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Significance

We contribute a proof-of-concept 
model to inform decision-making 
on how to avoid a local epidemic 
developing into a global 
pandemic by reducing 
international air travel 
worldwide, coupled with a 
compulsory immigration 
quarantine when traveling 
between countries. The work 
highlights a major innovation: 
replacing the historical air travel 
data and fixed parameter values 
of our case study with a digital-
twin model that continuously 
incorporates a live feed of air 
travel data and improved model 
parameter estimates for any 
novel infection. This may 
facilitate the rapid analysis of 
effects of intervention measures 
as a local epidemic may escalate 
into a global pandemic, and thus 
slow or even stop the spread.
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Here, we combine international air travel passenger data with a standard epidemiolog-
ical model of the initial 3 mo of the COVID-19 pandemic (January through March 
2020; toward the end of which the entire world locked down). Using the information 
available during this initial phase of the pandemic, our model accurately describes the 
main features of the actual global development of the pandemic demonstrated by the 
high degree of coherence between the model and global data. The validated model allows 
for an exploration of alternative policy efficacies (reducing air travel and/or introducing 
different degrees of compulsory immigration quarantine upon arrival to a country) in 
delaying the global spread of SARS-CoV-2 and thus is suggestive of similar efficacy in 
anticipating the spread of future global disease outbreaks. We show that a lesson from 
the recent pandemic is that reducing air travel globally is more effective in reducing the 
global spread than adopting immigration quarantine. Reducing air travel out of a source 
country has the most important effect regarding the spreading of the disease to the rest 
of the world. Based upon our results, we propose a digital twin as a further developed 
tool to inform future pandemic decision-making to inform measures intended to con-
trol the spread of disease agents of potential future pandemics. We discuss the design 
criteria for such a digital twin model as well as the feasibility of obtaining access to the 
necessary online data on international air travel.

Disease X | epidemiology | data science | coupled simulation model | digital twin model

Cases of pneumonia of unknown etiology (PUE) were observed in Wuhan, China (1, 2), 
and reported to the WHO China Country Office on December 31, 2019 (3). On January 
7, 2020, Chinese health officials confirmed that the PUE outbreak was caused by a novel 
coronavirus, later named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2). On January 10, 2020, the whole-genome sequence was reported to the WHO 
and shared through the Global Initiative on Sharing All Influenza Data (Accession numbers 
EPI_ISL_402119 and EPI_ISL_402121) (2). At this point, it became clear to the scientific 
community that the Wuhan COVID-19 epidemic was potentially very dangerous (4, 5) 
and might develop into a global pandemic—as we now know it did.

Despite past experiences with outbreaks of SARS-COV-1, influenza A/H1N1/2009pwd, 
and West African EBOV 2014/15, a complete lockdown of Wuhan city on January 23 
and Hubei province on January 24, 2020, and the announcement of COVID-19 as a 
global pandemic by the WHO Director-General on March 12 (6), the rest of the world 
had not begun to realize the threat (7). This slow global response highlights the current 
limitations in effective coordination between the scientific community and policy makers 
as mediated by scientific advisory mechanisms (4, 8, 9).

By January 29, 2020, basic epidemiological calculations using the Wuhan data indicated 
that the virus had a plausible supercritical reproduction number of 1.5 to 2 and a probable 
doubling time of 6 d, clearly showing early warning signs that COVID-19 might develop 
into a global pandemic (10). Finding ways to anticipate and clearly communicate to 
decision makers when and how a local endemic epidemic might develop into a future 
global pandemic is an important aspect of outbreak response. Here we present a framework 
to support decision-making to prevent future local epizootics from becoming global pan-
demics—or more specifically, delaying the global spread of a disease agent and thus facil-
itating the early termination of an emergent, potential global pandemic. For this purpose, 
we use the early period of the COVID-19 pandemic as a case study. However, our per-
spective is more general, going beyond the COVID-19 pandemic for better preparedness 
for the next “Disease X.”

Emerging respiratory infectious disease agents like SARS-CoV-2 often disseminate 
geographically on varying length and timescales, from diffusion via local transit and 
mobility networks to large steps through international air travel. Here we focus on the 
latter to explore how well our methods capture broad features of the global impacts 
observed during periods of interest. In this context, one may think of three major clusters 
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of modeling-based research. The first integrates travel patterns to 
explain asynchrony in epidemic development. A number of studies 
have modeled pandemic dynamics (from influenza to COVID-19) 
in this way using a metapopulation approach with realistic travel 
patterns in multiple forms of transport (11–17). The second 
involves modeling nonpharmaceutical interventions (NPIs) to 
control or delay an epidemic. In the absence of effective prophy-
lactic and therapeutic countermeasures, early studies of the 
COVID-19 pandemic have focused on how different NPIs, such 
as travel restrictions, social distancing, lockdown measures, and 
border controls, help suppress COVID-19 transmission in diverse 
geopolitical settings, such as China, UK, USA (18–22). The third 
involves agent- or metapopulation-based simulations for scenario 
exploration using real-time data and calibration. For example, 
agent-based models were used in the UK to characterize COVID-
19 dynamics and different NPIs (23, 24). The National Institute 
of Public Health in Norway used both a metapopulation SEIR 
(Susceptible, Exposed, Infectious, and Recovered) model and an 
agent-based model to interpret early scenarios of COVID-19 
development in Norway (25, 26). Such efforts may help to under-
stand, interpret, and forecast pandemic dynamics and prioritize 
NPIs and collective strategies of transmission control. However, 
the development of a new comprehensive approach to investigate 
the global transmission dynamic and effectiveness of mitigation 
strategies for future emerging pandemics during the early stage to 
support decision-making when stakes are high and knowledge is 
uncertain, has received little attention.

A Cosimulation Model Captures the Early 
Phase of the Pandemic

In this study, we propose computational methods that may 
improve the ability to inform decision-making seeking to prevent 
future transmission events at the animal–human interface from 
developing into global pandemic regimes (27). We use COVID-19 
as a case study and develop a coupled simulation model (or, for 
short, a cosimulation model) (28). Cosimulation is the joint sim-
ulation of loosely coupled stand-alone subsimulators. A cosimu-
lation algorithm takes care of time synchronization and interactions 
across the subsimulators. The interactions between these subsim-
ulators are only synchronized at discrete communication points. 
The cosimulation here couples an air travel model based on actual 
air travel passenger numbers (29) with a standard epidemiological 
model (30–32). The model is a metapopulation model (16, 18, 
19, 33), in which the exchange of people between communities 
is based on real-time travel data. Parameter estimates are taken 
from the beginning of January 2020 and the cosimulation plat-
form is used to project hypothetical “what-if ” scenarios capturing 
the effect of global air travel regulations and use of border quar-
antine upon arrival. The cosimulation model uses daily intercoun-
try air travel data,* combined with epidemiological models for the 
countries of origin and destination (Fig. 1). For a brief summary 
of some earlier relevant studies, see the SI Appendix, Earlier studies 
of pandemic spread.

The cosimulation model combines a standard epidemiological 
model for each country worldwide with a model of daily air travel 
between these countries. We demonstrate that this cosimulation 
model can replicate the dynamics of the COVID-19 pandemic 
well by comparing the simulated number of infections to the 
number of documented cases when we include the air travel infor-
mation for January to March 2020.

All scenario simulations were started with an initial exposed 
population ( Ei ) of 0.000036 percent in China (corresponding to 
the recorded infection numbers 2 wk later), and no infections 
were assumed in the rest of the world. The coupled simulation 
model was projected for 91 d akin to the early COVID-19 spread 
from January 1 to March 31, 2020. In each country connected 
through air travel, the exposed population for each day was 
assumed affected by incoming exposed passengers from all over 
the world (weighted by country population size) with subsequent 
SEIR-like local daily spread.

Epidemiological Model. We designed a multicompartmental SEIR 
model (34) to describe endemic spread per country in the form

d sj

dt
= bj − �j sj − � j sj ij ,

	 [1]

d ej

dt
= � j sj ij − (�j + �j)ej ,

d ij

dt
= �j ej − (�j + � j)ij ,

d rj

dt
= � j ij − �j rj ,

where sj , ej , ij and rj denote the fraction of susceptible, exposed, 
infected, and recovered individuals in a country j , respectively. 
The total fraction of population in a country j is sj + ej + ij + rj = 1 . 
Eq. 1 describes the evolution of the fraction set of susceptible 
individuals, exposed, infected, and recovered individuals over 
time, respectively. In the equations, bj is the population birth rate, 
�j is the natural death rate, � j is the rate of transmission, 1

�j
 is the 

average duration of latent or exposed period, and 1
� j

 represents the 

average duration of infection in a country j. In this study, we 
assume that the local epidemics in all countries follow the same 
dynamics, so � j = � , �j = � , and � j = �.

Model Parameter Selection. The parameters for the SEIR model 
were chosen to roughly correspond to the observed characteristics 
of the original COVID-19 strain globally. Guan et al. (35) has 
pointed out that the median SARS-CoV-2 incubation period is 
4 d with interquartile range 2.0 to 7.0. Exposed period is shorter 
compared to incubation period. Hence, we selected the exposed 
days that fall within the interval [1, 6]. He et al. (36) estimated 
the basic reproductive number R0 of SARS-CoV-2 to be 3.15. Liu 
et al. (37) carried out a review on the R0 of the COVID-19 virus 
in 12 studiespublished from January 1 to February 7, 2020, and 
found that estimated R0 ranged from 1.5 to 6.68 with a final mean 
value of 3.28. Ke et al. (38) reported that the mean value of R0 was 
5.8 in the US and that R0 ranged from 3.6 to 6.1 in eight countries 
in the EU during the earlier stage of COVID-19. Therefore, we 

Fig. 1. Structure of the coupled-simulation model of the global spread of a 
disease agent.

*Passengers traveling from one country to any other country via third countries are cur-
rently not tracked, posing a limitation to studying the effects of infected passengers on 
third countries.D
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selected the parameter values that made R0 fall within the interval 
[2, 7]. In line with our focus on the early stage of the pandemic 
(from January 1, 2020 to the end of March 2020), we assumed the 
transmission rate to be 0.5, and the average duration of exposed 
and infection periods to be 2.5 and 9 d, respectively (39–41). 
Because the dynamic behavior of the birth and natural death 
processes are slower than those of the dynamics of the epidemic 
process, we set bj = 0 and �j = 0 . Thus, together with normalized 
local population sizes for computational convenience, we used 
a transmission rate ( � ) of 0.5, an average duration of latency 
( 1∕� ) of 2.5 d and an average duration of infection ( 1∕� ) of 9 d, 
corresponding to a reproduction number R0 = 4.5 using the 
formula R0 =

�

�+�
⋅

�

� +�
 (42).

We applied the model to all countries in the air travel passenger 
dataset using uniform model parameters. We calculated the cor-
relation between the simulated levels and the daily country-level 
confirmed COVID-19 cases [from the data repository of the 
Center for Systems Science and Engineering at Johns Hopkins 
University (43)] to carry out the analysis.

The Air Travel Data and Model. We collected the monthly global 
flight and passenger data from January to March 2020, from the 
International Air Transportation Association (IATA) database 
(https://www.iata.org). The IATA database contains information 
on flights between 4,418 commercial airports worldwide and can 
be expected to have a 100% coverage of the global airline market. 
To simulate the spatiotemporal dynamics of early COVID-19 
transmission on a global scale, we first aggregated the airport-
level flight data into country-level origin–destination passenger 
flows. To minimize the number of assumptions and parameters, 
we evenly distributed monthly passengers over each month instead 
of accounting for weekend travel.

Given the number of passengers traveling from country k to 
country l on day t, represented as p(k, l , t ) , and the current frac-
tion of exposed individuals ( ek(t ) ) in each origin country k on day 
t, the travel data model calculates the changes in the number of 
exposed passengers entering country l as:

	 [2]ne
l
(t ) =

∑

k≠ l

p(k, l , t )ek(t ).

This model assumes that the passengers from a country k form a 
representative sample of the whole population of country k and 
that symptomatic people do not travel. Note that the global spread 
is sensitive to how the air travel model handles very small numbers. 
We assumed that there cannot be less than one exposed passenger 
disembarking from an airplane. A consequence of this assumption 
is that if the representative sample from the SEIR model of country 
k suggests that 0.2 passengers traveling from country k to country 
i on a given day would be exposed, we reduce the number of 
exposed passengers to 0.

Coupled-Simulation Model. We combined the epidemiological 
model and the air travel model into a cosimulation model to 
conduct experiments that capture the effects of air travel on the 
virus spread, based on the worldwide time series travel data and 
the per country epidemiological models. The epidemiological 
model and travel data for each country l were integrated as 
follows. First, we used the epidemiological model to predict 
the local disease spread (i.e., the change in the fraction of 
susceptible, exposed, infected and recovered individuals) within 
country l in 1-d intervals to update the proportion of individuals 
in each epidemic state sl (t ), el (t ), il (t ), rl (t ) . Then after each 

day, we computed the change in the number of passengers in 
each epidemic state caused by traveling for country l using 
the air travel model and then divided the population size to 
update the fraction of passengers in each epidemic state for 
each country l  as

	 [3]el (t + 1) = el (t ) + �l

ne
l
(t )

Nl (t )
,

where �l describes to what extend the exposed passengers traveling 
to country l could finally enter country l and � is affected by dif-
ferent countries’ policies and Nl (t ) represents the total population 
in country l at day t. For example, if country l adopts 10% quar-
antine measure and no other measures are adopted in other coun-
tries, then in this situation, the value of �l is 0.9. In order to limit 
the parametric complexity, we did not track the total population 
changes in each country, which means that Nl (t ) remains fixed 
and does not change according to time. Meanwhile, we assumed 
that the fraction changes of infected and recovered from day t to 
day t+1 in a country l was only affected by local epidemic models 
described by Eq. 1. We tracked the fraction changes in the number 
of susceptible and exposed individuals, and to keep the whole 
population equal to 1, the fraction of susceptible individuals was 
updated as:

	 [4]sl (t + 1) = sl (t ) − �l

ne
l
(t )

Nl (t )
.

This coupling of the epidemiological and air travel models 
assumed that the increase and decrease in population size due to plane 
travel was irrelevant; hence, the numbers of susceptible, exposed, 
infected, and recovered individuals could be given as fractions of 
the whole population such that  sl (t ) + el (t ) + il (t ) + rl (t ) = 1 . 
To calculate the next day’s disease spread, we started with 
sl (t + 1), el (t + 1), il (t + 1), rl (t + 1) and repeated the process 
by firstly using the per-country epidemiological models with 
updated numbers of susceptible, exposed, infected, and recovered 
individuals and then the air travel passengers as described above. 
This kind of setting would affect the results. There was difference 
between the proposed methods compared with continuously 
updating Nl (t ) owning to travel, but it did not greatly affect the 
final analysis.

The overall model was implemented in the Julia programming 
language and the differential equations for each day were solved 
using the solver for ordinary differential equations provided by 
the Differential Equations package. The simulation results were 
stored in a local SQLite database, and further analysis and plots 
were carried out in the Python programming language. Our imple-
mentation as well as the source data for our cosimulation case 
study are available as an open source, online artefact.†

Model Fit. The first comparison is between the cosimulation 
model and the reported cases of COVID-19 infections from 
January 22 to March 31, 2020. For 150 countries with simulated 
cases, the mean correlation was 0.92 (SD 0.09, 25th quartile 
0.89, 75th quartile 0.98). Fig. 2 shows the correlation per country 
(a ranked list of these countries is presented in SI Appendix, 
Figs. S1 and S2). The model projection did not predict any cases 
for the 16 countries shown in grey color in Fig. 2. This is due to 

†Zenodo model is available at https://doi.org/10.5281/zenodo.7472836.D
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the low number of travelers and the expected incoming exposed 
travelers below one among the travelers from source countries 
on a given day. A notable case of low correlation between model 
predictions and the observed number of cases is South Korea, 
where an early cluster (stemming from the so-called Patient 31) 
led to early growth in the observed infections (44).

Across countries, the similarity between projected and docu-
mented cases varied over time (Fig. 3). The model/data similarity 
increased through the initial phase due to more data availability 
reducing uncertainty. The baseline similarity decreases as inter-
ventions are introduced in different countries, such as earlier quar-
antine in Australia and Vietnam and the start of lockdowns in 
some countries such as Norway (45), making the uniform SEIR 
(i.e., with no implemented interventions) parameters used by the 
model less reflective of reality.

The overall high degree of similarity between simulations and 
recorded cases demonstrates that the main assumption of spread 
by air travel and local propagation is captured by the cosimulation 
model, and thus may plausibly reflect the spread of infections with 
similar parameters in future outbreaks. Fig. 3 shows that the 
cosimulation model with fixed parameters correlates well with the 
reported cases of the COVID-19 pandemic until interventions 
were introduced in various countries.

The Cosimulation Model Can Be Used to Anticipate the Combined 
Effects of Early Interventions and thus Serve as a Tool for the 
Exploration and Appraisal of Policy Alternatives. Having first 
assessed the correlation between the model predictions and the 
observed infections, as reported by Johns Hopkins University 
(43), we then explored a range of possible what-if scenarios in the 
cosimulation model by reducing different fixed percentages for 
the number of passengers and the number of incoming exposed 
passengers per country, corresponding to interventions that reduce 
air travel and immigration quarantine rates. The effect of each 
hypothetical scenario is measured as the mean difference in the 

onset date of the national epidemics between the original predictions 
(without interventions) and the modified model (with the specified 
interventions). We define a country’s onset date as the first day 
when the simulation reaches an infection fraction I ≥ 0.0001 in that 
country. Our results show that use of such a cosimulation model 
has the potential to inform real-world policy to quickly evaluate 
alternative mitigation interventions and understand the potential 
efficacy of interventions on the global spread of a disease agent.

The cosimulation results demonstrated that 10 d after the 
outbreak, the model realistically reflects infection numbers as 
compared to official data. This makes it possible to perform 
hypothetical computational simulations. As an example, we 
consider the effects of reducing international air travel as well 
as implementing immigration quarantine-interventions for var-
ious countries (46–48).

In the first (and main) scenarios, we consider reduced air travel 
and introduced immigration quarantine restrictions (details in the 
SI Appendix) as follows:

-	� starting on January 21 we reduce air traffic globally by 10 to 
100%, in increments of 10%; and

-	� starting on January 21 we reduce globally the number of cases 
coming into a country through quarantining by 10 to 100%, 
in increments of 10%.

In these projections, the interventions are introduced 10 d after 
January 11 as this was the day the scientific community realized 
that SARS-CoV-2 was potentially a very dangerous disease agent, 
and Wuhan’s lockdown was initiated (18).

Fig. 4 shows the difference between the predictions without 
interventions and the modified model with the two sets of what-if 
interventions measured as the mean expected delay between the 
original and the experimentally modified simulations. The sce-
nario analysis shows that, in general, reduction of air travel is more 
effective than immigration quarantine.

Fig. 2. Similarity between simulated and reported real cases per country during the period January 21, 2020 to March 31, 2020. The color gray denotes countries 
for which the model recorded no cases. See SI Appendix, Fig. S1 for an alternative plot, and SI Appendix, Fig. S2 for another similarity measure, both based on 
the same underlying data as this figure.
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Table 1 presents the global effect of the reduction in international 
air travel and the increased use of immigration quarantine. The 
reduction in air travel (starting on January 21, 2020) is significantly 
more effective in reducing the spread of the disease agent than inten-
sifying the use of immigration quarantine (also starting on January 
21) as the absolute value of the coefficient of variable reduction in 
air travel (14.30) is larger than the absolute value of the coefficient 
of variable increased use of quarantine (7.68). This result is consist-
ent with Fig. 4 where the gradient in the direction of reduction 
owning to air travel is sharper than that owning to quarantine.

A second set of analyses show the modeled effect of completely 
stopping air travel out of the country of origin (in our proof-of-
concept case study, China) starting on January 2, 2020, through 

January 10, 2020, assuming no other interventions were carried 
out elsewhere in the world. It turns out this analysis is highly 
sensitive to initial conditions and is unrealistic in that the model 
assumes that all cases are localized in the initial country at the 
start of the experiment. Nevertheless, the results indicated that 
completely stopping air travel out of the country of origin imme-
diately after the time when an outbreak is discovered would have 
an effect in delaying a local epidemic becoming a global pan-
demic (Fig. 5).

We also investigated the effect of combining a total air travel 
cessation from the country of origin with the scenario of the first 
experiment (global travel and quarantine restrictions of varying 
degrees). Fig. 6 shows the effect of hypothetically stopping all air 

Fig. 3. Global correlations between measured and simulated cases for each day from January 25; see SI Appendix, Fig. S3 for a wider date range.

Fig. 4. Effect of reduction in air-travel and immigration quarantine on the Covid-19 epidemic, measured as mean value of the difference in epidemic onset 
between the simulation of the original model and that of the modified model corresponding to the what-if scenario across all countries. For the passenger 
reduction axis, 0.2 means air travel is reduced to 20%, whereas 1 means no reduction at all. For the quarantine reduction axis, 0.2 means 20% of exposed 
travelers arriving at a given country enter that country, whereas 1 means that there is no immigration quarantine intervention in any county. The effect axis is 
a measure of the degree to which the interventions (and combinations) can delay spread of the disease agent.D
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travel out of the country of origin on January 21, 2020, when com-
bined with global air travel restrictions, again measured as the mean 
difference in epidemic onset. The z-axis value with (X = 1, Y = 1), 
which represents the effect of a 100% air travel stoppage out of China 
on January 21, 2020, without taking any other measures, shows that 
completely stopping air travel cannot prevent a global pandemic 
(when compared with Fig. 5), but it may delay global pandemic 
emergence; the greater the delay in air travel restrictions, the less the 
effect. The difference between Figs. 4 and 6 shows that the effect of 
completely stopping air travel from the country of origin decreases 
with generally more stringent air travel and quarantine restrictions 
worldwide.

Table 2 shows the global effect of a reduction in international 
air travel and the increased use of immigration quarantine plus 
completely stopping outgoing air travel from the country of origin 
on January 21, 2020. By comparing the results with Table 1, we 
project that completely stopping outgoing travel from the country 
of origin would slow down the effect of a reduction in air travel 
and increased use of quarantine. In Fig. 6, the Z-values at (X = 0.2, 
Y = 0.2), based on the regression models in Tables 1 and 2, are 
17.09 and 18.13, respectively, which means that completely stop-
ping outgoing travel from the country of origin has a negligible 
effect in such a situation.

In a third set of analyses, we reduced the transmission rate ( � ) 
between people within the country of origin of the pandemics 

(in this case China) by 20% (making R0 equal to 4 rather 
than 4.5) for different combinations of immigration quarantine 
interventions and air travel reductions. As can be seen in Fig. 7, 
such reduction in human-to-human transmission has a major 
effect when combined with air travel restrictions and immigra-
tion quarantine.

Summary of the Findings. Using a simple cosimulation model that 
accurately replicated the observed emergence of the COVID-19 
pandemic, we considered three forms of travel interventions in 
what-if scenario analyses: reducing the number of exposed people 
entering a country through i) reducing air travel; ii) implementing 
strict immigration quarantine interventions; and iii) completely 
stopping outgoing travel from the country of origin.

We have demonstrated that:

1.	 �The cosimulation model well captured the observed global 
dynamics in the spread of a disease agent.

2.	 Reducing the number of flights globally was significantly more 
effective than global immigration quarantining in flattening the 
curve of infected people globally.

3.	 Increasing the effect of physical distancing and other human-to-
human transmissions in the source country (only), combined 
with a reduction in air travel and immigration quarantining, 
had a larger effect in delaying the infection curve.

Table 1. Regression of the effect of the interventions (effect)—on the reduction in air travel globally and increased 
quarantine globally

CI

Coef SE T P > |t| [0.025 0.975]

Intercept 21.49 0.26 82.3 0.000 20.97 22.01

Reduction in air travel −14.305 0.29 −48.61 0.000 −14.89 −13.72

Increased use of quarantine −7.682 0.29 −26.11 0.000 −8.27 −7.10
The intercept represents the maximum difference in a comparison of the original model (without interventions) with the modified model representing the what-if scenarios (with inter-
ventions). The overall R2 is 0.975 (the adjusted R2 is 0.974).

Fig. 5. Effect of 100% stop of air travel out of China on day 2 to 10 after the initial outbreak with no global interventions, measured in difference of onset days 
versus unmodified simulation.D
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It should be noted that immigration quarantine interventions 
are locally controlled, as is air travel out of (and into) a given 
country; however, global air travel is under international 
control.

The cosimulation model makes several simplifying assumptions 
and could thus be refined to provide even more precise estimates. 
For example, the SEIR model could be improved by accounting 
for age groups and relating those to air travel passenger statistics. 
The SEIR model could be made significantly more precise by 
estimating dynamic parameter changes for parameters in the local 
SEIR models; for example, machine learning techniques could be 
used to estimate the effect of introducing local interventions in 
given countries by combining both measured and simulated 
data.‡ The air travel model could be improved by distinguishing 
weekend and holiday travel from business travel, using actual daily 
travel numbers, or by attempting to capture travel at the daily 
passenger level. (In contrast, the air travel model used above dis-
tributes monthly air travel data equally across all days in a month.) 
Interventions could further be regulated by the availability of local 
resources such as immigration quarantine capacities. Either or 
both the SEIR and air travel models could be replaced by stochas-
tic models to simulate the likelihood of slowing or stopping a 
pandemic outbreak using travel restriction measures; the presented 
model is deterministic and hence will always model a global 
outbreak.

How Should a Digital Twin of a Global 
Epidemic Process Be Designed?

From a Cosimulation Model to a Digital Twin. A further 
developed cosimulation model for COVID-19 could be used as 
a computational framework to evaluate alternative intervention 
strategies for dealing with subsequent epidemic waves in the 
current COVID-19 pandemic caused by newly emerging 
SARS-CoV-2 variants. Such elaborations of the framework 
could highlight intervention strategies to inform efforts seeking 
to prevent future local epidemics from developing into a 
global pandemic. For this purpose, we need to generalize the 
cosimulation model from a model specific to the initial outbreak 
of COVID-19, which was based on specific parameter values for 
the epidemiological model and historical air travel data for the 
period January 22 to March 31, 2020. We now discuss how the 
cosimulation model can be turned into what is referred to as a 
digital twin (49).

A digital twin is a digital model of an underlying physical 
system, often called the physical twin. The digital twin is 
directly connected to the physical twin through streams of 
observations; this turns the digital twin into a live replica of 
the physical twin, able to provide insights into the dynamics 
of the physical twin in near real time (50). By replacing his-
torical travel data and fixed parameter values of the current 
cosimulation model of the COVID-19 case study with contin-
uous data assimilation, a digital twin will enable the real-time 
investigation of the potential effects of various alternative pol-
icy interventions.

To support the development of intervention strategies, the 
digital twin would require a more advanced model to further 
increase its precision and to expand the range of experiments that 

Fig. 6. Combined effect of completely stopping air-travel on January 21 from the country of origin combined with reduction in air-travel and immigration 
quarantine on the Covid-19 epidemic, measured as mean value of the difference in epidemic onset between the simulation of the original model and 
that of the modified model corresponding to the what-if scenario across all countries. Parameters on the X and Y axis have the same meaning as in Fig. 4.

‡Our cosimulation model does not incorporate local interventions within any countries 
and our ability to predict further outbreak development could be significantly improved 
by introducing local dynamic parameters instead of using fixed global parameters. This 
is not important for our simulations but would certainly be critical for developing mech-
anisms for preventing (or delaying) a local epidemic developing into a global pandemic.
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can be carried out, as well as to account for air travel in a general 
way, at any time when an epidemic occurs somewhere in the 
world. This can be done by continuously collecting and assimi-
lating information from diverse data sources into the cosimulation 
model, such as worldwide air travel data at the present time. 
Furthermore, the parameter values of the epidemiological model 
would not be well-known at the time of an outbreak and would 
need to be refined continuously as our understanding of the out-
break improves. The following are the most important further 
developments needed:

1.	 Link the model with near real-time air travel information (such 
as daily passenger numbers reflecting travel at the geographical 
resolution of the model), including a digital twin architec-
ture able to dynamically handle the inevitable instabilities and 
changes in the available data streams, integrate their diverse 
data representation formats and assess their integrity with 
respect to manipulation;

2.	 Increase the geographical resolution of the cosimulation model 
beyond the country level (e.g., to the level of large airports) 
and support multiscale cosimulation models;

3.	 Increase the detail of the epidemiological model (e.g., by 
including the demographic structure of populations and 
age-structured social interactions);

4.	 Allow a hierarchical model structure with a within-country 
metapopulation model with domestic travels within the coun-
try, combined with a global metapopulation model of interna-
tional travel;

5.	 Update the parameters estimates of the local epidemiological 
models using feedback loops on a daily basis, to take maximal 
advantage of the increased amount of data pertaining to the 
epidemiological dynamics (both relating to the different geo-
graphic locations as well as relating to the air travel); and

6.	 Support what-if scenarios based on the cosimulation of heter-
ogeneous models such as experiments that combine refined, 
stochastic models with the basic deterministic model to calcu-
late the likelihoods of various outcomes.

The next emerging pandemic might have a very different infec-
tion pattern compared to SARS-COV-2; e.g., only infecting 
particular population groups. It is therefore essential to construct 
a digital twin that can flexibly reflect diverse infection patterns. 
Although the cosimulation architecture implemented in this 
paper combines SEIR compartment models for each country in 
the world with real passenger data from air travel between these 
countries, the architecture we consider does not require a par-
ticular compartment model. In a further developed digital twin 
model, different epidemiological models might be integrated on 

Table 2. Regression of the effect of the interventions (effect) on the reduction in air travel globally and increased 
quarantine globally plus completely stopping outgoing air travel from the country of origin on January 21, 2020

CI

Coef SE T P > |t| [0.025 0.975]

Intercept 19.900 0.14 138.26 0.000 19.61 20.19

Reduction in air travel −5.598 0.16 −34.50 0.000 −5.92 −5.28

Increased use of quarantine −3.232 0.16 −19.92 0.000 −3.56 −2.91
The overall R2 is 0.95 (the adjusted R2 is 0.95).

Fig. 7. Additional effect of reducing human-to-human transmission ( � ) within the source country (in this case China) by 20%. The effect axis is a measure of 
the degree to which the interventions (and combinations) can delay the spread of the virus. Note that the scale on the z-axis is different from that in Fig. 4; the 
meaning of the parameters in the X and Y axes is the same as in Fig. 4.D
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a per-country basis, depending on the availability of information 
(or preexisting models) and on the infection patterns of the dis-
ease agent. It would be worth considering the integration of local 
metapopulation compartment models that cover different regions 
within a country and how people travel between these areas [in 
particular, travel by car or train can be tracked by, e.g., mobile 
phone mobility data (51, 52)] as well as different age groups 
within a country. It would also be worth integrating agent-based 
models with compartment models. Both would be possible 
within a digital-twin architecture, provided that the models per-
mit an interface that allows us to extract predictions regarding 
the exposure of the population to the disease agent. In particular, 
a family of different epidemiological models per country may be 
explored within the digital twin architecture to compare out-
comes and thereby determine the models with the best fit for an 
emerging epidemic. Nevertheless, it seems essential for a global 
digital twin to use as its baseline epidemiological model per coun-
try a very simple default model that is transparent and easy to 
maintain, such as the SEIR model considered in this paper.

The resulting digital twin would enable real-time investigation 
regarding the effect of travel measures, as an epidemic develops. 
Such a digital twin would have the potential to accurately antic-
ipate how a local epidemic might develop into a global pan-
demic, thereby enlarging the toolbox available to policy makers 
seeking to mitigate the likelihood of future pandemics. The 
digital twin could be used to explore what-if scenarios to eval-
uate alternative interventions with respect to different control 
objectives (which again would vary between countries, depend-
ing on different biological, societal and economic factors). To 
refine such a digital twin towards increased accuracy, parameters 
must be evaluated and tuned in real time; challenges in estimat-
ing reproduction numbers in real-time are discussed by Pellis 
et al. (53, 54). The results of the cosimulation model proposed 
in the present paper demonstrate that such a project is possible 
and important. A detailed model of this type could be aug-
mented on the back end to understand additional consequences, 
for example, the impacts of decisions on the ability to respond 
internationally, the economic and trade impacts that could arise 
in the near term, or potential national security or geopolitical 
implications. Whereas these types of questions live outside of 
the model, they are often central to the science–policy interface 
and the issues that are faced by key decision makers.

Demonstrating the capability to develop a digital twin for 
pandemic forecasting and policy intervention evaluation is just 
one step in the development of an operational forecasting capa-
bility (55–58). Experience in the development of numerical 
weather forecasting models and the well-established relationships 
between research and operational agencies can prove useful and 
may be drawn upon in the development of forecasting capabil-
ities related to pandemics (59, 60). Open-source software pro-
jects and international standardization boards can provide 
guidance on the efficient governance and logistics for a long-term 
international digital twin development project, integrating con-
tributions from a wide range of competences. The development 
of a successful prediction enterprise in support of decision-mak-
ing requires a dual focus—on prediction as a product and also 
as an integrated process that includes research, communication, 
and utilization (61). Turning research potential into tools for 
decision makers will require attention to each element of this 
process. In spring 2022, the US Centers for Disease Control and 
Prevention announced the creation of a new Center for 
Forecasting and Outbreak Analytics (62) modeled on the US 
National Weather Service, illustrating the great potential for 
better connecting pandemic forecasting with policy.

Challenges to Obtain Online Global Access to Air Travel and 
Epidemiological Data. Even with a fully developed digital-twin 
framework, many difficulties remain. The continuous collection, 
integration and storage of travel and epidemiological data at a global 
scale introduces several technological challenges, both with respect to 
the persistence and changing formats of data, their integration and 
their integrity; e.g., the collected data or data streams may be subject 
to systematic distortion to influence decision-making. Furthermore, 
accessing individual travel data will require international agreements. 
To discuss such difficulties in detail is beyond the scope of this 
contribution. However, if we are to prevent local epidemics from 
developing into global pandemics in the future, the technological 
challenges need to be addressed and such international agreements 
need to be obtained.

Discussion

Even with the best preparations, it is not possible to completely 
eliminate the risk of a local epidemic spreading to become a 
global pandemic. However, the approach here of a cosimulation 
coupled to a digital twin can be used to quickly and effectively 
identify potential outbreaks and take measures to prevent them 
from spreading. This approach can also be framed to facilitate 
implementing quarantine measures, providing medical treatment 
to those who are infected, and implementing public health meas-
ures to prevent the further spread of the disease. Additionally, a 
global digital twin can be used to monitor the progress of a 
pandemic and to inform decisions about how to respond to it. 
This can be especially important in situations where a vaccine is 
not immediately available, as we may have to live with the path-
ogen for a long time. A global digital twin can help us to navigate 
our way through a global pandemic and reduce its impact on 
society. Developing such a modeling framework now is an impor-
tant advance step toward being well prepared for the next Disease 
X pandemic.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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