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Abstract

This paper focuses on variational solutions of the Cauchy problem for a non-
linear wave equation with space-time fractional Brownian noise driving force of
Hurst index H

��� 1 � 2 � 1 � and random initial data. It is shown that this problem has
a unique solution which depends continuously on the random initial data.
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1 Introduction

Gaussian processes with independent increments and a certain self-similarity prop-
erty were first studied by [Kolmogorov 1940a] and [Kolmogorov 1940b] in which they
were called “Wiener spirals”. They were later renamed as fractional Brownian motion
in [Mandelbrot and Van Ness 1968] where a representation in terms of a stochastic in-
tegral with respect to a standard Brownian motion was given. For an encyclopedic re-
view of the intrinsic properties of the process see the forthcoming book [Biagini et al.].
These processes has now found applications in such diverse fields as finance, see
e.g. [Barndorff-Nielsen 1995] and the references therein, climatology and hydrol-
ogy [Pelletier and Turcotte 1997], temperature modelling [Brody et al. 2002] and traf-
fic networks [Leland et al. 1994] to name a few.

In many applications of these processes, the mathematical model is a differen-
tial equation in time, possibly also depending on spatial coordinates, in which case
the model is a stochastic partial differential equation perturbed by fractional Brown-
ian noise in some sense. An elliptic equation is treated [Hu et al. 2000] in a white
noise setting but more often parabolic equations are on the menu. Some papers are
[Nualart 2004] and [Nualart b]. To the best of authors knowledge, the only two papers
dealing with hyperbolic equations are [Erraoui 2003] which considers a 1-dimensional
wave equation without diffusion term, and [Duncan 2001], on a classical linear wave
equation, both with additive space/time noise.

In general, hyperbolic equations are known for their notorious difficulty due to the
fact that the fundamental solution is not smoothing, as in the parabolic case. Moreover,
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it is not even a function in dimensions greater than two but a distribution. In case
the noise is not fractional but Brownian, some works exist, see e.g. [Millet 2001] for
an equation appearing in relativistic quantum mechanics, and an effort has been made
to extend the work on martingale measures in [Walsh 1984] to allow for distributional
fundamental solutions which are then applicable to wave equations, see [Dalang 1999].
However, since a fractional Brownian process is never a martingale that approach is not
applicable here.

The chosen methodin this paper is a variational one, using finite-dimensional Ga-
lerkin approximations to generate a sequence of functions, converging in a suitable
space to a solution of the original equation. This paves the way for a numerical treat-
ment which, however, is lacking in the present paper, in which focus is on existence,
uniqueness, and continuity with respect to input data.

The purpose of this paper is to study stochastic hyperbolic equations with initial
values of the form

∂ 2u
∂ t2 � �

u � b � Du � f � u ��� σ � u � dBH

dt � � u � 0 � � u �t � 0 �	� � � g � h � (1.1)

on a bounded domain U and finite time horizon I ��
 0 � T � , and Dirichlet boundary
condition

u � 0 on ∂U  I � (1.2)

The random force, BH , is a vector valued fractional Brownian process.
Existence will be proved in a variational setting to this Cauchy problem. Continu-

ous dependence on initial data will also be shown.
Section 2 is devoted to some preliminary result. In Section 3 the fractional Brow-

nian noise is described. The variational setting is defined in Section 4 and then, in
Section 5, the equation is properly formulated. In Section 6 a unique solution to the
Galerkin approximated problem is shown to exist and the existence of a solution to
the original equation is the goal of Section 7. In Section 8 we prove uniqueness and
continuity with respect to initial data.

2 Preliminaries

Some parameters in the equation are assumed to have a Lipschitz continuous variable
and the following trivial Lemma is needed.

Lemma 2.1. Let 0 � U ��� d and V ��� m . Assume f : U  V ���� be Lipschitz
continuous in U with Lipschitz constant L � v � at v � V. Then�

f � u � v � ���
L � v � � u � � � f � 0 � v � � �

Proof :
�
f � u � v � �����

f � u � v ��� f � 0 � v � � � � f � 0 � v � ��� L � v � � u � � � f � 0 � v � � . �
We will on several occassions want to estimate integral averages and for these it

can be shown (see [Folland 1984]) that, if y � I then

sup

�
1�
J
�! 

J

�
f
�
dx """" J is an interval containing y # �

2H f � y � � (2.1)

where H f is the maximal function of f . The Hardy-Littlewood-Wiener maximal theo-
rem (see e.g. [Ziemer 1989]) gives continuity of H in any Lp, p $ 1:%

H f
%

p
�

Cp
%

f
%

p � for any p �&� 1 � ∞ �'�
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If f depends on several variables and the maximal function is constructed in the k’th
variable only we write Hk � f � x1 � � � � � xd �	� � y � for its value at � x1 � � �	� � xk � 1 � y � xk

�
1 � �	� � � xd � .

3 The infinite-dimensional noise

The infinite-dimensional noise is the time derivative of the following L2 � U � -valued
process

BH � x � t � � ∞

∑
j � 1

�
λ je j � x � β H

j � t �
where � e j � ∞

1 is an orthonormal basis of L2 � U � and � β H
j � ∞

j � 1 is a sequence of indepen-
dent, zero mean fractional Brownian motions on � with covariace given by

r � t � s � � Eβ H � t � β H � s � � 1
2 � � t � 2H � �

s
� 2H � �

t � s
� 2H �

and Hurst index H � � 1 	 2 � 1 � . The noise is white in in time and correlated in space
which is in agreement with the suspicion that, in many real-world processes, the cor-
relation in time is often of a much smaller magnitude than the spatial correlation, see
[Biswas and Ahmed 1985] and [Miller 1990]. The process is convergent a.s. in L2 � U � :

E
%
BH � � � t � % 22 � E  

U

�
BH � x � t � � 2 dx � ∞

∑
j � 1

λ jE
�
β H

j � t � � 2 � � t � 2H
∞

∑
j � 1

λ j 
 ∞ �
i.e. we are imposing the condition that the sequence ��� λ j � ∞

j � 1 �� 2 which is the
same as saying that the covariance is a nuclear operator (or trace class) and that its
eigenvectors and eigenvalues are � e j � ∞

1 and � λ j � ∞
1 respectively. Hence � BH � � � t ��� t � I is

a centered, Gaussian process with covariance given by

E ��� BH � � � t � � u � L2 � U � � BH � � � s � � v � L2 � U ��� � r � t � s �  U
 

U
u � x � κ � x � y � v � y � dxdy

where κ � L2 � U  U � .
We will use the following hypothesis regarding the continuity properties of the

covariance operator:

(C)
∞

∑
j � 1

�
λ j
%
e j
%

∞ 
 ∞ �
3.1 The pathwise integral with respect to β H

For the sake of estimating stochastic integrals with respect to a fractional Brownian
motion, β H , we will fix a constant, α � � 1 � H � 1 � . The following space will be needed.

Definition 3.1. Denote by W α � 1 � I � the Banach space of measurable functions f : I ��� d such that%
f
%

W α � 1 � I � �  
I

�
f � τ � �
τα dτ �  

I
 τ

0

�
f � τ ��� f � θ � ��
τ � θ

�
1
� α dθ dτ 
 ∞ �
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If � ut � t � I is a process with trajectories in W α � 1 � I � , then its pathwise integral with
respect to fractional Brownian motion, β H exists (see [Zähle 1998]), and we have the
estimate

""""  I
u � t � dβ H � t � """"

�
G
%
u
%

α � 1 � (3.1)

where G is a random variable only depending on β and having finite moments of all
orders. The estimate is a result from [Nualart b] and we will use it frequently. Since
we will be dealing with infinitely many fractional Brownian motions, G j will be the
random variable associated with β H

j via (3.1). An often encountered random variable
in the following is�

G∞ � ∞

∑
j � 1

�
λ j
%
e j
%

∞ G j

which is a.s. finite because of condition (C) and since the G j’s are independent and
identically distributed with a finite moment.

4 The variational setting

We will consider variational solutions and shall therefore assume given a sequence of
supposedly easily computable functions, the “elements”, � wn � ∞

n � 1 with each wn be-
longing to H1

0 � U � and such that

� wn � ∞
n � 1 is an orthonormal basis in L2 � U �

together with

� wn � ∞
n � 1 is an orthogonal basis in H1

0 � U � .
5 The equation

The equation is

∂ 2u
∂ t2 � x � t � � �

u � x � t � � b � x � � Du � x � t ��� f � x � t � u � x � t �	� � σ � x � t � u � dBH

dt
� x � t � �

u � � � 0 � � g � � � �
∂u
∂ t
� � � 0 � � h � � � � (5.1)

with Dirichlet boundary condition

u � x � t � � 0 � x � t � � ∂U  I � (5.2)

Here U � � d is open and bounded with a C1 boundary (so that Gauss divergence the-
orem is applicable)) and I � 
 0 � T � for some finite T . The operator

� � � � x � , the
diffusion term, is a second order differential operator in divergence form defined by

�
u � d

∑
k � l � 1

∂
∂xk

�
ak � l � x � ∂u

∂xl �
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The matrix A � � ak � l � satisfies the conditions

� ∆ �

������������ �����������

ak � l � al � k symmetry

a0
�
ξ
� 2 � d

∑
k � l � 1

ak � l � x � ξkξl uniform ellipticity

d

∑
k � l � 1

ak � l � x � ξkξl
�

A0
�
ξ
� 2 boundedness

where 0 
 a0
�

A0 
 ∞. Du denotes the gradient of u. The transport term satisfies� T � b � L∞ � U � �
The drift term f is Lipschitz continuous in the u-variable with integrability conditions
on the Lipschitz coefficient L f and on f0 � f � � � � � 0 � :� D � �

f � x � t � u ��� f � x � t � v � � � L f � x � t � � u � v
� � L f � L1 � I;L∞ � U � �

� D0 � f0 � L1 � I;L2 � U � � �
The diffusion coefficient is of the form

σ � x � t � u � �  t

0
ρ � x � t � ξ � u � x � ξ � � dξ � (5.3)

where the restictions on ρ are Lipschitz continuity in the u variable together with inte-
grability conditions on the Lipschitz coefficient Lρ and ρ0 � ρ � � � � � � � 0 �

� δ1 �
���������� ���������

�
ρ � x � t � ξ � u ��� ρ � x � t � ξ � v � � �

Lρ � x � t � ξ � � u � v
�

 T

0
 T

ξ

%
Lρ � � � t � ξ � % ∞� t � ξ � α dt dξ 
 ∞

 T

0
 T

ξ

%
ρ0 � � � t � ξ � % 2� t � ξ � α dt dξ 
 ∞ �

We will need some additional smoothness in the t variable of ρ :

� δ2 �
��������� ��������

�
∂2ρ � x � t � θ � u ��� ∂2ρ � x � t � θ � v � � �

L∂2ρ � x � t � θ � � u � v
�

 
I

%
L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � dθ 
 ∞

 T

0

%
∂2ρ0 � � � � � ξ � % L2 � U � I � dξ 
 ∞ �

This gives the flexibility of treating additive noise as well as the case when the noise
acts on the “time averaged” solution in the sense of by (5.3). Note however that it
does not include the case of multiplicative noise and the proof in this article does not
generalize as such to cover it.

By (∆), the matrix norm of A is bounded by%
A � x � % �

A0 � (5.4)
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The initial condition will be the following: g and h are random fields on U such that� I � %
g
%

L2 � U � and
%
g
%

L2 � U � are finite a.s.

Notational convention: When a structural parameter has been estimated in its proper
norm, the actual space in which the norm is defined will not always be written out. E.g.,%

L f
%

instaed of
%
L f
%

L1 � I;L∞ � U � � etc.

Multiplying (5.1) with v � H1
0 � U � and integrating one gets the relation

 
U

u � � x � τ � v � x � dx �  
D

h � x � v � x � dx

�  
U �  τ

0
Du � x � θ � dθ � v � x � b � x �����

d
dx

�  
U �  τ

0
Du � x � θ � dθ � A � x � Dv � x �����

d
dx

�  τ

0
 

U
f � x � θ � u � x � θ �	� v � x � dxdθ

�  τ

0
 

U
σ � x � θ � u � v � x � BH � dx � dθ � � (5.5)

where the stochastic integral is defined as

 τ

0
 

U
σ � x � θ � u � BH � dx � dθ � � ∞

∑
j � 1

�
λ j  τ

0 � σ � � � θ � u � � ve j � 2 dβ H
j � θ � �

While this equation does not contain any distributional terms we will integrate once
more to involve all initial conditions in the equation. Integrating on 
 0 � t � produces the
following equation

� u � � � t � � v � 2 � t � h � v � 2 � � g � v � 2�  t

0 �  τ

0
Du � � � θ � dθ � vb �

2
dτ

�  t

0 �  τ

0
Du � � � θ � dθ � ADv �

2
dτ

�  t

0
 τ

0 � f � � � θ � u � � � θ � � � v � 2 dθ dτ

� ∞

∑
j � 1

�
λ j  t

0
 τ

0 � σ � � � θ � u � � ve j � 2 β H
j � dθ � dτ (5.6)

and we need not specify the initial conditions. In view of (5.6) it can be considered
natural to adopt the following solution concept:

Definition 5.1. An L2 � U � -valued random field u � t � , t � I, is a variational solution to
(5.1) if

� 1 � u � L∞ � I;L2 � U �	� a.s.

� 2 �  ��
0

Du � � � θ � dθ � L∞ � I; � L2 � U � �
	 d � a.s.

� 3 � The integral relation (5.6) holds a.s. for every v � H1
0 � U � and every t � I.
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It should be mentioned here that condition (2) is to be understood in distribu-
tion sense. No classical differentiability properties are required of the solution. It
is only the (distributional) integral of the distribution Du that is (a.s.) supposed to be in
L∞ � I; � L2 � U � � 	 d � .

One should check that all terms in (5.6) are well defined and finite in the chosen
function space and this is the topic of the two following Lemmas. The first deals with
all terms but the stochastic integral which has been given a separate Lemma due to its
somewhat special treatment.

Lemma 5.2. The first five terms appearing in (5.6) are well defined and finite a.s.

Proof : For the transport term we have, by Hölder’s inequality and (T),

"""" �  
τ

0
Du � � � θ � dθ � vb �

2
""""
� %

v
%

2
%
b
%

∞ ����  
τ

0
Du � � � θ � dθ ���� 2

which belongs to L∞ � I � by definition. Estimating the diffusion term gives, by (5.4)

"""" �  
τ

0
Du � � � θ � dθ � ADv �

2
""""
�

A0
%
v
%

2 ����  
τ

0
Du � � � θ � dθ ���� 2

which is in L∞ � I � according to definition. As for the drift term we use Lemma 2.1 and
Hölder’s inequality to get� � f � � � θ � u � � � θ �	� � v � 2 � � � L f � � � θ � � u � � � θ � � � � f0 � � � θ � � � � v � � 2� � % L f � � � θ � % ∞ % u � � � θ � % 2 � % f0 � � � θ � % 2 � % v % 2 (5.7)

which, again by Hölder’s inequality, gives the bound

""""  
τ

0 � f � � � θ � u � � � θ �	� � v � 2 dθ """"
� � %

L f
% %

u
%

L∞ � I;L2 � U � � � % f0
%�� %

v
%

2 � �
To prove the same result for the last term we first show a more general estimate

which will turn out to be useful later on.

Lemma 5.3. Let u � v � L∞ � I;L2 � U �	� . Then there is a constant C such that the following
bound on the stochastic integral is valid:

"""""
∞

∑
j � 1

�
λ j  t

0
 τ

0 � σ � � � θ � u � � v � � � τ � e j � 2 β H
j � dθ � dτ """""�

C
�
G∞  t

0
 t

θ

%
v � � � τ � % 2 dτ � % ∂2ρ0 � � � � � θ � % L2 � I � U � �  t

θ

%
ρ0 � � � η � θ � % 2� η � θ � α dη

� % u � � � θ � % 2
� %

L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �  t

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη ��� dθ (5.8)

Proof : Using the notation σ � θ � τ � � � σ � � � θ � u � � v � � � τ � e j � 2, (3.1) gives the following
bound on the left hand side of (5.8)

∞

∑
j � 1

�
λ jG j  t

0

�  τ

0

�
σ � θ � τ � �

θ α dθ �  τ

0
 θ

0

�
σ � θ � τ ��� σ � y � τ � ��

θ � y
�
1
� α dydθ � dτ (5.9)

By (δ1) and Lemma 2.1�
σ � x � θ � u � � �  θ

0

�
ρ � x � θ � ξ � u � x � ξ � � � dξ�  θ

0 � Lρ � x � θ � ξ � � u � x � ξ � � � � ρ0 � x � θ � ξ � � � dξ �
7



Fubini’s theorem together with Hölder’s inequality gives�
σ � θ � τ � � � %

e j
%

∞ �  θ

0 � Lρ � x � θ � ξ � � u � x � ξ � � � � ρ0 � x � θ � ξ � � � dξ � � v � � � τ � � � 2� %
e j
%

∞
%
v � � � τ � % 2  θ

0 � % Lρ � � � θ � ξ � % ∞ % u � � � ξ � % 2 � % ρ0 � � � θ � ξ � % 2 � dξ

Plugging this estimate into the first term in (5.9) and changing the order of integration
we have�
G∞  t

0
 τ

0

1
θ α
%
v � � � τ � % 2  θ

0 � % Lρ � � � θ � ξ � % ∞ % u � � � ξ � % 2 � % ρ0 � � � θ � ξ � % 2 � dξ dθ dτ

� �
G∞  t

0
 t

ξ

� %
u � � � ξ � % 2

%
Lρ � � � θ � ξ � % ∞

θ α � % ρ0 � � � θ � ξ � % 2
θ α �  t

θ

%
v � � � τ � % 2 dτ dθ dξ

� �
G∞  t

0

� %
u � � � ξ � % 2  t

ξ

%
Lρ � � � θ � ξ � % ∞

θ α dθ �  t

ξ

%
ρ0 � � � θ � ξ � % 2

θ α dθ �  t

ξ

%
v � � � τ � % 2 dτ dξ (5.10)

To estimate the second integral, let 0
�

y
�

θ
�

T and consider the following differ-
ence, using the triangle inequality, (δ1) and (δ2),�

σ � x � θ � u � � σ � x � y � u � �� """"  
θ

0
ρ � x � θ � ξ � u � � � ξ �	� dξ �  y

0
ρ � x � y � ξ � u � � � ξ �	� dξ """"� """"  

y

0 
 ρ � x � θ � ξ � u � x � ξ �	� � ρ � x � y � ξ � u � x � ξ � �'� dξ """" � """"  
θ

y
ρ � x � θ � ξ � u � x � ξ � � dξ """"� """"  

y

0
 θ

y
∂2ρ � x � λ � ξ � u � x � ξ � � dλ dξ """" � """"  

θ

y
ρ � x � θ � ξ � u � x � ξ � � dξ """"�  y

0
 θ

y � L∂2ρ � x � λ � ξ � � u � x � ξ � � � � ∂2ρ0 � x � λ � ξ � � � dλ dξ

�  θ

y � Lρ � x � θ � ξ � � u � x � ξ � � � � ρ0 � x � θ � ξ � � � dξ

From Hölder’s inequality and Fubini’s theorem we then get�
σ � θ � τ ��� σ � y � τ � �� %

e j
%

∞ �  y

0
 θ

y � L∂2ρ � � � λ � ξ � � u � x � ξ � � � � ∂2ρ0 � � � λ � ξ � � � dλ dξ

�  θ

y � Lρ � � � θ � ξ � � u � � � ξ � � � � ρ0 � � � θ � ξ � � � dξ � � v � � � τ � � � 2� %
e j
%

∞
%
v � � � τ � % 2

�  y

0
 θ

y � % L∂2ρ � � � λ � ξ � % ∞ % u � � � ξ � % 2 � % ∂2ρ0 � � � λ � ξ � % 2 � dλ dξ

�  θ

y � % Lρ � � � θ � ξ � % ∞ % u � � � ξ � % 2 � % ρ0 � � � θ � ξ � % 2 � dξ � � (5.11)

Let us put the two terms in (5.11) into (5.9) one at the time. Starting with the first one
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and changing the order of integration�
G∞  t

0
 τ

0
 θ

0

%
v � � � τ � % 2 1� θ � y � 1 � α

�  y

0

%
u � � � ξ � % 2  θ

y

%
L∂2ρ � � � λ � ξ � % ∞ dλ dξ

�  y

0
 θ

y

%
∂2ρ0 � � � λ � ξ � % 2 dλ dξ � dydθ dτ

� �
G∞

�  t

0
 t

ξ

%
v � � � τ � % 2 dτ � % u � � � ξ � % 2  t

ξ
 θ

ξ

1� θ � y � 1 � α

  θ

y
� % L∂2ρ � � � λ � ξ � % ∞ � %

∂2ρ0 � � � λ � ξ � % 2 � dλ dydθ � dξ # (5.12)

Estimating the structural terms using the maximal and Hölder’s inequality

 t

ξ
 θ

ξ

dydθ� θ � y � 1 � α  θ

y

%
L∂2ρ � � � λ � ξ � % ∞ dλ

�
C  t

ξ
 θ

ξ

H2 � % L∂2ρ � � � λ � ξ � % ∞ � � θ �� θ � y � α dydθ

� C  t

ξ
� θ � ξ � 1 � αH2 � % L∂2ρ � � � λ � ξ � % ∞ �!� θ � dθ�

C
%
L∂2ρ � � � � � ξ � % L2 � I;L∞ � U � � (5.13)

and exactly the same calculation on the ∂2ρ0 term gives similarly

 t

ξ
 θ

ξ

dydθ� θ � y � 1 � α  θ

y

%
∂2ρ0 � � � λ � ξ � % 2 dλ

�
C
%
∂2ρ0 � � � � � ξ � % L2 � I � U � (5.14)

Plugging the second integral term in (5.11) into (5.9) and changing the order of inte-
gration gives the bound�

G∞  t

0
 τ

0
 θ

0

%
v � � � τ � % 2 1� θ � y � 1 � α

 �  θ

y

%
u � � � ξ � % 2 % Lρ � � � θ � ξ � % ∞ dξ �  θ

y

%
ρ0 � � � θ � ξ � % 2 dξ � dydθ dτ

� �
G∞  t

0
 t

ξ

%
v � � � τ � % 2 dτ

� %
u � � � ξ � % 2  t

ξ
 ξ

0

%
Lρ � � � θ � ξ � % ∞� θ � y � 1 � α dydθ

�  t

ξ
 ξ

0

%
ρ0 � � � θ � ξ � % 2� θ � y � 1 � α dydθ � dξ

�
C

�
G∞  t

0
 t

ξ

%
v � � � τ � % 2 dτ

� %
u � � � ξ � % 2  t

ξ

%
Lρ � � � θ � ξ � % ∞� θ � ξ � α dθ

�  t

ξ

%
ρ0 � � � θ � ξ � % 2� θ � ξ � α dθ � dξ � (5.15)

Putting (5.13) and (5.14) into (5.12) and adding the result with (5.15) results in the
bound

C
�
G∞  t

0
 t

ξ

%
v � � � τ � % 2 dτ � % ∂2ρ0 � � � � � ξ � % L2 � I � U � �  t

ξ

%
ρ0 � � � θ � ξ � % 2� θ � ξ � α dθ

� % u � � � ξ � % 2
� %

L∂2ρ � � � � � ξ � % L2 � I;L∞ � U � � �  t

ξ

%
Lρ � � � θ � ξ � % ∞� θ � ξ � α dθ ��� dξ
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which actually is the final bound since the terms in (5.10) are dominated by this ex-
pression. �

It is now a simple task to show that the last term in (5.6) is bounded.

Corollary 5.4. Let u � L∞ � I;L2 � U �	� and v � L2 � U � . Then there is a constant C such
that the following bound on the stochastic integral is valid:

"""""
∞

∑
j � 1

�
λ j  t

0
 τ

0 � σ � � � θ � u � � ve j � 2 β H
j � dθ � dτ """""�

C
�
G∞

%
v
%

2 � � % Lρ
% � % L∂2ρ

% � % u % L∞ � I;L2 � U � � � %
∂2ρ0

% � %
ρ0
% � �

Hence, equation (5.6) is well defined.
We will later on need a variant of Lemma 5.3 in the special case of u � v.

Corollary 5.5. Let u � L∞ � I;L2 � U � � . Then there is a constant C such that the following
bound on the stochastic integral is valid:

"""""
∞

∑
j � 1

�
λ j  t

0
 τ

0 � σ � � � θ � u � � u � � � τ � e j � 2 β H
j � dθ � dτ """""�

C
�
G∞ �  t

0
sup

0 � γ � τ

%
u � � � γ � % 22 dτ � 1 � %

L∂2ρ
% � %

Lρ
% � � %

∂2ρ0
% 2 � %

ρ0
% 2 � �

Proof : Chosing v � u in Lemma 5.3, performing a partial integration, and using Cauchy’s
inequality gives the bound,

C
�
G∞  t

0
 t

θ

%
u � � � τ � % 2 dτ � % ∂2ρ0 � � � � � θ � % L2 � I � U � �  t

θ

%
ρ0 � � � η � θ � % 2� η � θ � α dη

� % u � � � θ � % 2
� %

L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �  t

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη � � dθ

�
C

�
G∞  t

0
� % u � � � θ � % 2  θ

0

� %
∂2ρ0 � � � � � τ � % L2 � I � U � �  t

τ

%
ρ0 � � � η � τ � % 2� η � τ � α dη � dτ

�  t

θ
sup

0 � γ � τ

%
u � � � γ � % 22 dτ

� %
L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �  t

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη ��� dθ

�
C

�
G∞ �  t

0

%
u � � � θ � % 22 dθ � %

∂2ρ0
% 2 � %

ρ0
% 2

�  t

0
sup

0 � γ � τ

%
u � � � γ � % 22 dτ � % L∂2ρ

% � %
Lρ
% � ��

C
�
G∞ �  t

0
sup

0 � γ � τ

%
u � � � γ � % 22 dτ � 1 � %

L∂2ρ
% � %

Lρ
% � � %

∂2ρ0
% 2 � %

ρ0
% 2 � �

This proves the Corollary. �
6 The finite-dimensional solution

By the former Lemmas we can now prove a simple result which will be the basis of all
further investigations
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Corollary 6.1. Let u satisfy the regularity requrements (1) - (2) of Definition 5.1. Then
u is a variational solution to (5.6) if and only if

� u � � � t � � wn � 2 � t � h � wn � 2 � � g � wn � 2 �  t

0 �  τ

0
b � Du � � � θ � dθ � wn �

2
dτ

�  t

0
 

U �  τ

0
Du � x � θ � dθ � A � x � Dwn � x � ���

d
dxdτ

�  t

0
 τ

0 � f � � � θ � u � � � θ �	� � wn � 2 dθ dτ

� ∞

∑
j � 1

�
λ j  t

0
 τ

0
� σ � � � θ � u � � wne j � 2 β H

j � dθ � dτ (6.1)

holds a.s. for every n ��� � and every t � I.

Proof : Any variational solution is clearly a solution to (6.1) so we need only show the
if part. Let v � H1

0 � U � have the orthogonal decomposition

v � x � � ∞

∑
j � 1

vnwn � x � � (6.2)

By using the properties (1)-(2) it is then trivial, except perhaps for the stochastic inte-
gral term, to note that the finite sums of (6.2) together with (6.1) will give us a sequence
of equations with each term converging a.s. in L∞ � I;L2 � U �	� to the corresponding one
in (5.6). To verify this for the stochastic integral, let vN � x � � ∑N

1 vnwn � x � and replace v
with v � vN in Corollary 5.4. By the general assumptions, convergence follows. �
6.1 Galerkin approximation

Let VN be the linear span of w1 � �	� � � wN . To state the results in this section we need the
following space:

Definition 6.2. Let L∞ � I; � � be endowed with the equivalent norms�
f
�
β � sup

t � I
e
� β t � f � t � �

and denote by L∞ � 2 � I;VN � the space of functions f : I �� VN equipped with the equivalent
norms %

f
%

β � sup
t � I

e
� β t % f � � � t � % 2 �

Note that, since VN is finite dimensional the norms on L2 � VN � and H1
0 � VN � are

equivalent. In particular, if u � x � � ∑N
n � 1 cnwn � x � ,%

Du
% 2

2 � N

∑
n � 1

�
cn
� 2 % Dwn

% 2
2
�

C2
N

N

∑
n � 1

�
cn
� 2 � C2

N
%
u
%

2 � (6.3)

Let ϕN denote the orthonormal projection of ϕ � L2 � U � onto VN .
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Definition 6.3. A random field uN is an N’th order Galerkin approximation to (6.1) if

(1) uN � L∞ � I;L2 � U �	� � a.s.

(2)  �
0

DuN � � � τ � dτ � L∞ � I; � L2 � U � �	� 	 d � a.s.

(3) The following equation holds a.s. for every n � � 1 � � �	� � N � and every t � I:

� uN � � � t � � wn � 2 � t � hN � wn � 2 � � gN � wn � 2�  t

0 �  τ

0
b � DuN � � � θ � dθ � wn �

2
dτ

�  t

0
 

U �  τ

0
DuN � x � θ � dθ � A � x � Dwn � x � � �

d
dxdτ

�  t

0
 τ

0 � f � � � θ � uN � � � θ �	� � wn � 2 dθ dτ

� ∞

∑
j � 1

�
λ j  t

0
 τ

0 � σ � � � θ � uN � � wne j � 2 β H
j � dθ � dτ � (6.4)

Introduce the VN-valued mapping

ΦN � u � � x � t � � N

∑
n � 1 � ΦN � u � � � � t � � wn � 2wn � x �

by specifying the fourier coefficients a.s. as the right hand side of (6.4) with uN replaced
by u:

� ΦN � u �!� � � t � � wn � 2
� t � hN � wn � 2 � � gN � wn � 2 �  t

0 �  τ

0
b � Du � � � θ � dθ � wn �

2
dτ

�  t

0
 

U �  τ

0
Du � x � θ � dθ � A � x � Dwn � x � ���

d
dxdτ

�  t

0
 τ

0 � f � � � θ � u � � � θ � � � wn � 2 dθ dτ

� ∞

∑
j � 1

�
λ j  t

0
 τ

0 � σ � � � θ � u � � wne j � 2 β H
j � dθ � dτ

� t � hN � wn � 2 � � gN � wn � 2 � Tn � u � � t � � En � u � � t � � Fn � u � � t � � Sn � u �!� t �
for every n � � 1 � � �	� � N � and every t � I. To solve the N’th order Galerkin approxima-
tion problem we will show existence of a fixpoint

ΦN � uN � � uN

in L∞ � 2 � I;VN � . In line of doing this we need some results concerning Lipschitz continu-
ity with respect to u of the terms Tn � EN � Fn and Sn. Let us start with the simplest ones;
the linear terms. Introduce the notation ∆Tn � t � � Tn � u �!� t � � Tn � u � � � t � and similarly for
En � t � � Fn � t � and Sn � t � .
Lemma 6.4. Let u � L∞ � 2 � I;VN � . Then Tn � u � � En � u � � Fn � u � � L∞ � I; � � . In particular,�

Tn � u � β �
Cβ � 1 % u % β � (6.5)
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and similarly for En and Fn. Moreover, for every β � 
 1 � ∞ � , the mappings

Tn � En � Fn : L∞ � 2 � I;VN � �� L∞ � I; � �
are Lipschitz continuous, i.e., if β �

1 then there is some C � C � N � such that�
Tn � u ��� Tn � u � � � β �

Cβ � 1 % u � u �
%

β (6.6)

and similarly for En � t � � Fn � t � and Sn � t � .
Proof : Starting with the transport term Tn we have, by Minkowski’s and Hölder’s in-
equalities together with (6.3) and (T),

e
� β t � Tn � u � � t ��� Tn � u � � � t � �� %

b
%

∞
%
wn
%

2 e
� β t  t

0
����  

τ

0
� Du � � � θ ��� Du � � � � θ � � dθ ���� 2

dτ

�
CN
%
b
%  t

0
 τ

0
e
� β θ % u � � � θ ��� u � � � � θ � % 2e

� β � t � θ � dθ dτ�
CN
%
b
% %

u � u �
%

β  t

0
 τ

0
e
� β � t � θ � dθ dτ�

Cβ � 2 % u � u �
%

β �
Taking the supremum over I now gives the result for Tn. Proceeding with the diffusion
term En we get, by (5.4),

"""" �  
τ

0
Du � x � θ � dθ � A � x � Dwn � x � ���

d
� �  τ

0
Du � � x � θ � dθ � A � x � Dwn � x � ���

d
""""�  τ

0

�
Du � x � θ ��� Du � � x � θ � � � d dθA0

�
Dwn � x � � � d �

Integrating with respect to x and using Minkowski’s inequality for integrals, Hölder’s
inequality and (6.3), results in

 
U
"""" �  

τ

0 
Du � x � θ ��� Du � � x � θ � � dθ � A � x � Dwn � x � ���
d
"""" dx�

A0  τ

0

%
Du � � � θ ��� Du � � � � θ � % 2 dθ

%
Dwn

%
2�

A0C2
N  τ

0

%
u � � � θ ��� u � � � � θ � % 2 dθ (6.7)

Using this estimate in the β -norm gives

e
� β t �En � u � � t ��� En � u � � � t � ��

A0C2
N  t

0
 τ

0
e
� β θ % u � � � θ ��� u � � � � θ � % 2e

� β � t � θ � dθ dτ�
A0C2

N
%
u � u �

%
β  t

0
 τ

0
e
� β � t � θ � dθ dτ�

A0C
%
u � u �

%
β β � 2 � (6.8)

Coming to the drift term Fn, note that, by Hölder’s inequality and (D),� � f � � � θ � u � � wn � 2 � � f � � � θ � u � � � wn � � � %
wn
%

2
%
L f � � � θ � % ∞ % u � � � θ ��� u � � � � θ � % 2
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Hence, again by Hölder’s inequality,

e
� β t �Fn � u �!� t � � Fn � u � � � t � ��  t

0
 τ

0
e
� β � t � θ � % L f � � � θ � % ∞ e

� β θ % u � � � θ ��� u � � � � θ � % 2 dθ dτ� %
u � u �

%
β  t

0
 τ

0
e
� β � t � θ � % L f � � � θ � % ∞ dθ dτ� %

u � u �
%

β  t

0
e
� β � t � τ �  τ

0

%
L f � � � θ � % ∞ dθ dτ�

C
%
L f
%

L1 � I;L∞ � U � � % u � u �
%

β β � 1 �
By chosing u � � 0 we obtain the special case�

Tn � u � � β �
Cβ � 2 % u % β

by linearity and similarly for En which proves (6.5) for these terms. Because of the
nonlinearity, that argument does not work for Fn. Instead we estimate the β -norm of
Fn � u �!� t � at u � 0 as follows:�

e
� β tFn � 0 �!� t � � �

e
� β t  t

0
 τ

0

� � f0 � � � θ � � wn � 2 � dθ dτ�
C  t

0
e
� β � t � τ �  τ

0

%
f0 � � � θ � % 2 dθ dτ�

C
%

f0
%
β � 1

By the triangle inequality we now obtain�
Fn � u � � β � �

Fn � u ��� Fn � 0 � � β � �
Fn � 0 � � β �

Cβ � 1 � 1 � %
u
%

β � 
 ∞ � �
We will now prove an analogue of (6.5) for Sn together with an estimate.

Lemma 6.5. Let u � L∞ � 2 � I;VN � . Then Sn � u � � L∞ � I; � � and the following estimate
holds for all β �

1�
Sn � u � � β �

C
�
G∞ β � 1 � % u % β � % L∂2ρ

% � %
Lρ
%

∞
� � %

∂2ρ0
% � %

ρ0
%�� �

Proof : By (3.1), Lemma 5.3 with v � wn, Hölder’s inequality and a partial integration
in η ,

e
� β t � Sn � u �!� t � ��

C
�
G∞  t

0
e
� β � t � θ � � t � θ � % wn

%
2

 � e � β θ % u � � � θ � % 2
� %

L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �  t

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη �� %

∂2ρ0 � � � � � θ � % L2 � I � U � �  t

θ

%
ρ0 � � � η � θ � % 2� η � θ � α dη � dθ

�
C

�
G∞ β � 1  t

0
� % u % β � %

L∂2ρ � � � � � θ � % L2 � I;L2 � U � � �  t

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη �� %

∂2ρ0 � � � � � θ � % L2 � I � U � �  t

θ

%
ρ0 � � � η � θ � % 2� η � θ � α dη � dθ

�
C

�
G∞ β � 1 � % u % β � % L∂2ρ

% � %
Lρ
% � � %

∂2ρ0
% � %

ρ0
% � � �
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In order to prove existence of a fixpoint to ΦN , the following invariance result is
useful.

Lemma 6.6. Let u � L∞ � 2 � I;VN � . Then

ΦN � u � � L∞ � 2 � I;VN � a.s.

and there exists a large enough random variable β0 taking values in � 1 � ∞ � such that
the closed (random) ball

BN � � u � L∞ � 2 � I;VN � :
%
u
%

β0

�
1 � 2CN

%
gN
%

2 �
is invariant a.s. with respect to ΦN , i.e., ΦN � BN � � BN a.s.

Proof : We have%
ΦN � u � � t � % 2 � N

∑
n � 1

� � ΦN � u � � � � t � � wn � 2 �
By a trivial maximization procedure the linear term has the β -norm�

t � hN � wn � 2 � β � C
� � hN � wn � 2 � β � 1 �

C
%
hN
%

2β � 1 �
Using this estimate together with Lemmas 6.4 and 6.5 we obtain, since β �

1,%
ΦN � u � % β�

CN � % hN
%

2
�
β � 1 � % gN

%
2 � � Tn � u � � β � �En � u � � β � �Fn � u � � β � � Sn � u � � β ��

C N
� %

hN
%

2β � 1 � % gN
%

2 � % u % ββ � 1 � � 1 � % u % β � β � 1 � � 1 � % u % β � β � 1
�
G∞

�
�

C N
� %

gN
%

2 � β � 1 � 1 � % u % β � � 1 � �
G∞ �!� 1 � % hN

%
2 � � �

Hence, a.s., ΦN � u � � L∞ � 2 � I;VN � . Chosing the random variable β0 to take values in the
interval�

max � 1 � 
 � 1 � �
G∞ � � 1 � % hN

%
2 � 2CN � � � ∞ �

ensures CNβ � 1
0 � 1 � �

G∞ �!� 1 � % hN
%

2 � � 1
2 and we obtain%

ΦN � u � % β0

�
C N

%
gN
%

2 � 1
2
� 1 � % u % β0

� �
If u � BN , then ΦN � u � � BN since%

ΦN � u � % β0

�
C N

%
gN
%

2 � 1
2
� 1 � 1 � 2CN

%
gN
%

2 � � 1 � 2CN
%
gN
%

2 � �
We will on several occassions need various continuity properties of the stochastic

integral. The following Lemma provides the basis of these.

Lemma 6.7. If u � u � � v � L∞ � I;L2 � U � � then

"""""
∞

∑
j � 1

�
λ j  t

0
 τ

0
� σ � � � θ � u � � v � � � τ � e j � 2 β H

j � dθ � dτ

� ∞

∑
j � 1

�
λ j  t

0
 τ

0
� σ � � � θ � u � � � v � � � τ � e j � 2 β H

j � dθ � dτ """""�
C

�
G∞  t

0 � � u � � � θ ��� u � � � � θ � � �  t

θ

�
v � � � τ � � dτ  T

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη

�  t

θ

�
v � � � τ � � dτ

%
L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �

2
dθ (6.9)
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Proof : Let us use the notation ∆ � θ � τ � � � � σ � � � θ � u � � σ � � � θ � u � � � v � � � τ � e j � 2. Then,
by (3.1), the expression to the left in (6.9) is bounded by

∞

∑
j � 1

�
λ j  t

0
""""  

τ

0
∆ � θ � τ � dβ j � θ � """" dτ

� ∞

∑
j � 1

�
λ jG j  t

0
 τ

0

�
∆ � θ � τ � �

θ α dθ dτ

� ∞

∑
j � 1

�
λ jG j  t

0
 τ

0
 θ

0

�
∆ � θ � τ ��� ∆ � y � τ � �� θ � y � 1 � α dydθ dτ � (6.10)

Estimating ∆ � θ � τ � , using (5.3), (δ1) and Fubini’s theorem, we get�
∆ � θ � τ � ��� %

e j
%

∞ � """"  
θ

0 
 ρ � � � θ � ξ � u � � � ξ �	��� ρ � � � θ � ξ � u � � � � ξ � � � dξ """" �
�
v � � � τ � � � 2� %

e j
%

∞ �  θ

0
Lρ � � � θ � ξ � � u � � � ξ ��� u � � � � ξ � � dξ � � v � � � τ � � � 2

� %
e j
%

∞  θ

0
� � u � � � ξ � � u � � � � ξ � � � % Lρ � � � θ � ξ � % ∞ � v � � � τ � � � dξ �

By changing the order of integration the first sum in (6.10) is bounded by�
G∞  t

0
 τ

0

1
θ α  θ

0
� � u � � � ξ ��� u � � � � ξ � � � % Lρ � � � θ � ξ � % ∞ � v � � � τ � � � 2 dξ dθ dτ

� �
G∞  t

0 � � u � � � ξ ��� u � � � � ξ � � �  t

ξ

%
Lρ � � � θ � ξ � % ∞

θ α  t

θ

�
v � � � τ � % ∞ dτ dθ �

2
dξ

� �
G∞  t

0 � � u � � � ξ ��� u � � � � ξ � � �  T

ξ

%
Lρ � � � θ � ξ � % ∞� θ � ξ � α dθ  t

ξ

�
v � � � τ � � dτ �

2
dξ

Let y
�

θ and manipulate the difference in the second sum as

∆ � θ � τ ��� ∆ � y � τ �� �  θ

0 
 ρ � � � θ � ξ � u � � � ξ � ��� ρ � � � θ � ξ � u � � � � ξ � � � dξ

�  y

0 
 ρ � � � y � ξ � u � � � ξ � ��� ρ � � � y � ξ � u � � � � ξ � � � dξ � v � � � τ � e j �
2

� �  θ

y 
 ρ � � � θ � ξ � u � � � ξ �	��� ρ � � � θ � ξ � u � � � � ξ � � � dξ

�  y

0

� ρ � � � θ � ξ � u � � � ξ � ��� ρ � � � θ � ξ � u � � � � ξ �	�� ρ � � � y � ξ � u � � � ξ �	� � ρ � � � y � ξ � u � � � � ξ � � � dξ � v � � � τ � e j �
2

� �  θ

y 
 ρ � � � θ � ξ � u � � � ξ � ��� ρ � � � θ � ξ � u � � � � ξ � � � dξ

�  y

0
 θ

y 
 ∂2ρ � � � λ � ξ � u � � � ξ � ��� ∂2ρ � � � λ � ξ � u � � � � ξ � � � dλ dξ � v � � � τ � e j �
2
�

Continuing by taking the absolute value, using Fubibi’s theorem, (δ1) and (δ2), gives
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the bound�
∆ � θ � τ ��� ∆ � y � τ � ��  θ

y
� Lρ � � � θ � ξ � � u � � � ξ ��� u � � � � ξ � � � � v � � � τ � ��� e j

� � 2 dξ

�  y

0
 θ

y
� L∂2ρ � � � λ � ξ � � u � � � ξ ��� u � � � � ξ � � � � v � � � τ � � � e j

� �
2

dλ dξ

� %
e j
%

∞  θ

y
� � u � � � ξ ��� u � � � � ξ � � � % Lρ � � � θ � ξ � % ∞ � v � � � τ � � � 2 dξ

� % e j
%

∞  y

0 � � u � � � ξ ��� u � � � � ξ � � �  θ

y

%
L∂2ρ � � � λ � ξ � % ∞ dλ

�
v � � � τ � � � dξ

We plug this into (6.10) one term at the time. Starting with the first one and changing
the order of integration gives�
G∞  t

0
 τ

0
 θ

0

dydθ dτ� θ � y � 1 � α  θ

y
� � u � � � ξ � � u � � � � ξ � � � % Lρ � � � θ � ξ � % ∞ dλ

�
v � � � τ � � � 2 dξ� �

G∞  t

0 � � u � � � ξ ��� u � � � � ξ � � � I � 2 (6.11)

where

I �  ξ

0
 t

ξ
 τ

ξ

%
Lρ � � � θ � ξ � % ∞ � v � � � τ � �� θ � y � 1 � α dθ dτ dy

�
C  t

ξ

�
v � � � τ � �  τ

ξ

%
Lρ � � � θ � ξ � % ∞� θ � ξ � α dθ dτ

�
C  t

ξ

�
v � � � τ � � dτ  T

ξ

%
Lρ � � � θ � ξ � % ∞� θ � ξ � α dθ (6.12)

Continuing with the second term we get�
G∞  t

0
 τ

0
 θ

0

dydθ dτ� θ � y � 1 � α  y

0
 θ

y

%
L∂2ρ � � � λ � ξ � % ∞ dλ � � u � � � ξ ��� u � � � � ξ � � ��

v � � � τ � � � 2
dξ

� �
G∞  t

0 � � u � � � ξ � � u � � � � ξ � � � I � 2 dξ (6.13)

where the maximal and Hölder’s inequalities gives

I �  t

ξ
 t

y
 t

θ

�
v � � � τ � �� θ � y � 1 � α  θ

y

%
L∂2ρ � � � λ � ξ � % ∞ dλ dτ dθ dy

�  t

ξ

�
v � � � τ � � dτ  t

ξ
 θ

ξ

1� θ � y � 1 � α  θ

y

%
L∂2ρ � � � λ � ξ � % ∞ dλ dydθ

�  t

ξ

�
v � � � τ � dτ

�  t

ξ
 θ

ξ

1� θ � y � α H2 � % L∂2ρ � � � λ � ξ � % ∞ � � θ � dydθ�  t

ξ

�
v � � � τ � dτ

�  t

ξ
� θ � ξ � 1 � αH2 � % L∂2ρ � � � λ � ξ � % ∞ �!� θ � dθ�  t

ξ

�
v � � � τ � dτ

%
L∂2ρ � � � � � ξ � % L2 � I;L∞ � U � � (6.14)
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Putting (6.12) back into (6.11) and (6.14) back into (6.13) and summing we find the
estimate

C
�
G∞  t

0 � � u � � � θ ��� u � � � � θ � � �  t

θ

�
v � � � τ � � dτ  T

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη

�  t

θ

�
v � � � τ � � dτ

%
L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �

2
dθ

which is the desired upper bound since it dominates the first sum in (6.10). �
Specilizing to Sn, i.e., changing v fir wn, gives

Lemma 6.8. If u � u � � L∞ � I;L2 � U �	� then�
Sn � u �!� t ��� Sn � u � �!� t � ��

C
�
G∞  t

0
� t � θ � � � u � � � θ ��� u � � � � θ � � � �wn

�  T

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη

� �wn
� %

L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �
2

dθ �
Lemma 6.8 allows us to prove an analogue of Lemma 6.4 for the term Sn.

Lemma 6.9. For every β � 
 1 � ∞ � , the mapping Sn : L∞ � 2 � I;VN � �� L∞ � I; � � is Lipschitz
continuous and we have the estimate�

Sn � u ��� Sn � u � � � β �
C

�
G∞
%
u � u �

%
β β � 1 �

Proof : Using Lemma 6.8, Hölder’s inequality, and a trivial maximization procedure

e
� β t � Sn � u � � t ��� Sn � u � � � t � ��

C
�
G∞  t

0
e
� β � t � θ � � t � θ � e � β θ % u � � � θ � � u � � � � θ � % 2 % wn

%
2

 �  T

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη � %

L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � � dθ

�
C

�
G∞

%
u � u �

%
β β � 1  t

0
�  T

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη � %

L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � � dθ

� C
�
G∞

%
u � u �

%
β β � 1 � % Lρ

% � %
L∂2ρ

% � � �
The next Lemma is on a contraction property of ΦN , crucial in the fixpoint argu-

ment which will provide the N’th order Galerkin approximation to (6.1).

Lemma 6.10. There exists a random variable β1 � 
 1 � ∞ � such that the map ΦN is a
contraction on ΦN � BN � with respect to the norm

% � % β1
: if u � u � � BN then%

ΦN � u ��� ΦN � u � � % β1

� 1
2

%
u � u �

%
β1

(6.15)

Proof : Let u � u � � L∞ � 2 � I;VN � . Then, by the Lipschitz continuity of the terms Tn � En � Fn

and Sn (Lemmas 6.4 and 6.9) we find that%
ΦN � u ��� ΦN � u � � % β � N

∑
n � 1

% � ΦN � u � � � � � � � wn � 2 wn � � ΦN � u � � � � � � � � wn � 2 wn
%

β

� N

∑
n � 1 �

�
∆Tn

�
β � �∆En

�
β � �∆Fn

�
β � �∆Sn

�
β
�

�
CN � 1 � �

G∞ � % u � u �
%

β β � 1 (6.16)
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Let u � u � � BN . Then, chosing the random variable β1 to take any value in the interval�
max

�
1 � 2CN � 1 � �

G∞ � � � ∞
�

ensures the conclusion (6.15). �
Proposition 6.11. The map ΦN has a fix point uN � L∞ � 2 � I;VN � for every positive
integer N. Moreover, uN � BN .

Proof : The argument is identical to the existence part of Proposition 2 in [Nualart b]
and is included for easy reference only. Chose a random variable β2

�
max � β0 � β1 � for

which the conclusions of both Lemma 6.6 and 6.10 hold. Fix any u0 � N � BN and define
recursively um

�
1 � N � ΦN � um � N � . Then the invariance property of Lemma 6.6 implies

that um � N � ΦN � BN � for every m ��� . By the contraction property of Lemma 6.10 we
may conclude that, for m

�
n,%

un � N � um � N % β2

� �
1
2 � m %

un � m � N � u0 � N % β2� �
1
2 � m

2 sup
u � BN

%
u
%

β2

� �
1
2 � m � 1 � 1 � 2CN

%
g
%

2 � � 0 � as m � n � ∞ �
Hence the sequence � um � N � ∞

m � 0 is a Cauchy sequence with respect to the norm
% � % β2

.
Defining the limit as uN � limm � ∞ um � N we have, by the invariance property of Lemma
6.6 once more, um � N � BN and hence uN � BN since BN is closed. The contractivity
property of Lemma 6.10 now allows us to deduce that%

ΦN � uN ��� ΦN � um � N � % β2

� 1
2

%
uN � um � N % β2

� 0 as m � ∞ �
Since the norms are equivalent for all β �

1 the conclusion holds for every particular
choice of β , say, β � 1. This implies the following set of equalitites in L∞ � 2 � I;VN � and
finishes the proof

ΦN � uN � � lim
m � ∞

ΦN � um � N � � lim
m � ∞

um
�

1 � N � uN � �
This far we have shown that the Galerkin approximation has a unique solution.

Note how all arguments are done pathwisely, for a fixed, but arbitrary path ω .

7 Existence of solutions

The next step is to let N � ∞ in the Galerkin sequence uN and we will discover that� uN � ∞
N � 1 is suitably bounded and has a subsequence that converges a.s. to a solution

of equation (6.1). We start with a simple Lemma.

Lemma 7.1. Let c � � and v � L1 � I � . If

η � t � � c �  t

0
v � τ � dτ � t � I � (7.1)

then we have

η2 � t � � c2 � 2  t

0
η � τ � v � τ � dτ � t � I � (7.2)
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Proof : We may w.l.o.g. assume c � 0 and t $ 0. By partial integration

 t

0
η � τ � v � τ � dτ �  t

0

�  τ

0
v � θ � dθ � v � τ � dτ

� �  t

0
v � τ � dτ � 2 �  t

0

�  τ

0
v � θ � dθ � v � τ � dτ

� �  t

0
v � τ � dτ � 2 �  t

0
η � τ � v � τ � dτ �

which gives (7.2). �
Remark. Let

c � � gN � wn �
v � τ � � � hN � wn � � �  τ

0
b � DuN � � � θ � dθ � wn �

2�  τ

0 � f � � � θ � uN � � � θ �	� � wn � 2 dθ � �  τ

0
DuN � � � θ � dθ � ADwn � � L2 � U � ��� d

� ∞

∑
j � 1

�
λ j  τ

0
� σ � � � θ � uN � � wne j � 2 β j � dθ � �

Hence, with this choice of c and v, (7.1) is the same equation as (6.4) with η � t � �� uN � � � t � � wn � 2. It follows from the proof of Lemma 5.2 and Lemma 5.4 that this choice
of parameters satisfy the conditions of Lemma 7.1.

Proposition 7.2. � uN � ∞
N � 1 and � � �0 DuN � � � θ � dθ � ∞

N � 1 are a.s. bounded sequences in
L∞ � I;L2 � U � � and L∞ � I; � L2 � U � � 	 d � respectively.

Proof : Square (6.4) using Lemma 7.1 to get

� uN � � � t � � wn � 22
� � gN � wn � 22 � 2 � hN � wn � 2t  t

0 � uN � � � τ � � wn � 2 dτ

� 2  t

0 �  τ

0
b � DuN � � � θ � dθ � � uN � � � τ � � wn � 2 wn �

2
dτ

� 2  t

0 � A  τ

0
DuN � � � θ � dθ � � uN � � � τ � � wn � 2 Dwn �

2
dτ

� 2  t

0
 τ

0 � f � � � θ � uN � � � θ � � � � uN � � � τ � � wn � 2 wn � 2 dθ dτ

� 2
∞

∑
j � 1

�
λ j  t

0
 τ

0
� σ � � � θ � uN � � e j � uN � � � τ � � wn � 2 wn � dβ j � θ � dτ �
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Summing over n � � 1 � � �	� � N � gives%
uN � � � t � % 22 � 2  t

0 � A  τ

0
DuN � � � θ � dθ � DuN � � � τ ��� 2

dτ

� %
gN
% 2

2 � 2t  t

0 � hN � uN � � � τ � � 2 dτ � 2  t

0 �  τ

0
b � DuN � � � θ � dθ � uN � � � τ ��� 2

dτ

� 2  t

0
 τ

0 � f � � � θ � uN � � � θ �	� � uN � � � τ � � dθ dτ

� 2
∞

∑
j � 1

�
λ j  t

0
 τ

0
� σ � � � θ � uN � � uN � � � τ � e j � dβ j � θ � dτ � (7.3)

The second term on the left is bounded from below as

2  t

0 � A  τ

0
DuN � � � θ � dθ � DuN � � � τ ��� 2

dτ

�  t

0

d
dτ ���� A

1 � 2  τ

0
DuN � � � θ � dθ ����

2

2
dτ

� ���� A
1 � 2  t

0
DuN � � � θ � dθ ����

2

2

� � A  t

0
DuN � � � θ � dθ �  t

0
DuN � � � θ � dθ �

2

�
a0 ����  

t

0
DuN � � � θ � dθ ����

2

2
(7.4)

by the ellipticity condition (∆). The third term on the right is bounded by

"""" 2  
t

0 �  τ

0
b � DuN � � � θ � dθ � uN � � � τ � � 2

dτ """"�
2
%
b
%

∞  t

0
����  

τ

0
DuN � � � θ � dθ ���� 2

%
uN � � � τ � % 2 dτ

� %
b
%

∞  t

0

� ����  
τ

0
DuN � � � θ � dθ ����

2

2
� %

uN � � � τ � % 22 � dτ (7.5)

using Hölder’s and Cauchy’s inequalities. For the fourth term on the right we use (5.7)
to get

"""" 2  
t

0
 τ

0 � f � � � θ � uN � � � θ �	� � uN � � � τ � � dθ dτ """"�
2  t

0
 τ

0 � % L f � � � θ � % ∞ % uN � � � θ � % 2 � % f0 � � � θ � % 2 � % uN � � � τ � % 2 dθ dτ

�  t

0

� %
L f
%

L1 � I;L∞ � U � � sup
0 � γ � τ

%
uN � � � γ � % 22 � % f0

%
L1 � I;L2 � U � � % uN � � � τ � % 2 � dτ

�
C
%

f0
% 2

L1 � I;L2 � U � � � � 1 � % L f
%

L1 � I;L∞ � U � � �  t

0
sup

0 � γ � τ

%
uN � � � γ � % 22 dτ � (7.6)

By Corollary 5.5 with u � uN , the last term in (7.3) is bounded in the following
way

C
�
G∞ �  t

0
sup

0 � γ � τ

%
uN � � � γ � % 22 dτ � 1 � %

L∂2ρ
% � %

Lρ
% � � %

∂2ρ0
% 2 � %

ρ0
% 2 � � (7.7)
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Using the estimates (7.4), (7.5), (7.6) and (7.7), together with Hölder’s inequality, in
(7.3) we get

%
uN � � � t � % 22 � a0 ����  

t

0
DuN � � � θ � dθ ����

2

2� %
g
% 2

2 � 2
%
h
%

2t  t

0

%
uN � � � τ � % 2 dτ

� % b %  t

0

� ����  
τ

0
DuN � � � θ � dθ ����

2

2
� %

uN � � � τ � % 22 � dτ

� C
%

f0
% 2 � � 1 � % L f

% �  t

0
sup

0 � γ � τ

%
uN � � � γ � % 22 dτ � C

�
G∞ � % ρ0

% 2 � %
∂2ρ0

% 2 �
� C

�
G∞ � 1 � %

Lρ
% � %

L∂2ρ
% �  t

0
sup

0 � γ � τ

%
uN � � � γ � % 22 dτ

By Cauchy’s inequality and rearranging terms on the right hand side results in%
g
% 2

2 � %
h
% 2

2 � C � % f0
% � �

G∞ � % ρ0
% 2 � %

∂2ρ0
% 2 � �� C � 1 � %

b
% � %

L f
% � �

G∞ � 1 � %
Lρ
% � %

L∂2ρ
% � �

  t

0
sup

0 � γ � τ

� ����  
γ

0
DuN � � � η � dη ����

2

2
� %

uN � � � γ � % 22 � dτ

� %
g
% 2

2 � %
h
% 2

2 � CQ0 � CQ  t

0
M � τ � dτ � (7.8)

where we have defined

Q0 � %
f0
% � �

G∞ � % ρ0
% 2 � %

∂2ρ0
% 2 � �

Q � 1 � %
b
% � %

L f
% � �

G∞ � 1 � %
Lρ
% � %

L∂2ρ
% � � and

M � τ � � sup
0 � γ � τ

� ����  
γ

0
DuN � � � η � dη ����

2

2
� %

uN � � � γ � % 22 �
Hence we have the inequality

M � t � �
C

� %
g
% 2

2 � %
h
% 2

2 � Q0 � Q  t

0
M � τ � dτ �

since the right hand side of (7.8) is a nondecreasing function of t. By Gronwall’s

M � t � �
C � % g % 22 � % h % 22 � Q0 � � 1 � QeCQt � �

C � % g % 22 � % h % 22 � Q0 � QeCQt �
Putting t � T finishes the Proposition. �
Proposition 7.3. There is an element ũ � L∞ � I;L2 � U � � such that, in distribution sense,

 �
0

Dũ � � � τ � dτ � L∞ � I; � L2 � U � � 	 d � �
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Moreover, there is a subsequence of � uN � ∞
N � 1 such that, a.s.,

� 1 �  
I
 

U
uN � x � t � ψ � x � t � dxdt �  

I
 

U
ũ � x � t � ψ � x � t � dxdt

� 2 �  
I
 

U

�  t

0
DuN � x � τ � dτ � Γ � x � t � dxdt �  

I
 

U

�  t

0
Dũ � x � τ � dτ � Γ � x � t � dxdt

as N � ∞, for every ψ � L1 � I;L2 � U � � and every Γ � L1 � I; � L2 � U �	� 	 d � .
Proof : Since, by Lemma 7.2, � uN � is, a.s., a bounded sequence in L∞ � I;L2 � U �	� , which
is the dual of L1 � I;L2 � U �	� , Alaoglu’s Theorem implies there is a subsequence, also
denoted by � uN � , and an element ũ � L∞ � I;L2 � U � � such that uN � ũ, a.s., in the weak �
topology of L∞ � I;L2 � U � � . This means that, with probability one,

� uN � ψ � � � ũ � ψ � � � ψ � L1 � I;L2 � U �	� � (7.9)

where � f1 � f2 � is short for the integral of the product f1 f2 over U  I. For later use we
note that (7.9) is equivalent to

� � uN � ũ
� � ψ � � 0 � ψ � L1 � I;L2 � U � �

since
�
uN � ũ

� � � uN � ũ � sgn � uN � ũ � and ψ � L1 � I;L2 � U � � if and only if ψsgn � uN �
ũ � � L1 � I;L2 � U �	� . Similarly, by passing to still another subsequence we have, for some
v � L∞ � I; � L2 � U � � 	 d � ,

�  �0
DuN � � � τ � dτ � Γ � � � v � Γ � � � Γ � L1 � I; � L2 � U � �
	 d � �

We will now identify v. Let ϕ : U  I �� � d be smooth. By a partial integration on I
and since uN is 0 on the boundary ∂U , the Gauss’ divergence theorem gives

 
U
 

I �  t

0
DuN � x � τ � dτ � ϕ � x � t ��� � d

dt dx

�  
U

� �  I
DuN � x � τ � dτ �  I

ϕ � x � τ � dτ � �
d

�  
I � DuN � x � t � �  t

0
ϕ � x � τ � dτ ���

d
dt � dx

�  
I
 

U � DuN � x � t � �  I
ϕ � x � τ � dτ �  t

0
ϕ � x � τ � dτ � �

d
dxdt

�  
I

�  
∂U

uN � x � t � �  I
ϕ � x � τ � dτ �  t

0
ϕ � x � τ � dτ � N � x � ���

d
dS � x �

�  
U

uN � x � t � divx �  
I
ϕ � x � τ � dτ �  t

0
ϕ � x � τ � dτ � dx � dt

�  
I
 

U
uN � x � t � divx �  t

0
ϕ � x � τ � dτ �  

I
ϕ � x � τ � dτ � dxdt

where N � x � is the exterior unit normal at x � ∂U . Hence, in the limit we get

� v � ϕ � � � ũ � divx �  �
0

ϕ � � � τ � dτ �  
I
ϕ � � � τ � dτ � �
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by (7.9). On the other hand, by treating ũ as an element of the space of compactly
supported distributions � � � � d+1 � and noting that

divx �  �
0

ϕ � � � τ � dτ �  
I
ϕ � � � τ � dτ � � C∞ � � d+1 � � � � � d+1 �

we can do the following calculations which are true almost by definition.

� ũ � divx �  �
0

ϕ � � � τ � dτ �  
I
ϕ � � � τ � dτ � �

� � � Dũ �  �0
ϕ � � � τ � dτ �  

I
ϕ � � � τ � dτ �

� � � �  t

0
Dũ � � � τ � dτ � � �  ��

0
ϕ � � � τ � dτ �  

I
ϕ � � � τ � dτ �

� �  �0
Dũ � � � τ � dτ � ϕ � �

This proves that, in distribution sense, i.e., multiplied by smooth functions ϕ and put
under the integral sign,

 t

0
Dũ � x � τ � dτ � v � x � t � � L∞ � I;L2 � U � � �

By a standard limiting procedure (2) then holds for every Γ � L1 � I;L2 � U �	� . �
It is natural to hope ũ qualifies as a solution to (6.1). We will send N to ∞ in each

term of (6.1) separately and discover this very fact.

Theorem 7.4. There exists a solution to (6.1).

Proof : With the help of Proposition 7.3 we will now show that each term in (6.4) con-
verges a.s. on � to the corresponding term in (6.1) from which the theorem follows.
It is immediate that the terms involving initial data converge to the same ones with uN

replaced by ũ. For the next term we have

 t

0 � b �  τ

0
DuN � � � θ � dθ � wn �

2
dτ �  

I �  τ

0
DuN � � � θ � dθ � 1 � 0 � t � � τ � wnb �

2
dτ

�  
I �  τ

0
Dũ � � � θ � dθ � 1 � 0 � t � � τ � wnb �

2
dτ

�  t

0 � b �  τ

0
Dũ � � � θ � dθ � wn �

2
dτ �

where the limit holds true by Proposition 7.3 since, the function Γ � 1 � 0 � t � wnb belongs
to � L1 � I;L2 � U � � 	 d . Coming next to the diffusion term we have similarly

 t

0
 

U �  τ

0
DuN � x � θ � dθ � A � x � Dwn � x � ���

d
dxdτ

�  
I
 

U �  τ

0
DuN � x � θ � dθ � 1 � 0 � t � � τ � A � x � Dwn � x � ���

d
dxdτ

�  
I
 

U �  τ

0
Dũ � x � θ � dθ � 1 � 0 � t � � τ � A � x � Dwn � x � ���

d
dxdτ

�  t

0
 

U �  τ

0
Dũ � x � θ � dθ � A � x � Dwn � x � � �

d
dxdτ �
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because Γ � 1 � 0 � t � ADwn � L1 � I;L2 � U � � 	 d . As for the drift term we have, by (D),

""""  
t

0
 τ

0 � f � � � θ � uN � � � θ �	� � f � � � θ � ũ � � � θ �	� � wn � 2 dθ dτ """"� """"  I � f � � � τ � uN � � � τ �	� � f � � � τ � ũ � � � τ � � � wn � 2 � t � τ � 1 � 0 � t � � τ � dτ """"�
T  

I
� L f � � � τ � � uN � � � τ ��� ũ � � � τ � � � �wn

� � 2 dτ

� T  
I
� � uN � � � τ � � ũ � � � τ � � � L f � � � τ � �wn

� � 2 dτ� 0 �
since ψ � L f

�
wn
� � L1 � I;L2 � U �	� . Finally, we discuss the noise term. With u � uN and

u � � ũ in Lemma 6.8 we have the estimate

"""""
∞

∑
j � 1

�
λ j  t

0
 τ

0
� σ � � � θ � uN ��� σ � � � θ � ũ � � wne j � 2 β H

j � dθ � dτ """""�
C

�
G∞  t

0
� t � θ � � � uN � � � θ ��� ũ � � � θ � � � �wn

�  T

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη

� �wn
� %

L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �
2

dθ � (7.10)

Since both terms to the right in the scalar product belong to L1 � I;L2 � U �	� it also tends
to zero. �
8 Uniqueness and stability

We will now prove a general inequality from which both uniqueness as well as conti-
nuity with respect to initial data and will follow.

Theorem 8.1. Let u and u � be solutions corresponding to initial data � g � h � and � g � � h � �
respectively. Then� � u � u � � ψ � ���

C
� %

g � g �
% 2

2 � % h � h �
% 2

2

%
ψ
%

L1 � I;L2 � U � � � a.s.

for every ψ � L1 � I;L2 � U � � .
Proof : Consider the difference of the equations (6.4) for two different sequences un

and u �N . As in the proof of Proposition 7.2 we now square, using 7.1, and sum over
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n � � 1 � � �	� � N � to get%
uN � � � t � � u �N � � � t � % 22� %

gN � g �N
% 2

2� 2t  t

0 � hN � h �N � uN � � � τ ��� u �N � � � τ � � 2 dτ

� 2  t

0 �  τ

0
b � � DuN � � � θ � � Du �N � � � θ � � dθ � uN � � � τ ��� u �N � � � τ � � 2

dτ

� 2  t

0
 

U �  τ

0
� DuN � x � θ ��� Du �N � x � θ � � dθ �

A � x � D � uN � x � τ � � u �N � x � τ � � � � d
dxdτ

� 2  t

0
 τ

0 � f � � � θ � uN � � � θ � ��� f � � � θ � u �N � � � θ �	� � uN � � � τ ��� u �N � � � τ � � 2 dθ dτ

� 2
∞

∑
j � 1

�
λ j  t

0
 τ

0 � σ � � � θ � uN ��� σ � � � θ � u �N � �
� uN � � � τ ��� u �N � � � τ �	� e j �

2
β H

j � dθ � dτ � (8.1)

By Hölder’s and Cauchy’s inequalities the second term on the right is bounded by%
hN � h �N

% 2
2 � C  t

0

%
uN � � � τ � � u �N � � � τ � % 22 dτ (8.2)

and by the same inequalities the third term on the right is bounded by

%
b
%

∞  t

0

� ����  
τ

0
� DuN � � � θ ��� Du �N � � � θ � � dθ ����

2

2
� % uN � � � τ ��� u �N � � � τ � % 22 � dτ � (8.3)

The next term can be handled exactly as in (7.4) and we have

2  t

0 � A  τ

0
� DuN � � � θ ��� Du �N � � � θ �	� dθ � � DuN � � � τ � � Du �N � x � θ �	� � 2

dτ

�
a0 ����  

t

0
� DuN � � � θ ��� Du �N � � � θ � � dθ ����

2

2
(8.4)

The drift term is similarly estimated to

2
%
L f
%

L1 � I;L∞ � U � �  t

0
sup

0 � γ � τ

%
uN � � � γ ��� u �N � � � γ � % 2

2 dτ � (8.5)

For the last term we use Lemma 6.7 with u � uN , u � � u �N and v � x � τ � � uN � x � τ � �
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u �N � x � τ � , Hölder’s and Minkowski’s inequalities to get the bound

C
�
G∞  t

0 � � uN � � � θ ��� u �N � � � θ � � �  t

θ

�
uN � � � τ ��� u �N � � � τ � � dτ  T

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη

�  t

θ

�
uN � � � τ ��� u �N � � � τ � � dτ

%
L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � �

2
dθ

�
C

�
G∞  t

0

%
uN � � � θ � � u �N � � � θ � % 2  t

θ

%
uN � � � τ ��� u �N � � � τ � % 2 dτ

 �  T

θ

%
Lρ � � � η � θ � % ∞� η � θ � α dη � %

L∂2ρ � � � � � θ � % L2 � I;L∞ � U � � � dθ�
C

�
G∞ � �� Lρ �� � �� L∂2ρ �� �  t

0
sup

0 � γ � τ

%
uN � � � γ ��� u �N � � � γ � % 22 dτ � (8.6)

Putting the bounds (8.2) - (8.6) into (8.1) we obtain%
uN � � � t ��� u �N � � � t � % 22 � a0 ����  

t

0
� DuN � � � θ ��� Du �N � � � θ �	� dθ ����

2

2� %
gN � g �N

% 2
2 � % hN � h �N

% 2
2 � C

�
1 � % b % � % L f

% � �
G∞ � �� Lρ �� � �� L∂2ρ �� � �  t

0
sup

0 � γ � τ

%
uN � � � γ ��� u �N � � � γ � % 22 dτ

� % b %  t

0
sup

0 � γ � τ
����  

τ

0
� DuN � � � θ ��� Du �N � � � θ � � dθ ����

2

2
dτ � (8.7)

Let

M � τ � � sup
0 � γ � τ

� %
uN � � � γ ��� u �N � � � γ � % 22 � ����  

γ

0
� DuN � � � θ ��� Du �N � � � θ �	� dθ ����

2 �
Q � 1 � % b % � % L f

% � �
G∞ � �� Lρ �� � �� L∂2ρ �� �and notice that (8.7) can be written

M � t � � %
gN � g �N

% 2
2 � % hN � h �N

% 2
2 � CQ  t

0
M � τ � dτ �

Then Gronwall’s inequality gives

M � t � � � %
gN � g �N

% 2
2 � % hN � h �N

% 2
2

�
eCQt � (8.8)

Now, let ψ � L1 � I;L2 � U � � . Then we have, by Hölder’s inequality and (8.8),� � uN � u �N � ψ � � �  
I

%
uN � � � τ ��� u �N � � � τ � % 2 % ψ � � � τ � % 2 dτ� � �� gN � g �N �� 2

2 � �� hN � h �N �� 2
2
 

I
eCQτ % ψ � � � τ � % 2 dτ�

eCQ
� �� gN � g �N �� 2

2 � �� hN � h �N �� 2
2

%
ψ
%

L1 � I;L2 � U � � �
Hence, in the limit N � ∞ we get, by previous results,� � u � u � � ψ � � � eCQ

� %
g � g �

% 2
2 � % h � h �

% 2
2

%
ψ
%

L1 � I;L2 � U � � � �
The following are immediate consequences.
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Corollary 8.2. The solution to (6.1) is unique.

Corollary 8.3. The solution to (6.1) depends continuously on the initial data.
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