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Abstract

We prove a reduction theorem for capacity of positive maps of finite
dimensional C*—algebras, thus reducing the computation of capacity to
the case when the image of a nonscalar projection is never a projection.

Introduction

In quantum information theory there has been a great deal of interest in the
concept of capacity of completely positive maps. A drawback with capacity is
that it is usually quite difficult to compute, hence there is a need for developing
computational techniques. In the present paper we shall prove a reduction
theorem for capacity which reduces its computation to the ergodic case. As a
consequence we get a partial result towards the additivity of capacity for tensor
products.

If P is a finite dimensional C*—algebra we denote by Trp the trace on P
which takes the value 1 at each minimal projection. Let n denote the real func-
tion n(t) = —tlogt for ¢ > 0, and n(0) = 0. Then the entropy S(a) of a positive
operator a in P is defined by S(a) = Trp(n(a)). If M is another finite dimen-
sional C*—algebra let ®: M — P be a positive unital linear trace preserving
map, i.e. Trp(®(x)) = Trpy(x) for all z € M. Note that we only assume P is
positive and not completely positive, since the latter stronger assumption is in
most cases unnecessary. Let C' denote the positive operators in M with trace
1. If a € C' let

C(®,a) =sup S(P(a)) — Z AiS(P(ay)),

where the sup is over all convex combinations of operators a; € C with Zl Nia; =
a. The capacity C(®) of ® is defined by

C(®) = sup C(®,a).
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For a discussion of capacity see e.g. [2].



1 The reduction theorem

If P is a finite dimensional C*—algebra and w is a state on P let @, denote
its density operator in P. Then the entropy of w (with respect to P) is S(w) =

S(Q.). We shall need three properties of entropy, namely: it is subadditive, i.e.
S(w1twsz) < S(w1)+S(ws); it is concave, i.e. S(Awr+(1—ANwz) > AS(wy)+(1—
A)S(wz), and if N C M C P are C*—subalgebras then S(w | N) > S(w | M).
Our first result is taken from the book [3] and is an inequality in the opposite
direction.

Lemma 1 Let M C P be finite dimensional C*—algebras, and let eq,. .., e, be
projections in M with sum 1. Let N = @Z;l N;, where N; = e;Me;. Let w be a
state on P. Then

S eledS( ) = SEIN) = S nlelen) < )

%

Proof. Let s; = w(e;). Then

S(w|N)

Z S(w(e;-€;))
ZS 61 61
Z 59 + 77(31)
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which proves the equality in the lemma.

In order to prove the inequality let fr be minimal projections in P and
ar > 0 such that the density operator Q,, for w is of the form Q. = >, o f,
so in particular ), ap = 1. Thus S(w) = S(Q.) = >, n(ax). By the first part
of the proof we have

S(w|N) = ZS w(e;.e;))
= ZS(Z axe; frei)
i %
< Y S(aweifre:)

i

= Z arS(eifrei) +nlar)Trp(e; fre)

ik

= Z apn(Trp(ei frei)) + nlow)Trp(e; frei)

D (> anTrp(esfre:) + Y nlow)
A k k
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Zn(TrP(eiQwei)) + S(w)
= ZU(W(ei)) + S(w),

where the first inequality follows from subadditivity of S and second from con-
cavity. We also used that e; fre; = Trp(e; fre;)p, where p is a minimal projec-
tion. The proof is complete.

From the definition of capacity it is clear that if ®: M — P is as before, and
N C M, then C(®|N) < C(®). Our next result describes a situation when we
have equality. We shall use a result of Broise, see [5] , that if a is a self-adjoint
operator in M such that ®(a?) = ®(a)? then ®(aba) = ®(a)®(b)P(a) for all
b € M. In particular, if e is a projection in M such that ®(e) is a projection, then
the above identity holds for a replaced by e. The ergodic case alluded to in the
introduction is the case when the only operators a which satisfy ®(a?) = ®(a)?
are the scalar operators.

Theorem 2 Let M, P be finite dimensional C*—algebras. Let ®: M — P be a
positive unital trace preserving map. Suppose ei, ..., e, are projections in M
with sum 1 such that ®(e;) is a projection for all i. Let N = @ e;Me;. Then
C(®) = C(P|N).

Proof. Clearly C(®) > C(®|N). For the opposite inequality let a,a,, € C such
that a =), Amam. Let Q = @ ®(e;) PP(e;). Since ®(e;xe;) = P(e;)P(x)P(e;)
for all z € M, ®(En(z)) = Eq(®(x)), where Ex and Eq denote the conditional
expectations on N and @ respectively. Thus

S(®(a)) < S(Eq(®(a))) = S(®(En(a))).

Therefore by Lemma 1 applied to the states wy, defined by Q. = ®(an) and
e1,...,en yields the following inequality.

S(@(@) = 3 AnS(®(a,))

P(e;)P(am)P(e:)
Trp(‘l)(ei)q)(am)(p(ei))

< S(2(En(a) = > Am Z Trp(®(e:)®(am)®(e:)S(

D(ejame;)

= S(®(En(a))) — Am Trp(®(e;ame;))S(—————

(@) = 3 0 3 Tep@lesaned) S
=S(®(FE (a)))—Z)\ Tras(eia e')S(M
- N o m LM\ EiUmEq TI'M(eiam,ei)

D(e;ame;)

— S(®(E - G (o CimEi)

S@EN(@) ~ 3 S, ().
where 30, puni = 1, and qétmlios = Ey(mtni o) € N with trace 1.

Since the above inequality holds for all families (a,,) as above

C(®,a) < C(®|N, En(a)).



Since this holds for all a € M

C(®) = sng(CD,a) < sng(<I>|N, Eyn(a)) = C(®|N),

proving the theorem.

We can now state our main reduction theorem. Note that if the projections
e; are minimal with the property that ®(e;) is a projection, then ®|e;Me; is
ergodic in the sense defined above, so the theorem is a reduction to the ergodic
case.

Theorem 3 Let M, P be finite dimensional C*—algebras and &: M — P a
positive unital trace preserving map. Let eq,...,e, be projections in M with
sum 1 such that ®(e;) is a projection for each i. Let M; = e;Me; and ®; =
O|M;: M; — ®(e;) PP(e;) be the restriction map to M;. Then

C(®) =log Y ).
=1

Proof. By Theorem 2 it suffices to consider a = » . a; € M,a; = ae; € M;,
where a; = Zj )\jiaﬁ with TrM(aji) = ]., Qjg € Mz+’ Zji )\ji = 1. Let S; =
Tras(e;a) = Trar(a;) = Trp(®(e;)®(a)). Then we have
S(@(@) — > AiS(®(az)
ji

= Z[S(@(ei)fb(a)) - Z)\jiS(‘I’(%’z‘))]

- Z[S(Si(éq)(ei)q)(a))) — 8 Z %S(‘P(aﬂ))]
- 7Zsi log s; +Zsl'[5(s%<1>(ei)<1>(a)) - Z%S(‘I’(aﬁ))]
We have . N
S(;i¢(ez)©(a)) - Z stiZS(@(aﬁ)) < C(®|M;).
Therefore

5(®(a)) - Z AjiS(®(aji))
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- Z si(logs; — C(®|M;))

C(®[M;) .
- Z s;(log s; — log W) + logz eC(®IM:)



Since the sum ), s;(log s; — log %) is a relative entropy, it is nonneg-

ative, see Lemma 4.5 in [4]. Hence we have

Z)\ﬂs (1)) < log > eC(®IM),

[

Since this holds for all a we conclude that C(®) < log ", e (®IM:),

For the converse inequality let € > 0, and choose b; € M;" with Trps(b;) = 1,
i = 0 with Zj Wi = 1 and aj; € Ml+ with trace 1 such that Zj HiiQj; = b;,
and

Zﬂﬂ (aj:)) > C(®|M;) —

Let now s; > 0 have sum 1, and let a; = s;b;, \j; = sipji. Put a = >, a;, =
>_ji Ajiaji- Then by the above inequality we have

S (e @(a) — Y 2L S(@(as0) = C@|M) -

Thus by the computations in the beginning of the proof we have

Z)\NS (aji)) > Zsi(logsi—C(MMi))—

%

Hence by the same computation we did above we obtain

S(®(a)) — Z)\ﬂS (aj:))

C(2[M;)
> fz (log 5 ~log <=~ aTazy) + log 3 eCPIM) _ .
k k
_ _C(2|M;) . .
For the value s; = IR the value of the relative entropy is 0, hence
C(®) > Z)\JZS (ajs)) > logZe (®[My) _
k

Since ¢ is arbitrary the proof is complete.

A good illustration of an application of the theorem is the case when &
is a trace preserving projection map of M into itself, i.e.®(x) = ®(P(x)) for
all z € M. Then the image N = ®(M) is a Jordan subalgebra of M, and
if ® is completely positive then ® is a conditional expectation, and ®(M) is a
C*—algebra, see [1]. The rank of N -rankN- is the maximal number of minimal
projections in N with sum 1.

Corollary 4 Let &: M — M be a trace preserving projection map. Then

C(®) = logrank ®(M).



Proof. Let n = rank N and ey, ..., e, be minimal projections in ®(M) with sum
1. Then e Mej, = Cey, for all k, hence C(®|eyMey) = 0, so by the theorem

C(®) = logZeO = logn.

The proof is complete.

The main problem concerning capacity is whether it is additive under tensor
products, i.e. whether C(® @ ¥) = C(®) + C(¥) when ® ® ¥ is positive, in
particular when they are both completely positive. Our next result reduces the
problem to the case when both maps are ergodic.

Corollary 5 Let M, N, P,Q be finite dimensional C*—algebras and ®: M — P
and W: N — Q) be positive unital trace preserving maps such that ®@QV: MQN —
P ® Q is positive. Let e; € M and f; € N be projections with sum 1 such that
®(e;) and V(f;) are projections. Let

(I)i = (I)|61'M61'161‘M€i — @(eZ)Pq)(ez),

Uy = UIfNfi: fiN i = ©(f)QU(S))-
Suppose C(®; @ ¥;) = C(®;) + C(¥;) for all i,j. Then

C(®® ) = C(®) + C(T).

Proof. We apply Theorem 3 to the projections e; ® f; and the corresponding
maps ®; ® ¥;. Thus we have

CPeV) = = logz eC(@i®¥5) — IOgZ cC(2:)+C(L;)
ij ij
= 10g260(¢>i)60(%) — 10g260(¢>,-) Zecwj)
ij i j
= C(P)+C(D).

The proof is complete.

If @ is completely positive and id is the identity map of N let f; be a minimal
projection for each j. Then the assumptions of the above corollary hold for the
projections 1 ® f;. Hence we have

Corollary 6 Let M and N be finite dimensional C*—algebras as before with ®
completely positive. Then C(® ®id) = C(®) + logrankN.
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