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Abstract

Solving the time-independent Schrödinger equation for large systems is essential in many
areas in quantum chemistry, such as molecular dynamics or electronic structure analysis.
Semiempirical methods have traditionally been used for this due to their computational
efficiency. However, these methods, while computationally efficient, often suffer from poor
accuracy compared to ab initio methods, with their performance greatly dependent on the
choice of parameters. Recently, machine learning models have been employed to accurately
predict molecular properties, with Message-Passing Neural Networks (MPNNs) garnering
particular interest for their ability to capture complex relationships within the data. Yet
few have incorporated semiempirical methods as part of a broader machine learning
architecture. In this study, we used an MPNN to serve molecule-dependent parameters
to the semiempirical method PM3, aiming to leverage the strengths of both methodologies.
The model, trained on the QM9 dataset, demonstrated substantial improvements over the
bare PM3 method with a negligible increase in computational cost. The model was further
validated on a distinct set of molecules, showing enhanced performance in comparison to
the PM3 method, reinforcing the potential applicability and robustness of this approach.
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Chapter 1

Introduction

The aim of this thesis is to develop a Machine Learning (ML) model trained on the QM9
dataset [1] to predict the parameters for the PM3 [2–4] which is a well-established approach
in computational chemistry, and this work aims to enhance its parameterization through
iterative training. This means that after each iteration in the training procedure, the PM3
parameters will be updated by the influence of the weights in the ML model. These updated
parameters are then used within the PM3 method to calculate internal energy at 0 K, and
this calculated energy is compared with the target energy in the dataset. This process is
then repeating in the training procedure until the model achieves convergence or meets
other predefined stopping criteria. This research seeks to address the challenge of accurately
predicting PM3 parameters, which are pivotal in the field of computational chemistry. By
employing an iterative ML approach, it aims to bridge the gap between traditional quantum
chemistry and modern computational techniques.

The ML model used in this study will be a Message-Passing Neural Network (MPNN),
introduced by Gilmer et al. [5]. The choice of this network is motivated by several factors.
Firstly, the graph structure of the MPNN is inherently well-suited to represent molecules, a
capability that has been specifically demonstrated on the QM9 dataset by Gilmer et al. This
suitability arises from the fact that MPNNs can naturally represent molecules as graphs,
making them invariant to the ordering of atoms. This is a critical feature in molecular
modeling, as predictions must not depend on how atoms are labeled or arranged within
the molecule. Moreover, MPNNs offer flexibility in handling various types of input data,
including those of variable length, such as the molecules found in the QM9 dataset. This
scalability further underscores the appropriateness of MPNNs for this study.

After the design and implementation of the model, which is in a sense a hybrid model
integrating the MPNN with the PM3 method, the next phase involves assessing the model’s
accuracy and robustness. This will be carried out by testing the model on unseen data
consisting of 10000 molecules and its performance will be directly compared against the
benchmark and the PM3 method.

Through the implementation, testing, and analysis of this research and future research,
the hope is to provide insights into the seamless integration of two distinct computational
paradigms: the MPNN and the PM3 method. By exploring how these models can interact
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and merge into a more sophisticated methodology, this study aims to contribute new
perspectives to the field of computational chemistry. While this task is ambitious, the
primary aim is to investigate the feasibility and challenges of combining machine learning
with traditional quantum chemistry techniques in this was and within the specific context of
the PM3 method. The objective is to study how these methods can be combined, recognizing
both the new opportunities and the challenges that this mix can create. The work aims to
find a middle ground between what’s possible and what’s practical, striving to give a clear
view of a complex task that brings together different scientific fields.

This thesis consists of the five part. The first part which is this introduction 1, the second
part is about fundamental theory to this work II. It contains chapters on basic many-body
quantum mechanics relevant for quantum chemistry 2, Hartree-Fock theory 3, as well as
theory on semiempirical methods 4. It also contains a chapter on optimization 5 as well
as a chapter on machine learning which includes Recurrent Neural Networks (RNNs) and
Graph Neural Networks (GNNs) as they’re essential in this study. The third part of this
thesis III goes into the specific theory and implementation and design of the MPNN-PM3
Hybrid model. It contains a chapter about the QM9 dataset and the continuous kernel-based
convolutional operator. The part also includes a chapter about the model 8, which goes into
the theory and logic of the MPNN-PM3 Hybrid model. The fourth part contains the results
of this work IV, and lastly the fifth part contains discussion about the project and future
work V.

3



Part II

Theory
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Chapter 2

Basic many-body quantum mechanics

2.1 The Hydrogen Atom

Usually, when we work with quantum mechanics, we want to solve the non-relativistic time-
independent Schrodinger equation, which takes the form,

Ĥ|ψ⟩ = E|ψ⟩

where Ĥ is the Hamiltonian of the system of interest and E is its corresponding energy.
|ψ⟩ ∈ H is the state vector1 of the system we are solving for and H is the Hilbert space,
the space of all states system’s particles can be in. Usually, when dealing with particles,
it is useful to represent the state in the position basis. This leads to the concept of wave
function ψ which is the projection of the state vector into the position representation. The
wave function is a probability amplitude which encapsulates all the information that can be
known about the system and finding the wave functions squared magnitude |ψ(r)|2 gives
the probability density of finding a particle at position r. For simplicity, we will assume that
r ∈ R3 where R3 is the set of all three-dimensional real numbers, specifying the position of
a particle. For a hydrogen atom, the Schrödinger equation is(

− h̄2

2me
∇2

me
− e2

4πϵ0|r
|
)

ψ(r) = Eψ(r),

where the first term is the kinetic energy of the electron and h̄ is the reduced Planck’s
constant ( h

2π ), me is the mass of the electron, and ∇2
e is the Laplacian operator which

represents the second spatial derivatives with respect to the electron’s coordinates. The
second term of the equation represents the potential energy term of the electron due
to the electrostatic attraction between the negatively charged electron and the positively
charged nucleus. The quantity −e is the charge on the electron and the factor e2 takes
into account both charges of the the nucleus (+e) and the electron (−e). Lastly, ϵ0 is the

1Vectors on the form |ψ⟩ are reffered to as kets while vectors on the form ⟨ψ|, which are the adjoint, or complex
conjugate of the ket vectors, are called bras. The inner-product ⟨ϕ|ϕ⟩ is called a braket and is anti-linear in the
first coordinate.
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vacuum permittivity which characterizes the amount of resistance that a vacuum offers to
the formation of an electric field2.

2.2 Molecular Hamiltonian

Solving the Schrödinger equation for a seemingly simple quantum system such as the
Hydrogen atom can be a difficult task. The Hydrogen atom is also one of the simplest
models we solve in quantum chemistry as it just consists of one nucleus and one electron, as
well as their interaction. Since we in quantum chemistry are often interested in finding
molecular properties, this usually involves the use of electronic structure theory which
involves solving the Schrödinger equation for a molecular Hamiltonian. The molecular
Hamiltonian describes the total energy of a molecular system and encapsulates the entire
dynamics of the system according to quantum mechanics.

For a system with many interacting electrons and nuclei, the Hamiltonian operator

Ĥmol = −
n

∑
i=1

h̄2

2me
∇2

ei
−

N

∑
I=1

h̄2

2mI
∇2

I −
n

∑
i=1

N

∑
I=1

ZIe2

4πϵ0riI
+

N

∑
I<J

ZI ZJe2

4πϵ0rI J
+

n

∑
i<j

e2

4πϵ0rij
(2.1)

where me is the mass of the electron and mI is the mass of the Ith nuclei respectively.
rij = |ri − rj| is the absolute distance between the ith and jth electron, riI = |ri − rI | is the
distance between the ith electron and Ith nuclei, and rij = |rI − rJ | is teh distance between
Ith and Jth nuclei. ∇2

ei
and ∇2

I are the Laplacian operators with respect to electron i and
nucleus I, while ZI is the atomic number of nucleus I. The first term in the molecular
Hamiltonian, T̂e, is the kinetic energy operator for the n electrons while the second term,
T̂N , is the kinetic energy operator for the N nuclei. The third term, V̂eN , gives the Coulomb
attraction between the electrons and the nuclei while the forth and fifth terms, V̂NN and V̂ee,
describe the repulsion between the nuclei and between the electrons respectively. We can
hence use the labels of the operators to write the molecular Hamiltonian as such:

Ĥmol = T̂e + T̂N + V̂eN + V̂NN + V̂ee.

The Electronic problem

Solving the Schrödinger equation for a molecular Hamiltonian can be a difficult task as we
are dealing with coupled equations for the nuclei and electrons. For example, it requires us to
solve for the motion of both electrons and nuclei simultaneously, as well as their correlation.
Solving for such systems leads to a coupled differential equation which is very difficult to
solve mathematically. Considering the molecular Hamiltonian from Equation 2.1, we can
represent it using atomic units, meaning we set h̄ = me = mI = e = π = ZI = 1. The
molecular Hamiltonian can then be written

Ĥmol = −
n

∑
i=1

1
2
∇2

ei
−

N

∑
I=1

1
2
∇2

I −
n

∑
i=1

N

∑
I=1

1
riI

+
N

∑
I<J

1
rI J

+
n

∑
i<j

1
rij

. (2.2)

2The factor 1
4π comes from the formulation of Coulomb’s law in three-dimensional space. The factor takes

into account the way the electric field spreads out in all directions. We can think about it as a sphere with surface
4πr2 where r is the distance from the charge.
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However, since solving the Schrödinger equation for a molecular system is difficult, we
will utilise the Born-Oppenheimer approximation (BOA) [6]. The BOA is based on the
critical observation that the mass of a nucleus is much greater than the mass of an electron
and consequently, nuclei move much slower relative to the electrons. It leverages this
mass disparity by treating the nuclear positions as fixed parameters when considering the
electronic motion. Essentially, it means that the electrons "adjust" instantaneously to any
change in the nuclear position, meaning they move in a field of nuclei. The resulting
equation can then be solved with the positions of the nuclei set as parameters which will then
result in a potential energy surface (PES) forming the basis for solving the nuclear motion
[7, Ch.3]. The total wave function ψ(r, R), which now depends on both the electronic and
nuclear position as the equation is coupled, can then be factorized into a product of electronic
and nuclear wave functions. It then becomes

ψ(r, R) = ψ(r; R)χ(R).

Here, for easier distinguishability of the position of the electrons and the nuclei, we will
use r to denote just the electronic coordinates and R to denote the nuclear coordinates. The
electronic wave function ψ(r; R) depends parametrically on the nuclear positions, while the
nuclear wave function χ(R) is a function of the nuclear coordinates alone.

By using the BOA, the second term in Equation (2.2) (kinetic energy for the nuclei) is then set
to zero, and the last term (repulsion of the nuclei) is set as a constant. The last term can then
be neglected because adding a constant to an operator does not effect the corresponding
operator eigenvectors as it only adds to the eigenvalues. Doing this, we then get the
electronic Hamiltonian

Ĥelec = −
n

∑
i=1

1
2
∇2

ei
−

n

∑
i=1

N

∑
I=1

1
riI

+
n

∑
i<j

1
rij

+ V̂NN

This electronic Hamiltonian represents the motion of n electrons in the field of N nuclei
and solving it yields the corresponding electronic energy and wave-function. Hence the
Schrödinger equation becomes

Ĥelecψelec = Eelecψelec

where ψelec is the corresponding electronic wave-function and Eelec is the corresponding
electronic energy for Ĥelec.

2.3 Orbitals and Slater determinant

We know that elementary particles can be either fermions, such as electrons, or bosons, like
photons. Both fermions and bosons are types of indistinguishable particles. This concept
arises due to the fact that since we represent particles as mathematical objects, the wave
function, which gives the probability of finding a particle in that particular location or
with a particular set of properties. When there are two or more indistinguishable particles
described by the same wave-function, it becomes impossible to distinguish one particle from
another.
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2.3.1 Spin orbitals

As we are in quantum chemistry primarily interested in many-body systems containing
electrons, we will stick to the commonly accepted notation and define an orbital as the spatial
part of the wave function of a single electron. For wave functions describing the electrons in
a molecule, we will be using Molecular Orbitals (MOs). A spatial orbital is a wave function
which depends on the position r of an electron and describes the spatial distribution of that
particular electron. Spatial orbitals are assumed to be orthonormal, meaning:∫

ψ∗i (r)ψi(r)dr = δij

where i and j are the indices labeling different wave functions in a quantum system. The
wave function ψ∗i (r) indicates the complex conjugate of ψi(r) while dr = dxdydz represents
an infinitesimal volume element in the space where the wave functions 3. Lastly, δij is the
Kronecker delta defined as:

δij =

{
1 if i = j,
0 if i ̸= j.

If i = j then the integral of the product of a wave function with its complex conjugate over
all space is 1, representing the normalization condition of the wave function. If i ̸= j then the
integral is 0, indicating that the two different wave functions are orthogonal to each other.

But the position of an electron doesn’t just depend on its spacial coordinates r, but also its
spin. Therefore, for a complete description of the wave function of an electron, it is necessary
to include spin. Therefore, to include this, we will define the spin functions σ1 =↑ indication
spin up, and σ2 =↓ indicating spin down. Again, if the spatial orbitals are orthonormal then
the spin orbital is also orthonormal∫

ψ∗i (ν)ψi(ν)dν = δij

where ν indicates both spacial and spin coordinates.

For the remainder of this chapter, the wave function ψi will always be used to describe a spin
orbital.

2.3.2 Pauli Exclusion Principle

When defining a multi-electron wave function, it is important to consider the Pauli Exclusion
Principle [8]. It states that two or more fermions cannot occupy the same quantum state
within a quantum system simultaneously. This is because if two electrons occupy the same
position r, their spin value has to be opposite. Electrons, and fermions in general are
therefore said to be antisymmetric.

Suppose we have one electron in the state ψi and one electron in state ψj, then The combined
wave function of of two electrons

Ψ(ν1, ν2) =
1√
2

[
ψi(ν1)ψj(ν2)− ψj(ν2)ψi(ν1)

]
where the factor of 1√

2
is the normalization constant and Ψ is a multi-electron wave function,

or two-electron in this case [9].
3In an integral, this would mean that we integrate over all all three spacial dimentions.
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2.3.3 Slater Determinant

The concept of antisymmetry for two-electron systems can also be extended to larger multi-
electron systems by introducint the Slater Determinant (SD) [10]. For an N electron quantum
system, the SD is as follwos:

Ψ(ν1, ν2, . . . , νN) =
1√
N!

∣∣∣∣∣∣∣∣∣
ψi(ν1) ψi(ν2) . . . ψi(νN)
ψj(ν1) ψj(ν2) . . . ψj(νN)

...
...

. . .
...

ψn(ν1) ψn(ν2) . . . ψn(νN)

∣∣∣∣∣∣∣∣∣ (2.3)

where the factor 1√
N!

is the normalization factor for a system of N electrons. The N electrons
occupy N spin orbitals without any specification of which electron is in which orbital. The
rows are labeled by the electrons while the columns are labeled by the spin orbitals. We
can see that the SD meets the criterion for antisymmetry as interchanging the coordinates of
electrons corresponds to interchanging two rows of the SD whih then changes the sign of the
determinant. We also see that two electrons can occupy a spin orbital as it would make two
columns of the determinant equal to zero which would as a consequence make the entire SD
equal to zero.
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Chapter 3

Hartree-Fock Theory

3.1 Basic description

The Hartree-Fock method represents an essential evolution in quantum chemistry, linking
the foundational theories with modern computational practice. Through the use of
self-consistent field equations, it allows for the systematic approximation of electronic
interactions within a molecular system, despite certain simplifications such as the neglect
of electron correlation. As a key method providing insights into electronic structure and
behavior, it has laid the foundation for more advanced techniques that explore intricate
electron-electron correlations, thus offering a bridge between historical theoretical advances
and contemporary research applications.

In Hartree-Fock theory, the primary aim is to locate a single Slater Determinant that
minimizes the expectation energy. This is realized through the application of variational
principles, fostering an optimal depiction of the ground state. The energy of this Slater
Determinant can be succinctly articulated as:

E = ⟨ψ|Ĥelec|ψ⟩ (3.1)

where Ĥelec is the electronic Hamiltonian from Equation (2.2). This formulation accentuates
Hartree-Fock’s key objective and its role in bridging computational efficiency with a
meaningful representation of electronic interactions, thereby forming a vital step in quantum
chemical analysis.

To begin with, we will write the electronic Hamiltonian as the sum of a one and two-body
operator

Ĥelec =
n

∑
i=1

hi +
n

∑
i<j

gij + V̂NN

where

hi = −
1
2
∇2

ei
−

N

∑
I=1

ZI

rIi

and
gij =

1
rij

.
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Here, we have introduced the one-electron operator, or core-Hamiltonian, hi, which
describes the motion of electron i in the field of all the nuclei, and gij is the two-electron
operator giving the electron–electron repulsion. Further, we can now define

Jij =
∫

ψi(1)∗ψj(2)∗
1

r12
ψi(1)ψj(2)d1d2

and
Kij =

∫
ψi(1)∗ψj(2)∗

1
r12

ψi(2)ψj(1)d1d2

where we have used the short-hand definition and matrix element Jij is the Coulomb integral
and the matrix element is the Kij is the exchange integral and dν1dν2 denotes the integration
over spatial and spin coordinates of electrons 1 and 2. The matrix element Jij represents the
electrostatic repulsion between an electron in the spin-orbitals ψi and one in ψj while the
exchange integral has no classical analogue. It originates mathematically from terms in the
expansion of the Slater determinant that are distinct solely in the exchange of electrons.

By using the Coulomb and exchange terms, we can derive the energy expression (3.1) of the
system in the following manner:

E =
n

∑
i=1
⟨ψi(1)|h1|ψi(1)⟩

+
n

∑
i<j

(
⟨ψi(1)ψj(2)|g12|ψi(1)ψj(2)⟩ − ⟨ψi(1)ψj(2)|g12|ψi(2)ψj(1)⟩

)
+ V̂NN

=
n

∑
i=1

hi + ∑
i<j

(Jij − Kij) + V̂NN

=
n

∑
i=1

hi +
1
2 ∑

ij
(Jij − Kij) + V̂NN (3.2)

The factor of 1
2 in in the third term accounts for the fact that the summation over i < j

includes only unique pairs, while the summation over all ij counts each pair twice. Thus,
the expression is halved to avoid double-counting.

Further, we can rewrite the energy by introducing the Coulomb and exchange operators:

Ĵiψj(2) = ψj(2)
∫

ψ∗i (2)
1

r12
ψi(2)dν2

and
K̂iψj(2) = ψi(2)

∫
ψ∗i (2)

1
r12

ψj(2)dν2

leading to the energy expression as:

E =
n

∑
i=1
⟨ψi|hi|ψi⟩+

1
2 ∑

ij
(⟨ψj| Ĵi|ψj⟩ − ⟨ψj|K̂i|ψj⟩+ V̂NN.

We can now introduce the Fock operator which is central in HF theory:

F̂i = hi +
n

∑
j=1

( Ĵj − K̂j)

11



which is often expressed as a sum of the core-Hamiltonian operator hi and the effective
potential veff, where veff = ∑n

j=1( Ĵj − K̂j). This leads us to the Hartree-Fock equation:

F̂iψi = ϵiψi. (3.3)

which serves as the cornerstone of the of the HF method, where the spin-orbitals are the
eigenstates, and their corresponding energies are the eigenvalues.

3.2 Basis-set

Solving the Hartree-Fock equations exactly is only possible for small highly symmetric
systems. These systems include atoms which are spherical symmetric as well as molecules
that exhibit significant symmetry in their geometric or electronic structure, often leading to
simplifications in solving the equations. It is therefore normal to introduce basis functions
for the expansion of the spatial part of the spin orbitals and solve a set of matrix equations.
These basis functions are typically chosen from a predefined set that captures the essential
features of the quantum system, allowing for a more tractable numerical solution. When
the basis set approaches completeness, the spin-orbitals that one obtains will approach the
exact Hartree-Fock spin orbitals. Even though the Hartree-Fock equation from (3.3) has the
form of a linear equation, it is in fact a pseudo-eigenvalue equation. This characteristic
arises because, unlike in a true eigenvalue equation where the operator is not dependent
on the function on which it acts, here the Fock operator has functional dependence through
the Coulomb and exchange operators. A pseudo-eigenvalue equation involves this type of
functional dependency, adding complexity to the mathematical structure. This makes the
Hartree-Fock equations nonlinear, which necessitates solving them iteratively [11, Ch.3]. A
set of functions that is a solution to Equation (3.3) is called self-consistent field (SCF) orbitals.
It is these orbitals we aim to find through the iterative process, which is known as the SCF
loop.

However, expanding upon the choice of basis functions mentioned earlier, essentially all
calculations use a basis set expansion to express the unknown MOs, or the SCF orbitals, in
terms of a set of known functions. The selection of basis functions may encompass a diverse
array, including but not limited to exponential, Gaussian, polynomial, cube functions,
wavelets, and plane waves.

• They should have a behavior that agrees with the physics of the problem, since this
ensures that the convergence as more basis functions are added is reasonably rapid.
Specifically, the functions must exhibit a behavior that ensures a reasonably rapid
convergence as additional basis functions are incorporated. In the context of bound
atomic and molecular systems, this necessitates that the functions diminish to zero as
the distance between the nucleus and the electron grows large.

• The chosen functions should make it easy to calculate all the required integrals [7,
Ch.5].

When using basis sets, all molecular orbitals ψ are expanded in terms of basis functions ϕ us-
ing the linear combination of atomic orbitals (LCAO) method, which can be mathematically
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expressed as

ψi =
M

∑
α=1

cαiϕα,

where M is the number of basis functions, ϕα represents the individual basis functions, or
atomic orbitals, and cαi denotes the coefficients for the expansion of the molecular orbitals ψi
in terms of the basis functions ϕα.

Further, we can write the Hartree-Fock equation (3.3) in matrix form, which yields the
Roothaan-Hall eqation

FC = Sϵ, (3.4)

where F is the Fock matrix with elements Fαβ = ⟨ϕα|F|ϕα⟩, C is the matrix that contains the
coefficients, and ϵ is the diagonal matrix containing the orbital energies.

One critical aspect of this formulation is the overlap matrix S, which contains the overlap
elements

Sαβ = ⟨ϕα(1)|ϕβ(1)⟩ =
∫

ϕ∗αϕβ dν1 (3.5)

representing the extent to which two atomic orbitals "overlap" with each other. This measure
takes a value between 0 and 1, with Sαβ = 0 indicating orthogonality and Sαβ = 1 signifying
identical atomic orbitals.

In Hartree-Fock theory, it is preferred to write the Hartree-Fock elements as a sum of the
density matrix and the two-electron integrals. To do that we first expand the Hartree-Fock
elements:

Fαβ = ⟨ϕα|h|ϕβ⟩+
n

∑
j=1
⟨ϕα| Ĵi − K̂i|ϕβ⟩

= ⟨ϕα|h|ϕβ⟩+
n

∑
j=1

(
⟨ϕαψj|g|ϕβψj⟩ − ⟨ϕαψj|g|ψjϕβ⟩

)
= ⟨ϕα|h|ϕα⟩+

M

∑
ab

n

∑
j=1

cajcbj
(
⟨ϕαϕa|g|ϕβϕb⟩ − ⟨ϕαϕa|g|ϕbϕβ⟩

)
(3.6)

Now we can introduce the density matrix Dab = ∑j cajcbj as well as the two electron part
Gαβab =

(
⟨ϕαϕa|g|ϕβψb⟩ − ⟨ϕαψa|g|ψbϕβ⟩

)
. With these definitions, the Fock matrix elements

can be succinctly written as:
Fαβ = hαβ + ∑

ab
GαβabDab.

Consequently, this formulation leads to an expression for the energy (3.2) in terms of the
density matrix, one- and two-electron integrals

E =
M

∑
ab

Dabhab +
1
2

M

∑
abαβ

(
DabDαβ − DaβDαb

) 〈
ϕaϕα|g|ϕbϕβ

〉
+ V̂NN
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where the one-electron integral is

hab = ⟨ϕa|h|ϕb⟩ =
∫

ϕa(1)
(
−1

2
∇2

1

)
ϕb dν1 (3.7)

+
N

∑
A=0

∫
ϕa(1)

(
ZA

rA1

)
d1. (3.8)

and the two-electron integral

〈
ϕaϕα|g|ϕbϕβ

〉
=
∫

ϕa(1)ϕα(2)
1

r12
ϕb(1)ϕβ(2)d1d2. (3.9)

This representation is particularly useful as it allows for a more concise expression of the
HF equations, and it can be directly applied in numerical methods to solve for the electronic
structure of molecular systems.

Alternatively, we cal also write the energy using the definition of the Fock operator from
Equation (3.1) as

E =
n

∑
i=1

ϵi −
1
2

n

∑
ij
(jij − Kij) + V̂NN

with

ϵi = ⟨ψi|Fi|ψi⟩ = hi +
n

∑
j=1

(Jij − Kij).

As we can see, the Fock operator accounts for the electron-electron repulsion through the
Coulomb and exchange operators. In calculating the energy, this repulsion is considered
twice in the summation, necessitating the inclusion of a factor of 1/2 to correct for this
duplication. Looking at the equation, it is also clear that the total energy is not exact as
it provides an average representation of an electron with all the other electrons by assuming
their spatial distribution within a set of orbitals. Since the total energy only cointaines the
averaged electorn-electron repultion and the calculation is based on a single SD which can
not accurately describe most molecules, it cannot be exact, reflecting the method’s mean-
field approximation [7, p. 100].
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Chapter 4

Semiempirical Methods

4.1 Introductory theory

When dealing with semi-empirical methods, we have to introduce some new terms.
Specifically the notion of core and center. The core is the part of the atom that consists of the
nucleus and the inner electrons. These inner electrons are often tightly bound to the nucleus
and are not involved in chemical bonding or reactions. Therefore, they are sometimes treated
separately from the outer (valence) electrons, which are responsible for most of the chemical
behavior of the atom. The term "center" in the context of one-center and two-center integrals
refers to an atomic nucleus or a group of nuclei. One-center integrals involve functions
centered around a single nucleus, while two-center integrals involve functions centered
around two different nuclei.

Semi-empirical methods use the Zero Differential Overlap (ZDO) approximation, a funda-
mental assumption that posits there is no overlap between atomic orbitals situated on differ-
ent atoms. This means that if you have two atomic orbitals on different atoms, labeled as ia
and jb, the product of these orbitals will be zero. Specifically, under the ZDO approximation,
three- and four-center integrals are set to zero. This simplification is based on the extent to
which differential overlap is disregarded. The concept of differential overlap, denoted as dS
is described mathematically by the equation

dS = ϕi(1)ϕj(1)dν1.

This approximation assumes that the change in overlap between two orbitals is negligible
when an electron moves within the differential volume element dν1. Besides that, including
this assumption leads to substantial computational savings, especially in complex systems
since the three- and four- four center integrals take up most of the computing time. [12].

To elucidate the distinctions among semi-empirical methods, we employ a specific
mathematical representation, recasting Equation (3.6) in semi-empirical notation. This
transformation leads to a new expression for the Fock matrix element, denoted as Fij,
allowing us to understand and compare different semi-empirical techniques more effectively
[7, Ch. 7]. The Fock matrix element in semi-empirical methods can be expressed as:

Fij = hij +
m

∑
r=1

m

∑
s=1

Drs(⟨ij|rs⟩ − ⟨ir|js⟩)
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where a two-electron integral is abbreviated as ⟨ij|rs⟩ involving the basis functions i, j, r, and
s. We also have

hij = ⟨i|h|j⟩.
Here, hij as in the above equation, is the matrix element of the one-electron Hamiltonian
between the basis functions i and j, and it encapsulates the kinetic energy of an electron
and its potential energy due to interactions with the core electrons and the atomic nuclei.
The summation term accounts for the cumulative contributions of electron pairs to the
total electronic energy, factoring in their mutual interactions and those with atomic nuclei.
Approximations are made for the one- and two-electron components. The semi-empirical
notation simplifies the expression by abbreviating complex integrals and highlighting the
underlying physical interactions. The recasting of the expression in semi-empirical notation
allows for a systematic comparison of various semi-empirical methods by

• Isolating key components: By focusing on the distinct elements of the Fock matrix, we
can identify the specific approximations, assumptions, and computational strategies
that characterize different semi-empirical methods.

• Enhancing Interpretability: The simplified notation unveils the mathematical structure
of the methods, making it easier to recognize the commonalities and differences.

4.1.1 Neglect of Diatomic Differential Overlap (NDDO)

In the NDDO approximation, which is relevant for the modern semiempirical methnods,
there are no further approximations than those mentioned above. Using i and j to denote
either an s- or p-type (px, py or pz) orbital, the NDDO approximation is defined by the
following equations, beginning with the overlap integral (3.5) which now takes the form:

Sij = ⟨iA|jB⟩ = δijδAB

This simplification is based on the premise that overlap between atomic orbitals on different
atoms can be neglected. The only non-zero overlap is between the same kind of orbital on
the same atom. Assumptions are also made to the one-electron operator (3.2):

h = −1
2
∇2 −

N

∑
A

Z′A
|RA − r|

= −1
2
∇2 −

N

∑
A

VA

where Z′A is the nuclear charge which has been reduced by the number of core electrons, and

the term Z′A
|RA−r| = VA represents the potential energy of the electron, r due to its interaction

with the Ath nucleus at position RA determined by the charge Z′A. Further, the one-electron
integrals (3.7) now take the form:

⟨iA|h|jA⟩ =
〈

iA

∣∣∣− 1
2
∇2 −VA

∣∣∣jA

〉
−

N

∑
a ̸=A
⟨iA|Va|jA⟩ (4.1)

with

⟨iA|h|jB⟩ =
〈

iA

∣∣∣− 1
2
∇2 −VA −VB

∣∣∣jB〉 (4.2)
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and
⟨iA|VC|jB⟩ = 0. (4.3)

where Equation (??), represents the matrix element of the one-electron Hamiltonian between
orbitals and on the same atom. The term Vb is the potential energy due to the nucleus A,
while the second term on the right-hand side represents the potential energy due to all other
nuclei. In Equation (4.2), potential energy operators VA and VB represent the electrostatic
attraction between the negatively charged electron and the positively charged nucleus of
atoms A and B. The equation is expressing the expectation value of the sum of kinetic and
potential energy operators for an electron in a pair of orbitals, ia and jB. The Equation 4.3
states that the potential energy due to a third nucleus C is zero when calculated on different
atoms A and B. This is a reflection of the NDDO approximation which assumes atomic
orbitals on different atoms is negligible.

It is also important to note that the first one-center matrix element in Equation (4.1) equates
to zero owing to the orthogonality of atomic orbitals, unless the two functions involved are
the same, as stated by Jensen in 2017 [7].〈

iA

∣∣∣− 1
2
∇2 −VA

∣∣∣jA

〉
= δij

〈
iA

∣∣∣− 1
2
∇2 −VA

∣∣∣iA

〉
In other words, the one-electron integral is zero unless the two orbitals are identical (i = j).
This is due to the orthogonality of the atomic orbitals, which means that the integral of the
product of two different orbitals is zero.

Lastly, we have the two-electron integrals from Equation (3.9) is reduced to

⟨iA jB|rCsD⟩ = δACδBD⟨iA jB|rAsB⟩

which represent the interaction between electrons in orbitals iA and jB with electrons in
orbital rC and sD. It is reflected through δAC and δBD that interactions between different
atoms is negligible.

Generally, NDDO methods serve as the benchmark for all-purpose semiempirical methods,
which is the focus of the remaining sections of this chapter [12, Ch.6].

4.2 Modified Neglect of Diatomic Overlap (MNDO)

Transitioning our discussion to MNDO, we begin an exploration of the first in a set
of modern algorithms. These are distinct yet interconnected implementations of the
NDDO model, each defined by a specific parameterization in terms of atomic variables.
The intention behind this approach is to focus on the properties intrinsic to individual
atoms, providing a deeper understanding of each atom’s role and contributions within the
model. These modern algoruthms, MNDO, AM1 and PM3, all stem from the foundational
NDDO approximations but differ in their treatments of core-core repulsion and parameter
assignments. These methods exclusively consider the valence s- and p-functions, which are
modeled as Slater-type orbitals (STOs) with respective exponents ξs and ξp [7, Ch.7] [13].

STOs are mathematical functions used to describe the shape and orientation of atomic
orbitals, which are regions in an atom where electrons are most likely to be found. They
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decreases exponentially with increasing distance from the atomic nucleus, which makes
them particularly effective in modeling the behavior of electrons in atoms. The exponents ξs
and ξp control the rate of this decrease, which in effect governs the "spread" of the orbital.
Specifically, an orbital with a larger exponent value (indicating a faster rate of decrease) is
more localized close to the nucleus, while an orbital with a smaller exponent value is more
diffuse, or spread out over a larger volume.

The MNDO method is widely recognized for providing fairly acceptable qualitative
results when applied to a variety of organic systems. Nonetheless, there exist instances
where MNDO fails to deliver accurate outcomes, either qualitatively or quantitatively.
A notable flaw observed with this method is the tendency to underestimate computed
electronic excitation energies. Specifically, this underestimation means that the computed
transition between electronic states often predicts lower energy requirements than what
is experimentally observed, leading to potential inaccuracies in understanding electronic
behavior in these systems [14, Ch.4].

The evaluated one-center one-electron integrals encompass the energy of a single electron
subject to experiencing the nuclear charge of its own atom, denoted Uss or Upp for s and p-
orbitals respectively, and the cumulative potentials exerted by all other nuclei in the system
Equation (4.1). This additional influence is parameterized in terms of the reduced nuclear
charges Z′ and a two-electron integral. Consequently, the one-electron core Hamiltonian
matrix element between specific orbitals iA or jA, denoted as hij, includes both the kinetic
and potential energy of an electron under the influence of its own nucleus (Uii), as well as
the potential effects from the rest of the system.

hij = ⟨iA|h|jA⟩ = δijUii − ∑
a ̸=A

Z′a⟨iAsa|h|jAsa⟩

where

Uii =

〈
iA

∣∣∣− 1
2
∇2 −VA

∣∣∣iA

〉
.

We see that Uii in effect, represents the expected value of the Hamiltonian operator for the
electron in the given atomic orbital, meaning in the field of its own nucleus. Therefore Uii
corresponds to a one-center one-electron integral, of an electron in relation to its own nuc-
leus. Importantly, when the atomic orbitals under consideration belong to different sym-
metry species, the core Hamiltonian matrix elements become zero due to the spherical sym-
metry of the kinetic plus potential energy operator [15, p. 325].

The two-center one-electron integrals given by Equation (7.6) are now reduced to an ex-
pression involving the overlap integral and atomic "resonance" parameters, β. This simpli-
fication directly multiplies the overlap integral with the average of the two atomic resonance
parameters, indicative of the orbitals’ inherent characteristics. This gives:.

⟨iA|h|jB⟩ =
1
2

Sij(βi + β j)

where the overlap integral between the atomic orbitals Sµν is calculated explicitly. The
quantity is explicitly computed, thereby deviating from the traditional ZDO approximation.
It quantifies the extent to which these orbitals share the same space and is used in the
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computation of these matrix elements. Its magnitude provides a measure of the degree to
which the electron wavefunctions overlap in space. This explicit computation of the overlap
integral is the source of the "modified" descriptor in the method’s nomenclature. The two
atomic resonance parameters, averaged by to the factor of 1/2, are typically determined
empirically and reflect the average potential for electron exchange between the orbitals.

Moving to the one-center two-electron integrals taken into account in the NDDO approx-
imation, specifically within the context of an s and p-basis set, these are represented by the
following expressions:.

⟨ss|ss⟩ = gss

⟨pp|pp⟩ = gpp

⟨sp|sp⟩ = gsp

⟨pp′|pp′⟩ = gp2

⟨ss|pp⟩ = hsp

The g-type parameters are Coulomb terms, while the h parameter is an exchange integral.
The gp2 integral involves two different types of p-functions (i.e. px, py or pz). These integrals
have distinct roles in accounting for electron-electron interactions. The parameters labeled
with g are associated with Coulomb interactions. This involves interactions within the same
types of orbitals, including s− s, p− p, and s− p; and interactions within different types of
p-functions (e.g., px, py, or pz), denoted by gp2. The last integral type, represented by hsp,
is connected with the exchange integral, which takes into account the quantum mechanical
exchange phenomenon arising from the Pauli exclusion principle. The distinction between
g and h parameters provides a practical and efficient way to encapsulate key interactions
involved in a system’s electronic structure within the context of the NDDO approximation.
For the MNDO method, these values have been obtained from experiments taken from the
atomic spetra, while the others are fitted to molecular data [7]

The core-core repulsion in the context of the MNDO model refers to the repulsive interaction
between the inner shell (or core) electrons of two different atoms. The core–core repulsion
of the MNDO model [16], which refers to the repulsive interaction between the inner shell
(core) electrons of two different atoms takes the form:

VCC(A, B) = Z′AZ′B⟨sAsA|sBsB⟩(e−αARAB − e−αBRAB + 1),

where RAB denotes the interatomic distance and the α variables is chosen as fitting
parameters. In the case where the O—H and N—H bonds are involved, the model uses
a different expression:

VCC(A, B) = Z′AZ′B⟨sAsA|sBsB⟩(RABe−αARAB − e−αBRAB + 1). (4.4)

In these cases, the core-core repulsion is additionally influenced by the bond length (RAB)
between the two atoms. Further, the MNDO method makes the approximation that the
Slater-type orbital exponents for the s and p orbitals are equivalent (ξs = ξp) for some of the
lighter elements. The core-core repulsion term replaces the nuclear-nuclear repulsion term
in the energy expression. We therefore get

E =
n

∑
i=1

ε i +
1
2

m

∑
r=1

m

∑
s=1

Drshrs + VCC. (4.5)
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Empirical data reveals that despite the theoretical nature of MNDO’s parameterization
approach, its overall performance remains largely unaffected. This method, which initially
concentrated on ground-state characteristics, especially heats of formation and geometries,
also included ionization potentials and dipole moments as auxiliary reference data. The
choice to use heats of formation as reference data implied a generalized accounting for
zero-point vibrational energies and thermal corrections between 0 and 298 K [17]. The
parameterization process [2, 16] involved the selection of a training set of common, small
molecules such as methane, benzene, nitrogen, water, and methanol, with a total of 34
molecules incorporated for the carbon, hydrogen, oxygen, and nitrogen set [12, Ch.6]. The
overarching goal was to fine-tune six pivotal parameters to optimally represent four critical
molecular characteristics—heat of formation, geometry, dipole moment, and ionization
energy. Despite the intrinsic complexity and compromises in this process, the MNDO
approach has proven to be a surprisingly effective tool for molecular property prediction.
The reports of of the calculation on 138 compounds limited to the atoms as in the training
set. The Mean Absolute Errors (MAEs) for the 138 compounds in heat of formation was
26kJ mol−1 while the value for these were in the range of −600 to 600kJ [16]. Given that
the training set exclusively contains stable, ground-state molecules, MNDO struggles with
systems where electron correlation significantly deviates from that of the ones in its training
set.

4.3 Austin Model 1 (AM1)

Upon gaining insights through practical engagement with MNDO, certain consistent
inaccuracies began to surface. One such instance was the overstated repulsion between
two atoms when they are relatively close to each other, which in particular encompassed
the approximate range of van der Waals distances. This resulted in exaggerated activation
energies. This discrepancy was traced back to an excessively repellent interaction within
the core-core potential, and even the parameters ξ in the exponent of the STOs differed
for s and p atomic orbitals on the same atom. To rectify these issues, the core-core
function underwent a modification where both attractive and repulsive Gaussian functions,
centered at internuclear points, were introduced [18, Ch.17]. The implementation of these
modifications was anything but simple, involving tremendous patience, extensive computer
time, and intricate empirical techniques [19]. This led to the subsequent reparameterization
of the entire model, in an effort to better align with experimental observations, culminating
in the development of the Austin Model 1 (AM1) method [20], developed at the University
of Texas at Austin. The core-core repulsion of the AM1 model is:

VCC(A, B) = VMNDO
CC (A, B) +

Z′AZ′B
RAB

∑
k
(akAe−bkA(RAB−ckA)

2
+ akBe−bkB(RAB−ckB)

2
)

where VMNDO
CC is the core-core repulsion of the MNDO method from Equation (4.5). The

added term represents the off-center attractive and repulsive Gaussian functions that were
introduced. The reasoning behind the use of these Guassian functions comes from them
being able to model repelling and attracting forces between atoms. These forces tend
to balance each other out and give a more accurate model for atomic interactions hence
resolving the problem with MNDO about it failing to capture the repulsion between two
atoms at close separation distances. The number of Gaussian functions for each atom,
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represented by k, usually ranges from 2 to 4. This variation is determined empirically to
achieve the best fit with experimental data for each individual atom. It should be noted that
the Gaussian functions were added more or less as patches on to the underlying parameters,
which explains why a different number of Gaussians is used for each atom.

AM1 typically offers more accurate predictions for the heats of formation than MNDO,
with some exceptions involving Br atoms. Depending on the specific system and the
information required, either AM1 or PM3 (see bellow) is often the method of choice for
achieving the most accurate results with organic molecules using semiempirical techniques.
These methods also tend to provide improved estimates for activation energies compared to
MNDO [21].

4.4 Parametric Method 3 (PM3)

The Parametric Method 3 (PM3) method, described in [2–4] is build up nearly the exact
same way as the AM1 model, using mostly the same functions, except that only two
Gaussian functions were allocated for each atom but with an improved set of parameters.
The parameterization of the MNDO and AM1 methods were mostly done by hand as
the five parameters gss, gpp, gsp, gp2 and hsp for the one-center two-electron integrals
were derived from atomic data, while the remaining parameters were adjusted until they
satisfactorily aligned with the observed data. Given that this optimization process was
manually executed, it limited the inclusion of reference compounds to a relatively small
number. J.J.P. Stewart who authored the PM3 method aimed to automatically optimize
these parameters by deriving and implementing formulas for the derivative of a suitable
error function with respect to the parameters [2, 3]. This new method allowed for all the
parameters to be optimized simultaneously, including even the two-electron terms which
were previously taken from atomic data. Stewart also used a remarkably larger training
dataset, consisting of over 500 compounds. Therefore, the PM3 method can be viewed as an
AM1 with all its parameters fully optimized for a larger set of molecules. Essentially, it could
be regarded as an optimal set of parameters that, at the very least, represents a favorable local
minimum when compared to the experimental data [7].

The PM3 method is as of now especially popular for organic systems. It is usually con-
sidered better than AM1 at finding hydrogen bond angles as well as for calculating heats
of formation. Hypervalent molecules are also predicted more accurately as well as energies
and bond angles, on average. However, the AM1 has shown to be more accurate in predict-
ing for hydrogen bond energies [21]. Holder et al. have found, in their study [12, p. 479]
involving compounds that include H, C, N, O, F, Cl, Br, and I, that the PM3 method yielded
an average absolute error in heat of formation of 22 kJ/mol for 408 compounds, a marked
improvement over AM1’s 27 kJ/mol. Furthermore, Dewar et al. noted that the PM3 method
produced an average absolute error in bond lengths of 0.022 over 344 bonds, in comparison
to AM1’s 0.027. For 146 angles, PM3 had an error of 2.8 degrees versus AM1’s 2.3 degrees.
Lastly, in terms of dipole moments for 196 compounds, PM3 had an error of 0.40 D, a slight
increase compared to AM1’s 0.35 D [22].

In 2006, J.J.P. Stewart introduced the PM6 [23] which offer numerous of improvments com-
pared to PM3 and AM1. Unlike previous methods, the PM6 was parameterized from ab-inito
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data as well as experimental. It was also shown to give better heats of formation than the
ab-initio DFT method B3LYP/6-31G for a test set of around 1000 compounds [12, Ch.6].

4.5 Extension to include d-orbitals

As we have seen, the MNDO, AM1 and PM3 metohd only account for s and p-basis
and are without d orbitals.That means that the two-center two-electron integrals can be
modeled by multipoles up to the 4th order (quadrupoles). This means that these models
can not be applied to most of the transition metal compounds and may be inadequacies for
hypervalent compounds of main-group elements given that the significant role of d-orbitals
in achieving quantitative precision has been well established through ab initio calculations
[17]. To account for the presence of these d-orbitals in our calculations, it becomes necessary
to extend the modeling of two-center two-electron integrals by including multipoles up to
order 16. There has been proposed extensions of the MNDO and PM3 method which include
d-orbital.

The MNDO/d [24] extended MNDO to include d orbitals for many second-row and later
elements. In this extension, the formalism and parameters for hydrogen, helium, and the
first-row elements are unchanged but with added 15 parameters per atom for the following
elements (Na, Mg, Al, Si, P, S, Cl, Br, I, Zn, Cd and Hg). In this method, multipoles beyond
orer 4 are neglected [7] and has 3 new parameters, Udd, ξd and βd. Out of the now 12 new
one-center two-electron integrals, only the gdd is set as a freely-varying parameter while
the rest are analytically calculated using pseudo-orbital exponents [7] by a truncation of
the semiempirical multipole– multipole interactions [25] at the quadrupole level [17]. The
MNDO/d has been applied for the standard. molecules as well as to some compounds
of metals and hypercoordinate molecules. It was said to give better results over other
semiempirical methods, especially for hypervalent compounds [26, p. 722-725].

There is also an extension og PM3 which is parameterized with d-orbitals. However, the
parameters were fitted exclusively using geometric data and not heats of formation, dipole
moments or ionization energies [27, 28]. This method is adopted primarily because of the
limited availability of dependable energy data for transition metal compounds.

4.6 Parameters

We can now construct a table containing the different parameters in the three semiempirical
methods MNDO, AM1 and PM3.

As we have discussed,for MNDO and AM1 the one-center two-electron integrals are
normally taken from atomic spectra while optimization techniques are used for the PM3
method. The MNDO method has 12 parameters per atom, including one-electron terms
(Uss/pp), resonance terms (βs/p), two-electron terms (βs/p, gss, gsp, gpp, gp2, hsp), and the
core-core repulsion parameter (α). The AM1 and PM3 methods extend upon MNDO by
incorporating additional parameters (akA, bkA, ckA) that represent the Gaussian multipliers
and the Gaussian center radius of atom A. Including the d-orbital for the one-center one-
electron integral Udd and for the resonance term βd will yield additional two parameters for
the MNDO and PM3 method. Lastly, for the MNDO and AM1 methods, the one-center two-
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Parameter Units MNDO AM1 PM3
Uss, Upp eV ⋆ ⋆ ⋆

βs, βp eV ⋆ ⋆ ⋆

ξs, ξp bohr−1 ⋆ ⋆ ⋆

αA Å
−1

⋆ ⋆ ⋆
gss, gpp eV ◦ ◦ ⋆

gsp eV ◦ ◦ ⋆
gp2 eV ◦ ◦ ⋆
hsp eV ◦ ◦ ⋆

akA or KkA - X ⋆ ⋆

bkA or LkA Å
−2

X ⋆ ⋆

ckA or MkA Å X ⋆ ⋆

Table 4.1: Parameters in the semiempirical methods MNDO, AM1 and PM3. The ⋆ indicates that the
parameter was fitted on experimental data while ◦ means the parameters have been obtained from experiments.
The X indicates that the semiempirical method does not support the corresponding parameter.

electron integrals were taken from experiments, unlike the PM3, where they were optimized
to better fit the training data.
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Chapter 5

Optimization

5.1 Optimization

Now we turn our attention to optimization algorithms, vital in the realm of machine learning
for minimizing a specific cost or loss function. This function quantifies the disparity
between the model’s predictions and the true target values, encapsulating the learning
task. Optimization algorithms, with their systematic and efficient procedures, play an
indispensable role in navigating the vast parameter space, iteratively updating the model
parameters to identify configurations that yield optimal performance [29]. By continually
adjusting these parameters, the algorithms enable the model to converge to a state where
the cost function is minimized, aligning the model’s predictions closely with the ground
truth [30, p.271-274]. The optimization process leverages both deterministic consistency and
controlled randomness, employing intelligent iterative techniques to explore and exploit the
search space in pursuit of the best solutions.

Machine learning problems often entail intricate optimization challenges, given the complex,
non-convex and high-dimensional nature of the optimization landscape [31, 32]. Analytical
or classical methods may prove insufficient or impractical in such scenarios. Optimization
algorithms offer a powerful alternative, leveraging iterative techniques that intelligently
explore and exploit the search space in search of optimal solutions. These algorithms
employ diverse strategies, ranging from gradient-based approaches, which we will dive
into in this section, that rely on derivatives of the cost function to gradient-free methods
that employ sampling or heuristic strategies [33]. Deterministic algorithms ensure consistent
outcomes given the same initial conditions, while stochastic algorithms introduce controlled
randomness to avoid local optima and foster exploration.

The choice of an appropriate optimization algorithm is contingent upon various factors, in-
cluding the properties of the cost function, the constraints of the problem, the characteristics
of the available data, and the desired performance metrics. A well-suited optimization al-
gorithm must strike a balance between efficiency, scalability, reliability, and adaptability to
different problem domains. Moreover, it should offer ease of implementation and tuning,
allowing practitioners to tailor the algorithm to their specific needs [34–36].

Beyond their practical utility, optimization algorithms also hold immense value in advancing
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the frontiers of machine learning research. By continuously developing and refining these
algorithms, researchers can explore new models, paradigms, and learning techniques that
were once deemed intractable or computationally prohibitive. Optimization algorithms
serve as a gateway to unlocking the full potential of machine learning, empowering
researchers to tackle complex and real-world problems with enhanced precision and
efficiency.

5.2 Gradient Descent

We will start of by discussing the gradient descent (GD) algorithm. GD is a widely
utilized technique for optimizing the parameter(s) θ in various optimization problems. Its
fundamental concept is rooted in the observation that any given function, denoted as F(x),
experiences the steepest decrease when moving from the current point x in the direction
opposite to the negative derivative −∇F(x) [37].

Mathematically, the iterative update scheme of GD is expressed as follows:

xk+1 = xk − η∇F(xk)

Here, η > 0 represents the learning rate, which determines the magnitude of movement in
the direction of the negative gradient. By selecting a suitably small value for η, the condition
F(xk+1) ≤ F(xk) can be satisfied, indicating that each iteration k brings us closer to a smaller
value.

In the context of machine learning, the objective is to minimize the cost function C(θ)1, and
thus, the iteration scheme for GD can be expressed as follows:

vt = ηt∇θC(θt)

θt+1 = θt − vt
(5.1)

Here, ∇θC(θt) represents the gradient of the cost function with respect to θ at the t-th
iteration step, and ηt denotes the learning rate [29]. The optimization process begins with
an initial guess for θ, denoted as θ0, and proceeds iteratively towards a minimum. It is
crucial to choose the learning rate, ηt, carefully, as excessively small values may result in
a large number of iterations before convergence, while relatively large values may lead to
overshooting the minimum.

Despite its wide application, the standard GD method does have several drawbacks that
should be considered:

• Sensitivity to the initial condition: GD can be sensitive to the choice of the initial
parameter values, which may affect the convergence and the quality of the obtained
solution.

• Determinism: Once GD converges to a minimum, it remains at that point, whether it
is a global or local minimum, without further exploration.

1The advantage here is the fact that the first derivative of C(θ) wrt. θ is zero at a minimum whether the
minimum is local or global.
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• Sensitivity to the learning rate: The performance of GD is highly dependent on
the learning rate selection. Choosing an inappropriate learning rate may hinder
convergence or lead to suboptimal solutions.

• Uniform treatment of all parameter directions: GD treats all directions in the
parameter space equally by using the same learning rate per parameter throughout the
optimization process, which may not be optimal for every situation. the same learning
rate per parameter

To overcome these limitations, we can use various variants of GD that address specific
challenges and provide enhanced optimization capabilities. These variations introduce
advanced techniques such as momentum, adaptive learning rates, stochasticity, and
methods to balance exploration-exploitation trade-offs.

5.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) [38] is a variant of the gradient descent optimization
method that provides substantial computational advantages, particularly in scenarios with
high-dimensional optimization problems or sizable datasets, which are common in machine
learning applications.

SGD takes a unique approach to minimizing the cost function as it recognizes that the cost
function can be expressed as a summation over all the data points n. In other words,

C(β) =
n

∑
i=0

ci(xi, β)

where C is the cost function and the vector xi represents the ith data point or input vector.

Therefore, the gradient of this cost function is also a sum over the gradients calculated at
each of the n data points,

∇βC(β) =
n

∑
i=0
∇βci(xi, β)

Rather than evaluating the gradient of the entire data set, SGD cleverly operates on a subset
of the data, known as a "mini-batch". Each mini-batch contains randomly selected points
from the original data set. The size of the batch, denoted as B, is significantly smaller than n,
particularly when handling large data sets. If we denote the total number of these batches as
n/B, then each mini-batch can be indexed as Bk, where k = 1, . . . , n/B. The SGD approach
modifies the gradient calculation to only include the data points within the current mini-
batch Bk where k ∈ [1, n/M] ⊂ Z+ is picked at random with equal probability. We then
get:
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∇βC(β) =
n

∑
i
∇βci(xi, β)

→ ∇βCBk(β) = ∑
i∈Bk

∇βci(xi, β)

Each complete iteration over the set of mini-batches (i.e., n/B batches) constitutes an
"epoch". Multiple epochs are typically carried out to improve the convergence of the
optimization.

One of the major advantages of SGD over the standard GD is the inherent stochasticity.
This characteristic decreases the chance of the optimization process getting stuck in a
local minimum, hence enhancing the search for a global minimum. Moreover, the use
of mini-batches significantly reduces the computational burden associated with gradient
calculations.

To ensure a fair representation of data points across epochs and to prevent the repeated
selection of overlapping data points, a shuffled index array approach can be introduced.
This array, with a length equal to the total number of data points (N), contains shuffled
indices and is used to randomly select mini-batches in each epoch.

In practice, this process would look like the pseudocode shown below:

indices= [0, ..., N-1]
for epoch in epochs:
random_indices = shuffle(indices)
for b_k in B_k:
batch = random_indices[b_k * B: b_k * B + B]

The iterative scheme for SGD can then be described mathematically as:

vt = ηt∇θEBk(θt),
θt+1 = θt − vt.

In this scheme, vt represents a running average of recent gradients [29]. With its introduction
of stochasticity and computational efficiency through the use of mini-batches, SGD often
outperforms standard GD, proving to be an effective tool for addressing large-scale or high-
dimensional optimization problems.

5.4 Momentum-based Gradient Descent

The addition of momentum in gradient descent is a significant refinement that takes into
account the direction of our movement in the parameter space. This strategy, known as
Momentum Stochastic Gradient Descent (Momentum SGD) [39], can enhance the efficiency
and stability of the optimization process.
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The principle behind the momentum term is to allow the gradient descent update at each
step to be influenced not only by the current gradient but also by the preceding update
direction. This persistence can be particularly beneficial in several scenarios, for instance,
when navigating areas of small gradients or oscillating in high-curvature directions.

The mathematical formulation of the Momentum SGD update rule is given by [40, p. 74]
[41]:

vt = γvt−1 + ηt∇θEBk(θt)

θt+1 = θt − vt
(5.2)

In these equations, γ denotes the momentum parameter, which is a hyperparameter
typically chosen in the range [0, 1]. The term γvt−1 represents the contribution from the
previous update direction, while ηt∇θEBk(θt) is the gradient descent update corresponding
to the current mini-batch Bk. The parameter update θt+1 is then computed as the difference
between the current parameter θt and the momentum-adjusted velocity vt.

The benefits of adding a momentum term are manifold. Firstly, by incorporating the
’memory’ of previous update directions, Momentum SGD can accelerate convergence,
particularly in areas of the cost function with small gradients. This is advantageous because
such areas might otherwise slow down the optimization process, due to the small steps taken
in each iteration.

Secondly, the momentum term can effectively reduce oscillations in directions of high
curvature, thereby enhancing the stability of the optimization process. This can be crucial
in complex optimization landscapes, where naive gradient descent might be prone to erratic
movements.

Thus, Momentum SGD leverages the advantages of both SGD and momentum to provide
a robust, efficient optimization method that is particularly suitable for challenging machine
learning tasks.

5.5 ADAM

Navigating the multi-dimensional parameter space to find the minimum of a cost function
can be challenging using standard optimization algorithms like Gradient Descent and
Stochastic Gradient Descent (SGD). These methods, while efficient under certain conditions,
may not point directly to the minima, often leading to suboptimal paths through the cost
function landscape. To improve this, we incorporate the concept of momentum—a weighted
addition of previous gradients—ensuring a more valley-aligned progression towards the
minima instead of moving side-to-side across the valley.

In our efforts to enhance the optimization scheme further, we also use the Root Mean
Squared Propagation (RMSProp) [42, Ch. 4] method. RMSProp adjusts the learning rate
individually for each parameter and proves effective for non-convex functions, addressing
the common hurdle of choosing an appropriate step length in each dimension. This is
achieved by substituting ηt in Equation (5.2) with a a diagonal matrix, G.
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Building on these techniques, we employ ADAM (ADAptive Moment estimation) [43] as our
primary optimizer. ADAM synergizes the principles of momentum SGD and RMSProp [42,
Ch. 4], making it a comprehensive and effective optimization method for complex problems.
Specifically, it maintains running averages of both the first moment (akin to momentum)
and the second moment (similar to RMSProp) of the gradient. ADAM also incorporates bias
corrections to account for the initial zero initialization of the moments, thus offering a more
balanced and robust optimization approach.

The iteration scheme in ADAM can be presented as follows:

gt = ∇θEBk(θt)

mt = β1mt−1 + (1− β1)gt

st = β2st−1 + (1− β2)g2
t

m̂t =
mt

1− βt
1

ŝt =
st

1− βt
2

θt + 1 = θt − ηt
m̂t√
ŝt + ϵ

Here, mt = E[gt] and st = E[g2
t ] are the running average of the first and second moment of

the gradient. The exponential decay rates β1 and β2 determine the memory of the first and
second moment, typically set to 0.9 and 0.99, respectively. The value of ϵ ∼ 10−8 is a small
constant added for numerical stability to prevent division by zero errors.

This adaptive adjustment of the learning rate enables ADAM to handle areas with large
gradient norms more efficiently and accelerates convergence in flatter regions. The flexibility
and effectiveness of ADAM make it our preferred choice for optimizing the expected energy
in our studies.

29



Chapter 6

Machine Learning

Machine learning is a field of study that lies at the intersection of computer science, statistics,
and artificial intelligence. Its core aim is to design algorithms that allow computers to learn
from and make predictions or decisions based on data and improve their performance over
time [44, p. 13-18]. The data utilized in machine learning typically consists of a collection of
examples, with each example described using features, and possibly associated with a label.

The field can be broadly categorized into three types: supervised learning, unsupervised
learning, and reinforcement learning. In supervised learning, the algorithm is given a set
of input-output pairs (called training data) and learns a function that maps the inputs to
the outputs. The goal is to generalize the function to unseen inputs (called test data) and
make accurate predictions. Supervised learning problems can be further divided into two
subtypes: regression and classification. In regression, the output is a continuous value, such
as the temperature of a given day. In classification, the output is a discrete label, such as the
type of an animal.

In unsupervised learning, the algorithm is given a set of inputs (called unlabeled data) and
learns to discover patterns, structures, or features in the data without any guidance. The
goal is to find some hidden or latent representation of the data that captures its essence
or meaning. Unsupervised learning problems can be further divided into two subtypes:
clustering and dimensionality reduction. In clustering, the algorithm groups similar inputs
together into clusters, such as customers with similar preferences or documents with similar
topics. In dimensionality reduction, the algorithm reduces the number of features or
dimensions of the inputs, such as compressing high-resolution images or minimizing high-
frequency words.

In reinforcement learning, the algorithm does not receive any predefined data but instead
encompasses an agent interacting with an environment, learning from its actions and
feedback (in the form of rewards or penalties). The goal is to find an optimal policy that
maximizes the expected cumulative reward over time. Reinforcement learning problems
can be modeled as Markov decision processes, where the algorithm observes the state of the
environment, chooses an action to perform, receives a reward and a new state, and repeats
this process until it reaches a terminal state or a time limit. Reinforcement learning can be
used to solve complex and dynamic problems, such as playing games, controlling robots, or
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optimizing systems.

6.1 Artificial Neural Networks

Artificial Neural Networks (ANN) is a collection of Machine Learning (ML) algorithms
which are inspired and modeled after biological neural networks in the brain. Typically,
but not necessarily, an ANN consists of three types of layers, each consisting of their own set
of operations, in which the training data X passes through in order to optimize the learner.
These layers consists of nodes that are connected together by a set of weights. Usually the
layers makeup consists of input-layers, hidden-layers and output-layers. Consequently their
set of nodes are referred to as input-nodes, hidden-nodes and output-nodes respectively.
The main idea behind ANNs is to calibrate the weights which connect the numerous classes
of layers. The way this is done is through a process called backpropagation. The calibrated
weights are then used to optimize our model ŷ.

The simplest type of ANN is the Feed Forward Neural Network (FFNN or NN). In an FFNN,
the connections between the nodes, do not form a cycle, unlike recurrent neural networks
for example. In other words its input-nodes are only connected to the hidden-nodes and its
hidden-nodes only to the output nodes. That means there are no direct connections between
the input and output nodes.
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Figure 6.1: A simple feedforward neural network with an input layer x, two hidden layers z1 and z2, an
output layer y and bias units distinguished by b.

The number of nodes in the input-layer is determined by the number of features;
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complexity/dimensionality of the input data. The number of nodes in the hidden-layers
can be freely chosen and tweaked to achieve optimal results and lastly the number of nodes
in the output-layer is determined by the complexity/dimensionality of the targets in our
model.

6.2 Forward-propagation

Forward propagation is a reference to the scheme (set of operations) the inputs passes
through before arriving to a generated weighted output, that is a fit for our model. The
input data is fed to each node in each subsequent layer following the input-layer. For each
of these individual nodes in our network, the following computation is performed:

zl
j =

nl−1

∑
i=1

= wl
ija

l−1
i + bl

j (6.1)

al
j = f (zl

j) (6.2)

where zl
j corresponds to the input value in layer l for node j. wl

ij corresponds to the matrix-
element wij for layer l in the weights matrix W l , where wl

ij connects node i in layer l − 1 to

node j in layer l. We also have bl
j which is the bias-term for node j in layer l. Lastly al−1

j is

the value produced by the activation function (defined in section 6.4) defined for zl−1
j .

6.3 Backpropagation

Now we arrive at the backpropagation algorithm which is essential for training an FFNN.
In essence, backpropagation is used to update each of the weights and biases of a neural
network, in order so that the output ŷ best fits the target y. Hence minimizing the error of
the output.

For a regression problem, we might consider the Mean Square Error (MSE) as our cost
function

C = 1
N

N

∑
i=1

(ŷi − yi)
2

As for classification, consider the Cross Entropy cost function

C = −
N

∑
i=1

[yi log ŷi + (1− yi) log (1− ŷi)] .

The theory behind the backpropagation algorithm is to compute the gradient of the cost
function wrt. the weights and biases and use the various gradient descent schemes discussed
in Chapter 5. This is done via the chain rule for derivation, one layer at a time, iterating
backwards from the last layer l = L to the first l = l0. Hence the name backpropagation.
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Recall that the gradient of a function is the vector of all its partial derivatives.

∇C =
{

∂C
∂wl

ij
,

∂C
∂bl

i

}
.

For the layer L, using the chain rule, we obtain

∂C
∂wL

ij
=

∂C
∂aL

j

∂aL
j

∂zL
j

∂zl
j

∂wL
ij

and we can rewrite this as

∂C
∂wL

ij
=

∂C
∂aL

j

d f
dzL

j
aL−1

i . (6.3)

As for the derivative with respect to the bias bL
j , we obtain

∂C
∂bL

j
=

∂C
∂aL

j

∂aL
j

∂zL
j

∂zL
j

∂bL
j

which again can be rewritten as

∂C
∂bL

j
=

∂C
∂aL

j

d f
dzL

j
.

Considering what we’ve arrived to until now we can define the error at layer l for node j as

δl
j =

∂C
∂zl

j
=

∂C
∂al

j

∂al
j

∂zl
j
=

∂C
∂al

j

d f
dal

j
. (6.4)

Equation (6.3) can then easily be rewritten using δL
j

∂C
∂wL

ij
= δL

j aL−1
j

The error δl
j gauges the contribution from node j in changing the cost function at layer l.

Building up on what we obtained we can generally define the error δl
j for j-th node at a layer

l in terms of the “prior” layer l + 1 in the backpropagation scheme.

δl
j = ∑

k

∂C
∂zl+1

k

∂zl+1
k

∂zl
j

(6.5)

Where

∂C
∂zl+1

k

= δl+1
k
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Solving for the second derivative term wrt. zj

∂zl+1
k

∂zl
j

= wl+1
jk

d f
dzl

j

and putting this back into Equation (6.5), we get

δl
j = ∑

k
δl+1

k wl+1
jk

d f
dzl

j
(6.6)

So for the complete backprogation scheme we start with computing δL
j and then iterate

backwards starting with layer l = L − 1. For each iteration over a layer l we compute δl
j

using Equation (6.6) and update the weights and biases in accordance to the gradient descent
scheme in use. The gradient descent in its simplest form would follow

wl
ij = wl

ij − ηδl
j a

l−1
i

bl
j = bl

j − ηδl
j

here η is the learning rate.

6.4 Activation functions

Activation functions play a crucial role in neural networks by introducing nonlinearities
into the network’s computations. These functions are applied to the input value at each
node, transforming the node’s weighted sum into an output value. The choice of activation
function can greatly influence the network’s learning behavior, with various functions
offering unique strengths and weaknesses. The most common activation functions used
are:

• Sigmoid: A smooth, s-shaped curve defined by:

f (z) =
1

1 + e−z

• ReLU (Rectified Linear Unit): A simple piecewise linear function that allows positive
values to pass through unchanged, while mapping negative values to zero:

f (z) =

{
z if z ≥ 0
0 elsewhere

• Leaky ReLU: A variation of ReLU that includes a small slope for negative values,
controlled by a parameter α = 0.01:

f (z) =

{
z if z ≥ 0
α · z elsewhere
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• Softmax: Often used in the output layer for classification tasks, Softmax normalizes
the input into a probability distribution over multiple classes:

f (z) =
ez

∑i ezi

These activation functions enable the network to model complex patterns and provide
flexibility in tuning the network’s behavior. Their implementation within the network
aligns with the computations performed for individual nodes, as detailed in the forward-
propagation section.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks which explicitly
introduce a temporal dimension in their computation model. RNNs are tailored to handle
sequential data, where the sequence’s order and length are crucial for the underlying task.
Making them well adopted for tasks which include to recognize patterns in sequences of
data, such as text, genomes, handwriting recognition [45, 46], or speech analysis and text-
to-speech synthesis[47–49], as well as time-series analysis, and other sequence-oriented ap-
plications. Unlike feed-forward neural networks, which we looked at until now, RNNs have
’cyclic’ connections making them powerful for modeling sequences. They take the temporal
sequence of the input data into account by having a loop in the network, which acts as a
’memory state’ of the network.

RNNs propagate information both in the spatial dimension, from input to hidden layers
and then to output, as well as in the temporal dimension, from one sequence element to
the next. To accommodate the latter, an RNN includes recurrent connections that feed the
current hidden layer’s activations back into the same layer at the next time step. This design
enables the network to maintain a form of internal state, capturing information about the
sequence up to the current time step.

Formally, consider an RNN with a size N input layer, one hidden layer of size H, and K
output units. It can be represented as follows: for each timestep t, the activation at of the
hidden layer and the output yt is given by:

aj
t = σh

(
H

∑
k=1

wl
kja

k
t−1 +

N

∑
i=1

wl
ijx

i
t + bl

j

)

yt = σy

(
K

∑
j=1

wl+1
jk aj

t + bl+1
k

)

where wl
kj ∈ RH×H and wl

ij ∈ RN×H are the weight from the ith neuron in layer l − 1 to
the jth neuron in layer l and from the kth neuron in layer l to the jth neuron in layer l + 1,
respectively. The input xi

t ∈ RN is the value of input i at time t and aj
t be the activation of the
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jth neuron in the hidden layer at time t. Further, σh and σy are activation functions 1. Lastly,
bl

j ∈ RH and bl+1
k ∈ RK are the bias terms for the hidden layer and output layer, respectively..

The RNN performs its computations in a recurrent process which can be unfolded in time.
One of the main issues of standard RNNs is the so-called vanishing and exploding gradient
problem [50], which hampers learning long-range temporal dependencies.

The issue arises due to the nature of the backpropagation through time algorithm used to
train these networks. In the backpropagation process, we need to calculate the gradients of
the cost function with respect to the weights to update them. But, for long sequences, these
gradients tend to become very small (vanish) or very large (explode), which leads to long
training times, poor performance, and unpredictable results [51–53].

To address this problem, sophisticated RNN architectures have been introduced such as
Long Short-Term Memory (LSTM)[54] networks and Gated Recurrent Unit (GRU)[55] net-
works.

An LSTM network includes a memory cell that can maintain information in memory for
long periods of time. A typical LSTM unit is composed of a cell, an input gate, an output
gate, and a forget gate (called LSTM with a forget gate [56]). The cell remembers values over
arbitrary time intervals, and the three gates regulate the flow of information into and out of
the cell.

LSTM introduces the cell state ct ∈ RH which can be formulated as:
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ct = ft ⊙ ct−1 + it ⊙ c̃t

ot = σh

(
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)
ht = ot ⊙ σi(ct)

In these equations:

1σh is usually chosen to be ReLU or the hyperbolic tangent, while the activation function chosen for σy
depends on the task, but usually sigmoid for binary-classification tasks and softmax for multi-class classification
as it outputs a probability distribution over the classes. For regression tasks, we usually do not apply the
activation function to keep the output a continuous value.
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• ft, it, ot ∈ (0, 1)H are the activation vectors of the forget gate, input (or update) gate,
and output gate, respectively.

• ht, c̃t ∈ (−1, 1)H are the hidden state vector (also known as the output vector of the
LSTM unit) and the cell input activation vector, respectively.

• xi
t ∈ RN is the input vector (input i at time t) to the LSTM unit.

• The initial values of the cell state and hidden state are c0 = h0 = 0.

• ⊙ denotes the Hadamard product, which is an element-wise multiplication.

• The superscript H refers to the number of hidden units, and N refers to the number of
input features.

• The weights wl
kj ∈ RH×H and wl−1

ij ∈ RN×H represent the connections between hidden
states and between input features and hidden states, respectively.

• The bias bl
j ∈ RH is part of the real-valued vector space.

• σh is usually the sigmoid activation function, while σc and σi both represent the
hyperbolic tangent function2. In the case of the ’peephole’ LSTM [56, 57], σi(z) = z.

The GRU, on the other hand, regulates the flow of information similar to the LSTM but does
so without using a separate memory unit. It uses a simplified gating system, combining the
forget and input gates of the LSTM into a single ’update’ gate [58]. This results in a lighter
model architecture, while still providing effective control over the hidden content.

It is expressed as follows:
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ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (6.7)

where zt is the update gate which controls how much information the previous hidden state
is carried over to the current step, rt is the reset gate which is used to decide how much of the
past information (hidden state) needs to be forgotten, and h̃t is the candidate hidden state
which contains the new memory to be stored in the hidden state. The final hidden state ht
at time t is then a blend of the previous hidden state ht−1 and the candidate hidden state h̃t,
controlled by the update gate zt. Specifically, each dimension of the hidden state is updated
to an extent determined by the corresponding dimension in the update gate.

2The use of different activation functions in an LSTM reflects the fact that they perform different roles:
the sigmoid function for determining the amount of information flow, and the hyperbolic tangent for creating
potential state updates.
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The performance of GRU has been observed to be comparable to that of the Long Short-
Term Memory (LSTM) model across a broad range of applications and tasks, and some
studies have documented instances where the GRU outperforms LSTM, despite its relative
computational efficiency [59].

6.5 Graph Representation Learning

Now we will go one step forward and start to look at a fairly new branch of Machine
Learning involves predicting information or properties from graph data which is a way
of representing data as mathematical graphs (which will be introduced later). This is
called Graph Representation Learning. Specifically we will look at Graph Neural Networks
(GNN) and Message Passing Neural Networks (MPNNs) which is a specific framework or
representation of GNNs.

Since Graph Representation Learning is focused on learning meaningful representation of
graph data, it is there Most of this section will be taken from the book "Graph Representation
Learning" by William L. Hamilton [60] and "Geometric Deep Learning Grids, Groups,
Graphs, Geodesics, and Gaugesas" by Michael M. Bronstein et al. [61] as they give an
excellent introduction and cover most of the material we will need on this topic.

6.6 Overview

As mentioned, GNNs are a category of neural networks formulated specifically to work
with graph-structured data. Traditional neural networks are usually structured to process
grid-like data (e.g., images processed by Convolutional Neural Networks) or sequential data
(e.g., text processed by Recurrent Neural Networks). In contrast, GNNs are engineered to
operate on the graph structure, considering attributes associated with nodes or edges, or
both. This unique capability renders GNNs as an ideal choice for tasks where both the
structural connectivity and attribute data of the graph are essential.

The theoretical underpinning of GNNs is rooted in their capacity to execute computations on
graphs via defined update and aggregation functions. These functions constitute the central
elements of a structure known as a Graph Network Block [62], a fundamental building
unit in the architecture of GNNs. A Graph Network Block ingests a graph, carries out
computations on its components, and outputs a graph. Specifically, it updates the attributes
of nodes, edges, and the global state (if present) in an independent manner. Concurrently,
the aggregation functions facilitate the interchange of information among edges, nodes, and
the global state. This mechanism, where nodes exchange messages with their connected
neighbors, is commonly referred to as message passing in the field.

The sequence of computational steps in a Graph Network Block, as seen in a typical
formulation of GNNs, includes:

1. Updating the attributes of the edges.

2. Aggregating the edge updates at each node.

3. Updating the attributes of the nodes.
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4. Aggregating the edge updates for the global state, if applicable.

5. Aggregating the node updates for the global state, if applicable.

6. Updating the global state, if applicable.

GNNs aim to create representations of nodes influenced by both the topology of the graph
and any existing feature information. This methodology contrasts with shallow embedding
techniques that optimize a standalone embedding vector for each node. GNNs extend
beyond this, offering a method to construct intricate encoder models that encapsulate the
multifaceted structure and features present in graph data.

6.7 Neural Message Passing

Since Graph Representation Learning is focused on learning meaningful representation of
graph data, it is to have a basic grasp of graph theory. For readers who are not familiar with
graph theory, the book "Discrete Mathematics and Its Applications" by Kenneth H. Rosen
[63, Ch. 10] gives a great introduction and covers all the necessary topics.

In this section, we will analyze GNN arcitectures which are permutation equivariant functions
F(X, A), also called a GNN layer, where X ∈ Rd×|V| is a set of node features of a graph
and A is its corresponding adjacency matrix. The functions F are constructed by applying
shared permutation invariant functions ϕ(xu, XNu) over closest neighbours where Nu is the
neighbourhood for the node u ∈ V . Usually, the local function ϕ is reffered to as message
passing. The study of GNN layers is an active research area. However, there are three "types"
of GNN layers which are commonly used and extensively written about in the literature.
These three types of GNN layers govern how the message passing function ϕ ffects and
modifies the neighboring features during the transformation process.

In order to keep permutation invariance, the node features X ∈ Rd×|V| are aggregated with
a permutation-invariant function

⊕
. This function is a nonparametric operation3 such as a

element-wise sum, mean or maximum4.

Since GNNs learn a representation for a graph based on its node features where the nodes
don’t have a natural ordering, permitting the nodes of the graph won’t change the graph
itself, therefore the function used to aggregate the node features must be permutation
invariants. Neural networks can independently process each node in the graph, yielding a
set of node embeddings. These embeddings are then combined using permutation-invariant
operations to obtain a representation of the entire graph.

3In this context, the term "nonparametric operation" refers to an operation that does not rely on any
specific parametric form or distributional assumptions of the underlying data. This means that nonparametric
operations make fewer assumptions about the data and are not tied to specific parameterized models. These
operations are also permutation-invariant because their results do not change if the order of the elements in the
input set changes.

4For example, we can find the sum of the set S = {1, 2, 3} as ∑s∈S s = 6, the mean µ(S) = 2 and the maximum
max S = 3. These do not change on the permutation of the input.
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6.8 GNN layers

As briefely mentioned, GNN layers are usually classified in three categories, sometimes
refered to as the differnt GNN flavours. Each of these flavours has its unique way of
aggregating information from neighbouring nodes in a graph. Let’s delve into each one,
keeping in mind that the mathematical symbols used here have been defined in previous
sections.

Let G = (V , E) be a graph with the node set V and the edge set E. Firstly, we have the
convolutional layer [64–66]. In this approach, the features of the neighbouring nodes are
directly aggregated with fixed weights. This can be represented as:

hu = ϕ

(
xu,

⊕
v∈Nu

cu,vψ (xv)

)
.

Here, cu,v, denotes the importance node v has to the representation of neighbouring node
u, and xv is the features of node v ∈ V . It’s a constant that often directly depends
on the entries in A, which represents the structure of the graph. What’s interesting here
is that when the aggregation operator

⊕
is chosen to be the sum operator to combine

information from different nodes, it’s like spreading or ’diffusing’ information from one
node to its neighbours. This process is a broader version of a concept called convolution,
which is a mathematical operation on two functions, used to produce one by ’blending’ the
two together. In the context of GNNs, it’s used to blend information from a node and its
neighbours. However, the concept is generalized to work with data structured as a graph,
which is a bit more complex than the standard use of convolution.Lastly, hu is the output of
one or more layers for each node u ∈ V in the graph. Moving on from the convolutional
layer, we encounter the attentional layer [67–69] which is defined as follows:

hu = ϕ

(
xu,

⊕
v∈Nu

a (xu, xv)ψ (xv)

)
.

We see that cu,v is replaced by the "learnable" self-attention mechanism a, which computes
the importance coefficients, or weights, a (xu, xv)5. These coefficients determine the level of
"attention" or importance that one node should give to another during the information ag-
gregation process. Specifically, a (xu, xv) calculates the importance of node v’s information to
node u. These coefficients are often softmax-normalised across all neighbours. This ensures
that the coefficients are positive and sum to one, which can be interpreted as the probability
distribution of attention over all the neighbours. Again, if

⊕
is the sum operator, the aggreg-

ation will be a linear combination of the neighbourhood node features where the weights are
feature-dependent. However, unlike in the convolutional flavour, these weights are not fixed
but are determined by the learnable attention mechanism. This means that the importance
assigned to each neighbour’s features can dynamically adjust based on the features of the
nodes themselves. In other words, the model can pay more ’attention’ to certain neighbours
based on their features, hence the term ’attentional’ flavour."

5It is learnable because it is capable of adjusting these coefficients during the training procedure based on the
input features of the nodes. This allows the model to learn which connections between nodes are more important
for a given task.
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Figure 6.2: From [61, p. 78]. This visualization depicts the three types of GNN layers.

Lastly, we have the the message-passing layer [5, 62] which computes arbitrary vectors (also
called "messages") across edges:

hu = ϕ

(
xu,

⊕
v∈Nu

ψ (xu, xv, eu,v)

)
.

In this scenario, ψ is now a learnable differnetiable function, like a neural network, comput-
ing v ’s vector sent to u, and the aggregation can be considered as a form of message passing
on the graph. In particular, we refer to ϕ as the update function and ψ as the message function.

As briefly mentioned, an attention layer with fixed weights (not learnable) essentially be-
comes a convolutional layer. In fact, both attention and convolutional GNNs can be con-
sidered specific cases of message-passing GNNs as they both involve a node transmitting its
own features to its neighbors, but they differ in how these transmitted features are weighted.
This is simply shown by setting the message function ψ (xuxv) = cu,vψ (xv) for convolutional
GNNs and ψ (xu, xv) = a (xu, xv)ψ (xv) for attentional GNNs.

While message-passing GNNs offer flexibility, they can be challenging to train and memory-
intensive due to the need for computing vector-valued messages across edges. For many
naturally-occurring graphs, where edges signify class similarity6 (like the case when u
and v are likely to share the same output for an egde (u, v)), convolutional aggregation
often outperforms in terms of regularisation and scalability. Attentional GNNs strike a
balance, enabling complex neighbourhood interactions modelling while only computing
scalar-valued quantities across edges, enhancing scalability compared to message-passing
GNNs.

6.9 Iterative Process of GNN Layers

The iterative process in GNNs, often referred to as the message-passing process, begins with
initializing node vector representations as node attributes: h(0)

v ← xv, ∀v ∈ V . Then, at
each message-passing iteration k, a hidden representation h(k)

u corresponding to each node
u ∈ V is updated. This update is based on the information aggregated from u ’s graph
neighbourhood Nu. The iterative update can be expressed as follows:

6Such graphs are often called homophilous
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h(k+1)
u = ϕ(k)

(
h(k)

u ,
⊕

v∈Nu

ψ(k)
(

h(k)
v

))
(6.8)

= ϕ(k)
(

h(k)
u , m(k)

Nu

)
(6.9)

where ϕ(k) and ψ(k) are arbitrary differentiable functions (i.e., neural networks) of layer k,
and m(k)

N (u) is the "message" that is aggregated from u ’s graph neighbourhood Nu where

each individual message from a neighbour v to u is computed by the function ψ(k)
(

h(k)
v

)
.

We use superscripts to distinguish the embeddings and functions at different iterations of
the process.

The message-passing process involves three steps: message computation, aggregation, and
update. For each pair of nodes (u, v) ∈ E , a message m(k)

vu is computed using the current
embeddings of the nodes. Then, for each node v ∈ V , all the incoming messages from its
neighbours are aggregated to form a(k)v . Finally, the aggregated message is used to update
the current embedding of the node. The procedure looks like this [70, p. 71]:

Message: m(k)
vu ← ψ(k)

(
h(k−1)

v , h(k−1)
u

)
, ∀(u, v) ∈ E ,

Aggregation: a(k)v ←
⊕

u∈N v

({
m(k)

vu | u ∈ Nv

})
, ∀v ∈ V ,

Update: h(k)
v ← ϕ(k)

(
h(k−1)

v , a(k)v

)
, ∀v ∈ V . (6.10)

This iterative process, allows GNNs to propagate and process information across the graph
over multiple steps or ’layers’. It is what enables GNNs to capture the complex, hierarchical
patterns in the graph data, which is key to their powerful performance on a wide range
of tasks. Since we want to set ψ to be an NN or affine transformation, e.g., ψ(k)(x1, x2) =
σ(x1W1 + x2W2) where x1, x2 are node features, W1, W2 are learnable weights and σ(·) is an
activation function (6.4).

After the GNN has produced the representation, h(K)
v , where K is the total number of

message-passing layers, we can make a prediction on for example, classify a set of nodes
S ⊆ V . This is done by using a readout function. A readout function is another permutation-
invariant operator plus an NN. We then get

Readout: rS ← σ(R(h(K)
v , v ∈ S ⊆ V)).

In essence, the readout function is responsible for aggregating the features of all the nodes
in the graph to form a graph-level representation. It provides a summarized and fixed-size
output that encapsulates the essential information about the entire graph.
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Part III

Methods
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Chapter 7

QM9 dataset

7.1 General description

Since neural networks learn from data, it is natural to assume that for a neural network to
be trained to predict molecular properties, it would need to learn from a dataset consisting
of molecules as features and properties as targets.

Luckly, the chemical universe GDB-17[71] contains data about 166 billion organic molecules,
in SMILES (Simplified Molecular Input Line Entry System) format. But even with such an
immense chemical space, the challenge remains to provide high-quality quantum chemical
property calculations for a substantial and relevant subset.

The QM9 dataset [1] aims to address this, being a part of the quantum machine project [72]
along with the QM7 [73, 74], QM7b [73, 75] and QM8 [76] datasets. It is a carefully curated
set of around 134k molecules taken from GDB-17 chemical universe. These molecules, each
containing up to nine heavy atoms, serve as a relevant, consistent, and comprehensive
exploration of small organic molecule space.

For each molecule in the QM9 dataset, a wide range of quantum chemical properties
have been reported. These include the the equilibrium geometric configurations of each
molecule (xyz-coordinates of each atom of the molecule in the euclidean space), as well as
their corresponding harmonic frequencies, dipole moments, and polarizabilities. Moreover,
energetic properties such as the ground-state energy, total energy, enthalpies, and free
energies of atomization are also provided for each of the molecules in the dataset[1, 77] . All
of these properties have been calculated using the B3LYP/6-31G(2df,p) [78, 79] algorithm
which is a method based Density Functional Theory (DFT) [80].

Although the QM7, QM7b, and QM8 datasets share similarities with QM9, they are
inherently smaller in size and scope. QM7 and QM7b consist of only 7,165 molecules each
with up to seven atoms, while QM8 contains 22k molecules, each featuring up to eight atoms.
In contrast, the QM9 dataset, encompassing 134k molecules each with up to nine heavy
atoms, provides a more extensive sampling of the chemical space. Consequently, a machine
learning model trained on the QM9 dataset can traverse a broader landscape, enhancing
its capability to locate more optimal local minima and potentially improving its prediction

44



No. Property Unit Description

1 tag — ‘gdb9’ string to facilitate extraction

2 i — Consecutive, 1-based integer identifier

3 A GHz Rotational constant

4 B GHz Rotational constant

5 C GHz Rotational constant

6 µ D Dipole moment

7 α a3
0 Isotropic polarizability

8 ϵHOMO Ha Energy of HOMO

9 ϵLUMO Ha Energy of LUMO

10 ϵgap Ha Gap (ϵLUMO − ϵHOMO)

11 ⟨R2⟩ a2
0 Electronic spatial extent

12 zpve Ha Zero point vibrational energy

13 U0 Ha Internal energy at 0 K

14 U Ha Internal energy at 298.15 K

15 H Ha Enthalpy at 298.15 K

16 G Ha Free energy at 298.15 K

17 Cv
cal

molK Heat capacity at 298.15 K

Table 7.1: From the original QM9 paper, shows the calculated properties for each of the molecules. Properties
are stored in the order given by the first column. In column 1, ’gdb9’ idicates that the molecule is taken from a
subset of the GDB-17 chemical universe with up to nine heavy atoms. Energies are given in Hartrees.

performance.

7.1.1 File format

Given that the SMILES strings of QM9 molecules originate from the GDB-17 chemical
universe, it became known that translating from string-based chemical representations like
SMILES or InChI to Cartesian coordinates is not a straightforward task and can be prone
to implementation-specific artifacts. This non-bijective mapping is not invariant to small
geometric perturbations in the molecular structure, such as slight variations in bond angles,
dihedral angles, and interatomic distances, which can potentially lead to different string
representations for molecules with the same topology. The sensitivity of the transformation
process to these nuances results in potential variations in the resulting molecular geometries.
Furthermore, the reverse mapping is also complex, as there can be multiple valid 3D
structures that correspond to the same SMILES or InChI string, due to the rotational freedom
around single bonds and other flexible parts of the molecule.

Because of these transformation issues, 3,054 out of the 133,885 molecules in the QM9 dataset
were found to have discrepancies between their SMILES (or InChI) representations and the
Cartesian coordinates [1]. These molecules are often excluded training sets using the QM9
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data [81], which results in 130,831 molecules.

5
gdb 1 157.7118 157.70997 157.70699 0. 13.21 -0.3877 0.1171 0.5048 35.3641
0.044749 -40.47893 -40.476062 -40.475117 -40.498597 6.469
C -0.0126981359 1.0858041578 0.0080009958 -0.535689
H 0.002150416 -0.0060313176 0.0019761204 0.133921
H 1.0117308433 1.4637511618 0.0002765748 0.133922
H -0.540815069 1.4475266138 -0.8766437152 0.133923
H -0.5238136345 1.4379326443 0.9063972942 0.133923
1341.307 1341.3284 1341.365 1562.6731 1562.7453 3038.3205 3151.6034 3151.6788
3151.7078
C C
InChI=1S/CH4/h1H4 InChI=1S/CH4/h1H4

Figure 7.1: Example of a CH4 ((methane)) molecule in the QM9 dataset

where the formatting is is described in Table 7.2

Line Content Description

1 Number of atoms na

2 Scalar properties (see Table 7.1)

3, · · · , na + 2 Element type, coordinate (x, y, z, in Å), Mulliken partial charges (in e) on atoms

na + 3 Harmonic vibrational frequencies (3na − 5 or 3na − 6, in cm−1)

na + 4 SMILES strings from GDB-17 and from B3LYP relaxation

na + 5 InChI strings for Corina and B3LYP geometries

Table 7.2: From the original QM9 paper. The molecules in the dataset are stored in a XYZ-like file format
for molecular structure and properties, however, unlike traditional XYZ-format, it contains information on
molecular properties and string representation.

That means that Internal energy at 0 K, U0, for the CH4 molecule above is U0 = −40.45893
which is the 13th (or 4th in 3rd line) number in line number 2. The next 5 lines give us the
positions of the individual atoms in the molecule as well as their partial charges, which is
given by the last number in these 5 lines. However, for our study, only the U0, atom types
and their position in space is relevant.

7.1.2 Graph Representation of the data

As the QM9 data is is in ".xyz" format and is displaying geometric coordinates as well as
atom types, as shown in Figure 7.1, we have to do some modifications to effectively map the
data into a graph representation of itself. To effectively achieve this, we want to capture both
properties of the atoms as well as the bonds they participate in.

Let a molecule be represented by a set of atoms A and a set of bonds B. For each atom
a ∈ A, several features are captured and transformed into a representation suitable for
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GNNs. These attributes include:

• Atom Type: Denoted by x1(a), this function maps the chemical symbol (H, C, N, O or
F) of atom a to an integer index and subsequently one-hot encodes1 it into a vector.

• Atomic Number: Represented by a scalar z(a).

• Aromaticity: A binary value arom(a) indicating whether atom a is aromatic.

• Hybridization States: Denoted by three binary values sp(a), sp2(a), and sp3(a),
representing the hybridization states.

• Number of Bonded Hydrogens: Calculated as h(a), this value counts hydrogen atoms
bonded to non-hydrogen atom a.

• 3D Coordinates: The geometric coordinates are represented as a vector p(a).

The final feature vector for the atoms, x(a), is formed by concatenating x1(a) and other scalar
functions.

Edges in the graph represent the bonds between atoms. For each bond b ∈ B, the following
features are defined:

• Bond Type: Represented by a vector Et(b), where bonds are mapped to integer indices
reflecting single, double, triple, and aromatic types, and subsequently one-hot encoded
into Ea(b).

• Adjacency Matrix: We define an adjacency matrix A to represent the connections
between atoms, where Aij = 1 if there is a bond between atom i and atom j, and
Aij = 0 otherwise.

7.2 Automatic differentiation

Automatic differentiation (autodiff or AD) [82, 83] is a set of techniques that enable a
computer program to compute the partial derivatives of a function with high precision and
efficiency which are fundamental to the optimization procedures in machine learning.

This is achieved by leveraging the fact that every computer program, regardless of its com-
plexity, executes a sequence of elementary arithmetic operations (addition, multiplication,
etc) and functions, such as sin(x), exp(x) and log(x). By repeatedly applying the chain rule
of calculus to these operations, AD can compute derivatives of arbitrary order automatically,
with a high degree of accuracy, limited only by the computer precision, and a computational
complexity that is only a small constant factor greater than that of the original program.

Unlike symbolic differentiation, which struggles with the conversion of a computer program
into a single mathematical expression and can lead to inefficient code as it can grow expo-
nentially in computational complexity, or numerical differentiation, like finite-differences,
which can introduce round-off errors and cancellation as it suffers from numerical instabil-
ity, AD provides a robust and efficient method for derivative computation. This is particu-

1One-hot encoding is a process where an integer index is represented by an array in which all elements are
zero except for the index position, which is set to one.
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larly crucial when calculating partial derivatives of a function with respect to many inputs,
as is often required in gradient-based optimization algorithms.

The fundamental principle underpinning autodiff is the chain rule of calculus. Given a
composite function f : R2 → R where f (g(x, y), h(x, y)) for g, h : R2 → R, the partial
derivative of f with respect to x is given by:

∂ f
∂x

=
∂ f
∂g
· ∂g

∂x
+

∂ f
∂h
· ∂h

∂x

With x, y ∈ R. This means that the rate at which f changes with respect to x is a combination
of how much f changes with g and h, and how much g and h change with x.

AD applies this principle iteratively to compute the partial derivatives of functions com-
posed of many nested functions, which is a common scenario in machine learning models.
This is particularly important in the context of neural networks, where we often need to
compute the gradient of a loss function with respect to high-dimensional parameters.

There are two types of AD. These are forward [84] and backward mode [85] (or accumu-
lation). In forward mode, the chain rule is applied following the natural order of compu-
tation, propagating derivatives from the input variable to the output variable. In contrast,
the reverse mode applies the chain rule in the reverse order of computation, starting from
the output and and propagating back to the inputs. This procedure involves two ’passes’
through the function: a forward pass to compute the value of the function, and a backward
pass to compute the partial derivatives.

The reverse mode is particularly of great interest in machine learning, where it has recently
been applied in the backpropagation algorithm to compute the gradients of the loss function
with respect to the weights and biases of the NN. By utilizing the reverse mode of AD, it
allows for faster and more efficient training of complex models. The ability to accurately
calculate the partial derivatives of functions is crucial in backpropagation, as the derivative
of a function can be determined by finding the derivative of every operation in the function
and using the chain rule to calculate the derivative. The backpropagation algorithm lever-
ages this by reversing all the operations, allowing for efficient computation of the required
gradients.

7.3 Continuous Kernel-Based Convolutional Operator

We develop further from the work by Gilmer et al., 2017 in their paper "Neural Message
Passing for Quantum Chemistry" [5] who used the a MPNN trained on the QM9 dataset to
predict a wide range of molecular properties. They used the continuous kernel-based convo-
lutional operator, which is also the edge-conditioned convolution from the paper Dynamic
Edge-Conditioned Filters in Convolutional Neural Networks on Graphs [86].

In the field of graph convolutional neural networks, the continuous kernel-based convo-
lutional operator, is a convolutional operator which addresses the intricate challenging task
of incorporating edge attributes effectively into the graph convolutional process, provid-
ing the ability to handle both directed and undirected graphs, thus enabling more complex
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modeling.

Consider a directed or undirected graph G = (V , E), where V is a finite set of vertices with
|V| = n2 and E is a subset of V × V comprising of the edges with |E | = m. The graph is
presumed to be labelled on both vertices and edges. Let h(0)

v : V 7→ Rd0 signify a function
that assigns labels (features) to each vertex where d0 = dim(V) is the dimension of the vec-
tor features V and K : E 7→ Rs allocate labels (attributes) to each edge, where s = dim(E)
is the dimensionality of edge attributes, E, in the graph. Further, let Nu = v; (v, u) ∈ E ∪ u3

designate the neighbourhood of vertex u, including u itself, making a self-loop.

The Continuous Kernel-Based Convolutional Operator is then defined as:

h(k+1)
u = Wh(k)

u +
⊕

v∈Nu

h(k)
v · ψ(k)(eu,v) (7.1)

where:

• h(k+1)
u is the updated feature of the node u in the (k + 1)-th layer.

• h(k)
u is the feature vector of node u in the k-th layer.

• W is a learnable matrix that transforms the node features.

• h(k)
v is the feature vector of a neighboring node v in the k-th layer.

• Nu is the set of neighboring nodes to node u.

• eu,v is the edge feature between node u and node v.

• ψ(k) is a neural network (in practice, often a Multi-Layer Perceptron or MLP) that maps
the edge features to an output matrix that’s used in the convolution.

In the Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs
paper, the authors used the

⊕
= ∑ as their permutation invariant aggregation operator.

The core of this operator is the edge-conditioned component hv(k) · ψ(k)(eu, v), where the
edge attributes directly influence the transformation applied to the neighbouring node
features. The function ψ(k) generates a unique transformation matrix for every edge, thus
encapsulating the edge attributes into the learning process.

2In graph theory, | · | is a way to denote the cardinality (or size) of a set/graph. See appendix
3This notation includes all vertices v such that there exists an edge from v to u in the set of edges E . This is

essentially the set of all vertices that are connected to u by an edge. The ∪u part means that the vertex u itself
is included in its set of neighbors. This is common in self-loop scenarios where each node is considered to be
connected to itself.
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Chapter 8

The Model

In this chapter, we will delve into the core model of this thesis, the architecture that integrates
the MPNN with the PM3 method. Here’s how the model functions:

• MPNN Component: The MPNN model serves as a learner capable of predicting the
parameters for the PM3 method. Unlike traditional approaches that rely on fixed
tabular parameters, this model dynamically adapts the parameters to better suit the
molecule. The iterative prediction process enables a more tailored response to each
specific molecule.

• Loss Function: The accuracy of the model’s predictions is evaluated using a loss
function that calculates the difference between the total energy derived from the QM9
and the predictions made by the PM3 method with MPNN predicted parameters.

• Hybrid Approach: Unlike other machine learning trained parameter sets, this model
presents a hybrid approach. The trained MPNN network is not a separate entity but
an integrated part of the computation itself. This integration offers a bridge between
the computational rigor of the PM3 method and the adaptive learning capabilities of
the MPNN, creating a dynamic system with potentially enhanced performance.

All the code used in this project can be found at my GitHub [87] or simply by following this
link: https://github.com/aleksda/Thesis.

8.1 Implementation

Having established the theoretical framework and methodological approach for our project,
we now turn our focus towards the computational implementation. In this realm, we
have chosen Python as our programming language due to its robust capacity for handling
scientific and mathematical programming tasks pertinent to our research. Python’s primary
strengths lie in its comprehensive suite of libraries and tools tailor-made for scientific
programming and data analysis, specifically within the domain of computational chemistry
and deep learning. Python’s high-level, clear, and readable syntax further facilitates the
communication and replication of complex scientific concepts and research methodologies,
making it an optimal choice for our study.

50

https://github.com/aleksda/Thesis


For deep learning, Python includes powerful libraries such as PyTorch [88], Tensorflow [89],
and JAX [90]. For this research, we employed PyTorch for general machine learning while
PyTorch Geometric (PyG) [91] was utilized for handling GNNs. PyG provides a wide range
of pre-implemented GNN operators and facilitates the handling of irregular structured data.
Specifically for our project, we employ the QM9 dataset, which is readily available in PyG
already in its graph representation format. Furthermore, the 3k molecules with discrepancies
between their string representations and the Cartesian coordinates are already filtered out.
PyTorch also features Automatic Differentiation, as well as GPU acceleration. This feature
becomes especially relevant when dealing with large datasets and computationally intensive
models, like in this work, as it can potentially enhance computational speed and efficiency.

When compared to other potential languages and libraries for this project, such as MATLAB,
Julia [92], or C/C++, Python’s advantages are noteworthy. MATLAB, although a powerful
tool for numerical computation, lacks thespecialized libraries for deep learning, GNNs and
computational chemistry. While it does offer GPU computing capabilities, they are not as
user-friendly or deeply integrated as Python’s. Julia, while an emerging contender in the
field of scientific computing with strong support for automatic differentiation, currently
lacks robust, mature libraries for GNNs, and its ecosystem for GPU-accelerated computing
is not as comprehensive as Python’s. As for C/C++, despite their high computational
performance, they also lack specialized libraries for GNNs, and their syntax does not
provide the readability and ease of use required for expressing complex models such
as GNNs. Furthermore, none of these alternatives offer as straightforward a path to
GPU acceleration as Python with PyTorch.Lastly, PyTorch’s automatic differentiation is a
considerable advantage over these alternatives, streamlining the computation of gradients
for backpropagation in neural networks, a process that is typically more manual and error-
prone in MATLAB, Julia, or C/C++.

8.2 Theoretical description

The reasons to train a GNN on the QM9 dataset (or other data with a graph representation)
over a traditional NN, are mainly due to these factors:

1. Handling Variable Input Length:
GNNs can manage variable input lengths, a necessary feature for dealing with
the QM9 dataset where the size of the data (number of atoms and bonds) varies.
Traditional NNs require fixed-size inputs, which is not ideal for such a dataset.

2. Maintaining Structural Information:
GNNs are capable of processing graph-structured data, preserving the essential
structural relationships between atoms in a molecule. In contrast, traditional NNs,
due to their need for vector or matrix inputs, can lose some of this important structural
information.

3. Invariance to Input Order and Graph Isomorphism:
GNNs have the inherent property of being invariant to the order of input nodes and
graph isomorphism. This means that the output remains consistent even when the
arrangement of atoms is altered but the bonding structure is kept the same. Traditional
NNs do not have this property, making GNNs more suitable for molecular data.
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4. Efficiency with Large Graph Data:
GNNs are designed to handle large and complex graph-structured data efficiently.
They scale well with the size of the input graph, primarily due to the shared node
and edge update functions. This efficiency is vital when processing large molecular
datasets like QM9.

Following Gilmer et al., 2017 , we will construct a GNN with the Continuous Kernel-Based
Convolutional Operator as our message-passing layer.

Following their steps , we will use a neural network as the message function, ψ, and gated
recurrent unit as update function, ϕ. We also chose sum as our permutation invariant
operator.

The procedure from Equation (6.10) then becomes:

Message: m(k)
vu ← σ

(
NN

(
h(k−1)

v , h(k−1)
u

))
, ∀(u, v) ∈ E ,

Aggregation: a(k)v ← ∑
u∈Nv

({
m(k)

vu | u ∈ Nv

})
, ∀v ∈ V ,

Update: h(k)
v ← GRU

(
h(k−1)

v , a(k)v

)
.

where σ(·) = ReLU(·) is the activation function. The choice of using the Gated Recurrent
Unit as the update function comes from its inherent capability to handle sequential data and
their ability to model complex dependencies. since the nodes are updated iteratively, the
state of a node at the kth iterations depends on its state at the (k− 1)th iteration (as we see
above) and the information aggregated from its neighborhood. This makes this a sequential
task where the sequence is the iterations of update.

As an RNN, the GRU helps control the flow of information between consecutive itera-
tions.This allows the model to capture both short-term and long-term dependencies in the
data by choosing what information to keep and what to discard at each step. This is help-
ful when dealing with large graphs or when the objective is to aggregate information from
nodes that are not directly connected but can be reached by traversing through multiple
intermediate nodes.

In the context of molecular analysis on the QM9 dataset, the incorporation of a GRU in a
GNN framework proves to be especially beneficial. It facilitates the inclusion of information
from individual atoms within a molecule that are located multiple bonds away from a
reference atom, thereby providing a global perspective of the molecule instead of a merely
local one. For instance, consider the Methane (CH4) molecule from Figure 7.1. The Carbon
atom has four Hydrogen atoms in its immediate local environment, or one bond away.
However, for more complex molecules like Ethane (C2H6), there are Hydrogen atoms two
bonds away from each Carbon atom, reachable by traversing through an adjacent Carbon
atom. Such an arrangement exemplifies how interactions that span multiple bonds (two,
three, or more) can impact the properties of the atom under consideration, and underscores
the utility of the GRU in capturing these extended influences for a more accurate molecular
modeling.

Continuing with the GNN implementation, we will employ a readout function after the a
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readout function node and edge update functions. This readout phase is represented by:

Readout: rS ← σ(R(h(K)
v , v ∈ S ⊆ V)).

where K is the total number of message-passing layers. Distinct from the approach of Gilmer
et al., the readout in our model doesn’t directly serve as the GNN’s output. Instead, it
provides ’corrections’ to the PM3 parameters of the effective Hamiltonian. This is done
by taking the already previously fitted PM3 parameters from MOPAC [2, 4, 93] and adding
them with the corrections from the GNN entry-wise which will then yield the updated PM3
parameters for the effective Hamiltonian. This is then repeated until the model converges or
we reach satisfactory results. Therefore, ultimately, the GNN is trained to predict corrections
to the PM3 parameters.

Introducing the corrections directly into the PM3 method without adjusting the fixed PM3
parameters can disrupt the SCF loop, which solves the Hartree-Fock equations. The SCF
loop iteratively refines the electronic wave function until reaching a self-consistent solu-
tion. Abruptly altering key parameters—such as those defining the effective Hamilto-
nian—drastically changes the set of equations being solved and reshapes the potential en-
ergy surface of the molecule. This may hinder the SCF procedure’s ability to locate a stable
minimum, leading to potential convergence failure or a sharp increase in time complexity
as more iterations will be needed to reach convergence. In contrast, gradually ’tuning’ the
fixed PM3 parameters using corrections derived from the GNN enables the model to adapt
incrementally to the patterns and correlations within the data. This gentle, iterative refine-
ment is less disruptive to the SCF loop’s convergence, while it enhances the PM3 method’s
predictive capability.

This all means that the output, ŷ, of the network is what gets predicted by the PM3, not
after the readout phase. That means

ŷ = Etot = Eelec + ∑
i<j

Enuc
i,j (8.1)

where Eelec is the sum of electronic energy and Enuc
i,j is the nuclear interaction between the ith

and jth atom calculated by the MPNN-PM3 model. The energy is from Equation (4.5) can be
written on the form

Eelec =
1
2

Tr[D× (h0 + F(D))]

where F(D) = h0 + C(D) is the Fock matrix, D is the single-particle density matrix, C is the
Coulomb matrix and h0 is the core Hamiltonian.

This means that our MPNN is directly trained to generate accurate predictions of the core
Hamiltonian h0, the Coulomb matrix C and the nuclear energy Eelec. That gives us

rS : V → {ĥ0, Ĉ, Êelec}

where again, the readout, rS is the final transformation we receive from our MPNN after
the message, aggregation and update steps. The quantities ĥ0, Ĉ and Êelec are the MPNN’s
prediction of the core Hamiltonian,
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Coulomb matrix and the nuclear energy given by the input data V .
The predicted values are then used to make corrections to the existing PM3 parameters as
used in the MOPAC software package. Hence, the updated parameters for the effective
Hamiltonian and the Coulomb matrix are calculated as follows:

h′0 = h0 + ∆ĥ0,

C′ = C + ∆Ĉ

and
Eelec = Êelec + ∆Êelec

where ∆ĥ0, ∆Ĉ and ∆Êelec, are the corrections predicted by the MPNN while h0 and C are
the core Hamiltonian and Coulomb matrix of the PM3 method with the standard MOPAC
parameters.

This procedure is repeated iteratively, with the MPNN adjusting the corrections it provides
based on the updated output. As the MPNN continues learning from the updated data,
it gradually refines the approximations to h0, C and ∆Êelec, thereby enhancing the PM3
method’s predictive capability. This dynamic refinement ensures the SCF loop’s stability,
preventing any abrupt changes that could disrupt its convergence process.

8.2.1 Iterative network parameter refinement via Backpropagation

Since the PM3 method is an integral part of the overall learning model, it plays a central
role in providing the predicted value of the energy. This predicted energy is not just an
intermediate result; it is directly employed in the loss function, forming a bridge between
the forward prediction and the correction mechanism during training. This interplay means
that after every iteration, the backpropagation algorithm needs to find the gradient with
respect to specific variables in the model. But here’s where the intricacy lies: the gradient
calculation doesn’t stop at the neural network’s parameters. Since the model employs
backward accumulation, this gradient computation must traverse through the PM3 model
itself. This process forms a continuous chain where the derivatives must be carefully
handled, respecting the PM3’s computational structure and properties. In essence, the
integration of the PM3 method adds layers of complexity in the backward pass.

Automatic differentiation has been applied to numerical methods for quantum chemistry
in the past for computing accurate derivatives of electronic structure methods [94], to make
excising libraries automatically differentiable [95], as well as to reoptimize basis sets [96].
However, for our study, we will use PySEQM [97] which enables computations on GPUs
through the use of automatic differentiation.
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Part IV

Results
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In the experiments conducted in this section, a consistent set of parameters was utilized
across all tests, incorporating three message-passing layers. The only variable among the
tests was the batch size. The training aimed to minimize the Mean Absolute Error (MAE)
using the ADAM optimizer, with an adaptive learning rate that commenced at 0.0001 and
subsequently decreased to 0.00001 throughout the optimization process. Early stopping was
employed to prevent overfitting and reduce computation time. The data were partitioned
into training, test, and validation sets. The training set comprised 1100 molecules, while
both the test and validation sets included 100 molecules each. These specific quantities were
chosen as they represent 1% of the entire QM9 dataset.

8.3 Comparing different models

Starting with a batch size of 128,

Figure 8.1: Plot of the validation MAE and RMSE for the MPNN-PM3 hybrid model trained to reduce MAE
with a batch size of 128 trained on 1000 molecules. (a) Shows the validation curves with their moving averages
while (b) shows the comparison of the MAE and RMSE with removed bias as well as the proportional difference
and constant offset between the MAE and RMSE, respectively.

as we see from Figure 8.1, the validation error is oscillating quite a lot although it is following
a descending trend. We also notice that we see almost the exact patterns in the MAE and
the Root Mean Squared Error (RMSE) graph with their proportional difference being low.
However, we also see that the error kept steadily decreasing from around after 100 epochs
to 170 epochs. This indicates that it was slowly approaching a minimum before exponential
decay, indicating that it had passed a local minimum and started climbing uphill.
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Figure 8.2: Plot of the loss curve for the MPNN-PM3 hybrid model with a batch size of 128 trained on 1000
molecules. Plot (b) shows the the loss curve with a base 10 logarithmic scale for the y-axis and a linear scale for
the x-axis.

Figure 8.3 shows us the loss curve. As we see, a loss cliff as the loss rapidly falls from
around 4.0 to around 2.6. After that, we see the curve remains mostly constant while slowly
decreasing. By looking at the exponential scaling we see that the optimization algorithm
appears to have identified a promising direction in the loss surface and is rapidly descending
towards a local minimum. The exponential rate of decrease suggests that the algorithm is
effectively navigating the parameter space. Since we see this behaviour in the initial stages
of the training, it suggests the model is rapidly learning to notice ’patterns’ in the data.
Lastly, we again see the optimizer overshoots after around 170 epochs, this is in line with the
observation from figure 8.1 and indicates the optimizer skipped the local minimum, hence
reaching early stopping after around 180 epochs.

Figure 8.3: Plot of the step function for the MPNN-PM3 hybrid model with batch size=128 trained on 1000
molecules. The figure shows a plot of the linear scaling (a) as well as the base 10 logarithmic scaling on the
y-axes (b).

Looking at Figure 8.3, we can see that after around 25 epoch, from Figure 8.1 we see that this
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was right after the optimizer overshot the minimum. This means that the model escaped the
local minima due to the relatively high learning rate. The subsequent decrease in learning
rate serves as an adaptive strategy to facilitate more precise optimization and enhance the
likelihood of convergence to the minimum. We also notice a couple more instances where it
overshoots before decreasing in learning rate.

Overall, these results show that the model is working and is managing to navigate the land-
scape to effectively tune the parameters. But a batch size of 128 may not be the optimal
choice, especially if GPU acceleration is not used. When using a batch size of 16, the follow-
ing observations were observed:

Figure 8.4: Plot of the validation MAE and RMSE for the MPNN-PM3 hybrid model trained to reduce MAE
with a batch size of 16 trained on 1000 molecules. (a) Shows the validation curves with their moving averages
while (b) shows the comparison of the MAE and RMSE with removed bias as well as the proportional difference
and constant offset between the MAE and RMSE, respectively.

The first noticeable difference in Figure 8.4 is that the MAE and RMSE error start lower when
compared to the same test but with a batch size of 128 as in Figure 8.1 and that it converged
to a lower minimum with a MSE = 0.242 needing just bellow 120 epochs.
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Figure 8.5: Plot of the loss curve for the MPNN-PM3 hybrid model with a batch size of 16 trained on 1000
molecules. (b) show the the loss curve with a base 10 logarithmic scale for the y-axis and a linear scale for the
x-axis.

Figure 8.6: Plot of the step function for the MPNN-PM3 hybrid model with batch size=16 trained on 1000
molecules. The figure shows a plot of the linear scaling (a) as well as the base 10 logarithmic scaling on the
y-axes (b).

When looking at the loss curve in 8.5, we see that the low starting error is followed by a lower
starting loss starting at over 1.67. We also again get an exponential decay when logarithmic
scaling is used on the y-axis, again showing that the model is approaching a minimum. From
Figure 8.6 (b), we see that from between around 30 to 60 epochs, the learning rate was stead-
ily decreasing every 5 to 10 epochs, while it took around 20 epochs for the second drop and
second to last drop.

Continuing further, using a batch size of 1 gave the following results
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Figure 8.7: Plot of the validation MAE and RMSE for the MPNN-PM3 hybrid model trained to reduce MAE
with a batch size of 1 trained on 1000 molecules. (a) Shows the validation curves with their moving averages
while (b) shows the comparison of the MAE and RMSE with removed bias as well as the proportional difference
and constant offset between the MAE and RMSE, respectively.

With a batch size of 1, we start again with a smaller error, however relatively smaller
compared to what we see it Figure 8.4 for batch size 16. We also got a less oscillation during
training as seen by looking at the moving average of both the MAE and RMSE. An MAE
of 0.191 was achieved as well as an RMSE of 0.252 which is lower than the MAE of 0.262
achieved using a batch size of 128 as shown in Figure 8.1.
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Figure 8.8: Plot of the loss curve for the MPNN-PM3 hybrid model with a batch size of 1 trained on 1000
molecules. (b) show the the loss curve with a base 10 logarithmic scale for the y-axis and a linear scale for the
x-axis.

Figure 8.9: Plot of the step function for the MPNN-PM3 hybrid model with a batch size of 1 trained on 1000
molecules. The figure shows a plot of the linear scaling (a) as well as the base 10 logarithmic scaling on the
y-axes (b).

There is a relatively smooth loss curve as seen in Figure 8.8. We can also see that the
optimizer overshot a decent amount of times but managed to get to get back on track
relatively quickly. There is seems to be close to continious decrees after 80 epoch until the
stopping criteria was achieved. Also noticeable is that the "distance" or intervals between
learning rate reductions (the steps) is decreasing over time.

8.4 Comparing with PM3

In this section, all the tests were performed on a validation set consisting of 10000 molecules
which were not used for training. Further, all the results pertaining to the MPNN-PM3
hybrid method were obtained using a the model with batch size equal to 1.
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Figure 8.10: Plot (a) of MAE obtained for each molecule using PM3 method and comparing with the MPNN-
PM3 hybrid method. Plot (b) is the same plot but with the errors sorted from lowest to highest

From Figure 8.10, we see a distribution of the MAE of the PM3 and the MPNN-PM3 hybrid
model for each of the molecules in the validation set. We can see that on average, the MAE
per molecule is considerably lower for the MPNN-PM3 model. However, there are some
instances where the MAE is higher for the hybrid model than for the PM3 method. The
highest MAE was also achieved by the hybrid model with an MAE of 2.187, while the highest
MAE achieved by the PM3 method was 2.037
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Figure 8.11: Histogram of the relationship between the models and the target from the QM9 dataset. Plot (a)
shows the relationship with the PM3 model, while plot (b) depicts the relationship with the MPNN-PM3 hybrid
model. The red line in each plot represents a linear model that best describes the relationship, as determined by
linear regression analysis

Figure 8.12: Histogram of the prediction errors over all molecules. The blue dotted line shows the mean error
for the PM3 method while the orange line shows the mean error for the MPNN-PM3 Hybrid model. The are to
the left of the red dashed line is the chemical accuracy range.

Figure 8.12 shows the prediction error over all the molecules as a histogram. From it, we
see that the error for the hybrid model is generally lower than the error for the PM3 model.
As indicated by the dotted lines, the mean error for the MPNN-PM3 model was 0.209 eV
while it was 0.311 for the PM3 method. The hybrid model predicted 1433 molecules within
chemical accuracy while the PM3 method calculated 895 within acceptable error for chemical
accuracy.
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Figure 8.13: Correlation plot which shows the linear relation between the models and the QM9 target. The
red line is a linear model which best describes the relationship as determined by linear regression analysis. Plot
(a) shows the linear relation between PM3 and the target while plot (b) shows the relation between the MPNN-
PM3 hybrid model and the target.

Continuing, with Figure 8.13 which shows two scatter plots where the the energy of the
PM3 and hybrid model are on the x-axis and the target energy on the y-axis. Each point in
the plot represents a single molecule and its positioning shows the energy obtained of the
two methods and the target. If the models agree completely with the target, all the points
should fall along the diagonal line y = x. We can see that this is almost the case for both
methods. The faded red line shows the linear relation between calculated/predicted and
expected values and was achieved using linear regression. The slope value tells us that of
the two fitting show that the model differ with a factor of 2.10994× 10−5, making the hybrid
model has better linear relationship with the target. The R2-values were both close to 1 with
the R2 value for the MPNN-PM3 method being slightly higher. This typically indicates that
the models have strong predictive power.
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Figure 8.14: Kernel Density Estimation of the histograms of the energy differences between the QM9 target
and the models.

The Kernel Density Estimation (KDE) of the two models is shown in Figure 8.14. From it, we
can see that the PM3 method has a mean energy of −0.004 closer to the target mean when
compared against the hybrid model with a mean of 0.055. This also shows that the PM3 has a
tendency to calculate energies which are lower than their true value while the hybrid model
tends to predict energies higher than their true value (assuming the target value is the true
value). However, the standard deviation of the hybrid model is at 0.275 compared to 0.4 for
the PM3 method.

8.4.1 Time analysis

In this section, the training time comparison of the differnet MPNN-PM3 hybrid models. All
tests were conducted on a Macbook pro with the M1 chip.

Batch Size Epochs Time (seconds) Time per Epoch (seconds)
128 180 2.50× 104 1.39× 102

16 117 1.00× 104 8.55× 101

1 112 2.80× 104 2.50× 102

Table 8.1: Training itme comparison of the different MPNN-PM3 Hybrid models.
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Table 8.1 shows the training time for the different models as well as their average time per
epoch. As we can see from the table, the hybrid model with a batch size of 16 the most time
efficient. Even though the model required almost the same amount of epoch to reach early
stopping as the model with batch size 1, the time per epoch was over 3 times as fast. The
model with a batch size of 128 was around 1.8 times as fast per epoch as the model with
batch size 1, but it needed 180 epochs to converge, compared to the 112 needed by the model
with batch size 1.

Model Name Time (seconds)
PM3 4.78× 102

MPNN-PM3 6.54× 102

Table 8.2: Comparison of the time the the PM3 method and the MPNN-PM3 Hybrid model (batch size = 1)
took to compute the total energy for 10000 molecules

Table 8.2 shows the time it took to find the total energy for the two models on 10000
molecules. What we see is that MPNN-PM3 is around 36.82% slower than the PM3 method.
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Part V

Conclusion
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Chapter 9

Discussion

In this work we have implemented a model dubbed MPNN-PM3 hybrid which is a MPNN
trained to predict parameters for the PM3 semiempirical method. The model was shown to
converge to a minimum during training and was successfully texted and compared against
the PM3 model. In the training step, a relatively small learning rate had to be applied as high
oscillation of the loss was encountered during training. This behaviour was to be expected
as the original PM3 parameters provide a decent optimization of the hybrid model and great
deviations in these values, which would have been caused by a higher learning rate would
have made the model more unpredictable. It was also observed that the RMSE of the hybrid
model decreased at the same rate throughout the training as the MAE. This behaviour is also
to be expected as the MAE and the RMSE are highly related and a decrease in one would
lead to a decrease in the other.

The MAE and RMSE errors for the first epochs of the hybrid model decreased with the
batch size. The reason for this is likely due to the model needing to fit more parameters
for higher batch sizes, increasing the risk of poorly fitting certain parameters, at least in the
early stages of training when the model is still adapting to the data. On the other hand,
the model also converged to lower local minima for smaller batch sizes. The reason for
this is not straight-forward. What was however particularly interesting was that that the
model with batch size equal to 1 converged to the lowest error. From my experience, this is
unusual as training on a small batch size introduces more noise into the gradient updates.
This increases the variability and uncertainty in the estimates of the gradients that guide
the model’s learning process. This can have both positive and negative impacts. The added
nose could give the potential capture different characteristics of the overall data distribution
as the gradient can vary more widely from one batch to another. This will then help the
model to escape local minima in the loss landscape and lead to a better solution. A smaller
batch size usually means that more updates are med per epoch which will lead to a slower
convergence. This was the case for the MPNN-PM3 hybrid model as training the model took
longer even though fewer epochs were needed to reach early stopping.

The MAE of 0.192 which was achieved for the hybrid model with a batch size of 1 is of the
same order of magnitude as the MAE achieved by Gilmer et al. [5]. This error reduction is
remarkable considering the short time frame for this thesis and the limited scope of training.
It is reasonable to expect even better model performance with extensive training.
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When comparing the hybrid model with the PM3 model on a validation set of 10000
unseen molecules, a significant reduction in MAE for each molecules was achieved for the
wast majority of molecules. The reason for why the MPN-PM3 model had a higher error
than the PM3 model for certain molecules could be due to the molecules being relatively
different than the ones used in the training set and hence making the parameterization for
these molecules suboptimal. The hybrid model also achieved the highest MAE of a single
molecule which is likely due to the same reason. But despite this, the mean MAE of the
MPNN-PM3 hybrid method for the validation set was 0.201 compared to 0.311 for the PM3
which is a substantial improvement. This is slightly worse than the MAE it achieved during
training. However, the difference is small and the model still generalizes well on the new
unseen data.

The MPNN-PM3 method also managed to predict a little over 14% of the molecules
withing the chemical accuracy range while the PM3 method calculated just under 9% of the
molecules within the chemical accuracy range. By looking at the kernel density estimation,
it was noticeable that the PM3 method tends to underestimate the energy of the molecules,
calculating an energy which is lower than the actual energy. This observation is in line
with what is established about the PM3 method. However, the MPNN-PM3 hybrid tends to
overestimate the energy which can also be seen by looking at the distribution of the MAE
per molecule. The overestimation could indicate that the model has overfitted as overfitting
causes the model to capture noise or outliers in the training data, leading to overpredictions.
Overfitting is a common issue in the field of machine learning and could be root of the
issue. However, the MPNN-PM3 predictions also has a decently lower standard deviation
compared to PM3. This means most of the energies are predicted closer to target value.
However, this makes it more unlikely that overfitting is the cause of overestimation as it
typically leads to increased variance in predictions on unseen data, which is the opposite of
what was observed in this work. The overprediction could then be due to a systematic bias
in the model, or more likely due to the model poorly parameterizing the PM3 method for
molecules less similar to the ones in its training data.
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Chapter 10

Future Work

Taking into account the positive results achieved in this work, there are still much more
that can be done. Hyperparameter tuning is a process of systematically selecting the best
combination of hyperparameters that define a model’s architecture and the way it is trained.
This process helps in finding the optimal set of hyperparameters that minimize a predefined
loss function or maximize the accuracy of the model on a given dataset. Currently, the
MPNN has multiple hyperparamets which can be tuned. These include the size of the
internal layers, size of the linear layers of the neural network, choice of activation function
and the choice of aggregation operator. There is also a hand full of readout functions to
choose from and since many works in the literature suggests that the choice of readout
function can greatly impact the performance of a model [98–102], it is worth exploring this in
greater depth. In this study, the sequence-to-sequence [103] operator was used as the readout
function. This operator is used to map a set of node features to a fixed-size vector and it has
tunable parameter which is used determine the number of iterations the operator will make
over the node features. A higher number of steps can provide a greater representation of the
set, while a lower number will reduce computation time. Removing the readout function can
also potentially allow for the model to tune different parameters for the same atom type in a
molecule as it won’t return a fixed-size representation, but more research has to be done. The
ADAM optimizer, which was used to navigate parameter space also has multiple parameters
which can be tuned to achieve better results. It is also worth considering other optimization
algorithms as SGD as it has shown to perform better than ADAM on certain tasks. More test
runs should also be performed to further strengthen and get a more complete picture of the
results as one sample run is often not enough for a comprehensive overview.

Further benchmark tests should also be performed to get a broader understanding of how
the MPNN-PM3 hybrid model works. The most obvious one would be to train the model
on the entire QM9 dataset then run the same experiments to see how it compares with the
current model. This could help answer the open questions arrising from the current results.
Further tests on how the model predicts other molecular properties it was not trained on and
how it compares with PM3 is also of great interest. Besides using the model to predict sets of
molecular properties, what should also be done in the future is to use a multi-task learning
approach to train the model to correctly predict multiple molecular properties, instead of
just training it predict energies as is done so far. This is typically achieved by training the
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model to minimize a joint loss function, which is often a weighted sum of the individual loss
functions for each task. The weights can be used to balance the importance of different tasks,
depending on the specific problem and objectives. It would also be beneficial to see how
the MPNN-PM3 hybrid model compares against more sophisticated semiempirical methods
like the PM6 [23], PM7 [104] or the orthogonalization-corrected OMx [105] methods which
add additional interactions into the Fock matrix and has been shown yield improvements
for ground-state and excited-state properties. It is also worth comparing the model against
Density-Functional Tight Binding (DFTB) methods or the highly effective extended Tight-
Bindind (xTB) [106] methods.

Other than using these methods as comparison against the MPNN-PM3 hybrid model,
they could also be used as part of the MPNN architecture by replacing the currently used
PM3 method. For example, the PM6 method contains a parameter which controls the
rate of which the core-core repulsion between two atoms decay with distance. However,
finding and developing automatic differentiable versions of other semiempirical methods is
a research project in itself.

Since the PM3 method was optimized to compute properties of the molecules in its training
set, the current set of parameters which is standard for the PM3, contribute to a good local
minimum for that particular dataset. However, it is quite probable that they are not a
local minimum for the QM9 data. Therefore, training the MPNN-PM3 hybrid model to
find deviations for these parameters is likely not optimal as we are limiting the model to
freely explore the entire landscape by forcing it to not deviate too far from the standard PM3
parameters. A likely better approach would have been to re-optimize the PM3 method for
the entire QM9 dataset, or parts of it, and then train a MPNN model to find deviations in the
re-optimized parameters.

Extending the model to include d-orbitals for transition metals is also a further extension of
the project. In its time, the PM3(tm) model was optimized on geometrical data as accurate
and reliable energetic data was not available for transition metal compounds. Today, the
tmQM dataset [107] contains geometries and properties of over 86,000 large transition metal
compounds.

Going back to the machine learning model, there is also other message-passing layers
to experiment or implement Equivariant Graph Neural Networks (EGNNs) [108]. These
models are equivariant to rotations, translations, reflections and permutations. Such
networks can work well on molecular data when a molecule can be represented in various
orientations and permutations. Besides that, the implementation of batch normalization
[109], which is a technique used tp normalize the output of a previous activation layer by
subtracting the batch mean and dividing by the batch standard deviation. This process helps
in stabilizing and accelerating the training of deep neural networks. Dropout is another
technique where under training, some randomly selected neurons are dropped, setting their
contribution to zero. This method can ensure that the model does not become overly reliant
on a single neuron, encouraging a more distributed and robust representation.

Lastly, Automatic differentiation has recently also been applied to HF and DFT in the work
by Kasim et al. [96] which allows for basis set optimization. Here the authors used automatic
differentiation with respect to the the basis set to optimize system-specific basis sets. They
effectively reoptimized the cc-pVDZ basis [110] using just a small training set and their
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results lead to a decrease in the total energy of all the molecules they used in the test set.
The authors also used automatic differentiation to perform alchemical perturbation studies
to predict molecular properties without simulating them. A MPNN or other type of network
can be used for this training process, or for entirely new use cases in quantum chemistry
which utilize automatic differentiation.
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