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ROBUST CONVERGENCE OF MULTI POINT FLUX
APPROXIMATION ON ROUGH GRIDS

RUNHILD A. KLAUSEN* AND RAGNAR WINTHER/'

Abstract.

This paper establishes the convergence of a multi point flux approximation control volume method
on rough quadrilateral grids. By rough grids we refer to a family of refined quadrilateral grids where
the cells are not required to approach parallelograms in the asymptotic limit. In contrast to previous
convergence results for these methods we consider here a version where the flux approximation is
derived directly in the physical space, and not on a reference cell. As a consequence, less regular
grids are allowed. However, the extra cost is that the symmetry of the method is lost.

1. Introduction. The multi point flux approximation (MPFA) is a control vol-
ume method developed by the oil industry as a reliable discretization of the pressure
equation, derived from Darcy’s law, on general rough quadrilateral and hexahedral
grids. In reservoir simulation the geology of the reservoir, which includes faults and
non parallel layers in the media, is a major challenge. The MPFA method provides a
local explicit flux with respect to the pressure. This is the main advantage compared
to the mixed finite element method, and allows a wider class of applications. For
example, when the pressure equation occurs as a subsystem of a multi phase model,
a fully implicit discretization of the system becomes possible with acceptable cost.
There is by now a number of papers on the MPFA approach, cf. for example the
overview papers [1, 13, 15, 16].

So far the theoretical convergence properties of MPFA methods are not well
enough understood. In [17] we analyze an MPFA method which is derived from a
mapping onto an orthogonal reference cell. The analysis is based on an equivalence
to a mixed finite element method with a broken Raviart-Thomas space and a specific
quadrature rule. However, the analysis requires so called h?-uniform grids, i.e. the
cells are required to approach parallelograms as the grid is refined. An alternative
analysis of essentially the same method, with the same grid restriction, is done in [19]
using a relation to the lowest order Brezzi-Douglas-Marini element instead. In fact,
it is shown numerically in [4] that “the reference space MPFA method” diverges on
irregular grids.

The lack of grid robustness for the reference space MPFA corresponds to an analog
property for the standard mixed finite element method, when the finite element spaces
are derived from a bilinear mapping of a unit square. In a series of papers [6, 7, 8],
Arnold, Boffi, and Falk discuss this and show divergence in the standard norms for
elements like the Raviart—-Thomas and the Brezzi-Douglas—Marini elements on rough
grids. The essential cause of the problem is the fact that Jacobian matrix of the
bilinear map is only constant when the grid cells are parallelograms. To overcome the
defect, and to obtain mixed methods which converge on rough grids, they propose to
modify the finite element spaces.

Based on numerical experiments it is shown in [3, 4, 14], that a corresponding
grid robustness of the MPFA method is obtained if the flux approximation is derived
directly in the physicals space. The purpose of the present paper is to give a theo-
retical justification for this experimental fact. We will indeed show that the physical
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space derived MPFA method presented below converges on rough grids. The method
analyzed here has the property that it is locally exact on uniform flow, a property not
shared by the method studied in [17]. However, the prize to pay for this robustness
is a non symmetric coefficient operator, and as a consequence, a weaker, but non
asymptotic shape condition is required to obtain stability of the method.

In this paper the analysis is restricted to two space dimensions. Let {2 be a
bounded domain in R?, with polygonal boundary 9. The problem discussed in this
paper is the elliptic equation,

—div (K (x)gradp) = g in Q, (1.1)

p(x) =0 on ON.

This is to be viewed as a prototype for the pressure equation in porous medium flow,
where K the permeability, and v = —K gradp the Darcy velocity. The boundary
condition is chosen for simplicity of exposition.

As is more or less standard for control volume methods, cf. for example [5, 9, 11],
the analysis below will be done by identifying an equivalence between the physical
space MPFA method and a proper mixed finite element method, using a specific
numerical integration rule and broken Raviart—Thomas space. In fact, the proper
mixed finite element method and the numerical quadrature rule are derived in Sections
2 and 3, independently of any relation to an MPFA method. The main error estimates
for this mixed method are established in Section 4. In Section 5 we present numerical
results which shows the advantage of the method discussed here compared to the
reference space derived method analyzed in [17]. Then, finally in an Appendix our
mixed finite element method is shown to be equivalent to the physical space derived
MPFA method proposed originally in [2].

2. Preliminaries. Let £2(E) denote the square Lebesgue-integrable function

on the domain F C R? with inner-product (-,-)g and norm || - ||g = (-, -){E/Q. IftE
equals the domain 2 of (1.1) introduced above the subscript will be dropped. Also,
let H'(E) denote the Sobolev space of first order differentiable functions in L(E),
with norm

lgll.e = (lal% + laff £)'/?

3

and with the associated seminorm
lal1,p = || gradql|e.
The space
H(div; E) = {v € (L2(E))? : divw € L2(E)},
is equipped with the norm
[vllaiv,z = (o]l + || div(v)[[3) 2.

Also, let Py be the set of polynomials of degree k. The permeability K is a symmetric
tensor which is uniformly positive definite in Q. In fact, it is an important feature
of reservoir simulation that K is allowed to be discontinuous, and both the MPFA
method and the mixed finite element method adapt to this case. However, for the
convergence analysis presented in this paper we need the components of K to be
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C1(9Q), and the Darcy velocity is assumed to satisfy w € (H'(2))2. This regularity
is for example ensured if the domain ) is convex, and g € L5. In special cases
discontinuous coeflicients still give some smoothness of the solution, and for such
cases relaxed smoothness condition on the permeability is allowed.

Let {7}, } denote a family of partitions of €2 into quadrilateral subdomains, or cells,
where © is the maximum element edge. We will assume that the family is regular,
cf. [12, page 246-247], i.e. all cells are convex, the angles are uniformly bounded
away from zero and m, and the ratio between the length of the smallest edge and
the diameter of the cell is uniformly bounded from below. Assume further that each
interior vertex of 7; meets four cells. Finally, denote the set of edges of 7;, by &.

In order to define the proper finite element method below we need to introduce
certain finite dimensional function spaces. In particular, we shall introduce a subspace
of H(div) which can be referred to as a splitting of the lowest order Raviart-Thomas
space over a quadrilateral.

2.1. Quadrilaterals. For any quadrilateral subdomain we will utilize a bilinear
mapping F' = Fg : E — E which is smooth and invertible, see Figure 2.1. The
reference space £ = (0,1) x (0,1) is the unit square. Let @; = (25, 1:), i = 1,2,3,4,
be the four vertices of £ in counterclockwise direction as shown in Figure 2.1. If
xi; = (x; — x;) the transformation F' takes the form

F(ﬁ?, y) =x + .’132135 + .’1}41?) + (11332 — 2341)533) (21)

for (#,9) € E. The Jacobian matrix of F is denoted D = Dp and J = Jg the
Jacobian of the mapping.

A orthogonal reference space is a basic assumption in the construction of Raviart-
Thomas elements on quadrilateral grids. As will be shown, we relate the mixed finite
element method based on such a reference mapping onto a square reference space, to
MPFA derived without this mapping.

If & is a vector field in H(div, E), define a vector field v on E by the Piola
transform P = Pg, i.e.

v(x) = Po(z) = %D@ o Fl(x).

Then [, divvgdx = [;divo §dz for all ¢ € Lo when § = g o F. Therefore,

divo = Jdive (2.2)

/v-nds:/f)-fzdé,

where s and § denote the arc length along the edges e and é, respectively, with n and
7 as the unit normal vectors, cf. [10].
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Define the analog reference permeability as K = JD 'K D~T. Note that K is
symmetric positive definite and bounded from above and below independent of h.
Now

K '=J'D'K'D
and

11 .
(K~'u.v)p = (J K~ D, = Db = (K Vi, b) 5.

The matrix field K embodies both the permeability and the shape of the cells, and
will be an essential factor in the further discussions and results. If K is diagonal the
grid is usually referred to as a K-orthogonal grid. Since

Tz Ty

p-|
Yz Ty

] = (@21 + Wi, xa +wi] B (€ (), € (2)], (2.3)

with w = (x32 — x41), we have

1 L[ELOK ())& (0K & (@)
K =3 ke S0xee) 24)
where the Jacobian is given by
J =(w21y41 — Ta1y21) + (T21(Y32 — ya1) — (32 — T41)Y21) 2.5)

+ (w32 — 241)ya1 — 2a1(Y32 — yYa1))9-

Unless the grid consists of parallelogram cells, J and D will not be constant.
The grids is said to be hZ—uniform or asymptotic parallelogram grids, if there
exits a constant ¢, independent of h, such that

|Fagl = |w| < ch®.

This assumption is essential for the previous analysis given in [17], but will not be
assumed here. Instead we need a less restrictive condition on the skewness of the cells
uniformly on 7;. This condition is defined below in Section 3.3. General quadrilateral
grids without any asymptotic refinement condition on 7, is referred to as rough grids.

3. The Mixed Formulation of MPFA. Introduce the unknown velocity u =
—K grad p which leads to a mixed formulation of equation (1.1). A weak formulation
of (1.1) can then be the problem of finding (u,p) € H(div) x L2 such that

(K 'u,v) — (p,dive) =0, for all v € H(div), (3.1)

(divu,q) = (g.q), forall g € Ls, '
where g is assumed to be an Lo-function. With suitable discrete subspaces of H(div)
and Lo, as well as a quadrature rule for (K 'u, v), the discrete version of (3.1) gives
the physical space derived MPFA method of [2]. A direct derivation of MPFA and
the equivalence to the discrete version of (3.1) is given in the Appendix.
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3.1. The Broken Raviart-Thomas Element. We will create finite elements
built on the broken Raviart-Thomas elements introduced and analyzed in [16, 17].
Let a,b,c, and d be piecewise constant on (0, 1), with discontinuity at the midpoint.
On the reference square E the velocity space RT/? = RT'/2(E) on quadrilaterals is
defined as the eight—dimensional space given as all vector fields of the form

a(f) + b(g)z
o(2) +d(E)g]
Recall that the corresponding Raviart-Thomas space, R7, is of the same form, but

with, a,b, ¢, and d taken as constants, so R7 C R7T /2 The corresponding finite

element space, R7 ,1/ ‘cH (div), is now defined by

RT)? := {v € H(div) : v|g € Pu(RTY?), VEeT}.

Hence, the canonical degrees of freedom for the space RT,lL/ % are v-n of each half edge

in Ei/ % The classical RT p-elements, are defined similarly without any discontinuity.
The pressure will be approximated by piecewise constants on

Qh = {q € Ly: q|E S PQ(E)7 VE € 771}

On the reference element we define IT : (H'(E))2 — RT as the standard interpolation
operators onto the four dimensional Raviart—Thomas space, cf. [10],

/(a —IIa) - ds = 0, for all edges é € £(E),

where £(E) represent the four edges of E. The operator IIj, : (H!)2 — RT, ¢ RT }L/ 2
is then simply given by

M| = PEfIPglv.

It is straightforward to check, using the identity (2.2), that the operator II, satisfies
the identity

(div(ITpv — v),q) =0, for all v € H(div), q € Qp,. (3.2)

Note that the operator IIj, is well-defined on R7 }L/ % as well. By equivalence of norms
we have

| < clv|l, forall v e RT}?, (3.3)
where the constant ¢ is independent of h. R

We also need the projection R}, defined on each cell F, as Ry,|g = PEREP]gl, for
all v € (H')? such that

L divITe [(Jy— J)EE - 1)
Rpv =11 —_— IO 3.4
o= S L - et - 1) G4
where J; = J(&;), i = 1,2,3,4 is the Jacobian evaluated in the reference cell vertex,
and J. = J(1/2,1/2) the Jacobian evaluated in the reference cell center. Note that
Je =" J;/4. With this notation equation (2.5) can be written

J=J +(J2—J1),f3+(J4—J1)g. (35)
5



On each cell E, from relation (2.2) and (3.5)

div(Rpv)J = div(Rp0)

= div(Ilo) + %}M)((Jz —J1) (28 — 1) + (Js — J1)(25 — 1))
_ divg O (4 (o — )+ (s — 1))

_ div(1lo)

i —

The construction in (3.4) therefore ensures div Ryv = div(Il9)/J, € Py(E),VE € T.
Note that Rpv & RTj, but the second therm of (3.4) vanish on the cell boundary,
such that it follows from (3.2) that also

(div(Rpv —v),q) =0, for all v € H(div), ¢ € Qn. (3.6)

If My, is the Lo—projection onto @y, we now have div R, = Myp, div. The projection
R}, is motivated from the ABF, elements introduced in [7], and allows us to find a
convergence estimate of the divergence without assuming h?-uniform grids.

The mixed finite element method derived from the pair R7T ,11/ 2 x @}, is given by:

Find (us,pn) € RT)'* x Q C H(div) x Ly such that

(K up, v) — (pn,dive) =0, for all v € R’T,ll/z,

3.7
(divun,q) = (9,q), for all g € Qp. (37

In order to obtain the MPFA method as a mixed finite element method we need
to replace the term (K 'uj,v)g in (3.7) by a quadrature formula.

3.2. The Quadrature Rule. Let K ,;1 denote the Ls-projection of the compo-
nents of K~ onto Py(E) for all E € 7T,. Since the components of K ' are C! there
exists a constant ¢ independent of h such that

(K3, = K, )| < chlful||v]], (3.8)

for uw,v € (£2)2. For a general function ¢(&) € L on a unit square E, with vertices
;= (0,0), (1,0), (1,1) and (0,1) for : = 1,2, 3,4, let approximation of the integral of
¢ by the trapezoidal rule mean that

N I s
[ o@rde ~Ty(0) = 1 >0t

Let the subscript ¢ denote evaluation in the reference cell center, &., so D, = D(&.)
for all cells. Now, define our numerical quadrature formula on each cell £ € 7} such
that

1

ap(u,v) = TE(jDCTK,leﬂ ) (3.9)
with
ap(u,v) = Z ap(u,v), (3.10)
,Zi}l
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Fic. 3.1. One cell, with four subcells, and the half cell edges e;;.

for piecewise smooth vector fields © and v. Note that the bilinear form aj is non
symmetric due to the fact that one of the Jacobian matrices D appearing in (3.9)
is evaluated at the reference cell center, .. The motivation for this construction is
the need to fulfill the properties given in Lemma 3.1 below. These properties are
expressed directly on the physical cell E, and thereby inherit the non symmetry from
the non parallel edge vectors of E.

Divide each cell into four subcells F; created by a line between the edge midpoints,

~—1 ~
cf Figure 3.1. The approximation of K  on each subcell F; can now be described
by the non symmetric matrix

1
Ap, = jDCTK}lei, (3.11)

with J; = J(&;) and D; = D(&;). Let e;; denote the outer half edge of subcell B,
with the jth unit vector as a normal, cf. Figure 3.1. Note that if & = (01, 0) € RT'/?
the exactness of the trapezoidal rule for scalar linear functions implies that

4

> biles, = / bjdi, k=1,2,
i=1 E
or with ¢ € (Py(E))?
Tip(¢-0) = (6,0)p (3.12)
Since [1& on an edge is the average of the two @ values on each half edge, we also have
Tp(¢p - (0 — ) = 0. (3.13)
Let 0jlc,; = ij = vyj, then for v, u € RT,11/2 (3.9) and (3.10) can be rewritten as
1A 2
ap(u,v) = 1 Z Z Iifk Ui Vik (3.14)
i=1 j,k=1

where /QE,g' are components of the non symmetric matrix Ag,, cf. (3.11). Due to the
linearity of D cf. (2.3), we also have for all v = (v1(%),v2(9)) € RT»,

/EDc’lA)di'Z/EEl(g)vl(i)+£2(3§)v2(gj)di:/ED@d§:. (3.15)

The following Lemma is a key result for the bilinear form a;. In [17] analogous
results are stated on the reference space.
LEMMA 3.1. If u € (Py(E))?, the quadrature rule defined by (3.14) satisfies

ag(u,v —IHv) =0 forallv e RT,IL/2, (3.16)



and
ap(u,v) = (K; 'u,v)p for allv € RT},. (3.17)

Proof. To prove (3.16), note that for u € (Py(E))?, @ = JD 'u € RT(E), and
for v € RT,)/? it follows from (3.9) and (3.13) that

1 X
ap(u,v —v) = TE(jDZK,fD JD 'u - (v — 119))

=Ty(DIT K, u - (v — 119))
= O’
since DTK;'u € (Py(E))2. Similarly, for all v € RT}/* we obtain from (3.12) that
ap(u,v) = TE(DZKglu D)
= (DZK;lu, @)E
Further, since K, 'u € (Py(E))?, it follows from (3.15) that
(K, 'u,D.%); = (K; 'u,Dd)
= (K, 'u,v)p

for all v € RT},. This shows the exactness of equation (3.17). O
The method of our interest, is the solution (uy,pn) € RT ,11/ 2 % Q1 such that

ap(up,v) — (pn,divo) =0, for all v € RT,ll/z,

3.18
(diVUh,q) = (gaq)v for all qc Qh- ( )

To ensure uniqueness of this system we require the symmetric part of a; to be
coercive. This follows if the symmetric part of A, (3.11), is uniformly positive definite,
see the discussion in Section 3.3 below.

The effect of the broken Raviart-Thomas elements and the quadrature rule is a
block diagonal mass matrix. The block structure corresponds to dual cells, consist-
ing of subcells with a common vertex. Inverting the local blocks enables us to find
a discrete explicit flux for each half edge, which can be used in a control volume
formulation. In the Appendix, Theorem A.2, the exact correspondence between the
expression (3.18), and the classical MPFA derived in the physical space as found in
for instance [2] is shown.

3.3. Handling the Non Symmetry. In order to analyze the mixed method
(3.18) we also need some properties of the bilinear form a; defined on the space
RT }L/ ?. Recall the definition of the matrix A from (3.11), which is coefficients of a,
cf. (3.14). The matrix A is bounded uniformly in h. To ensure coercivity of ap, we
assume A + AT to be uniformly positive definite on 7;,. Throughout the rest of this
paper we assume

det(A + AT) > o, (3.19)

to hold on all subcells with a constant v > 0 independent of h.

This condition measure the skewness of the cell wighted by K. To illustrate
the condition, we assume K to be the identity I. Then (3.19) demands the inner-
product of the logically horizontal and vertically edge vector to dominate the cross
inner-product of these vectors, cf. (2.4), (3.11) and Figure 3.2-(¢), such that

(61,0 &1,0)(&2 &) — (61 &ae 60 '52,1)/2)2 > Jivo-
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(i)

Fic. 3.2. (i) A subcell, and it’s edge vectors. (ii) Zigzag grid, with 1:8 cell edge length.

Note that the first term here always is positive, since the angle between the opposite
subcell edges is bounded by 7/2, from the subcell construction and regularity of 7p,.
The condition (3.19) will for example hold on the trapezoidal or zigzag grids of [7]
with K = I. Even rougher cells with @21 = (h,0) , 4; = (0, h) and @32 = (0, 3h), cf.
Figure 3.2-(i7), satisfies (3.19), if K = I. Note that this condition is independent of h,
and holds on rough quadrilateral grids without any asymptotic refinement condition
on 7j,.

Using the regularity of the mesh, the assumption (3.19), and the equivalence of
norms on the reference element F it is straightforward to show that a(v,v)'/? is
equivalent to the £o norm on R7 }L/ 2, i.e. there are constants ag, a3 > 0, independent
of h, such that

aol|v]|* < an(v,v) < afv]|||u].- (3.20)

The upper bound holds since D.D ™! is uniformly bounded. From the lower bound,
the uniqueness of (3.18) now follows.

4. Convergence of the MPFA. In this final section of the paper we show the
convergence of the MPFA system (3.18).

LEMMA 4.1. Let v € (H')?, with divv € H' and p € H'. PFurther let M, be
the Lo—projection onto Qp, and o, the Lo—projection onto (Po(E))? for all E € Ty,.
Then there is a constant c, independent of h, such that

[Munp = pll < chllplly, (4.1)
[To,nv — v < chllv], (4.2)
[Mpo — v[| < chlv], (4.3)

| div(Rpv — v)]|| < chl| divv]1, (4.4)

Proof. Inequalities (4.1) and (4.2) follows by ordinary interpolation estimates.
Inequality (4.3) can be found in [7]. Since div Rpv = My, divw, cf. (3.6), (4.4) follows
from (4.1). O

LEMMA 4.2. Let u € (H')? and v € RT}/Z. Then there is a constant c,
independent of h, such that

lan (Tpw, (I —11p)v)| < chlul[1[|(1 — TT)v].

Proof. From Lemma 3.1, we have

aE(HO,hu, (’U — Hhv)) =0.
9



From Lemma 4.1, (4.2) and (3.20) we obtain

ap(Upu, (I —p)v) = lag((Iy — Hop)u, (I —i)v)|
< aq|[(Ily — Hop)ullpl|(I — Hp)v| e
< chllull,pl|(I = IIx)v| .

Summing over 7j, the desired result follows. O

Let a(u,v) be the continuous bilinear form (K 'u,v). The next result is a consis-
tency result for the bilinear form ay,.

LEMMA 4.3. Let u € (H')? and v € RT),. Then there is a constant c, indepen-
dent of h, such that

|an(pu, v) — a(w, v)| < chllull1[|v].

Proof. From Lemmas 3.1 and 4.1, the boundedness of a and (3.8) we derive

lan,(pu, v)— a(u, v)]
=l an (), — o p)u,v) + (K, — K Yo pu,v) + a((Ho s — D, v))
< c(|[Maw — ul| + o, — wl| + Ao pul) v
< chllufj1]lv]].

a
Remark. Lemma 4.2 and 4.3 are stated in the physical space. To achieve this
statements in the physical space we essentially used that one of the Jacobian matrix
was evaluated in the cell center, cf. (3.9) and Lemma 3.1, which again caused the non
symmetry of the method. O
It is well known that, in addition to the boundedness of the bilinear forms, two
corresponding Brezzi conditions have to be satisfied in order to ensure stability of a
mixed finite element method of the form (3.18), cf. [10]. For the continuous mixed
formulation (3.1) the proper function space for the formulation is H (div) x L. Hence,
in the present setting the first Brezzi condition requires that
(g, divv)
sup ————=

> fillq
AL o o 1l for all ¢ €Qy, (4.5)

where 3; > 0 is independent of h. Since RT}L/ 25 RT}, and the corresponding

condition is well known to hold for the pair R7j, x @p, cf. [10, 18], we conclude that
(4.5) is fulfilled.
The second stability condition is related to the weakly divergence free vector fields

in RT,lL/ % Let Z, denote the set of weakly divergence free vector fields, i.e.
Z,={ve R’T}L/Q : (divw,q) =0, Vg€ Qp}.
The standard formulation of the second stability condition states that
[lv]laiv < Be|lv]]  for all v € Zy,

where (5 is independent of h. This condition does not hold in the present case since
the elements of Z;, are not divergence free. However, if v € Z;, N'R7}, then divwv = 0.

10



This is seen by a transformation back to the reference space. Hence, for any v € Z,
we must have that div IIv = 0 and it follows that div Rgv = 0 . Therefore, the weaker
condition

lv]| + || div Rpo|| < B2|lv||  for all v € Z,

holds with constant 32 = 1. This slight lack of stability for the mixed method (3.18)
will have consequences for the error estimates we shall obtain. Instead of estimates
in the norm of H(div) x £, we will instead obtain estimates in a weaker norm.

Let (u,p) € H(div) x L3 be the solution of the continuous problem (3.1) and

(up,pn) € RT}P X @, the corresponding solution of (3.18). We assume that u, div u,
and p are all H! functions. Note that it follows from (3.2) that IT;, (u—wuy) € Z,NRT
and therefore divIl,(u — up) = 0 and also div R, (u — up) = 0. We can therefore
conclude from (4.4), that

[ldiv(u — Rpup)|| = || div(w — Rpu)|| < chl| divul;. (4.6)

The £ norm of u — uy, is estimated next.
LEMMA 4.4. There is a constant c, independent of h, such that

llw = un|| < chl|u].

Proof. Due to the interpolation result (4.3) it is enough to show that

IMpu — up|| < ch||lul;. (4.7

Furthermore, by (3.20) it is sufficient to estimate ay, (TTu — wp, Ipu — up)'/2.
In order to do this we start by observing that since IIj, (u — uy,) is divergence free

it follows from the definition of u; and (3.2) that
ah(uh, Hhu — ’U,h) = (ph, div(Hhu — ’U,h)) = (ph, div Hh(u - uh)) =0.
Hence,

ah(Hhu — Up, Hhu — ’U,h) = ah(Hhu, Hhu — ’U,h)
ah(l_[hu, Hh(u — uh)) — ah(Hhu, (I — Hh)uh).

Since
a(u, I (u —up)) = (p, div(IIy(uw — uy))) =0,
we obtained the identity
ap(Mpu—up, Myu—up) = [ap (Mpu, Oy (u—up))—a(u, Oy (u—up)) ]| —an (T, (I-11,)uy).
From the estimates of the Lemmas 4.2 and 4.3 we derive

an(ITpu — up, Mpw — up) < chflw|1 ([T (w — wp) || + [|(1 — Tp)un||)
< chllull1[TThw — s,

where the final inequality follows from (3.3). By (3.20) this implies (4.7). O
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Fi1c. 5.1. To the left an initial randomly generated grid, refined under the h?-uniform condition.
To the right the refinement is continued to be randomly generated.

For the final estimate on ||p — pp|| it is, by (4.1), enough to bound || Mpp — pp||. The
inf-sup condition on R7} x @y, gives

Mupp — pp,divo
[Mpp — prl| <c sup (Myp — pn, divo)
vERT Hv”div

- h,divv
gc{whp pl+ sup M}
vERT ||'U||div

a(uw,v) — ap(Ilpu, v)| + ap(llpw — up, v
<C{|Mhp—p||+ sup |la(u, v) ( )l ( )}
veRT, [[v]laiv

<ch (llpll + flwlh)

where we have used (4.1), (4.7) and Lemma 4.3.

Together with (4.6) and Lemma 4.4 this implies the following set of error estimates
for the MPFA method.

THEOREM 4.5. Let (u,p) be the exact solution of (8.1) and (wp, pp) C RT}/Q xQp,
the solution of (3.18). If (3.19) hold on rough grids, there is a constant c, independent
of h, but depending on ||u|1, || divul1 and ||p||1, such that

lup — w|| + || div(Rrup — w)|| + ||pn — pl| < ch.

Remark. Recall that divoR;, maps (H')? into the piecewise constant space Qp,
and satisfies the commuting diagram property (3.6) i.e. divoR, = My o div. This
ensures the convergence of the discrete divergence, cf. (4.4). The convergence results
from Theorem 4.5, also apply to the classical Raviart-Thomas solution, cf. (3.7) with
(up,pn) and (v,q) € RT} x Qp. Therefore this gives convergence of the classical
Raviart-Thomas method without performing the ABF,—modification of the finite
element space. O

5. Numerical Experiments. Extensive numerical testing has been performed
on the convergence of the physical space derived MPFA discretization, cf. [3, 4, 14].
The following example illustrates the good convergence qualities on rough grids for
the physical space based MPFA compared to the reference space based version.

Let the eigenvalues for K be 10 and 1, such that the first eigenvector is tilted /6

3.8971  3.2500
12

K — {7.7500 3.8971} .



1/h | |lpn — p(xc)]] Rate | [[u — pup||n Rate | ||lu— upl|n Rate
8 1.0757e-01 - 1.8941e+-00 - | 1.1895e+01 -
16 2.3886e-02 | 2.1711 5.6159e-01 | 1.7539 | 5.7213e+400 | 1.0560
32 5.6811e-03 | 2.0719 1.5173e-01 | 1.8880 | 2.8030e+4-00 | 1.0294
64 1.3895e-03 | 2.0316 3.9690e-02 | 1.9346 | 1.3864e+00 | 1.0157

128 3.4374e-04 | 2.0151 1.0227e-02 | 1.9563 6.8930e-01 | 1.0081
TaBLE 5.1
h?—uniform grids, physical space derived MPFA.

1/h | |lpn — p(z)|| Rate | ||u — Hpup|ln Rate | [Ju— wp|n Rate
8 1.5182e-01 - 5.7974e+00 - | 1.2972e+01 -
16 4.2602e-02 | 1.8334 1.9082e+00 | 1.6032 | 6.1824e+00 | 1.0692
32 1.0946e-02 | 1.9605 5.8892e-01 | 1.6960 | 3.0649e+00 | 1.0123
64 2.7444e-03 | 1.9958 1.6940e-01 | 1.7976 | 1.5288e+00 | 1.0034

128 6.8334e-04 | 2.0058 4.7211e-02 | 1.8433 | 7.6369e-01 | 1.0013
TABLE 5.2
h?—uniform grids, reference space derived MPFA.

The boundary condition is then chosen to corresponds to
p(z,y) = cos(2mx) cos(2my),
while
u = — K gradp.

The velocity is measured in a discrete norm

lu—wnllf = O (u(x)) - n;—uy)’w;,
jegl/?

where w; = (|E;+|(|E;-|)/8 is the area associated with half edge j from the two
adjacent cells F/;; and E;_, and «; is the midpoint of edge j. The convergence is
checked for both the physical and reference space derived methods. For the reference
space based method we evaluate K in the cell centers. Other evaluation points, like
the cell vertices, are also tested with similar results. We consider two grids shown
in Figure 5.1. To the left an initial randomly generated grid is refined under the
h2-uniform condition, while to the right we have a rough grid, where the refinement
is continued to be randomly generated. Both the physical and reference space derived
methods converge on the h2-uniform grids, cf. Table 5.1 and 5.2. The convergence
rate for the pressure is for both cases O(h?), while for the discrete velocities it is
O(h). For the average of the half edge flux on each edge, II,uy,, a superconvergence
effect occurs and we get O(h?) convergence. On the rough grids the reference space
based method diverge, cf. Table 5.3. This is in agreement with the analysis in [17],
where the h2-uniform grid condition shows up. The robustness of the physical space
derived method on these grids is shown, cf. Table 5.4. The grid condition (3.19) is
violated for around 0.2% of the cells. The numerical experiments show close to O(h?)
convergence for the pressure, while we do not get any superconvergence effect for the
velocity. Both u, and ITuy, are of O(h).
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1/h | |lpn — p(xc)]] Rate | [[u — Hpup||n Rate | ||lu— up|n Rate
8 1.5182¢-01 - 5.7974e+-00 - | 1.2972e+01 -
16 4.7111e-02 | 1.6883 2.3935e+00 | 1.2763 | 6.3577e+00 | 1.0289
32 1.6289¢-02 | 1.5322 1.6261e+00 | 0.5577 | 3.4695e+00 | 0.8738
64 8.5296e-03 | 0.9334 1.5232e+00 | 0.0944 | 2.2687e+00 | 0.6128

128 6.2829e-03 | 0.4411 1.5934e+00 | -0.0651 | 1.9526e+00 | 0.2165
TABLE 5.3
Rough quadrilateral grids, reference space derived MPFA.

1/h | |lpn — p(z)|| Rate | ||u — Hpup||n Rate | [|[u— wp|n Rate
8 1.0757e-01 - 1.8941e+00 - | 1.1895e+01 -
16 2.4504e-02 | 2.1342 5.8930e-01 | 1.6844 | 5.6694e-+00 | 1.0691
32 5.9743e-03 | 2.0362 1.8020e-01 | 1.7094 | 2.7776e+00 | 1.0294
64 1.4998e-03 | 1.9940 6.2980e-02 | 1.5166 | 1.3736e+00 | 1.0159

128 3.8210e-04 | 1.9728 2.7009e-02 | 1.2215 6.8285e-01 | 1.0083

256 1.0820e-04 | 1.8203 1.2933e-02 | 1.0623 | 3.4062¢-01 | 1.0034
TABLE 5.4
Rough quadrilateral grids, physical space derived MPFA.

6. Conclusions. This paper present a mixed finite element method with bro-
ken Raviart-Thomas elements and a specific quadrature rule. The effect is a block
diagonal mass matrix, which can be inverted locally to find a discrete explicit flux
for each half edge. Optimal first order convergence on rough grids is established for
the Darcy velocity in a reduced H(div) norm and for the pressure in the Lo norm.
Compared to the reference space based MPFA method analyzed in [17], we gain better
approximation on rough grids, but loose symmetry. In the Appendix the proposed
mixed finite element method is shown to be equivalent to the physical space derived
MPFA method proposed in [2].
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Appendix A. The Multi Point Flux Approximation.

The MPFA discretization is a control volume method, where more than two pres-
sure values are used to find an explicit discrete flux expression. The unknowns are the
cell pressures, and the half edge fluxes, cf. Figure A.1 (7). This appendix shows the
derivation of MPFA from [2] in a mixed form and the equivalence to the perturbed
non symmetric mixed finite element method (3.18). The derivation is preformed on
quadrilateral grids where each interior vertex meets four cells. If the mapping F' (2.1)
is applied to the subcells instead of the global cell, the derivation easily generalize to
both general quadrilaterals and triangles, with general cell center and edge continuity
points.

Define a dual grid, Z;, where the dual cells, denoted interaction regions I € Zp,
consisting of the 4 subcells with a common vertex, cf. Figure A.1 (i7). Furthermore
let Si/ ? be the set of all the half edges created by dividing of the edges of &, into
two equal parts. Denote the subcells of I for £; and the inner subcell edges for ¢;,
j=1,....4

Define the pressure space P(I) on the interaction region I to be all linear on the
subcells £, which are continuous on the boundary of I. It is possible to chose other
continuity points for each half edge. For each p € P(I) let {p}x=1,....4 be the values
of p at the corners of I, and {A\x}r=1,... .4 the values of p at the continuity points, here
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Fia. A.2. On triangular or quadrilateral grids, the subcells are quadrilaterals. We let ® denote
the cell pressures {p1}, the small ® the cell edge pressure {\1}, and o the edge wvelocities {ui} or
edge fluz.

the edge midpoints, cf. A.2. The local pressure p is then uniquely defined by the 8
degrees of freedom {py, A }. As before, let K, be cellwise constant approximation of
K. Along half edge e of subcell E; let

u€|Ej =-K, gra‘dp|Ej *MNe. (Al)
The MPFA pressure space, Pypra (1), is now further restricted to
Pupra(l) = {p € P(I) : [uc]e = 0, Ve € EY2(1)},

where £'/2(I) represents the four inner edges of I, [-]. is the jump across half edge
e, and u. is defined by (A.1).

LEMMA A.1. The pressure p € Pypra(I) is uniquely determined by the cell
pressures {pk =1, 4, under the condition (3.19).

The proof can be found in the end of this section.

In a control volume formulation, the discretization is down to approximate the
flux. This can now be characterized locally on each interaction region. The normal-
component associated a cell E can be defined from the mapping F. cf. (2.1) such
that

[ra(3), ma(9)] = [ i ‘yf] _ DT

—Zy Tz

The subcell normals which are not cell normals is found for § = 1/2 and & = 1/2, and
the cell normals is found for § = 0,1 and £ = 0, 1.

Consider the two subcells £; and Fs with node pressure p; and pe, and their
common half edge e, see Figure A.2. Calculating the flux for half edge e; on subcell
E, gives

up = —Ki grad(p)|g, -n1(1)/2,
and similarly
ug = — K grad(p)|g, - n2(1)/2.

The linear variation in each subcell is spanned out by {n1(1/2),n2(1/2)}, such that
the constant
1 p1— A1
1/2 1/2 .
T 22 (230

Now |n1(1/2) x ng(1/2)| = J(1/2,1/2). Summing up we have

grad(p)‘El =

u) 1 AL—p
<ul> =~ Jria i (Ve (O] K i (1/2), ma(1/2)] (A; _pi)

_ - A
—A 1 (D1 1
Er <P1 -\
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Let the subscript ¢ denote the reference cell center; &. = (1/2,1/2), and the subscript
i denote evaluation in cell vertices ; = (1,1),(0,1),(1,1) or (0,1), for i = 1,...,4.
Then on subcell E;

1
A= ——(JD (&) K(JD™ 1) (&,
B J(ic)(J ) (@) K(JD™7)(&)
which is invertible, and
_ 1 praaK'Dss

Note that (A.2) is equivalent to the definition in (3.11). For subcell E; and Es, cf.
Figure A.2, we now have

ur) _ (p1—M ur) (A1 —pe2
() =) wa (M) (7). s
Eliminating A1, and let the components of Ag; be denoted nil, for k,1 = 1,2, result
in the equation
(K11 + KT1)u1 + Rigua + Kigug = —(p2 — p1) (A4)

associated the edge e;. By deriving the similar equations for the other interior edges
of I we obtain a 4 x 4 system of the form

Au = b, (A.5)
where the components of b are pressure difference, u = (u1,...,us)”, and
(k11 + K1) (2 ’:%_2 ) g "%2
A /iél /122/{?2@2 (H%lﬁfﬁ%l) oy i (A.6)
K31 0 K31 (K32 + K32)

Note that A is not symmetric, unless the involved cells are parallelograms. To ensure
stability we will have to impose the stability criteria (3.19) on each subcell. This
ensures the symmetric part of A = (A + AT)/2 + (A — AT)/2 to be positive definite.

Recall that the space RT }L/ ? has a canonical basis derived from the degrees of

freedom on each half edge in 5,1/ ®. With the basis function associated half edge ey,
V|e, = 1for k=1 and 0 for k # 1, the left part of equation (A.4) also appears from
(3.14). It is easy to see that the mass matrix corresponding to the canonical basis
and the bilinear form ay, is block diagonal, where the 4 x 4 diagonal blocks correspond
to the 4 half edges meeting vertices of 7}, or equivalently, to each interaction region
of 7;,. Hence, blocks resemble the structure of the matrix A given by (A.6). The
second term of the first equation in (3.18) gives a pressure difference. Therefore, for
each interaction region the first equation of (3.18) corresponds exactly to the system
(A.5). Summing up, we have following result.

THEOREM A.2. The perturbed non symmetric mized finite element method (3.18)
is equivalent to the physical space derived MPFA method.

Finely, we show the proof of Lemma A.1.

Proof. Lemma A.1. It is enough to show that if p € Pupra(I), with {pr}tr=123.4
all equal zero, then {Ag}r=123.4, must also be zero. Under the assumption p; = 0
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it follows from (A.1) and (A.3) that the constraint of continuous flux leads to the
system

AX=0 (A7)
with A = ()\1, )\2, )\37 )\4)T and
(K11 +2’f%1) 2_"?%23 2 Filg
A— —h21 (K32 "3’ Ks) e 04
0 K1 (K71 + K11) —Ki2
Kby 0 —K) (K32 + Kdo)

The symmetric part of this matrix consists of the sum of the symmetric parts of Ag,,
j=1,...,4, and is therefore positive definite under condition (3.19). The minus signs
do not alter this. Multiplying equation (A.7) by A, and it follows that A = 0. O
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