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A DISCRETE DE RHAM COMPLEX WITH
ENHANCED SMOOTHNESS

XUE–CHENG TAI AND RAGNAR WINTHER

Abstract. Discrete de Rham complexes are fundamental tools in
the construction of stable elements for mixed finite element meth-
ods. The purpose of this paper is to discuss a new discrete de
Rham complex in three space dimensions, where the finite element
spaces have some extra smoothness compared to the standard re-
quirements. The motivation for this construction is to produce
discretization which have uniform stability properties for certain
families of singular perturbation problems. In particular, we will
show how the spaces constructed here lead to discretizations of
Stokes type systems which have uniform convergence properties as
the Stokes flow approaches a Darcy flow.

1. Introduction

In [8] a robust finite element discretization of Darcy–Stokes flow in
two space dimensions was proposed. More precisely, given a domain
Ω ⊂ R2 the following singular perturbation problem was studied:

(1.1)
(I − ε2∆)u− grad p = f in Ω,

divu = g in Ω,
u = 0 on ∂Ω,

where ε ∈ (0, 1] is the perturbation parameter. The unknowns are the
vector field u and the scalar field p, which in flow problems correspond
to velocity and pressure, respectively. We note that when ε is not too
small this problem is simply a standard linear Stokes problem, but with
an additional non–harmful lower order term. However, if ε approaches
zero the model problem formally tends to a mixed formulation of the
Poisson equation with homogeneous Neumann boundary conditions,
i.e. a Darcy flow. Hence, the model covers the transition from fluid
flow to porous medium flow. In this respect, the singular perturbation
system (1.1) is a prototype for problems arising in multiscale modelling.

The main motivation for the finite element method constructed in
[8] was to construct a discretization which has convergence properties
that are uniform with respect to the perturbation parameter ε. Hence,
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for ε bounded away from zero the method should behave as a finite ele-
ment method for the linear Stokes problem, while as ε tends to zero the
method should approach a mixed method for Poisson equation. The
approach taken in [8] was to construct a pair of finite element spaces
(Vh, Qh), for approximating the solution (u, p), such that the Brezzi
stability conditions, cf. [3], are satisfied with stability constants inde-
pendent of ε. The purpose of present paper is to design a corresponding
finite element method in three space dimensions.

The construction and analysis presented in [8] is closely related to
discrete de Rham complexes. In two space dimensions the de Rham
complex, with minimal smoothness measured in L2, can be stated as

(1.2) R ⊂−−−→ H1 curl−−−→ H(div)
div−−−→ L2 −−−→ 0,

where curl in the two dimensional case denotes the operator which
maps a scalar field φ to the vector field (−∂x2φ, ∂x1φ). The precise
definitions of the involved spaces will be given in the next section. Note
that the function spaces (1.2) have exactly the property that it consists
of all L2 fields such that the image of the differential operator mapping
to the right also is in L2. The statement that this is a complex simply
means that the composition of two consecutive maps is zero. If the
domain Ω is simply connected the sequence (1.2) is exact in the sense
that the range of each map is exactly the null space of the succeeding
map.

The Sobolev spaces H1, H(div), and L2 occurring in (1.2) are fun-
damental function spaces used for weak formulations of a large collec-
tion of differential systems. Furthermore, corresponding finite element
spaces, and, in particular, various discrete de Rham complexes are im-
portant tools in designing stable finite element discretizations of these
systems.

A discrete de Rham complex in two dimensions can be written on
the form

(1.3) R ⊂−−−→ Wh
curl−−−→ Vh

div−−−→ Qh −−−→ 0,

where Wh ⊂ H1, Vh ⊂H(div), and Qh ⊂ L2 are finite element spaces
with respect to a given triangulation Th of Ω. The most well known ex-
amples involves the Raviart–Thomas spaces [13] or the Brezzi–Douglas–
Marini spaces [4] as the choice of Vh, while Wh and Qh consist of stan-
dard piecewise polynomial scalar fields which are globally continuous
or discontinuous, respectively.

In [8] we constructed an discrete sequence of the form (1.3), but
with the additional property that the finite element spaces are non-
conforming approximations of spaces with extra smoothness. More
precisely, Vh ⊂H(div), i.e. the elements of Vh has continuous normal
components over all edges of the mesh. In addition, at each edge the
tangential component of the vector fields in Vh have continuous mean
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value. Correspondingly, Wh ⊂ H1 is a nonconforming approximation
of H2. Hence, the spaces constructed in [8] is a discrete analog of the
complex

(1.4) R ⊂−−−→ H2 curl−−−→ H1 div−−−→ L2 −−−→ 0,

which is an exact sequence if the domain Ω is simply connected.
In three space dimensions the Sobolev space version of the de Rham

complex can be written in the form

(1.5) R ⊂−−−→ H1 grad−−−→ H(curl)
curl−−−→ H(div)

div−−−→ L2 −−−→ 0,

which is an exact sequence if the domain Ω is contractable. Here
H(curl) consists of all vector fields u ∈ L2 with curlu ∈ L2. A
corresponding discrete de Rham complex of the form

(1.6) R ⊂−−−→ Sh
grad−−−→ Wh

curl−−−→ Vh
div−−−→ Qh −−−→ 0

where Sh ⊂ H1, Wh ⊂ H(curl), Vh ⊂ H(div), and Qh ⊂ L2 is
referred to as a conforming approximation of the complex (1.5). Well
known examples of such finite element spaces are the Nedelec families
described in [10] and [11], cf. also [1].

A three dimensional example of a complex with extra smoothness,
corresponding to (1.4), is given by

(1.7) R ⊂−−−→ H2 grad−−−→ H1(curl)
curl−−−→ H1 div−−−→ L2 −−−→ 0.

Here H1(curl) consists of all vector fields u ∈H1 with curlu ∈H1.
The sequence (1.7) is obviously a complex. Furthermore, if Ω is convex
polyhedron then the sequence is exact, cf. [7, Chapter I.3.5].

The main purpose of the present paper is to construction an analog
to the one given in [8] for three space dimensions. Given a tetrahe-
dral mesh Th we construct a conforming approximation of the complex
(1.5) of the form (1.6), which, at the same time, is a nonconforming
approximation of (1.7) in the sense that the discrete spaces of (1.6)
are nonconforming approximations of H2,H1(curl), and H1, respec-
tively. We will show that the constructed spaces Vh and Qh lead to a
robust discretization of the Darcy–Stokes system (1.1) in the sense that
the method is uniformly stable both with respect to the perturbation
parameter ε and the discretization parameter h.

In a similar manner the finite element spaces Sh andWh, constructed
below, can potentially be used to design uniform discretizations of other
singular perturbation problems. For example, the space Sh is a three
dimensional analog of the finite element space used in [12] to discretize
fourth order problems which are perturbations of a second order prob-
lem. However, we will not perform such discussions here.

In §2 we introduce the notation to be used in this paper, and we
define the finite element spaces Sh,Wh,Vh, and Qh. The properties of
these discrete spaces are discussed in §3, and then in §4 we proceed
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to show that the pair of spaces (Vh, Qh) leads to a uniformly stable
discretization of the Darcy–Stokes system (1.1).

2. Notation and preliminaries

We will use Hm = Hm(Ω) to denote the L2–based Sobolev spaces
of order m on the polygonal domain Ω ⊂ R3, and the corresponding
norm by ‖·‖m. The subspace Hm

0 is the closure in Hm of C∞
0 (Ω), while

L2
0 consists of all elements of L2 with mean value zero. The notation

(·, ·) will be used to denote the standard L2 inner product over the
domain Ω. In general we will use boldface symbols for vector fields and
function spaces of vector fields. In particular H(curl) = H(curl; Ω)
is the spaces of all L2 vector fields v with curlv ∈ L2, and with
H(div) = H(div; Ω) defined in a similar manner. The gradient of a
vector field v is denoted Dv, i.e. Dv is the 3×3 matrix with elements

(Dv)i,j = ∂vi/∂xj 1 ≤ i, j ≤ 3.

For a subset T ⊂ Rn, the notation Pk = Pk(T ) is used for the space of
polynomials of degree k defined on T , and Pn

k denotes the corresponding
space of polynomial vector fields. If T ⊂ R3 is a tetrahedron then
∆2(T ) denotes the set of the four 2–dimensional faces, ∆1(T ) is the set
of the six 1–dimensional edges, and ∆0(T ) the set of the four vertices.

In order to define the finite element spaces Sh,Wh,Vh, and Qh we
will first define the restriction of these spaces to one tetrahedron.
Througout this paper {Th} is a family of shape regular tetrahedral
meshes, where h is the maximal diameter. For T ∈ Th let b = bT ∈ P4

be the quartic bubble function with respect to T , i.e. b = λ1λ2λ3λ4,
where λi are the barycentric coordinates with respect to the vertices
of T . The restriction of the space Sh to T will be denoted S(T ) and is
given by

S(T ) = {s = s2 + b s1 : si ∈ Pi, i = 1, 2}.
Hence, the space S(T ) is a linear space of dimension 14. The corre-
sponding spaces W (T ) is a space of dimension 36 given by

W (T ) = N1 + grad(bP1) + bP3
1.

Here N1 = N1(T ) is the polynomial space which corresponds to the
restriction of the second lowest order H(curl) space of Nedelec’s first
family to one tetrahedron, cf. [10]. Hence,

N1 = {w ∈ P3
2 : w · x ∈ P2}.

This space has dimension 20, and a w ∈N1 is uniquely determined by
the two lowest order moments of the tangential components on each
edge, and the lowest order moment of the two tangential components
on each face. We refer to [10] for more details. The restriction of the
space Vh to T , V (T ), is given as

(2.1) V (T ) = P3
1 + curl(bP3

1),
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which is a space of dimension 24. Finally, Q(T ) is simply taken to be P0.
It is straightforward to check that gradS(T ) ⊂W (T ), curlW (T ) ⊂
V (T ), and divV (T ) ⊂ Q(T ). Hence, the polynomial sequence

(2.2) R ⊂−−−→ S(T )
grad−−−→W (T )

curl−−−→ V (T )
div−−−→ Q(T ) −−−→ 0

is a complex. In fact, it can be easily checked that (2.2) is exact.
The finite element spaces Sh,Wh,Vh, and Qh will be defined from the

corresponding spaces of restrictions to a given tetrahedron, introduced
above, by specifying degrees of freedom for these local spaces. As for
the degree of freedom for the one dimensional space Q(T ) = P0 we use
the mean value of the function over T . Hence, the corresponding global
space Qh is a subspace L2.

Any function s ∈ S(T ) is determined by the values of s at each
vertex and

(2.3)

∫
e

s dxe e ∈ ∆1(T ),

∫
f

∂s

∂n
dxf f ∈ ∆2(T ).

Here and below dxe and dxf indicate integration with respect to arc
length or surface area, and n is a unit normal vector on f .

It is straightforward to check that these degrees of freedom uniquely
determines an element of s ∈ S(T ). If the the degrees of freedom
associated ∆0(T ) and ∆1(T ) are all zero then s = bs1, where s1 ∈ P1.
Furthermore, on a face f ∈ ∆2(T )

∂s

∂n
= cfbfs1,

where cf 6= 0 is a constant, and bf is the cubic bubble function asso-
ciated the face f . However, bf is nonzero in the interior of f . Hence,
if the zero order moment of ∂s/∂n is zero on each face f ∈ ∆2(T )
there must exist an interior root of s1 on each face f , and therefore
s = s1 = 0.

The local space S(T ) and the degrees of freedom determined by
(2.3) defines the corresponding global space Sh. It is clear that the
elements of Sh are continuous, i.e. Sh ⊂ H1. Furthermore, the normal
derivatives are weakly continuous over inter–element faces f , in the
sense that ∫

f

[
∂s

∂n
] dxf = 0,

where [·] denotes the jump across the face f . Hence, the space Sh is a
nonconforming approximation of H2.

Finally, we have to design proper degrees of freedom for the spaces
of vector fields, W (T ) and V (T ). Recall that rigid motions in two and
three dimensional spaces are vector fields r ∈ Rn, n = 2, 3 of the form

(2.4) r(x) = a+ bx,
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where a ∈ Rn and b is a skew symmetric n×n real matrix (n=2,3). The
space of rigid motions will be denoted RM . Furthermore, if f ⊂ R3

is a two dimensional affine space , i.e. a plane in R3, then RM(f)
denotes the rigid motions on f , i.e. RM(f) is the space which only
contains tangential to f and all vector fields from RM(f) are of the
form (2.4). Hence, RM(f) is a linear space of dimension 3. In fact,
all the vectors r(x) from RM(f) for x ∈ R3 is of the form

r(x) = r0 + β(x− x0)× n, ∀β ∈ R,

where x0 ∈ f is a fixed point and r0 is a fixed tangent vector.
We will show below that a vector field v ∈ V (T ) is uniquely de-

termined by 24 degrees of freedom. For all f ∈ ∆2(T ) we specify the
moments

(2.5)

∫
f

(v · n)p dxf p ∈ P1(f),

∫
f

vt · r dxf r ∈ RM(f).

In the above, P1(f) is the space of linear functions on f . Here and also
later, we use vt to denote the tangential component of v on f , i.e.,

(2.6) vt = v − (v · n)n.

Note that if we introduce a basis for the spaces P1(f) andRM(f) then
these moment conditions lead to 24 degrees of freedom for the elements
v ∈ V (T ).

The proof that these degrees of freedom are unisolvent for V (T )
will be given in the next section. Once V (T ) has been defined, the
finite element space Vh is defined by these degree of freedoms over
the finite elements of Th. It can easily be seen that the elements of
the corresponding global space Vh have continuous normal derivatives.
Therefore, Vh ⊂H(div). Furthermore, the tangential components are
weakly continuous, so Vh is a nonconforming approximation of H1.

Remark. Note that if v ∈ Vh then the jumps of v on the inter-
element faces are orthogonal to rigid motions. ¿From the observation
done in [9], based on the general nonconforming theory of [2], it there-
fore follows that the elements of the nonconforming H1 space Vh will
indeed satisfy Korn’s inequality. �

The degrees of freedom for W (T ) are determined from the moments

(2.7)

∫
e

(w · t)p dxe e ∈ ∆1(T ), p ∈ P1(e),

where t is a tangent vector on e, and for all f ∈ ∆2(T )

(2.8)

∫
f

w dxf , and

∫
f

(curlw)t · r dxf r ∈ RM(f).

It is a consequence of the discussion in §3 below that these degrees
of freedom determine an element of W (T ) uniquely. It can also be
seen that the elements of the corresponding global space, Wh, have
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continuous tangential components, and thereforeWh ⊂H(curl). Fur-
thermore, the normal components of w, and the components of curlw
are weakly continuous, and hence the space Wh is a nonconforming
approximation of H1(curl).

3. The discrete de Rham complex

The purpose of this section is to complete the discussion of the finite
element spaces Sh, Wh, Vh, and Qh. In particular, we will show that
the corresponding complex (1.6) is exact. In order to show that an
element v ∈ V (T ) and w ∈ W (T ) are uniquely determined by the
degrees of freedom specified by (2.5), or (2.7) and (2.8), respectively,
we will need some preliminary results in two space dimensions.

3.1. Some preliminary results in two space dimensions. Through-
out this subsection f ⊂ R2 will be a general triangle, and f̂ the reference
triangle given by

f̂ = {x ∈ R2 : x1, x2 ≥ 0, x1 + x2 ≤ 1}.

We let λi for i = 1, 2, 3 be the barycentric cooordinates on f , and
b = λ1 · λ2 · λ3 the cubic bubble function on f . The integral of b over
f is denoted |b|f . For example, if f = f̂ then b(x) = x1x2(1− x1 − x2)
and |b|f = 1/120.

Furthermore, for each triangle f there is a 1−1 linear transformation
Φ of the form

Φ(x̂) = Bx̂+ x0

mapping f̂ onto f . If λi(x) are the barycentric cooordinates on f and

λ̂i(x̂) the corresponding functions on f̂ , then

λi(x) = λ̂i(Φ
−1(x)).

The corresponding Piola transform, P , maps 2–vectorfield defined on
f̂ to corresponding vectorfields on f . If ẑ is a vectorfield on f̂ then

z(x) = Pẑ(x) = J−1Bẑ(Φ−1(x)).

Here J is the determinant of B. The Piola transform maps constant
vectors to constant vectors. In addition, we have Pẑ(x) = J−1(x−x0)
if ẑ(x̂) = x̂ .

The following identities, which can be established by straightforward
calculations, will be useful below.
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Lemma 3.1. If f = f̂ then∫
f

x1b dx =

∫
f

x2b dxf = 1/360 = |b|f/3,∫
f

x2
1b dx =

∫
f

x2
2b dxf = |b|f/7,∫

f

x1x2b dx = 2|b|f/21.

For a general triangle f , we define the barycentre xb ∈ f by

λi(x
b) = 1/3 i = 1, 2, 3.

It is a direct consequence of the lemma above that the integration rule

(3.1)

∫
f

bp dx = |b|fp(xb)

is exact for p ∈ P1 and f = f̂ . By a change of variables this formula
then holds for any triangle f .

Assume that v ∈ P2
1(f) is of the form

(3.2) v =
3∑

i=1

ci(λi −
1

3
)gradλi.

By (3.1), it follows that ∫
f

b(v · z) dx = 0

for all constant vector fields z. In addition we have the following char-
acterization.

Lemma 3.2. If v ∈ P2
1(f) is of the form (3.2) and satisfies∫

f

b(v · x) dx = 0

then c1 + c2 + c3 = 0.

Proof. Let ẑ and ψ be smooth vector fields on f̂ and f , respectively.
We have

(3.3)

∫
f

b(ψ · Pẑ) dx =

∫
f̂

b̂(BT ψ̂ · ẑ) dx̂

where ψ̂ = ψ ◦ Φ, b̂ = b ◦ Φ and BT is the transpose of the matrix B.
Note, that if ψ = grad q then gradx̂ q̂ = BT ψ̂. Therefore, if v ∈ P2

1(f)
is of the form (3.2) then

BT v̂ =
3∑

i=1

ci(λ̂i −
1

3
)gradx̂ λ̂i.
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Hence, by the assumption and (3.3), the coefficients ci satisfies

(
3∑

i=1

ci

∫
f̂

b̂(λ̂i −
1

3
)gradx̂ λ̂i) · x̂ dx̂

=

∫
f̂

b̂(BT v̂ · x̂) dx̂

= J−1

∫
f

bv · (x− x0) dx = 0,

where we have used that (Px̂)(x) = J−1(x − x0). However, from the
identities of Lemma 3.1 we easily compute

(
3∑

i=1

ci

∫
f̂

b̂(λ̂i −
1

3
)gradx̂ λ̂i) · x̂ dx̂

=

∫
f̂

[c1x1(x1 −
1

3
) + c2x2(x2 −

1

3
) + c3(x1 + x2 −

2

3
)(x1 + x2)] dx1dx2

=
2

63
|b|f (c1 + c2 + c3),

and therefore c1 + c2 + c3 = 0. �

3.2. Unisolvent degrees of freedom. We now return to the discus-
sion of polynomial spaces defined on a tetrahedron T ⊂ R3. We recall
that b = bT =

∏4
j=1 λj is the quartic bubble function on T . Further-

more, on the face f = fi = {x : λi(x) = 0} ∈ ∆2(T ) we associate
the cubic bubble function bf =

∏
j 6=i λj. We need to show that the

functions in the spaces V (T ) and W (T ) are uniquely determined by
the moment conditions given by (2.5) and (2.7)–(2.8), respectively. We
first establish the following lemma.

Lemma 3.3. Assume that v ∈ P3
1(T ) satisfies

(3.4)

∫
f

bf (v × n) · rdxf = 0 r ∈ RM(f), f ∈ ∆2(T ).

Then v = 0.

Proof. If v ∈ P3
1(T ) satisfies (3.4) then∫
f

bfvt · zdxf = 0 z ∈ P2
0(f), f ∈ ∆2(f).

This follows since v × n = Rvt, where the matrix R represents a
rotation by 90 degrees in the tangent space of f , and since RM(f)
contains all constant tangential vector fields. Therefore, using (3.1),
we conclude that

(3.5) vt(x
b
f ) = 0, f ∈ ∆2(f),

where xb
f is the barycentre of a face f . The space of functions in P3

1(T )
satisfying (3.5) is a four dimensional subspace which is given as the
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span of the functions (λi − 1
3
)gradλi i = 1, 2, 3, 4. Hence, v is of the

form

(3.6) v =
4∑

i=1

ci(λi −
1

3
)gradλi

for some constants c1, c2, c3, c4. Restricting v to the face f1, given by
λ1 = 0, the tangential component vt has the form

vt =
4∑

i=2

ci(λi −
1

3
)gradt λi,

where gradt λ = (gradλ)t is the tangential component of gradλ. Note
also that (3.4) implies that for any fixed x0 ∈ f1,∫

f1

b1vt · (x− x0) dxf =

∫
f1

b1(v × n) ·
(
(x− x0)× n

)
dxf = 0.

As a consequence of Lemma 3.2 we conclude that c2 + c3 + c4 = 0. By
considering all the four faces we conclude that∑

i6=j

ci = 0 j = 1, 2, 3, 4,

and this implies that c1 = c2 = c3 = c4 = 0. �

Next we will show that the elements of V (T ) are uniquely determined
by the 24 degrees of freedom given by (2.5).

Lemma 3.4. Assume that v ∈ V (T ) = P3
1 +curl(bP3

1) and that all the
degrees of freedom represented by (2.5) are zero. Then v = 0.

Proof. Let v = p + curl bq, where p, q ∈ P3
1. On each face f ∈

∆2(T ) the normal component of curl bq is zero since it only depends
on tangential derivatives of bq. Therefore, we have v ·n = p ·n. Hence,
if the 12 constraints on the normal component of v are all zero, we can
conclude that p · n = 0 on each face. Since three faces are meeting at
a vertex, we conclude that p = 0 on each vertex. However, this means
that p = 0, or v = curl(bq). As a consequence, on each face

vt = (curl bq)t = − ∂b

∂n
(q × n).

However, ∂b/∂n is proportional to bf . Therefore, if the conditions on
vt in (2.5) all vanish, then∫

f

bf (q × n) · r dxf = 0 r ∈ RM(f)

for all f ∈ ∆2(T ), and by Lemma 3.3 this implies that q = 0. �
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A similar argument can be given to show that the elements of W (T )
are uniquely determined by the degrees of freedom given by (2.7)–(2.8).
Recall that a vector field w is in W (T ) if it is on the form

w = w0 + grad(bp) + bq

where p ∈ P1, q ∈ P3
1 and w0 ∈ N1. From the definition of N1, we

see that w0 ∈ P3
2 and satisfies w0 · x = 0. If all the degrees of freedom

given by (2.7)–(2.8) are zero then we quickly derive that w0 = 0 from
the standard 20 degrees of freedom ofN1 (two lowest order moments of
the tangential component on each edge and the loweat order moment
of the tangential components on each face). Furthermore, since w =
grad(bp) + bq we obtain w · n is proportional to bfp on each face.
Hence, we conclude that∫

f

bfp dxf = 0 f ∈ ∆2(T )

and therefore, by (3.1), p = 0 at the barycentre of each face. But then
p = 0. Finally, if w = bq then the tangential component (curlw)t is
proportional to bf (q×n) on each face, and therefore Lemma 3.3 again
implies that q = 0.

3.3. The discrete complex. We have seen that the polynomial spaces
S(T ), W (T ), V (T ), and Q(T ), defined on a single tetrahedron T all
have a set of unisovent degrees of freedom specified in §2. Given a
tetrahedral mesh Th the spaces Sh, Wh, Vh, and Qh are all defined as
the functions which belong to the corresponding polynomial space on
each tetrahedron T , and where the continuity conditions are implicitly
defined by the degrees of freedom on vertices, edges, and faces.

It is straightforward to check that in the sequence

(3.7) R ⊂−−−→ Sh
grad−−−→ Wh

curl−−−→ Vh
div−−−→ Qh −−−→ 0

each space is mapped into the succeeding space by the given operator,
and hence the sequence is a complex. Furthermore, if Ω is contractible
the sequence is exact. In fact, this is an easy consequence of the similar
property for more standard discrete spaces. To see this, let S0

h be the
standard continuous piecewise linear space with respect to the trian-
gulation Th, W

0
h the second lowest order Nedelec space corresponding

to piecewise polynomials in N1, and V 0
h the space of piecewise linear

vector fields with H(div) continuity, i.e. V 0
h is the the lowest order

space in Nedelec’s second family. For these spaces it is well known that
the sequence

(3.8) R ⊂−−−→ S0
h

grad−−−→ W 0
h

curl−−−→ V 0
h

div−−−→ Qh −−−→ 0

is exact, cf. [1], [11].
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By definition the restriction vT of an element v ∈ Vh to a tetrahedron
T ∈ Th is of the form

(3.9) vT = v0
T + curl(bTqT ) with v0

T , qT ∈ P3
1.

However, on each face f ∈ ∆2(T ) the normal component of curl(bTqT )
is zero. Therefore, the continuity requirements on v imply that the
piecewise polynomial v0 has continuous normal components, and hence
v0 is an element of the space V 0

h . Furthermore, the weak continuity of
the tangential components of v implies that for each face f of Th

(3.10)

∫
f

[(v0 + curl bq)t] · r dxf = 0 r ∈ RM(f),

where [·] denote the jump across f .
Assume now that div v = 0. In order to show that the sequence (3.7)

is exact we need to show that there is a w ∈Wh such that curlw = v.
However, if div v = 0 and v is of the form (3.9) then div v0 = 0, and
by the exactness of the sequence (3.8) we can conclude that there is a
w0 ∈W 0

h such that

vT = curl(w0
T + bTqT )

on each triangle T . Furthermore, from (3.10) we obtain∫
f

[(curlw0 + bq)t] · r dxf = 0 r ∈ RM(f).

Hence, if w = w0 + bq we conclude from (2.7)–(2.8) that w ∈Wh.
We can use a similar argument to show that all curl–free elements

of Wh are gradients of functions in Sh. First note that any w ∈Wh is
on the form

(3.11) wT = w0
T + grad(bT pT ) + bTqT

on each tetrahedron T , where w0
T is in the class N1 and p and q are

linears. Furthermore, w0 ∈W 0
h since the two other terms on the right

hand side of (3.11) vanish for the standard degrees of freedom of W 0
h .

If curlw = 0 then clearly

curlw0 = 0 and curl bq = 0.

However, if curl bq = 0 then, in particular, the tangential component
(curl bq)t = 0 on all faces, and hence, by (2.7)–(2.8) the element bq
of Wh is zero. Furthermore, since curlw0 = 0 we can use (3.8) to
obtain w0 = grad s0 for a suitable s0 ∈ Sh,0. So w = grad s, where
s = s0 + bp ∈ Sh.

3.4. Commuting diagrams. The finite element spaces Sh, Wh, Vh,
and Qh introduced above are subspaces of H1, H(curl), H(div), and
L2, respectively. In addition, due to additional weak continuity over
interelement faces, the spaces Sh, Wh, and Vh are nonconforming ap-
proximations of H2, H1(curl), and H1.
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The degrees of freedom, or more pricesly the moment conditions,
specified above define canonical interpolation operators

ΠS
h : H2 → Sh, ΠW

h : H1(curl) →Wh, ΠV
h : H1 → Vh,

and ΠQ
h : L2 → Qh. Furthermore, the following diagram commutes.

R −−−→ H2 grad−−−→ H1(curl)
curl−−−→ H1 div−−−→ L2 −−−→ 0yΠS

h

yΠW
h

yΠV
h

yΠQ
h

R −−−→ Sh
grad−−−→ Wh

curl−−−→ Vh
div−−−→ Qh −−−→ 0

In other words the identities

gradΠS
h = ΠW

h grad, curlΠW
h = ΠV

h curl, div ΠV
h = ΠQ

h div,

all holds. It is a straightforward and standard argument to verify these
identities, and we therefore omit the details here.

In the analysis for the finite element solutions, we need the corre-
sponding spaces to be with homogeneous boundary conditions. Hence,
the complex (1.7) should be replaced by
(3.12)

0
⊂−−−→ H2

0

grad−−−→ H1
0 (curl)

curl−−−→ H1
0

div−−−→ L2
0 −−−→ 0,

where

H1
0 (curl) = {w ∈H1

0 : (curlw)t = 0 on ∂Ω}.
A corresponding discrete, nonconforming, approximation is obtained
by restricting the spaces Sh, Wh, and Vh to the subspaces with van-
ishing degrees of freedom on the boundary ∂Ω. For example, the space
Vh is replaced by Vh,0 given as all v ∈ Vh such that∫

f

(v · n)p dxf = 0 p ∈ P1(f),

∫
f

vt · r dxf = 0 r ∈ RM(f),

for all faces f in ∂Ω. Hence, v · n vanishes on the boundary for any
v ∈ Vh,0, while the tangential component is zero in a weak sense.
Hence, Vh,0 ⊂H0(div), where

H0(div) = {v ∈H(div) : v · n = 0 on ∂Ω}.

Furthermore, Vh,0 is a nonconforming approximation of H1
0 . We also

let Qh,0 = Qh ∩ L2
0.

As above we obtain the commuting diagram

0 −−−→ H2
0

grad−−−→ H1
0 (curl)

curl−−−→ H1
0

div−−−→ L2
0 −−−→ 0yΠS

h

yΠW
h

yΠV
h

yΠQ
h

0 −−−→ Sh,0
grad−−−→ Wh,0

curl−−−→ Vh,0
div−−−→ Qh,0 −−−→ 0

where the upper and lower rows are complexes.
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4. Uniform error estimates for the Darcy–Stokes system

In this section we shall discuss how the finite element space Vh,0 ×
Qh,0 ⊂ H0(div) × L2

0 can be used to construct a discretization of the
singular perturbation problem (1.1) in R3 with uniform convergence
properties with respect to the parameter ε. The results are similar to
the corresponding results obtained in [8] for the two dimensional case.
Therefore, the discussion here will be rather brief, and we will only
focus the attention on the parts where the analysis from [8] needs to
be essentially modified.

In order to avoid some technical difficulties, we will restrict the dis-
cussion to the case when the source term g = 0. The standard weak
formulation of the system (1.1) is to find (u, p) ∈H1

0 × L2
0 such that

(4.1)
aε(u,v) + (p, div v) = (f ,v) v ∈H1

0 ,
(divu, q) = 0 q ∈ L2

0.

Here we assume that data f ∈ H−1 ≡ (H1
0 )∗ and aε is the bilinear

form

aε(u,v) = (u,v) + ε2(Du,Dv),

defined on H1
0 × H1

0 . The corresponding finite element (uh, ph) ∈
Vh,0 ×Qh,0 is given by the following equations:

(4.2)
aε(uh,v) + (ph, div v) = (f ,v) v ∈ Vh,0,

(divuh, q) = 0 q ∈ Qh,0.

As Vh,0 is nonconforming, the bilinear form aε(·, ·) is understood to
be the sum of the corresponding integrals over each tetrahedron of Th.
Recall that for a smooth vector field v

∆v = grad div v − curl curlv,

and, as a consequence,

(Du,Dv) = (divu, div v) + (curlu, curlv),u ∈H1
0 ,v ∈H1.

If u is the solution of (4.1), we define the consistency error by

(4.3) Eε(u,v) = aε(u,v) + (p, div v)− (f ,v), v ∈ Vh,0.

¿From Green’s formula we obtain that

(4.4) Eε(u,v) = ε2
∑
f∈∆h

2

∫
f

(curlu) [v × n] dxf ,

Here, ∆h
2 denotes all the faces for the tetrahedral mesh Th.

The uniform analysis of the discretization of the system (1.1) will be
based on the ε–dependent function space (H0(div)∩ ε ·H1

0 )×L2
0. The

corresponding norm is given by

|||v|||2ε = ‖v‖2
0 + ‖ div v‖2

0 + ε2‖Dv‖2
0.
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For convenience we also introduce ‖ · ‖a as the norm associated the
bilinear form aε. For elements of Vh,0 these norms should be interpreted
as the corresponding broken norms.

Using the commuting diagram property div ΠV
h = ΠQ

h div and the
H1 boundedness of ΠV

h we obtain that there exists a constant α1 > 0,
independent of h and ε, such that

(4.5) sup
v∈Vh,0

(q, div v)

|||v|||ε
≥ sup

v∈Vh,0

(q, div v)

|||v|||1
≥ α1‖q‖0 for all q ∈ Qh,0.

Hence, the proper uniform inf–sup condition is satisfied.
Remark. Recall from [8] that most standard Stokes elements will not

lead to a uniformly stable discretization in the present case. This is due
to the fact the bilinear form aε is not uniformly coercive with respect
to the energy norm ||| · |||ε on the space of weakly divergence free vector
fields, i.e. the second Brezzi condition is violated. However, in the
present case, where the divergence operator maps Vh,0 onto Qh,0, this
conditions is obvious. In particula, we have that divu = divuh = 0.
�

Taking v = ΠV
hu−uh in the first equation of (4.2) and (4.3), we obtain

(4.6) ‖u− uh‖a ≤ 2

(
‖u−ΠV

hu‖a + sup
v∈Vh,0

|Eε,h(u,v)|
‖v‖a

)
.

Since the polynomial space V (T ) contains all linears, and the family
{Th} is shape regular, we obtain from a scaling argument that

(4.7) ‖ΠV
h v − v‖a ≤ c(h2 + εh)‖v‖2, v ∈H2 ∩H1

0 ,

where the constant c is independent of v, ε and h. Under the assump-
tion that the solution u of (4.1) is in H2 ∩H1

0 we can use a trace
theorem and a scaling argument (cf. [8, Lemma 5.1]), to establish that

(4.8) sup
v∈Vh,0

|Eε(u,v)|
‖v‖a

≤ c ε

{
h‖ curlu‖1

h1/2‖ curlu‖1/2
1 ‖ curlu‖1/2

0 .

By combining (4.5)–(4.8) we obtain the following error estimates (cf.
[8, Theorem 5.1])

‖u− uh‖0 + ε‖ curl(u− uh)‖0 ≤ c(h2 + εh)‖u‖2,(4.9)

‖p− ph‖0 ≤ c h(‖p‖1 + (ε + h)‖u‖2).(4.10)

These estimates are uniform in the sense that the constant c is in-
dependent of u, ε and h. However, in general the term ‖u‖2 is not
bounded uniformly in ε. A real uniform estimate, corresponding to a
result obtained in [8] in the two dimensional case, is of the form

(4.11) ‖u− uh‖0 + ε‖ u− uh‖1 + ‖p− ph‖0 ≤ c h1/2‖f‖1.

As illustrated by the development in [8] the key ingredient in deriv-
ing such an estimate is proper uniform bounds on the solution u, cf.
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Lemma 4.1 below. However, the argument given in [8] for this result
cannot easily be extended to three dimensions. For completeness, we
therefore give an alternative proof here, valid in both two and three
dimensions.

4.1. Uniform regularity. Throughout this section we assume that
the domain Ω is a convex polyhedron. By an energy argument it is
straightforward to show that the weak solution (u, p) of (1.1) satifies
the uniform bound

(4.12) |||u|||ε + ‖p‖0 ≤ c ‖f‖0.

Hence, for a fixed f ∈ L2, the quantity ‖Du‖0 is at most proportional
to ε−1 as ε tends to zero. However, if f is more regular an improved
estimate can be obtained. To see this we let (u0, p0) ∈ H0(div) × L2

0

be the weak solution of the corresponding reduced problem

(4.13)
u0 − grad p0 = f in Ω,

divu0 = 0 in Ω,
u0 · n = 0 on ∂Ω.

Below we shall consider this problem with f ∈ H1. Hence, it is an
immediate consequence of elliptic regularity that (u0, p0) is a classical
solution in (H1∩H0(div))×H2, with corresponding norms depending
continuously on ‖f‖1.

Lemma 4.1. Assume that Ω is convex and that f ∈H1. There exists
a constant c > 0, independent of ε and f , such that

ε1/2‖u‖1 + ε3/2‖u‖2 ≤ c ‖f‖1,(4.14)

‖u− u0‖0 + ‖p− p0‖1 ≤ c ε1/2‖f‖1.(4.15)

Proof. When Ω is convex the solution of the standard Stokes problem

(4.16)
−∆ū− grad p̄ = f in Ω,

div ū = 0 in Ω,
ū = 0 on ∂Ω

satisfies the regularity estimate, cf. [6],

(4.17) ‖ū‖2 + ‖p̄‖1 ≤ c ‖f‖0.

By considering the pair (u, ε−2(p−p0)) as a weak solution of the system

(4.18)
−∆u− grad(ε−2(p− p0)) = −ε−2(u− u0)

divu = 0,

we obtain from (4.17) that u ∈H1
0 ∩H2, p ∈ L2

0 ∩H1 and

(4.19) ε2‖u‖2 + ‖p− p0‖1 ≤ c ‖u− u0‖0,

with constant c independent of ε. Due to the enhanced regularity of
the solution u we obtain from (4.18) that

aε(u,v)− (u0,v) + (p− p0, div v) = 〈∂u
∂n

,v〉, v ∈H1 ∩H0(div),
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where, 〈·, ·〉 is the L2 inner product on ∂Ω. Setting v = u − u0 this
gives

(4.20) ‖u− u0‖2
0 + ε2‖Du‖2

0 = ε2(Du,Du0) + ε2〈∂u
∂n

,u0〉.

By using a standard trace inequality we further obtain

ε2〈∂u
∂n

,u0〉 ≤ c ε2‖u‖1/2
1 ‖u‖1/2

2 ‖u0‖1

≤ cδε‖u0‖2
1 + δε3‖u‖1‖u‖2

≤ cδε‖u0‖2
1 +

δε2

2
‖u‖2

1 +
δε4

2
‖u‖2

2(4.21)

≤ cδε‖f‖2
1 + C δ(ε2‖Du‖2

0 + ‖u− u0‖2
0),

where we have used (4.19) and the H1–regularity of u0 in the last step.
Here both the constants C and cδ are independent of ε, but cδ depends
continuously on δ. For the first term on the right hand side of (4.20)
we have

ε2(Du,Du0) ≤ ε2

4
‖Du‖2

0 + ε2‖Du0‖2
0 ≤

ε2

4
‖Du‖2

0 + c ε2‖f‖2
1,

where the constant c is independent of ε. However, together with (4.20)
and (4.21), and by choosing δ sufficiently small, this implies

(4.22) ‖u− u0‖2
0 + ε2‖Du‖2

0 ≤ c ε‖f‖2
1

with c independent of ε. Together with (4.19) this implies the desired
estimates (4.14) and (4.15). �

¿From Lemma 4.1 and (4.8), we see that

sup
vh∈Vh,0

|Eε(u,vh)|
‖vh‖a

≤ c h
1
2 ε‖ curlu‖

1
2
1 ‖ curlu‖

1
2
0 ≤ c h

1
2‖f‖1.

Furthermore, since the interpolation operator ΠV
h is defined from traces

on the two dimensional faces in ∆h
2 , the interpolation estimate

‖ΠV
h v − v‖0 ≤ c h1/2‖v‖1/2

0 ‖v‖1/2
1 ,

follows from a standard trace inequality and scaling. From this esti-
mate, and by arguing exactly as in the proof of Theorem 6.1 of [8], we
derive

‖u−ΠV
hu‖0 + ε‖u−ΠV

hu‖1 ≤ c h
1
2‖f‖1.

Combining the two estimates above with the inf-sup condition (4.5)
and error bound (4.6), we obtain the desired uniform estimate (4.11).
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