Proof. Since GA- dimA = 0, we have GA- dim ΩnAM = 0 for all n ∈ Z. The result
follows immediately from Lemma 4. �

Example 2. If X = SpecA is a normal surface singularity and M is reflexive
on X one does not in general have that DefAM ∼= DefAM∨ unless A is Goren-
stein. If X is the cone over the rational normal curve of degree m, i.e. A is
the Henselisation of k[um, um−1v, . . . , vm] with indecomposable reflexive modules
Mi = 〈ui, ui−1v, . . . , vi〉, then M∨

m−1
∼= M1, but the minimal stratum in a filtra-

tion of the versal base space ([17]) of Mr
m−1 is an isolated singularity of dimension

(r − 1)m while Mr
1 is infinitesimally rigid, see [10]. In fact GA- dimM = 0 ⇒ M

is free. Since Ext1A(Mi,Mj) = 0 for i 6 j + 1 6 m − 1, if M only has such Mi as
direct summands, we have from Lemma 5 a map DefAM → DefAMν where N = Mj ,
and if i 6 j 6 m− 2 this map is an isomorphism.

Definition 4. Suppose A is a local Cohen-Macaulay ring with a dualising mod-
ule ω, then a maximal Cohen-Macaulay approximation of an A-module M is an
exact sequence 0 → Y AM → XA

M → M → 0 of finitely generated A-modules with
injdimY AM <∞ and XA

M a maximal Cohen-Macaulay module.

This is a particular instance of the categorical concept of MCM approximation
introduced by M. Auslander and R. O. Buchweitz, and by Theorem A in [3] there
exists MCM approximations. If M is a Cohen-Macaulay module (so is Gω-perfect)
then the sequence 0 → Y → (ΩnAExtnA(M,ω))ν0 → M → 0, obtained from the
bottom left of (13) via the isomorphism M

'−→ ExtnA(ExtnA(M,ω), ω) with n =
codimM , is a minimal MCM approximation of M .

Corollary 3. Suppose π : C → A is a surjective map of local k-algebras where
C is Cohen-Macaulay and M is a finitely generated A-module which is Cohen-
Macaulay of codimension n as C-module. Let Mν = ExtnC(M,ωC), then there is an
isomorphism

(14) DefAM
'−→ DefAMν and a natural map DefAMν −→ DefCXC

M
.

If I = kerπ is generated by a regular sequence of length n and o(C/I2,M) = 0,
then there are isomorphisms of deformation functors

(15) DefC(XC
Mν ,V )

'←− DefAM ∼= DefAMν
'−→ DefC(XC

M ,V ′)

where V and V ′ are the images of DefAM (k[ε]).
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Proof. Since Mν
S = ExtnCS

(MS , ωC⊗CCS) is an AS-module as CS-module for any
deformation MS of M as A-module, the isomorphism DefCM → DefCMν obtained in
Corollary 1 induce an isomorphism DefAM → DefAMν via the natural change of rings
inclusions.

Remark thatXC
Mν = (ΩnCM)ν0 , and we have maps DefAMν

∼= DefAM → DefCΩn
CM
∼=

DefCΩn
C(M)ν0 obtained in Corollary 1 and Lemma 1. The final statement follows from

the last isomorphism and Theorem 1. �

4. Generalised Knörrer functors

It is not hard to provide general examples of A and C in Theorem 1 such that the
conditions are satisfied for all A-modules M . We will however in Theorem 2 give a
class of examples only partially covered by Theorem 1, and which also generalises
both of Knörrer’s functors, which are discussed at the end of the section.

Definition 5. If I(ρ) is the ideal generated by the maximal minors of the a ×
b-matrix ρ with entries from the maximal ideal of a local ring R, then I(ρ) is
determinental if depth I(ρ) = |a− b|+ 1, the maximal possible value.

Let P be a local k-algebra with residue field k, and let Q and R be the localisa-
tions of the polynomial rings P [u] and P [u, v] respectively, where u = {u1, . . . , up}
and v = {v1, . . . , vq} are indeterminants. Let (fi) and (Fi) be b elements from
mP and mR respectively. Set hi = Fi − fi ∈ R. Moreover, let ψ = (gij) be an
l ×m-matrix (l 6 m) with gij ∈ Q, let gij be the image of gij under the natural
map Q→ Q⊗P k = Q0

∼= k[u]m and put ψ0 = (gij).
With this notation we have:

Theorem 2. Assume (f) is a regular sequence and I(ψ0) is a determinental ideal,
and let A = P/(f), B = Q/((f)+I(ψ)) and C = R/(F ). For any finitely generated
A-module M , let M ′ = M⊗AB which is a C-module via the natural surjective map
C → B.

If hij ∈ (v)(u, v)R and gij ∈ (u)Q for all i, j, and n = q +m− l+ 1 (n = q if ψ
is empty), then there is an isomorphism of deformation functors

σ : DefAM
'−→ DefC(Ωn

CM
′,V )

where V = im DefAM (k[ε]).
If M is a maximal Cohen-Macaulay A-module, then ΩnCM

′ is a maximal Cohen-
Macaulay C-module.

The proof will employ a construction of D. Eisenbud which to anR-free resolution
L of M gives an A-free resolution of M if A is a quotient ring of R by an ideal
generated by a regular sequence.

A ‘sum’ tensor product of Eisenbud systems.

Definition 6 (D. Eisenbud). Let R be a commutative ring and J = (f1, . . . , fn)
a sequence of elements in R. An Eisenbud system relative to J on an R-complex
L = (L, dL) is a system of R-linear endomorphisms {sα} of L as graded R-module
of degree 2|α| − 1 > 1, where α is an n-multi index, satisfying

(16) sαd
L + dLsα = −

∑
β1+β2=α

sβ1sβ2

for |α| > 1 and sid+ dsi is multiplication by fi on L, see [5].
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If L is an R-free resolution of an A = R/J-module M , there exists an Eisenbud
system on L. Let S = R[t1, . . . , tn] and let D = Homgrad.R-alg.(S,R) (where deg ti =
−2) be the divided power algebra. It has generators τ (α) which are dual to the tα

and ti acts on D by subtracting the i-th index in α by 1 if possible, or else ti·τ (α) = 0.
If we put s0 = dL and d =

∑
α t

α⊗sα then D⊗L⊗A = (D⊗RL⊗RA, d) is a complex
of A-free modules, and if (f1, . . . , fn) is a regular sequence then D⊗L⊗A is an
A-free resolution of M , see [5, 7.2].

Definition 7. If E = (L, {sα(f)}) and E ′ = (L′, {sα(g)}) are Eisenbud systems
for the sequences (f1, . . . , fn) and (g1, . . . , gn) in R, then their sum tensor product
is the Eisenbud system E⊗E ′ = (L⊗RL′, {sα(f)⊗1 ± 1⊗sα(g)}) for the sequence
(f1 + g1, . . . , fn + gn).

Proof of Theorem 2. Suppose we have surjections C → B and B → A, and a
flat splitting A → B, (all maps of local k-algebras) and a finitely generated A-
module M . Define σ by the composition DefAM → DefBM ′ → DefCM ′ → DefCΩ (where
Ω = ΩnCM

′) of maps defined in Lemma 2, by change of rings, and in Lemma 1
respectively. Moreover; there is a map DefCΩ → DefB

Ω
where Ω = ΩnCM

′⊗CB by
Lemma 2 if n > pdimC B. Since a deformation of a B-module N is also a de-
formation of N as A-module, there is a map DefB

Ω
→ DefA

Ω
. By the splitting of

B as A-module ΩnCM
′⊗CA becomes a direct summand of ΩnCM

′⊗CB. We claim,
under the additional conditions, that M is a direct summand of ΩnCM

′⊗CA. We
define τ : DefAM → DefA

(Ω,V ′)
where V ′ = im DefAM (k[ε]) by MS 7→ ΩnCS

M ′
S⊗CS

BS
considered as (possibly non-finitely generated) AS-module. That σ is an isomor-
phism now follows analogously to the argument in Theorem 1: Define (id, ηi) for
i > 0 to be the composition of the natural maps ExtiA(M,M)→ ExtiC(M ′,M ′)→
ExtiC(Ω,Ω)→ ExtiB(Ω,Ω)→ ExtiA(Ω,Ω) = ExtiA(M⊕Y ,M⊕Y ). In particular the
(id, ηi) are injective. Considering the obstruction classes as 4-term exact sequences
(see the proof of Lemma 7) one can show that oC(π, σMS)⊗CB 7→ oA(π, τMS), so
oC(π, σMS) = 0 ⇒ oA(π,MS) = 0 and formal smoothness follows for σ. Given
a LS ∈ DefC(Ω,V )(S), then there is an A⊗̂kŜ-module M̂Ŝ and an isomorphism

ϕ̂ : Ωn
ĈŜ

M̂ ′
Ŝ

'−→ L̂Ŝ . Let LB = LS⊗CS
BS and LA the AS-linear direct summand of

LB induced by the splitting of A in B. The image of the map LA → M̂Ŝ , defined by
the splitting and ϕ̂, defines MS . We obtain an isomorphism σMS

∼= LS compatible
with ϕ̂ mod m2

S by [20, 7.11]. Hence σMS is equivalent to the deformation LS and
σ is surjective. For the injectivity of σ, see the proof of Theorem 1.

For B to be A-flat it is sufficient that Q/I(ψ) is P -flat. Since I(ψ0) is determi-
nental, the Eagon-Northcott complex F(ψ0) (cf. [6, A2.6]) by assumption gives a
Q0-free resolution ofQ0/I(ψ0). There is a natural map Hi(F(ψ))⊗P k → Hi(F(ψ0))
which is surjective if and only if it is an isomorphism (as in (2)). Hence F(ψ) is a Q-
free resolution of Q/I(ψ) of length m−l+1 and similarly the Koszul complex K(F )
gives an R-free resolution of C. We have TorPi (Q/I(ψ), k) ∼= TorQi (Q/I(ψ), Q0) =
Hi(F(ψ)⊗QQ0) = Hi(F(ψ0)) = 0 for i > 0 by assumption, and we conclude by the
local criterion of flatness.

If C0 = C⊗k[v]k, we have surjections C → C0 → B, we will show that pdimC C0 =
q and pdimC0

B = m − l + 1. There is a change of rings spectral sequence
Eij2 = ExtiC0

(B,ExtjC(C0,−)) ⇒ Exti+jC (B,−). If i > m − l + 1 or j > q, then
Eij∞ = 0, and thus pdimC B 6 q+m− l+1. We have Tork[v]i (C, k) ∼= TorRi (C,Q) ∼=
Hi(K(F )⊗RQ) ∼= Hi(K(f))⊗PQ = 0 for i > 0 by assumption, hence v is a C-
regular sequence and pdimC C0 = q. Since Q/I(ψ) is P -flat, F(ψ)⊗PA gives an
C0-free resolution of B and the length of F(ψ) is m− l + 1.
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If M is a MCM A-module (and A is Cohen-Macaulay), then M0 = M⊗AC0 is
a MCM C0-module. We have that F(ψ) = F(ψ)⊗QC0 gives a C0-free resolution
of B and Hi(F(ψ)⊗C0M0) ∼= TorC0

i (B,M0) ∼= TorAi (B,M) = 0 for i > 0 since
B is A-flat. We get an “M0”-resolution of M ′ of length m − l + 1. By [6, 18.6]
depthM ′ > depthM0 − (m − l + 1) = depthC0 − pdimC0

B = depthB = dimB
since B is Cohen-Macaulay, so M ′ is a MCM B-module, and ΩnCM

′ is a MCM
C-module since n > pdimC B.

For the claim; let E be an Eisenbud system on a minimal P -free resolution L of
M for the regular sequence (f1, . . . , fb) and E ′ an Eisenbud system on the R-free
Koszul resolution K(v) of Q for the sequence (h1, . . . , hb). Remark that we may
assume sα(h) = 0 for |α| > 1. The tensor product of these complexes with the
resolution F(ψ) gives an R-free complex with H0 = M [u, v]m⊗RQ⊗RR/I(ψ) ∼= M ′

and Hi = TorRi (M⊗PR,Q/I(ψ)) ∼= TorPi (M,Q/I(ψ)) = 0 for i > 0, hence an
R-free resolution of M ′. The tensor product of the Eisenbud systems yields an
Eisenbud system for (F1, . . . , Fb), hence we obtain a C-free resolution (L, d) of M ′.
Assuming (D⊗L⊗A, d) is a minimal A-free resolution of M , we have

(ΩnCM
′)⊗CA = coker dn+1⊗CA = coker(dn+1⊗CA)

= coker(
n⊕
i=0

(
∑

ta⊗sa(f))i+1⊗1⊗1

=
n⊕
i=0

ΩiA(M)⊗AGn−i ,

whereGn−i =
⊕n−i

j=0(
∧n−i−j

Aq)⊗AArkF(ψ)j , since, by assumption, hi ∈ (v)(u, v)R,
so we may assume I1(si(h)) ⊆ (u, v)R and thus that the D⊗K(v)⊗C- and F(ψ)-
differentials vanish when applying −⊗CA. Non-minimality of (D⊗L⊗A, d) will only
give certain extra free addends in coker(dn+1⊗CA), the conclusion is still valid. �

Remark 3. Any k-algebra B resolved by a finite functorial complex like F may be
used to obtain results similar to Theorem 2.

The extra conditions ensure that o(C/I2,M) = 0 so that in particular Theorem
2 (with p = 0) gives examples of C → A satisfying the conditions in Theorem 1 for
all A-modules. Let I = (u, v)C = ker(C → A) and let (L, dL) � M be a P -free
resolution of M . The regular sequence (f) defines a 0-homotopic multiplication
map m : E1⊗PL0 → L0 where E1

∼= P b, let s : E1⊗PL0 → L1 be a lifting of m,
i.e. dL1 s = m. Then

FP : F0
dL
1←−− F1

(s,dL
2 )←−−−− E1⊗F0 ⊕ F2

gives, after applying −⊗PA, an A-free 2-presentation (L, d) of M , see [12, Lem. 3].
There is a natural map P → C, and FP⊗PC/I2 gives a lifting of L to C/I2 as
graded module. By [12, Prop. 3] (see also Lemma 3) we have that o(C/I2,M) is
induced from d1s. However d1s = (f) ≡ (F ) ≡ 0 mod I2 since hij ∈ I2.

Observe that o(C/I2,M ′) may be non-zero even though o(C/I2,M) = 0, which
for instance is the case with Knörrer’s H-functor, see below.

Lemma 6. Let π : C → A be a surjective map of local k-algebras. Assume that
I = kerπ is generated by a regular sequence and that n > pdimC A. Let M be any
finitely generated A-module. Then there is an isomorphism of deformation functors

(17) σ : DefCΩn
CM

'−→ DefA(Ωn
CM⊗CA,V )

where V = im DefCΩn
CM

(k[ε]).
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Proof. The map σ is the one given in Lemma 2. If N is a C-module and the length
of the regular sequence is r, one has that ΩrC(N⊗CA) ∼=

⊕r
j=0

∧r−j
Cr⊗CΩjCN if

and only if I·ExtiC(N,−) = 0 for all i > 0, by [21, 2.2]. Set N = ΩnCM , then we
have ExtiC(N,−) = Exti+nC (M,−) (for i > 0) which certainly is annihilated by I.
Define τ : DefCN → DefC

(Ωr
CN,V

′)
, where N = N⊗CA and V ′ = im DefCN (k[ε]), by

NS 7→ ΩrCS
NS . The proof is concluded by proving surjectivity and injectivity of σ

as in the proof of Theorem 1. �

The Knörrer functors.

Definition 8 (D. Eisenbud). If f is a regular element in a ring P , then a matrix
factorisation of f is a pair of linear maps (ρ, σ) of free P -modules L0

σ−→ L1
ρ−→ L0

of finite rank such that ρσ = f · idL0 and σρ = f · idL1 .

A matrix factorisation is a special case of an Eisenbud system, see Definition 6.
If A = P/(f) one obtains an A-free resolution . . .

ρ−→ L0
σ−→ L1

ρ−→ L0 � M where
ρ = ρ⊗PA etc. If P is a regular ring, then M is a MCM module, and any MCM
A-module is (if P is local) given by a matrix factorisation of f . See [5].

Definition 9 (H. Knörrer). With notation as before Theorem 2, let F = f + v2

(i.e. h = v2, p = 0, q = 1), then the G-functor in [18] takes the matrix factorisation
(ρ, σ) of f over P to the matrix factorisation of F (in block matrix notation)

G(ρ, σ) =
([ ρ v· id
−v· id σ

]
,

[
σ −v· id
v· id ρ

])
= (Σ,Σ′)

over R.

If M = coker ρ then M is an A = P/(f)-module. Let G(M) = coker Σ which is
a C = R/(F )-module.

Corollary 4. There are isomorphisms of deformation functors

(18) DefAM
'−→ DefC(G(M),V ) and DefCG(M)

'−→ DefA(M⊕ΩAM,V ′)

where V = im DefAM (k[ε]) and V ′ = im DefCG(M)(k[ε]).

Proof. Let L′ = L⊗PR⊗RC. One checks that

(19) M � L′0
[v· id, ρ]←−−−−− L′0⊕L′1

Σ←− L′1⊕L′0
Σ
′

←− . . .

gives a C-free resolution of M . Hence G(M) = ΩCM and the conclusions follow
from Theorem 1 and Lemma 6 since G(M)⊗CA = M⊕ΩAM . �

Example 3. Let P and R be the Henselisations of k[x] and k[x, v] respectively,
and A = An = P/(f) where f = xn+1, so that C = R/(F ) where F = f+v2. Let
M = k, the residue field of A, then G(k) = mC and G(k)⊗CA = k⊕mA. Consider
the first three maps of deformation functors in (9), but without restricting to the
images of DefAk (k[ε]). In fact we have DefCk

'−→ DefCmC
. By the general identification

DefAM (k[ε]) ∼= Ext1A(M,M), one calculates DefAk (k[ε]) = 〈ξ11〉, DefCG(k)(k[ε]) =
〈η1, η2〉, and DefAk⊕mA

(k[ε]) = 〈ξij〉16i,j62 . The maps give ξ11 7→ ω1
C(ξ11) = η1 7→

ξ11+ξ22 where ξ22 = ω1
A(ξ11), and η2 7→ ξ12+ξ21 . Let the variables tij and si at

the cotangent spaces correspond to the k-duals of the ξij and the ηi , then we know
by Lemma 4 that S1 = k[t11]h/(tn+1

11 ) and S2 = k[s1, s2]h/(sn+1
1 +s22) are the versal

deformation rings of DefAk and DefCG(k) respectively. The obstruction calculus,
involving cup and Massey products (see [19, 25, 12]), gives the obstruction ideal.
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It terminates after n + 1 steps in this case, and we obtain the versal deformation
space S3 for DefAk⊕mA

as

(20) S3 = k[t11, t12, t21, t22]h/
(
tn+1
11 +t12t21 , t11t12−t12t22 ,
t21t11−t22t21 , tn+1

22 +t21t12

)
where the equations are valied even without assuming that the tij commute. The
choice of liftings of the dual maps of the Zariski tangent spaces of the functors to the
deformation rings given by t11, t22 7→ s1 7→ t11, and t12, t21 7→ s2 7→ 0 is respected
by the equations. However, there is no map S1 → S3 such that the composition
S1 → S3 → S2 → S1 is the identity! Hence there cannot be any “projection” map
DefAk⊕mA

→ DefAk for which the natural DefAk → DefAk⊕mA
is a section.

Using an existence result of A. Ishii in [17], T. S. Gustavsen and the author in
[11] show that the versal deformation space of a (not necessarily indecomposable)
reflexive module on a rational double point is irreducible, and by Theorem 3 below
this result is extended to MCM modules on the simple singularities of even dimen-
sion. So for instance is SpecS3 irreducible. However, the above example shows that
for the An-singularities with n odd in odd dimension, there are (indecomposable)
MCM modules which have versal deformation spaces with two components.

Definition 10 (H. Knörrer). With notation as before Theorem 2, let F = f + uv
(i.e. h = uv, p = q = 1), then the H-functor in [18] takes the matrix factorisation
(ρ, σ) of f over P to the matrix factorisation of F (in block matrix notation)

H(ρ, σ) =
([ ρ u· id
−v· id σ

]
,

[
σ −u· id
v· id ρ

])
= (Φ,Φ′)

over R.

Let A = P/(f) and C = R/(F ), then M = coker ρ is an A-module and H(M) =
cokerΦ is a C-module. Knörrer’s main result is that H induces an equivalence
between the stable category of MCM A-modules and the stable category of MCM
C-modules in the case P is complete and regular, see [18, 3.1].

With this notation we have:

Theorem 3. If (ρ, σ) is a matrix factorisation of f , M = coker ρ and H is the
Knörrer functor, then

(21) DefAM ∼= DefCH(M) .

Proof. Let L′ = L⊗PR⊗RC. One checks that

(22) M ′ � L′0
[v· id, ρ]←−−−−− L′0⊕L′1

Φ←− L′1⊕L′0
Φ
′

←− . . .
gives a C-free resolution of M ′ = M⊗AB (with C-module structure induced from
the natural surjection C → B). Hence H(M) = ΩCM ′ and the conclusion fol-
lows by Theorem 2 if we can prove the tangential isomorphism DefAM (k[ε]) '−→
DefCH(M)(k[ε]). Since σ is injective we have Ext1A(M,A) = 0, which implies that

Ext1A(M,M) ∼= HomA(ΩAM,M)
∼= HomC(H(ΩCM),H(M)) by [18, 3.1]
∼= HomC(ΩCH(M),H(M)) by [18, 3.5]
∼= Ext1C(H(M),H(M))

where Hom is the quotient of stable maps. �

Remark 4. Notice that H is also well defined for matrix factorisations over non-
local rings. If we restrict attention to functors of Artk then the conclusion in
Theorem 3 is still valied. The argument in Theorem 2 can be followed for the



DEFORMING LIFTABLE MODULES AND GENERALISED KNÖRRER FUNCTORS 15

syzygy defined as H(M) only using the obstruction theory. For the tangential
result one explicitly constructs a chain homotopy from H(ξA) to a given cocyle ξC
with [ξC ] ∈ Ext1C(H(M),H(M)) where ξA = ξC⊗CA, proving surjectivity, as was
done in [14, 7.4.18]. The result was first proved in 1990 by the author in his master’s
thesis, see [13, 2.5.4]. A version for P regular, i.e. for maximal Cohen-Macaulay
modules, appeared in 1996, see [22, 3.16]. The obvious generalisation of H is
obtained if we in Theorem 2 assume that ψ is empty. Indeed the initial motivation
for this work was to understand what was behind Theorem 3 and thereby possibly
obtain generalisations of it.

Remark 5. There is a short exact sequence

(23) 0→M ′ −→ H(M)⊗CB −→ (ΩAM)′ → 0 .

The exact sequences arising from applying HomB(H(M),−) and HomB(−, H(M))
splits into short exact sequences since the connecting maps may be shown to be
zero. E.g.

(24) 0→ Ext1A(ΩAM,M)→ Ext1B(H(M), H(M))→ Ext1A(M,M)→ 0

which in particular shows that we cannot expect isomorphism in Lemma 6 without
restricting to the image of the tangent space.

5. Smoothing of MCM modules, lifting of the residue field

After defining smoothable modules, we show that if the “source” module is
smoothable, then so is the “target” module in several of the maps of deformation
functors considered above. Finally we show that the drop in embedding dimension
observed in Theorem 2 is equivalent to liftability of the residue field.

Assume that DefAM has a versal family (R,MR) which we fix, where we assume
that the Zariski tangent space is of minimal dimension at the central point (see
the introduction for the existence of versal families). Since DefAM is locally of finite
presentation, there exists a germ representing (R,MR), i.e. an affine k-pointed k-
scheme Rft of finite type and an Rft-flat family of modules MRft , finitely generated
as ARft = A⊗kRft-module, such that the Henselisation at the k-point gives (R,MR).
Let N be any A-module and suppose k is an algebraically closed field.

Definition 11. Let Loc(N) be the set of k-points t ∈ SpecRft such that the
pullback Mt of MRft to t is isomorphic to N . Then M locally deforms to N ,
denoted M 99K N , if the Zariski closure Loc(N) strictly contains the central k-
point corresponding to M . We say that M is smoothable if M locally deforms to a
free module.

It follows that the relation 99K is independent of choice of germ, and is transitive
by openness of versality, see [17, 2.13]. Results on 99K are found in [10] and in [11].

Corollary 5. Let DefA1
M1
→ DefA2

(M2 ,V ) be the map of deformation functors of
either Theorem 1, the second half of Corollary 3, Theorem 2 or Lemma 6, with
corresponding conditions. Assume furthermore that there exists a versal family for
DefAi

Mi
, i = 1, 2. If M1 is smoothable, then M2 is smoothable.

Proof. Assume first that we are in the situation of Theorem 1. We may assume
that there is a C⊗kRft-projective resolution FRft � MRft which after Henselisation
at the central k-point gives a CR-free resolution FR � MR which is minimal for
the n + 2 first terms. Suppose Mt

∼= Ar, then ΩnCMt
∼= Cr by assumption on n

and I. So if F (t) = FRft⊗Rftk(t) and R(t) is the Henselisation of Rft at t, then
ΩnCR(t)

MR(t)⊗R(t)k(t) is a direct summand of coker(Fn+1(t) → Fn(t)) ∼= C-free ⊕
ΩnCMt, and hence ΩnCR(t)

MR(t)⊗R(t)k(t) is C-free.
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In the situation of Theorem 2, DefAM → DefB(M ′,V ′) is an isomorphism where
V ′ = im DefAM (k[ε]), and so MR⊗AR

BR gives a versal family of DefB(M ′,V ′) and if
Mt
∼= Ar then M ′

t
∼= Br. By the assumption on n we get that ΩnCM

′ is smoothable
as above.

In the situation of Lemma 6, ((ΩnCM)Rft⊗CA)⊗Rftk(t) ∼= (ΩnCM)t⊗CA is A-free
if (ΩnCM)t is C-free. �

In Theorem 2 with p = 0 we have that the drop of embedding dimension equals
the drop of dimension; edimC− edimA = dimC−dimA. This is not coincidental.

Lemma 7. Suppose π : C → A is a surjective map of local rings and assume k is
the residue field of A. If I = kerπ is generated by a regular sequence of length n,
then

(25) o(C/I2, k) = 0⇐⇒ edimC = edimA+ n.

Proof. (⇐): Let L � k be a minimal C-free resolution of k = C/(x1, . . . , xe),
e = edimC. Choose an Eisenbud system {sα} relative to I = (h1, . . . , hn) on
L, and let F = (D⊗CL⊗CA, d), as given after Definition 6. Then o(C/I2, k) ∈
Ext2A(k, k)⊗kI/mI is represented in the complex HomA(F, k)⊗kI/mI by the cocycle

η given as F2 = L
n

0 [2]⊕ L2
(id[2],0)−−−−−→ L

n

0 = An composed with An � I/mI, see [12,
Prop. 3]. We have si : L0 → L1 with (x1, . . . , xe)si = hi . We may assume that
hi = xi + gi , gi ∈ m2 for i = 1, . . . , n. Hence si = ei + δi where I(δi) ⊆ m, and η is
the coboundary induced from [id | 0] : L1 → Ln0 composed with Ln0 � I/mI.

(⇒): Applying −⊗CA to the short exact sequence 0 → mC → C → k → 0
gives a 4-term exact sequence 0 → TorC1 (k,A) → mC⊗CA → A → k → 0. It
represents o(C/I2, k), cf. [4, 3.5]. The connecting Ext1A(mC , k)→ Ext2A(k, k) is an
isomorphism, so o(C/I2, k) = 0 implies that

(26) 0→ TorC1 (k,A) −→ mC⊗CA −→ mA −→ 0

splits. Since TorC1 (k,A) ∼= I/mI, we have, after applying −⊗Ak to (26), a splitting
mC/m

2
C = mA/m

2
A ⊕ I/mI. �
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