A reduction theorem for capacity of positive maps

Erling Størmer

October 3, 2005

Abstract

We prove a reduction theorem for capacity of positive maps of finite dimensional C^{*}-algebras, thus reducing the computation of capacity to the case when the image of a nonscalar projection is never a projection.

Introduction

In quantum information theory there has been a great deal of interest in the concept of capacity of completely positive maps. A drawback with capacity is that it is usually quite difficult to compute, hence there is a need for developing computational techniques. In the present paper we shall prove a reduction theorem for capacity which reduces its computation to the ergodic case. As a consequence we get a partial result towards the additivity of capacity for tensor products.

If P is a finite dimensional C^{*}-algebra we denote by Tr_{P} the trace on P which takes the value 1 at each minimal projection. Let η denote the real function $\eta(t)=-t \log t$ for $t>0$, and $\eta(0)=0$. Then the entropy $S(a)$ of a positive operator a in P is defined by $S(a)=\operatorname{Tr}_{P}(\eta(a))$. If M is another finite dimensional C^{*}-algebra let $\Phi: M \rightarrow P$ be a positive unital linear trace preserving map, i.e. $\operatorname{Tr}_{P}(\Phi(x))=\operatorname{Tr}_{M}(x)$ for all $x \in M$. Note that we only assume Φ is positive and not completely positive, since the latter stronger assumption is in most cases unnecessary. Let C denote the positive operators in M with trace 1. If $a \in C$ let

$$
C(\Phi, a)=\sup S(\Phi(a))-\sum_{i} \lambda_{i} S\left(\Phi\left(a_{i}\right)\right),
$$

where the sup is over all convex combinations of operators $a_{i} \in C$ with $\sum_{i} \lambda_{i} a_{i}=$ a. The capacity $C(\Phi)$ of Φ is defined by

$$
C(\Phi)=\sup _{a \in C} C(\Phi, a) .
$$

For a discussion of capacity see e.g. [2].

1 The reduction theorem

If P is a finite dimensional C^{*}-algebra and ω is a state on P let Q_{ω} denote its density operator in P. Then the entropy of ω (with respect to P) is $S(\omega)=$ $S\left(Q_{\omega}\right)$. We shall need three properties of entropy, namely: it is subadditive, i.e. $S\left(\omega_{1}+\omega_{2}\right) \leq S\left(\omega_{1}\right)+S\left(\omega_{2}\right)$; it is concave, i.e. $S\left(\lambda \omega_{1}+(1-\lambda) \omega_{2}\right) \geq \lambda S\left(\omega_{1}\right)+(1-$ $\lambda) S\left(\omega_{2}\right)$, and if $N \subseteq M \subseteq P$ are C^{*}-subalgebras then $S(\omega \mid N) \geq S(\omega \mid M)$. Our first result is taken from the book [3] and is an inequality in the opposite direction.

Lemma 1 Let $M \subseteq P$ be finite dimensional C^{*}-algebras, and let e_{1}, \ldots, e_{n} be projections in M with sum 1. Let $N=\bigoplus_{i=1}^{n} N_{i}$, where $N_{i}=e_{i} M e_{i}$. Let ω be a state on P. Then

$$
\sum_{i} \omega\left(e_{i}\right) S\left(\frac{\omega \mid N_{i}}{\omega\left(e_{i}\right)}\right)=S(\omega \mid N)-\sum_{i} \eta\left(\omega\left(e_{i}\right)\right) \leq S(\omega) .
$$

Proof. Let $s_{i}=\omega\left(e_{i}\right)$. Then

$$
\begin{aligned}
S(\omega \mid N) & =\sum_{i} S\left(\omega\left(e_{i} \cdot e_{i}\right)\right) \\
& =\sum_{i} S\left(\frac{\omega\left(e_{i} \cdot e_{i}\right)}{s_{i}} s_{i}\right) \\
& =\sum_{i} s_{i} S\left(\frac{\omega\left(e_{i} \cdot e_{i}\right)}{s_{i}}\right)+\eta\left(s_{i}\right)
\end{aligned}
$$

which proves the equality in the lemma.
In order to prove the inequality let f_{k} be minimal projections in P and $\alpha_{k}>0$ such that the density operator Q_{ω} for ω is of the form $Q_{\omega}=\sum_{k} \alpha_{k} f_{k}$, so in particular $\sum_{k} \alpha_{k}=1$. Thus $S(\omega)=S\left(Q_{\omega}\right)=\sum_{k} \eta\left(\alpha_{k}\right)$. By the first part of the proof we have

$$
\begin{aligned}
S(\omega \mid N) & =\sum_{i} S\left(\omega\left(e_{i} \cdot e_{i}\right)\right) \\
& =\sum_{i} S\left(\sum_{k} \alpha_{k} e_{i} f_{k} e_{i}\right) \\
& \leq \sum_{i, k} S\left(\alpha_{k} e_{i} f_{k} e_{i}\right) \\
& =\sum_{i, k} \alpha_{k} S\left(e_{i} f_{k} e_{i}\right)+\eta\left(\alpha_{k}\right) \operatorname{Tr}_{P}\left(e_{i} f_{k} e_{i}\right) \\
& =\sum_{i, k} \alpha_{k} \eta\left(\operatorname{Tr}_{P}\left(e_{i} f_{k} e_{i}\right)\right)+\eta\left(\alpha_{k}\right) \operatorname{Tr}_{P}\left(e_{i} f_{k} e_{i}\right) \\
& \leq \sum_{i} \eta\left(\sum_{k} \alpha_{k} \operatorname{Tr}_{P}\left(e_{i} f_{k} e_{i}\right)\right)+\sum_{k} \eta\left(\alpha_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i} \eta\left(\operatorname{Tr}_{P}\left(e_{i} Q_{\omega} e_{i}\right)\right)+S(\omega) \\
& =\sum_{i} \eta\left(\omega\left(e_{i}\right)\right)+S(\omega)
\end{aligned}
$$

where the first inequality follows from subadditivity of S and second from concavity. We also used that $e_{i} f_{k} e_{i}=\operatorname{Tr}_{P}\left(e_{i} f_{k} e_{i}\right) p$, where p is a minimal projection. The proof is complete.

From the definition of capacity it is clear that if $\Phi: M \rightarrow P$ is as before, and $N \subseteq M$, then $C(\Phi \mid N) \leq C(\Phi)$. Our next result describes a situation when we have equality. We shall use a result of Broise, see [5], that if a is a self-adjoint operator in M such that $\Phi\left(a^{2}\right)=\Phi(a)^{2}$ then $\Phi(a b a)=\Phi(a) \Phi(b) \Phi(a)$ for all $b \in M$. In particular, if e is a projection in M such that $\Phi(e)$ is a projection, then the above identity holds for a replaced by e. The ergodic case alluded to in the introduction is the case when the only operators a which satisfy $\Phi\left(a^{2}\right)=\Phi(a)^{2}$ are the scalar operators.
Theorem 2 Let M, P be finite dimensional C^{*}-algebras. Let $\Phi: M \rightarrow P$ be a positive unital trace preserving map. Suppose e_{1}, \ldots, e_{n} are projections in M with sum 1 such that $\Phi\left(e_{i}\right)$ is a projection for all i. Let $N=\bigoplus e_{i} M e_{i}$. Then $C(\Phi)=C(\Phi \mid N)$.

Proof. Clearly $C(\Phi) \geq C(\Phi \mid N)$. For the opposite inequality let $a, a_{m} \in C$ such that $a=\sum_{m} \lambda_{m} a_{m}$. Let $Q=\bigoplus \Phi\left(e_{i}\right) P \Phi\left(e_{i}\right)$. Since $\Phi\left(e_{i} x e_{i}\right)=\Phi\left(e_{i}\right) \Phi(x) \Phi\left(e_{i}\right)$ for all $x \in M, \Phi\left(E_{N}(x)\right)=E_{Q}(\Phi(x))$, where E_{N} and E_{Q} denote the conditional expectations on N and Q respectively. Thus

$$
S(\Phi(a)) \leq S\left(E_{Q}(\Phi(a))\right)=S\left(\Phi\left(E_{N}(a)\right)\right)
$$

Therefore by Lemma 1 applied to the states ω_{m} defined by $Q_{\omega_{m}}=\Phi\left(a_{m}\right)$ and e_{1}, \ldots, e_{n} yields the following inequality.

$$
\begin{aligned}
& S(\Phi(a))-\sum_{m} \lambda_{m} S\left(\Phi\left(a_{m}\right)\right) \\
\leq & S\left(\Phi\left(E_{N}(a)\right)\right)-\sum_{m} \lambda_{m} \sum_{i} \operatorname{Tr}_{P}\left(\Phi\left(e_{i}\right) \Phi\left(a_{m}\right) \Phi\left(e_{i}\right)\right) S\left(\frac{\Phi\left(e_{i}\right) \Phi\left(a_{m}\right) \Phi\left(e_{i}\right)}{\operatorname{Tr}_{P}\left(\Phi\left(e_{i}\right) \Phi\left(a_{m}\right) \Phi\left(e_{i}\right)\right)}\right) \\
= & S\left(\Phi\left(E_{N}(a)\right)\right)-\sum_{m} \lambda_{m} \sum_{i} \operatorname{Tr}_{P}\left(\Phi\left(e_{i} a_{m} e_{i}\right)\right) S\left(\frac{\Phi\left(e_{i} a_{m} e_{i}\right)}{\operatorname{Tr}_{P}\left(\Phi\left(e_{i} a_{m} e_{i}\right)\right.}\right) \\
= & S\left(\Phi\left(E_{N}(a)\right)\right)-\sum_{m, i} \lambda_{m} \operatorname{Tr}_{M}\left(e_{i} a_{m} e_{i}\right) S\left(\frac{\Phi\left(e_{i} a_{m} e_{i}\right)}{\operatorname{Tr}_{M}\left(e_{i} a_{m} e_{i}\right)}\right) \\
= & S\left(\Phi\left(E_{N}(a)\right)\right)-\sum_{m, i} \mu_{m, i} S\left(\frac{\Phi\left(e_{i} a_{m} e_{i}\right)}{\operatorname{Tr}_{M}\left(e_{i} a_{m} e_{i}\right)}\right)
\end{aligned}
$$

where $\sum_{m, i} \mu_{m, i}=1$, and $\frac{e_{i} a_{m} e_{i}}{\operatorname{Tr}_{M}\left(e_{i} a_{m} e_{i}\right)}=E_{N}\left(\frac{e_{i} a_{m} e_{i}}{\operatorname{Tr}_{M}\left(e_{i} a_{m} e_{i}\right)}\right) \in N$ with trace 1 . Since the above inequality holds for all families $\left(a_{m}\right)$ as above

$$
C(\Phi, a) \leq C\left(\Phi \mid N, E_{N}(a)\right)
$$

Since this holds for all $a \in M$

$$
C(\Phi)=\sup _{a} C(\Phi, a) \leq \sup _{a} C\left(\Phi \mid N, E_{N}(a)\right)=C(\Phi \mid N),
$$

proving the theorem.
We can now state our main reduction theorem. Note that if the projections e_{i} are minimal with the property that $\Phi\left(e_{i}\right)$ is a projection, then $\Phi \mid e_{i} M e_{i}$ is ergodic in the sense defined above, so the theorem is a reduction to the ergodic case.

Theorem 3 Let M, P be finite dimensional C^{*}-algebras and $\Phi: M \rightarrow P a$ positive unital trace preserving map. Let e_{1}, \ldots, e_{n} be projections in M with sum 1 such that $\Phi\left(e_{i}\right)$ is a projection for each i. Let $M_{i}=e_{i} M e_{i}$ and $\Phi_{i}=$ $\Phi \mid M_{i}: M_{i} \rightarrow \Phi\left(e_{i}\right) P \Phi\left(e_{i}\right)$ be the restriction map to M_{i}. Then

$$
C(\Phi)=\log \sum_{i=1}^{n} e^{C\left(\Phi_{i}\right)}
$$

Proof. By Theorem 2 it suffices to consider $a=\sum_{i} a_{i} \in M, a_{i}=a e_{i} \in M_{i}$, where $a_{i}=\sum_{j} \lambda_{j i} a_{j i}$ with $\operatorname{Tr}_{M}\left(a_{j i}\right)=1, a_{j i} \in M_{i}^{+}, \sum_{j i} \lambda_{j i}=1$. Let $s_{i}=$ $\operatorname{Tr}_{M}\left(e_{i} a\right)=\operatorname{Tr}_{M}\left(a_{i}\right)=\operatorname{Tr}_{P}\left(\Phi\left(e_{i}\right) \Phi(a)\right)$. Then we have

$$
\begin{aligned}
S(\Phi(a)) & -\sum_{j i} \lambda_{j i} S\left(\Phi\left(a_{j i}\right)\right) \\
& =\sum_{i}\left[S\left(\Phi\left(e_{i}\right) \Phi(a)\right)-\sum_{j} \lambda_{j i} S\left(\Phi\left(a_{j i}\right)\right)\right] \\
& =\sum_{i}\left[S\left(s_{i}\left(\frac{1}{s_{i}} \Phi\left(e_{i}\right) \Phi(a)\right)\right)-s_{i} \sum_{j} \frac{\lambda_{j i}}{s_{i}} S\left(\Phi\left(a_{j i}\right)\right)\right] \\
& =-\sum_{i} s_{i} \log s_{i}+\sum_{i} s_{i}\left[S\left(\frac{1}{s_{i}} \Phi\left(e_{i}\right) \Phi(a)\right)-\sum_{j} \frac{\lambda_{j i}}{s_{i}} S\left(\Phi\left(a_{j i}\right)\right)\right]
\end{aligned}
$$

We have

$$
S\left(\frac{1}{s_{i}} \Phi\left(e_{i}\right) \Phi(a)\right)-\sum_{j} \frac{\lambda_{j i}}{s_{i}} S\left(\Phi\left(a_{j i}\right)\right) \leq C\left(\Phi \mid M_{i}\right)
$$

Therefore

$$
\begin{aligned}
S(\Phi(a)) & -\sum_{j i} \lambda_{j i} S\left(\Phi\left(a_{j i}\right)\right) \\
& \leq-\sum_{i} s_{i}\left(\log s_{i}-C\left(\Phi \mid M_{i}\right)\right) \\
& =-\sum_{i} s_{i}\left(\log s_{i}-\log \frac{C\left(\Phi \mid M_{i}\right)}{\sum_{k} e^{C\left(\Phi \mid M_{k}\right)}}\right)+\log \sum_{i} e^{C\left(\Phi \mid M_{i}\right)}
\end{aligned}
$$

Since the sum $\sum_{i} s_{i}\left(\log s_{i}-\log \frac{e^{C\left(\Phi \mid M_{i}\right)}}{\sum_{k} e^{C\left(\Phi \mid M_{k}\right)}}\right)$ is a relative entropy, it is nonnegative, see Lemma 4.5 in [4]. Hence we have

$$
S(\Phi(a))-\sum_{j i} \lambda_{j i} S\left(\Phi\left(a_{j i}\right)\right) \leq \log \sum_{i} e^{C\left(\Phi \mid M_{i}\right)}
$$

Since this holds for all a we conclude that $C(\Phi) \leq \log \sum_{i} e^{C\left(\Phi \mid M_{i}\right)}$.
For the converse inequality let $\varepsilon>0$, and choose $b_{i} \in M_{i}^{+}$with $\operatorname{Tr}_{M}\left(b_{i}\right)=1$, $\mu_{j i} \geq 0$ with $\sum_{j} \mu_{j i}=1$ and $a_{j i} \in M_{i}^{+}$with trace 1 such that $\sum_{j} \mu_{j i} a_{j i}=b_{i}$, and

$$
S\left(\Phi\left(b_{i}\right)\right)-\sum_{j} \mu_{j i} S\left(\Phi\left(a_{j i}\right)\right) \geq C\left(\Phi \mid M_{i}\right)-\varepsilon
$$

Let now $s_{i} \geq 0$ have sum 1, and let $a_{i}=s_{i} b_{i}, \lambda_{j i}=s_{i} \mu_{j i}$. Put $a=\sum_{i} a_{i}=$ $\sum_{j i} \lambda_{j i} a_{j i}$. Then by the above inequality we have

$$
S\left(\frac{1}{s_{i}} \Phi\left(e_{i}\right) \Phi\left(a_{i}\right)\right)-\sum_{j} \frac{\lambda_{j i}}{s_{i}} S\left(\Phi\left(a_{j i}\right)\right) \geq C\left(\Phi \mid M_{i}\right)-\varepsilon
$$

Thus by the computations in the beginning of the proof we have

$$
S(\Phi(a))-\sum_{j i} \lambda_{j i} S\left(\Phi\left(a_{j i}\right)\right) \geq-\sum_{i} s_{i}\left(\log s_{i}-C\left(\Phi \mid M_{i}\right)\right)-\varepsilon
$$

Hence by the same computation we did above we obtain

$$
\begin{aligned}
S(\Phi(a)) & -\sum_{j i} \lambda_{j i} S\left(\Phi\left(a_{j i}\right)\right) \\
& \geq-\sum_{i} s_{i}\left(\log s_{i}-\log \frac{C\left(\Phi \mid M_{i}\right)}{\sum_{k} e^{C\left(\Phi \mid M_{k}\right)}}\right)+\log \sum_{k} e^{C\left(\Phi \mid M_{k}\right)}-\varepsilon
\end{aligned}
$$

For the value $s_{i}=\frac{C\left(\Phi \mid M_{i}\right)}{\sum_{k} C\left(\Phi \mid M_{k}\right)}$ the value of the relative entropy is 0 , hence

$$
C(\Phi) \geq S(\Phi(a))-\sum_{j i} \lambda_{j i} S\left(\Phi\left(a_{j i}\right)\right) \geq \log \sum_{k} e^{C\left(\Phi \mid M_{k}\right)}-\varepsilon
$$

Since ε is arbitrary the proof is complete.
A good illustration of an application of the theorem is the case when Φ is a trace preserving projection map of M into itself, i.e. $\Phi(x)=\Phi(\Phi(x))$ for all $x \in M$. Then the image $N=\Phi(M)$ is a Jordan subalgebra of M, and if Φ is completely positive then Φ is a conditional expectation, and $\Phi(M)$ is a C^{*}-algebra, see [1]. The rank of $N-\operatorname{rank} N$ - is the maximal number of minimal projections in N with sum 1.

Corollary 4 Let $\Phi: M \rightarrow M$ be a trace preserving projection map. Then

$$
C(\Phi)=\log \operatorname{rank} \Phi(M)
$$

Proof. Let $n=\operatorname{rank} N$ and e_{1}, \ldots, e_{n} be minimal projections in $\Phi(M)$ with sum 1. Then $e_{k} M e_{k}=\mathbb{C} e_{k}$ for all k, hence $C\left(\Phi \mid e_{k} M e_{k}\right)=0$, so by the theorem

$$
C(\Phi)=\log \sum_{i}^{n} e^{0}=\log n
$$

The proof is complete.
The main problem concerning capacity is whether it is additive under tensor products, i.e. whether $C(\Phi \otimes \Psi)=C(\Phi)+C(\Psi)$ when $\Phi \otimes \Psi$ is positive, in particular when they are both completely positive. Our next result reduces the problem to the case when both maps are ergodic.

Corollary 5 Let M, N, P, Q be finite dimensional C^{*}-algebras and $\Phi: M \rightarrow P$ and $\Psi: N \rightarrow Q$ be positive unital trace preserving maps such that $\Phi \otimes \Psi: M \otimes N \rightarrow$ $P \otimes Q$ is positive. Let $e_{i} \in M$ and $f_{j} \in N$ be projections with sum 1 such that $\Phi\left(e_{i}\right)$ and $\Psi\left(f_{j}\right)$ are projections. Let

$$
\begin{aligned}
\Phi_{i} & =\Phi \mid e_{i} M e_{i}: e_{i} M e_{i}
\end{aligned} \rightarrow \Phi\left(e_{i}\right) P \Phi\left(e_{i}\right), ~ 子\left(f_{j}\right) Q \Psi\left(f_{j}\right) . ~ \$
$$

Suppose $C\left(\Phi_{i} \otimes \Psi_{j}\right)=C\left(\Phi_{i}\right)+C\left(\Psi_{j}\right)$ for all i, j. Then

$$
C(\Phi \otimes \Psi)=C(\Phi)+C(\Psi) .
$$

Proof. We apply Theorem 3 to the projections $e_{i} \otimes f_{j}$ and the corresponding maps $\Phi_{i} \otimes \Psi_{j}$. Thus we have

$$
\begin{aligned}
C(\Phi \otimes \Psi) & \left.==\log \sum_{i j} e^{C\left(\Phi_{i} \otimes \Psi_{j}\right.}\right)=\log \sum_{i j} e^{C\left(\Phi_{i}\right)+C\left(\Psi_{j}\right)} \\
& =\log \sum_{i j} e^{C\left(\Phi_{i}\right)} e^{C\left(\Psi_{j}\right)}=\log \sum_{i} e^{C\left(\Phi_{i}\right)} \sum_{j} e^{C\left(\Psi_{j}\right)} \\
& =C(\Phi)+C(\Psi) .
\end{aligned}
$$

The proof is complete.
If Φ is completely positive and $i d$ is the identity map of N let f_{j} be a minimal projection for each j. Then the assumptions of the above corollary hold for the projections $1 \otimes f_{j}$. Hence we have

Corollary 6 Let M and N be finite dimensional C^{*}-algebras as before with Φ completely positive. Then $C(\Phi \otimes \mathrm{id})=C(\Phi)+\log \operatorname{rank} N$.

References

[1] E. Effros and E. Størmer, Positive projections and Jordan structure in operator algebras, Math. Scand. 45 (1979), 127-138.
[2] A. Holevo, Statistical structure of quantum theory, Lecture Notes in Physics. Monographs 67. Springer-Verlag, Berlin, Heidelberg 2001.
[3] S. Neshveyev and E. Størmer, Dynamical entropy in operator algebras, To appear.
[4] M. Smorodinsky, Ergodic theory, entropy, Lecture Notes in Mathematics 214. Springer-Verlag, Berlin, Heidelberg, New York 1971.
[5] E. Størmer, Decomposition of positive projections on C^{*}-algebras, Mat. Ann, 247 (1980), 21-41.

Department of Mathematics, University of Oslo, 0316 Oslo, Norway.
e-mail: erlings@math.uio.no

