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Abstract

The resolution-of-the-identity (RI) or density fitting (DF) approximation for the

electron repulsion integrals (ERIs) has become a standard component of acceler-

ated and reduced-scaling implementations of first-principles Gaussian-type

orbital electronic-structure methods. The Cholesky decomposition (CD) of the

ERIs has also become increasingly deployed across quantum chemistry packages

in the last decade, even though its early applications were mostly limited to

high-accuracy methods such as coupled-cluster theory and multiconfigurational

approaches. Starting with a summary of the basic theory underpinning both the

CD and RI/DF approximations, thus underlining the extremely close relation of

the CD and RI/DF techniques, we provide a brief and largely chronological

review of the evolution of the CD approach from its birth in 1977 to its current

state. In addition to being a purely numerical procedure for handling ERIs, thus

providing robust and computationally efficient approximations to the exact ERIs

that have been found increasingly useful on modern computer platforms, CD

also offers highly accurate approaches for generating auxiliary basis sets for the

RI/DF approximation on the fly due to the deep mathematical connection

between the two approaches. In this review, we aim to provide a concise refer-

ence of the main techniques employed in various CD approaches in electronic

structure theory, to exemplify the connection between the CD and RI/DF

approaches, and to clarify the state of the art to guide new implementations of

CD approaches across electronic structure programs.
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1 | INTRODUCTION

The development of ab initio methods over the last 40–50 years has focused on harnessing the elusive locality of quan-
tum effects in molecular systems, as the proper use of this locality enables computational studies of much larger molec-
ular systems with the available computer resources. Almost inevitably, one then faces the question of the compact
representation of the electron repulsion integrals (ERIs), which can be achieved by rank-reducing factorizations, for
instance.

In a seminal paper published in 1977, Beebe and Linderberg1 suggested that the symmetric positive semi-definite
matrix of the ERIs could be efficiently represented through the use of an incomplete Cholesky decomposition (CD),2,3

whose accuracy is controlled with a single adjustable parameter. Studying electronic structure calculations in a basis of
contracted Gaussian-type orbitals, they demonstrated that the ERIs can be transformed into the molecular orbital
(MO) basis faster when the CD approach is employed than when the conventional ERI approach is employed. As many
wave function theories such as Møller–Plesset perturbation theory are conventionally written in terms of MO integrals,
and as the MO transformation step may dominate the computational cost, the advantages of faster integral transforms
can be considerable in many contexts.

However, Beebe and Linderberg also predicted that the explicit use of the ERIs in ab initio methods would be
“unnecessary,” as algorithms could be redesigned to take advantage of the CD factorization of the ERIs; indeed, this is a
key aspect of modern implementations of electronic structure algorithms employing the CD. Furthermore, Beebe and
Linderberg foresaw that the CD procedure could be advantageous also for other types of positive definite matrices in
MO theory, such as the one- and two-particle reduced density matrices; many applications of this type can be found in
the literature, as well.

This focus article is a chronological account of the use of CD in ab initio theory for the efficient representation of
ERIs as well as for other purposes. In addition to the CD, we will also discuss resolution-of-the-identity (RI) or density-
fitting (DF) approaches. The two terms—RI and DF—are often used interchangeably in the literature (as will also be
done in this work), although the latter is more often used in the context of computing classical Coulomb interactions
between two densities.

As we will discuss in this work, there is an extremely close relation between the RI/DF and the CD approaches; in
fact, as will be shown in Section 2.1, the CD of the ERIs can be viewed as RI/DF in an auxiliary basis of atomic orbital
(AO) products chosen by the pivoted Cholesky decomposition procedure.4,5 Accompanied with this connection, our
review will focus around the auxiliary basis sets used in the RI/DF approach, and we will especially review the auto-
matic generation of auxiliary basis sets for RI/DF approach using the CD. Despite the kinship between the CD and
RI/DF approaches, the considerable literature on the RI/DF technique will not be reviewed in detail in this work due
to the present focus on CD techniques.

The layout of this work is as follows. Next, in Section 2, we will discuss the CD approach. The section begins with a
presentation of the “vanilla” CD algorithm found in the mathematical literature. However, electronic structure applica-
tions typically employ CD for so-called Gram matrices, such as the overlap or Coulomb overlap matrix. As discussed in
Section 2.1, the CD of such matrices can be viewed as a Gram–Schmidt orthogonalization of the associated basis func-
tions, and this connection can be used to fashion more efficient CD algorithms. The review then continues with litera-
ture applications of the CD on ERI decompositions and other methods in Section 2.2. The RI/DF approach is briefly
presented in Section 3, after which we review various approaches to build auxiliary basis sets for RI/DF in Section 3.1.
The review ends with a brief conclusion in Section 4. This review can be supplemented with the more technically ori-
ented and verbose report on the subject in Reference [6]. A brief technical description of analytical gradients in associa-
tion with CD is presented elsewhere.7

2 | CHOLESKY DECOMPOSITIONS

The Cholesky decomposition2 (CD) is given by

M ≈LLT, ð1Þ

where the Cholesky vectors L form a lower (or upper) triangular matrix. The CD can be constructed for any symmetric
positive semi-definite matrix M; see Reference [8] and references therein for the mathematical background.
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The Cholesky factorization was originally introduced in electronic structure theory by Beebe and Linderberg1 to
decompose the electron repulsion integrals (ERIs). Assuming real AOs or MOs χμ

� �
, the ERIs in chemists' also known

as Mulliken notation are given by

μνjκλð Þ¼
Z

χμ rð Þχν rð Þχκ r0ð Þχλ r0ð Þ
j r� r0 j d3rd3r0, ð2Þ

where μ,ν,κ,λ are the AO/MO indices. Importantly, the ERI tensor is positive semi-definite,9–12 and can be viewed as a
measure of the distance of the orbital products χμ rð Þχν rð Þ and χκ r0ð Þχλ r0ð Þ in the Coulomb metric g r,r0ð Þ¼ r� r0j j�1.
Because of the positive semi-definiteness, we can apply Equation (1) to decompose the ERIs as

μνjκλð Þ≈
X
n
LnμνL

n
κλ: ð3Þ

However, as the real ERIs defined by Equation (2) satisfy symmetries with the interchange of the indices μ$ ν,
κ$ λ, and μν$ κλ, one also has to require that the elements of the Cholesky vectors Ln satisfy Lnμν ¼ Lnνμ, because χμχν
and χνχμ are the same orbital product. This symmetry is commonly employed to describe the pair μν with a single com-
pound index, which we will denote by i. Choosing j iÞ¼ j μiνiÞ with νi ≤ μi (or equivalently with μi ≤ νi), the symmetry
of Lnμν ¼Lnνμ is thus explicitly built-in in the mapping μν$ i, and the length of the Cholesky vectors Ln is decreased by
roughly one half. Employing the compound indices, the ERI tensor μνjκλð Þ≔ Vð Þμν,κλ can now be written as a matrix
Vð Þi,j, which is also positive semi-definite. We can then write the Cholesky decomposition in matrix (V ¼LLT) or com-
ponent form (Vi,j ¼

PN
n¼1Li,nLj,n), where N is the size of the orbital product basis.

In practice, the Cholesky vectors Ln ¼ L1,n2,n L3,n … LN ,nð ÞT are computed one by one by an iterative procedure. As
was already mentioned, a full mathematical analysis can be found in Reference [8]; in the following, we will only out-
line the main parts of the procedure.

The key to understanding the pivoted Cholesky algorithm is that it is controlled by the errors of the diagonal ele-
ments of the matrix to be decomposed (here V ). Because the whole procedure boils around the diagonal remainder,
it is stored in memory for the whole procedure as a vector d.

At the beginning, the error vector is simply given by the diagonal of V , d 0ð Þ ¼ diag Vð Þ. Whenever new Cholesky vec-
tors L nð Þ are computed, the error vector is updated correspondingly d nð Þ ¼d n�1ð Þ �diag L nð Þ L nð Þ� �Th i

, that is, by

di ¼ di�L2i,n: ð4Þ

Importantly, it is easy to see that the residual matrix V �PnL
nð Þ L nð Þ� �T

remains symmetric positive semi-definite
for any n; this also means that di ≥ 0 in the absence of errors due to finite precision.

As the sum of the diagonal errors
P

idi measures the error of the current Cholesky approximation, an optimally
convergent algorithm that achieves maximal error reduction per iteration is obtained by zeroing out the largest error in
d at every iteration.8 This is achieved by sorting d in descending order, and choosing the entry corresponding to the
largest (so far unprocessed) entry as the pivot index, that is, as the next Cholesky vector to generate.

What does the algorithm for the generation of the Cholesky vectors look like? In the following, we try to maximize
the similarity of the notation with Harbrecht et al.8 for clarity. However, as we wish to generate our Cholesky vectors as
columns, we define our Cholesky matrix as the transpose of those of Harbrecht et al., L¼ ℓ T.

Following Harbrecht et al., let π denote the row/column indices of the pivoting, so that πi is the index of the ith
pivot function, which denotes the orbital product μiνi. The computation of the Cholesky vector for iteration m� 1,N½ �
starts out by setting the diagonal element1

Lπm,m ¼
ffiffiffiffiffiffiffi
dπm

p
; ð5Þ

while the off-diagonal elements i� mþ1,…,N½ � are computed as Li,n ¼ V �LLT
� �

i,n=
ffiffiffiffiffi
dn

p
; with the pivoting this reads8

1It is easy to see that when no pivoting is used (πi = i), Equations (5) and (6) indeed correspond to diagonal and off-diagonal elements of the Cholesky
vector.

PEDERSEN ET AL. 3 of 21

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1692 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [09/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Lπi,m ¼ 1
Lπm,m

V πi,πm �
Xm�1

j¼1

Lπi,jLπm,j

 !
: ð6Þ

When the Cholesky vector Ln ¼ Li,nf gNi¼1

� �
defined by Equations (5) and (6) has been computed, the diagonal error

is updated by Equation (4). One can especially observe from Equations (4) and (5) that the resulting dπm ¼ 0, that is, the
largest error is zeroed out at every iteration, as was already mentioned above. This is the reason for the optimal conver-
gence of the CD algorithm.

After each iteration, the remaining error in the decomposition at iteration m can be computed from

ϵsum ¼
XN

i¼mþ1

dπi : ð7Þ

The procedure of Harbrecht et al.8 is stopped when ϵ reaches a predefined tolerance threshold τ, ϵ< τ. In contrast,
quantum chemical implementations of the Cholesky decomposition commonly employ a different termination criterion
that is defined by the maximum element of the error vector

ϵmax ¼ max
i>m

dπi : ð8Þ

Clearly, both stopping criteria of Equations (7) and (8) lead to the exact decomposition at the limit τ! 0. However,
the former will lead to larger numbers of Cholesky vectors for a fixed value of τ than the latter criterion.

Having laid out the algorithmic implementation of the procedure, we can already make some general observations
about the method. Perhaps the defining property of the Cholesky decomposition behind its popularity in electronic
structure theory is exactly that the iterative procedure can be formulated in a “direct”13 manner, such that only the
diagonal elements d of the supermatrix V and the individual Cholesky vectors L nð Þ need to be stored. The storage cost
is therefore essentially determined by that of the Cholesky vectors, themselves. However, because the Cholesky decom-
position efficiently picks out any linear dependencies in the contents of the decomposed matrix—which are formidable
in the case of the orbital product basis used in the ERI tensor—the number of resulting Cholesky vectors is often much
smaller than the dimensions of the original matrix, and in practice the number of Cholesky vectors NCD scales linearly
with the number of orbital basis functions NOBF as NCD ¼ γNOBF with typical values of γ � 3,10½ �, depending entirely on
the employed decomposition threshold τ.

We conclude this section by noting that Beebe and Linderberg speculated that a proper implementation of the CD
approach would make the computation of the integrals scale cubically with system size and the integral transformation
scale quartically with respect to the size of the orbital basis set. This has since been verified by a number of efficient
implementations, which brings us naturally over to the next subsection, which discusses the way in which the CD of
the ERIs is computed in modern implementations.

2.1 | Connection to orthogonalization methods

An important connection between the Cholesky decomposition discussed above in the general case and matrix orthogo-
nalization methods was originally discussed by Aquilante et al.4,5 Namely, when applied to a Gram matrix, that is, an
overlap matrix in the usual metric g r,r0ð Þ ¼ δ r� r0ð Þ or a Coulomb overlap matrix in the case of the Coulomb metric
g r,r0ð Þ¼ r� r0j j�1 employed in the ERIs, the CD can in fact be seen to be equivalent to a Gram–Schmidt orthogonali-
zation procedure. This connection is therefore not a general property of the CD, but a consequence of the context of its
application to matrices that describe overlaps of functions in some function space. Due to its practical importance, we
will devote this subsection to elucidating this connection originally pointed out in References [4,5] by rederiving it from
the general equations shown above for the CD.

The argument of Aquilante et al.4,5 is as follows. Let us assume that we have performed the Cholesky decomposition
of the ERIs, which has yielded us a series of pivot functions j πjÞ¼ j μjνjÞ. Let us now examine what happens if we apply
the Gram–Schmidt orthogonalization technique to this set of pivot functions. The Gram–Schmidt procedure determines
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orthonormalized functions jQjÞ that are obtained by first projecting out previously processed vectors from the original
functions

j~QjÞ¼ jπjÞ�
Xj�1

k¼1

jQkÞðQkjπjÞ, ð9Þ

and then by normalizing the remainder

jQjÞ¼ eQjjeQj

� ��1=2
j eQjÞ: ð10Þ

It is now straightforward to make the connection that4,5

μνjQj

� �¼Lμν,j: ð11Þ

First, it is obvious from Equations (5) and (6) that the first function generated by the Gram–Schmidt procedure sat-
isfies μνjQ1ð Þ¼ π1jπ1ð Þ�1=2 μνjπ1ð Þ¼Lμν,1, as the first orthonormalized function is simply the first pivot function in nor-
malized form.4 Having established that Equation (11) holds for the first function, we can prove the connection in
general by the use of induction.

Computing μνjeQm

� �
from Equations (9) and (10) we have

μνjQmð Þ¼ eQmjeQm

� ��1=2
μνjeQm

� �
, ð12Þ

μνjeQm

� �
¼ μνjπmð Þ�

Xm�1

k¼1

μνjQkð Þ Qkjπmð Þ: ð13Þ

On the one hand, we can rewrite Equation (13) using the claim of Equation (11) as

μνjeQm

� �
¼ μνjπmð Þ�

Xm�1

k¼1

Lμν,kLπm ,k: ð14Þ

On the other hand, Equation (6) reads in the same notation as

Lμν,m ¼ 1
Lπm ,m

μνjπmð Þ�
Xm�1

j¼1

Lμν,jLπm ,j

 !
: ð15Þ

The right hand side of Equation (14) is clearly equal to the parenthesis Equation (15). But Equation (15) still con-
tains the “diagonal” element, and to complete the proof we need to show that this factor is the normalization integral
in Equation (10). This is also easy to show: according to Equation (9) the normalization integral in Equation (12) is

eQmjeQm

� �
¼ πmjπmð Þ�

Xm�1

k¼1

πmjQkð Þ Qkjπmð Þ, ð16Þ

¼ πmjπmð Þ�
Xm�1

k¼1

Lπm,kLπm ,k, ð17Þ

¼ d mð Þ
πm

¼ L2πm,m, ð18Þ
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where we have again used Equation (11) to arrive from Equation (16) to Equation (17), and then applied Equation (4)
to identify the diagonal error in V �LLT at iteration m, which is the “diagonal” element of the Cholesky vector
according to Equation (5) in Equation (18), q.e.d.

We have thus reproduced the proof of References [4,5] that when applied to an overlap (a.k.a. Gram) matrix, the
pivoted Cholesky decomposition is analogous to performing Gram–Schmidt orthogonalization on the sequence of pivot
functions chosen by the CD. Why did we go through this trouble? This connection is of immense practical use. Not only
does it give an intuitive understanding of what the Cholesky decomposition does when applied to the ERIs, but also it
can be used to greatly simplify the computation of the Cholesky decomposition—as well as that of its derivatives. One
can especially see that the Cholesky decomposition of the ERI is the same as RI/DF in the basis of the orbital products rep-
resented by the pivot indices; this will be discussed in detail in Section 3.

Realizing that the Cholesky decomposition can be performed in two steps—(i) identification of the pivot functions
and (ii) formation of the Cholesky vectors—allows the use of a different type of algorithm than the single-step approach
presented in Section 2. As we will discuss in the literature review in Section 2.2, modern CD approaches rely on such
two-step procedures,6 which afford the following advantages.

When Equation (8) is employed as the stopping criterion, the first step can be optimized by throwing out any orbital
products i with diagonal errors di < τ at every iteration. Because the orbital product basis contains many linear depen-
dencies, the number of significant elements in the d vector decreases rapidly, meaning that the consequent pivot indices
become faster and faster to determine. Once the pivot indices have been determined, the Cholesky vectors can be effi-
ciently computed from orthogonalized three-center integrals as in the RI/DF technique, which is discussed in Section 3.
This also obviates the need to keep the Cholesky vectors in memory, as the vectors can be computed from the pivot
indices on-the-fly following established RI/DF methodologies.

2.2 | Literature review

What follows will primarily be a review on developments on the use of CD technology in electronic structure theory.
Key contributions specific to RI/DF are also mentioned when relevant to the presentation.

A first necessary step for chemical applications of the CD procedure was to find a way to compute nuclear gradients.
Initially, O'Neal and Simons14 proposed augmenting the ERI matrix with the derivative integrals before carrying out
the CD procedure. However, this limits the accuracy of the computed gradients to the Cholesky threshold, requiring
the use of extremely small decomposition thresholds τ, which is clearly unsatisfactory. We will shortly discuss later
developments that allow exact gradients for CDs determined with rather generous thresholds.

Further development of the CD approach was slow during the 1980s and 1990s.14,15 In the meantime, the develop-
ment of the RI/DF approximation16 to ERIs offered an attractive and simple way around the somewhat awkward and
not too efficient recursive nature of the original version of the CD procedure discussed in Section 2: the RI/DF approach
discussed in Section 3 determines a reduced rank representation of the orbital product basis set by the introduction of
an auxiliary basis set. The expansion coefficients of the ERIs in the auxiliary basis can be determined variationally, but
the strict control over the accuracy of the resulting approach is lost in RI/DF, as it employs a fixed auxiliary basis set
instead of choosing the auxiliary functions adaptively as in CD (Section 2.1). However, the loss of guaranteed precision
is not an issue for many standard chemical applications, as discussed by Weigend et al.,17 for instance.

In 2003, Koch et al.18 developed the first modern CD implementation for Hartree–Fock (HF) and second-order
Møller–Plesset (MP2) theories in the Dalton software package,19 following the original procedure of Section 2. In the
following year, they reported implementations for computing dynamic polarizabilites at the approximate coupled-
cluster singles-and-doubles (CC2) level of theory.20 Both implementations demonstrated significant reductions in pro-
cessor time compared with the use of conventional ERI techniques.

These efforts inspired the MolCAS22 developers to implement and investigate the CD approach, as well. First,
Aquilante et al.21 developed the local-exchange (LK) method for fast evaluation of the exchange contribution to the
Fock matrix (see Figure 1), the direct Coulomb contribution being inexpensive and straightforward. Implementations
of CD-based scaled-opposite-spin MP2 theory,23 complete active space self-consistent field (CASSCF)24 theory, and mul-
ticonfigurational second-order perturbation theory (CASPT2)25 followed in a rapid sequence.

The derivative issue was also addressed and solved in a different way from the original approach of O'Neal and
Simons14: Aquilante et al.4 argued that the proper derivatives are not generated by CD applied to the derivative inte-
grals but rather by differentiating the Cholesky approximation itself, Equation (3). However, the recursive nature of the
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Cholesky basis is a significant complication in such an implementation. Yet, as discussed in Section 2.1, Aquilante et al.
showed that Equation (3) could equally well be expressed as

μνjκλð Þ≈
X
n
LnμνL

n
κλ

¼
X
mn

μνjπmð Þ V�1
� �

mn πnjκλð Þ,
ð19Þ

where πmf g again denote orbital products μmνm chosen by the CD as pivot indices, and the Coulomb matrix V is
defined to have the matrix elements Vm,n ¼ πmjπnð Þ. The key discovery here is that the derivatives of Equation (19) are
straightforward to compute with minor modifications of the algorithms developed for RI/DF techniques discussed in
Section 3, obviating the need to take the derivatives of the iterative CD procedure discussed in Section 2.

Similarly motivated by the efforts by Koch et al. and the MolCAS developers, Røeggen and Johansen26 suggested an
efficient CD algorithm for use with family type basis sets that employ the same Gaussian exponents for various angular
momenta.

As suggested by Beebe and Linderberg,1 the CD procedure also turns out to be useful for other quantities than the
ERIs. For instance, Aquilante et al.27 used CD to generate localized MOs in a non-iterative fashion from the one-particle
density matrix in the AO basis, while Boman et al.28 applied the CD approach in a brilliant work to the matrices occur-
ring in the energy expressions for a given method. For example, the direct Coulomb contribution to the energy in HF,
CASSCF, and Kohn–Sham density-functional theory (KS-DFT) can be written as

EC ¼
X
μν,κλ

Dμν μνjκλð ÞDκλ ¼
X
μν,κλ

Mμν,κλ, ð20Þ

where the CD procedure can now be applied to the matrix M that describes products of density matrix elements Dμν

with the corresponding AOs χμχν which together describe the electron density participating in the Coulomb interaction;
this yields the Coulomb decomposition. Boman et al. also reported three versions adapted for the HF exchange energy,
which differ in the ways the contributions are screened. Overall, they found that the length of the CD can be reduced

FIGURE 1 Comparison of the scaling of the CPU time for the exchange Fock matrix build for linear alkanes using standard Cholesky,

the local exchange (LK) Cholesky, and the conventional integral-direct methods using a CD threshold of τ¼ 10�4 Eh and the cc-pVTZ basis

set. (Reprinted from Reference [21] with permission from AIP Publishing.)
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by an order of magnitude or more compared with the standard CD applied to the ERIs, and that the associated reduc-
tions in computational time may reach two orders of magnitude.28

Another distinct application of the CD procedure is by Lehtola,29 who followed the techniques discussed later in
Section 3 to cure overcompleteness in molecular electronic structure calculations with AO basis sets. Even when the
AO basis is orthonormal on a single atom, the overlap matrix may develop pathological singularities from interatomic
blocks that make electronic structure calculations numerically ill-conditioned. However, in analogy to the methods dis-
cussed in Section 3, the CD approach can be used to identify subsets of orbital basis functions that are able to span the
whole set of atomic-orbital basis functions29; per the discussion in Section 2.1, the method of Reference [29] can be seen
as an optimal Gram–Schmidt orthogonalization of the AO basis. This automated procedure to remove pathological lin-
ear dependencies enables the routine use of extremely diffuse basis functions to describe weakly bound electrons,29

extended basis sets for benchmark quality calculations,30 as well as studying highly repulsive parts of potential energy
surfaces where nuclei may even be on top of each other.31

The developments of the CD method for ERIs over the last 10–15 years have included implementations of a wide
range of ab initio methods, including Green's function methods,32 an adaptive metric for fragment molecular orbital
MP2,33 equation-of-motion MP2,34 and second-order symmetry-adapted perturbation theory.35 Implementations for
nuclear gradients and non-adiabatic coupling vectors at the CASSCF and CASPT2 level of theory have been presented
by various groups.36–40 Carter et al. have used the procedure in linear-scaling and localized multireference configura-
tion interaction (MRCI) theory,41,42 while Lehtola et al. have used it for studies on the Perdew–Zunger self-interaction
correction43,44 and the perfect pairing hierarchy,45 which is a family of truncated coupled-cluster (CC) methods. Other
types of CC theories have seen use of Cholesky decomposed ERIs by others. An extensive list includes reports on
implementations with parallel CC singles-and-doubles with perturbative triples corrections (CCSD(T)),46 for the evalua-
tion of equation-of-motion CC (EOM-CC),47 in connection with efficient CC singles (CCS) and CC singles-and-doubles
(CCSD) implementations on graphics processing units (GPUs),48 a combination of reverse Cuthill–McKee transforma-
tion in combination with CD for compact two-electron integral representation in combination with MP2 and linear
coupled-cluster with doubles l-DCC,49 for the evaluation of analytical gradients for the CCSD and EOM-CCSD methods
using the explicit derivatives of the iteratively generated Cholesky vectors,50 for the CCS, CCSD, and CCSDT models
combining CD representation of the ERIs with tensor-reduction schemes for the triples CC amplitudes,51 and most
recently for CCSD gradients52 using the approach of Aquilante et al.4 to compute the derivative integrals in the parent
basis set.

To continue, Bozkaya et al. have implemented over the last few years in a collective effort CD and RI/DF for various
orbital-optimized schemes (the OMP2, OMP2.5, and OCCSD methods),53–55 quasi-degenerate perturbation theory,56 as
well as energies and analytic gradients for OCCSD, and EOM-CCSD.57,58 These CD approaches are available35 in the
Psi4 program package.59 Similarly, Hohenstein et al. have presented impressive implementations of CD ERI methods in
connection with reduced-rank CC theory on GPUs,60 combined with tensor hypercontraction of the doubles
amplitudes.61

In this list of implementations of CD ERIs in ab initio methods one also finds a variational orbital-optimized two-
particle reduced-density-matrix method,62 a self-consistent-field valence bond (VBSCF) method,63 and an implementa-
tion in density matrix renormalization group (DMRG) second-order N-electron valence state perturbation theory
(NEVPT2).64 Piccardo and Soncini65 have also formulated a modified version of the procedure that can be applied to
both the symmetric ERI matrix and the antisymmetric matrix of the two-electron spin–orbit integrals.

The recently developed eT software package66 for CC methods has been designed to exclusively employ the CD rep-
resentation of the ERIs. Folkestad et al.67 presented a highly efficient implementation of the two-step CD procedure of
Aquilante et al.6 that only stores the pivot indices from which the integrals can be computed as needed. Folkestad
et al.67 have used this procedure in eT in CCSD calculations on systems with up to 80,000 AO basis functions, see
Figure 2.

In parallel with the work of Folkestad et al., Lew-Yee et al.68 reported two algorithms on the combination of asym-
metric DF together with CD ERIs in a second-order propagator implementation. Most recently, Zhang et al.69 reported
a careful analysis of the computational costs of the two-step procedure, and determined the optimal way to implement
CD with respect to memory footprint and number of floating-point operations.

The CD procedure is now starting to be incorporated to its full extent also in other program packages than
DALTON,70 OPENMOLCAS,71 eT ,66 and PSI4.59 Helmich-Paris et al.72 described the implementation of relativistic Cholesky-
decomposed density matrix (CDD) second-order Møller–Plesset perturbation theory (MP2) energies in the Dirac pro-
gram.73 Nottoli et al.74 have recently reported several implementations using CD ERIs in the CFOUR software
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package,75 while Blaschke and Stopkowicz70 presented an extension of the CD technique for complex ERIs arising from
the use of London orbitals.76 Employing these techniques, Nottoli et al. have reported a quadratically convergent SCF
(QCSCF) implementation,74 a second-order multi-configuration SCF (MCSCF) implementation77 that yields a signifi-
cant reduction in the computational cost and memory requirements and improves parallel performance, and studied
nuclear magnetic resonance shielding constants and molecules in strong magnetic fields.78,79 Finally, extremely
recently, the application of CD and lower-upper (LU) techniques to a spin-free infinite-order two-component relativistic
Hamiltonian in a modified version of the GAMESS program has been discussed by Takashima and Nakai.80

3 | RI/DF APPROACH

Could the ERIs be computed more efficiently using an intermediary basis set? This question is the defining characteris-
tic of the RI/DF approach and it has been investigated by several research groups.11,16,81–88

The central idea in the RI/DF approach is that the orbital product basis set can be expanded in terms of a smaller
auxiliary basis set as

χμ rð Þχν rð Þ≈
X
K

CK
μνθK rð Þ: ð21Þ

The expansion of Equation (21) was originally investigated by Whitten11 as a way to get an efficient representation
of the electron densities when computing Coulomb potential energies. The expansion coefficients CK

μν are obtained by
maximizing the fit between the input density in the orbital product basis and the auxiliary basis expansion. Vahtras
et al.89 studied such fits determined within the Coulomb and overlap metrics, and found the former to yield the most
accurate results. This is easily understood, since fitting in the Coulomb metric minimizes the error in the interaction
energy,

ϵμν,κλ ¼ μν�
X
L

CL
μνθL jκλ�

X
K

CK
κλθK

 !
: ð22Þ

Hence, we find the following relation at the minimum

FIGURE 2 Retinal bound to rhodopsin with active retinal was used by Folkestad et al. to exemplify the capacity of their CD

implementation in eT . In this calculation, the one-center version of the CD of the ERIs was used in association with an aug-cc-pVTZ basis

set, with NAO ¼ 79,420 AO basis functions. (Reprinted from Reference [67] with permission from AIP Publishing.)
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∂ϵμν,κλ
∂CK

κλ

¼ μν�
X
L

CL
μνθL jθK

 !
¼ 0, ð23Þ

which yields

CL
μν ¼

X
K

μνjKð Þ V�1
� �

KL, ð24Þ

where K and L are indices used as a shorthand for the auxiliary basis functions θK and θL, and μνjKð Þ and VKL ¼ KjLð Þ
are the so-called 3- and 2-center ERIs, respectively, which are evaluated over the orbital and auxiliary basis functions.
For a recent comparison on the accuracy of various fitting metrics, we refer to the work of Duchemin et al.90

The approximation in Equation (21) results in the following approximation for the ERIs:

μνjκλð Þ≈
X
KL

CK
μνVKLC

L
κλ: ð25Þ

When the coefficients are determined by the Coulomb fitting procedure of Equation (24), Equation (25) yields

μνjκλð Þ≈
X
KL

μνjKð Þ V�1
� �

KL Ljκλð Þ: ð26Þ

This expression is now seen to be identical to Equation (19): in Equation (19), the pivot functions chosen by the CD
take on the role of the chosen auxiliary basis in Equation (26), which enables the reuse of RI/DF techniques within the
two-step CD scheme as discussed in Section 2.1.

The connection to the CD technique also allows us to see that the maximum absolute error in the approximate ERIs
of the RI/DF procedure is bounded from above by max μν,κλ j ϵμν,κλ j, whose value is now determined by the chosen auxil-
iary basis set. This error can be made small by a judicious choice of the auxiliary basis set: an extended auxiliary basis
set will afford small errors.

It has also been recently pointed out that a one-center correction to the RI/DF procedure in which all one-center
two-electron integrals are computed exactly can afford reduced RI/DF errors.91

3.1 | Auxiliary basis sets

We will now review efforts to build accurate auxiliary basis sets along two prongs. The first is to optimize the auxiliary
basis sets for a specific purpose, such as for the cost-efficient calculation of the direct Coulomb contribution to the Fock
matrix, which is of immense practical importance in standard chemical applications. The second is to try to build general-
use basis sets by some automated means, starting from the given orbital basis set. In particular, the CD technique will be
seen to guarantee small errors by construction, yielding a universal approximation of the ERIs with controlled accuracy.

Once the considerable benefits of the RI/DF approach were discovered, researchers took on the quest of finding
optimal auxiliary basis sets. Vahtras et al.89 noted that although an exact θK in Equation (21) can be found with the
Gaussian product theorem, this would not result in any reduction in the required computational effort. In any case, a
successful approximation should reproduce the HF energies with suitably small errors, which requires reproducing the
correct behavior of isolated atoms, for instance. Hence, Vahtras et al.89 stated that “the expansion basis set should in
principle include all one-center products of the original basis set.” The race was now on to find such auxiliary basis sets.

One way to derive such precomputed auxiliary basis sets was proposed by Ten-no and Iwata. Following Vahtras
et al., the linear combination of atomic electron densities (LCAD) approach92,93 chooses all single-center orbital
products as auxiliary functions. A slight complication of this choice are the angular redundancies (ARs) due to
duplicate orbital products of the same total angular momentum, and the Coulombic redundancies (CRs) due to the
overcompleteness of the set of orbital products, which are removed in the procedure.92,93 Ten-no and Iwata93

demonstrated significant speedups for multiconfigurational calculations with the LCAD scheme with negligible
errors (� 0:1 kcal mol�1).
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The group around Ahlrichs and the TURBOMOLE program94 did solid work along a different route and produced a
preoptimized auxiliary basis set for the standard orbital basis sets in Turbomole at the time, which cover the chemically
relevant part (H–Rn) of the periodic table. This RI-J auxiliary basis set was designed to reproduce the direct Coulomb
contribution J to the Fock matrix,95,96 significantly speeding up density functional calculations with semilocal func-
tionals. The auxiliary basis was optimized by minimizing the error in the Coulomb energy of isolated atoms and
hydrides with a Monte Carlo procedure. The resulting error was found to be around 0:1 mEh per atom in the early gen-
erations of auxiliary basis sets. Equally importantly, the auxiliary basis set was found to be about three times the size of
the orbital basis set, Naux ≈ 3NOBF.

The work was extended to the evaluation of the MP2 correlation energy by numerical optimization of exponents and
contraction coefficients using an error metric defined by the direct MP2 energy correction,97 yielding RI-MP2 auxiliary basis
sets. The number of primitives and the contraction pattern of the auxiliary basis were determined based on ad hoc rules. An
error of 0:06 mEh per atom was achieved with a slightly larger auxiliary basis set than the RI-J basis set, Naux ≈ 4NOBF.

It is worth mentioning that the optimization procedures for the RI-J and RI-MP2 auxiliary basis sets employed error
metrics associated with total energies, which means that the errors in the values of the individual ERIs was not consid-
ered. Reproducing all ERIs generally requires many more auxiliary functions than reproducing just the Coulomb or the
MP2 correlation energy. Still, it should be noted that these RI implementations for DFT and MP2 made the Turbomole
package one of the few packages at the time that could routinely simulate molecules of a decent size with reasonably
sized AO basis sets.

A number of additional publications on auxiliary basis sets adapted to special conditions, other orbital basis sets
than the TURBOMOLE ones, and other energy models (for example, both direct Coulomb and exchange contributions),
have followed the footsteps outlined by the TURBOMOLE developers.98–104 Some families of auxiliary basis sets, such as
the OptRI family, have been especially developed for explicitly correlated calculations.105–107 However, it is worth not-
ing that no precomputed auxiliary basis sets had been reported for, for example, multiconfigurational electronic struc-
ture models at this time (2008). This was possibly a manifestation of the somewhat tedious and ad hoc way in which
the preoptimized auxiliary basis sets are constructed: if you had just derived a new orbital basis set or designed a new
electronic structure model, you were at best on a waiting list to get the associated auxiliary basis set(s), or you had to
optimize them yourself. Furthermore, optimized auxiliary basis sets are almost invariably tailored for reproducing dif-
ferences in ground state total energies, and may not be accurate for modeling all kinds of molecular properties such as
magnetic or core spectroscopies, highlighting the need for alternate avenues.

The first attempt to automate the construction of RI-J auxiliary basis sets was reported by Yang et al.,108 who devel-
oped an ad hoc scheme with 11 steps: the auto-ABS procedure that is controlled by three adjustable parameters. Auto-
ABS produces an uncontracted auxiliary basis and employs each exponent over an angular momentum range specific
to that exponent. This algorithm was implemented in the Gaussian program and its accuracy in the reproduction of the
direct Coulomb energy was compared with that of the so-called “universal” auxiliary functions of Weigend.109 Yang
et al.108 reported that Auto-ABS reproduces an accuracy similar to that of the auxiliary basis set of Weigend, even
though the auto-ABS auxiliary basis can be as much as four times larger than that of Weigend.

When Aquilante and Pedersen worked on implementing the CD method for CASSCF and CASPT2 energy calcula-
tions, and Lindh on implementing RI/DF technology for the HF and density functional methods—all three working
within the MolCAS package—they started to see similarities between their formulations that were beyond pure coinci-
dence. This should not have been a surprise to anyone, as both techniques are realizations of the inner projections
famously explored by Löwdin,110,111 as was also elaborated by Vahtras et al. in the educational paper on integral
approximations in HF calculations.89

Again, as discussed in Sections 2.1 and 3, the only difference between CD and RI/DF ERIs is the choice of the auxil-
iary basis set. The RI/DF approximation of the ERI can be written in the same form as the CD representation by sym-
metric splitting of the inverse overlap matrixX

KL

μνjKð Þ V�1
� �

KL Ljκλð Þ

¼
X
MKL

μνjKð Þ V�1=2
� �

KM
V�1=2
� �

ML
Ljκλð Þ

¼
X
M

RM
μνR

M
κλ,

ð27Þ
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yielding an expression similar to Equation (3), even when the two-center Coulomb overlap matrix KjLð Þ contains linear
dependencies that are removed. Thus, the difference between RI/DF and CD is just which set of functions is used as the
auxiliary basis: the pretabulated auxiliary basis functions in RI/DF versus the orbital product functions chosen automat-
ically by the CD procedure. Modern implementations of either method work by forming the two-center overlap KjLð Þ
and orthogonalizing it by, for example, Löwdin's canonical orthogonalization method,112,113 while pathological linear
dependencies in the auxiliary basis set can be handled again with CD approaches.29,114

Considering the remarkable success and accuracy of the RI/DF procedure employing a one-center auxiliary basis
set, one can ask if the one-center constraint also works within the context of the CD decomposition of the ERIs. The
answer to this question is a resounding yes: not only is the resulting one-center CD (1C-CD)115 procedure almost as
accurate as the full four-center CD, but also it is about four times faster than full CD. Although a major improvement,
the 1C-CD approach still has some potential flaws. It still requires a costly iterative procedure employing the procedure
of Section 2 or Section 2.1. Also, even though the auxiliary basis now only contains one-center product functions, the
auxiliary basis can change with the molecular geometry, which may result in discontinuities in potential energy
surfaces.

Both of these problems can be easily fixed by applying the CD procedure on individual atomic blocks of the ERI
supermatrix, thus defining the atomic CD (aCD) procedure.115 Again, a significant reduction in timings is observed
compared with full-CD or 1C-CD without a significant loss of accuracy. Of course, neither 1C-CD or aCD provide
global ERI error control any more, as only the errors of the one-center ERIs singled out by Vahtras et al.89 are
controllable.

It is prudent to compare aCD with the LCAD approach of Ten-no and Iwata.92,93 The 1C-CD, aCD, and LCAD
approaches all work in the original orbital product basis set, but with different selection of the threshold for elimination of
(near-)linear dependence. The former two methods typically use a threshold which is four orders of magnitude more loose.

Another important fact to stress is that in contrast to the standard RI/DF auxiliary basis sets that are typically opti-
mized to reproduce total energies for a given method, the full-CD, 1C-CD, LCAD, and aCD families of auxiliary basis
sets approximate the integrals themselves, meaning that no accidental cancellation of errors is relied upon for the accu-
racy of the resulting approach, see Figure 3.

However, the three approaches still share an exhaustive list of primitive orbital products, while standard RI/DF
basis sets are no more dense than ordinary orbital basis sets. There must be more redundancy that can be removed!
Aquilante et al.116 demonstrated that if an additional CD procedure is applied to an atomic ERI list, now expressed in
terms of the products of uncontracted, primitive Gaussians instead of products of AOs of contracted Gaussians, signifi-
cant reductions can indeed be achieved in the primitive Gaussian approximation of the product basis. The resulting
atomic compact CD (acCD) auxiliary basis set contains far fewer functions than the original aCD auxiliary basis set, as
seen in Figure 4.

Although the acCD auxiliary basis sets are larger than the standard TURBOMOLE auxiliary basis sets, for instance, the
acCD basis sets come with several advantages. The acCD basis set can be derived on the fly from any orbital basis set,
eliminating the need for pretabulation by a painstaking optimization procedure for each combination of orbital basis,
method, and targeted property. The acCD basis is a general-purpose auxiliary basis in that it can be used for any
ab initio wave function or density functional model with similar accuracy, and it can also be expected to work well for
various molecular properties. Moreover, the accuracy of the approximation is controllable with a single threshold, τ. In
short, the CD approach, whether atomic, one-center, or full, can be viewed as a systematic approximation of the two-
electron interaction terms of the second-quantized Hamiltonian.

A calibration study of full-CD, 1C-CD, aCD, and acCD thresholds with respect to HF, non-hybrid, and hybrid den-
sity functional theory, and MP2 total energies demonstrated satisfactorily small errors of 0:01 kcal mol�1 per electron
in conjunction with a CD threshold of τ¼ 10�4 Eh,

5 compared with the use of the exact ERIs. The same threshold
reproduced errors for CASSCF and CASPT2 valence and Rydberg excitation energies of 0.001 eV,117 again compared
with the use of exact ERIs. MP2, CCSD, and CCSD(T) interaction energies of weakly bound dimers are found to exhibit
errors in the range 0.003 to 0:03 kcal mol�1 compared with the use of conventional ERIs.118 Furthermore, the same
benchmark studies show that the error arising from the RI/DF procedure with the aCD and acCD auxiliary basis sets is
virtually insignificant for high-quality orbital basis sets. For multiconfigurational methods, such as the CASSCF and
CASPT2 models, the use of the acCD auxiliary basis set effectively eliminated the relative timing bottleneck due to the
treatment of the ERIs. In a 2009 comparative study of 1C-CD, aCD, and acCD approaches versus the Turbomole RI/DF
auxiliary basis sets, Weigend et al.17 noted that the latter auxiliary basis sets are slimmer but still reproduce energies
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within acceptable error bars. They stated that the acCD auxiliary basis sets could possibly play a role in calculations
with larger basis sets.

Over the last 15 years a number of new auxiliary basis sets have been developed and published. Hill et al. have
developed RI-MP2 auxiliary basis sets for correlation-consistent basis sets for elements beginning from scandium,119–121

while additional auxiliary basis sets for other types of orbital basis sets (weighted core-valence and ECP basis sets,122

the 6-31G** and 6-311G** basis sets of Pople et al.,123 lanthanide basis sets,124 Turbomole basis sets with diffuse
functions,125 etc.) have also been developed.

FIGURE 3 A representation from the benzene molecule of the errors in reproducing the ERIs. The maximum (left) and root-

mean-square (RMS, right) errors of the AO ERIs are presented employing the RI-J, RI-C, and two aCD auxiliary basis sets for the SVP orbital

basis set. For the two aCD basis sets the thresholds of 10�2 Eh and 10�3 Eh were used. (Adapted from Reference [115].)

FIGURE 4 Illustration of the sparsity in the primitive Gaussian basis associated to an acCD basis set, compared with that arising from

the original orbital basis and the aCD basis sets, exemplified by the s shell of the ANO-RCC basis for the Tc atom. Primitive exponents in

(a) the orbital basis (b) the resulting aCD basis (τ¼ 10�4 Eh) and (c) the resulting acCD (τ¼ 10�4 Eh) basis set. Note the use of a logarithmic

x axis. (Reprinted from Reference [116], with the permission of AIP Publishing.)
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Auxiliary basis sets have also been developed for F12 calculations. Shaw and Hill126 reported improved complemen-
tary auxiliary basis sets for reaching the HF limit (OptRI+) in F12 calculations, while Kritikou and Hill127 reported aux-
iliary basis sets optimized for reproducing correlation energies computed with F12 second-order Møller–Plesset
perturbation theory.

As is evident from this tale, the selection and accuracy of auxiliary basis sets has inherited the complexity and con-
fusion of orbital basis sets. Corrections to auxiliary basis sets for the correlation consistent cc-pV(n+d)Z orbital basis
sets have been published as recently as 2023 by Nash et al.128

As the literature lacks systematic version control, it can be hard to keep track of the development of orbital basis
sets and the corresponding auxiliary basis sets. An example is the recent study of Kermani and Truhlar,129 which high-
lights the ill-known fact that a given orbital basis set such as cc-pVDZ may not be the same in all programs.

Over the last few years researchers have been trying to address this issue by coming up with a simple recipe for gen-
erating an accurate auxiliary basis set for the given orbital basis set. Building on the tradition of employing product
basis sets in the preceding computational physics literature, Ren et al.130 proposed a procedure that forms auxiliary
basis sets by forming all possible products and choosing the auxiliary basis functions by Gram–Schmidt orthogonaliza-
tion. Note that if optimal pivoting is used, according to Section 2.1 this procedure is equivalent to the use of a pivoted
Cholesky decomposition. Importantly, the procedure of Ren et al. is independent of the form of the atomic basis set;
their implementation used numerical atomic orbitals, which were used to express Gaussian-type orbital basis sets.

Stoychev et al.131 reported the AutoAux procedure, which is a set of 9 ad hoc rules controlled by 19 adjustable
parameters to generate auxiliary basis sets for Gaussian basis sets. The AutoAux basis sets are usually twice as large as
standard precomputed auxiliary basis sets but Stoychev et al. claim these to be general-purpose basis sets. Laikov132

similarly proposed a method based on ad hoc rules of thumb for optimizing an auxiliary basis set for a given Gaussian
orbital basis, which likewise relies on a number of adjustable parameters that control the composition of the resulting
auxiliary basis. Semidalas and Martin133 reported an automatic ad hoc procedure to generate complementary auxiliary
basis functions for explicitly correlated F12 wave calculations with Gaussian basis sets following an eight-point scheme,
which yields an auxiliary basis set with similar quality to the OptRI+ basis set.

On another path, following the footsteps of Aquilante et al.,116 Lehtola114 proposed an atomic CD procedure that
employs a pivoted Cholesky decomposition to pick out auxiliary atom-centered basis functions of the standard form
composed of a radial function times a spherical harmonic. At variance to the aCD and acCD procedures that employ
combinations of Cartesian functions and spherical harmonics in the auxiliary basis that are not supported by most
quantum chemistry programs or basis set formats, the procedure of Lehtola produces RI/DF basis sets of the stan-
dard form that can be employed without changes in any program that implements RI/DF calculations while simulta-
neously maintaining the central property of atomic CD of being controlled by a single accuracy threshold. Lehtola's
procedure, based on a pivoted Cholesky decomposition, is similar to that of Ren et al.130; see discussion above. More-
over, both schemes are similarly applicable to any type of atomic orbital basis set. However, Ren et al. employ the
full product orbital basis, while Lehtola preselects the trial products by a pivoted Cholesky decomposition of the
ERIs following Aquilante et al. Lehtola compared the new procedure to the AutoAux method of Stoychev et al.131

and found AutoAux to result in RI/DF errors up to 5 meV in MP2 total energies while the new Cholesky method
afforded errors an order of magnitude smaller. However, the generated Cholesky basis sets were found to be signifi-
cantly larger than those generated by AutoAux.

In extremely recent work Lehtola134 discusses a method of contracting the autogenerated Cholesky basis set by the
use of a singular value decomposition (SVD) of the three-center integrals, following a previous suggestion of K�allay.135

Combining the contraction with a pruning of the high-angular momentum functions, Lehtola134 finds that the resulting
procedure allows the size of the auxiliary basis to be reduced significantly: HF and MP2 total and atomization energies
can be reproduced with some 50% fewer auxiliary basis functions with the new scheme. Lehtola finds that the accuracy
of the full auxiliary basis can be captured with Naux ≈ 5:5NOBF, while an accuracy similar to AutoAux is achievable
with Naux ≈ 3:5NOBF.

Not minding the complication with the mixing of Cartesians and spherical functions in the aCD basis, Hellmann
et al.136 applied aCD with only spherical functions to integrals of the long-range part of the range-separated Coulomb
operator in time-dependent density functional theory (TD-DFT). Hellmann et al.136 observed that the aCD basis set was
consistently smaller than the recommended general-purpose Coulomb RI basis set by up to one order of magnitude for
some molecular systems, without any loss of accuracy to excitation energies. Single-point energies were, however,
found to be prone to the errors introduced by the lacking handling of the mixed Cartesian/spherical auxiliary functions
used in the aCD scheme, in agreement to the findings of Lehtola.114 However, it is interesting to compare the findings
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of Hellmann et al. to the recent work of Zhou et al.,137 who found that TDDFT excitation energies of organic molecules
can be captured to 0.06 eV error with just a single(!) s-type auxiliary basis function per atom. This suggests that TDDFT
calculations are surprisingly insensitive to the accuracy of the auxiliary basis set.

Before concluding this section a word of caution is in order though. Auxiliary basis sets autogenerated from small
orbital basis sets will lack high-angular-momentum functions which are necessary to describe products arising from
functions on two atoms. As a rule of thumb, the one-center approximations involved in LCAD, 1C-CD and the auto-
mated methods for generating auxiliary basis sets discussed above require at least a polarized triple-ζ orbital basis set to
afford auxiliary basis sets that are flexible enough to describe two-center orbital products that otherwise lead to large
RI/DF errors. It is also known that the high-angular-momentum functions contained in the orbital product basis gener-
ated by first-principles automatic algorithms are important for controlling the error in local fitting and, therefore,
should not be eliminated.138 Local fitting is often utilized to accelerate reduced-scaling or linear-scaling algorithms, and
accuracy can be improved with the use of robust and variational fitting which corrects the first-order error made in the
fit.139,140 Robust and variational fitting replaces Equation (25) with

μνjκλð Þ≈
X
L

μνjLð ÞCL
κλþ

X
K

CK
μν Kjκλð Þ

�
X
KL

CK
μν KjLð ÞCL

κλ:
ð28Þ

It is easy to see that this approximation is quadratic in the fitting error,141 and that it thereby allows flexibility for
choosing the fitting coefficients C, including using other metrics than the Coulomb operator. Equation (28) reduces to
the traditional expression of Equation (26) when the coefficients are determined by Coulomb fitting in the full auxiliary
basis with Equation (24).

Robust local fitting, however, breaks the positive-definiteness of the ERI tensor and, hence, may lead to attractive
electron–electron interactions. Moreover, the Hamiltonian may become unbounded from below, leading to variational
collapse. This problem was first described by Merlot et al.,142 and was later discussed in detail by Wirz et al.143 to which
we refer for the full analysis. In short, Wirz et al. showed that with robust local fitting, Equation (28), the Coulomb term
is unbounded from below but the exchange term remains bounded. Conversely, with non-robust local fitting,
Equation (26), the Coulomb term is bounded from below, while the exchange term is unbounded. Using either robust
or non-robust fitting for both terms may thus lead to variational collapse. On the other hand, as first noted by Manzer
et al.,144 the problem of variational collapse can be circumvented rather easily by using robust fitting for the exchange
term only. The Coulomb term can be determined by non-robust fitting with all auxiliary basis functions; this is not an
issue as highly efficient algorithms exist for computing the Coulomb matrix.145–147

4 | CONCLUSION

We have reviewed the use of the Cholesky decomposition (CD) in electronic structure theory, focusing on the CD of
the electron repulsion integrals that was first discussed by Beebe and Linderberg.1 Our review was divided into two
parts. The first part (Section 2) presented the general CD algorithm, and then proved the connection to Gram–Schmidt
orthogonalization that can be used to unite the CD and RI/DF approaches as well as to formulate the efficient two-step
CD approach in Section 2.1. We reviewed the development of CD approaches in the literature in Section 2.2: the CD
technique enables computationally efficient approaches with reduced memory demands for a large variety of ab initio
methods, and we presented several cases in which this technology offers reductions in computational time by at least
an order of magnitude. The second part of this work (Section 3) discussed the RI/DF approach, and continued with the
review of auxiliary basis set approaches in Section 3.1. The tight relationship between the CD procedure and RI/DF
technology has been employed in the literature for automatically generating auxiliary basis sets for RI/DF methods with
the CD technique, offering a robust approach that can easily be applied on the fly to any orbital basis set. Indeed,
atomic CD procedures are the only way to derive compact auxiliary basis sets with strict error control. It is our view that
the developments of the last 20 years demonstrate empirically that auxiliary basis sets which are consistently accurate,
robust and of general purpose are best derived in an atomic Cholesky procedure. Moreover, the tight relationship
between CD and RI/DF is nowadays obvious also in the literature, as CD and RI/DF are handled in many programs
within a single implementation of these two efficient inner projection methods.
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It is an interesting coincidence that the previous review6 was published in 2011 close to 100 years after the invention
of the CD by A.-L. Cholesky in 1910. Similarly, this work also marks almost 100 years since the original publication of
the CD method2 in 1924.

We conclude this review with another interesting fact. The 2011 review by Aquilante et al.6 concluded by noting
that the original work of Beebe and Linderberg1 did not gain many citations in the first 30 years after its publication,
and that most of the citations it had accrued by the end of 2010 were from articles published in the preceding 3 years
(2007–2010); we note here that the article of Beebe and Linderberg had been cited a total of 97 times by the end of
2010. Aquilante et al. opined that the CD procedure had much more to offer for quantum chemistry in the future. As
documented in this article, the CD procedure has been central to the development of efficient and robust computational
strategies by many research groups. Today, in September 2023, the paper by Beebe and Linderberg has been cited a total
of 398 times according to the Web of Science. We expect this strong growth of the use of CD techniques in quantum
chemistry to continue in the upcoming decades.

AUTHOR CONTRIBUTIONS
Thomas Bondo Pedersen: Visualization (equal); writing – review and editing (equal). Ignacio Fdez. Galv�an: Visuali-
zation (lead); writing – review and editing (equal). Roland Lindh: Writing – original draft (lead); writing – review and
editing (equal). Susi Lehtola: Writing – review and editing (equal).

ACKNOWLEDGMENTS
TBP acknowledges support from the Research Council of Norway through its Centres of Excellence scheme, project
number 262695. SL acknowledges support from the Academy of Finland under project numbers 350282 and 353749.
IFG and RL acknowledge the Swedish Research Council (VR, Grant No. 2020-03182) for funding.

CONFLICT OF INTEREST STATEMENT
The authors have declared no conflicts of interest for this article.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Thomas Bondo Pedersen https://orcid.org/0000-0001-8967-6055
Susi Lehtola https://orcid.org/0000-0001-6296-8103
Ignacio Fdez. Galv�an https://orcid.org/0000-0002-0684-7689
Roland Lindh https://orcid.org/0000-0001-7567-8295

RELATED WIREs ARTICLES
Challenges in large scale quantum mechanical calculations

REFERENCES
1. Beebe NHF, Linderberg J. Simplifications in the generation and transformation of two-electron integrals in molecular calculations. Int

J Quantum Chem. 1977;12:683–705. https://doi.org/10.1002/qua.560120408
2. Comdt. Benoît. Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres

carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues. Application de la méthode à la résolution d'un
système defini d'équations linéaires. Bull Géod. 1924;2:67–77. https://doi.org/10.1007/bf03031308

3. Golub GH, van Loan CF. Matrix computations. Baltimore: Johns Hopkins University Press; 1996.
4. Aquilante F, Lindh R, Pedersen TB. Analytic derivatives for the Cholesky representation of the two-electron integrals. J Chem Phys.

2008;129:034106. https://doi.org/10.1063/1.2955755
5. Pedersen TB, Aquilante F, Lindh R. Density fitting with auxiliary basis sets from Cholesky decompositions. Theor Chem Acc. 2009;124:

1–10. https://doi.org/10.1007/s00214-009-0608-y
6. Aquilante F, Boman L, Boström J, Koch H, Lindh R, S�anchez de Mer�as A, et al. Cholesky decomposition techniques in electronic struc-

ture theory. In: Leszczynski J, editor. Challenges and advances in computational chemistry and physics. Netherlands: Springer; 2011.
p. 301–43. https://doi.org/10.1007/978-90-481-2853-2_13

7. Aquilante F, Delcey MG, Pedersen TB, Galv�an I, Lindh R. Inner projection techniques for the low-cost handling of two-electron inte-
grals in quantum chemistry. Mol Phys. 2017;115:2052–64. https://doi.org/10.1080/00268976.2017.1284354

16 of 21 PEDERSEN ET AL.

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1692 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [09/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-8967-6055
https://orcid.org/0000-0001-8967-6055
https://orcid.org/0000-0001-6296-8103
https://orcid.org/0000-0001-6296-8103
https://orcid.org/0000-0002-0684-7689
https://orcid.org/0000-0002-0684-7689
https://orcid.org/0000-0001-7567-8295
https://orcid.org/0000-0001-7567-8295
https://doi.org/10.1002/wcms.1290
https://doi.org/10.1002/qua.560120408
https://doi.org/10.1007/bf03031308
https://doi.org/10.1063/1.2955755
https://doi.org/10.1007/s00214-009-0608-y
https://doi.org/10.1007/978-90-481-2853-2_13
https://doi.org/10.1080/00268976.2017.1284354


8. Harbrecht H, Peters M, Schneider R. On the low-rank approximation by the pivoted Cholesky decomposition. Appl Numer Math. 2012;
62:428–40. https://doi.org/10.1016/j.apnum.2011.10.001

9. Roothaan CCJ. New developments in molecular orbital theory. Rev Mod Phys. 1951;23:69–89. https://doi.org/10.1103/revmodphys.
23.69

10. Slater JC. Quantum theory of atomic structure. New York: McGraw-Hill; 1960.
11. Whitten JL. Coulombic potential energy integrals and approximations. J Chem Phys. 1973;58:4496–501. https://doi.org/10.1063/1.

1679012
12. Power JD, Pitzer RM. Inequalities for electron repulsion integrals. Chem Phys Lett. 1974;24:478–83. https://doi.org/10.1016/0009-2614

(74)80159-4
13. Almlöf J, Faegri K, Korsell K. Principles for a direct SCF approach to LCAOMO ab-initio calculations. J Comput Chem. 1982;3:385–99.

https://doi.org/10.1002/jcc.540030314
14. O'Neal DW, Simons J. Application of Cholesky-like matrix decomposition methods to the evaluation of atomic orbital integrals and

integral derivatives. Int J Quantum Chem. 1989;36:673–88. https://doi.org/10.1002/qua.560360602
15. Røeggen I, Wisløff-Nilssen E. On the Beebe–Linderberg two-electron integral approximation. Chem Phys Lett. 1986;132:154–60.

https://doi.org/10.1016/0009-2614(86)80099-9
16. Boys SF, Shavitt I. A fundamental calculation of the energy surface for the system of three hydrogen atoms; Technical Report WIS-AF-13.

Springfield, VA: University of Wisconsin; 1959.
17. Weigend F, Kattannek M, Ahlrichs R. Approximated electron repulsion integrals: Cholesky decomposition versus resolution of the

identity methods. J Chem Phys. 2009;130:164106. https://doi.org/10.1063/1.3116103
18. Koch H, S�anchez de Mer�as A, Pedersen TB. Reduced scaling in electronic structure calculations using Cholesky decompositions.

J Chem Phys. 2003;118:9481–4. https://doi.org/10.1063/1.1578621
19. Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, et al. The Dalton quantum chemistry program system. Wiley Interdiscip Rev:

Comput Mol Sci. 2014;4:269–84. https://doi.org/10.1002/wcms.1172
20. Pedersen TB, S�anchez de Mer�as AMJ, Koch H. Polarizability and optical rotation calculated from the approximate coupled cluster sin-

gles and doubles CC2 linear response theory using Cholesky decompositions. J Chem Phys. 2004;120:8887–97. https://doi.org/10.1063/
1.1705575

21. Aquilante F, Pedersen TB, Lindh R. Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations
of the electron repulsion integrals. J Chem Phys. 2007;126:194106. https://doi.org/10.1063/1.2736701

22. Aquilante F, de Vico L, Ferré N, Ghigo G, Malmqvist P-Å, Neogr�ady P, et al. MOLCAS 7: the next generation. J Comput Chem. 2010;
31:224–47. https://doi.org/10.1002/jcc.21318

23. Aquilante F, Pedersen TB. Quartic scaling evaluation of canonical scaled opposite spin second-order Møller–Plesset correlation energy
using Cholesky decompositions. Chem Phys Lett. 2007;449:354–7. https://doi.org/10.1016/j.cplett.2007.10.087

24. Aquilante F, Pedersen TB, Lindh R, Roos BO, S�anchez de Mer�as A, Koch H. Accurate ab initio density fitting for multiconfigurational
self-consistent field methods. J Chem Phys. 2008;129:024113. https://doi.org/10.1063/1.2953696

25. Aquilante F, Malmqvist P-Å, Pedersen TB, Ghosh A, Roos BO. Cholesky decomposition-based multiconfiguration second-order pertur-
bation theory (CD-CASPT2): application to the spin-state energetics of CoIII(diiminato)(NPh). J Chem Theory Comput. 2008;4:694–
702. https://doi.org/10.1021/ct700263h

26. Røeggen I, Johansen T. Cholesky decomposition of the two-electron integral matrix in electronic structure calculations. J Chem Phys.
2008;128:194107. https://doi.org/10.1063/1.2925269

27. Aquilante F, Pedersen TB, S�anchez de Mer�as A, Koch H. Fast noniterative orbital localization for large molecules. J Chem Phys. 2006;
125:174101. https://doi.org/10.1063/1.2360264

28. Boman L, Koch H, S�anchez de Mer�as A. Method specific Cholesky decomposition: coulomb and exchange energies. J Chem Phys.
2008;129:134107. https://doi.org/10.1063/1.2988315

29. Lehtola S. Curing basis set overcompleteness with pivoted Cholesky decompositions. J Chem Phys. 2019;151:241102. https://doi.org/10.
1063/1.5139948

30. Lehtola S. Polarized Gaussian basis sets from one-electron ions. J Chem Phys. 2020;152:134108. https://doi.org/10.1063/1.5144964
31. Lehtola S. Accurate reproduction of strongly repulsive interatomic potentials. Phys Rev A. 2020;101:032504. https://doi.org/10.1103/

physreva.101.032504
32. Vysotskiy VP, Cederbaum LS. On the Cholesky decomposition for electron propagator methods: general aspects and application on

C60. J Chem Phys. 2010;132:044110. https://doi.org/10.1063/1.3297890
33. Okiyama Y, Nakano T, Yamashita K, Mochizuki Y, Taguchi N, Tanaka S. Acceleration of fragment molecular orbital calculations with

Cholesky decomposition approach. Chem Phys Lett. 2010;490:84–9. https://doi.org/10.1016/j.cplett.2010.03.001
34. Kumar D, Dutta AK, Manohar PU. Resolution of the identity and Cholesky representation of EOM-MP2 approximation: implementa-

tion, accuracy and efficiency. J Chem Sci. 2017;129:1611–26. https://doi.org/10.1007/s12039-017-1378-z
35. Hohenstein EG, Sherrill CD. Density fitting and Cholesky decomposition approximations in symmetryadapted perturbation theory:

implementation and application to probe the nature of π–π interactions in linear acenes. J Chem Phys. 2010;132:184111. https://doi.
org/10.1063/1.3426316

36. Delcey MG, Freitag L, Pedersen TB, Aquilante F, Lindh R, Gonz�alez L. Analytical gradients of complete active space self-consistent
field energies using Cholesky decomposition: geometry optimization and spin-state energetics of a ruthenium nitrosyl complex. J Chem
Phys. 2014;140:174103. https://doi.org/10.1063/1.4873349

PEDERSEN ET AL. 17 of 21

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1692 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [09/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.apnum.2011.10.001
https://doi.org/10.1103/revmodphys.23.69
https://doi.org/10.1103/revmodphys.23.69
https://doi.org/10.1063/1.1679012
https://doi.org/10.1063/1.1679012
https://doi.org/10.1016/0009-2614(74)80159-4
https://doi.org/10.1016/0009-2614(74)80159-4
https://doi.org/10.1002/jcc.540030314
https://doi.org/10.1002/qua.560360602
https://doi.org/10.1016/0009-2614(86)80099-9
https://doi.org/10.1063/1.3116103
https://doi.org/10.1063/1.1578621
https://doi.org/10.1002/wcms.1172
https://doi.org/10.1063/1.1705575
https://doi.org/10.1063/1.1705575
https://doi.org/10.1063/1.2736701
https://doi.org/10.1002/jcc.21318
https://doi.org/10.1016/j.cplett.2007.10.087
https://doi.org/10.1063/1.2953696
https://doi.org/10.1021/ct700263h
https://doi.org/10.1063/1.2925269
https://doi.org/10.1063/1.2360264
https://doi.org/10.1063/1.2988315
https://doi.org/10.1063/1.5139948
https://doi.org/10.1063/1.5139948
https://doi.org/10.1063/1.5144964
https://doi.org/10.1103/physreva.101.032504
https://doi.org/10.1103/physreva.101.032504
https://doi.org/10.1063/1.3297890
https://doi.org/10.1016/j.cplett.2010.03.001
https://doi.org/10.1007/s12039-017-1378-z
https://doi.org/10.1063/1.3426316
https://doi.org/10.1063/1.3426316
https://doi.org/10.1063/1.4873349


37. Gy}orffy W, Shiozaki T, Knizia G, Werner H-J. Analytical energy gradients for second-order multireference perturbation theory using
density fitting. J Chem Phys. 2013;138:104104. https://doi.org/10.1063/1.4793737

38. Vlaisavljevich B, Shiozaki T. Nuclear energy gradients for internally contracted complete active space second-order perturbation theory:
multistate extensions. J Chem Theory Comput. 2016;12:3781–7. https://doi.org/10.1021/acs.jctc.6b00572

39. Nishimoto Y. Analytic gradients for restricted active space secondorder perturbation theory (RASPT2). J Chem Phys. 2021;154:194103.
https://doi.org/10.1063/5.0050074

40. Nishimoto Y, Battaglia S, Lindh R. Analytic first-order derivatives of (X)MS, XDW, and RMS variants of the CASPT2 and RASPT2
methods. J Chem Theory Comput. 2022;18:4269–81. https://doi.org/10.1021/acs.jctc.2c00301

41. Chwee TS, Carter EA. Cholesky decomposition within local multireference singles and doubles configuration interaction. J Chem Phys.
2010;132:074104. https://doi.org/10.1063/1.3315419

42. Krisiloff DB, Krauter CM, Ricci FJ, Carter EA. Density fitting and Cholesky decomposition of the two-electron integrals in local
multireference configuration interaction theory. J Chem Theory Comput. 2015;11:5242–51. https://doi.org/10.1021/acs.jctc.5b00762

43. Lehtola S, Head-Gordon M, J�onsson H. Complex orbitals, multiple local minima, and symmetry breaking in Perdew–Zunger self-
interaction corrected density functional theory calculations. J Chem Theory Comput. 2016;12:3195–207. https://doi.org/10.1021/acs.
jctc.6b00347

44. Lehtola S, J�onsson EÖ, J�onsson H. Effect of complex-valued optimal orbitals on atomization energies with the Perdew–Zunger self-
interaction correction to density functional theory. J Chem Theory Comput. 2016;12:4296–302. https://doi.org/10.1021/acs.jctc.6b00622

45. Lehtola S, Parkhill J, Head-Gordon M. Orbital optimisation in the perfect pairing hierarchy: applications to full-valence calculations on
linear polyacenes. Mol Phys. 2018;116:547–60. https://doi.org/10.1080/00268976.2017.1342009
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