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Abstract. An operational ocean and sea ice forecast model,
Barents-2.5, is implemented for short-term forecasting at the
coast off northern Norway, the Barents Sea, and the wa-
ters around Svalbard. Primary forecast parameters are sea
ice concentration (SIC), sea surface temperature (SST), and
ocean currents. The model also provides input data for drift
modeling of pollutants, icebergs, and search-and-rescue ap-
plications in the Arctic domain. Barents-2.5 has recently
been upgraded to include an ensemble prediction system
with 24 daily realizations of the model state. SIC, SST, and
in situ hydrography are constrained through the ensemble
Kalman filter (EnKF) data assimilation scheme executed in
daily forecast cycles with a lead time up to 66 h. Here, we
present the model setup and validation in terms of SIC, SST,
in situ hydrography, and ocean and ice velocities. In addi-
tion to the model’s forecast capabilities for SIC and SST, the
performance of the ensemble in representing the model’s un-
certainty and the performance of the EnKF in constraining
the model state are discussed.

1 Introduction

Rapid changes in water mass distribution and seasonal sea
ice cover are underway in the Barents Sea and the areas
around Svalbard (Lind et al., 2018). We also see changes in
human activities, such as shipping, oil exploration, and fish-
eries. The ability to provide efficient emergency services in
this region, e.g., for search and rescue, accidental oil spills,
or ship drift, is much reduced compared to mainland Norway
due to the vast distances and challenging environmental con-
ditions. Contingency models for decision support are based
on short-term forecast models for weather, surface waves,
ocean circulation, and sea ice distribution, and increased
predictability in these models translates directly into better
emergency preparedness (Rohrs et al., 2023). Of particu-
lar interest are upper-ocean transport processes (e.g., Strand
et al., 2017, 2021) and energy exchanges across the air—ice—
sea interfaces.

In addition, Arctic Ocean ecosystems are vulnerable to
change. Projected long-term decline in sea ice cover and the
associated “Atlantification” of the Barents Sea (Asbjgrnsen
et al., 2020) are impacting key species at different trophic
levels, and hence they are important topics for investigation
(Ingvaldsen et al., 2021). Hence, accurate models of upper-
ocean transport processes are also important for understand-
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ing connectivity of fish stocks and other physical-biological
couplings (Rohrs et al., 2014; Strand et al., 2017).

A high-resolution (2.5 km) numerical weather prediction
(NWP) system at the Norwegian Meteorological Institute
(MET), AROME-Arctic (MET-AA), for the Barents Sea and
the areas around Svalbard was established in 2015 (Miiller
et al., 2017). This development paved the way for a coupled
ocean and sea ice forecast model that operates on the same
horizontal grid. Here, we present this coupled ocean—sea ice
forecasting system, the Barents-2.5 model.

Ocean forecasting in this region is challenging for sev-
eral reasons. The first challenge is that the hydrography is
poorly observed and that in situ data are scarce compared
to other regions. We have frequent passes of polar orbiting
satellites, but since the skies are seldom clear, we have rel-
atively few high-resolution observations of sea surface tem-
perature (SST) from infrared sensors. We do have abundant
medium-resolution observations of the sea ice cover from
passive microwave imagery (Spreen et al., 2008) and fre-
quent high-resolution images from synthetic aperture radars
(SARs). Combined, these sensor technologies provide sub-
daily coverage in the region.

A second challenge at high latitudes is that the atmo-
spheric low-pressure systems can be small but very intense
(Noer et al., 2011; Furevik et al., 2015). Correctly describing
the temporal and spatial development of polar lows in the
NWP system is difficult, although progress is being made
with improvements in physics (Batrak and Miiller, 2019)
and in the data assimilation (DA) methodology (Hallerstig
etal., 2021; Mile et al., 2022). We have, however, significant
knowledge gaps when it comes to rapid changes in upper-
ocean conditions and sea ice cover due to complex air—sea
interactions, including waves. In addition, many surface layer
processes are quite crudely parameterized in the models (if at
all).

A third challenge is that the inertial period and the domi-
nant tidal period (M2) are very similar at the latitudes con-
sidered here (e.g., Rohrs and Christensen, 2015). Hence, it is
difficult to disentangle the transient Ekman dynamics from
the more predictable tidal circulation. A general lack of long
observation time series of ocean currents or mean sea level
implies that we cannot easily remove the tidal component of
observed drift velocities to isolate effects of air—sea interac-
tions on the upper-ocean transport.

Ocean forecasting in high latitudes must encompass the
uncertainties that result from the above challenges. As widely
applied in NWP, ensemble prediction systems (EPS) can di-
rectly quantify the uncertainties in a forecast. Ensemble pre-
diction has not yet been widely used in regional ocean mod-
eling, but recent work has shown that models may predict
uncertainty correctly if the underlying ocean model exhibits
statistical skill (Jacobs et al., 2021). Our goal has been to
implement an operational EPS for the Barents Sea that as-
similates the available observations in this region. The uncer-
tainty provided by the EPS may be used directly in forecast
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applications, e.g., to quantify the reliability of a prediction
for decision support. In addition, the ensemble spread can be
used to estimate model background errors, which is needed
in DA schemes such as the ensemble Kalman filter (EnKF)
applied in this work (Evensen, 1994; Sakov and Oke, 2008a).

This paper describes the operational setup of the Barents-
2.5 forecast model. In Sect. 2, we provide details on the con-
figuration and setup of the ocean and sea ice model, including
the coupling scheme and forcing data. Section 3 describes the
DA scheme. All observation data used for DA and for vali-
dation in this paper are described in Sect. 4. Section 5 docu-
ments how the model is operationalized, which includes de-
tails on the setup as an EPS. In Sect. 6, we describe methods
used for validation of the model. Results on model validation
and performance are shown in Sect. 7, focusing on valida-
tion of SST and sea ice concentration (SIC) as central state
variables. Finally, in Sect. 8 we discuss the model’s capabil-
ity as a forecast tool and discuss our plans for future model
development.

2 Model physics and configuration
2.1 Ocean circulation model

Barents-2.5 is built on the Regional Ocean Modeling Sys-
tem (ROMS) version 3.7, which applies a topography-
following coordinate system in the vertical (Shchepetkin and
McWilliams, 2005) and a curvilinear horizontal grid. ROMS
solves the Boussinesq primitive equations. The modeled state
variables are temperature, salinity, surface elevation, and hor-
izontal current velocities. The setup in Barents-2.5 includes
a second-order turbulence closure scheme with turbulent ki-
netic energy and a generic length scale as state variables
(Warner et al., 2005).

The model domain and bathymetry are shown in Fig. 1.
The model resolution is approximately 2.5 km, which varies
slightly throughout the domain consisting of 737 x 947 grid
points. The bathymetry is based on the GEBCO global data
set and interpolated onto the model grid. Minimum depth is
set to 10 m. The bathymetry is smoothed to reduce pressure
gradient errors as required in ROMS. Additionally, the coast-
line has been modified to match numeric grid point criteria
by ROMS (i.e., every water grid point must have at least two
adjacent open boundaries).

2.1.1 Discretization and advection schemes

The applied vertical discretization uses a stretched,
topography-following coordinate system. Barents-2.5 has 42
layers, with higher resolution being seen towards the sur-
face. The stretching of vertical coordinates is configured us-
ing the transform function 2 and the stretching function 4 in
ROMS, with specific parameters of 65 = 6.0, p = 0.3, and
H, =100 m. This choice of values results in an upper-layer
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Figure 1. Bathymetry of Barents-2.5 plotted within Topaz4, explicitly showing the Barents-2.5 domain. The locations of river input are
marked by black dots, with dot sizes scaled as the yearly mean of river transport. The sea ice edge, here represented by 15 % SIC, is shown
at the time of minimal (blue) and maximal (red) sea ice extent for each model (Barents-2.5 shown with solid lines, and Topaz4 shown with

dashed lines).

thickness between 0.2 and 1.2 m and maintains an increased
resolution in the upper 100 m.

ROMS uses split explicit time stepping, i.e., the barotropic
modes are solved using a shorter time step than the baroclinic
modes. Barents-2.5 uses 90s outer time steps for the baro-
clinic mode to solve the 3D momentum equations and 30
inner time steps (i.e., 3 s) for the solution of 2D momentum,
including tides.

Momentum and tracers are advected using a third-order
upwind scheme in the horizontal and a fourth-order centered
scheme in the vertical. Turbulent kinetic energy and length
scale are advected vertically and horizontally using a fourth-
order centered scheme.

2.1.2 Sub-scale processes
Vertical mixing is modeled using a second-order scheme for

turbulent kinetic energy (TKE) and a generic length scale
(GLS). Our setup is the one recommended by Umlauf and
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Burchard (2005). Parameters for this turbulence scheme are
documented in Table 1. It is noted that turbulence dissipa-
tion rate and turbulent length scale may be calculated from
TKE and GLS according to Eqgs. (14) and (15) in Warner
et al. (2005). The CANUTO_A stability function is chosen for
the diffusion of momentum and tracers (Canuto et al., 2001;
Warner et al., 2005).

The boundary condition for TKE at the surface is based
on the model of Craig and Banner (1994) using a flux con-
dition, wherein the energy flux at the surface is propor-
tional to the cube of the air-side friction velocity with a
scaling factor of 100. Surface roughness is set by the wind
stress using a Charnok constant of 1400. Buoyancy and shear
are horizontally smoothed using the N2S2_HORAVG pre-
compiler option. The background vertical diffusivity is set
to 107°m?s~! for tracers, 105 m?s~! for momentum, and
5% 107 %°m2s~! for TKE and GLS. Furthermore, the pre-
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Table 1. Parameters for the GLS turbulence scheme used in Barents-2.5.

J. Rohrs et al.: Barents Sea ensemble prediction model

P M N Kinin Prin

CMUO*

C1 C2 C3M*  C3P SIGK  SIGP

2.0d0 1.0d0 —-0.67d0 1.0d—8 1.0d—8

0.5270d0

1.0d0  1.22d0 0.05d0 1.0d0 0.8d0  1.07d0

* Parameters associated with the choice of stability function, which is set using the CANUTO_A pre-compiler option.

compiler options RI_SPLINES, SPLINES_VVISC, and
SPLINES_VDIFF are used.

Harmonic horizontal diffusion of tracers is applied using
a diffusivity of 2m?s~!. Explicit harmonic horizontal dif-
fusion is applied using a viscosity of 50m?s~! only in the
sponge zone of 30 grid points, increasing from zero to a
viscosity of 100m?s~! using an arctangent-shaped smooth
transition. A harmonic horizontal diffusivity for TKE and
GLS issetto 0.1 m?s~!.

Tracers are mixed along surfaces of constant geopoten-
tial, while momentum is mixed along the bottom topogra-
phy following coordinate surfaces. Quadratic bottom friction
is applied using a drag coefficient of 0.003 where the wa-
ter depth is greater than 100 m. In shallower regions, the
bottom drag coefficient is increased up to 0.009 for the
shallowest parts with a water depth of 10 m, with linear
transition as a function of water depth. The bottom drag
is limited such that the current cannot reverse sign using
the pre-compiler option LIMIT_BSTRESS in ROMS. Lim-
iting the bottom drag in such fashion is useful to avoid
numeric instabilities in very shallow waters during strong
storm surges. A full list of all applied pre-compiler op-
tions for ROMS, static files such as grid files, and run-time
options are provided in a code repository for Barents-2.5
(https://doi.org/10.5281/zenodo.7607191; Rohrs, 2023).

2.2 Seaice model

The sea ice model used in Barents-2.5 is the Los Alamos
sea ice model (CICE) version 5.1 (Hunke et al., 2017). CICE
describes both dynamic and thermodynamic processes. In
this work, CICE is configured to use elastic—viscous—plastic
(EVP) rheology (Hunke and Dukowicz, 1997), which is a
compromise for computational cost compared to the elastic—
anisotropic rheology (e.g., Heorton et al., 2018). The model
solves the evolution of the sea ice state using five ice thick-
ness classes, described by the ice thickness distribution (ITD)
function (Thorndike et al., 1975; Hibler, 1980):

g o . 0(fg)
5 =V ewm—— =+ M

where g(x, h,t)dh is defined as the fractional area covered
by ice in the thickness range (h,h +dh) at a given time ¢
and location x = (x, y), f is the rate of thermodynamic ice
growth, and ¢ is a ridging redistribution function. The ice
velocity u is calculated from the sea ice momentum equation
that accounts for air and water drag, Coriolis force, sea sur-
face tilt, and the divergence of internal ice stress. The evolu-
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tion of internal stress is described by the EVP rheology, with
the ice strength reformulated according to Rothrock (1975)
and the advection using the incremental remapping scheme
(Lipscomb and Hunke, 2004). The subgrid sea ice deforma-
tion and the redistribution of various ice categories follow
Rothrock (1975), with a modified expression for the partici-
pation function (Lipscomb et al., 2007).

The sea ice thermodynamic growth and melting f is de-
termined by solving the one-dimensional vertical heat bal-
ance equations for each ice thickness category and snow. The
sea ice heat balance equation is solved with the mushy-layer
scheme that also accounts for the evolution of sea ice salinity
(Turner et al., 2013). The upper snow and ice boundary is as-
sumed to be in balance with short- and long-wave radiation
and the sensible, latent, and conductive heat fluxes when the
surface is below freezing point. When the surface temper-
ature reaches the melting point, it is held constant, and the
extra heat is used to melt the snow and ice surface. The bot-
tom water—ice interface is assumed to be at thermodynamic
balance, such that growing or melting results from the dif-
ference between ice conductive heat flux and the under-ice
oceanic heat flux. An example of the CICE input parameter
file, including all choices of numeric schemes and input pa-
rameters, is provided in the aforementioned code repository
for Barents-2.5 (Rohrs, 2023).

2.3 Ocean-ice coupling

The ROMS-CICE coupling utilizes the Model Coupling
Toolkit (MCT, Larson et al., 2005) for inter-model ex-
change of state variables and fluxes, as implemented in the
METROMS framework (https://github.com/metno/metroms.
git, last access: 15 September 2023; Debernard et al., 2021).
The coupling was briefly explained in Naughten et al. (2017)
and Naughten et al. (2018), and in more detail by Duarte et al.
(2022). The underlying philosophy behind the coupling is
that surface fluxes are calculated in the component with most
information about the surface, utilizing required information
from the other component. Finally, the heat, water, and mo-
mentum fluxes are passed back to the other component. In
METROMS, the coupling is based on the principle of “lev-
itated” ice, so there is no actual exchange of mass between
the ocean and the ice. Freshwater and salt fluxes from the ice
model are converted to a virtual salt flux before they are used
in ocean model. In this “massless” state, the ice does not dis-
place water, and it is only seen by the ocean as a source of
surface fluxes responding to the present ocean state. The ice

https://doi.org/10.5194/gmd-16-5401-2023
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Table 2. Numeric boundary solution schemes used in the ocean
component for Barents-2.5. All four model boundaries use the same
schemes. Nudging towards the boundary Topaz4 fields is imposed
within an area of 40 grid points from the boundaries with decaying
nudging coefficients.

Variable Numerical scheme

Free surface

2D momentum

3D momentum

Salinity and temperature
TKE and GLS

Chapman explicit

Shchepetkin

Oblique radiation and nudging
Oblique radiation with nudging
Gradient

and ocean models are run concurrently, with exchange of in-
formation every baroclinic ocean time step. The information
used by each model is therefore time-lagged compared with
its own state.

2.4 Boundary conditions and river input

The boundary conditions for Barents-2.5 are provided by
Topaz version 4, a coupled ocean and sea ice DA system
based on the Hybrid Coordinate Ocean Model (HYCOM)
ocean model and an EnKF DA scheme. Topaz4 is configured
for the North Atlantic Ocean and Arctic Ocean with a hori-
zontal resolution of 12-16 km (Xie et al., 2017). It provides
daily averages of temperature, salinity, sea surface elevation,
and ocean current velocities for the ocean component. For
the sea ice component, it provides daily averages of SIC, sea
ice thickness, first-year ice age, snow depth, and ice velocity.
The inverse barometric effect due to the local atmospheric
pressure is added to the sea surface elevation boundary con-
ditions because Topaz4 does not include the barotropic signal
of atmospheric pressure.

The numerical schemes for boundary conditions used in
ROMS are given in Table 2, and they differ for the various
state variables. A sponge zone with up to 10-fold-increased
horizontal tracer diffusivities and viscosity is implemented
within 40 grid points from the boundary. Nudging of pas-
sive tracers towards the boundary fields from Topaz4 is im-
posed within the sponge zone. The 2D momentum anoma-
lies are radiated out of the model domain using the tangen-
tial phase speed of the barotropic signal and using ROMS’
RADIATION_2D option. Details about the implementation
of boundary conditions in CICE are given in Duarte et al.
(2022).

Point sources for river influx along the coast in the model
domain are shown in Fig. 1. At each of the 318 river loca-
tions, daily values for temperature, salinity, and mass flux
are specified. Climatological values for rivers in the Svalbard
archipelago are used, while river data on mainland Norway
originate from daily estimates provided by the Norwegian
Water Resources and Energy Directorate.

https://doi.org/10.5194/gmd-16-5401-2023
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Tidal forcing is provided as amplitudes and phases of the
10 major tidal constituents in the model domain (Table 3).
These are obtained from the TPXO global inverse barotropic
model (Egbert and Erofeeva, 2002) and imposed on veloci-
ties and free surface elevation. The tidal signal is also added
to velocities and surface elevation during the processing of
boundary data.

2.5 Atmospheric forcing

Surface forcing in Barents-2.5 is provided by ensemble fore-
casts from the Integrated Forecast System (IFS) at European
Centre for Medium Weather Forecasts, hereafter referred to
as ECMWEF-ENS, which has a horizontal resolution of about
18 km. Hourly surface fields of wind speed, air tempera-
ture, humidity, rainfall, and cloud cover are used by the bulk
flux module of ROMS to calculate surface fluxes as upper-
boundary condition in the ocean. CICE uses air temperature,
humidity, density, precipitation rate, and winds to calculate
surface stress, heat fluxes, and snow aggregation on sea ice.

Barents-2.5 is configured as an EPS with 24 members,
wherein 20 members are forced with random members from
ECMWEF-ENS and four members are forced by MET-AA
(Miiller et al., 2017). MET-AA is nested into the IFS high-
resolution forecasts.

3 Data assimilation scheme

The model state in Barents-2.5 is constrained by an
EnKF DA scheme (Evensen, 1994; Burgers et al., 1998;
Houtekamer and Mitchell, 1998; Evensen, 2003). Central in
this scheme are the model errors, estimated by the spread of
the EPS, and the observation errors. A new analysis is ob-
tained on a daily basis, which aims to reduce the errors in
the model state compared to the available observations. The
assimilated variables are SST, SIC, and in situ hydrography,
i.e., salinity and temperature observations (Table 4).

3.1 The deterministic ensemble Kalman filter

The EnKF is a sequential ensemble-based assimilation
method that has been used for many geophysical applications
(Houtekamer and Zhang, 2016). The standard analysis equa-
tion solved by the EnKF is given by

—1
xy =xp+PoH’ ( HP,H' +R) (v —Hxy), @)

where x, € R™" is the analysis state vector representing
the updated variables after assimilation, x, € R"™*N ig the
model background state, and y € R™*N s the observation
vector. N is the number of ensemble members, n is the
number of variables multiplied by the number of spatial
grid points in our model, m is the total number of observa-
tions, R € R™*™ jg the observation covariance matrix, and
H € R™*" is the observation operator. The Kalman gain K,
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Table 3. Tidal constituents used for tidal forcing in Barents-2.5.

J. Rohrs et al.: Barents Sea ensemble prediction model

Constituent K2 S2 M2 N2 K1

P1 01 MN4 M4 MS4

Period (h) 11.96723 12 12.4206 12.65835

23.93447

24.06589 25.81934 6.269174 6.210301  6.103339

Table 4. Observation platforms of assimilated variables and configuration parameters for observation types in EnKF-C.

SIC SST In situ temperature  In situ salinity
R 10 10 4 10
Tloc 50km 50km 80km 80km

Plattorm AMSR2 AVHRR, VIIRS, SLSTR

Profiling floats, drifting buoys, moorings, CTD casts, ships

defined as PbHT( HP,H' + R)_1 in Eq. (2), corresponds to
the weight given to the observations and current background
state. The key property of the EnKF is that the background
error covariance matrix P, € R"*", approximating the model
uncertainty and covariance between variables and locations,
is estimated as the flow-dependent covariance of the ensem-
ble of background states as

Py, = ((x — *p) (xp — X¥p)7). 3

In the equation above, the overbars denote the ensemble av-
erage operator.

In this study, the deterministic version of the EnKF (Sakov
and Oke, 2008a) is applied. The same DA scheme was
also applied in a preceding study with Barents-2.5 assim-
ilating only sea ice variables (Fritzner et al., 2019, 2020).
The deterministic ensemble Kalman filter (DEnKF) does not
require perturbation of observations to maintain ensemble
spread as is required by the original formulation of the EnKF.
For the stochastic EnKF, perturbations are added to the en-
semble equivalence of the observation, accounting for non-
symmetric observation errors (van Leeuwen, 2020). Perturb-
ing observations introduces additional sampling error in the
analysis, which for applications with few ensemble members
might be a significant contribution (Sakov and Oke, 2008a;
Whitaker and Hamill, 2002). In the DEnKF, the assumption
of a small KH term leads to a simplified ensemble transform
matrix (ETM) used to update the ensemble anomalies. The
left ETM T = (I —- KH)'/2 (Sakov and Oke, 2008b) is ex-
panded into a Taylor series with only the two first terms re-
tained, resulting in Ay, = (I — 1/2KH)Ayp, where A, and Ay
are the analysis and background ensemble anomalies, respec-
tively. The DEnKF analysis scheme consists of four main
steps. First, the background ensemble mean is computed as
Xp=1/N vazlx{) and the background ensemble anomalies
as Ay = x, — Xyp, for i = 1..Nand x; each ensemble model
state of size n. Following this, the analysis X, is computed us-
ing Eq. (2). The analyzed ensemble anomalies are computed
using the ETM Ty as previously defined. Finally, the ana-
lyzed ensemble is provided by x, = A, + [X3, ..., X5]. More
details on the theoretical and technical aspects of the DEnKF
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can be found in Sakov and Oke (2008a) as well as in the
EnKF-C user manual (Sakov, 2014).

3.2 Implementation of the data assimilation method

The implementation of the DEnKF in Barents-2.5 is accom-
plished using the EnKF-C software package. The DEnKF
is executed offline, i.e., in between daily forecast cycles,
thereby providing updated initial conditions x, to ROMS and
CICE at 00:00 UTC each day. Observations y taken during
the previous 24 h are synchronously evaluated and compared
with the model state xp, at 00:00 UTC, hence assuming that
observed variables retain validity for 24 h. The limitations of
these assumptions are discussed in Sect. 8.2.

In situ temperature and salinity are directly mapped to the
respective model state variables. SST observations are com-
pared to the upper-layer model temperature. We note that sur-
face skin temperature may differ from the upper-layer tem-
perature and comment on this simplification in Sect. 8.2.

While CICE models the sea ice cover using five ice thick-
ness classes with SIC for each class, observations of SIC are
compared with aggregated SIC from all classes, wherein we
ensure that the analysis increments do not exceed the lower
and upper bounds of aggregated SIC, e.g., 0 <SIC < 1, by
capping the model increments after the EnKF step. While the
EnKF formally requires a Gaussian distribution of variables
across the ensemble, SIC distributions deviate from Gaussian
distributions due to the lower and upper bounds. In Sect. 8.2,
the ensemble distribution of SIC at various model locations
is evaluated.

3.3 Configuration of EnKF-C

The EnKF-C software package allows configuration of the
DA scheme in terms of an exaggeration parameter R, a lo-
calization radius rjo. for each observation type (Table 4), a
global moderation factor K = 1.5, and an inflation factor.
The latter applies a scaling of the model increments; when
set above 1 the ensemble anomalies are inflated. This infla-
tion factor is set to 1.05 (5 % inflation) for all model vari-
ables except for SIC using 1.1 (10 % inflation); a higher in-
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flation factor is required for SIC compared to other variables
because of its lower ensemble spread, which is particularly
needed around the ice edge area.

The impact of observations is moderated through the ob-
servation errors, the exaggeration factor R, and the modera-
tion factor K. The used in situ, SST, and SIC observations
provide observation errors along with observed values. R
is tuned to balance the effectiveness of analysis increments
while maintaining sufficient ensemble spread in the model.
K regulates the moderation of the observation impact by
smoothly increasing the observation error as a function of the
innovation magnitude. For large innovations, K plays an im-
portant role in the increase in the observation error; for small
innovations, observations errors are mostly kept unchanged.
For details on the observation error moderation we refer to
Sakov and Oke (2008a) and the user manual for EnKF-C
(Sakov, 2014).

The localization radius o in EnKF-C allows us to per-
form the DA analysis based on a horizontal subset of the full
model domain, i.e., limiting the covariance matrices to non-
zero entries only within the localization area. In essence, this
allows us to use the EnKF method for a system with large de-
grees of freedom with a relatively low number of ensemble
members. The EnKF-C software only provides a horizontal
localization, and hence no vertical localization is applied.

4 Observations

Observations used for DA in Barents-2.5 are in situ tempera-
ture and salinity, SST from satellite, and passive microwave
SIC. For validation, the same observations are used in addi-
tion to subjective ice charts, passive microwave ice drift vec-
tors, and radial currents from a high-frequency (HF) radar
station at the coast of northern Norway. A subset of in situ
temperature and salinity data that have not been assimilated
are presented separately during the validation of the model
results. Access paths for all used data are given in the “Code
and Data Availability” section.

4.1 In situ temperature and salinity

In situ observations of salinity and temperature are rou-
tinely collected from the in situ thematic assembly cen-
ter of the Copernicus Marine Environment Monitoring Ser-
vice (CMEMS) (http://marine.copernicus.eu, last access:
15 September 2023). The data set consists of observations
from a variety of platforms, such as drifting buoys, profil-
ing floats, moorings, conductivity—temperature—depth (CTD)
casts, and thermosalinographic data from monitoring cruises
and the Ships of Opportunity Program. As an illustration of
the quantity of this in situ data within the Barents-2.5 do-
main, Fig. 2 shows the spatial location of this data for a
specific date in 2022. Additional in situ observations are re-
trieved from the Global Telecommunication System (GTS)
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Figure 2. In situ data coverage during the assimilation cycle on
15 December 2022. The types of in situ platforms are indicated in
capital letters. The color-coded pixels show SLSTR SST observa-
tions available during the particular day.

and from MET’s observation database (http://frost.met.no,
last access: 15 September 2023). The observations are run
through basic quality control procedures prior to DA, and du-
plicate observations between different sources are removed.

4.2 Sea surface temperature

Level 2P satellite SST from the infrared sensors AVHRR
(MetOp satellites), VIIRS (Suomi NPP and NOAA-20 satel-
lites), and SLSTR (Sentinel-3 mission) are used for DA. A
bias correction scheme is applied to ensure consistency be-
tween the different SST products. The SLSTR measurements
are used as a reference because this instrument uses a dual-
view technique that gives more accurate SST measurements.
The bias correction scheme is described in more detail in
Iversen et al. (2023).

All in situ and SST observations are processed using
the Python package pyromsobs (https://github.com/metno/
pyromsobs, last access: 15 September 2023). When more
than one observation of a given state variable is available
within the same grid cell at the same time, they are replaced
with a so-called super-observation, which is a mean of the
available observations.
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4.3 Seaice concentration

Observations of SIC are computed from microwave bright-
ness temperature observations from the Advanced Mi-
crowave Scanning Radiometer-2 (AMSR?2) sensor on board
the Global Change Observation Mission — Water “Shizuku”
(GCOM-W1) satellite. The SIC algorithm SIRANO (Rusin
et al., 2023) is an evolution of the algorithm described in
Lavergne et al. (2019), which involves dynamic tuning of
the algorithm coefficients and atmospheric correction of the
brightness temperatures using a radiative transfer model.
Two SIC fields are computed independently and then com-
bined before they are assimilated: a low-resolution, low-
uncertainty SIC from the 18.7 and 36.5 GHz imagery chan-
nels and a higher-resolution, higher-uncertainty SIC from the
89.0 GHz imagery channels. The two SICs are then com-
bined using a pan-sharpening method to preserve the higher-
resolution and low-noise characteristics from each. Because
the nominal spatial resolution of the 89.0 GHz imagery of
AMSR?2 is 3 x 5km, the resulting SIC fields have a spatial
resolution slightly coarser than the 2.5km grid spacing of
the model.

In the operational setup, SICs are computed for each in-
coming satellite orbit (every 100 min) and then combined and
projected to cover the geographic domain of the model in 12-
hourly fields, including uncertainties. Because of the orbit of
the GCOM-W1 satellite, the domain is observed in the pe-
riod from 10:00 UTC of the previous day to 02:00 UTC in
the morning. Data from this period are used for assimilation
at 00:00 UTC model time. The observed SIC is compared to
the model SIC accumulated over all thickness classes.

4.4 Subjective ice charts

The ice charts are based on a manual production by ice ana-
lysts at MET, who define the ice edge and ice classes. Sub-
jective ice charts are produced daily from Monday to Fri-
day and provided with a 1km horizontal resolution, based
on Sentinel-1A/B synthetic aperture radar (SAR) images
taken in the morning passes (Dinessen and Hackett, 2011;
WMO, 2017). Other satellite sources (optical and passive
microwave) may be used when no SAR scenes are avail-
able. The ice charts distinguish between six ice classes
that are defined by the following thresholds in SIC: fast
ice (SIC = 1.0), very close drift ice (0.9 < SIC < 1.0), close
drift ice (0.7 < SIC < 0.9), open drift ice (0.4 < SIC < 0.7),
very open drift ice (0.1 <SIC<0.4), and open water
(0.0 < SIC < 0.1). They provide a higher-resolution assess-
ment of ice conditions that is independent from the passive
microwave data and that exhibits different systematic errors.

4.5 Passive microwave ice drift vectors

The sea ice drift is monitored using an analysis of subsequent
passive microwave images. Data from SSMIS, ASCAT and
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AMSR? sensors are processed using the continuous maxi-
mum cross correlation method (Lavergne et al., 2010) and
provided in near-real time (NRT) by the Ocean and Sea Ice
Satellite Application Facility (OSI SAF). The OSI SAF ice
drift product represents 2 d averages of ice drift on 62.5 km
resolution. Model data from Barents-2.5 is interpolated to the
same grid as the observation data and time-averaged over the
same time window for comparison.

4.6 High-frequency radar surface currents

We use data from a CODAR SeaSonde HF radar operated
by MET at the coast of northern Norway on the Fruhol-
men island (71.09°N, 23.98°E) to validate the statistical
skill of surface currents from Barents-2.5. The Fruholmen
HF radar operates at a central frequency of 4.453 MHz and
can reach distances up to 180km with a range resolution
of approximately 5km. We compared hourly observed HF
radar radial current components with modeled radial current
components from the Barents-2.5 for the period November—
December 2021.

5 Operational implementation

Barents-2.5 is executed four times daily, spreading the 24 en-
semble members into four sets of six members — as visualized
in Fig. 3. While a new analysis by the EnKF is only computed
at 00:00 UTC, each bulletin time benefits from the updated
NWP forecasts. In practice, the 00:00 UTC model run is exe-
cuted with a 6 h real-time delay to allow for enough time for
processing incoming observations. The atmospheric forcing
from MET-AA is available with 4 h delay. The 06:00, 12:00,
and 18:00 UTC model runs are executed with a 4 h delay as
these only need to wait for the updated atmospheric forecast.
The first member in each set is forced by the most recent
MET-AA forecast, and the remaining members are forced by
ECMWE-ENS.

5.1 Ensemble prediction system

At each of the four daily bulletin times, six ensemble mem-
bers are executed with a 66 h forecast range. Each member is
initialized by the state of the same member from the previous
day, with individual analysis increments from the EnKF DA
scheme, resulting in 24 unique members. The forecast runs
after 06:00, 12:00, and 18:00 UTC require a spin-up run from
the analysis time at 00:00 UTC.

A conscious choice for the design of the ensemble fore-
cast system is to initialize the ensemble runs from the model
states of previous-day forecasts, instead of using perturbed
states of the identical analysis, which is more common in
NWP. The latter approach yields an estimate of the uncer-
tainty when the initial condition is well constrained by the
observing network and most of the uncertainty arises inter-
nally within the forecast cycle.
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Figure 3. Workflow diagram for operational ensemble prediction system. Each horizontal bar represents a group of six individual model runs.
At each 00:00 UTC bulletin time, the EnKF DA scheme provides an analysis as new initial conditions for all 24 members. Every subsequent
bulletin time (06:00, 12:00, and 18:00 UTC) includes a short spin-up run from the analysis time at 00:00 UTC and a forecast run of 66 h using

updated atmospheric forcing.

The Barents-2.5 EPS, however, retains the state of pre-
vious forecast runs in order to preserve sufficient ensem-
ble spread. The EnKF moderates the ensemble spread. Such
an approach is beneficial because the initial state of the
ocean circulation is poorly observed. At the same time, the
mesoscale circulation exhibits features with timescales larger
than the assimilation window and forecast range. Therefore,
a small perturbation of the initial state would not yield en-
semble spread in the forecast that covers the actual uncer-
tainty in the mesoscale circulation.

To represent the actual forecast uncertainties in the circu-
lation field, we initialize the EPS forecast with largely vary-
ing initial conditions in the mesoscale circulation. At the
same time, the EnKF reduces the ensemble spread for vari-
ables that are observed well, i.e., SST and SIC. The ensemble
spread for these variables is evaluated in Sect. 7.4.

5.2 Operationalization

Barents-2.5 has been operational in its current setup since
September 2021, tagged as version 2.0. The model is imple-
mented at MET and part of Norway’s national ocean and
weather forecast service. Timely triggering of the model
components and pre-processing steps for observation data,
forcing, and boundary conditions are managed through
ECMWPF’s scheduling software package ecFlow (https:/
github.com/ecmwf/ecflow, last access: 29 January 2023).
The following backup measures are in place to secure a re-
liable operation of the Barents-2.5 setup to deal with excep-
tions from normal operation.

— Computing and data storage facilities are set up in two
physical locations to mitigate the risk of hardware fail-
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ures. All model pre- and post-processing is set up in
both locations with continuous synchronization.

— For pre-processing of forcing and boundary data, alter-
native data sources have been set up, e.g., older forecast
cycles from the ECMWEF-ENS atmospheric forcing and
the Topaz4 model can be accessed to produce necessary
input data.

— Initial states can be obtained from the previous 2 d fore-
cast cycles of Barents-2.5 in case of lost forecast cycles
during temporary outages.

— The forecast runs can be executed without analysis in-
crements by the EnKF.

Such exceptions are dealt with automatically through trig-
gering in ecFlow. If new types of technical errors occur, they
are added to the scheduling system to deal with the same
problems in the future. Typical failures have been hardware
malfunctioning, broken input data chains, or delays in the
observation data chain due to high loads of satellite data dur-
ing cloud-free conditions. While the first three types of ex-
ceptions rarely occur, a failure of the EnKF update is more
common. This may occur either due to unexpected deviations
during observation data processing or due to poorly perform-
ing statistic representations in the EnKF algorithm, e.g., as a
result of insufficient ensemble spread or model bias. In such
cases, which occur about twice a month, the model continues
without DA increments.
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Figure 4. Difference between model SST and observed SST from
Sentinel-3. The displayed data include all swaths that pass the
model domain during a 24 h period (15 December 2022). The re-
spective model values for computing differences are taken from the
satellite retrieval time.

6 Validation methods
6.1 Validation of sea surface temperature

The upper model layer temperature is validated against SST
measurements from the SLSTR sensor of the Sentinel-3A/B
satellites using its NRT data product. Only SST data with
the best quality flag are used. Multiple swaths in the model
domain may be available each day, but only cloud-free condi-
tions provide SLSTR SST measurements. A composite map
of the difference between model values and SST observations
within a 24 h period is shown in Fig. 4. As the coverage of
SST observations varies, the validation of SST is not uniform
throughout the day, season, or location, generally providing
more data during spring and summer and during daytime.

In the validation setup, SST swaths are combined into 6 h
fields centered around 00:00, 06:00, 12:00, and 18:00 UTC.
Since we compare gridded model data with observations at
point locations, we upscale the observations to the model res-
olution by averaging all observations within a grid cell over
the 6 h interval. The model domain is divided into areas as
shown in Fig. 5, which are the same regions as used in vali-
dation of the Arctic CMEMS product. These regions exhibit
different water depths, water masses, and ice conditions. We
compute the root-mean-square error (RMSE) and mean er-
ror (ME) from the available observations on a weekly basis
to gather enough data for representable statistics. The met-
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Figure 5. Definition of regions used in SST validation. (1) Helge-
land coast, (2) Vestfjorden, (3) Lofoten Vesteraalen north, (4) Troms
coast, (5) Barents Sea southwest, (6) Barents Sea southeast, (7) Bar-
ents Sea central, (8) Barents Sea east, (9) Nordic Seas southwest,
(10) Nordic Seas southeast, (11) Voring Plateau, and (12) Lofoten
Basin. Areas that include the marginal ice zone (gray) are excluded
from the SST validation.

rics are computed for the separate regions and, in addition,
an area-weighted mean of all areas is calculated.

The area-weighted mean is also calculated as a function of
model lead time, ranging from the O h forecast up to the 48 h
forecast, with an interval of 6 h. For comparison, we calcu-
late an RMSE and ME of the persistence forecast, which is
the difference between a past observation with a later ob-
servation for the same forecast intervals. By definition, the
persistence forecast yields zero error for the Oh forecast.
Furthermore, we compute the sum of the observation at the
forecast reference time and the change in SST between the
forecast reference time and the forecast lead time, which we
refer to as the model trend. The model trend provides a fore-
cast without an initial error from the model, focusing on the
model’s ability to predict changes in SST. Persistence and
model trend may only be calculated when observation loca-
tions of the model analysis time overlap with future observa-
tion locations for the forecast lead time.

A rank histogram (Hamill, 2001) is calculated from the
modeled ensemble SSTs. The objective is to assess whether
the spread provided by the EPS matches the actual uncer-
tainty in the forecast system compared to the SST observa-
tions. For a given SST observation, the rank of the observa-

https://doi.org/10.5194/gmd-16-5401-2023



J. Rohrs et al.: Barents Sea ensemble prediction model

tion in the model ensemble is identified by finding the num-
ber of members with a lower SST value. Hence, the rank
ranges from 1 to N + 1, where N = 24 is the number of en-
semble members. The rank N + 1 is assigned if the obser-
vation value is larger than all ensemble values. In an ideal
ensemble that reflects the uncertainty in the forecast sys-
tem, each rank number has equal probability of occurrence.
Under-dispersive ensembles are identified by accumulation
of observations in the lowest and highest ranks, meaning that
the model values rarely yield as high or low values as those
seen in observations. A biased model would yield a skewed
histogram.

6.2 Validation of sea ice concentration

Model SIC is validated against SIRANO SIC, which is used
for assimilation, and (in addition) against the subjective ice
charts, which are not part of the DA system, in order to pro-
vide an independent assessment of the model performance.
We validate SIC within an area around the ice edge. After
detecting the ice edge (the transition zone between open wa-
ter and very open drift ice) based on the observed SIC field,
we include a zone by a footprint of 150 km around the edge.
This method is used to avoid a situation where the total ice
extent does not drive the RMSE and ME metrics. At the same
time, areas of open water along the sea ice edge are included
in the validation. Since model results are continuous values,
while ice charts are based on different sea ice classifications
(as mentioned in Sect. 4.4), we map the model SIC into the
same classes as the ice charts. In order to do an accurate com-
parison between all available data in the validation, the same
classification is used on the SIRANO product. Daily metrics
of ME and RMSE are computed for the model analysis, 24 h
forecast lead time, and 48 h lead time.

An assessment of the ensemble’s ability to describe un-
certainty in SIC is obtained by means of the reliability to
describe probabilities for exceeding certain SIC thresholds
(e.g., Saetra et al., 2004; Brocker and Smith, 2007). The re-
liability diagram fulfills a similar purpose to the rank his-
togram for SST but is more suitable for non-Gaussian dis-
tributed variables. The method consists of the following
steps: (i) a binary event is defined by checking whether SIC
is above or below a certain threshold value, (ii) the forecast
probability of this event occurring in the model ensemble is
assessed for each grid point and time step, and (iii) forecast
probability intervals are mapped onto how often this event
occurs in the observations for the same cases.

In a highly reliable prediction system, the observed fre-
quency matches forecast probability for each probability in-
terval, resulting in a straight diagonal line for the reliability
diagram that plots observed frequency against model proba-
bility. Deviations from the diagonal are due to (i) imperfect
ensemble spread and (ii) model biases. An ensemble with
insufficient spread will have higher model probabilities for
low observed frequencies and lower model probabilities for
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high observed frequencies, resulting in a reversed S-shaped
reliability diagram. An S-shape indicates excessive model
spread. A biased model exhibits too low or too high probabil-
ities for all observation frequencies, resulting in an upward-
or downward-shifted curve in the reliability diagram (e.g.,
Brocker and Smith, 2007).

The method allows for direct comparison with the reported
ice classes that are commonly used in ice charting, and we
use the same SIC intervals as defined in Sect. 4.4 for cal-
culating the reliability of the ensemble. For validation pur-
poses, open-water and ice-free classes are merged into one
SIC class (0 < SIC < 0.1) because they are indistinguishable
in the SIRANO SIC product.

7 Performance of Barents-2.5

The general performance of Barents-2.5 is evaluated (i) by
comparison with independent observations not used for DA,
(ii) in terms of validation metrics close to analysis time (0—
24 h), (iii) in terms of skill in the forecast range up to 66 h,
and (iv) in terms of its ensemble spread. The spread controls
the EnKF DA scheme and is also used to estimate the forecast
uncertainty.

7.1 Validation against independent observations

Observations that were not assimilated during the model
analysis cycles include a subset of the available in situ tem-
perature and salinity data, subjective ice charts, ice drift vec-
tors, and radial HF radar surface currents.

The performance of Barents-2.5 in representing the hy-
drography in the model domain is evaluated in Fig. 6 by
means of temperature and salinity, i.e., a TS diagram. The
diagram shows the organization of water masses. In general,
the model captures the variability in water masses for the pre-
sented data. Errors in temperature are larger for the colder
water masses, particularly at depths around 500—-1000 m. We
also see that the warmer waters above 10 °C are slightly too
fresh.

The quality of ocean surface currents in the model is as-
sessed by comparison with radial currents observed by a HF
radar antenna at the coast of northern Norway (Fig. 7). The
histogram of radial current speed (Fig. 7a) shows that the
model values for radial current exhibit a similar distribution
to observations. However, the most extreme velocities are
underestimated, while low velocities occur too often in the
model. The 2D histogram of model speed versus observed
speed (Fig. 7b) shows that the model has limited capabili-
ties in terms of predictive skill for surface currents at the ob-
served scale, but they are correlated. In the same figure, the
quantile—quantile graph is indicating that the model achieves
good statistical skill for the radial surface current speeds.

The sea ice component is validated by the comparison of
model SIC with subjective ice charts (Fig. 8a) and model sea

Geosci. Model Dev., 16, 5401-5426, 2023



5412

(a)

12

e
=
<5,

10

Temperature
23

~25.__

-2

Floats Barents

30 32 34

Salinity

(b)

12

10

Floats

Model (Celsius)

J. Rohrs et al.: Barents Sea ensemble prediction model

.__?)

~28.

—29—__

36

(c)

355

35

345

34

335

33

325

3z

315

Depth (m)

-500

-1000

-1500

30 3z 34
Model (psu)

Figure 6. Validation of model hydrography against non-assimilated in situ observations from floats in the model domain. (a) TS diagram
with density isopycnals as solid lines. Line labels denote density deviations from 1000 kg m~3. (b) Scatter plot of model versus observed
temperature. (c¢) Scatter plot of model versus observed salinity. The color coding in (b) and (¢) denotes the depth below the sea surface of the
data points. The data originate from model periods within June-November 2022; during this period the DA scheme did not assimilate data

due to technical failures in the DA system.

ice velocities with OSI SAF sea ice drift (Fig. 9). The per-
formance in terms of SIC largely depends on the availability
of the DA system. Periods without DA result in larger errors
for SIC, which is further discussed below. Sea ice drift gen-
erally matches the direction of the observed drift (Fig. 9b),
which confirms the description of sea ice dynamics in re-
sponse to ocean currents and winds. However, we note that
the ice moves generally too fast in the model compared with
the OSI SAF ice drift vectors (Fig. 9a).

7.2 Validation of model analysis

Validation of model SST analysis using SST from Sentinel-
3 SLSTR swaths is displayed in Fig. 10, separately for each
region, for the course of 1 year. Only SST observations from
the Sentinel-3 satellite have been used in order to avoid
bias differences in various sensor platforms in the validation.
Model errors in SST peak during summer months, which is
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the time period with the most rapid changes in SST and in
skin temperature driven by short-wave radiation.

A comparison between observed SIC (Sect. 4.3) with
model values is shown in Fig. 11 for an exemplary day. A
comparison for the full model domain is possible during most
days given the coverage by the AMSR?2 swaths. Daily vali-
dation metrics (RMSE and ME) for SIC in forecast ranges of
0-18, 2442, and 48—66 h are computed during the course of
a year and shown in Fig. 8.

As a second reference for validation of SIC, a compar-
ison with subjective ice charts is provided in Fig. 8a. The
largest anomalies in the model errors for SIC are related to
the model spin-up and failures in the DA scheme. During the
beginning of the year in consideration, deviations occurred
more frequently, and during the second half of the displayed
period, very few technical failures occurred in the assimi-
lation scheme, maintaining low model error. Likewise, the
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Figure 7. (a) Distribution of absolute radial current components at Fruholmen from HF radar observations and Barents-2.5 EPS. (b) The 2D
histogram and quantile—quantile plot of modeled versus observed radial current components. The vertical axis shows modeled radial current
components, while the horizontal axis shows observed HF radar radial current components. The data presented in both panels correspond to
a forecast lead time of 0—24 h for the period from 15 November to 31 December 2021.

model performance deteriorates within a few days when no
DA is applied for subsequent cycles, as seen for two periods
during March and May 2022 in Fig. 8. A positive SIC bias
is present in the model during periods without DA, possibly
as a result of too fast ice drift velocities resulting in the ice
cover extending into open-water areas.

7.3 Forecast skill

Predictive skill in the model forecast is assessed by comput-
ing model validation metrics as a function of forecast lead
time; e.g., the validation metrics can be obtained by compar-
ison with a value of older forecast cycles. For SIC, we see
that the model error is larger for higher lead times, indicating
skill in the model analysis (see Fig. 8). In the periods with
no DA, the model error grows rapidly and is distinguished in
various lead times. Hence, we conclude that skill in sea ice
forecast is provided by assimilation of SIC.

For SST in Fig. 12, we provide a mapping of model error
as a function of model lead time as averages over periods of
3 months. Time averaging of the model errors for many fore-
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cast cycles is necessary in this case because individual days
rely on the availability of sparse SST observations, covering
different regions from day to day, as shown for one particular
day in Fig. 4.

Comparing SST validation metrics with the persistence
forecast as a reference (e.g., Mittermaier, 2008), we describe
skill of a model system in the following two ways.

— The model forecast is considered skillful for lead times
where the error in the model forecast is lower than the
reference forecast.

— The model analysis is skillful compared to the forecast
if the model error grows with lead time.

Skill in model SST is present for forecast ranges beyond 12 h
in spring and summer, extending beyond the forecast range
of 66 h (Fig. 12b and c). For the autumn and winter seasons,
we see that the model error is on par with the errors in the
persistence forecasts beyond 12 h lead time (Fig. 12a and d).
In general, combining the model trend with past observations
performs better at intermediate lead times, but the valuable
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Figure 8. Time evolution of (a) ME and (b) RMSE for SIC based on daily comparison of model values in various forecast ranges averaged
over the entire model domain. Differences are shown for comparison with the passive microwave SIC product that is assimilated (SIRANO)
and for a comparison with subjective ice charts that are produced by ice analysts. Shaded intervals mark model cycles when no data were

assimilated.

information content in observations vanishes for longer lead
times. In this range, dynamical changes that are resolved by
the model provide superior value in predicting the ocean state
conditions.

Skill in SIC analysis is concluded from the fact that the
short forecast range (0-24h) yields lower errors than the
longer range forecasts. However, the modeled SIC field ex-
hibits large systematic errors in terms of ME and RMSE
(Fig. 8). In particular, SIC increases rapidly in periods with-
out DA. This uncertainty is also present in the difference be-
tween the two observation types used for validation, i.e., pas-
sive microwave SIC and ice charts. Some forecast cycles
show skill compared to the persistence forecast (not shown),
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but most cycles do not provide a better forecast than using
the last observation as reference. Model skill is present in
situations with rapid movements in the sea ice edge that are
driven by strong winds. Refreezing of the sea ice cover in the
winter is not as skillful in the model predictions as summer
melting and dynamic response to wind forcing.

7.4 Ensemble spread
The ensemble of model states is an integral part of the EnKF
DA scheme: it provides model error covariances to weigh

observational impact with model state in order to compute
model increments in each analysis cycle through Eq. (3). The
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Figure 9. Comparison of ice drift velocities from Barents-2.5 against OSI SAF ice drift vectors derived from passive microwave imagery.
(a) The 2D histogram of total ice drift speed. (b) Histogram of direction difference 6 between modeled ice drift u,,,q and observed ice drift

uqhs- The ice drift velocities represent 48 h averaged velocities.

objective of the ensemble spread is to reflect the actual uncer-
tainty in the model, which is possible to assess by comparing
observations with the ensemble by means of a rank histogram
and reliability (see Sect. 6).

The rank histogram for SST is shown in Fig. 13. We see
a fair ensemble spread for this variable across the center
part (i.e., a flat distribution in the rank histogram) but note
a skewed offset that reflects a negative overall bias in model
SST. We also acknowledge that the most extreme SSTs are
not represented in the model, indicated by excessive lowest
and highest ranks.

In Fig. 14, the spread in SIC is evaluated using a reliability
diagram. We assess the reliability of forecast probabilities for
occurrences of open water up to a given ice class (Fig. 14a).
The opposite approach assesses forecast probabilities of high
SICs down to a certain ice class minimum (Fig. 14b). Both
figures indicate an offset that represents a positive SIC bias
of the model, e.g., forecast probabilities for SIC tend to be
too low from the ensemble. In addition, the reversed S shape
in both figures indicates too low ensemble spread. Parts (but
not all) of the insufficient ensemble spread seen in the reli-
ability diagram could be attributed to observation errors, as
discussed in Saetra et al. (2004). The highest forecast proba-
bilities of open water, e.g., 80 % chance for the occurrence of
0 < SIC < 0.4, are nevertheless addressed fairly well by the
model. In addition, low chances of occurrences for high SIC,
e.g., in the range 0.4 < SIC < 1, are predicted accurately by
the model. Addressing the lack of sufficient EPS spread using
forecast probabilities in the decision-making process could
benefit from scaling as a post-processing step to match the
observed occurrence frequencies (e.g., Chang et al., 2015).
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7.5 Analysis increments

The EnKF provides new initial states for each ensemble
member. For each state variable, the analysis increment is
the difference between the new model analysis provided by
the EnKF and the model background, i.e., the forecast of the
previous cycle. The objective of the analysis increments pro-
vided by the EnKF is to reduce deviations from the obser-
vation while maintaining ensemble spread to reflect uncer-
tainty. In this section, we show some characteristics of the
analysis increments for an exemplary day in order to illus-
trate the functioning of the DA scheme. Similar model incre-
ments are calculated for the analysis in each forecast cycle,
applied daily at 00:00 UTC.

Figure 15 shows forecast increments of SST, surface salin-
ity, and SIC on 15 December 2022. The differences result
from the observations that were available during the preced-
ing 24 h. The most substantial increments in model hydrog-
raphy occur in regions where both SST and in situ obser-
vations are present (see Fig. 2) and spread in SST is large
(Fig. 15d). In situ observations provide rather localized incre-
ments in surface fields. SIC increments are most pronounced
in the marginal ice zone where the ensemble has large spread
(Fig. 15d).

To confirm that the DA increments move the model state
towards the observed ocean state, we present a 2D his-
togram of observed versus model values for SST and SIC in
Fig. 16. The correlation between modeled and observed SST
is slightly improved for the analysis (Fig. 16b) compared to
the background (Fig. 16a). In the case of SIC, which gener-
ally has larger errors than SST, we see more radical updates
to the model state in each cycle.

Ensemble spread — which is the standard deviation for
each state variable computed from the ensemble — is an es-
sential characteristic of the EPS. Sufficient ensemble spread

Geosci. Model Dev., 16, 5401-5426, 2023
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Figure 10. Time evolution of (a) RMSE and (b) ME for SST, separated for various regions in the model domain as defined by the colors in
Fig. 5. For each available swath, Sentinel-3 SLSTR observations are compared with the model value that is closest to the satellite retrieval
time in the 0-24 h forecast range. Monthly averages of available data are shown.

is required by the EnKF to yield appropriate model incre-
ments. Spread increments, i.e., the difference between en-
semble spread before and after DA, is generally negative, and
the spread again grows during the model forecast.

The spread for SST, salinity, and SIC during one analy-
sis cycle is shown in Fig. 15d—f. Spread in SST and surface
salinity is present throughout the model domain, but it may
be pronounced in certain areas, e.g., below the sea ice cover.
This indicates pronounced uncertainty in the model state. For
example, the present hydrography below the sea ice cover is
not well known, and the model is expected to exhibit larger
errors in these areas.

Geosci. Model Dev., 16, 5401-5426, 2023

The ensemble spread is reduced in each analysis such
that model state variables converge towards the observations.
The spread increment is shown in Fig. 15g—i. For SST, we
see a substantial reduction in spread that is associated with
coverage by SST observations during that analysis cycle.
All shown variables experience a spread reduction in the
marginal ice zone, owing to the impact of SIC observations
in this area. There is little modification to ensemble spread
below the dense sea ice cover and in other places where no
observations are present during the analysis cycle.

Model state variables that are not observed are adjusted
by the EnKF along the observed variables based on the co-
variance matrices between each variable. This includes the
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3D current field, surface elevation, and all ice state variables.
Surface current increments are on the order of 0.05ms™!,
and sea surface elevation increments are on the order of
0.01 m and mostly associated with alterations in the density

field due to modifications in temperature fields.

8 Discussion

The Barents-2.5 ocean and sea ice forecast model pro-
vides daily short-term predictions with a forecast range
up to 66h. This operational model suite has been built
from various components and code repositories: the dy-
namic ocean component is based on ROMS v3.7 (Shchep-
etkin and McWilliams, 2005); the dynamic sea ice com-
ponent is CICE 5.1 (Hunke et al., 2017); model coupling
is achieved by MCT (Larson et al., 2005); DA is handled
through EnKF-C; and operational scheduling is implemented
in ecFlow, including the maintenance of the ensemble. In ad-
dition, Barents-2.5 involves static data, such as the GEBCO
bathymetry and TPXO tidal constituents, and a constantly
updated stream of forcing data. The atmospheric forcing is
provided by ECWMF-ENS and MET-AA, lateral boundary
conditions are provided by Topaz4, and river influx is gen-
erated from climatology and data from the Norwegian Water
Resources and Energy Directorate. Finally, observations of
SIC, SST, and in situ hydrography are assimilated. All com-
ponents combined constitute the Barents-2.5 model, and the
model capabilities and the presented validation are a conse-
quence of the interactions between all of those components.

https://doi.org/10.5194/gmd-16-5401-2023
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8.1 Forecast capabilities

Forecast skill and validation metrics have been presented for
SST and SIC. These are central variables describing the state
of ocean and sea ice conditions that are frequently observed
by satellite imagery. The forecast skill and ensemble spread
for surface currents are the subject of a separate investigation
in IdZanovi¢ et al. (2023).

Barents-2.5 shows predictive skill in temperature forecasts
(Fig. 12) compared to the persistence reference by Sentinel-3
SST imagery. Forecast skill is better during spring and sum-
mer when SST observations are more abundant and solar ra-
diation drives rapid changes in SST. Mismatches in the mod-
eled ice cover dominate the SST errors in the marginal ice
zone; therefore, all regions that contain ice have been ex-
cluded in the consideration for SST validation. SST fields are
directly needed in forecast applications, e.g., to warn about
icing on ships (Samuelsen, 2018) and to provide surface forc-
ing in NWP models (e.g., Miiller et al., 2017).

Skillful SST predictions in the forecast range are a conse-
quence from the model’s capability to represent realistic air—
sea fluxes, vertical mixing, and water mass transport. A re-
quirement for low errors at the analysis time is the constraint
by the observations. Without DA, the model state tends to
drift away from the real ocean state due to the compounding
of systematic model errors. Such model state drift is partic-
ularly evident for SIC during the periods when no DA is ap-
plied (Fig. 8) due to a systematic model bias in SIC (Figs. 8,
11). Due to varying SST observation availability, SST valida-
tion is not comparable between daily cycles, but similar drift
may occur. For SIC, we see that the model state loses skill
within a few days without DA. Deterioration of model skill
within a few days is generally expected when DA is halted in
regional ocean models (e.g., Moore et al., 2011).

Validation of SST indicates larger errors during summer
(Fig. 10) but also a higher skill compared to the persistence
forecast (Fig. 12). Variability in SST during the summer is
generally higher, resulting from the availability of direct sun-
light to heat up the surface. Most of the model region is
at high latitudes with midnight sun. The diurnal effect may
dominate in early spring, while in the summer the solar heat-
ing is largely controlled by cloud cover. Skillful SST predic-
tions by the ocean model thus require accurate cloud cover
and atmospheric radiative fluxes, highlighting the role of the
used NWP model. Due to the stronger solar forcing, SST in
summer changes more rapidly than during the winter season.
Barents-2.5 is forced by hourly fields from MET-AA, giv-
ing SST forecasts an advantage over the persistence forecast
during spring and summer (Fig. 12).

While errors in SIC are variable throughout the year
(Fig. 8), we see a persistent advantage of short lead times
compared to longer lead times. The model is hence skillful,
but the remaining systematic model errors make it difficult
to use predicted SIC fields directly in forecasting applica-
tions. Use of ice charts based on remote sensing alongside

Geosci. Model Dev., 16, 5401-5426, 2023
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Figure 12. RMSE of SST as function of lead time for each season: (a) December—January—February, (b) March—April-May , (c¢) June—
July—August, and (d) September—October—November. The black line shows the skill of the persistence forecast, which is root-mean-square
difference between overlapping scenes of SST observations that are shifted by the respective lead time. The dashed lines indicate the skill of
the model trend. The bar plot below each panel shows the number of overlapping observations used for the computation of the persistence
and model trend skill.
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Figure 16. Two-dimensional histogram of model versus observation values for (a, b) SST and (¢, d) SIC. Panels (a) and (c¢) show a compar-
ison for the background model state, and (b) and (d) show the analysis on 15 December 2022, i.e., the same DA cycle as in Fig. 15, based on

the observations used in Figs. 2 and 11.

model forecasts remains necessary. Predictions of ice drift
in ocean—ice forecast models have been shown to be skillful
(Schweiger and Zhang, 2015) as a result of the skillful NWP
and realistic description of sea ice rheology. The freezing and
melting along the ice edge, however, depends on a number
of thermodynamic processes (Fichefet and Maqueda, 1997),
and these are critically sensitive to water mass properties and
higher-resolution details in the atmospheric forcing (Kusa-
hara et al., 2017).

8.2 Configuration of the ensemble and data
assimilation schemes

The information provided by the EPS is useful in two ways.
Firstly, ensemble spread guides the DA scheme. Secondly,
the ensemble allows users to assess model uncertainty in the
forecast range. Spread in SST is satisfactory (Fig. 13), with
only slight underestimation of extremes. Spread in SIC is too
low (Fig. 14), possibly as a result of a positive SIC bias, but
the model shows a capability to predict the uncertainty in ice
forecasts.

Difficulties in representing SIC spread in similar EnKF se-
tups have previously been reported by Lisater et al. (2003).
As a bounded variable between 0 and 1, SIC is generally
non-Gaussian, but the EnKF formally requires Gaussian dis-
tributed variables and observation errors. Figure 17 shows
some examples of local SIC distributions across the ensem-
ble. We identify that SIC may be approximated by Gaussian
statistics for intermediate SIC, but close to areas of dense
ice (SIC — 1) and open water (0 «<— SIC) we notice that SIC
exhibits skewed and bounded distributions, which are occa-
sionally bimodal. We hence expect a weakness in the applied
DA method in areas close to open water or very dense ice.

Geosci. Model Dev., 16, 5401-5426, 2023

Methods to address these issues are provided by, e.g., Bishop
(2016) and Anderson (2022). Use of bimodally distributed
variables in DA filters have been discussed in Chan et al.
(2023). These techniques are most likely to be encompassed
in future model versions of Barents-2.5.

The initialization of the ensemble in each forecast cycle
is based on an approach where the individual members re-
tain their identity. DA increments are provided individually
for each member, and the spread is reduced during each anal-
ysis. The major differences between the ensemble members
result from diverging history of the members. Each member
is also forced by different atmosphere ensemble members,
but the most important spread in the mesoscale ocean circu-
lation stems from the history of the EPS.

The ensemble spread is modified through (i) a reduction by
EnKF analysis step, (ii) an increase during the model integra-
tion, and (iii) an inflation of the analysis increments during
the DA analysis. The inflation allows us to control the en-
semble spread and avoid collapse. A moderate inflation fac-
tor is used for most variables, and a slightly higher factor is
used for SIC, which suffers from a low spread. While higher
inflation has the potential to further improve the spread in
SIC, we also experience that large inflation factors lead to
multivariate artifacts in the model analysis. Anderson (2009)
propose a spatially and temporally varying adaptive inflation
algorithm to allow for a larger covariance inflation, leading
to a more efficient increase in ensemble spread. El Gharamti
(2018) iterates on this method, improving the stability of the
adaptive inflation to the occurrence of negative and physi-
cally intolerable inflation.

The EPS and EnKF system requires spin-up time due to
the system’s dependence on its own history of ensemble
spread. Initialization of the EPS took place in March 2021,
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Figure 17. Distribution of SIC across the ensemble at random points in the extended marginal ice zone. Distributions are shown for each
point marked in the map panel, representing various ice conditions. The point locations are chosen from a set of defined SIC ranges, i.e.,
({10,40,70,90} &= 1) % SIC. The histograms show SIC distributions of the background model state (background), the analysis computed by
the EnKF (analysis), and the post-processed SIC fields that are used to re-initialize the model (processed). The post-processed SIC may differ
from the EnKF analysis if any of the SIC classes contain values outside the range of 0 < SIC < 100 %. All histograms have bin widths of 5 %
SIC, and the vertical axes show the number of ensemble members, N, within each bin.

and the EnKF was activated in September 2021. About 3
months were required for a sufficient spin-up of the full DA
system.

The choice of a 24 h analysis cycle is based on the practical
need to issue daily forecasts. The assimilation cycle length is
a compromise between the amount of observations, the en-
semble’s ability to maintain spread, and the need for rapid
update cycles. The number of ensemble members is limited

https://doi.org/10.5194/gmd-16-5401-2023

by computational resources. The EnKF DA scheme relies on
a statistical description of possible model states compared to
the available observations, and therefore the ensemble needs
to cover the degrees of freedom for the ocean state within a
localization radius (Table 4), which is maintained in the cur-
rent setup using 24 ensemble members. Only horizontal lo-
calization is applied here, but we note that the system could
benefit from vertical localization as well.

Geosci. Model Dev., 16, 5401-5426, 2023
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Observations are directly mapped to model state variables
in Barents-2.5, which is straightforward for in situ temper-
ature and salinity. For SIC, a mapping to aggregated SIC is
needed because CICE operates with SIC for separate thick-
ness classes. For SST, the upper model layer temperature is
selected to represent the surface temperature, which is a valid
assumption during moderate or high winds, cloudy skies, or
low solar radiation, conditions that are common in Arctic wa-
ters. During conditions with low wind and strong solar radi-
ation, the skin temperature retrieved by the satellite sensor
differs from the temperature of the upper model layer (Price
et al., 1986). Hence. we expect discrepancies primarily dur-
ing spring and summer months, affecting both assimilation
and validation routines, which motivates ongoing work on
asynchronous SST assimilation using observation operators
to describe the skin temperature (e.g., Zeng and Beljaars,
2005).

The current DA setup in Barents-2.5 evaluates all observa-
tions at analysis time 00:00 UTC. For slowly varying model
state parameters, such as the hydrography at depth, this as-
sumption bears limited consequences as long as the model
error is larger than the diurnal variability in the observed pa-
rameter. Ongoing development work on Barents-2.5 focuses
on assimilation of SIC and SST observations at the observa-
tion time, showing positive improvements for modeling SIC
(Duran Moro et al., 2023).

8.3 Integration with contingency models

The Barents-2.5 model forecasts are routinely used in trajec-
tory models that serve as decision support tools in emergency
response situations. The OpenDrift framework (Dagestad
et al., 2018) encompasses oil spill transport, iceberg drift
forecasts, and leeway drift (e.g., person in water, large float-
ing objects) applications. All of these models require timely
computation of trajectory forecasts that are based on surface
current, wave, and wind forecasts. Among these forcing vari-
ables, surface current forecasts exhibit by far the largest un-
certainty (Dagestad and Rohrs, 2019). OpenDrift makes use
of the Barents-2.5 EPS by issuing ensembles of trajectory
forecasts, allowing one to assess the uncertainty in trajectory
simulations in a given situation. In practice, the difference in
trajectory forecasts from various ensemble members varies
from case to case. The Barents-2.5 model is useful for distin-
guishing cases of low and high uncertainty in drift applica-
tions (de Aguiar et al., 2023).

8.4 Model development history and outlook

An earlier implementation of the Barents-2.5 has been oper-
ational since March 2019, including a DA scheme for SIC
using a combined optimal interpolation and nudging scheme
(Fritzner et al., 2018), which allows the model to reflect the
observed SIC state closely. No ocean temperature data were
assimilated in the version 1 model implementation, and as
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a consequence the model hydrography drifted away from
the observed ocean state. The most notable changes for the
model version described here are the implementation as an
EPS with 24 members and the introduction of the EnKF DA
scheme for both sea ice and ocean variables.

Asynchronous assimilation of SIC, i.e., swath data, is in a
development stage, and SST assimilation will also likely ben-
efit from asynchronous assimilation. In asynchronous DA,
each satellite swath is compared to the model field at the re-
spective retrieval time instead of applying observations at a
fixed time of the day. This may lead to a reduction in the
representation error in observations and hence introduce a
tighter constraint on the model state. Constraint of mesoscale
ocean current fields beyond assimilation of SST is planned
by assimilation of sea level anomaly from satellite altimetry
and HF radar currents.

The lack of ensemble spread in SIC is a major weakness in
the current model setup. A more explicit perturbation of sea
ice variables is planned in order to introduce larger spread in
SIC and adoptive inflation in the EnKF analysis (Anderson,
2009; El Gharamti, 2018). Perturbation may be applied to the
initial conditions or as a physics perturbation in the sea ice
component by variation in empirical parameters in CICE. In
addition, applying transform operators for SIC, e.g., through
remapping of SIC to a Gaussian variable, can mitigate diffi-
culties of the EnKF in assimilating SIC directly (e.g., Bishop,
2016; Chan et al., 2023; Cipollone et al., 2023).

A stronger coupling with NWP models and wave predic-
tion models is foreseen as soon as such coupling is shown to
improve forecasts. Atmosphere models require SST as lower
boundary conditions, and these may benefit from skillful pre-
dictions of SST by Barents-2.5, provided that the coupling
will not introduce artifacts through poorly defined feedback
loops. At present, MET-AA, which provides surface forcing
for Barents-2.5, uses static SST fields based on the Opera-
tional Sea Surface Temperature and Ice Analysis (OSTIA)
daily satellite retrieval product. Coupling can either be im-
plemented as a fully coupled online product or by using SST
forecasts of the previous forecast cycle. A coupling with
wave prediction models is foreseen in which the wave pre-
diction model provides surface wave dissipation, momentum
fluxes, and Coriolis—Stokes forcing to the ocean model (e.g.,
Breivik et al., 2015). Such coupling has been shown to im-
prove SST predictions in the global ocean forecast model at
the ECMWF (Janssen, 2012).

Code and data availability. The source code for the coupled
ROMS-CICE ocean and sea ice model is available through
https://doi.org/10.5281/zenodo.5067164 (Debernard et al., 2021)
and tagged as version 0.4.1 of the METROMS repository. Spe-
cific configuration and grid files for Barents-2.5 are archived at
https://doi.org/10.5281/zenodo.7607191 (Réhrs, 2023). The source
code for the EnKF-C v.2.9.9 is obtained from https://github.com/
sakov/EnKF-C.git (Sakov, 2021), which is at commit 7eea4d8 as of
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8 July 2021. The source code for the ecFlow scheduling software is
available at https://github.com/ecmwf/ecflow (ECMWF, 2023).

Archived data from the operational model runs of Barents-2.5
are disseminated on https://thredds.met.no/thredds/fou-hi/barents_
eps.html (Norwegian Meteorological Institute, 2023a). Observa-
tions of satellite SST and in situ hydrography are retrieved from
CMEMS (https://doi.org/10.48670/moi-00036; Copernicus Marine
Service, 2023). Observations of SIC are available through https:
//thredds.met.no/thredds/osisaf/osisaf_seaiceconc.html (Norwegian
Meteorological Institute, 2023b). The subjective ice charts data
are available as graphic maps and through an API at https://
cryo.met.no/en/latest-ice-charts (Norwegian Meteorological Insti-
tute, 2023c). The low-resolution ice drift observations are avail-
able through https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007
(EUMETSAF Data Services, 2023). Data from the Fruholmen HF
radar are accessible in near-real time through https://thredds.met.
no/thredds/catalog/remotesensinghfradar/catalog.html (Norwegian
Meteorological Institute, 2023d).
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