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Irritability is a heritable core mental trait associated with several psychiatric illnesses. However, the genomic basis of irritability is
unclear. Therefore, this study aimed to 1) identify the genetic variants associated with irritability and investigate the associated
biological pathways, genes, and tissues as well as single-nucleotide polymorphism (SNP)-based heritability; 2) explore the
relationships between irritability and various traits, including psychiatric disorders; and 3) identify additional and shared genetic
variants for irritability and psychiatric disorders. We conducted a genome-wide association study (GWAS) using 379,506 European
samples (105,975 cases and 273,531 controls) from the UK Biobank. We utilized various post-GWAS analyses, including linkage
disequilibrium score regression, the bivariate causal mixture model (MiXeR), and conditional and conjunctional false discovery rate
approaches. This GWAS identified 15 independent loci associated with irritability; the total SNP heritability estimate was 4.19%.
Genetic correlations with psychiatric disorders were most pronounced for major depressive disorder (MDD) and bipolar II disorder
(BD II). MiXeR analysis revealed polygenic overlap with schizophrenia (SCZ), bipolar I disorder (BD I), and MDD. Conditional false
discovery rate analyses identified additional loci associated with SCZ (number [n] of additional SNPs= 105), BD I (n= 54), MDD
(n= 107), and irritability (n= 157). Conjunctional false discovery rate analyses identified 85, 41, and 198 shared loci between
irritability and SCZ, BD I, and MDD, respectively. Multiple genetic loci were associated with irritability and three main psychiatric
disorders. Given that irritability is a cross-disorder trait, these findings may help to elucidate the genomics of psychiatric disorders.
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INTRODUCTION
Irritability is an emotional response characterized by dispropor-
tionate reactivity to negative stimuli1. Irritability can also be
defined as a temperament type with a predisposition to feeling
negative emotions (i.e., anger, annoyance, envy, frustration) and a
lack of control over excessive emotional responses1,2.
Various psychopathological outcomes have been associated

with irritability. Correlational and longitudinal studies have shown
that irritability during adolescence predicts major depressive
disorder (MDD) and generalized anxiety disorder in adulthood and
is associated with current depressive symptoms, neuroticism,

impulsivity, borderline personality pathology, and suicidality3–5.
Genetic studies have suggested that irritability is genetically
associated with various psychiatric illnesses. For instance, studies
have indicated that a genetic predisposition toward schizophrenia
(SCZ), attention-deficit/hyperactivity disorder (ADHD), and MDD
can manifest as irritability6–8. In addition, youth at familial risk of
bipolar disorder (BD) are more likely to demonstrate chronic
irritability than controls; chronic irritability in turn is associated
with increased rates of BD, depressive disorders, disruptive
behavior disorders, and ADHD9. Moreover, irritability is a
diagnostic criterion for the following mental illnesses: generalized
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anxiety disorder, depressive disorders (disruptive mood dysregu-
lation disorder, MDD, and persistent depressive disorder), bipolar I
disorder (BD I) and bipolar II disorder (BD II), acute stress disorder
and posttraumatic stress disorder, oppositional defiant disorder,
and personality disorders (antisocial and borderline)10. Essentially,
irritability is a common component of various psychiatric disorders
and bridges the internalizing–externalizing divide.
Irritability is heritable. Twin studies have shown that its heritability

estimates range from 31% to 37%11,12. While prior studies have
examined the neurophysiological associations of irritability with
brain structures and their respective functions13,14, there is a paucity
of literature on the genome-wide basis of irritability. The genetic
relationship between irritability and psychiatric disorders is an
emerging issue that merits further exploration.
In the present study, we had three main objectives: 1) to clarify

the genetic architecture of irritability by identifying associated
genetic variants via a genome-wide association study (GWAS) and
investigating the associated biological pathways, genes, and
tissues as well as single-nucleotide polymorphism (SNP)-based
heritability via post-GWAS analyses; 2) to explore the relationships
between irritability and various traits, as well as psychiatric
disorders, using linkage disequilibrium score regression (LDSC)
and the bivariate causal mixture model (MiXeR); and 3) to apply
conditional false discovery rate (condFDR) and conjunctional false
discovery rate (conjFDR) approaches to identify additional and
shared genetic variants for irritability and psychiatric disorders via
overlapping SNP-based associations.

MATERIALS AND METHODS
UK Biobank
The UK Biobank is a nationwide cohort of approximately 500,000
individuals aged between 40 and 69 years at the time of recruitment.
Individuals were recruited during a four-year baseline period (from 2006 to
2010) at multiple centers located in the UK. The collected data include
computer-assisted interviews, touchscreen-based self-report question-
naires, physical health measures, and biological samples (including
genotype data). More details regarding the UK Biobank can be found at
https://www.ukbiobank.ac.uk/about-biobank-uk. For the present study,
individuals were excluded if they were non-European, if their genetically
determined sex did not match their self-reported sex, if they presented
with sex chromosome aneuploidy, if they did not provide sex information,
or if they withdrew from the UK Biobank. Finally, 379,506 participants of
European ancestry who answered the baseline irritability question (“Are
you an irritable person?”) were included in this study.

Phenotype measures
The UK Biobank included the above irritability question as part of the
baseline assessment. Participants who responded “yes” to this question
(“Are you an irritable person?”) were defined as irritable cases, and those
who responded “no” were defined as controls. A total of 379,506
participants of European ancestry who answered the above irritability
question were included in the analysis (cases, n= 105,975; controls,
n= 273,531; Supplementary Table 1). All participants provided written
informed consent. The National Research Ethics Committee (REC reference
11/NW/0382) approved the UK Biobank study, and this secondary analysis
was conducted in accordance with the principles of the Declaration of
Helsinki and its later amendments.

Genotyping and quality control
The UK Biobank released the genetic data for 487,409 individuals in March
2018 (version 3). These samples were genotyped using either Affymetrix
UK BiLEVE Axiom or Affymetrix UK Biobank Axiom arrays (Santa Clara, CA,
USA), which include > 800,000 variants. The UK Biobank researchers
applied extensive quality control (QC) procedures to the genotype data15.
Imputation was performed centrally by the UK Biobank using combined
data from the 1000 Genomes Project and the UK10K panel; SHAPEIT3 was
used for phasing, and IMPUTE2 was used for imputation16,17. Additionally,
we excluded variants with a call rate < 0.95, a Hardy–Weinberg equilibrium
of P < 1 × 10−6, a minor allele frequency (MAF) < 0.5%, or imputation

quality scores (INFO) < 0.4, as in a previous study18. These QC criteria
resulted in the inclusion of 9,575,249 SNPs.

Genome-wide association analyses
We performed genome-wide association analyses using the scalable and
accurate implementation of the generalized mixed model (SAIGE)19. This is
a logistic mixed-model approach that analyzes binary traits with
unbalanced case‒control ratios. This method also accounts for sample
relatedness and effectively controls the inflation of type I error rates using
saddle point approximation. Age, sex, genotyping array type, and the first
10 principal components of genetic ancestry supplied by the UK Biobank
(field 22009) were included as covariates in the multivariate analyses as
reported in a previous study20. We used 844,770 pruned genotyped
markers to estimate the genetic relationship matrix with the following
parameters: a window size of 500 base pairs (bp), a step size of 50 bp, and
a pairwise r2 values < 0.2.
The summary statistics were processed via linkage disequilibrium (LD)

clumping using PLINK software (https://zzz.bwh.harvard.edu/plink) to
define regional lead SNPs with r2 values > 0.221. Variants that exceeded
the genome-wide significance threshold of P < 5 × 10−8 were identified as
associated with irritability. LD was calculated using UK Biobank samples
that had passed the same QC criteria that were used for the current GWAS.
Regional plots of these variants were generated using LocusZoom software
(http://locuszoom.sph.umich.edu)22.

Sensitivity analysis
As a sensitivity analysis, we conducted a two-stage GWAS to examine
whether our association results were robust. We randomly divided the
379,506 European samples into 10 subsets. One subset was used as a
replication set, and the remaining nine subsets were used as a discovery
set, creating 10 pairs of discovery and replication sets. For the 15 lead
SNPs, we conducted an association test in a discovery set and a replication
set and performed a meta-analysis of the results from the discovery set
and replication set. We tested if the lead SNPs were significant
(P < 5 × 10−8) in the meta-analysis and repeated this test 10 times.

Gene mapping, gene set analysis, SNP-based heritability, and
cell type-specific analyses
The functional mapping and annotation (FUMA) platform was used to
examine functional annotations and evidence of expression quantitative
trait loci (eQTL) and to conduct pathway analyses23. SNP annotation was
performed using the ANNOVAR package implemented in FUMA24. The
eQTL analyses based on the Genotype-Tissue Expression (GTEx) database
(https://www.gtexportal.org/home/datasets; v8) and PsychENCODE25 data-
base (http://resource.psychencode.org) were performed to identify the
genes that were significantly associated with lead SNPs26. Statistically
significant eQTL associations were identified at a false discovery rate
(FDR) < 0.05. The enrichment of gene sets was examined using the
MAGMA package implemented in FUMA to analyze the biological
pathways determined by the Gene Ontology Consortium27.
We used LDSC to estimate SNP-based heritability for irritability using

precomputed European LD scores from the 1000 Genomes Project v3
(https://github.com/bulik/ldsc). Variants in the major histocompatibility
complex region were excluded, and common autosomal variants with a
MAF > 1% in the European population were included. We performed
partitioned heritability analyses using LDSC to evaluate the enrichment of
53 genomic annotations within the full baseline model28.
We used LDSC applied to specifically expressed genes (LDSC-SEG) to

identify enrichments in tissue-specific gene expression and chromatin
modification using gene sets obtained from the LDSC website (https://
github.com/bulik/ldsc)29. We used several gene sets for cell type-specific
analyses, including multitissue gene expression (including both GTEx30 and
Franke lab31,32 data) and multitissue chromatin (including both Roadmap
Epigenomics33 and ENCODE34 data), as well as gene sets previously
described by Finucane et al. (2018)29 and Cahoy et al. (2008)35.

Genetic correlation
Cross-trait genetic correlations (rg) between irritability and other pheno-
types were examined using LDSC36 with the default options: imputation
quality scores > 0.9 and MAF values > 1%. We used European GWAS
summary statistics for 90 phenotypes (these can be downloaded publicly).
In addition, European GWAS summary statistics for nine psychiatric
disorders were used to analyze shared genetic backgrounds with respect
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to irritability. Among the well-studied GWASs, we selected those that
focused on psychiatric disorders from which we could obtain European
samples with the least overlap with the UK Biobank37. These psychiatric
disorders were classified into three groups: mood and psychotic disorders
(SCZ, BD I, BD II, MDD), early-onset neurodevelopmental disorders (autism
spectrum disorder, ADHD, Tourette’s syndrome), and disorders with
compulsive behaviors (obsessive-compulsive disorder, anorexia nervosa)37.
Tourette’s syndrome was classified as both an early-onset neurodevelop-
mental disorder and a disorder with obsessive behaviors in a prior study
that used genomic structural equation modeling. We classified this
disorder as an early-onset neurodevelopmental disorder in the present
study based on the factor loading value in this previous study.
For this analysis, we applied the FDR correction for multiple

comparisons. Additionally, structural magnetic resonance imaging (MRI)
of the brain region of interest (ROI) as well as diffusion tensor imaging (DTI)
was used to analyze the genetic correlations between irritability and
neuroimaging traits (Supplementary Table 9).
The volumes of the ROIs in the brain were mapped using the ROI atlas38,

and DTI was performed using the brain DTI atlas for brain annotation39.
BrainNet Viewer 1.7 was used to visualize the brain regions; rg values
ranged from −1 to 140. The MNI-ICBM-152 template41 in MATLAB R2020a
(Mathworks, Inc., Natick, MA, USA) was used to normalize interpolations
and color scales. The UK Biobank Brain Imaging Documentation provides a
detailed description of brain volume and DTI measures (https://
biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). We applied FDR
correction for the ROI and for each DTI scalar (FA, MD, AD, RD, MO).

Polygenic overlap
We used GWAS summary statistics for nine major psychiatric disorders
(Supplementary Table 10) to investigate whether irritability had a shared
genetic basis with these phenotypes. We applied MiXeR42 (http://github.com/
precimed/mixer) to quantify polygenic overlap and evaluated genetic
correlations. Univariate analyses using MiXeR yield the number of trait-
influencing loci for each trait (i.e., polygenicity) and the average magnitude of
additive genetic associations among these variants (i.e., discoverability)43.
Bivariate analysis models were used to determine additive genetic effects as
a mixture of four bivariate Gaussian components, representing variants not
affecting either trait, variants affecting only one of the traits, and variants
affecting both traits42. To evaluate polygenic overlap, MiXeR was implemen-
ted to calculate the Dice coefficient (i.e., the ratio of shared variants to the
total number of variants). Model fit evaluated via the Akaike information
criterion (AIC) was based on the maximum likelihood of GWAS z scores and
was illustrated with conditional quantile‒quantile (Q-Q) plots.

CondFDR and conjFDR analyses
The condFDR approach (https://github.com/precimed/pleiofdr) was
applied to identify additional loci associated with psychiatric disorders
and irritability44. This technique was used because combining GWASs for
the two associated phenotypes increases statistical power, allowing for
the identification of new common variants associated with both
phenotypes that were not identified in the original GWASs44. Additionally,
the conjFDR approach was employed to identify loci shared between
irritability and psychiatric disorders44. This method assigns the maximum
condFDR values of each trait as the conjFDR value between two traits and
allows the identification of genomic loci related to both traits44.
Psychiatric disorders with reasonable polygenic overlap in MiXeR were
included in this analysis. We plotted all SNPs within an LD block in relation
to their chromosomal location in a conditional/conjunctional Manhattan
plot and identified the strongest signal in each LD block by ranking all
SNPs based on the conditional/conjunctional FDR value. Independent
genomic loci were defined using the FUMA protocol. To calculate how
many loci were additionally identified in this study compared to the
original GWAS results, we determined if the variants were located within
± 1 Mbp of the variants reported in previous studies. Finally, eQTL
mapping was applied to link-defined loci with related genes, and tissue
specificity analyses were performed with mapped genes using the GTEx
database within the FUMA platform. Overall, MiXeR and cond/conjFDR
provided a more comprehensive overview of the genetic relationships
between traits, as these methods are not affected by the effect direction.

Sex-stratified analyses
We conducted sex-stratified GWAS and post-GWAS analyses to examine
the genetic architecture of irritability in each sex (females: 52,529 cases and

152,268 controls; males: 53,446 cases and 121,263 controls). These analyses
included genome-wide association tests, SNP-based heritability and
partitioned heritability analyses, multiple tissue analyses, genetic correla-
tion analysis, and MiXeR analysis.

RESULTS
Genetic architecture of irritability
A total of 15 lead SNPs with genome-wide statistical significance
(P < 5 × 10−8) were identified (Table 1 and Fig. 1) using
379,506 samples from the UK Biobank (regional plots presented
in Supplementary Fig. 1). The Q-Q plot of the GWAS results
indicated genomic inflation (λ= 1.121, Supplementary Fig. 2),
which was attributable to the polygenicity of irritability (LDSC
intercept= 0.9195; standard error= 0.008). In the additional two-
stage GWAS analyses that were conducted as a sensitivity analysis,
all the lead SNPs were significant (P < 5 × 10−8) in meta-analyses
of 10 randomly assigned discovery and replication sets (Supple-
mentary Table 22).
The eQTL analysis identified 29 cis-eQTL genes mapped to the

lead SNPs (Supplementary Table 2); five lead SNPs (rs62491417,
rs2054213, rs78454137, rs10503002 and rs13037664) were
detected (Table 1). The eQTL genes and genes located in the 15
GWAS loci were significantly enriched in three gene sets
(neurogenesis, stress-induced premature senescence, and neuron
differentiation) in the FUMA gene set enrichment test (Supple-
mentary Table 3).
The total SNP heritability of irritability was estimated to be

4.19% (standard error= 0.2%). In the partitioned heritability
analysis, four of the 53 annotations passed the FDR threshold of
0.05 (Fig. 2a and Supplementary Table 4): the conserved genomic
region defined by Lindblad-Toh et al. 45, the DNase I hypersensi-
tivity site (DHS), H3K4me3 (indicative of active promoters), and
H3K9ac (indicative of active promoters or enhancers).
In the LDSC-SEG analysis, the central nervous system (CNS)

showed strong enrichment at an FDR < 5% (Supplementary
Table 5). Among the CNS cells, neurons were enriched (Supple-
mentary Table 6). Regarding multitissue gene expression, the
cerebral cortex, frontal lobe, and limbic system showed the
highest enrichment (Fig. 2b and Supplementary Table 5). In terms
of multitissue chromatin results, the highest enrichment was
observed in the CNS, including the fetal brain, dorsolateral
prefrontal cortex, and germinal matrix regions (Fig. 2c and
Supplementary Table 7). Additionally, the LDSC-SEG analysis
restricted to only the conserved genomic region defined by
Lindblad-Toh et al. showed enrichment in the retinal tissue of the
CNS in the gene expression data and enrichment in multiple CNS
tissues in the chromatin data (Supplementary Fig. 9).

Genetic relationships between irritability and other traits
We performed LDSC on the summary statistics for health-
associated traits to compute genetic correlations (rg) (Fig. 3a and
Supplementary Table 8). A total of 59 mental and physical health-
associated traits showed significant genetic correlations with
irritability. Statistically significant positive correlations were
observed between irritability and constipation (rg= 0.42), func-
tional digestive disorders (rg= 0.37), MDD (rg= 0.56), and positive
answers to “ever depressed for a whole week” (rg= 0.47) and
“ever unenthusiastic/disinterested for a whole week” (rg= 0.53).
Statistically significant negative correlations were observed with
satisfaction-related traits (rg range=−0.56 to −0.36), never
smoking (rg=−0.30), and leisure/social activities (rg=−0.25 for
sports club or gym, rg=−0.11 for religious group). These
correlations suggest common genetic associations between
irritability and multiple health and lifestyle factors.
LDSC analysis was likewise conducted to test the genetic

correlations of irritability with brain region volumes and con-
nectivity via structural MRI and DTI, respectively (Supplementary
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Fig. 3 and Supplementary Table 9). The volumes of several brain
regions were correlated with irritability, but no statistically
significant correlations were observed after FDR correction. With
respect to DTI traits, the fractional anisotropy of the fornix and
stria terminalis showed a statistically significant genetic correlation
(rg=−0.17) at an FDR < 5%.
Genetic correlations between irritability and nine major

psychiatric disorders are presented in Supplementary Tables 10
and 11. Statistically significant estimates (after Bonferroni correc-
tion) are shown in Fig. 3b. Irritability was strongly correlated with
MDD (rg= 0.56) and BD II (rg= 0.38) in the category of mood and
psychotic disorders.
We obtained MiXeR estimates for polygenic overlap between

irritability and psychiatric disorders (Supplementary Fig. 4,
Supplementary Tables 12, 13). In addition to demonstrating the
highest rg estimate of the LDSC analyses, MDD showed consider-
able polygenic overlap (Dice coefficient= 0.56), sharing approxi-
mately 5300 variants with irritability (Fig. 3c). Furthermore, MiXeR
analysis showed that SCZ (Dice coefficient= 0.78) and BD I (Dice
coefficient= 0.88) had the largest amount of genetic overlap with
adequate model fit. Despite the weak genetic correlations
observed in LDSC analysis, SCZ and BD I shared approximately
6300 and 6100 variants with irritability, respectively, indicating
that nearly all SNPs affecting irritability also influenced SCZ and BD
I (Fig. 3c). Moreover, although irritability showed a moderate
genetic correlation with BD II, MiXeR was unable to quantify the
polygenic overlap between these two traits, as the negative value
of the Akaike information criterion indicated poor model fit.

Additional and shared loci of psychiatric disorders and
functional annotation
For condFDR analyses of SCZ, BD I, and MDD (using irritability as
an associated phenotype), we employed a conditional Manhattan
plot to visualize the localization of genetic markers (Fig. 4a). We
identified 251 SCZ-associated genomic loci based on their
associations with irritability. Of these loci, 105 were additionally
significant when compared with a previous GWAS included in this
analysis46. In the condFDR analysis for BD I and MDD, we identified
96 BD I-associated genomic loci and 164 MDD-associated genomic
loci, of which 54 and 107, respectively, were new compared to
those reported in prior studies47,48. (Fig. 4b; Supplementary Tables
14−16). Moreover, we compared our results with the SCZ GWAS
findings obtained by Trubetskoy et al. in 202249 to determine how
many of the 105 additional loci associated with SCZ were
replicated in reference to the most recent and largest cross-
ancestry SCZ GWAS to date. Among the 105 additional loci, 45
were statistically significant at the genome-wide level, and 60
were unique to this study. Of the 107 additional loci associated
with MDD, 12 were replicated in a recent cross-ancestry GWAS by
Giannakopoulou et al. (2021)50, while 95 loci remained unique.
We mapped the additional loci (105 for SCZ, 54 for BD I, and 107

for MDD) to genes via eQTL analysis and identified 117, 45, and 90
genes, respectively (Supplementary Table 17). The protein-coding
gene mitochondrial ribosomal protein S33 (MRPS33) was detected
in all three disorders. Furthermore, 117 genes mapped with
additional loci for SCZ were enriched in five tissue types, 45 genes
mapped with BD I loci were enriched in seven tissue types, and 90
genes mapped with MDD loci were enriched in eight tissue types,
with enrichment in the brain demonstrated in all three disorders
(Supplementary Fig. 5).
For condFDR analyses of irritability (using SCZ, BD I, and MDD as

associated phenotypes) and conjFDR analyses between irritability
and psychiatric disorders, we also generated a conditional/
conjunctional Manhattan plot to visualize the localization of the
genetic markers (Supplementary Fig. 6). Using SCZ, BD I, and MDD
as associated phenotypes for condFDR analyses, we identified 69,
54, and 116 irritability-associated genomic loci (Supplementary
Table 18), which were mapped to 136, 48, and 151 genes,Ta
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respectively, via eQTL analysis (Supplementary Table 19). As 157
loci were additionally significant in comparison to our GWAS
results, leveraging the phenotype of psychiatric disorders greatly
improved the identification of SNPs associated with irritability. The
conjFDR analyses indicated 85, 41, and 198 shared genetic loci
between irritability and psychiatric disorders (SCZ, BD I, and MDD,
respectively) (Supplementary Table 20), which were mapped to
142, 45, and 153 genes (Supplementary Table 21). In all cases,

except for condFDR analysis of irritability associated with BD I, we
detected significantly enriched brain expression (Supplementary
Figs. 5 and 7).

Sex-stratified analysis
We performed sex-stratified analyses to enhance our under-
standing of the genetic architecture of irritability in males and
females. Due to the reduced statistical power, the sex-specific
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GWAS identified fewer significant loci than the overall GWAS
(Supplementary Fig. 8a–d). Nevertheless, one additional locus
(rs12675694) was identified in the female-specific GWAS that was
not found in the overall GWAS. In addition, we also conducted
post-GWAS analyses in each subgroup. The SNP-based heritability
estimates in female and male samples were 4.94% and 5.56%,
respectively, and both were slightly higher than that in the overall
sample (4.19%). The genetic correlation between female and male
samples was 1.04 (standard error= 0.05). Similarly, most func-
tional analysis results were consistent between sex-stratified and
overall analyses and between male and female subgroup analyses.
The SNP heritability in both sexes was strongly enriched in the
conserved or regulatory genomic regions and the CNS (Supple-
mentary Fig. 8e–j). The genetic correlation analysis also revealed
similar patterns in males and females (Supplementary Fig. 8k–n).
Consistent with the overall analysis, SCZ and BD I showed the
largest shared polygenicity with irritability (Supplementary Fig.
8o–t).

DISCUSSION
In the current study, we performed comprehensive genomic
analyses to determine the genomic basis of irritability and its
relationship with psychiatric disorders. Our GWAS identified 15
lead variants associated with irritability in the UK Biobank
participants of European ancestry. Sensitivity analysis via a two-
stage GWAS supported the robustness of our association results.
The estimated SNP-based heritability of irritability was 4.19%
(Fig. 1 and Table 1). Using eQTL and LDSC-SEG analyses, we
determined genes associated with the identified SNPs in brain

tissues and found that partitioned heritability was enriched in the
CNS and neurons (Fig. 2b, c, Supplementary Tables 5, 6). LDSC
analysis revealed statistically significant genetic correlations
between irritability and multiple health-associated traits, with
positive correlations with physical and psychiatric disorders/
symptoms and negative correlations with beneficial lifestyle
factors (Fig. 3a). MiXeR analyses revealed statistically significant
polygenic overlaps between irritability and SCZ, BD I, and MDD
(Fig. 3c). Using condFDR, we identified additional SNPs associated
with these psychiatric disorders by leveraging the reduced FDR
obtained via the associated trait of irritability (Fig. 4, Supplemen-
tary Tables 14, 15, and 16). These analyses also helped to identify
157 additional SNPs associated with irritability (Supplementary
Table 18). The conjFDR analyses revealed a significant number of
loci shared between irritability and the following three psychiatric
disorders: MDD, BD I, and SCZ (Supplementary Table 20).
Moreover, the sex-stratified GWAS identified an additional locus
associated with irritability in females despite its reduced statistical
power. Most of the sex-stratified functional analyses yielded
results consistent with the overall GWAS and specific sex
subgroups, suggesting a shared genetic architecture of irritability
between males and females.
Our identified loci associated with irritability are in line with those

of previous studies, including twin studies, which have indicated that
irritability is heritable11,12. Using eQTL analysis, we identified 29 cis-
eQTL genes that were mapped to the following five lead SNPs:
rs62491417, rs2054213, rs78454137, rs10503002 and rs13037664
(Table 1). The rs62491417 locus is in an intron of KDM7A, which is
involved in brain development51. SETD1A, which is located near the
rs2054213 locus, is associated with feelings of worry, tension, and
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irritability as well as with SCZ, BD I, and neurodevelopmental
disorders52–54. CRHR1, at the rs78454137 locus, is associated with
interpersonal sensitivity, frequent mood swings, and depression52.
Moreover, TCF4, at the rs10501002 locus, is associated with
measurements of worry55, and NCOA6, at the rs13037664 locus, is
associated with feeling nervous52. Thus, these five lead SNPs may be
involved with brain development, emotion regulation, and mood and
psychotic disorders, which is consistent with our findings.
Partitioned heritability analysis revealed four statistically sig-

nificant genomic annotations: the conserved genomic regions
defined by Lindblad-Toh et al. 45, the DHS (i.e., transcriptionally
active genomic regions), H3K4me3 (i.e., active promoters), and
H3K9ac (i.e., active promoters or enhancers). Approximately 2.6%
of the total SNP heritability was attributed to the conserved
regions, representing the largest proportion of enrichment in any
category. The importance and significance of the conserved
regions have been reported in prior studies on intelligence,
physical illnesses and traits, SCZ, and BD28,56. H3K4me3 and
H3K9ac annotations were similarly enriched in SCZ, BD, and MDD,
while the DHS was associated with physical and emotional
functioning28,57,58. The LDSC-SEG analysis suggested that the CNS
was strongly enriched, indicating its significant involvement in the
biological basis of irritability (Supplementary Table 5). In terms of
cell types, neurons were found to be enriched to a greater extent
than oligodendrocytes and astrocytes (Supplementary Table 6).
Multitissue gene expression analyses demonstrated that the
cerebral cortex, frontal lobe, and limbic system had the highest
enrichment (Fig. 2b and Supplementary Table 5). These findings,
which align with prior genetic findings59,60, suggest that irritability
is strongly associated with the biological functions of the brain.
The current findings provide new insights into the genetic

relationship between irritability and psychiatric disorders. The LDSC
analyses revealed genetic correlations with nine major psychiatric
disorders (Supplementary Table 11). This suggests that shared
genetic factors may underpin the presence of irritability across
several psychiatric disorders. In particular, the LDSC analyses
indicated that irritability was most strongly correlated with MDD
(rg= 0.56) and BD II (rg= 0.38) in the category of mood and
psychotic disorders (Fig. 3b)3,4. Moreover, although the genetic
correlations between irritability and SCZ and between irritability and
BD I were not strongly positive, the MiXeR analysis revealed
significant polygenic overlap (Fig. 3c). MDD also showed consider-
able polygenic overlap with irritability (Fig. 3c). Positive associations
between irritability and SCZ, BD I, and MDD have been demonstrated
in epidemiological3,4,61, longitudinal genetic11, genetic liability6, and
imaging genetic62 studies. However, our findings of polygenic
associations of irritability with SCZ and BD I imply that some of the
genetic variants shared with irritability may have opposing effects, as
low genetic correlation but high polygenic overlap indicates that
these two traits share a large number of genetic variants with a
mixture of opposing and parallel effect directions.
Based on the polygenic associations between irritability and

SCZ, BD I, and MDD, we identified additional and shared SNPs
associated with the above four phenotypes via the condFDR and
conjFDR approaches (Fig. 4 and Supplementary Fig. 6). Compared
to the most recent cross-ancestry GWAS49, the present study
identified 60 unique loci for SCZ, 54 for BD I47, and 95 for MDD50.
In terms of irritability, 157 additional loci were found along with
the 15 loci identified in our GWAS by using the three psychiatric
disorders as associated phenotypes. As leveraging irritability or the
associated psychiatric disorders revealed additional loci, the
genetic architecture of irritability, SCZ, BD I, and MDD may have
a common genetic basis. Furthermore, using conjFDR analyses, we
found 85, 41, and 198 shared genetic loci between irritability and
the three psychiatric disorders (Supplementary Table 20), once
again suggesting that there are common genetic underpinnings
of these phenotypes. Most of these loci demonstrated significant
enrichment in corresponding brain regions. The discovery of

shared loci, despite low genetic correlations between irritability
and SCZ (rg= 0.13) and BD I (rg= 0.15), indicates that most of
these shared variants have different directions of effects on each
trait. These polygenic relationships between irritability and
psychiatric disorders provide important evidence for subsequent
studies to examine and clarify the genetic basis of irritability and
the overlap of biological mechanisms with those of psychiatric
disorders. As irritability is a symptom of many psychiatric
disorders, including MDD (in children and adolescents), BD I/II,
generalized anxiety disorder, and oppositional defiant disorder10,
we expect that investigating the genomics of irritability more
comprehensively will help to elucidate the genomics of other
associated psychiatric disorders and vice versa.
This study has some limitations. First, we used a single yes-or-no

question (“Are you an irritable person?”) to define irritability. The
results should be interpreted carefully because exploring irritability
with a simple question could only reveal certain aspects of the
complex characteristics of human behavior. Numerous previous
studies investigating personality traits using large-scale biobank
data share this limitation (of relying on simple questionnaires) but
have sufficient statistical power for genetic analyses due to the
hundreds of thousands of participants; such studies have none-
theless yielded novel genetic discoveries and insights into human
behavior63,64. For example, the GWASs of risk-taking behavior and
mood instability, which were based on a single question, identified
and replicated loci associated with the respective traits and
revealed a shared genetic basis with other psychiatric traits63,65,66.
In the future, studies incorporating more comprehensive ques-
tionnaires, such as the Temperament Evaluation of Memphis, Pisa,
Paris, and San Diego-Auto Questionnaire2, may be used to support
our findings. Second, although irritability is predicted to be
heritable, environmental factors also influence this trait. Thus, our
results should not be utilized to predict an individual’s tempera-
ment but rather as evidence of the genetic basis of irritability for a
comprehensive evaluation of the associated neurobiological and
genetic manifestations of this trait. Third, although our analyses
identified strong enrichment in multiple brain tissues, we were
unable to determine specific brain regions. This may be partly due
to the use of limited functional datasets for brain tissues and cell
types25. Additionally, we observed significant enrichment in
neurons but not in oligodendrocytes and astrocytes (Supplemen-
tary Table 6). This may explain the observed widespread
enrichment in the brain and suggests that single-cell data across
brain regions may be needed to identify specific brain regions that
are functionally important for irritability in future studies. Fourth, as
our study was limited to individuals of European ancestry, future
studies should attempt to replicate our findings across diverse
populations. Since the clinical presentations of irritability may differ
by culture, subsequent GWASs conducted with cohorts of various
ancestries, as well as meta-analyses of cross-ancestry data, may
identify additional genetic factors and enhance our knowledge of
the genetic architecture of irritability, leading to greater under-
standing of mental disorders associated with this trait.
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