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Abstract— Enhancing user privacy is crucial in improving the
safety and efficiency of Human-Robot Interaction (HRI), as it
is a key factor for establishing user trust in the robot. Using
privacy-preserving sensors and local processing of the user’s
data are ways to enhance privacy in HRI. This paper presents
a privacy-preserving sensing system for real-time tracking and
predicting the user’s movements in HRI. As privacy-preserving
sensors, a thermal and a depth camera are used to monitor
the user’s movements and determine their current pose. In
order to improve the robot’s perception of the user’s situation
and enhance the quality of real-time user monitoring, a Deep
Learning (DL) model has been developed to estimate the future
poses of the user. The developed model is based on the Sequence
to Sequence mechanism (Seq2Seq). Modifications have been
made to Seq2Seq so it can be run locally on the robot. As
a result of these modifications, the computational cost of the
model has been reduced by 34%. Experimental studies have
been conducted to evaluate the performance of the sensing
system in tracking and predicting the user’s movements in HRI.
According to the test results, the proposed sensing system is able
to track the movements of the user appropriately. Additionally,
it is shown that the estimation of the user’s movement through
the proposed system with the prediction model can improve the
safety and efficiency aspects of the HRI experiments by up to
24% and 17%, respectively.

I. INTRODUCTION

Robot sensing is one of the prevalent characteristics of
robot autonomy, amongst sensing, planning, and acting [1].
It plays a significant role in HRI since it enables the robot
to understand the user’s condition and movements in order
to perform more efficiently and safely in their presence.
Therefore, it has always been essential to equip robots with
sensors that can collect detailed and accurate data about the
environment and the user. Additionally, proper processing
of the data collected by the sensors facilitates a better
understanding of the user’s situation and can improve the
quality of HRI [2]. User pose estimation [3] based on the
data obtained from the sensors can increase the ability of
the robot to make appropriate decisions when interacting
with the user. Thus, it can increase the robot autonomy. User
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privacy, however, may be compromised when robot sensors
monitor the user and process their data [4]. Despite the fact
that collecting detailed data from users can help to improve
the quality of HRI, it can cause significant privacy concerns.
Therefore, user privacy should be taken into account when
developing robot sensing systems.

Using privacy-preserving sensors, e.g., thermal cameras
[5] or non-vision-based sensors such as LIDAR [6] instead of
commonly-used robot sensors like RGB cameras to monitor
humans can help increase user privacy. The use of thermal
cameras, however, as privacy-preserving way of user data is
still questionable [7].

Local processing of sensors’ data is another method of
addressing user privacy in HRI in accordance with General
Data Protection Regulation [8]. By local processing and
storage, the user’s data is not transferred to cloud servers
far from the robot. As a result, there is a lower risk of
unintended people accessing the user’s data, which enhances
the privacy of the user. In order to accomplish this, it is
necessary to develop algorithms that can be run on a robot’s
typical processor. For instance, to develop DL algorithms for
sensor/data fusion on the robot, lightweight models would
be preferable to models that require high computational
costs. Nevertheless, the downside of increasing privacy is
that user monitoring may become less accurate as a result.
Accordingly, this problem should be investigated from a
privacy-utility trade-off perspective [9].

This paper presents a novel privacy-preserving sensing
system to address the privacy-utility trade-off for real-time
monitoring of the user in HRI. In this system, a thermal
camera and a depth sensor, as privacy-preserving sensors, are
integrated to track the user’s movements when interacting
with the robot. The user’s 2D pose is first obtained by
processing the thermal images using the Openpose library
[10]. The 3D pose of the user will then be determined by
fusion of the thermal camera and the depth sensor.

In the work presented in this paper, a DL model for
the estimation of the user’s future pose has also been
developed to enhance HRI performance by improving the
robot’s perception of the user’s situation in the future. The
prediction model can also compensate for the lag time of the
sensing system in monitoring the user, caused by using the
thermal camera and processing its images with Openpose.
The proposed model is a Seq2Seq mechanism [11] that
predicts the 3D positions of the user’s body joints in the
following time steps by getting the current and previous
joints’ 3D positions as input. As part of the development
of this model, the local processing problem on the robot’s
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processor has been taken into consideration.
Accordingly, the contributions of this paper are as follows:

1) Introducing a novel privacy-preserving sensing system
for real-time user monitoring in HRI by combining
thermal and depth cameras and using Openpose.

2) Developing a modified Seq2Seq model for user pose
prediction by considering the local implementation of
the model on the robot through reducing the processing
time of the model.

Also, the performance of the proposed sensing system in de-
termining and predicting user pose has been experimentally
evaluated through practical tests, including HRI scenarios.
The next parts of the paper are organized as follows:

Section II presents the details of the sensing system,
including the hardware and the method used for the fusion
of the data from the thermal camera and depth sensor for
extracting the user’s current pose. A detailed description of
the prediction model is provided in section III. Section IV
explains the test setup for the experimental evaluation of the
sensing system and the prediction model. In section V, the
results of the evaluation tests are discussed in detail. Finally,
section VI concludes the paper with suggestions for future
work.

II. USER MONITORING AND POSE DETECTION
This section describes the proposed sensing system for

user pose detection. This sensing system protects the user’s
privacy while monitoring their interaction with the robot.

Determining the user’s gestures and body limb positions
is crucial in HRI. Proper implementation of HRI tasks and
ensuring user/robot safety during the execution of these tasks
require accurate tracking of the position of the user’s body
limbs [12]. RGB-D cameras are the most common way to
determine the user’s body pose in HRI or for other purposes,
such as human activity monitoring. The 3D positions of
the user’s body joints are obtained from the images, and
their body skeleton is reconstructed using this data [13]. The
depth information of each joint is determined by a depth
camera. Positions of joints in the other two dimensions are
typically extracted by processing RGB images using libraries
like Openpose [10] and AlphaPose [14].

As mentioned in the introduction, user privacy can be
compromised using RGB cameras. In this work, instead of
using RGB-D cameras to monitor the user’s movements,
a thermal and a depth camera are incorporated with the
objective of enhancing user privacy in HRI. In this regard,
the Openpose library is used to detect the user’s body joint
positions from the images taken by the thermal camera in
real-time. So far, the Openpose library has only been used to
process thermal images offline for human activity recognition
purposes [15], not in real-time human monitoring. As a result
of applying Openpose to thermal images, the user’s 2D body
joints positions are determined. The depth information of
each joint is retrieved from the depth sensor. To accomplish
this, a multi-sensor calibration, including the thermal camera
and the depth sensor is performed. The calibration process
consists of two steps,

1) Converting the pixel position of joints in thermal
images to their corresponding pixels in depth images.

2) Calculating the joints’ positions in the world coordi-
nate based on their pixel locations in thermal images.

To perform the conversion between thermal and depth sensor
images in the first step, the Homography method [16] based
on the Pseudo-inverse algorithm [17] has been used.
The pixel position in the thermal image could be converted
to the pixel position in the depth image using Eq. 1.ud
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where Hd
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thermal camera to depth sensor.
It should be noted that depth information is obtained from
the depth sensor used in an RGB-D camera. The coordinate
systems of the depth sensor and the RGB camera in the
available RGB-D camera are the same.

The pseudo-inverse method was used to calculate the
optimal Homography matrix Hd

th in Eq. 1. For this aim,
the movements of an individual were recorded using RGB
and thermal cameras. Openpose was then applied to the
recordings of the cameras, resulting in the determination
of 25 human body joints’ pixel positions. In total, 483250
pixel positions of the body joints from the recordings of
each camera were obtained. These body joint pixel positions
were then applied to Eq. 1 using Pseudo-inverse method to
calculate the Homography matrix as follows:
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where N is equal to 483250. Since the RGB and depth
cameras have a similar coordinate system, the Homography
matrix between the thermal camera and the depth sensor
would be the same. Thus, by having the pixel position of each
point in the thermal image, the corresponding pixel in the
depth image is determined and the depth information of that
point will be found. The second step would be the conversion
of the pixel positions to the world coordinate system (X,Y ,
and Z) which is done using the Pinhole camera projection
method [18] based on the following equations.

X = (uth − cx)
Z

fx
, Y = (vth − cy)

Z

fy
, Z = Z (6)

where cx and cy are camera offsets, fx, and fy are camera
focal parameters, and Z is the distance given by the depth
image. Thus, the 3D position of each joint is calculated in
real-time by integrating the thermal camera and the depth
sensor. This work focuses only on the user’s upper-body
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Fig. 1. The proposed sensing system for human pose detection using thermal camera and depth sensor.

limbs. Accordingly, the position of the user’s eight upper-
body joints, including each shoulder, elbow, and wrist joints,
and the head and neck, is determined. Fig. 1 shows the
proposed sensing system for human pose detection.

In the sensing system, an Optris P1450 thermal camera
and Orbbec Astra S depth sensor are used. The two sensors
monitor the user at a rate of up to 30 FPS. Openpose runs
on a NVIDIA Quadro RTX 3000 GPU with 6 GB RAM,
resulting in the extraction of the user’s body joint positions
at a rate of 13-15 FPS. Thus, the joint position data is
determined at a maximum rate of 15 FPS, even though the
sensors monitor the user at 30 FPS. It is about 20% slower
than the rate at which joints’ data is obtained by applying
Openpose to RGB images, which is 15-18 FPS.

III. USER BODY POSE ESTIMATION

Accurate estimation of the user’s poses and motions is an
issue of significant importance in enhancing the machine’s
comprehension of human behavior. In HRI, it can contribute
to a safer and more efficient execution of cooperative tasks
between the user and the robot.

To enhance the quality of user monitoring and increase
the robot’s perception of the user’s condition through the
proposed sensing system, a model for predicting the user’s
position and movements has been developed. A further
benefit of the prediction model is to compensate for the
lag time caused by using a thermal camera instead of an
RGB camera and applying Openpose to thermal images,
as mentioned in II. The developed model is applied to the
user’s body joints 3D positions obtained from the sensing
system. Local processing of user data has been important in
developing this model.

Human pose prediction is accomplished using a variety of
methods [19]. Using Kalman filters [20] and bilinear space-
time basis models [21] are among the traditional techniques
that are employed for this purpose. Modern human pose
estimation algorithms rely largely on machine learning and
deep learning models. Recurrent Neural Networks (RNN)
[22] and Convolutional Neural Networks (CNN) [23] are
two of the most commonly-used DL-based approaches for
addressing this problem.

In this work, the Seq2Seq model has been applied for
user pose prediction. Seq2Seq is an encoder-decoder-based
framework that is widely used in machine translation [24]. In
Seq2Seq, the encoder receives the input data and generates
an internal representation of this data. This internal state
is fed into the decoder, which makes predictions based on
maximum likelihood estimation [25]. In this work, to use
Seq2Seq to predict the user’s pose, a sequence of the 3D
positions of the user’s body joints at the current and previous
time steps is sent to the encoder as input, and the decoder
predicts the joints’ 3D positions in the future time steps.
The user’s body pose will then be reconstructed using the
predicted body joint positions. The main elements of the
Seq2Seq framework are the RNN units in the encoder and
decoder, which are either LSTM [26] or GRU [27] cells.
Using more RNN units can help Seq2Seq perform better.
However, due to their recursive structure, RNN units are
computationally expensive. Consequently, using too many
RNN units increases the model’s run time, and we need pow-
erful processors or cloud computing solutions to execute the
model. Lowering the model’s computational cost enhances
user privacy by reducing reliance on cloud computing.

The Seq2Seq prediction model proposed in this paper has
been developed with a focus on reducing computational costs
to enhance user privacy. To accomplish this, the number of
RNN units (GRUs are used in the Seq2Seq model, as they
generally have a lower computational cost than LSTMs [28])
in the Seq2Seq model has decreased. It should be noted,
however, that reducing the number of RNNs may result in a
significant reduction in the model’s accuracy.

To achieve an optimal trade-off between computational
cost and accuracy, the Seq2Seq architecture has been modi-
fied by incorporating established and widely-used techniques
in DL. In particular, five modifications have been applied to
the Seq2Seq model, as mentioned below. Each of these tech-
niques has already been used in the Seq2Seq model alone,
but in this work, they have been applied simultaneously to
this structure.:
1. Residual connections It has been shown that adding a
residual connection between the input and output of each
RNN unit in the decoder can help improve the accuracy of
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the prediction in the Seq2Seq model [29].
2. Attention mechanism Using an attention layer can sig-
nificantly improve the accuracy of DL networks like the
Seq2Seq framework [30]. The main idea behind the attention
mechanism in the seq2seq model is that for each prediction,
the model only uses parts of the input that includes the most
relevant information instead of the entire input sequence. In
this work, the Bahdanau attention mechanism [30] has been
used. In the attention layer, first, the degree of correlation at
time-step t of the decoder is calculated using Eq. 7.

et,j = a(st−1, hi) = V T tanh(W [hi; st−1]) (7)

where hi is the ith hidden state vector of the encoder, St−1

is the hidden state of the decoder at time t − 1, and V is
a weight vector. In the next step, the softmax normalization
operation is applied to eti, resulting in obtaining the weight
αti of the output vector,

αt,j = Softmax(et,i) (8)

The attention distribution is then calculated using Eq. 9:

Ct =

T∑
i=1

αt,jhi (9)

Finally, the state and the output of the decoder at time T are
calculated using Eq. 10.

st = f(yt−1, st−1, Ct) , y = g(yt−1, st, Ct) (10)

3. Bi-directional RNN units Bi-directional RNN (Bi-RNN)
is a sequence processing model using two RNNs, one of
which takes input from a forward direction and one from a
backward direction. It has information from the past and the
future of every point in the sequence [31].
4. Time2Vec Time2Vec is an embedding (vector representa-
tion) of time. It is a vectorized representation of time data
that can be integrated with different DL-based architectures,
such as the Seq2Seq mechanism, helping to improve their
performance [32]. Time2Vec embedding is able to detect

periodic and non-periodic patterns in time data regardless
of the time scale. Assuming a scalar time τ , Time2Vec of τ
is a vector of size k + 1, denoted by t2v(τ) as:

t2v(τ)[i] =

{
ωiτ + ϕi if i = 0

F(ωiτ + ϕi) if 1 ≤i≤ k
(11)

where t2v(τ)[i] represents the ith element of t2V(t), F
represents the periodic activation function (usually sin and
cos functions), and ωi and ϕi are learnable parameters. The
linear term for k = 0 captures non-periodic patterns in the
time data. Although Time2Vec was originally proposed as
an embedding of time data, it could also be used to detect
periodic patterns unrelated to time data. As an example,
[33] has shown that Time2Vec can help increase pedestrian
trajectory prediction accuracy using the Seq2Seq model. In
order to capture periodic patterns in pedestrian trajectory,
Time2Vec has been applied to input sequence data, i.e.,
pedestrian position data, before being sent to the encoder
of the Seq2Seq model. Similarly, in this work, Time2Vec
was applied to the user body joint data before being sent to
the Seq2Seq mechanism.
5. Beam search The beam search algorithm can be applied
to many deep learning models, such as Seq2Seq, as a final
decision-making layer for selecting the best output based on
maximum likelihood probability [34]. Fig. 2 shows the mod-
ified Seq2Seq architecture used for human pose prediction.

The modifications mentioned above have been applied
to the original Seq2Seq framework step by step. Modified
models have been compared with each other in terms of
accuracy and computational cost (run time of the model
in the testing phase). The model is fed a sequence of 3D
positions of the user’s body joints in the past two seconds as
input and predicts the joints’ 3D positions one second later.
The INHARD dataset [35] is used to train the models. This
dataset includes the 3D position of 17 human body joints
collected from 16 subjects at 120 FPS when performing 13
industrial HRI tasks in cooperation with a robotic manipula-
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Fig. 2. The architecture of the human pose prediction model. It is a Seq2Seq model with five modifications as mentioned in the text. Xi represents the
human body joint position vector at time step i. hi is the hidden state vector i. FC shows the fully connected layer.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 325 submitted to 2023 IEEE 19th International Conference on
Automation Science and Engineering (CASE). Received March 17, 2023.



tor. As the developed model predicts the user’s body pose in
HRI, the INHARD dataset that includes human movements
when interacting with a robot is a suitable alternative for
training the model. All models were trained and tested on
a NVIDIA Quadro RTX 3000 GPU with 6 GB RAM. As
mentioned earlier, the joints’ 3D position information is
sent to the prediction model at a rate of about 15 FPS.
To increase the accuracy of real-time prediction, all models
have been trained using a subset of the INHARD dataset
sampled at a rate of 15 FPS. All models have been trained
using the Adams optimizer with a 0.005 learning rate. A total
of 3000 iterations are performed during the training phase.
The batch size for training all models is 8. For the fully
connected layers in the decoder of all models, a dropout of
0.1 has been applied. Except for the original Seq2Seq model
with two layers, all modified models have only one layer in
the encoder and the decoder. All models have been trained
using the mean squared error loss function. Table 1 shows
each model’s run time to achieve the prediction accuracy of
85% when testing the trained model. Compared to the other
models, the model including the beam search algorithm had
a much longer run time. Thus, this model has been excluded
from the comparison table. Results show that the Seq2Seq
model with residual connections, the attention mechanism,
and the Time2Vec embedding with an embedding size of
64 has the lowest computational cost and the fastest run
time in the testing phase. To achieve a specific accuracy
of 85% when running the model in real-time, this model
is 34% less computationally expensive than the Seq2Seq
architecture without any modifications. One should note that
all models have short processing times and could probably be
applied in real-time human pose prediction. However, when
it comes to using the model in HRI scenarios, including
real-time control of the robot, shorter processing time can
significantly enhance the quality of the robot control and the
HRI. Therefore, the model with the fastest processing time
has been applied to the practical evaluation tests.

IV. EXPERIMENTAL EVALUATION TESTS

Experimental tests have been carried out to assess the
accuracy of the developed sensing system and prediction
model in tracking and predicting user pose in HRI. The
objectives of these tests are to determine,

1) If the proposed privacy-preserving sensing system can

appropriately track and predict the user’s body pose
while interacting with a robot.

2) If the prediction of the user’s pose using the developed
prediction model can help increase the efficiency and
safety of HRI.

To accomplish this, two types of evaluation tests have been
conducted. The TIAGo robot is used for performing the
evaluation tests as shown in Fig 1.

The first test is a trajectory-tracking scenario, in which the
robotic manipulator follows the user’s wrist when moving
their hand at medium and fast speeds. The position of the
user’s wrist sent to the robot, as the desired position of
the robot’s end-effector to reach, is either the current or
the future position of the wrist estimated by the prediction
model. A comparison is made between the accuracy of
human hand-following when the desired position of the robot
is the current or the future position of the user’s wrist. This
comparison can show the effectiveness of user movement
prediction on the efficiency of HRI. The test is conducted
with fast and medium hand movements. To increase the test
reliability, the tests are designed so as to be repetitive and
the user’s hand follows the same trajectory every time. The
UR5 robot has been used to create repetitive motions for
the hand during the evaluation tests. The user is asked to
take UR5’s end-effector. By creating repetitive motions for
the UR5’s end-effector, one can ensure that the user’s hand
follows the same trajectory at different test steps (Fig. 3).

1234

Fig. 3. The hand-following experimental setup. The user is monitored
using the thermal camera and the depth sensor when taking the end-effector
of the UR5 robot. By creating repetitive motions for the UR5, the trajectory
of the user’s hand would be the same for all tests.

The second test investigates the effectiveness of predicting

TABLE 1
COMPARISON OF RUN TIME IN THE TESTING PHASE AMONG DIFFERENT MODIFIED SEQ2SEQ ARCHITECTURES.

Model Number of GRUs Model parameters Model’s run time at testing phase for up to 1s prediction (ms)
330 ms 720 ms 1000 ms

Seq2Seq 7200 21 0.006272 ± 0.00094 0.007623 ± 0.00099 0.008644 ± 0.00144
RC2 + Seq2Seq 2600 — 0.005643 ± 0.00213 0.0069342 ± 0.00154 0.0076896 ± 0.00099

RC + Bi-RNN + Seq2Seq 1920 — 0.005461 ± 0.00074 0.006581 ± 0.00091 0.006924 ± 0.00207
AM3 + RC + Bi-RNN + Seq2Seq 1050 — 0.005250 ± 0.00090 0.006188 ± 0.00185 0.0063041 ± 0.00701

Tim2Vec + AM + RC + Bi-RNN + Seq2Seq
800 324 0.004688 ± 0.00109 0.005381 ± 0.00163 0.005731 ± 0.00099
800 644 0.004702 ± 0.00115 0.005234 ± 0.00111 0.005624 ± 0.000950

1000 1284 0.004810 ±0.00107 0.005401 ±0.00094 0.005840 ±0.00082

1Number of layers 2Residual Connection 3Attention Mechanism 4Time2Vec Embedding size
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user movements in increasing HRI safety through simple
human-robot collision scenarios. This test includes two parts.
In the first part, the user moves their hand towards the
robot end-effector when a collision avoidance controller is
activated. The controller receives the user’s body pose data
from the sensing system. The test consists of two steps, with
the current position of the hand and its predicted position
being sent to the controller in two steps. As soon as the
controller detects the user’s hand entering the robot’s danger
zone, the robot will react to avoid a collision with the hand.
The robot’s reaction time will be compared when it receives
either the current or the predicted user’s hand position.

In the second part, the user is assumed to have already
entered the robot’s danger zone and to be moving their
hand away from the robot now. As soon as the user’s hand
exits the danger zone, the collision avoidance controller is
deactivated, and the robot continues performing tasks. The
robot’s reaction time to the exit of the user’s hand from the
danger zone is measured. A comparison is made between the
reaction times when the hand’s current and predicted position
is sent to the controller. Predicting the user’s movements
is expected to lead to faster robot reactions, resulting in
safer robot performance. The user’s hand movement velocity
should be the same at each test step to make the robot’s
reaction times comparable. To move the user’s hand with a
constant velocity, like the hand-following test, the UR5 robot
has been applied to human-robot collision tests (Fig. 4).

Fig. 4. Human-Robot collision test setup. The user takes the UR5’s end-
effector. UR5 moves the hand towards and away from the robot in the first
and second tests, respectively. The output of the depth sensor is not shown
in the figure.

Since the user’s hand in all tests is moved using the UR5
robot, its motions would be independent of the test subject.
Thus, all tests have been conducted only on a single person.
However, to study the reliability and robustness of tests,
methods like moving the hand at different speeds, repeating
the tests several times, and moving the hand in different
directions in the robot’s workspace have been taken into
account. The details of these methods and the results of the
tests are presented in section V.

V. RESULTS

In this section, the results of the experimental tests have
been reported.

• User hand-following tests
As mentioned earlier, hand-following tests are conducted

at medium and fast speeds of the user’s hand movement.
Medium and fast motion of the hand is achieved by moving

Z

Y
X

Z

XY

Fig. 5. Top - The trajectories of the user’s hand (green) and the robot’s
end-effector when the prediction model is activated (blue) and deactivated
(red). Below - Distribution of the trajectory tracking error when using (blue)
and not using (brown) the prediction model. Dimensions are in meters.

UR5’s end-effector at 30% and 60% of its maximum velocity,
respectively. The trajectory of the user’s hand includes mo-
tions in 3D Cartesian space. The hand-following experiment
consists of four tests: moving the hand at two speeds and
taking feedback from either the current or predicted hand
position. The user’s hand position is estimated for up to one
second, and prediction results for the following 0.3 seconds
are sent to the robot. In order to ensure the reliability of
the results, each test was repeated ten times. Fig. 5-top
shows the trajectories of the user’s hand and the robot’s end-
effector. Fig. 5-below illustrates the distribution of tracking
error when the current and predicted positions of the hand
are used as reference trajectories of the robot, respectively.
For brevity, only the test results at medium speed have been
presented in Fig. 5. Table 2 presents the Root Mean Square
Error (RMSE) of hand-following for all tests calculated using
Eq. 12. The overall error and the error in each direction
have been reported in Table 2. To calculate the error in each
direction, the other two directions are removed from Eq. 12.

RMSE =
√∑N

i=1[(X
h
i −Xr

i )
2+(Y h

i −Y r
i )2+(Zh

i −Zr
i )

2]

N (12)

Where Xr
i , Y r

i , and Zr
i are the robot’s 3D Cartesian end-

effector positions, and Xh
i , Y h

i , and Zh
i are the hand’s

positions. N is the number of time steps in the test.
The hand-following test results reported in Table 2 show

that the prediction model can improve the overall trajectory-
following accuracy by about 25% and 10% at medium and
fast speeds, respectively. A lower accuracy at fast speed
is due to the prediction model being trained using human
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TABLE 2
RMS OF THE TRAJECTORY TRACKING ERRORS IN THE HAND

FOLLOWING TEST IN X, Y, AND Z DIRECTION AND OVERALL.

Direction Speed Pose prediction? RMSE Improvement(%)

X
Medium Yes 0.0727 18.31No 0.089

Fast Yes 0.0647 7.17No 0.0697

Y
Medium Yes 0.048 24.05No 0.0632

Fast Yes 0.0625 -7.76No 0.058

Z
Medium Yes 0.0488 6.51No 0.0522

Fast Yes 0.0521 23.83No 0.0684

Overall
Medium Yes 0.2244 24.97No 0.2991

Fast Yes 0.3329 9.83No 0.3692

usual movements, which are much closer to the user’s hand
movements at medium speed. According to the results of the
fast speed test in the Y direction, predicting the user’s hand
movements negatively impacts trajectory following accuracy
by 7.7%. This is probably due to the prediction model’s
inaccuracy in estimating the movements of the user at fast
speeds. It should also be noted that during the experiments,
we discovered that trajectory tracking is less efficient in
the Y direction compared to the X and Z directions. It
may be because the position of the user’s hand in the Y
direction is determined by the depth sensor, while in the X
and Z directions, it is obtained from the thermal camera. The
prediction of user poses also compensates for lag time caused
by processing thermal images using Openpose. Compared to
RGB cameras, this processing lag time is more noticeable
for thermal cameras.

• Robot-user collision tests

The danger region of the robot in the human-robot col-
lision tests is within 30 cm of the robot manipulator. Both
parts of the collision avoidance tests consist of four steps,
each repeated at least six times to enhance test reliability.
These four parts include moving the hand in the XZ, XY,
and YZ planes and in 3D space. As mentioned earlier, in the
first and second parts, the hand moves toward and away from
the manipulator, respectively. The robot’s reaction times to
avoid possible collisions with the user’s hand when moving
toward the manipulator are presented in Table 3.

TABLE 3
THE REACTION TIMES OF THE ROBOT TO POSSIBLE COLLISIONS AND

THEIR IMPROVEMENTS DUE TO PREDICTING USER POSE.

Space Pose prediction? Reaction time(s) Improvement(%)

XY Yes 6.03 15.03No 5.23

XZ Yes 2.30 12.20No 2.05

YZ Yes 2.23 8.03No 2.07

XYZ Yes 3.70 13.84No 3.25

Table 3 shows the improvements in the robot’s reaction time
resulting from the prediction of the user’s hand movements.
The results of the two parts of the human-robot collision tests
indicate that predicting the user’s hand position, on average,
reduces reaction time by up to about 15%.

Table 4 presents the robot’s reaction times to the exit of
the user’s hand from the danger zone and the improvement
of the reaction time as a result of user pose prediction. Like
hand-following tests, the predicted hand position data for 0.3
seconds later are sent to the robot in the relevant tests.

TABLE 4
THE REACTION TIMES OF THE ROBOT TO THE EXIT OF THE USER’S

HAND FROM THE DANGER ZONE.

Space Pose prediction? Reaction time(s) Improvement(%)

XY Yes 4.80 11.10No 5.40

XZ Yes 3.57 14.06No 4.15

YZ Yes 2.11 17.58No 2.56

XYZ Yes 2.95 8.76No 3.23

The robot’s reaction time improvement is seen in the
second part of the human-robot collision test when the user
moved their hand away from the robot. Based on the results
reported in Table 4, the robot can react up to 17% faster when
it detects the user’s hand is getting out of the danger zone.
Thus, the robot can start performing the tasks 17% earlier
by providing it with the user’s predicted hand position data.

VI. CONCLUSIONS

In this paper, a robot-based privacy-preserving sensing
system for the user’s upper-body motion monitoring in HRI
using the integration of a thermal camera and a depth sensor
and using Openpose has been developed. A lightweight DL
model has also been trained to predict user pose when
interacting with the robot and being monitored using the
proposed sensing system.

The prediction model is based on a Seq2Seq architec-
ture. To make the model computationally optimized, its
architecture has been modified by adding four DL-based
units, i.e., attention layer, residual connections, Bi-RNNs,
and Time2Vec embedding. It is shown that by applying
these add-ons simultaneously to the Seq2Seq mechanism,
the computational cost of the model is significantly reduced
while its accuracy remains unchanged.

The proposed sensing system and the prediction model
have been evaluated through experimental tests. In these
tests, the effectiveness of predicting user poses has been
studied in a HRI setting when they are monitored using
the available sensing system. The results indicate that HRI
can be made more efficient and safe by using the avail-
able privacy-preserving monitoring platform and prediction
model. Predicting the user’s body pose provided the robot
with information about the future posture of the user, leading
to improvement of the HRI performance in terms of safety
and efficiency. Moreover, it compensated for the lag time in
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the sensing system caused by the processing of the thermal
camera image data using Openpose.

The accuracy of the prediction model can be improved by
training it on other public or specifically collected datasets.
Using alternative DL libraries for human joint detection in
thermal images, e.g., AlphaPose [14], may also improve
the performance of the sensing system. Furthermore, the
Seq2Seq mechanism can be improved by incorporating other
deep learning techniques, such as greedy search [36].

In future work, the proposed sensing system and prediction
model will be evaluated in complex human-robot interaction
scenarios, including tasks that require collaboration between
humans and robots, with advanced collision avoidance con-
trollers present. Also, another topic that could be taken into
account is using other privacy-preserving sensors, like non-
vision-based sensors in the sensing system, whcich can help
to increase the robot’s perception of the user’s condition.
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