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Abstract

In this paper a simple of combined singular stochastic control
and optimal stopping in the jump-diffusion model is formulated
and solved. We give sufficient conditions for the existence of an
optimal strategy which has the same form as in continuous case
given by Davis and Zervos [4] and also Karatzas et al. [8]. This
result is applied to solve explicitly an example of such problem.
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Al inequalities; Generalized Itô formula; Local time; Reflecting diffusions.

1 Introduction

The subject of the optimal singular control problem from a stochastic system
described by a stochastic differential equation has been extensively studied
by several authors, see e.g. [2], [3], [10], [11], [12] and [13] (Ch. 5). In our
contribution, we consider a similar problem to that studied in [12], except
that here optimal stopping is included in the control. Optimal stopping in
control arises in target tracking problems where one has to decide when one
has arrived sufficiently close to the target, see [4] and [8]. The problem of
combined singular stochastic control and the optimal stopping problem also
arise in the consumption/investment of financial economics for an investor
who can decide when to exit from the market. In the paper by Karatzas
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and Wang [9], the stochastic optimization problem that combines features
of both control and stopping is also considered by computing the upper- and
lower-hedging prices of American contingent claims under constraints. Un-
like these approaches, we study the case when the dynamics of the stochastic
system therein has a jump component.

The paper is organized as follows: In the second section, we give and
prove a verification theorem of the integro-variational inequality type suffice
for optimal control and stopping. In Section 3, we apply the verification
theorem to solve explicitly an example.

2 Model

We first recall that a Lévy process η = η(t) = (η1(t), ..., ηn(t)) on a com-
plete probability (Ω,F ,P) is a process with stationary and independent
increments and càdlàg path (i.e. right continuous paths with the left sided
limits). The jump of ηi at time t is defined by

4ηi(t) = ηi(t)− ηi(t−), i = 1, .., n

The jump measure Ni of ηi is defined by

Ni((a, b], U) :=
∑

t∈(a,b]

1U (4ηi(t)); i = 1, ..n,

i.e. by the number of jumps of size 4ηi(t) ∈ U , for t ∈ (a, b]. Here U is
Borel set with Ū ⊂ R0 := R \ {0}. The differential form of this random
measure is denoted by Ni(dt, dz). The Lévy measure of ηi is defined by

νi(U) := E[Ni((0, 1], U)], U ∈ B(R0), i = 1, ..n

and the compensated jump measure of ηi is defined by

Ñi(t, A) = Ni(t, A)− tνi(A), i = 1, ..., n.

In the sequel we assume that

E[η2
i (t)] < ∞, t ≥ 0, i = 1, ..., n. (1)

The Lévy decomposition theorem states that if (1) holds, then there exists
constants a and b such that

ηi(t) = at + bBi(t) +
∫ t

0

∫
R0

zÑi(ds, dz), t ≥ 0, i = 1, ..., n,
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where B(t, ω) = (B1(t, ω), ..., Bn(t, ω)); t ≥ 0, is n-dimensional Brownian
motion independent of N . In view of this, it is natural to study processes
which has form

dXi(t) = bi(t, X(t))dt +
n∑

j=1

σij(t, X(t))dBj(t)

+
n∑

j=1

∫
R0

µij(t−, X(t−), zj)Ñj(dt, dzj) (2)

Xi(s) = xi ∈ R, 0 ≤ s ≤ t ≤ T, i = 1, ..., n

where the coefficients b : R × Rn → Rn, σ : R × Rn → Rn×n and µ :
R × Rn × Rn → Rn×n, are given Ft-adapted processes. Moreover, it is
assumed that

E
[ ∫ t

0

{
|bi(s,X(s))|+ σ2

ij(s,X(s))

+
∫

R0

µ2
ij(s

−, X(s−), zj)νi(dz)
}

ds
]

< ∞ a.s. for all t ≥ 0.

For a detailed about such stochastic differential equation see e.g. [7], [14]
and references given therein. We can consider equation (2) as the sizes or
densities of population.

Let S ⊂ Rn+1 (the solvency region) be a Borel set such that S ⊂ S0

where S0 denotes the interior of S, S0 its closure. If we apply a control
γ(t, ω) to the process X(t) = (X1(t)), ..., Xn(t)) then the corresponding
population vector X(γ)(t) = (X(γ)

1 (t), ..., X(γ)
n (t))T becomes

dX(γ)(t) = b(t, X(γ)(t))dt + σ(t, X(γ)(t))dB(t)

+
∫

Rn
0

µ(t−, X(γ)(t−), z)Ñ(dt, dz)− dγ(t); (3)

X(γ)(s) = x = (x1, ..., xn) ∈ Rn, s ≤ t

Here γ(t) = γ(t, ω) = (γ1(t, ω), ..., γn(t, ω)) ∈ Rn, t ≥ s, ω ∈ Ω is non-
negative, non-decreasing, right-continuous and Ft-adapted. Since dγ(t) may
be singular with respect to Lebesgue measure dt, we call γ is our singular
control. The component γi(t, ω) of γ(t, ω) can be considered as the total
amount harvested from population number i up to time t.

Let
τS = τS(x, ω) = inf{t > 0; (t, X(γ)(t)) /∈ S}
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be the time of extinction and let T denote the set of all stopping times
τ ≤ τS . And let the the prices/utilities per unit of population number i
accrued from harvesting at time t, be given by n continuous, nonnegative
functions

πi(t); 1 ≤ i ≤ n (4)

Then the total expected discounted utility harvested from time s to time
τ ∈ T is given by

J (γ,τ)(s, x) = Es,x
[ ∫ τ

s
{f(t, X(γ)(t))dt + π(t).dγ(t)}

+ g(τ,X(γ)(τ)).χ{τ<∞}

]
(5)

where f : R × Rn → R and g : R × Rn → R are continuous functions;
π = (π1, ..., πn); π.dγ =

∑n
i=1 πidγi; and Es,x denotes the expectation with

respect to P of the time-state process (t, X(γ)(t)), t ≥ s, when X(γ)(s) = x.
We say that the control process γ is admissible and write γ ∈ Γ if (3)

has a unique, strong solution X(γ)(t) and

Ex
[ ∫ τS

0
|f(t, X(γ)(t))|dt + |g(τ,X(γ)(τ)|.χ{τ<∞}

+
∫ τS

0

n∑
i=1

|πi(t)|dγi(t)
]

< ∞. (6)

The optimal stopping and singular stochastic control problem is to find
the value function Φ(s, x) and an optimal strategy (γ∗, τ∗) ∈ Γ×T (if exists)
such that

Φ(s, x) = sup
γ∈Γ,τ∈T

J (γ,τ)(s, x) = J (γ∗,τ∗)(s, x) (7)

If we do not apply any harvesting, then the generator of corresponding
time-state population process (t, X(t)), with X(t) given by (2), coincides on
C2

0 (Rn+1) with partial differential operator L given by

Lg(s, x) =
∂g

∂s
(s, x) +

n∑
i=1

bi(s, x)
∂g

∂xi
(s, x)

+
1
2

n∑
i,j=1

(σσT )ij(s, x)
∂2g

∂xi∂xj
(s, x)

+
n∑

j=1

∫
R
{g(s, x + µj(s, x, zj))− g(s, x)

−∇g(s, x)µj(s, x, zj)}νj(dzj) (8)
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Note the difference between the jumps of X(γ)(t) caused by the jump of
N(dt, dz), denote by 4NX(γ)(t), and the jump caused by the harvesting,
denoted by 4γX(γ)(t). Thus

4NX(γ)(t) =
∫

Rn

µ(t−, X(γ)(t−), z)Ñ(dt, dz),

while
4γX(γ)(t) = −4γ(t)

We will in the following let t1, t2, ... denote the jumping times of a given
strategy γ ∈ Γ. The jump of γ(t) at t = tk are

4γ(tk) = γ(tk)− γ(t−k )

And we let
γ(c)(t) := γ(t)−

∑
s≤tk≤t

4γ(tk)

be the continuous part of γ(t).
If φ is a continuous real function on S and we let

4γφ(tk, X(γ)(tk)) = φ(tk, X(γ)(tk))− φ(t−k , X(γ)(t−k ) +4NX(γ)(tk))

denote the jump in the value of φ(tk, X(γ)(tk)) caused by the jump of γ at
t = tk. We emphasize that the possible jumps in X(γ)(tk) coming from Ñ
are not included in 4γφ(tk, X(γ)(tk)).

We now formulate a sufficient condition for a given function φ(s, x) to be
the value function Φ(s, x) of (7) and for a given pair (γ∗, τ∗) to be optimal.

Theorem 2.1. (A verification theorem)

a) Suppose there exists a function φ ∈ C1(S) ∩ C(S̄) such that

(i) φ(t, x) ≥ g(t, x) for all (s, x) ∈ S

(ii) ∂φ
∂xi

(t, x) ≥ πi(t) for all (s, x) ∈ S, i = 1, ..., n

(iii) Lφ(t, x) + f(t, x) ≤ 0 for all (s, x) ∈ S

(iv) (τS , X(γ)(τS)) ∈ ∂S a.s. on τS < ∞ and
limt→τ−S

φ(t, X(γ)(t)) = g(τS , X(γ)(τS))χ{τS<∞} a.s for all γ ∈ Γ

Then
φ(s, x) ≥ Φ(s, x) for all (s, x) ∈ S (9)
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b) Define the continuation region D by

D := {(t, x) ∈ S;φ(t, x) > g(t, x)}

In additional (i)-(iv) above, we assume that there exists a control
(γ̂, τ̂) ∈ Γ× T such that

(v) Lφ(t, x) + f(t, x) = 0 for all (t, x) ∈ D

(vi)
(

∂φ
∂xi

(t, X(γ̂)(t))− πi(t)
)
dγ̂i

(c)(t) = 0 for all t; i = 1, ..., n, where γ̂(c)

is continuous part of γ̂(t)

(vii) 4γ̂φ(tk, X(γ̂)(tk)) = −π(tk) · 4γ̂(tk) for all jumping time tk of γ̂(t)

(viii) limR→∞Ey[φ(TR, X(γ̂)(TR))] = Ey[g(τS , X(γ̂)(TR)).χ{τS<∞}] where
TR = min(τS , R), for R < ∞

(ix) τD := inf{t > 0; (t, X(γ̂)(t)) /∈ D} < ∞ a.s. for all x ∈ S

(x) {φ(s,X(γ)(τ)); τ ∈ T , τ ≤ τD} is uniformly integrable, for all
x ∈ S, (γ, τ) ∈ Γ× T

Then
φ(s, x) = Φ(s, x) for all (s, x) ∈ S (10)

and

(γ∗, τ∗) = (γ̂, τD)

is a pair of optimal strategy.

Proof. a) Choose γ ∈ Γ and assume that φ ∈ C2(Rn+1) satisfies the condi-
tions of a). Let τ ≤ τS be a stopping time, m ∈ N. Then by Itô’s formula
for semimartingale (see e.g. Protter (1990), Th. II.7.33, [14]) we have

Es,x
[
φ(τ ∧m,X(γ)(τ ∧m))

]
= Es,x[φ(s,X(γ)(s))]

+Es,x
[ ∫ τ∧m

s
Lφ(t, X(γ)(t))dt−

∫ τ∧m

s

n∑
i=1

∂φ

∂xi
(t, X(γ)(t))dγi(t)

+
∑

s<tk≤τ∧m

{
4γφ(tk, X(γ)(tk))

−
n∑

i=1

∂φ

∂xi
(tk, X(γ)(tk))4γX

(γ)
i (tk)

}]
(11)
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where tk denotes the times of jumps for γ(t) and

4γX
(γ)
i (tk) = X

(γ)
i (tk)− (X(γ)

i (t−k ) +4NXγ
i (tk)) (12)

Then (11) can be written

Es,x
[
φ(τ ∧m,X(γ)(τ ∧m))

]
= φ(s, x) + Es,x

[ ∫ τ∧m

s
Lφ(t, X(γ)(t))dt

]
− Es,x

[ ∫ τ∧m

s

n∑
i=1

∂φ

∂xi
(t, X(γ)(t))dγ

(c)
i (t)

]
+ Es,x

[ ∑
s<tk≤τ∧m

4γφ(tk, X(γ)(tk))
]

Therefore

φ(s, x) = Es,x
[
φ(τ ∧m,X(γ)(τ ∧m))−

∫ τ∧m

s
Lφ(t, X(γ)(t))dt

+
∫ τ∧m

s

n∑
i=1

∂φ

∂xi
(t, X(γ)(t))dγ

(c)
i (t)−

∑
s<tk≤τ∧m

4γφ(tk, X(γ)(tk))
]

(13)

By the mean value theorem we have

−4γφ(tk, X(γ)(tk)) =
n∑

i=1

∂φ

∂xi
(tk, X̂(k)(tk))4γX

(γ)
i (tk)

=
n∑

i=1

∂φ

∂xi
(tk, X̂(k))4γi(tk) (14)

where X̂(k) is some points on the straight line between X(γ)(tk) and X(γ)(t−k )+
4NX(γ)(tk). Therefore, invoking conditions (i) and (ii) hold, then by (13)
and (14) we have
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φ(s, x) ≥ Es,x
[
φ(τ ∧m,X(γ)(τ ∧m)) +

∫ τ∧m

s
f(t, Xγ(t))dt

]
+ Es,x

[ n∑
i=1

{∫ τ∧m

s
πi(t)dγ

(c)
i (t) +

∑
s<tk≤τ∧m

πi(tk)4γi(tk)
}]

= Es,x
[
φ(τ ∧m,X(γ)(τ ∧m)) +

∫ τ∧m

s
f(t, Xγ(t))dt

]
+ Es,x

[ ∫ τ∧m

s
π(t) · dγ(c)(t) +

∑
s<tk≤τ∧m

π(tk) · 4γ(tk)
]

= Es,x
[ ∫ τ∧m

s
{f(t, Xγ(t))dt + π(t) · dγ(t)}

+ φ(τ ∧m,X(γ)(τ ∧m))
]

(15)

By letting now m → ∞, we obtain by monotone convergence theorem
that for any admissible control (γ, τ) ∈ Γ× T and for all x ∈ Rn

φ(s, x) ≥ Es,x
[ ∫ τ

s
{f(t, Xγ(t))dt + π(t) · dγ(t)

+g(τ,X(γ)(τ))χ{τ<∞}

]
= J (τ,γ)(s, x) (16)

Since (16) is valid for any admissible strategy, a) is proved.

b) Now consider D as above and with conditions (v)-(x). Then apply the
argument above to strategy γ̂ ∈ Γ we now have equality

φ(s, x) = Es,x
[
φ(τ ∧m,X(γ̂)(τ ∧m)) +

∫ τ∧m

s
f(t, X(γ̂)(t))dt

]
+ Es,x

[ ∫ τ∧m

s
π(t) · dγ̂(c)(t) +

∑
s<tk≤τ∧m

π(tk) · 4γ̂(tk)
]

= Es,x
[
φ(τ ∧m,X(γ̂)(τ ∧m)) +

∫ τ∧m

s
f(t, X(γ̂)(t))dt

]
+Es,x

[ ∫ τ∧m

s
π(t) · dγ̂(t)

]
→ J (τ∗,γ̂)(s, x) as m →∞.
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Hence φ(s, x) = J (τ∗,γ∗)(s, x) ≤ Φ(s, x) with γ∗ = γ̂. This together with
(9) proves the requirements (10) and then (γ∗, τ∗) is an optimal strategy for
problem (7).

This completes the proof of the verification theorem.

3 Example.

In this section we apply Theorem 1 to an example in target tracking problem
where one has to decide when one is “sufficiently close” to the target.

Suppose a controlled stochastic system of jump type X(t) at time t is
modeled by geometric Lévy process, i.e.

dX(γ)(t) = X(γ)(t−)
[
µdt + σdB(t) +

∫
R

zÑ(dt, dz)
]
− dγ(t), (17)

X(γ)(s) = x > 0

where µ, σ > 0 are constants, and γ(t) is right-continuous and increasing
adapted process giving the amount harvested from time 0 up to time t. We
assume that all jumps are positive, i.e.

z > 0 a.s. ν. (18)

The objective of the control is to keep the process X(t) as close to the
the origin as possible up to a stopping time τ , and it is measured by the
functional

J (γ,τ)(s, x) = Es,x
[ ∫ τ

0
e−ρ(s+t){αdt + dγ(t)}

+ e−ρ(s+τ)λ(X(γ)(τ))2.χ{τ<∞}

]
(19)

here α, ρ, λ > 0 are given constants. The problem is that we try to minimize
the expected discounted total cost function (19), i.e. we want to compute
the minimal such expected cost

Φ(s, x) = inf
(γ,τ)∈A×T

J (γ,τ)(s, x) = J (γ∗,τ∗)(s, x) (20)

where A and T are the class of admissible controls γ and the class of all
stopping times τ , respectively.

This is problem of the type described above, except that it is a minimum
problem rather than a maximum problem. Theorem 1 still applies, with the
corresponding changes.
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We define the solvency region by

S = R× (0,∞)

If there is no control strategy, the generator of time-space process (t, X(t))
is given by

Lφ(s, x) =
∂φ

∂s
(s, x) + xµ

∂φ

∂x
(s, x) +

1
2
x2σ2 ∂2φ

∂x2
(s, x) (21)

+
∫

R

{
φ(s, x + xz)− φ(s, x)− xz

∂φ

∂x
(s, x)

}
ν(dz)

We conjecture the function φ of form

φ(s, x) = e−ρsxr, for some constant r ∈ R.

Substituting this form into the equation (21), we come to equation

Lφ(s, x) = e−ρsxr
[
− ρ + µr +

1
2
σ2r(r − 1)

+
∫

R
{(1 + z)r − 1− zr}ν(dz)

]
(22)

Since the stopping cost λ(X(γ)(τ))2 is minimum at x = 0, it is natural
to predict that the stopping set is a neighborhood of zero. One strategy is
to ”do nothing” if process is inside (a,∞) and to stop as soon as the process
hits the set [0, a]. Hence, we conjecture that the continuation region D has
the following form

D = {(t, x) : x > a}, for some a ≥ 0.

In the continuation region, the principle of optimal control requires
Lφ(s, x) + f(x) = 0, or

e−ρsxr
[
− ρ + µr +

1
2
σ2r(r − 1)

+
∫

R
{(1 + z)r − 1− zr}ν(dz)

]
+ e−ρsα = 0, (23)

Putting

h(r) := −ρ + µr +
1
2
σ2r(r − 1) +

∫
R
{(1 + z)r − 1− zr}ν(dz) (24)
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Note that
h(1) = µ− ρ and lim

r→∞
h(r) = 0

Therefore, if we assume that
µ < ρ (25)

then we get that there exists r1 ∈ (1, ρ
µ) such that

h(r1) = 0

Hence equation (23) admits a general solution of the following form

φ(s, x) = e−ρsCxr1 +
α

ρ
(26)

where C is arbitrary constants. The cost function of this strategy is

φ(s, x) =
{

e−ρsλx2 if 0 ≤ x ≤ a
e−ρs(Cxr1 + α

ρ ) if a < x
(27)

We guess that the value function φ is C1 at x = a and this gives the following
”hight contact”- conditions:

Car1 +
α

ρ
= λa2 (continuity at x = a)

and

r1Car1−1 = 2λa (differentiability at x = a)

The solution to these equations is

C =
2λ

r1
a−r1+2, a2 =

−αr1

λρ(2− r1)
(28)

It is easy to check that the function φ defined by (27) and (28) satisfies the
condition (ii) of the Theorem 1 if and only if a ≤ 1

2λ , i.e.

α ≥ ρ(r1 − 2)
4λr1

. (29)

Because of this condition, we have to look for further possible strategy.
Another possible strategy is to introduce two barrier points 0 < a < b. This
strategy can be explained as follows: if the process is inside the set (b,∞),
we will move it immediately to the reflecting barrier b; we will do nothing if
the process is in the set (a, b] and stop it if it is in [0, a].
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If this strategy is optimal for some a, b, then we conjecture that the cost
function φ(s, x) = J (γ∗,τ∗) will be C1 at a and b. In the set (b,∞), φ will
satisfy

Lφ(s, x) + f(x) = 0, for x ∈ (b,∞).

The general solution of this equation is given by (26). Outside the region
(b,∞), the value function φ is described by

φ(s, x) = e−ρsλx2, for all x ∈ [0, a], (30)

and

φ(s, x) = e−ρs(x− a + λa2), for all x ∈ (a, b] (31)

We now summarize the cost function for this strategy as following,

φ(s, x) =


e−ρsλx2 if 0 ≤ x ≤ a
e−ρs(x− a + λa2) if a < x ≤ b
e−ρs(Cxr1 + α

ρ ) if b < x
(32)

Again, assuming C1 fits at both points a and b, we obtain a following
system of three equations for three unknown constants C, a, b:

2λa = 1
Cbr1 +

α

ρ
= b− a + λa2

r1Cbr1−1 = 1

The solution to this system is

a =
1
2λ

, b =
−r1

1− r1

ρ + 4αλ

4λρ
, C =

1
r1

b−r1+1 (33)

From (33) we conclude that a < b if and only if

α <
ρ(r1 − 2)

4λr1
. (34)

which is complement of condition (18).
It remains to verify that with these values of a, b, and C the function

φ(s, x) given by (27) and (32) satisfy all the conditions (i)-(x) of Theorem
1.
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To this end, first note that the condition (v) holds by construction of φ.
Moreover, φ = g outside D = {(s, x);x > a}. Therefore, to verify (i) we
only need to prove that:

φ ≤ g on D (35)

We first prove (35) holds for the case α ≥ ρ(r1−2)
4λr1

, i.e. we prove

Cxr1 +
α

ρ
≤ λx2 for x > a, (36)

Define
k(x) = Cxr1 − λx2 +

α

ρ

By our chosen values of a and C as in (28), we have k(a) = k
′
(a) = 0.

Moreover,

k
′′
(x) = Cr1(r1 − 1)xr1−2 − 2λ < 0 for x > a

Therefore k(x) < 0 for x > a and (36) holds.
Secondly, we prove that if α < ρ(r1−2)

4λr1
then

x− a + λa2 ≤ λx2, for a < x ≤ b. (37)

Define F (x) = λx2 − x + a − λa2. With the values of a and C in (33) we
have F (a) = 0 and F

′
(x) > 0 for x > a. So inequality (37) holds for all

a < x ≤ b and hence (i) is proved.

(ii) Condition (ii) is checked in the same way as we do in (i).

(iii) Outside D we have

φ(s, x) = e−ρsλx2 for a ≤ x

and

φ(s, x) = e−ρs(x− a + λa2) for a < x ≤ b

Therefore Lφ(s, x) + f(s, x) ≥ 0 gets the following forms:(
− ρ + 2µ + σ2 +

∫
R

z2ν(dz)
)
λx2 + α ≥ 0 for x ≤ a (38)

which is equivalent to

−ρ + 2µ + σ2 +
∫

R
z2ν(dz) ≥ 0; (39)
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and

x(µ− ρ) +
ρ + 4λα

4λ
≥ 0 for a < x ≤ b (40)

Since µ < ρ, we get from (40) that

x(µ− ρ) +
ρ + 4λα

4λ
≥ 0, for a < x ≤ b

m

b(µ− ρ) +
ρ + 4λα

4λ
≥ 0

m

b ≥ − ρ + 4λα

4λ(µ− ρ)
m

r1 ≥ ρ

µ
(41)

(iv) holds since we assume that z > 0 a.s. ν.
(vi)-(viii): These conditions claim the existence of an increasing process γ̂,
that is local time at b of the downward reflected process X(γ)(t). (See [13],
Th. 5.4.)
(ix) Suppose Z(t) be the càdlàg adapted solution of the stochastic equation

dZ(t) = Z(t−)
[
µdt + σdB(t) +

∫
R

zÑ(dt, dz)
]

(42)

Z(0) = x > 0

Let C be the set of càdlàg functions f : [0,∞) → R. Define the map
G : C → C by

G(f)(t) = f(t) + sup
s≤s≤t

f(s)

and define the map Λ : C → C by

Λ(f)(t) = G(f)(t)− f(t) = sup
s≤s≤t

f(s)

Then X(γ)(t) := G(Z)(t) and γ(t) := Λ(Z)(t) is solution of equation (17).
To check τD < ∞ a.s. we consider the solution Z(t) of equation (42) given
by

Z(t) = x exp
{(

µ− 1
2
σ2 −

∫
R

zν(dz)
)
t +

∫ t

0

∫
R

ln(1 + z)N(dt, dz) + σB(t)
}
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Since z > 0 a.s. ν and apply the law of iterated logarithm we see that if

µ− 1
2
σ2 −

∫
R

zν(dz) > 0 (43)

then

lim
t→∞

Z(t) = ∞ a.s

Hence limt→∞X(γ)(t) = ∞ a.s. and particular τD < ∞.
We now summarize the results of the problem (20) in the following re-

sults:

Theorem 3.1. Let X(γ)(t) be given by (17). Denote by r1 a root of the
equation (23). Suppose that (25), (39), (41) and (43) hold. Then

a) If

α ≥ ρ(r1 − 2)
4λr1

,

the value function φ(s, x) is given explicitly as

φ(s, x) =
{

e−ρsλx2 if 0 ≤ x ≤ a
e−ρs(Cxr1 + α

ρ ) if a < x

where C and a > 0 are given by (28).

b) If

α <
ρ(r1 − 2)

4λr1

The value function φ(s, x) is given explicitly as

φ(s, x) =


e−ρsλx2 if 0 ≤ x ≤ a
e−ρs(x− a + λa2) if a < x ≤ b
e−ρs(Cxr1 + α

ρ ) if b < x

where a, b and C are given by (33). The corresponding optimal policy is
following:

• Stop immediately if 0 ≤ x ≤ a : τ∗ = 0,

15



• Do nothing if a < x ≤ b,

• Apply the harvesting equal to the local time of the reflected process
X(γ)(t) at b.
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