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Nonlinear Stochastic Integrals

for Hyperfinite Lévy Processes
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Abstract

We develop a notion of nonlinear stochastic integrals for hyperfinite Lévy
processes, and use it to find exact formulas for expressions which are in-
tuitively of the form

Pt
s=0 φ(ω, dls, s) and

Qt
s=0 ψ(ω, dls, s), where l is a

Lévy process. These formulas are then applied to geometric Lévy pro-
cesses, infinitesimal transformations of hyperfinite Lévy processes, and to
minimal martingale measures.
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Consider a stochastic integral
∫
X dM where M is, say, an n-dimensional mar-

tingale and X is a process taking values in the m × n-matrices. The intuitive
idea is that at each time t, the matrix X(ω, t) is multiplied by the increments
dM(ω, t) of the martingale, and the results are then summed up to give the inte-
gral. Put a little more abstractly: at each time t a linear function (represented
by the matrix X) acts on the increments of M and produces the increments
of the integral process. In this paper I want to study what happens when the
integrand X acts on the increments in a more general (i.e. nonlinear) way.

Let me point out that ”nonlinear” stochastic integrals in this sense have
already been studied to some extent. In the stochastic analysis of Lévy pro-
cesses as presented, e.g., in the recent books by Applebaum [3] and Øksendal
and Sulem [12], the Lévy process is decomposed into a continuous part and a
pure jump part. Stochastic integrals of the continuous part are treated in the
traditional ”linear” way, while the integrals of the pure jump part need not be
linear. One of the motivations for this paper is that a fully nonlinear theory
which puts the continuous part and the jump part on an equal footing, may be a
more natural tool for applications in, e.g., mathematical finance, optimal stop-
ping, and control theory — after all, we can not expect nature and society to
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deliver their processes in decomposed form! Another motivation is that nonlin-
ear stochastic integrals turn out to be an excellent tool for producing interesting
formulas. This is actually where the work on this paper started — I was simply
looking for ways to understand and extend some of the fundamental formulas in
[12], and the nonlinear stochastic integral turned out to be the unifying concept
I needed in order to avoid doing (essentially) the same computations over and
over again. Although I hope to turn to applications in the future, the emphasis
of this paper is strictly on the second motivation, i.e., on mathematical formulas.

The main tool of the paper is nonstandard analysis and especially the the-
ory of hyperfinite Lévy processes developed in [9]. In nonstandard theory, the
increments ∆Lt of a process L exist as concrete objects, and hence (nonlin-
ear) operations on increments are trivial to define. The challenge is to show
that they lead to finite processes which can be interpreted in a standard frame-
work. I assume that the reader has a good general background in nonstandard
probability theory, but begin the paper with brief reviews of the most relevant
parts of the theory of hyperfinite Lévy processes (in Section 1) and the theory
of stochastic integration with respect to nonstandard martingales (Section 2).
Section 2 also includes some new results on (linear) stochastic integration with
respect to hyperfinite Lévy processes.

The main part of the paper begins in Section 3 where nonlinear stochastic in-
tegrals are introduced and where we prove the main representation theorem 3.5.
This theorem may be thought of as a Sum Formula for expressions of the form∑t
s=0 φ(ω,∆L(ω, t), t), and in Section 4 we use exponentiation to transform it

into a Product Formula for expressions of the form
∏t
s=0 ψ(ω,∆L(ω, s), s) (see

Theorem 4.1). To get a feeling for the main ideas of the paper, it may be wise
to look quickly and informally through Sections 3 and 4 before reading the more
technical parts of the first two sections.

In the last four sections, we show how the two basic formulas can be used in
a variety of settings. In Section 5, we use the Product Formula to find an expres-
sion for geometric Lévy processes which generalizes the one in [12]. In Section 6
and 7, we look at the how we can produce new hyperfinite Lévy processes from
old by transforming increments and transition probabilities, respectively. In the
first case, we use the Sum Formula to find an expression for the resulting pro-
cess, and in the second case we use the Product Formula to find an expression
for the density of the new measure with respect to the original. In the last sec-
tion, we study minimal martingale measures for nonlinear stochastic integrals,
and again we use the Product Formula to find an expression for the density.

Acknowledgement: It is a pleasure to thank Bernt Øksendal for the excellent
lectures over his book with Agnès Sulem [12] that got this paper started.

1 Review of hyperfinite Lévy processes

In this section, I briefly review the theory of hyperfinite Lévy processes. Almost
everything can be found in [9], but I have tried to arrange the material in a way
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that is optimal for the purposes of this paper. Other nonstandard approaches
to Lévy processes can be found in the papers by Albeverio and Herzberg [2] and
Ng [11].

Let ∆t be a positive infinitesimal, and choose K ∈∗N so large that K∆t is
infinite. We shall use

T = {k∆t : k = 0, 1, 2, . . . ,K}

as our timeline, and we shall work with internal processes X : Ω × T →∗ Rd.
For convenience we shall always assume that the underlying probability space
(Ω,F , P ) is hyperfinite, but this is not really essential. The Loeb measure of P
is denoted by PL, and all a.e.-statements are with respect to PL unless otherwise
stated.

If X : Ω × T →∗ Rd is an internal process, we shall write ∆X(ω, s) :=
X(ω, s + ∆t) − X(ω, s) for the forward increment of X at time s ∈ T . When
we sum over elements of the timeline, we shall use the convention that

t∑
s=r

X(s) = X(r) +X(r + ∆t) +X(r + 2∆t) + . . .+X(t−∆t);

hence X(r) is included in the sum, but X(t) is not. The same convention applies
to products:

t∏
s=r

X(s) = X(r) ·X(r + ∆t) ·X(r + 2∆t) · . . . ·X(t−∆t).

To describe a hyperfinite random walk, we specify a hyperfinite set A of
elements in ∗Rd and an internal set of positive numbers {pa}a∈A in ∗R such
that

∑
a∈A pa = 1. We call A the set of increments and {pa}a∈A the transition

probabilities.

Definition 1.1 A hyperfinite random walk with increments A and transition
probabilities {pa}a∈A is an internal process L : Ω× T →∗Rd such that:
(i) L(0) = 0.
(ii) The increments ∆L(0),∆L(∆t), . . . ,∆L(t), . . . are *-independent.
(iii) All increments ∆L(t) have the distribution specified by A and {pa}a∈A, i.e.

P [∆L(ω, t) = a] = pa

for all t ∈ T and all a ∈ A.

Given a hyperfinite random walk L, we shall let {Ft}t∈T be the internal
filtration generated by L.

We define the drift vector µL ∈∗Rd by

µL :=
1

∆t
E[∆L(0)] =

1
∆t

∑
a∈A

apa
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and note that

E[L(t)] = E[
t∑

s=0

∆L(s)] =
t

∆t
E[∆L(0)] = µLt

This means that the process ML(t) := L(t)−µLt is a martingale with respect to
the filtration {Ft}t∈T generated by L, and we thus have a natural decomposition

L(t) = µLt+ML(t)

in a drift term and a martingale term. We also introduce a nonnegative number
σL ∈∗Rd by

σ2
L :=

1
∆t

E[|∆L(0)|2] =
1

∆t

∑
a∈A

|a|2pa

and note the following simple, but useful identity [9, Lemma 1.2] (the proof is
just a simple calculation):

Lemma 1.2 For all t ∈ T

E[|L(t)|2] = σ2
Lt+ |µL|2t(t−∆t)

We shall be particularly interested in hyperfinite Lévy processes, i.e., hyper-
finite random walks which are finite in the following sense:

Definition 1.3 Let L be a hyperfinite random walk. We call L a hyperfinite
Lévy process if the set

{ω | L(ω, t) is finite for all finite t ∈ T}

has Loeb measure 1.

This definition is a little impractical as there is no obvious way to check that
it is satisfied. However, the following, more useful characterization was proved
in [9, Theorem 4.3]. We use the notation:

qk :=
1

∆t

∑
|a|>k

pa

Theorem 1.4 (Characterization of hyperfinite Lévy processes) A hy-
perfinite random walk L is a hyperfinite Lévy process if and only if the following
three conditions are satisfied:
(i) 1

∆t

∑
|a|≤k apa is finite for all finite and noninfinitesimal k ∈∗R.

(ii) 1
∆t

∑
|a|≤k |a|2pa is finite for all finite k ∈∗R.

(iii) limk→∞
◦qk = 0 in the sense that for every ε ∈ R+, there is an N ∈ N

such that qk < ε when k ≥ N .
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Hyperfinite Lévy processes may have bad integrability properties, and it is
often convenient to approximate them with processes which behave better under
integration. A hyperfinite random walk has finite increments if all a ∈ A are
finite (note that since A is internal, this means that there is an N ∈ N such that
|a| ≤ N for all a ∈ A). For hyperfinite random walks with finite increments, the
characterization above reduces to:

Corollary 1.5 [9, Corollary 2.4] A hyperfinite random walk L with finite in-
crements is a hyperfinite Lévy process if and only if both µL = 1

∆t

∑
a∈A apa

and σ2
L = 1

∆t

∑
a∈A |a|2pa are finite.

The next result gives us the integrability properties we need:

Theorem 1.6 [9, Theorem 2.3] Let L be a hyperfinite Lévy process with finite
increments. Then |Lt|p is S-integrable for all finite p ∈∗R+ and all finite t ∈ T .

If we combine this result with the decomposition L(t) = µLt+ML(t) above,
we get (see [9, Corollary 2.5]):

Corollary 1.7 A hyperfinite Lévy process L with finite increments can be de-
composed as

L(t) = µLt+ML(t)

where µL ∈∗ Rd is finite and ML is a martingale such that |ML(t)|p is S-
integrable for all finite t and all finite p ∈∗ R+. In particular, ML is an SL2-
martingale (in the terminology of [1], an SL2-martingale is just an internal
martingale such that |ML(t)|2 is S-integrable for all finite t).

As there is a well-developed theory for stochastic integration with respect to
SL2-martingales, this corollary will in the next section be our key to stochastic
integration with respect to hyperfinite Lévy processes. To extend integration
from processes with finite increments to the general case, we need to know how
general hyperfinite Lévy processes can be approximated by hyperfinite Lévy
processes with finite increments. Introducing the truncated processes L≤k for
k ∈∗R+ by

L≤k(ω, t) =
∑

{∆L(ω, s) : s < t and |∆L(ω, s)| ≤ k}

we have the following result which is a combination of Corollary 4.2 and (the
proof of) Proposition 3.4 in [9].

Proposition 1.8 Assume that L is a hyperfinite Lévy process. Then the trun-
cated process L≤k is a hyperfinite Lévy process for all noninfinitesimal k > 0.
Moreover, for each finite t ∈ T and each ε ∈ R+, there is a k ∈ R+ such that

P [ω : L(ω, s) = L≤k(ω, s) for all s ≤ t] > 1− ε

Note that L≤k need not be a hyperfinite Lévy process when k is infinitesimal.
Here is a very simple, but useful consequence of the proposition above.
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Corollary 1.9 Assume that L is a hyperfinite Lévy process and that t ∈ T is
finite. Then

∑t
s=0 |∆L(s)|2 is finite PL-a.e.

Proof: Assume first that L has finite increments. Then

E(
t∑

s=0

|∆L(s)|2) =
t

∆t

∑
a∈A

|a|2pa = tσ2
L

is finite according to Corollary 1.5, and hence
∑t
s=0 |∆L(s)|2 must be finite

PL-a.e. The result for general hyperfinite Lévy processes now follows from the
proposition above. ♠

We end this section with a few words on the notion of a splitting infinitesi-
mal for a hyperfinite Lévy process L. This notion played a central part in [9],
and will play an equally important part here. The starting point is simply that
for many purposes it is convenient to split our hyperfinite Lévy process L in
a continuous part and a jump part. The continuous part would ideally con-
sist of all the infinitesimal increments of L, while the jump part would ideally
consist of all the noninfinitesimal increments. Since it in general is impossible
to split infinitesimals and noninfinitesimals in an internal way, we must com-
promise somewhat. The idea is that if we split the increments at a sufficiently
large infinitesimal, then the infinitesimal contributions to the jump part will be
insignificant. Here is the precise definition of what ”sufficiently large” means in
this context ([9, Definition 5.1]):

Definition 1.10 An infinitesimal η is called a splitting infinitesimal for the
hyperfinite Lévy process L if

S- lim
b↓0

(
1

∆t

∑
η≤a≤b

|a|2pa) = 0 (1)

where the limit means that for any standard ε ∈ R+, there is a standard δ ∈ R+

such that 1
∆t

∑
η≤|a|≤b |a|2pa < ε whenever 0 � b < δ.

It is easy to see that splitting infinitesimals always exist. Note also that (1) is
equivalent to

1
∆t

∑
η≤|a|≤ε

|a|2pa ≈ 0 for all infinitesimal ε > η (2)

In [9, Theorem 5.3], splitting infinitesimals were used to prove a nonstandard
version of the Lévy-Itô decomposition of a Lévy process into a continuous part
and a pure jump part. In this paper, we shall use them in a similar (but
simpler) way to decompose nonlinear stochastic integrals into a well-behaved
”jump part” and an ”integral part” which (although it does contain jumps) is
easy to control.
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2 Stochastic integration with respect to hyper-
finite Lévy processes

In this section, I shall briefly review the basic theory of nonstandard stochastic
integration with respect to martingales and show how it can be adapted to
hyperfinite Lévy processes. For the martingale theory, I shall mainly follow the
presentations in the book [1] and the survey paper [8] — the original papers
are [7] and [6]. Another nonstandard approach to stochastic integration with
respect to Lévy processes can be found in [2].

From a purely nonstandard point of view, stochastic integrals are easy to
define. If X,M : Ω × T →∗R are two internal processes, we simply define the
stochastic integral

∫
X dM to be the process∫ t

0

X dM :=
t∑

s=0

X(s)∆M(s)

The problem is that in this generality, the stochastic integral is likely to be
infinite even when the processes X and M are finite. To control the integral, it
is usual to restrict to the case where M is a (sufficiently integrable) martingale
andX is a (sufficiently integrable) nonanticipating process. Let us briefly review
the basic theory.

An internal filtration {Ft}t∈T on our hyperfinite probability space Ω is sim-
ply an increasing, internal sequence of algebras of subsets of Ω. For each t ∈ T ,
Ft defines an equivalence relation ∼t on Ω by:

ω ∼t ω′ ⇐⇒ ∀A ∈ Ft(ω ∈ A⇐⇒ ω′ ∈ A)

An internal process X : Ω × T →∗ R is nonanticipating with respect to the
filtration Ft if for all t ∈ T

ω ∼t ω′ ⇒ X(ω, t) = X(ω′, t)

Since we are working with hyperfinite probability spaces, this is equivalent to
saying that X(·.t) is Ft-measurable, but the formulation above is often easier
to use. Intuitively, nonanticipation means that X can not see into the future;
its values at time t are based on what has happened up to that time.

Let M : Ω × T →∗ R be an internal process, and assume that M is a
martingale with respect to an internal filtration (Ω, {Ft}, P ) (this just means
thatM is nonanticipating and that E(∆Mt|Ft) = 0 for all t). We callM an SL2-
martingale if M2

t is S-integrable for all finite t ∈ T . The SL2-martingales will be
our basic class of integrator processes. To define the basic class of integrands,
let νM be the internal measure on Ω× T defined by

νM (A× {t}) =
∫
A

∆M(ω, t)2 dP (ω)

for all measurable A ⊆ Ω. We want our integrands to be S-square integrable
with respect to this Doléans measure νM . More precisely, we define:
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Definition 2.1 Assume that M is an SL2-martingale. The set SL2(M) con-
sists of all internal processes X : Ω× T →∗R such that:
(i) X is nonanticipating (with respect to the filtration of M)
(ii) X is S-square integrable with respect to νM

The following result shows that SL2(M) is a natural class of integrands:

Theorem 2.2 [1, Proposition 4.4.4 and Theorem 4.2.15] Assume that M is an
SL2-martingale and that X ∈ SL2(M). Then

∫
X dM is an SL2-martingale. If

M is S-continuous, so is
∫
X dM .

By using localizing sequences of stopping times, it is possible to extend
stochastic integration to an even larger class of integrands SL(M) (see [1]), but
we shall not use this larger class here.

When we turn to hyperfinite Lévy processes, we shall have to integrate with
respect to multidimensional martingales. If M : Ω × T →∗ Rd is a martingale
(i.e. each component is a martingale), and X : Ω × T →∗ Rm×d is a matrix-
valued, nonanticipating process, we define

∫
X dM in the natural way:∫ t

0

X dM =
t∑

s=0

X(s) ·∆M(s)

where · denotes matrix multiplication. We say that M is an SL2-martingale
if each component is a (one-dimensional) SL2-martingale, and we say that
X ∈ SL2(M) if each component of X is in SL2 of the component of M is
is integrated against (i.e. Xi,j ∈ SL2(Mj)). Theorem 2.2 now extends to the
multidimensional case in the obvious way.

Let us now return to our hyperfinite Lévy processes. If L is a hyperfinite
Lévy process with finite increments, we know from Corollary 1.7 that L can be
written

L(t) = µLt+ML(t)

where µL ∈∗Rd is finite, and ML is an SL2-martingale. To control a stochastic
integral

∫
X dL, we have to control

∑
X ∆t in addition to

∫
X dML. Let λ be

the nonstandard version of the Lebesgue integral, i.e. λ is defined on all internal
subsets A of the timeline T by

λ(A) = |A|∆t

We say that an internal function F : T →∗Rd is S-integrable with respect to λ
on finite intervals if F ·χ[0,t] is S-integrable with respect to λ for all finite t ∈ T .
We are now ready to define the set I(L) of natural integrands with respect to a
hyperfinite Lévy process L.

Definition 2.3 Let L be a hyperfinite Lévy process with finite increments. The
internal process X belongs to the set I(L) if the following two conditions are
satisfied:
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(i) X ∈ SL2(ML)
(ii) the function t→ X(ω, t) is S-integrable with respect to λ on finite intervals
for PL-almost all ω.
If L is a general hyperfinite Lévy process, we say that X ∈ I(L) if X ∈ I(L≤k)
for all finite and noninfinitesimal k ∈∗R+.

The next result just shows that these definitions do what they are intended
to do.

Proposition 2.4 If L is a hyperfinite Lévy process and X ∈ I(L), then there
is a set Ω′ ⊆ Ω of Loeb measure one such that

∫ t
0
X dL is finite for all ω ∈ Ω′

and all finite t ∈ T .

Proof: For all finite and noninfinitesimal k ∈∗ R+, decompose L≤k in a drift
part and a martingale part: L≤k(t) = µkt+Mk(t). Observe that∫ t

0

X dL≤k = µk

∫ t

0

X dλ+
∫ t

0

X dMk

By the definition above, both terms on the right are finite for all t on a set of
Loeb measure one. The general result now follows from Proposition 1.8. ♠

We end this section with two technical lemmas which will be needed in the
next section.

Lemma 2.5 Assume that L is a hyperfinite Lévy process, and that G : Ω×T →
∗R is nonanticipating. For any η ∈∗ R+, let L≤ηi and L≤ηj be two components
of the truncated process L≤η = (L≤η1 , L≤η2 , . . . , L≤ηd ). Then

E(
t∑

s=0

|G(s)∆L≤ηi (s)∆L≤ηj (s)|) ≤ σ2
ηE(

t∑
s=0

|G(s)|∆t) ≤ σ2
LE(

t∑
s=0

|G(s)|∆t)

where σ2
η := σ2

L≤η
= 1

∆t

∑
a≤η |a|2pa.

Proof: We have

E(
t∑

s=0

|G(s)∆L≤ηi (s)∆L≤ηj (s)|) ≤ E(
t∑

s=0

|G(s)||∆L≤η(s)|2) ≤

≤ E(
t∑

s=0

|G(s)|)
∑
|a|≤η

|a|2pa = σ2
ηE(

t∑
s=0

|G(s)|∆t) ≤ σ2
LE(

t∑
s=0

|G(s)|∆t)

where we have used that G is nonanticipating to get from the second to the
third term. ♠

The second of our lemmas gives us more precise information about the sums∑
G(s)∆Li(s)∆Lj(s) in the case where L has infinitesimal increments. We let

ai denote the i-th component of the vector a ∈∗Rd.
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Lemma 2.6 Assume that L is a hyperfinite Lévy process with infinitesimal in-
crements, and that G : Ω × T →∗ R is a nonanticipating process such that
G(ω, t)|∆L(ω, t)| ≈ 0 for all ω and all finite t ∈ T . Let

Ci,j =
1

∆t

∑
a∈A

aiajpa =
1

∆t
E(∆Li(t)∆Lj(t)|Ft)

Then there is a set Ω′ ⊆ Ω of Loeb measure one such that

t∑
s=0

G(ω, s)∆Li(ω, s)∆Lj(ω, s) ≈
t∑

s=0

Ci,jG(ω, s)∆t

for all finite t ∈ T and all ω ∈ Ω′.

Proof: Define the process N by

N(t) =
t∑

s=0

(G(s)∆Li(s)∆Lj(s)− Ci,jG(s)∆t)

Observe that N is a martingale since

E(∆N(s)|Fs) = E(G(s)∆Li(s)∆Lj(s)− Ci,jG(s)∆t|Fs) =

= G(s)E(∆Li(s)∆Lj(s)|Fs)− Ci,jG(s)∆t =

= Ci,jG(s)∆t− Ci,jG(s)∆t = 0

We compute the expectation of the quadratic variation of N :

E([N ](t)) = E(
t∑

s=0

∆N(s)2) = E(
t∑

s=0

(G(s)∆Li(s)∆Lj(s)− Ci,jG(s)∆t)2) =

= E(
t∑

s=0

(G(s)∆Li(s)∆Lj(s))2)− E(
t∑

s=0

(Ci,jG(s)∆t)2) ≤

≤ E(
t∑

s=0

(G(s)∆Li(s)∆Lj(s))2) ≤ E(
t∑

s=0

(G(s)|∆L(s)|)2|∆L(s)|2) ≈ 0

where we in the last step have used the hypothesis G(ω, t)|∆L(ω, t)| ≈ 0 plus
the fact that E(

∑t
s=0 |∆L(s)|2) = tσ2

L is finite to show that the expression
is infinitesimal. Since a simple martingale identity tells us that E(N(t))2) =
E([N ](t)), we have from Doob’s inequality:

E(sup
s≤t

N(s)2) ≤ 4E(N(t)2) = 4E([N ](t)) ≈ 0
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and the lemma follows. ♠

Remark In [9] the matrix CL = {Ci,j} is called the infinitesimal covariance
matrix of L, and it is shown (Lemma 7.4) that CL is symmetric and nonnegative
definite, and that

〈CLx, x〉 =
1

∆t

∑
a∈A

〈a, x〉2pa ≤ σ2
L|x|2

where 〈·, ·〉 is the inner product in Rd.

3 Nonlinear stochastic integrals

We are now ready to turn to our main topic: nonlinear stochastic integrals. As
indicated in the introduction, these are integrals where the integrand acts on the
increments of the integrator process in a nonlinear way. Since the increments
of a hyperfinite process are concrete and well-defined objects, nonlinear actions
are trivial to define. The challenge is to prove that the resulting integrals are
finite and well-behaved, or — put a little differently — to find conditions which
guarantee that the integrals are finite and well-behaved. The main result of
this section (the Sum Formula 3.5) shows that we have managed to find such
conditions, and it also shows that the integral can be computed is a way that
makes sense also from a standard perspective.

We start with a hyperfinite Lévy process L, let {Ft}t∈T be the filtration gen-
erated by L, and let {∼t}t∈T be the equivalence relations generated by {Ft}t∈T .
An internal function

φ : Ω×∗Rd × T →∗R

is called nonanticipating if

φ(ω, x, t) = φ(ω̃, x, t)

whenever ω ∼t ω̃. The nonlinear stochastic integral (NSI) of φ with respect to
L is the process I =

∫
φ(ω, dLs, s) defined by

I(ω, t) :=
t∑

s=0

φ(ω,∆L(s, ω), s)

We shall usually write

I(ω, t) =
∫ t

0

φ(ω, dLs, s)

Note that if x 7→ φ(ω, x, t) is linear (for all t and ω), then I is a stochastic
integral in the usual sense — hence the name nonlinear stochastic integral.

For the NSI I to make standard sense, we have to impose conditions on the
integrand φ; e.g., it is clear that we need φ(ω,∆L(s), s) to be infinitesimal for
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most times s. We shall assume that φ(ω, 0, s) = 0 and in addition that φ is twice
continuously differentiable in a (nonstandard) sense that we now describe.

Abusing notation slightly, we shall write ∂
∂xi

, ∇, ∂2

∂xi∂xj
etc. for the non-

standard extensions of the differential operators ∂
∂xi

, ∇, ∂2

∂xi∂xj
. When we dif-

ferentiate integrand functions φ(ω, x, t), the derivatives are always with respct
to the space variables x = (x1, x2, . . . , xd) unless otherwise specified. We shall
call an internal function F :∗Rd →∗Rm S-continuous if whenever x, y are finite
and infinitely close, then F (x), F (y) are also finite and infinitely close (note the
finiteness condition on F (x), F (y) which is not always included in the definition
of S-continuity).

Definition 3.1 For r ∈ N, the space SCr(∗Rd,∗Rm) of r-times S-continuously
differentiable functions from ∗Rd to ∗Rm consists of all internal functions F :
∗Rd →∗ Rm such that F and all its partial derivatives of order r or less exist
and are S-continuous.

With this preparation, we can introduce our space of integrands.

Definition 3.2 Let L be a hyperfinite Lévy process. The set NI(L) of non-
linear integrands of L consists of all nonanticipating, internal maps φ : Ω ×
∗Rd × T →∗R such that:
(i) φ(ω, 0, t) = 0 for all ω and t.
(ii) There is a set Ω′ ⊆ Ω of PL-measure one such that φ(ω, ·, t) ∈ SC2(∗Rd,∗R)
for all ω ∈ Ω′ and all finite t.
(iii) ∇φ(ω, 0, t) ∈ I(L) (recall Definition 2.3).

In Section 1 we introduced the upper truncations L≤k of our process L by

L≤k(ω, t) =
∑

{∆L(ω, s) : s < t and |∆L(ω, s)| ≤ k}

We shall also need the lower truncations L>k defined by

L>k(ω, t) =
∑

{∆L(ω, s) : s < t and |∆L(ω, s)| > k}

Obviously,
Lt = L>kt + L≤kt

We are now ready for the fundamental calculation of this paper. We assume
that φ ∈ NI(L) and that η is a splitting infinitesimal (recall Definition 1.10).
The idea is to use η to split the nonlinear integral in two parts — a jump part
and an integral part — which can be controlled separately.

∫ t

0

φ(ω, dL(s), s) =
t∑

s=0

φ(ω,∆L>η(s), s) +
t∑

s=0

φ(ω,∆L≤η(s), s) =

=
t∑

s=0

{
φ(ω,∆L>η(s), s)−∇φ(ω, 0, s) ·∆L>η(s)

}
+

12



+
t∑

s=0

φ(ω,∆L≤η(s), s) +
t∑

s=0

∇φ(ω, 0, s) ·∆L>η(s)

where we have subtracted and added the same term. This may look rather
mysterious, but the point is that the subtracted term ∇φ(ω, 0, s) ·∆L>η(s) will
stabilize the original jump term φ(ω,∆L>η(s), s) in a way that will be made
clear in Lemma 3.3 below. By Taylor’s formula (remember that φ(ω, 0, s) = 0)

φ(ω,∆L≤η(s), s) = ∇φ(ω, 0, s) ·∆L≤η(s)+

+
1
2

∑
i,j

∂2φ

∂xi∂xj
(ω,Θ(s), s)∆L≤ηi (s)∆L≤ηj (s)

where Θ(s) is on the line segment form 0 to ∆L≤η(s). If we substitute this into
the expression above, we get

∫ t

0

φ(ω, dL(s), s) =
t∑

s=0

{
φ(ω,∆L>η(s), s)−∇φ(ω, 0, s) ·∆L>η(s)

}
+

+
t∑

s=0

∇φ(ω, 0, s) ·∆L(s) +
1
2

t∑
s=0

∂2φ

∂xi∂xj
(ω,Θ(s), s)∆L≤ηi (s)∆L≤ηj (s)

In this expression, the second term on the right is finite since ∇(ω, 0, s) is
integrable with respect to L. The last term is close to the expression in Lemma
2.6, and should be reasonably easy to control. We therefore turn our attention
to the first expression which is the key to the whole argument:

Lemma 3.3 Assume that L is a hyperfinite Lévy process and that φ ∈ NI(L).
Fix a finite t ∈ T and for each r ∈∗R+, define

Sr(t) =
t∑

s=0

{
φ(ω,∆L>r(s), s)−∇φ(ω, 0, s) ·∆L>r(s)

}
Then

(i) Sr(t) is finite PL-a.e. for all finite r.

(ii) If η is a splitting infinitesimal, then for PL-a.a. ω

S- lim
r↓η

Sr(t) = Sη(t)

where the limit means that for each ε ∈ R+, there is a δ ∈ R+ such that
|Sη(t)− Sr(t)| < ε whenever η ≤ r < δ.

13



Proof: (i) By Proposition 1.8 it clearly suffices to prove this when L has finite
increments. By Taylor’s formula

Sr(t) =
∑

{s<t:r<|∆L(s)|}

{φ(ω,∆L(s), s)−∇φ(ω, 0, s) ·∆L(s)} =

=
1
2

∑
{s<t:r<|∆L(s)|}

∂2φ

∂xi∂xj
(ω,Θ(s), s)∆Li(s)∆Lj(s)

for some Θ(s) on the line segment from 0 to ∆L(s). Since L has finite increments
and φ ∈ NI(L),

Kω := max
0≤s≤t

{
1
2

∣∣∣∣ ∂2φ

∂xi∂xj
(ω,Θ(s), s)

∣∣∣∣}
is finite for PL-a.a. ω. Hence

|Sr(t)| ≤ Kω

∑
{s<t:r<|∆L(s)|}

|∆L(s)|2 (3)

is finite a.e. by corollary 1.9.

(ii) Just as above we have

|Sη(t)− Sr(t)| ≤
∑

{s<t:η<|∆L(s)|≤r}

|φ(ω,∆L(s), s)−∇φ(ω, 0, s) ·∆L(s)| =

=
1
2

∑
{s<t:η<|∆L(s)|≤r}

∣∣∣∣∂2φ

∂xi
(ω,Θ(s), s)∆Li(s)∆Lj(s)

∣∣∣∣ ≤ (4)

≤ Kω

∑
{s<t:η<|∆L(s)|≤r}

|∆L(s)|2

Let ΩN = {ω : Kω ≤ N} for N ∈ N. Since φ ∈ NI(L)), Kω is finite a.e., and
hence PL(ΩN ) → 1 as n→∞. Observe that

E

1ΩNKω

∑
{s<t:η<|∆L(s)|≤r}

|∆L(s)|2
 ≤

≤ NE

 ∑
{s<t:η<|∆L(s)|≤r}

|∆L(s)|2
 = N

t

∆t

∑
η<|a|≤r

|a|2pa

By the definition of splitting infinitesimals, the standard part of the right hand
side of this inequality goes to 0 as the standard part of r goes to 0, and hence
the standard part of the left hand side decreases to zero almost everywhere.
Letting N go to infinity, we see that the standard part of the right hand side of
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(4) goes to zero PL-a.e,, and hence S- limr↓η Sr(t) = Sη(t) PL-a.e. ♠

We need to do a little bookkeeping with the second order term in our ex-
pression for the nonlinear stochastic integral

∫
φ(ω, dL(s), s).

Lemma 3.4 Assume that L is a hyperfinite Lévy process, and that φ ∈ NI(L).
Let η be an infinitesimal, and let Cη = {Cηi,j} be the infinitesimal covariance
matrix given by Cηi,j = 1

∆t

∑
|a|≤η aiajpa Assume further that for all s and ω,

Θ(ω, s) is on the line segment from 0 to ∆L(ω, s). Then on a set of Loeb measure
one

t∑
s=0

∂2φ

∂xi∂xj
(ω,Θ(s), s)∆L≤ηi (s)∆L≤ηj (s) ≈ Cηi,j

t∑
s=0

∂2φ

∂xi∂xj
(ω, 0, s)∆t

for all finite t, and the two expressions are finite.

Proof: By definition of NI(L),
∑t
s=0

∂2φ
∂xi∂xj

(ω, 0, s)∆t is finite a.e. By Lemma

2.6 (truncating ∂2φ
∂xi∂xj

at an infinite number if necessary) we know that

t∑
s=0

∂2φ

∂xi∂xj
(ω, 0, s)∆L≤ηi (ω, s)∆L≤ηj (ω, s) ≈

t∑
s=0

Ci,j
∂2φ

∂xi∂xj
(ω, 0, s)∆t

and hence all that remains to prove is that

t∑
s=0

∂2φ

∂xi∂xj
(ω,Θ(s), s)∆L≤ηi (s)∆L≤ηj (s) ≈

≈
t∑

s=0

∂2φ

∂xi∂xj
(ω, 0, s)∆L≤ηi (ω, s)∆L≤ηj (ω, s)

Since Θ(s) is infinitesimal whenever ∆L≤ηi (ω, s)∆L≤ηj (ω, s) is different from

zero, the S-continuity of ∂2φ
∂xi∂xj

implies that for PL-a.a. ω, there is an infinites-
imal ε(ω) such that

t∑
s=0

∣∣∣∣ ∂2φ

∂xi∂xj
(ω,Θ(s), s)− ∂2φ

∂xi∂xj
(ω, 0, s)

∣∣∣∣ ∣∣∣∆L≤ηi (ω, s)
∣∣∣ ∣∣∣∆L≤ηj (ω, s)

∣∣∣ ≤

≤
t∑

s=0

ε(ω)
∣∣∣∆L≤ηi (ω, s)

∣∣∣ ∣∣∣∆L≤ηj (ω, s)
∣∣∣ ≤ ε(ω)

t∑
s=0

|∆L(ω, s)|2 ≈ 0

where we have used Corollary 1.9 in the last step. The lemma follows. ♠

We may now sum up our results in a theorem (writing
∫ t
0

∂2φ
∂xi∂xj

(ω, 0, s) ds

for the hyperfinite sum
∑t
s=0

∂2φ
∂xi∂xj

(ω, 0, s)∆t):
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Theorem 3.5 (Sum Formula) Assume that L is a hyperfinite Lévy process,
and that φ ∈ NI(L). Then for PL-a.a. ω, the nonlinear stochastic integral∫ t
0
φ(ω, dL(s), s) is finite for all finite t ∈ T and∫ t

0

φ(ω, dL(s), s) ≈
t∑

s=0

{
φ(ω,∆L>η(s), s)−∇φ(ω, 0, s) ·∆L>η(s)

}
+

+
∫ t

0

∇φ(ω, 0, s) · dL(s) +
1
2

∑
1≤i.j≤d

Cηi,j

∫ t

0

∂2φ

∂xi∂xj
(ω, 0, s) ds

Here η is any splitting infinitesimal, and Cη = {Cηi,j} is the infinitesimal co-
variance matrix Cηi,j = 1

∆t

∑
|a|≤η aiajpa. Moreover,

Sr(t) =
t∑

s=0

{
φ(ω,∆L>r(s), s)−∇φ(ω, 0, s) ·∆L>r(s)

}
is finite for all finite r and t, and if η is a splitting infinitesimal, then Sη(t) =
S- limr↓η Sr(t).

Proof: According to our basic calculation above∫ t

0

φ(ω, dL(s), s) =
t∑

s=0

{
φ(ω,∆L>η(s), s)−∇φ(ω, 0, s) ·∆L>η(s)

}
+

+
t∑

s=0

∇φ(ω, 0, s) ·∆L(s) +
1
2

t∑
s=0

∂2φ

∂xi∂xj
(ω,Θ(s), s)∆L≤ηi (s)∆L≤ηj (s)

In the expression on the right, the first term is finite a.e. by Lemma 3.3, the sec-
ond is finite by the definition of NI(L), and the third is finite and infinitely close
to 1

2

∑
1≤i.j≤d C

η
i,j

∫ t
0

∂2φ
∂xi∂xj

(ω, 0, s) ds according to Lemma 3.4. This proves the
formula. The statements about Sr(t) and Sη(t) are just Lemma 3.3. ♠

Remark: Note that (a nonstandard version of) Itô’s formula follows immedi-
ately from the Sum Formula: To compute F (LT ), just write

F (LT ) = F (0) +
t∑
t=0

(F (Lt + ∆Lt)− F (Lt))

and use the Sum Formula with φ(ω, a, t) = F (L(ω, t) + a)− F (L(ω, t)).

As an example, let us take a look at the simplest of all (truly) nonlinear
stochastic integrals — the quadratic variation:

Example: For simplicity we assume that L is one-dimensional. The quadratic
variation [L](t) :=

∑t
s=0 ∆L(s)2 is clearly a nonlinear stochastic integral corre-

sponding to φ(x) = x2. Since φ′(0) = 0 and φ′′(0) = 2, the Sum Formula in this
case reduces to
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[L](t) ≈
t∑

s=0

∆L>η(s)2 + Ct

for a (diffusion) constant C. Hence the quadratic variation equals (up to an
infinitesimal) the sum of the square of all noninfinitesimal increments plus a
diffusion term which is just a constant mulitiplum of time. ♠

This paper is about nonstandard processes, and we shall not spend much
time translating our results into standard language. At this point, however, it
may be appropriate just to sketch the main connections. It was proved in [9]
that any hyperfinite Lévy process induces a standard Lévy process l as its (right)
standard part, l =◦L. It was also proved that all standard Lévy processes l can
be obtained in this way (at least as long as we identify all Lévy processes with
the same law). It is not difficult to prove that if φ satisfies natural conditions
(we need, e.g., to require some regularity in t), then the right hand side of the
sum formula above is infinitely close to the standard expression

t∑
s=0

{◦φ(ω,∆l(s), s)−∇◦φ(ω, 0, s) ·∆l(s)}+ (5)

+
∫ t

0

∇◦φ(ω, 0, s) · dl(s) +
1
2

∑
1≤i,j≤d

◦Cηi,j

∫ t

0

∂2 ◦φ

∂xi∂xj
(ω, 0, s) ds

where

t∑
s=0

{◦φ(ω,∆l(s), s)−∇◦φ(ω, 0, s) ·∆l(s)} :=

:= lim
ε↓0

∑
{s<t:∆ls>ε}

{◦φ(ω,∆l(s), s)−∇◦φ(ω, 0, s) ·∆l(s)}

and where ∆ls denotes the (standard) jumps of the process l. Note that all the
terms in (5) makes standard sense, and hence this formula can be used as a
starting point for a standard investigation of nonlinear stochastic integrals. In
such an approach, it may be useful to think of a (standard) nonlinear stochas-
tic integral

∫ T
0
φ(ω, dlt, t) as a sum

∑
(φ(ω, lt+∆t, t + ∆t) − φ(ω, lt, t)), where

0,∆t, 2∆t, . . . , T is a partition of [0, T ] into small (standard) intervals, and then
use Itô’s formula on each little interval. The task is then to handle the conver-
gence problems as ∆t→ 0.

4 The product formula

The results in the previous section give us a way to calculate sums of the form∑t
s=0 φ(ω,∆L(s), s) where φ(ω, 0, t) = 0. In this section we shall take a look at
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the corresponding products
∏t
s=0 ψ(ω,∆L(s), s) where ψ(ω, 0, t) = 1. It is, of

course, easy to turn products into sums by exponentiating:

t∏
s=0

ψ(ω,∆L(s), s) =
t∏

s=0

sgn(ψ(ω,∆L(s), s))e
Pt
s=0 ln |ψ(ω,∆L(s),s)|

(for the time being we just ignore the problems that occur when ψ(ω,∆L(s), s) ≈
0). If we let

N(ω, t) := |{s < t : ψ(ω,∆L(s), s) < 0}|

be the number of times ψ(ω,∆L(s), s) is negative before time t, and assume
that

φ(ω, x, s) := ln |ψ(ω, x.s)|

is in NI(L), then by the Sum Formula 3.5:

t∏
s=0

ψ(ω,∆L(s), s) ≈

≈ (−1)N(ω,t) exp

(
t∑

s=0

{
φ(ω,∆L>η(s), s)−∇φ(ω, 0, s) ·∆L>η(s)

}
+

+
∫ t

0

∇φ(ω, 0, s) · dL(s) +
1
2

∑
1≤i,j≤d

Cηi,j

∫ t

0

∂2φ

∂xi∂xj
(ω, 0, s) ds

 =

=

(
t∏

s=0

ψ(ω,∆L>η(s), s)e−∇φ(ω,0,s)·∆L>η(s)

)
×

× exp

∫ t

0

∇φ(ω, 0, s) · dL(s) +
1
2

∑
1≤i.j≤d

Cηi,j

∫ t

0

∂2φ

∂xi∂xj
(ω, 0, s) ds


where

t∏
s=0

ψ(ω,∆L>η(s), s)e−∇φ(ω,0,s)·∆L>η(s) =

= S- lim
r↓0

t∏
s=0

ψ(ω,∆L>r(s), s)e−∇φ(ω,0,s)·∆L>r(s)

for r ∈ R+ (the exponential term is needed for convergence). To express this
relationship in terms of the original function ψ, we use that since φ(ω, x, t) =
ln |ψ(ω, x, t)|, we have

∂φ

∂xi
=

∂ψ
∂xi

ψ
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and
∂2φ

∂xi∂xj
=

∂2ψ
∂xi∂xj

ψ − ∂ψ
∂xi

∂ψ
∂xj

ψ2

Since ψ(ω, 0, t) = 1, we get

∂φ

∂xi
(ω, 0, t) =

∂ψ

∂xi
(ω, 0, t)

and
∂2φ

∂xi∂xj
(ω, 0, t) =

[
∂2ψ

∂xi∂xj
− ∂ψ

∂xi

∂ψ

∂xj

]
(ω, 0, t)

If we substitute this into the formula above, we get

t∏
s=0

ψ(ω,∆L(s), s) ≈

≈

(
t∏

s=0

ψ(ω,∆L>η(s), s)e−∇ψ(ω,0,s)·∆L>η(s)

)
×

× exp

∫ t

0

∇ψ(ω, 0, s) · dL(s) +
1
2

d∑
i,j=1

Cηi,j

∫ t

0

[
∂2ψ

∂xi∂xj
− ∂ψ

∂xi

∂ψ

∂xj

]
(ω, 0, s) ds


So far our calculations are quite formal, and we have neglected the problems

which occur when ψ(ω,∆Ls, s) is close to zero. The next theorem takes care of
the necessary bookkeeping.

Theorem 4.1 (Product Formula) Assume that L is a hyperfinite Lévy pro-
cess, and that the internal function ψ : Ω×∗Rd×T →∗R satisfies the following
conditions:
(i) ψ(ω, 0, t) = 1 for all ω and t.
(ii) There is a set Ω′ ⊆ Ω of PL-measure one such that ψ(ω, ·, t) ∈ SC2(∗Rd,∗R)
for all ω ∈ Ω′ and all finite t.
(iii) ∇ψ(ω, 0, t) ∈ I(L)
Then for PL-a.a. ω, the product

∏t
0 ψ(ω, dL(s), s) is finite for all finite t ∈ T

and
t∏

s=0

ψ(ω,∆L(s), s) ≈

≈

(
t∏

s=0

ψ(ω,∆L>η(s), s)e−∇ψ(ω,0,s)·∆L>η(s)

)
×

× exp

∫ t

0

∇ψ(ω, 0, s) · dL(s) +
1
2

d∑
i,j=1

Cηi,j

∫ t

0

[
∂2ψ

∂xi∂xj
− ∂ψ

∂xi

∂ψ

∂xj

]
(ω, 0, s) ds


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Here η is any splitting infinitesimal, and Cη = {Cηi,j} is the infinitesimal co-
variance matrix Cηi,j = 1

∆t

∑
|a|≤η aiajpa. Moreover, the product on the right

hand side is finite and given by

t∏
s=0

ψ(ω,∆L>η(s), s)e−∇φ(ω,0,s)·∆L>η(s) =

= S- lim
r↓η

(
t∏

s=0

ψ(ω,∆L>r(s), s)e−∇φ(ω,0,s)·∆L>r(s)

)
for r ∈ R+.

Proof: For each natural number n > 1 , we let logn : R → R be a lower
bounded approximation to log. More precisely, we let logn be an even function,
bounded from below, with bounded and continuous first and second derivatives,
and assume that logn agrees with log(| · |) on the set {x : |x| ≥ 1

n}. Assume also
logn x ≥ log |x| for all x and that the sequence {logn} is decreasing. Abusing
notation slightly, we shall write logN , where N ∈∗ N, for the elements in the
nonstandard extension of the sequence {logn}n∈N.

Let Π(ω, t) =
∏t
s=0 ψ(ω,∆Ls, s) and define

Πn(ω, t) = (−1)N(ω,t)e
Pt
s=0 φn(ω,∆Ls,s)

(recall that N(ω, t) counts the number of times ψ(ω,∆Ls, s) is negative before
time t). Note that since logn x ≥ log |x|, we have |Π(ω, t)| ≤ |Πn(ω, t)|. Since
the function φn = logn ◦ψ is in NI(L) for all n ∈ N, the Sum Formula 3.5 tells
us that Πn(ω, t) is finite almost everywhere and hence Π(ω, t) is finite almost
everywhere. The Sum Formula also tells us that

∫ t

0

φn(ω, dL(s), s) ≈
t∑

s=0

{
φn(ω,∆L>η(s), s)−∇φn(ω, 0, s) ·∆L>η(s)

}
+

+
∫ t

0

∇φn(ω, 0, s) · dL(s) +
1
2

d∑
i,j=1

Cηi,j

∫ t

0

∂2φn
∂xi∂xj

(ω, 0, s) ds =

=
t∑

s=0

{
φn(ω,∆L>η(s), s)−∇ψ(ω, 0, s) ·∆L>η(s)

}
+

+
∫ t

0

∇ψ(ω, 0, s) · dL(s) +
1
2

d∑
i,j=1

Cηi,j

∫ t

0

[
∂2ψ

∂xi∂xj
− ∂ψ

∂xi

∂ψ

∂xj

]
(ω, 0, s) ds

where we in the last step have done the same calculations as above (recall that
logn locally looks like log(| · |)). Exponentiating, we get
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Πn(ω, t) = (−1)N(ω,t)
t∏

s=0

eφn(ω,dL(s),s) ≈

≈ (−1)N(ω,t)

(
t∏

s=0

eφn(ω,∆L>η(s),s)−∇ψ(ω,0,s)·∆L>η(s)

)
×

× exp

∫ t

0

∇ψ(ω, 0, s) · dL(s) +
1
2

d∑
i,j=1

Cηi,j

∫ t

0

[
∂2ψ

∂xi∂xj
− ∂ψ

∂xi

∂ψ

∂xj

]
(ω, 0, s) ds


Hence for all n ∈ N, the following statement holds

P [ω ∈ Ω | ∀t ≤ n (|Πn(ω, t)−Rn(ω, t)| < 1/n)] > 1− 1
n

where Rn(ω, t) is the right hand side of the formula above. By overflow, the
statement must also hold for some infinite N ∈∗N \N, and hence

ΠN (ω, t) = (−1)N(ω,t)
t∏

s=0

eφN (ω,dL(s),s) ≈

≈ (−1)N(ω,t)

(
t∏

s=0

eφN (ω,∆L>η(s),s)−∇ψ(ω,0,s)·∆L>η(s)

)
×

× exp

∫ t

0

∇ψ(ω, 0, s) · dL(s) +
1
2

d∑
i,j=1

Cηi,j

∫ t

0

[
∂2ψ

∂xi∂xj
− ∂ψ

∂xi

∂ψ

∂xj

]
(ω, 0, s) ds


on a set of PL-measure one.

Comparing the left and the right hand side of this formula to the left and the
right hand side of the first formula in the theorem, respectively, we see that the
terms agree except possibly when there is an s < t such that |ψ(ω,∆L(s), s)| <
1
N . But in that case both sides of the formula we want to prove are infinitesimal
a.s., and hence the formula still holds. (To see this, note that if the product∏t
s=0 ψ(ω,∆Ls, s) contains an infinitesimal factor, but is not itself infinitesimal,

then for a finite choice of n, Πn(ω, t) has to be infinite, and we know that this
happens with probability zero).

It remains to prove the second formula in the theorem. Note first that since

t∏
s=0

|ψ(ω,∆L>η(s), s)e−∇φ(ω,0,s)·∆L>η(s)| ≤

≤
t∏

s=0

eφn(ω,∆L>η(s),s)−∇ψ(ω,0,s)·∆L>η(s)
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for n ∈ N, the first product must be finite since the second one is. Observe also
that for finite n > 1∏t

s=0 ψ(ω,∆L>η(s), s)e−∇φ(ω,0,s)·∆L>η(s)∏t
s=0 ψ(ω,∆L>r(s), s)e−∇φ(ω,0,s)·∆L>r(s)

equals ∏t
s=0 e

φn(ω,∆L>η(s),s)−∇ψ(ω,0,s)·∆L>η(s)∏t
s=0 e

φn(ω,∆L>r(s),s)−∇ψ(ω,0,s)·∆L>r(s)

for all infinitesimal r > η (the terms that do not cancel belong to jumps in the
interval (η, r], and log and logn can not distinguish between these). The Sum
Theorem tells us that the second fraction is infinitely close to one, and hence

t∏
s=0

ψ(ω,∆L>η(s), s)e−∇φ(ω,0,s)·∆L>η(s) ≈

≈
t∏

s=0

ψ(ω,∆L>r(s), s)e−∇φ(ω,0,s)·∆L>r(s)

This is just a nonstandard version of the limit statement in the theorem. ♠

Note that we may ”standardize” the Product Formula the same way we
”standardized” the Sum Formula at the end of Section 3. What we then get
looks like a generalization of the expression for the stochastic exponential (see,
e.g., [13, Theorem 37]). In fact, we get (a nonstandard) version of the stochastic
exponential by applying the (one-dimensional) Product Formula to the function
ψ(ω, x, s) = (1+x) (see the next section for more information on a closely related
topic).

In the remainder of this paper, we shall look at various applications of non-
linear stochastic integrals and the Product Formula. We begin with an applica-
tion of the Product Formula.

5 Geometric Lévy processes

In [12] a geometric Lévy process is defined as the solution of a stochastic differ-
ential equation of the form

dxt = xt(αdt+ βdbt + γ(ω, dlt, t)) (6)

where l is a pure jump Lévy process, b is a (standard) Brownian motion inde-
pendent of l, the coefficients α, β are constants, and γ is an adapted process
satisfying the appropriate growth conditions. Since l is a pure jump process,
the (nonlinear) integral

∫
γ(ω, dlt, t) can be defined, e.g., as a sum of jumps.

For notational convenience we shall assume that l is one-dimensional although
the arguments work equally well in higher dimensions.
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Using Itô calculus it is shown in [12] that provided γ(t, z) ≥ −1, we have

x(t) = x(0) exp
{(

α− 1
2
β2

)
t+ βb(t)+

+
∫ t

0

∫
|z|<R

{ln(1 + γ(s, z))− γ(s, z)}ν(dz)ds

+
∫ t

0

∫
R

ln(1 + γ(s, z))Ñ(ds, dz)
}

where ν is the Lévy measure and Ñ is the compensated jump measure on the
set {z : |z| < R}.

We shall see how the Product Formula can be used to prove a generalized
version of this expression with respect to a full (as opposed to a pure jump) Lévy
process. To look at geometric Lévy processes from a nonstandard perspective,
let L be a (one-dimensional) hyperfinite Lévy process and let B be an Anderson
random walk (this is just a Bernoulli random walk on T with stepsize ±

√
∆t,

see, e.g., [1, page 78]) independent of L, and consider a stochastic difference
equations of the form

∆Xt = Xt(α∆t+ β∆Bt + Γ(ω,∆Lt, t))

where Γ(ω, 0, t) = 0. By induction, the solution to this equation is

Xt = X0

t∏
s=0

(1 + α∆t+ β∆Bs + Γ(ω,∆Ls, s))

We shall apply the Product Formula to the augmented process

L̃(ω, t) := (t, Bt, L(t))

and the function ψ : Ω×∗R3 × T →∗R defined by

ψ(ω, x, y, z, t) = 1 + αx+ βy + Γ(ω, z, t)

Before we begin, observe that the the covariance matrix Cη of L̃ takes the form

Cη ≈

 0 0 0
0 1 0
0 0 c2


for a constant c (c is the diffusion coefficient of L). We also observe that

t∏
s=0

ψ(ω,∆L̃>η(s), s)e−∇ψ(ω,0,s)·∆L̃>η(s) ≈

≈
t∏

s=0

(1 + Γ(ω,∆L>η(s), s))e−Γz(ω,0,s)∆L
>η
s
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where Γz(ω, 0, s) = ∂Γ
∂z (ω, 0, s). The Product Formula now gives

Xt = X0

t∏
s=0

(1 + α∆t+ β∆Bs + Γ(ω,∆Ls, s)) = X0

t∏
s=0

ψ(ω,∆L̃s, s) ≈

≈ X0

[
t∏

s=0

(1 + Γ(ω,∆L>η(s), s))e−Γz(ω,0,s)∆L
>η
s

]
×

× exp
(

(α− β2

2
)t+ βBt +

∫ t

0

Γz(ω, 0, s)dLs +
c2

2

∫ t

0

(Γzz − Γ2
z)(ω, 0, s) ds

)
To compare this formula to the one from [12] above, it is convenient to

rewrite the product term

t∏
s=0

(1 + Γ(ω,∆L>η(s), s))e−Γz(ω,0,s)∆L
>η
s

as
e

Pt
s=0{ln(1+Γ(ω,∆L>η(s),s))−Γz(ω,0,s)∆L

>η
s }

assuming that Γ > −1 for the time being. Except for some notational differ-
ences, the formulas have a lot in common, but we have an extra term c2

2

∫ t
0
(Γzz−

Γ2
z)(ω, 0, s) ds coming from the diffusion part of our Lévy process L, and there

is also a slight difference in the way the two formulas treat the divergence prob-
lems of the Lévy measure — we are ”normalizing” with the linearized term
−Γz(ω, 0, s)∆Ls while [12] makes use of the nonlinearized term −γ(ω,∆ls, s).
Observe also that as we are using products for the ”jump part” of the expression,
we do not need the requirement γ ≥ −1 of [12].

6 Transforming increments

Since a hyperfinite Lévy process is given in terms of a hyperfinite set A of
increments and an internal set {pa}a∈A of transition probabilities, there are two
natural ways to transform it into another hyperfinite Lévy process — we can
either change the increments, or we can change the transition probabilities. In
this section we shall study what happens when we change the increments, and
in the next we shall take a look at what happens when we change the transition
probabilities.

Assume that φ :∗Rd →∗Rm is an internal function and consider a hyperfinite
Lévy process L with increments a ∈ A and transition probabilities {pa}a∈A. We
define a new hyperfinite random walk φL in ∗Rm by

φL(ω, t) =
t∑

s=0

φ(∆L(ω, s))
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This is obviously a hyperfinite random walk with increments φA := {φ(a) :
a ∈ A} and transition probabilities {pa}a∈A (to be perfectly consistent in our
notation, we should rename this set {pb}b∈φA, but that would just be confusing).
The function φ should map infinitesimals to infinitesimals, and there is no great
loss of generality to assume that φ(0) = 0 (if not, we just adjust φ by an
infinitesimal). We want to know when φL is a hyperfinite Lévy process (and
not just a hyperfinite random walk), and the following simple lemma gives us
a useful criterion. Recall the definition of SC2(∗Rd,∗Rm) from the beginning of
Section 3.

Lemma 6.1 If L is a hyperfinite Lévy process and φ ∈ SC2(∗Rd,∗Rm) with
φ(0) = 0, then φL is a hyperfinite Lévy process.

Proof: Assume first that L has finite increments. Then φL has finite increments,
and according to Corollary 1.5 we only have to prove that:

(i) 1
∆t

∑
a∈A φ(a)pa is finite

(ii) 1
∆t

∑
a∈A |φ(a)|2pa is finite

To prove (i), observe that by Taylor’s formula

φ(a) = ∇φ(0) · a+
1
2

∑
i,j

∂2φ

∂xi∂xj
(θa)aiaj

for some θa on the line segment from 0 to a. Since the increments a are bounded
by a real number and φ ∈ SC2(∗Rd,∗Rm), we have 1

2

∑
i,j

∂2φ
∂xi∂xj

(θa)aiaj ≤
K|a|2 for some real number K. Hence

1
∆t
|
∑
a∈A

φ(a)pa| ≤
|∇φ(0)|

∆t
· |
∑
a∈A

apa|+
K

∆t

∑
a∈A

|a|2pa

which is finite since L is a hyperfinite Lévy process with finite increments.
The proof of (ii) is similar, but easier. This time we just need the first order

Taylor approximation
φ(a) = ∇φ(θa) · a

for a θa on the line segment from 0 to a. Since {∇φ(θa)}a∈A is bounded by a
real constant K, we have:

1
∆t

∑
a∈A

|φ(a)|2pa ≤
K2

∆t

∑
a∈A

|a|2pa

which is finite since L is a hyperfinite Lévy process with finite increments.
To extend the result to hyperfinite Lévy processes with infinite increments,

just observe that we already proved that φ(L≤k) is a hyperfinite Lévy process
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for all noninfinitesimal, finite k. The result follows from Proposition 1.9. ♠

We may now use the Sum Formula 3.5 to find an approximate expression
for φL:

Proposition 6.2 Let L be a hyperfinite Lévy process and assume that φ ∈
SC2(∗Rd,∗Rm) with φ(0) = 0. Then for PL-a.a ω and all finite t ∈ T :

φL(ω, t) ≈ ∇φ(0) · L(ω, t) +
t

2

∑
i,j

Cηi,j
∂2φ

∂xi∂xj
(0)+

+
t∑

s=0

{φ(∆L>η(ω, s))−∇φ(0) ·∆L>η(ω, s)}

where η is any splitting infinitesimal for L, and Cη = {Cηi,j} is the corresponding
infinitesimal covariance matrix.

Proof: This is just a special case of the Sum Formula 3.5. ♠

7 Transforming probabilities

In this section, we keep the increments a ∈ A of our hyperfinite Lévy process
L, but change the transition probabilities from {pa}a∈A to {qa}a∈A where qa =
ψ(a)pa for some function ψ :∗Rd →∗ [0,∞). We obviously need∑

a∈A
ψ(a)pa = 1

to get a probability measure. We shall write Q for the new, induced probability
measure on Ω.

If we restrict overselves to a bounded timeline Tt = {s ∈ T : s < t} (where t
is finite), the density D of the new measure Q with respect to the old measure
P is clearly given by

D(ω, t) =
t∏

s=0

ψ(∆L(ω, s))

We shall use the Product Formula 4.1 to find an expression for D. However,
such an expression is of little value unless we know that Q is absolutely contin-
uous with respect to P (or, more correctly, that the Loeb measure QL of Q is
absolutely continuous with respect to the Loeb measure PL of P — at least as
long as we restrict to bounded time intervals). Therefore, most of our efforts
in this section will go into showing that under quite general conditions, QL is
absolutely continuous with respect to PL. Note that when this is the case, our
process L is a hyperfinite Lévy process also with respect to the new measure Q
(this follows immediately from Definition 1.3).

26



We shall be working with two different classes D1(L) and D2(L) of func-
tions ψ according to how much differentiability we need (recall the definition of
SCr(∗Rd,∗Rd) from the beginning of Section 3):

Definition 7.1 Let L be a hyperfinite Lévy process with transition probabilities
{pa}a∈A. We define Dr(L) (where r ∈ N) to be the set of all internal functions
ψ :∗Rd →∗ [0,∞) such that:

(i) ψ ∈ SCr(∗Rd,∗[0,∞))

(ii)
∑
a∈A ψ(a)pa = 1

(iii) limk→∞
◦
(

1
∆t

∑
|a|>k ψ(a)pa

)
= 0

We begin with a simple lemma which will allow us to reduce many arguments
to processes with finite increments.

Lemma 7.2 Let L be a hyperfinite Lévy process and assume that ψ ∈ Dr(L)
for some r ∈ N. Then there exist finite numbers k, c such that the modified
function ψ̃(a) = ψ(a)/(1− c∆t) is in Dr(L<k).

Proof: By part (iii) in the definition of Dr(L), there is a finite (and noninfinites-
imal) k such that

∑
|a|<k ψ(a)pa = 1−m∆t for some finite m. From the general

theory of hyperfinite Lévy processes, we know that
∑

{a∈A:a≥k} pa = n∆t for
some finite n. If A<k is the set of increments of the truncated process L<k, then
clearly, A<k = {0} ∪ {a ∈ A : |a| < k}. Hence

∑
a∈A<k

ψ(a)pa =
∑
|a|<k

ψ(a)pa +
∑
|a|≥k

ψ(0)pa = (1−m∆t) + ψ(0)n∆t = 1− c∆t

where c = m − ψ(0)n. This means that ψ̃(a) = ψ(a)/(1 − c∆t) satisfies part
(ii) in the definition of Dr(L), and the other two conditions are trivially satis-
fied. ♠

The next two lemmas show that the classes Dr have more structure than
may be obvious at first glance.

Lemma 7.3 Let L be a hyperfinite Lévy process.
(i) If ψ ∈ D2(L), then ψ(0) = 1 + λ∆t for some finite λ.
(ii) If ψ ∈ D1(L), then ψ(0) = 1 + γ

√
∆t for some finite γ.

Proof: By the previous lemma we may assume that L has finite increments.

(i) By Taylor’s formula:
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1 =
∑
a∈A

ψ(a)pa =
∑
a∈A

ψ(0)pa +
∑
a∈A

(ψ(a)− ψ(0))pa =

= ψ(0) +
∑
a∈A

∇ψ(0) · apa +
1
2

∑
a∈A

∑
i,j

∂2ψ

∂xi∂xj
(θa)aiajpa =

= ψ(0) +∇ψ(0) · µL∆t+
1
2

∑
a∈A

∑
i,j

∂2ψ

∂xi∂xj
(θa)aiajpa

for some θa between 0 and a. Since L has finite increments, 1
2

∂2ψ
∂xi∂xj

(θa) is
bounded by a finite number C, and hence

1
2

∑
a∈A

∑
i,j

∂2ψ

∂xi∂xj
(θa)aiajpa ≤

∑
a∈A

∑
i,j

C|a|2pa ≤ Cσ2
L∆t

and the result follows.

(ii) We use essentially the same argument, but have one less derivative to play
with:

1 =
∑
a∈A

ψ(a)pa =
∑
a∈A

ψ(0)pa +
∑
a∈A

(ψ(a)− ψ(0))pa = ψ(0) +
∑
a∈A

∇ψ(θa) · apa

Since L has finite increments, |∇ψ(θa)| is bounded by a constant K, and hence
by Hölder’s inequality:

∑
a∈A

∇ψ(θa) · apa ≤ K
∑
a∈A

|a|pa ≤ K

(∑
a∈A

|a|2pa

) 1
2
(∑
a∈A

|1|2pa

) 1
2

=

=

(∑
a∈A

|a|2pa

) 1
2

=
√

∆t σL

The result follows. ♠

Lemma 7.4 Let L be a hyperfinite Lévy process and assume that ψ ∈ D1(L).
Then there is a finite number ξ such that

∑
a∈A ψ(a)2pa = 1 + ξ∆t

Proof: By Lemma 7.2 we need only consider processes with finite increments.
Observe first that since

ξ :=
1

∆t

∑
a∈A

(ψ(a)− 1)2pa =
1

∆t

∑
a∈A

(ψ(a)2 − 2ψ(a) + 1)pa =
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=
1

∆t

(∑
a∈A

ψ(a)2pa − 1

)
it suffices to show that 1

∆t

∑
a∈A(ψ(a)− 1)2pa is finite. We have

1
∆t

∑
a∈A

(ψ(a)− 1)2pa =
1

∆t

∑
a∈A

(ψ(a)− ψ(0) + ψ(0)− 1)2pa ≤

≤ 2
∆t

∑
a∈A

(ψ(a)− ψ(0))2pa +
2

∆t

∑
a∈A

(ψ(0)− 1)2pa

The last term is finite by the previous lemma, and the first is finite by yet
another exercise in Taylor’s formula:

2
∆t

∑
a∈A

(ψ(a)− ψ(0))2pa ≤
2

∆t

∑
a∈A

|∇ψ(θa)|2|a|2pa ≤Mσ2
L

where M is a finite number bounding 2|∇ψ(θa)|2. ♠

We are now ready to show that the density process Dt(ω) =
∏t
s=0 ψ(∆L(ω, s))

is S-integrable. This implies that the new Loeb measure QL is absolutely con-
tinuous with respect to the old PL on bounded intervals.

Proposition 7.5 Let L be a hyperfinite Lévy process and assume that ψ ∈
D1(L). Then Dt(ω) =

∏t
s=0 ψ(∆L(ω, s)) is S-integrable for all finite t ∈ T .

Proof: It suffices to show that E(D(t)2) is finite. By Lemma 7.4

E(D(t)2) = E(
t∏

s=0

ψ(∆L(s))2) =
t∏

s=0

E(ψ(∆L(s))2) =

=
t∏

s=0

∑
a∈A

ψ(a)2pa =
t∏

s=0

(1 + ξ ∆t) = (1 + ξ ∆t)
t

∆t ≈ eξt

which is finite. ♠

Finally, we use the Product Formula 4.1 to find an expression for the density
process D:

Theorem 7.6 Let L be a hyperfinite Lévy process and assume that ψ ∈ D2(L).
Then for all finite t ∈ T , the product Dt(ω) =

∏t
s=0 ψ(∆L(ω, s)) is S-integrable

and

Dt(ω) ≈

(
t∏

s=0

ψ(∆L>η(ω, s))e−∇ψ(0)·∆L>η(ω,s)

)
×

×eλt+∇ψ(0)·L(ω,t)+ t
2

P
i,j C

η
i,j

h
∂2ψ

∂xi∂xj
(0)− ∂ψ

∂xi
(0) ∂ψ∂xj

(0)
i

where η is a splitting infinitesimal, Cη the corresponding infinitesimal covariance
matrix, and λ = (ψ(0)− 1)/∆t is finite.
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Proof: According to Lemma 7.3, ψ(0) = 1 + λ∆t for a finite constant λ. Ap-
plying the Product Formula 4.1 to the function ψ̃(x) = ψ(x)

1+λ∆t and observing
that (1 + λ∆t)t/∆t ≈ eλt, we get the formula. The S-integrability is already
established in the proposition above. ♠

8 Minimal martingale measures

Let L be a d-dimensional hyperfinite Lévy process and assume that φi ∈ NI(L)
for i = 1, . . . , d. Consider the d-dimensional, nonlinear stochastic integral

X(ω, t) =
∫ t

0

φ(ω, dLs(ω), s)

defined componentwise by

Xi(ω, t) =
∫ t

0

φi(ω, dLs(ω), s)

We want to change the probability measure P into a new measure Q such that
X is a martingale with respect to Q and such that the Loeb measure QL of Q
is absolutely continuous with respect to the Loeb measure PL of P — at least
as long as we restrict our processes to bounded time intervals.

The increments of X at time t are φ(ω, a, t) where a ∈ A. If X is to be a
martingale, we must give the increments a distribution a 7→ q(ω, a, t) (which
now depends on time and history) such that∑

a∈A
φ(ω, a, t)q(ω, a, t) = 0

It is not always possible to find a new measure q which turns X into a martingale
— e.g., no change of measure can make a martingale out of a strictly increasing
process. In fact, the formula above tells us that it is possible to turn X into a
martingale by a change of measure if and only if for all ω and t, the origin
is in the convex hull of the set {φ(ω, a, t) : a ∈ A} of increments (and in
that case there are often many possibilities corresponding to different convex
combinations). This is one of the fundamental observations of discrete time
mathematical finance, but it is of little use in the present setting as it may
produce measures Q which are hopelessly singular with respect to P .

For a more realistic approach, we assume that q is given by a density ψ, i.e.,
q(ω, a, t) = ψ(ω, a, t)pa. The formula above then becomes∑

a∈A
φ(ω, a, t)ψ(ω, a, t)pa = 0 (7)

and in addition we have
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∑
a∈A

ψ(ω, a, t)pa = 1 (8)

since q is a probability measure. We also need, of course, that ψ(ω, a, t) ≥ 0.
If we can can find such a function ψ, our process X will be a martingale

with respect to the new measure Q on Ω defined by

Q(ω) =
∏
s∈T

ψ(ω,∆L(ω, s), s)p∆L(ω,s)

The density of Q with respect to the original measure P is given by the process

Dt(ω) =
t∏

s=0

ψ(ω,∆L(ω, s), s)

and we hope to use the Product Formula to find an approximate expression for
this process. However, for such a formula to be of much use, we need the new
measure Q to be absolutely continuous with respect to the old. Even with this
condition satisfied, there are often several candidates for Q to choose among
(known by confusingly similar names such as the minimal martingale measure,
the minimal variation martingale measure, and — several versions of — the
minimal entropy martingale measure). We shall concentrate here on the notion
of a minimal martingale measure introduced by Föllmer and Schweizer in [5]
(see [14], [15], [4] for more information, and consult also [10] for an efficient way
to find martingale measures) as it is the algebraically simplest, but it should be
possible to do similar calculations for the other candidates.

The idea behind the minimal martingale measure is that we want a measure
which turns

∫
φ(ω, dLt, t) into a martingale, but which preserves as many other

martingales as possible. Let, as usual, {Ft} be the internal filtration generated
by L. An {Ft}-martingale M : Ω× T →∗R is orthogonal to L if

E[∆M(t)∆Li(t)|Ft] = 0 for all t ∈ T and all i = 1, . . . , d

Here is our adaption of Föllmer’s and Schweizer’s concept of a minimal martin-
gale measure:

Definition 8.1 Let ψ : Ω ×∗Rd × T →∗ [0,∞) be a nonanticipating function
such that

∑
a∈A ψ(ω, a, t)pa = 1 for all ω and t, and let

Q(ω) =
∏
t∈T

ψ(ω,∆L(ω, t), t)p∆L(ω,t)

be the internal probability measure on Ω induced by ψ. Consider the following
conditions:

(i) any internal martingale (w.r.t. P ) which is orthogonal to L is also a mar-
tingale with respect to Q.
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(ii)
∫
φ(ω, dLt, t) is a martingale with respect to Q.

(iii) the density Dt(ω) =
∏t
s=0 ψ(ω,∆L(ω, s), s) is S-integrable for all finite t.

If condition (i) is satisfied, we call Q a minimal measure with respect to L.
If in addition (ii) is satisfied, we call Q a minimal martingale measure for∫
φ(ω, dLt, t) with respect to L. If all three conditions are satisfied, we call Q

an absolutely continuous minimal martingale measure for
∫
φ(ω, dLt, t) with

respect to L.

In our hyperfinite setting, it is just an exercise in linear algebra to show that
a minimal martingale measure is unique if it exists. To find candidates for Q,
we look at density functions ψ which are affine in a in the sense that

ψ(ω, a, t) = α(ω, t) +
d∑
j=1

βj(ω, t)aj

where α, β1, . . . , βd are nonanticipating processes taking values in ∗R and a =
(a1, . . . , ad) ∈∗Rd. An easy computation shows that such affine processes gen-
erate minimal measures (if they generate measures at all!):

Lemma 8.2 Assume that α, β1, . . . , βd are nonanticipating processes taking val-
ues in ∗R and let ψ(ω, a, t) = α(ω, t) +

∑d
j=1 βj(ω, t)aj. Assume further that

ψ(ω, a, t) ≥ 0 for all ω, a, t and that
∑
a∈A ψ(ω, a, t)pa = 1 for all ω, t. Then

the measure Q on Ω generated by ψ is a minimal measure for L.

Proof: Assume that M is a martingale orthogonal to L. Then

EQ[∆M(t)|Ft] = EP

∆M(t)
∏
s∈T

{α(s) +
d∑
j=1

βj(s)∆Lj(s)}

∣∣∣∣∣∣Ft
 =

=
t∏

s=0

{α(s) +
d∑
j=1

βj(s)∆Lj(s)}EP

∆M(t){α(t) +
d∑
j=1

βj(t)∆Lj(t)}

∣∣∣∣∣∣Ft
 = 0

where we use the orthogonality in the last step. ♠

To get a minimal martingale measure, we must choose α, β1, . . . , βd such
that

∫
φ(ω,∆L(t), t) is a martingale w.r.t Q. If we write (7) componentwise, we

get for i = 1, . . . , d

0 =
∑
a∈A

φi(ω, a, t)ψ(ω, a, t)pa =
∑
a∈A

φi(ω, a, t){α(ω, t) +
d∑
j=1

βj(ω, t)aj}pa =
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= α(ω, t)
∑
a∈A

φi(ω, a, t)pa +
d∑
j=1

βj(ω, t)
∑
a∈A

φi(ω, a, t)ajpa

We may think of this as d equations in the d + 1 unknowns α, β1, . . . , βd. To
get the last equation, we note that (8) can be written

1 =
∑
a∈A

ψ(ω, a, t)pa =
∑
a∈A

{α(ω, t) +
d∑
j=1

βj(ω, t)aj}pa = α(ω, t) + β(ω, t) · µ∆t

where µ := µL = 1
∆t

∑
a∈A apa and we think of β(ω, t) as a vector valued process

β(ω, t) = (β1(ω, t), . . . , βd(ω, t)).
To simplify notation, we introduce

ρi(ω, t) =
1

∆t

∑
a∈A

φi(ω, a, t)pa

and
Mi,j(ω, t) =

1
∆t

∑
a∈A

φi(ω, a, t)ajpa

Assuming that L has finite increments, the usual Taylor arguments show that
ρi and Mi,j are finite PL-a.e. With this notation, the equations above can be
written in matrix form in this way:

1 µ1∆t . . . µd∆t
ρ1∆t M1,1∆t . . . M1,d∆t
ρ2∆t M2,1∆t . . . M2,d∆t

...
...

...
...

ρd∆t Md,1∆t . . . Md,d∆t




α
β1

β2

...
βd

 =


1
0
0
...
0

 (9)

where we have suppressed the dependence on ω and t to increase readability.
We shall assume that the matrix M = {Mi,j} is uniformly nonsingular in the
sense that it has finite entries and that for all finite t, there exists an εt ∈ R+

such that det(M)(ω, s) ≥ εt for all ω and all s ≤ t. Let β̃ = (β̃1, . . . , β̃d) be the
solution of 

M1,1 . . . M1,d

M2,1 . . . M2,d

...
...

...
Md,1 . . . Md,d




β̃1

β̃2

...
β̃d

 =


−ρ1

−ρ2

...
−ρd

 (10)

We now introduce new variables x, y1, . . . , yn by (α, β1, . . . , βd) = (x, y1, . . . , yd)+
(1, β̃1, . . . , β̃d). The system (9) then becomes


1 µ1∆t . . . µd∆t

ρ1∆t M1,1∆t . . . M1,d∆t
ρ2∆t M2,1∆t . . . M2,d∆t

...
...

...
...

ρd∆t Md,1∆t . . . Md,d∆t




x
y1
y2
...
yd

 =


−(β̃ · µ)∆t

0
0
...
0

 (11)
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Using Cramer’s rule, it is easy to check that this system has a unique solution
where all entries are of order of magnitude ∆t. By Cramer’s rule, we also see
that x ≈ −β̃ · µL∆t with an error that is infinitesimal compared to ∆t.

There is one condition we have not taken into account yet — we need q to
be positive, i.e., we need

∑d
i=1 βi(ω, t)ai ≥ −α(ω, t) for all ω, a, t. For processes

with jumps, this condition is quite restrictive, but it is the price we have to pay
for working with affine functions ψ (i.e. with minimal martingale measures).
Note that if we allow signed measures Q (which technically works well), the
problem disappears. Note also that since α(ω, t) ≈ 1 and βi ≈ β̃i, the condition
is satisfied if

∑d
i=1 β̃i(ω, t)ai � −1 for all a, ω, t.

We now have a minimal martingale measure Q which we want to show is
absolutely continuous on bounded intervals.

Lemma 8.3 Let L be a hyperfinite Lévy process with finite increments, and
assume that γ, β1, . . . , βd are nonanticipating, S-bounded processes. Then the
process

Dt(ω) =
t∏

s=0

(
1 + γ(ω, s)∆t+

d∑
i=1

βi(ω, s)∆Li(ω, s)

)
is S-integrable for all finite t.

Proof: It suffices to prove that E(D(t)2) is finite for all finite t. Observe that

E
[
D(t+ ∆t)2

]
= E

[
D(t)2(1 + γ(t)∆t+

d∑
i=1

βi(t)∆Li(t))2
]

=

= E
[
D(t)2(1 + γ(t)∆t)2

]
+ 2E

[
D(t)2(1 + γ(t)∆t)

d∑
i=1

βi(t)E[∆Li(t)|Ft]

]
+

+E

D(t)2
d∑
i,j

βi(t)βj(t)E[∆Li(t)∆Lj(t)|Ft]


If K is a finite number which bounds |γ|, |β1|, . . . , |βd|, we see that the first

term on the right is bounded by E[D(t)2](1 + K∆t)2 < E[D(t)2](1 + 3K∆t).
Since E[∆Li(t)|Ft] = µi∆t, the second term is bounded by 3E[D(t)2]dK|µL|∆t,
and since E[∆Li(t)∆Lj(t)|Ft] = CLi,j∆t ≤ σ2

L∆t, the third term is less than
E[D(t)2]d2K2σ2

L∆t (see the remark at the end of Section 2). Combining these
estimates, we see that there is a finite M independent of t such that

E[D(t+ ∆t)2] ≤ E[D(t)2](1 +M∆t)

By induction, we have

E[D(t)2] ≤ (1 +M∆t)
t

∆t ≈ eMt

which is finite. ♠

We are now ready for the main theorem:
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Theorem 8.4 Let L be a hyperfinite Lévy process with finite increments. As-
sume that φi ∈ NI(L) for i = 1, . . . , d, and let

X(ω, t) =
∫ t

0

φ(ω, dLs(ω), s)

be a multidimensional, nonlinear stochastic integral. Assume that the vector
ρ(ω, t) and the matrix M(ω, t) are S-bounded for all ω and all finite t, and that
M is uniformly nonsingular. Assume further that the vector

β̃(ω, t) = −M(ω, t)−1ρ(ω, t)

satisfies
∑d
i=1 β̃i(ω, t)ai � −1 for all a ∈ A, ω ∈ Ω and all finite t ∈ T .

Then there exist nonanticipating, S-bounded processes α, β1, . . . , βd such that
α−1, β1− β̃1, . . . , βd− β̃d are of order of magnitude ∆t for all ω and all finite t,
and such that the measure Q generated by ψ(ω, a, t) = α(ω, t) +

∑d
i=1 βi(ω, t)ai

is an absolutely continuous minimal martingale measure for X with respect to
L. The density of Q is given by

Dt(ω) ≈

(
t∏

s=0

(1 + β ·∆L>η(ω, s))e−β·∆L
>η(ω,s)

)
e−tβ·µL+β·L(ω,t)− t

2 〈C
ηβ,β〉

where η is a splitting infinitesimal and Cη the corresponding infinitesimal co-
variance matrix.

Proof: We have been through most of the argument, and all that remains is some
bookkeeping. First note that since M and ρ are S-bounded and M is strictly
nonsingular, the vector β̃ is finite. Using (11) as above, we see that the solution
(α, β1, . . . , βd) differs from (1, β̃1, . . . , β̃d) by order of magnitude ∆t, and that
α ≈ 1 − (β̃ · µL)∆t with an error that is infinitesimal compared to ∆t. By the
condition

∑d
i=1 β̃i(ω, t)ai � −1, we get that ψ(ω, a, t) = α(ω, t)+

∑d
i=1 βi(ω, t)ai

is positive and hence generates a new measure Q on Ω. By construction, X is a
martingale with respect to Q, and Lemma 8.2 then tells us that Q is a minimal
martingale measure. By the last lemma above, the density Dt is S-integrable
with respect to P , and hence Q is an absolutely continuous minimal martingale
measure.

To prove the formula for Dt, we shall apply the Product Formula 4.1 to
the expression Dt(ω) =

∏t
s=0 ψ(ω,∆Ls(ω), s), but we need to take a little

care as the Product Formula assumes that ψ(0) = 1, while our ψ only satisfies
ψ(0) = α = 1−(β̃·µL)∆t+o(∆t). As in the previous section, the trick is to apply
the Product Formula to the function ψ̂ = ψ/α and note that α

t
∆t ≈ e−tβ·µL .

Using that ψ̂(ω, a, s) = 1+
∑d
j=1 β̂j(ω, s)aj where β̂j(ω, s) := βj(ω, s)/α(ω, s) ≈

β(ω, s), we get:

D(ω, t) =
t∏

s=0

ψ(ω,∆Ls(ω), s) = α
t

∆t

t∏
s=0

ψ̂(ω,∆Ls(ω), s) ≈
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≈ e−tβ·µL

(
t∏

s=0

(1 + β̂ ·∆L>η(ω, s))e−β̂·∆L
>η(ω,s)

)
eβ̂·L(ω,t)− t

2 〈C
ηβ̂,β̂〉 ≈

≈

(
t∏

s=0

(1 + β ·∆L>η(ω, s))e−β·∆L
>η(ω,s)

)
e−tβ·µL+β·L(ω,t)− t

2 〈C
ηβ,β〉

♠

Observe that if X = L, then ρ(ω, t) = µL and M(ω, t) = CL, where as usual
µL = 1

∆t

∑
a∈A apa is the drift vector and CLi,j = 1

∆t

∑
a∈A aiajpa the covariance

matrix. The formula above may then be compared to the formulas for diffusions
in [5, Theorem 3.5] and for Lévy processes in [4, Section 3].

We have reached the end of the paper, and it may be appropriate to say
a few words about the choices I have made. I have chosen to present the the-
ory in the framework of (hyperfinite) Lévy processes, although the basic idea
(integrands acting nonlinearly on the increments of the underlying process) is
much more general. The main reason is that the existing theory for hyperfinite
Lévy processes — and particularly the part relating to splitting infinitesimals
— makes it possible to reach interesting results quickly and without too much
effort. On the other hand, the interplay between the continuous and the discon-
tinuous is particularly subtle for Lévy processes, and it is reasonable to believe
that if we are able to treat the Lévy case, the methods are sufficiently robust to
be of general interest.
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