
Farzane Karami

Language-based Approaches for
Enforcing Privacy and Security
Policies

Thesis submitted for the degree of Philosophiae Doctor

Department of informatics
Faculty of Mathematics and Natural Science

University of Oslo

2023

© Farzane Karami, 2023

Series of dissertations submitted to the

Faculty of Mathematics and Natural Sciences, University of Oslo

No. 2672

ISSN 1501-7710

All rights reserved. No part of this publication may be

reproduced or transmitted, in any form or by any means, without permission.

Cover: UiO.

Print production: Graphic center, University of Oslo.

Abstract
In this thesis, we experiment with customizing programming languages to enforce
privacy and security policies. We enforce privacy and security requirements at
the level of a programming language when a program executes. We design a
language and enrich it with the essential features to enforce the requirements.
Moreover, we model our language with formal methods and prove that programs
written in our language do not violate the desired policies. We design the
language’s syntax and semantics and formalize the operational semantics with
mathematical logic, which enables us to reason about the language’s properties.

The structure of this thesis is described in the following. First, we introduce
privacy and security policies that we want to enforce. We choose the GDPR
(General Data Protection Regulation), which has strict requirements to protect
the individual’s privacy when processing personal data. For security, we give an
overview of existing language-based techniques to preserve confidentiality and
limit access to sensitive data. Second, we state the research questions that we
want to handle in this thesis. Third, we introduce the tools and logic that we
use for our research methods and modeling our languages. Finally, we present
the research papers and relate the research questions to our contributions.

The main contributions of this thesis are presented in three research papers.
In the first paper, we introduce a programming language with provable guarantees
that protects privacy and enforces the GDPR’s requirements. The second paper
gives an overview of a category of programming languages, called active object
languages, that are used to develop distributed systems. In the third paper, we
introduce a security mechanism to enforce security in active object languages.
We discuss and prove that our language-based approaches are exact when it
comes to enforcing policies and restrictions. Moreover, our approaches can be
generalized to other languages.

i

Acknowledgements
Many thanks to my supervisor Olaf Owe and my co-supervisor Martin Steffen at
the university of Oslo for providing guidance along my PhD and always taking
time for my questions. I am very grateful to them for our many discussions,
where they provided me with constructive suggestions and helpful advice.

Thanks to David Basin at the ETH Zurich University and Einar Broch
Johnsen at the University of Oslo for close collaboration on developing a data
protection programming language. I am very grateful to them for our many
interesting discussions with creative ideas and their help with coauthoring our
research paper.

Thanks to Gerardo Schneider at the Chalmers University and Christian
Johansen at the University of Oslo for close collaboration during my research
visit to Gothenburg in May 2018.

Farzane Karami
Oslo, May 2023

iii

Contents

Abstract i

Acknowledgements iii

Contents v

I Overview 1

1 Motivation 3
1.1 Introduction to the GDPR 4
1.2 Introduction to data confidentiality 5
1.3 Introduction to active object languages 6
1.4 Research goal and methodology 7
1.5 Structure of this thesis . 11

2 Preliminaries on formalizing a programming language 13
2.1 Rewriting logic . 13
2.2 Introduction to Maude . 16
2.3 Model checking . 19

3 Distributed systems and information-flow-control approaches 27
3.1 Active object languages . 27
3.2 Information-flow-control approaches 28

4 Summary of Papers 31
4.1 Paper 1: DPL A Language for GDPR Enforcement 32
4.2 Paper 2: An Evaluation of Interaction Paradigms for Active

Objects . 34
4.3 Paper 3: Information-Flow-Control by means of Security

Wrappers for Active Object Languages with Futures 35

5 Discussion and Conclusion 37
5.1 Summary of Contributions 37
5.2 Discussion of research questions 38
5.3 Limitation and future work 40

v

Contents

II Research papers 43

Papers 46

I DPL: A Language for GDPR Enforcement 47
I.1 Introduction . 47
I.2 Background . 49
I.3 DPL: a calculus for data protection 51
I.4 Correctness . 66
I.5 Maude formalization . 70
I.6 Related Work . 70
I.7 Conclusion . 72
I.A Appendix . 72

II An Evaluation of Interaction Paradigms for Active Objects 83
II.1 Introduction . 83
II.2 Background . 87
II.3 Unified Syntax and Semantics 107
II.4 Evaluation . 115
II.5 Conclusion . 128

III Information-Flow-Control by means of Security Wrappers
for Active Object Languages with Futures 133
III.1 Introduction . 133
III.2 Background . 135
III.3 Our core language . 137
III.4 A framework for non-interference 139
III.5 Related work . 148
III.6 Conclusion . 149

Bibliography 151

List of Figures 159

List of Tables 161

vi

Part I

Overview

Chapter 1

Motivation

Compliance with the General Data Protection Regulations (the GDPR) [68]
is a big challenge for enterprises. The GDPR has very strict data protection
requirements and threatens enterprises with significant fines for non-compliance.
If an enterprise fails to meet the GDPR requirements for its data processing
systems, then the enterprise gets a fine of up to 20 million Euro or 4% of its
total annual turnover, whichever is higher will be the maximum fine amount.
Modern data processing systems are complex, and it is cumbersome to manually
check and verify GDPR compliance for a data processing system.

We investigate this problem from a programming language perspective.
Programming languages play an important role in the behavior of a system.
A program determines the behavior of a system and the underlying language
determines the capability to express a program code. Traditional programming
languages are not sufficient for enforcing data protection policies. For example,
the GDPR requires transparent data processing where data is collected and
used for explicit purposes; however, these languages do not have an explicit
representation for a purpose. Moreover, under the GDPR, data must be collected
and used only for purposes that the data subject has consented. Traditional
languages do not have control over data collection, data propagation, and data
usage within code. The GDPR has temporal requirements for data deletion; for
example, data must be deleted when the user requests for data deletion or when
purposes are served. These requirements make programming tricky since data
usage must stop if consent is withdrawn or when data deletion arises. Therefore,
our aim is to develop a reliable programming language concept that enforces the
GDPR’s requirements, hence systems developed with our language are GDPR
compliant.

We also conduct research to enforce confidentiality in distributed systems
by means of language-based techniques. We study the programming languages
that are used for developing distributed systems and the existing language-
based techniques for enforcing confidentiality at the level of a programming
language. Our aim is to introduce a language-based approach that is suitable
for enforcing confidentiality in distributed settings. Access control mechanisms
are the standard ways to control data access, but they do not fully control the
propagation of sensitive data when access is granted to a system. For example,
when access is granted to a component, sensitive data might be sent to other
components. In a distributed setting, due to the complexity of the system, it
is cumbersome to check the trustworthiness of all program codes. By means of
language-based techniques, we can analyze programs automatically. In these
techniques, a programming language is enriched with the necessary syntax and
semantics to track the flow of information during compile time or program

3

1. Motivation

execution. A compile time or runtime error arises if data flow is not compliant
with security policies. This way, security policies are enforced at the level of
programming languages.

In this thesis, we aim to use language-based techniques to enforce data
protection under the GDPR and to enforce data confidentiality in distributed
systems. We design a data protection language called DPL where the GDPR’s
data usage requirements are taken into account in the language design. In the
following, we introduce the data usage requirements of the GDPR. Moreover, we
propose a language-based approach to enforce data confidentiality in a distributed
setting. We define the operational semantics of our languages in a formal and
logical framework and reason about the properties of programs written in our
language.

1.1 Introduction to the GDPR

In 2016, the EU passed the GDPR to protect the privacy of individuals when
their personal data is processed by entities. The GDPR is now part of European
Union law, and it came into force in May 2018. Failure to comply with the GDPR
requirements leads to substantial fines. The GDPR spells out requirements that
regulate data processing by enterprises and organizations. Enterprises must
make their data processing systems compliant with the GDPR and provide
records of their data processing activities to prove GDPR compliance.

The GDPR regulations apply to any processing of personal data. Data
is personal if the information can be used directly or indirectly to identify a
person; for example, finding a person’s location, name, economic status, etc.
Any operation on data is considered as processing, including collection, storing,
erasing, etc. [82]. The GDPR has many fine-grained requirements. In this thesis,
we only consider the GDPR provisions on the data usage as follows:

• Consent: The data subject’s (the individual whose personal data is being
collected and processed) consent is required prior to data collection and
processing. The data subject must be aware of the identity of the enterprise
that is going to use her data and the intended purposes for which her
personal data is collected. If data processing has multiple purposes, consent
must be obtained for all of them. For example, entity X runs a social
platform and for this purpose, it collects and stores personal data from
users. Entity X also sells advertising space on the platform to third parties
that can use personal data for marketing. Therefore, when users sign up
for X’s social media, they have to consent to the use of their personal data
for marketing by the third parties [82].

• Purpose limitation: Personal data shall be collected for legitimate and
explicit purposes, and personal data must not be used for incompatible
purposes. It is not allowed to process data for purposes that are
incompatible with the purposes for which data is collected. Overall, the
GDPR requires transparent data processing, which means that purposes

4

Introduction to data confidentiality

for data processing must be clear and understandable by a large group of
data subjects, and data must only be used for the purposes for which data
is collected [82]. For example, if data is collected for a mass-marketing
purpose, it cannot be used for targeted marketing. In fact, targeted
marketing is another sub-purpose of marketing that requires consent. This
requirement increases the level of transparency for data usage.

• Storage limitation: Personal data shall be kept no longer than necessary
for the processing purposes. The storage period shall have a deadline set
to a strict minimum. An enterprise is responsible to delete data when
the deadline for storage arrives. Moreover, personal data shall be deleted
after the purposes are served [82]. For example, a credit card number is
collected for the purpose of a purchase, and if the data subject consents,
it can be stored for future purchases. To enforce storage limitation, an
enterprise must set up retention policies, specifying how data is used for
future use, how long data is needed, and the deadline for the erasure of
unnecessary data.

• Right to withdraw consent: The data subject has the right to withdraw
consent at any time, and an enterprise is no longer allowed to use the data
for processing. An enterprise needs to inform the data subject of her right
to withdraw before obtaining consent. When a data subject withdraws
consent, an enterprise must stop using the data subject’s data for the
withdrawn purpose without undue delay [82].

• Right to be forgotten: The data subject has the right to request to
delete her data, and an enterprise is obliged to delete the data without
undue delay. For example, entity X wants to recruit new employees for
its new business. During the process of recruitment, many applicants are
rejected and they receive a rejection notification from X. In this scenario,
X processes the personal data of applicants for the purpose of recruitment.
Since X does not need the data of applicants who were rejected, those
applicants have the right to demand the erasure of their personal data
from X [82].

As mentioned before, the GDPR has many fine-grained requirements but in this
thesis, we only consider the above requirements, which are named data usage
requirements.

1.2 Introduction to data confidentiality

A common way to restrict access to sensitive data is via access control mechanisms,
where access is granted if the request for access is authorized. The problem
is that if a program code is authorized to access sensitive data, there is no
guarantee that the code handles the data safely. For example, a program might
send sensitive data to an unauthorized entity. In order to ensure that the
confidentiality of data is preserved within a system, we need to analyze programs

5

1. Motivation

and verify that they are trustworthy to deal with sensitive data. In other
words, ensuring that programs are not malicious and are not sending sensitive
data to unauthorized entities. In the following, we give a brief introduction to
language-based techniques that are used to control the flow of information in
programs.

Information-flow-control approaches [33, 71] are used to track the flow of
information during compile time or program execution. In static approaches,
programs are verified at compile time, and in dynamic approaches, security checks
are performed at runtime. Each approach has its advantages and disadvantages
and can be well-suited for enforcing a particular policy. Static approaches have
zero runtime overhead but dynamic approaches come with the cost of runtime
overhead. Dynamic approaches are more permissive [33, 70], i.e., programs that
are accepted by a dynamic approach might be rejected by a static one. This
is due to the over-approximation in static approaches, where in order to be
safe, variables whose their confidentiality is unknown at the time of analysis are
considered as confidential. This can lead to unnecessary rejections. In runtime
approaches the confidentiality of a variable is evaluated at the time analysis.
More details can be found in Section 3.2.

In information-flow-control approaches, program variables are annotated with
security tags; for example, high and low, representing variables that contain
sensitive data and the ones that contain nonsensitive data, respectively. Note
that unauthorized entities can access low variables but they are not allowed to
receive sensitive data or high variables. By annotating methods parameters, we
can specify whether a method is expected to receive sensitive data. Similarly,
we can annotate return values to specify whether a method returns sensitive
data. During program compilation or execution, variables’ security tags are
propagated along the program, and security checks are performed to restrict the
flow of sensitive data according to a policy. A notion of compliance is formalized
based on security levels and a security policy. Compile-time or runtime errors
arise if the flow of information is not compliant with a policy. For example, the
low outputs of a program must not be affected by high variables since it is a
leakage of information from high to low. We can design a programming language
and incorporate security levels in the language’s syntax and security checks in
the semantics to enforce policy restrictions.

1.3 Introduction to active object languages

Active object languages are based on the combination of the actor model [1]
and object-oriented principals [8]. They are inherently concurrent programming
languages and are suitable for developing distributed systems. In the actor
model, actors are concurrent processes that communicate asynchronously via
message passing. An actor encapsulates its fields, procedures, and a single thread
of execution. An actor starts handling a message until it completes the task and
starts another message. In an actor model, actors do not return results, and this
makes programming difficult [8].

6

Research goal and methodology

In active object languages, an object encapsulates its state and has a dedicated
thread for executing processes. Processes can be interleaved, which results in
concurrency. Only one process can be active in an object while others are
suspended and can be resumed later when the object’s thread is available. In
active object languages, method calls are asynchronous and objects communicate
via message passing. Some active object languages use the future mechanism for
communication, where an asynchronous call creates a message and a future that
is a placeholder for the method’s result [14, 28]. Therefore, a caller does not
have to be blocked and wait for the callee to finish the method call. Instead the
caller can continue with other tasks and fetch the result from the future when it
needs the value.

Distributed systems require flexible communication between autonomous
and distributed processes. Conventional object-oriented programming languages
tightly couple a caller and a callee via synchronous method calls, where a
caller waits for the result. In active object languages, callers and callees are
loosely coupled via asynchronous message passing and asynchronous method
calls. The model of asynchronous message passing is inherently concurrent and
suits distributed settings.

1.4 Research goal and methodology

It is challenging to find a suitable way to process personal data in conformance
with the GDPR. Enterprises need to reprogram their systems, or they need
to consider the GDPR requirements when designing their systems. Nowadays
the common approach for developing GDPR compliant systems is to consider
the GDPR requirements as early as possible when designing and developing
a system, which is called privacy by design [16]. The question is how much
privacy can be achieved by manually designing and taking care of privacy. As
discussed in [72], from the design point of view, many levels of abstraction exist
in the design model of a system. For example, the components of a system are
represented conceptually and without full details, whereas the full description of
their integration into bigger components or their communication protocols are
abstracted away. Moreover, it is the programmer’s responsibility to take into
consideration the GDPR requirements when developing a system, which requires
deep knowledge in privacy. As Schneider explains [72], privacy by design has its
own limitations, and by itself cannot guarantee privacy. There is a general lack
of a framework or methodologies for developing privacy compliant systems. The
GDPR has teeth, thus an accurate and exact approach is needed to automate
the enforcement of these requirements.

Researchers have used information-flow-control approaches to check privacy
compliance in programs. The state-of-the-art uses static checking to control
purpose-based data usage in programs [32, 47]. For example, a programmer
annotates variables with the permitted purposes, methods are also annotated
with their purposes. Then at compile time, for a method call, the compliance of
the method’s purposes is checked against the parameter’s permitted purposes. A

7

1. Motivation

compile error arises if a method’s purpose is not compliant with the permitted
purposes of a parameter. Similarly, the authors in [81] propose a purpose-based
and a static type checking approach to enforce privacy compliance in distributed
systems and particularly in active object languages. In [80], a dynamic approach
is proposed to control data access based on user’s consent in active object
languages. In this approach, an interface is defined to create a list of consented
purposes, where via its methods a data subject can revoke or add consent. Data
is tagged with privacy policies determining who the data belongs and program,
methods are annotated with purposes. When a tagged data is used for a method,
the corresponding list of consent is checked and runtime errors arise if a method
uses data for purposes that do not comply with the list of consented purposes.

To enforce the GDPR requirements, we need a dynamic approach, where users’
consent determines the permitted purposes. Static checking is not sufficient to
enforce the GDPR temporal requirements. For example, when a user withdraws
consent, data usage for the withdrawn purpose must stop without undue delay.
Therefore, consented purposes can change over time, and a dynamic approach
is required to precisely restrict data usage. Moreover, the storage limitation
requirement requires that data is erased when the data deletion deadline arrives
without undue delay. Thus a dynamic approach is needed to automatically delete
personal data when the deadline arrives or when a user requests for data deletion.
The term “undue delay” does not mean that a program instantly aborts and the
data is instantly deleted , but rather, as soon as reasonably possible, the system
will no longer process the data and it will be removed. For example, when we
use the services of Google or Facebook, the expectations for data deletion is in
the order of minutes or hours, not seconds. We need to design a programming
language that takes into account these tricky aspects of the GDPR and still is
reliable and reusable with the GDPR guarantees.

Similarly, it is challenging to preserve data confidentiality in distributed
systems, where pieces of code and components can be unknown. Therefore, it is
not trivial to analyze all program codes and ensure that they behave safely; i.e,
they do not reveal sensitive data to unauthorized components. Information-flow-
control approaches [33] are used to track the flow of sensitive data and enforce
access restrictions at the level of programming. The state-of-the-art uses static
type checking to enforce data confidentiality in active object languages that do
not use the future mechanism [61]. Their security approach mainly focuses on
other aspects of concurrency such as interleaving processes within an object’s
thread that might compromise the confidentiality of data. In [2], a dynamic
approach is proposed to enforce data confidentiality in the ASP language [14],
which is an active object language that uses the future mechanism. In [2],
security levels of activities, variables, and futures are fixed and are assigned by
the programmer prior to the program execution, but the compliance is checked
at runtime when fetching a future value. In this thesis, we are looking for a
permissive approach where security levels of variables and futures are evaluated
during runtime instead of being assigned and over approximated at compile
time. Futures are created upon calls at runtime and their values are calculated
at runtime. A future might contain sensitive data if the corresponding method

8

Research goal and methodology

result is sensitive.

1.4.1 Research Goals

Our goals are:

1. designing a programming language that enforces strict policies of the
GDPR,

2. proposing a language-based approach that enforces data confidentiality in
a distributed system.

These general research goals are subdivided into the following research questions.

• What are language design principles to enforce the GDPR requirements?

• How can we design and formalize a data protection programming
language and verify that its semantics ensures compliance with the GDPR
requirements?

• What are the communication mechanisms of active object languages?
How do their communication paradigms challenge security enforcement in
distributed systems?

• How can we design a language-based approach to enforce security in a
distributed setting?

In the research paper I, we design a data protection language (called DPL) that
enforces the GDPR requirements mentioned in Section 1.1, including consent-
management, purpose-based data usage, retention policies, and the data subject’s
rights for withdrawing consent and data deletion. DPL is object-oriented with
interface encapsulation and uses massage passing for object communication. We
enrich DPL with language features that are necessary to enforce the GDPR
requirements. We formalize DPL’s operational semantics in rewriting logic [52]
and in Maude [18], which is a logical and computational framework. The Maude
implementation provides us with a prototype interpreter for executing DPL
programs. DPL’s formalization enables us to reason about the behavior of a
system and prove that programs written in DPL satisfy the data usage GDPR
properties.

In the research paper II, we study active object languages and their
communication paradigms. We describe how the future mechanism can challenge
the security in distributed settings. In the research paper III, we mainly focus on
active object languages that use the future mechanism. We propose a permissive
and dynamic approach that enforces confidentiality and is suitable for distributed
settings.

9

1. Motivation

1.4.2 Methodology

In this thesis, we conduct theoretical research to study the behavior of software
systems with respect to privacy and confidentiality policies. In order to formalize
a system and analyze its behavior we make use of formal methods (which is the
main methodology for our theoretical research). In formal methods, the semantics
of programming languages can be described in the following styles: 1) operational
semantics, which describes the meaning of a programming language by means of
specifying rules describing how a program executes, 2) denotational semantics,
which describes the meaning of a programming language in the mathematical
theory of domains, 3) axiomatic semantics, which describes the meaning of a
programming language in terms of preconditions and postconditions which are
true before and after the program executes [83]. In this thesis, we mainly use
the operational semantics style but also the axiomatic semantics style.

Formal methods are mathematical techniques for specifying, developing, and
verifying the robustness and reliability of a software system. Formal methods
provide specification languages by which a system can be mathematically and
unambiguously described. A specification language (like programming languages)
consists of syntax and semantics. The syntax is concerned with symbols and the
grammar, i.e., how symbols can be arranged. The semantics consists of rules to
define well-formed sentences (built from the syntax), rules to interpret and give
meaning to the sentences (semantics), and rules to infer and deduct information
(proof theory).

The question is which formal method is well-suited for modeling a
programming language? We are looking for an executable and computational
logic to specify a language as this allows to experiment and automatically analyze
or simulate programs. We formalize the operational semantics of a programming
language by means of rewriting logic [52] (which we describe in the following).
This results in a logical theory with derivable states and terms where program
execution is logical deduction. For the specification of a language’s properties,
we do not need an executable model. We can specify properties in some form
of logic such as first-order logic, higher-order logic, or a temporal logic. We are
interested in formalizing a programming language such that it is possible to
analyze programs properties. In particular, we want to verify that all programs
written in our language are GDPR compliant.

Rewriting logic [52] is a computational logic that can naturally model
concurrency and non-determinism in systems. In rewriting logic, a programming
language can be formalized as a rewrite theory, describing the language’s algebraic
data types, and the rewrite rules defining the semantics of the language. The
rewrite rules formalize the system’s transitions (program execution) and thus its
behavior. The outcome of rewrite rules can be non-deterministic, since there
can be several rewrite rules that are applicable to a subterm of a system. Thus,
a term can rewrite in many different ways. Based on rewriting logic, we can
define an interpreter for a programming language and test and analyze programs’
behavior.

Maude [18] is a framework that implements rewriting logic with a high-

10

Structure of this thesis

performance of millions of rewrites per second. Maude is a tool that supports
1) rewriting logic specifications, 2) execution of the specification, 3) temporal
logic to specify systems properties, 4) search-based analysis of a system’s state
space, 5) model checking, and 6) theorem proving. Maude can search through a
system’s state space and check if a reachable state satisfies a certain pattern and
condition. Moreover, Maude’s model checker can verify the temporal properties
of a system. By using Maude’s model checker we can reason about the behavior
of a system over time.

1.5 Structure of this thesis

This thesis is written in the form of a cumulative dissertation, which consists
of a number of research papers. The thesis has two parts. Part I provides the
necessary background and preliminary context for the research papers that are
presented in part II.

In Chapter 2, we introduce rewriting logic, Maude, and model checking. As
mentioned in Section 1.4.2, these are the methodologies for formalizing and
analyzing a programming language or a system model. In Chapter 3, we give an
introduction to active object languages and information-flow-control approaches.
In Section 3.2, we focus on static and dynamic approaches for tracking the flow
of information in programs. Chapter 4 gives a summary of all research papers.
Chapter 5 describes the contributions of the research papers, revisits the research
questions, and concludes with future work.

11

Chapter 2

Preliminaries on formalizing a
programming language
In this thesis, we use rewriting logic to formalize our proposed programming
language that enforces the GDPR requirements. We also use rewriting logic
to formalize a language-based security approach. We model our languages in
Maude, which is a framework for rewriting logic. Therefore, in this chapter we
give an introduction to rewriting logic and Maude. Moreover, to verify that
programs written in our language satisfy the GDPR properties, we make use of
Maude’s model checker. Thus, we discuss the process of model checking as well.

2.1 Rewriting logic

Rewriting logic [52] is a computational logic for modeling concurrent and
distributed systems, where the system’s state changes by actions taking place
simultaneously. Rewriting logic is a semantic framework in which concurrent
systems, programming languages, and software can be specified, executed, and
analyzed as rewrite theories. Moreover, rewriting logic is a logical framework
where automated deduction procedures and various logics such as equational,
Horn logic, and linear logic, including quantifiers, can be expressed [54].
Rewriting logic can be used to specify dynamic aspects of computations like
how a system evolves over time. Moreover, the semantics of rewriting logic is
intrinsically concurrent, thus it can be used to specify concurrent programming
languages.

In rewriting logic, rewrite rules are represented in the form t → t′, where
t and t′ are expressions in a language or subterms of a system. The following
describes the two complementary interpretations for a rewrite rule t→ t′ [51]:

• computational: the rewrite rule t → t′ represents a transition in a
concurrent system, where an instance (subterm) with the pattern t changes
to the corresponding instance with the pattern t′. The rule specifies how a
system evolves over one step of execution by rewriting a term t to t′.

• logical: the rewrite rule t→ t′ represents an inference rule, where we can
infer formulas in the form t′ from formulas in the form t.

A rewrite rule represents a change in a concurrent system, where each rule
specifies a pattern for an action that can occur concurrently with other rules
being applied. This way we can reason about the possible changes in a complex
system based on possible actions formalized in terms of rules. In rewriting
logic, rewrite rules are applied in parallel and independently to non-overlapping

13

2. Preliminaries on formalizing a programming language

subterms of a system. Moreover, if there are more than one rule that can be
applied to a subterm, the order in which they are taken is nondeterministic.
This models the non-deterministic behavior of a system [86].

2.1.1 Foundations of rewriting logic

A rewriting logic specification includes an equational logic specification extended
with labeled rewrite rules that describe the transitions of a system [87].

Definition 2.1.1. A rewrite theory R (which is a specification for rewriting logic)
is a 4-tuple R = (Σ, E, L,R), where Σ is a ranked alphabet of function symbols,
E is the collection of equations (possibly conditional) defined on variable terms,
L is a set of labels, and R is a collection of labeled rewrite rules (possibly
conditional) [50].

2.1.1.1 Equational logic

A language’s syntax is defined by a signature Σ, which is a grammar for how to
build up valid sentences and ground terms for that language. In rewriting logic, a
signature is a pair (Σ,E), where Σ is a ranked alphabet of function symbols and
E is a set of Σ-equations [50]. The signature of a rewrite theory can be used to
describe patterns of a system’s states. The notation Σ is a collection of functions
(constructor operators) for building up the data values or the ground terms of
a system. The notation E is a set of conditional or unconditional equations
defined on variables. Terms are things that are built from constants (which can
be seen as nullary operators), variables, or by applying operators on ground
terms. Terms without variables are called ground terms. Based on equational
logic, terms t and t′ describe the same state if and only if the equation t = t′

is derivable from the set of the set of equations E. Given a set of equations E,
TΣ,E denotes the equivalence classes of ground Σ-terms modulo the equations
in E. Rewriting applies to equivalence classes of terms modulo the equations in
E. This makes rewriting rules flexible and free from the syntactic constraints of
a term representation.

In equational specifications, a reduction step is the application of an equation
to a term, which reduces a term t to u denoted as t⇝ u. For example, given the
equation l = r, where l matches some subterm of t, then the equation is applied
to the term t, replacing the appropriate instance of l with the corresponding
instance of r. Zero or more reduction steps are denoted as ∗⇝.

Definition 2.1.2 (Termination). An equational logic specification E is terminating
if and only if there is no infinite reduction in E [87].

Definition 2.1.3 (Confluence). An equational specification is confluent, if and
only if for all terms t, t1, and t2, where t ∗⇝t1 and t

∗
⇝t2, there exists a term u,

where t1
∗
⇝u and t2

∗
⇝u [87].

The confluence property ensures that the result of a term or expression
evaluation is independent of the order of rewrites being applied. In a rewrite

14

Rewriting logic

system, it is desirable that the equations when interpreted as rewriting (taken
from left to right without reflexivity) are terminating and confluent. However,
when applying rewrite rules, rules can be applied in a non-deterministic order
or there can be more than one rewrite rule applicable to a (sub-)term, thus the
outcome of rewrite rules can be non-confluent.

In equational logic, we can define associativity and commutativity which
are two fundamental laws for defining sets and multisets. In a (multi-)set,
{a, b} = {b, a}, which is deducted by defining a commutative binary function:

f(x, y) = f(y, x)

When a function is declared as commutative, then computations are performed
on C-equivalent terms, where C refers to commutative equivalent. A binary
function is associative if:

f(f(x, y), z) = f(x, f(y, z))

Defining commutativity and associativity for functions leads to loops and non-
terminations. In logical frameworks, there are ways to declare a function as
commutative or associative or both and avoid non-termination.

2.1.1.2 Rewrite rules

In a rewrite theory R = (Σ, E, L,R), R is a set of rewrite rules representing the
transitions of a system. A labeled rewrite rule in R has the form l : t→ t′, where
the label l is the rule’s name and t and t′ are algebraic expressions in the syntax
of Σ. The left-hand-side t is a firing pattern and the right-hand-side t′ is the
corresponding replacement pattern. If a subterm of a system state matches with
the pattern t, then in one step of execution, it is replaced by the corresponding
instance of t′.

Given a rewrite theory R, the notation R ⊢ t→ t′ means that the transition
t → t′ is provable in the theory R using the following inference rules [50, 55]
(which are also called deduction rules). Note that to indicate the existing set of
variables X = {x1, . . . , xn, . . . } in the terms t and t′, we write the abbreviate
notation l : t(x̄) → t′(x̄), where x̄ denotes a sequence of variables x1, . . . , xn.
The notation t(w1/x1, . . . , wn/xn) denotes that for the term t, each occurrence
of xi is replaced by the term wi.

• Reflexivity: For each term t ∈ TΣ,E(X), there is an arrow to itself. In
fact, for any term t there is a transition where nothing changes.

t→ t

• Equality: The notation E ⊢ t = u means that the equality t = u can be
proven by equational logic and the equations in E. This rule specifies that
states are equivalence classes modulo the equations E.

u→ v E ⊢ u = u′ E ⊢ v = v′

u′ → v′

15

2. Preliminaries on formalizing a programming language

• Congruence: for each function symbol f in Σ, if t1 → t′1, . . . , tn → t′n
holds, then f(t1, . . . , tn)→ f(t′1, . . . , t′n) also holds. Congruence helps to
model concurrency meaning that if a→ b and c→ d hold and can occur
in one step, then f(a, c)→ f(b, d) holds and can occur in one concurrent
step.

t1 → t′1 . . . tn → t′n
f(t1, . . . , tn)→ f(t′1, . . . , t′n)

• Replacement: for each rewrite rule in R, where l : t(x1, . . . , xn) →
t′(x1, . . . , xn), then we can substitute x̄ with w̄ where:

w1 → w′1 . . . wn → w′n
t(w̄/x̄)→ t′(w̄′/x̄)

• Transitivity:
t1 → t2 t2 → t3

t1 → t3

Equational logic (modulo a set of axioms E) consists of the above inference
rules and one additional rule called the symmetry property in the following.

t1 → t2
t2 → t1

A rewriting logic specification is terminating if the underlying equational
specification is terminating, and there is no term as starting point for an
infinite sequence of rewrite steps, where a rewrite rule is applied in an infinite
sequence. A rewriting logic is confluent if and only if t→ t1 and t→ t2, then
there exists a term u where both t1 → u and t2 → u hold. In contrast to
equational specifications, rewrite rules specifications can be non-terminating
or non-confluent, this reflects a non-terminating or non-deterministic dynamic
system.

2.2 Introduction to Maude

Maude [18] is an implementation for the logical framework of rewriting logic
and is used to specify a distributed system or a programming language. In
Maude, the properties of a system can be formalized in linear temporal logic LTL
formulas (which we discuss in Section 2.3.4). Moreover, Maude’s model checker
can be used to verify that a system’s model satisfies the desired properties.

In Maude, a system is specified as a rewrite theory in a modular way. Rewrite
rules are defined in system modules, and data types of a language are defined
by means of equations in functional modules [10, 52]. Recall the definition
of a rewrite theory in Section 2.1.1, a system specification in Maude consists
of a functional module for specifying the equational specifications (Σ, E), and
a system module for specifying rewriting logic rules (L,R). In Maude, data
types such as natural numbers, integers, lists, and binary multisets and the

16

Introduction to Maude

functions on these data types can be defined as equational specifications. The
subset relationships between data types are captured in equational specifications
by subsorts. The operators are used to create values of the data types. The
equations are used to define operations on data types [86].

In Maude, an equation reduces a term or a language expression from the
left-hand-side to the right-hand-side of the equation. A term is repeatedly
reduced until no further equation can be applied. For example, given an equation
l = r, a term t reduces by this equation if a subterm of t (or t itself) matches l,
then the subterm is substituted with the appropriate instance of r. Matching is
modulo associativity and commutativity (AC-matching) for those operators and
equations that are declared as AC. In other words, a term t is considered to be
equivalent modulo AC to a term u, if we can reduce t to u in zero or more steps
by using the associativity and commutativity operations.

Rewrite rules capture the dynamic behavior of a system and describe how
a part of the state can change in one step [86]. For a rewrite rule t → t′, if a
sub-configuration matches the pattern t, then the rule is applied, which changes
the sub-configuration to the pattern of t′. A system is repeatedly reduced until
no further rule can be applied. In Maude, equations have priority over the rules.
Thus a sub-configuration’s terms are first simplified by equations, then rules can
be applied to the sub-configuration.

In the following, we briefly describe the syntax of Maude. Functional modules
are introduced by the keyword fmod and system modules by the keyword mod.
The end of modules is introduced by endfm and endm, respectively. In functional
modules, equations are declared with eq and ceq (for conditional equations).
Equations are written with syntax eq t = t′, and conditional equations are
written with ceq t = t′ if u1 = v1 ∧ u2 = v2 Equations can be defined
with any combination of associativity, commutativity, and identity with the
keywords assoc, comm, and id respectively. Rules are defined by the keywords
rl and crl (for conditional rules) in system modules. A labeled rewrite rule is
specified as: l : t→ t′, where l is the label of the rule, and the rule rewrites an
instance with the pattern t to t′ in one step. Rewrite rules can be conditional in
the form of l : t→ t′ if cond, where the rule is applied if the condition cond is
true.

Maude supports membership equational logic [53], which allows us to define
sorts for terms. For example, t : s states that the term t has the sort s. The
notation < represents sub-sorting. Maude supports equational attributes, such as
associativity, commutativity, and identity, which allow us to define sets, multisets,
and lists. In Maude, a system is modeled as a configuration consisting of its
components or sub-configurations. The standard way is that a system has the
sort Configuration, which is a multiset of objects, messages, and other dynamic
components [86], and the sub-configurations are sub-sorts of Configuration.

In the following, we give a brief description of the Maude definition for a
configuration, consisting of objects, classes, and messages. The constructor
operators (op) are used to define the terms of the sort Configuration. For
example, the first operator noConf does not take any argument, and it is a
constant, declaring an empty configuration. The second operator, the white

17

2. Preliminaries on formalizing a programming language

space, takes two terms of sort Configuration and creates a multiset. Note that
noConf is the identity term of the multiset. In Maude, ctor denotes a constructor
operator.

sorts Configuration Object Class Msg .

subsorts Object Class Msg < Configuration .

op noConf : → Configuration . [ctor].
op _ _ : Configuration Configuration → Configuration

[ctor assoc comm identity : noConf] .

In Maude, a class Cl can be defined with attributes Att1 of sort A1,. . . , Attn of
sort An. For example, a class Cl is represented as:

class Cl | Att1 : A1, . . . ,Attn : An

Moreover, an object can be defined as a term with attributes, representing the
object’s fields, local variables, statements that the object is executing, etc. For
example, an object O from the class Cl has the form structure:

< O : Cl | Att1 : Val1, . . . , Attn : Valn >

where the object has different attributes Atti with values Vali [86]. The
constructor operator for an object is represented in the following, where Oid,
Cid, and Ai are the sorts for the object identity, the class identity, and attributes,
respectively.

op < _ : _ | Att1 : _, ..., Attn : _ > : Oid Cid A1 ... An → Object [ctor] .

The following example describes an initial configuration for a sender and a
receiver object that communicate with messages to send a sequence of values
(say natural numbers) [55]. This system has two classes Sender and Receiver .
A sender object has a corresponding receiver that it sends messages to. One
can define a message by declaring operators of sort Msg. In the following, we
define the constructor operations for the classes and messages. Note that sort
Nat represents natural number and the sort Oid is used for object identifiers.

op class Sender | cell : Nat, cnt : Nat, receiver : Oid [ctor] .
op class Receiver | cell : Nat, cnt : Nat [ctor] .
op to_ :: _from_cnt_ : Oid Nat Oid Nat → Msg [ctor] .

For example, to d :: 3 from b cnt 1 means that the object b sends data item 3
to the object d, where the count is 1, indicating the first element that is sent.

Here we define the rewrite rules for sending and receiving a message. In the
send rule, each time an object of class Sender has a data item in its cell, it can
send a message to the corresponding receiver, and the cell becomes empty. In
this rule, a message is created in the right-hand-side of the rule. A receiver that

18

Model checking

has an empty cell can get a message, and the message’s data item is stored in
the receiver’s cell.

vars Y Z : Oid . vars N E : Nat .

rl [send] : < Y : Sender | cell : E, cnt : N, receiver : Z >

=>
< Y : Sender | cell : empty > (to Z :: E from Y cnt N) .

rl [receive] : < Z : Receiver | cell : empty, cnt : N >

(to Z :: E from Y cnt N)
=>
< Z : Receiver | cell : E , cnt : N + 1 > .

Note that the rules send and receive represent an asynchronous message passing,
which is a communication paradigm in concurrent programming languages. These
rules specifications determine how a system that consists of sender and receiver
objects can evolve and communicate.

Maude’s model checking. In addition to a specification and modeling
framework, Maude provides LTL model checking, which can be used to
automatically verify LTL properties in a system specification. Given that a
system’s state space is finite, i.e., the set of reachable states from an initial
state is finite, Maude can verify whether all possible behavior starting from the
initial state satisfies a given property. The result of model checking can be:
1) verification (the given formula holds for all states), 2) refutation (the given
formula does not hold and a counter example is produced, 3) the state space,
while finite is too big to be explored (or it takes too long time), and a given
formula holds for all states up to a given bound [3].

2.3 Model checking

In this thesis, we model our designed programming language for the GDPR in
Maude. We formalize the operational semantics that gives rise to a transition
system, where states are configurations and transitions correspond to rewrite
rules application. Moreover we map the GDPR requirements to LTL formulas,
which are properties of paths and traces of a transition system. We verify that
programs written in our language are GDPR compliant. In the following sections,
we discuss transition systems, paths, traces, and LTL formulas.

Model checking [17, 66] is a automatic way to verify that a system satisfies a
certain property. System properties specify what a system has to do and what
not. For example, a system should never reach a state where no progress can be
made (a deadlock state), or a response must be received within a certain time.
A system is correct when it satisfies all its specified properties.

19

2. Preliminaries on formalizing a programming language

In model checking, properties are often specified in propositional temporal
logic, and a system is modeled by finite state machines. A model checker
examines all (or a portion of) the reachable states and verifies whether a system
satisfies a certain property. Verification is the process of searching the state space
and examining all possible system scenarios in a systematic manner. Nowadays
model checking is able to handle huge states space (due to advances in computer,
in algorithms, and technologies) [4]. Model checking complements testing and
simulation. Given a model checker tool, the process of model checking has the
following phases [4]:

• model the system using the specification language of the model checker ;

• formalize the desired properties in the specification language;

• run the model checking algorithm to verify the properties;

• analysis phase:

– is the property satisfied? Check the next property;
– is the property violated? The model checker returns the counter

example, then we can correct the model or design, and run the model
checker again.

A system can be modeled by using finite-state automata, consisting of a finite
set of states and a set of transitions. In a transition system, a state consists
of the current values for variables, and transitions describe how the system
evolves from one state to another. To precisely specify the properties of a system,
temporal logic is used. Temporal logic is an extension of an underlying (non-
temporal) logic with temporal operators that describe the behavior of a system
over time. With temporal logic, we can specify a broad range of properties. For
example, correctness (does the system fulfill what it is supposed to do), safety
("something bad never happens"), reachability (does the system reach a certain
state?), liveness ("something good will eventually happen"), and fairness (do
enabled actions get their turn to execute and not be neglected in favor of other
actions that are likewise enabled?).

Model checking has its own strengths and weaknesses. Some of the strengths
are that model checking is a general verification approach that can be applied to
many ICT systems. It provides counter examples or diagnostic information that
can be very useful for debugging. It is run based on a sound mathematical theory
such as the theory of graph algorithms, data structures, and logic. The weakness
of model checking is that it suffers from disability issues, where it cannot be
applied to infinite-state systems, which require undecidable logic. It verifies the
model of a system not the actual system, and complementary techniques such
as testing and simulating are needed to find coding errors or hardware faults.
It suffers from the state-space explosion issue. It happens that the number of
states for modeling a system exceeds the memory capacity. Therefore, realistic
systems can be too large for model checking [4].

20

Model checking

As mentioned in Section 2.2 Maude supports LTL model checking. In Maude,
if the set of initial states is finite and the set of reachable states is also finite,
then Maude’s model checker can automatically decide where an LTL (linear
temporal logic) [65] formula is satisfied in all traces of a transition system.

As mentioned, the operational semantics of our designed language in paper
I gives rise to a transition system with infinitely many initial states reflecting
infinitely many programs. Therefore, we cannot perform model checking and
verify properties for all these programs. A pen and paper proof is required to
prove that all programs written in our language satisfies the desired GDPR
compliance properties. However, Maude’s Model checking can be used to verify
properties for a terminating program with a fixed initial state. Note that in
paper I, we provide the pen and paper proof.

2.3.1 Transition system

The first step for model checking is to model a system with transition systems.
Transition systems are used to describe the behavior of systems with graphs
consisting of nodes, representing states, and edges, representing transitions. A
state gives information about the current behavior of a system. For example, in
sequential programming, a state consists of information about the current values
of variables and the program counter value that points to the next statement to
be executed. Transitions represent how the system evolves by a certain action or
execution. For example, in sequential programming, by executing a statement,
the state of a system changes, i.e., the value of variables and the program counter.

In transition systems, action names such as α, β are used for transitions, and
atomic propositions are used for states. Atomic propositions such as a, b, c are
used to formalize the properties of states; for example, an atomic proposition is
"x equals 0" for a given variable x.

Definition 2.3.1. (Transition System) [4]. A transition system is a tuple
(S,Actions,−→, I,AP, L) where

• S is a set of states

• Actions is a set of actions

• −→ ⊆ S ×Actions × S represents transitions

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function for transitions

A transition system is finite if S, Actions, and AP are finite. A transition
system starts from an initial state s0 ∈ I and evolves based on the transition
relations −→. For example, starting from a state s and non-deterministically
choosing the transition s α−−→ s′, the action α is taken and the state s evolves to
the state s′. The evolving continues for s′ until no further transitions are left for

21

2. Preliminaries on formalizing a programming language

a state. Note that if a state has more than one transition, the next transition is
chosen non-deterministically.

2.3.2 Paths and traces

Before explaining temporal logic, we give a brief introduction to the paths and
traces of a transition system. A finite path π̂ consists of a finite state sequence
s0, s1, . . . , sn such that for each si, where 0 < i ≤ n, there is a reachable state
si−1 and a transition from si−1 to si. An infinite path π consists of infinite state
sequence s0, s1, . . . such that there is a reachable state si−1 and a transition
from si−1 to si for i > 0. The initial state of a path is denoted as first(π), the
jth state of a path is denoted as π[j] = sj , and π[..j] denotes the prefix for jth
state, i.e., π[..j] = s0, s1, . . . , sj . Similarly, the notation π[j..] denotes the jth
suffix such that π[j..] = sj , sj+1,

A trace consists of the sequence of states that are visited and actions that
occur, shown as s0

α0−−→ s1
α1−−→ s2 For a trace, we can also consider the set

of atomic propositions instead of states and actions, i.e., L(s0)L(s1)L(s2)
This way, a trace consists of words over the alphabet 2AP .

Let (S,Actions,−→, I,AP, L) be a transition system. The trace of an infinite
path π = s0 s1 . . . is defined as trace(π) = L(s0)L(s1) . . . , and for a finite path
π̂, the trace is trace(π̂) = L(s0) L(s1) . . . L(sn). Therefore, a trace consists of
infinite or finite words over the alphabet 2AP , i.e., the atomic propositions that
are valid in the states of the path. The function trace can be defined over a set
of paths Π as follows:

trace(Π) = {trace(π) | π ∈ Π}

Let Paths(s) denote the set of paths starting from the state s. A trace of a
state s is denoted as Traces(s) and is the trace of infinite paths that are starting
with the state s. Moreover, Traces(TS) is the set of traces of the initial states
of the transition system TS .

Traces(s) = trace(Paths(s)) Traces(TS) =
⋃
s∈I

Traces(s)

Figure 2.3.2 is a simple transition system modeling a beverage system. For
simplicity, the actions are ignored, and the names of states are equal to atomic
propositions, i.e., L(s) = s. The total state space is S = {pay, select, coffee, soda},
and the initial state I = {pay}. An infinite path π can be like π =
pay, select, coffee, pay, select,

2.3.3 Temporal logic

Temporal logic allows us to reason about the behavior of a system in the future.
Figure 2.3.3 shows the semantics of temporal logic. Given atomic propositions p
and q, basic temporal operators are:

• ♢p: p holds some time in the future

22

Model checking

Figure 2.1: Transition system of a beverage machine [4].

Figure 2.2: Semantics of temporal logic.

• □p: p holds now and forever in the future

• ⃝p: p holds in the next moment in time

• p U q: p holds until q holds

Linear-time (LT) properties are defined over traces of a transition system
and specify the behavior of a transition system. With LT properties we can
specify the set of admissible behavior for a transition system. Given the set of
words resulting from the infinite concatenation of words in AP, denoted (2AP)ω,
an LT property is a subset of (2AP)ω. We say that a transition system satisfies
an LT property P , denoted TS |= P , iff Traces(TS) ⊆ P , and a state s |= P iff
Traces(s) ⊆ P . In other words, a transition system satisfies an LT property P if
all its traces satisfy P . A state satisfies P if all traces starting from this state
respect P .

In this thesis, most of the properties are safety properties. Safety properties
are categorized as properties that demand "nothing bad happens". For example,

23

2. Preliminaries on formalizing a programming language

sensitive data must not be sent to an unauthorized party, or data must not
be used without consent from the user. These safety properties are considered
invariants. Invariants are LT properties that must hold for all reachable states.
Some of the GDPR properties (such as when data must no longer be used or
must be deleted) are mapped to predicates that must eventually hold and for
this to be the case we require a fair transition system.

2.3.4 Linear Temporal Logic

In this thesis, the GDPR properties are formulated in the form of LTL properties.
In the following, we define LTL syntax and semantics.

LTL is a temporal logic to specify LT properties [4]. We briefly describe the
syntax and the semantics of LTL formulas. The following is the syntax for LTL
formulas [4, 49]:

ϕ, ψ ::= ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | □ϕ | ♢ϕ | ⃝ ϕ | ϕ U ψ | p | q | . . .

Let AP = {p, q, . . . } be a finite set of atomic propositions. LTL formulas are
interpreted over linear paths at some position, which means along infinite words
over the alphabet 2AP . For a given path π = A0, A1, A2, · · · ∈ 2AP , an LTL
formula ϕ is true, written as π |= ϕ. The following is the semantics of LTL
formulas:

π |= p iff A0 |= p (i.e., p ∈ A0)
π |= □ϕ iff ∀j ≥ 0. π[j . . .] |= ϕ

π |= ♢ϕ iff ∃j ≥ 0. π[j . . .] |= ϕ

π |=⃝ϕ iff π[1 . . .] = [A1, A2, A3, . . .] |= ϕ

π |= ϕ U ψ iff ∃j ≥ 0. π[j . . .] |= ψ and
π[i . . .] |= ϕ, for every i such that 0 ≤ i < j

π |= ϕ W ψ iff π |= ϕ U ψ, or π |= □ϕ
. . .

Here the intuitive meaning of the LTL operators is explained. ♢p says that p
is eventually true. □p is true if p holds forever. By mixing temporal modalities
♢ and □, new modalities are derived. For example, □♢p ("always eventually
p") says that it is always the case that at some time in the future p is true. In
other words, in a path, at any time j, there is a time i ≥ j where the property
p is true. This ensures that p is true infinitely often. The dual modality ♢□p
("eventually forever p") says that at some time j, only p becomes true forever.
ϕ U ψ means that ϕ is continuously true until ψ becomes true. ϕ W ψ is similar
to the U operation except that ϕ can always remain true.

2.3.4.1 Semantics of LTL formulas over paths and states

LTL formulas are properties of paths and traces of a transition system. A given
path either satisfies a property or not [4]. For simplicity and generality of defining

24

Model checking

the LTL semantics, we assume that a transition does not have a terminal state.
Thus we can assume that all paths are infinite. Similarly, the LTL semantics can
be defined for finite paths. Let TS = (S,Actions,−→, I,AP, L) be a transition
system and ϕ an LTL formula over AP. Note that Words(ϕ) return all infinite
words over the alphabet 2AP that satisfies ϕ.

• For an infinite path π of TS , the satisfaction relation is defined as:

π |= ϕ iff trace(π) |= ϕ

• For a state s ∈ S, the satisfaction relation is defined as, where Paths(s)
returns a set of paths starting from s:

s |= ϕ iff ∀π ∈ Paths(s). π |= ϕ

• TS satisfies ϕ (TS |= ϕ), if Traces(TS) ⊆Words(ϕ)

The last definition is extended as:
TS |= ϕ

iff
Traces(TS) ⊆Words(ϕ)

iff
π |= ϕ ∀π ∈ Paths(TS)

iff
s0 |= ϕ ∀s0 ∈ I

Therefore, a transition system satisfies an LTL formula ϕ if all its initial states
satisfy the formula, i.e., s0 |= ϕ for all s0 ∈ I. This requires that all paths
starting from the initial states also satisfy the formula. Correspondingly, it
requires that all traces of those paths satisfy the formula.

2.3.4.2 Fairness in LTL

In this thesis, some of the GDPR properties are formalized in the from of
predicates that must eventually hold. For this to be the case, we require a fair
transition system. In DPL’s rewrite rules specification, there are rules that can
fire at anytime, representing the non-deterministic behavior of a user. These
rules can starve other enabled rules from being fired. Thus we assume strong
fairness for DPL’s transition system.

Fairness assumptions are necessary to ensure that all enabled transitions are
executed, and that there is not an infinite transition that makes other transitions
starve. In model checking a transition system that involves non-determinism, it
is vital to assume fairness. For example, if transitions can be interleaved and the
choice of the next transition is arbitrary, then fairness ensures that a transition
is not consistently ignored. With fairness assumptions, we can be sure that all
possible transitions are given the chance to actually occur. In general, fairness is
characterized by the following definitions [4]:

25

2. Preliminaries on formalizing a programming language

• Unconditional fairness: "Every transition gets its turn infinitely often to
execute."

• Strong fairness: "Every transition that is enabled infinitely often gets its
turn infinitely often to execute."

• Weak fairness: "Every transition that is continuously enabled from a certain
time gets its turn infinitely often to execute."

Note that the term "is enabled" means that a transition is ready to execute, and
the term "gets its turn" stands for the execution of a transition. Fairness for a
transition system is formalized by LTL formulas ϕ and ψ as follows [4].

• Unconditional fairness:
ufair = □♢ϕ

• Strong fairness:
sfair = □♢ϕ −→ □♢ψ

• Weak fairness:
wfair = ♢□ϕ −→ □♢ψ

In paper I, in order to verify that programs written in DPL satisfy the GDPR
data usage properties, we assume strong fairness for DPL’s transition system
that results from the operational semantics.

26

Chapter 3

Distributed systems and
information-flow-control
approaches

3.1 Active object languages

Active object languages are suitable programming languages for developing
distributed systems. They extend the actor model [1, 5] with asynchronous
method calls and the future mechanism for synchronization and scheduling the
retrieval of methods’ results. An active object is a single-threaded distributed
entity that communicates with other active objects via asynchronous message
passing. Asynchronous method calls decouple the sender and receiver objects and
reduce the risk of deadlock, where the control in one object is not blocked while
waiting for a method result. However, the asynchronous message passing leads to
the non-deterministic behavior of a system since an object can receive messages
in different orders. Non-determinism is a natural behavior in distributed systems.

An asynchronous call in an object creates a future and a message that is sent
to the callee. The caller object continues its process and do not wait for the
method result, and the callee starts a new process when it receives the message.
When the caller needs the method’s result, it synchronizes with the created
future and performs a get operation on the future. When the callee finishes the
process, it returns the result in the future, and the future becomes resolved.

To explain the future mechanism we use ABS [42], which is an actor-based
and object-oriented language, as our core language. For example, f = o!m()
is an asynchronous call where method m of object o is called, and the future
reference is assigned to f . The caller can suspend a process while waiting for
the callee to finish the call by await f?. Suspension means that the object can
suspend the current process in its queue, and pull another process from the
queue or stay idle while waiting for the future. Moreover, an object can read the
future by f.get which blocks the object until the future contains the result.

Most active object languages use the future mechanism to avoid blocking
calls and have synchronization at the same time. A future reference can be
passed to active objects, and any object that has a reference to a future can
get the result. This raises the question of how to enforce the confidentiality of
data when the future mechanism is used. In a distributed system, a future can
contain the method’s result from a component that is unknown at the time of
analysis. In this thesis, we are looking for a precise and permissive approach to
control access to futures in distributed systems.

27

3. Distributed systems and information-flow-control approaches

3.2 Information-flow-control approaches

Information-flow-control is a technique to track the flow of information and
prevent leakage of sensitive information during program execution. In this
technique, one defines a set of rules that programs must conform to, and these
rules can be enforced at compile time or at runtime during program execution.
Based on restriction rules, programs only allow acceptable flows of information,
otherwise, they throw compile-time or runtime errors. Information-flow-control
approaches are divided into two categories: static and dynamic approaches. A
static approach is used to certify programs for confidentiality at compile time. A
dynamic approach is used to enforce confidentiality during program execution.

3.2.1 Static information-flow-control

In static information-flow-control, we extend type systems with security labels and
typing rules to prevent illegal flows leading to the leakage of sensitive information.
Program variables are annotated with security labels, where a variable’s label
determines how information stored in the variable can be propagated. If the
content of a variable affects another variable it is called a flow of information.
By annotating variables, every expression has a label that consists of two parts:
a basic type such as int and a security label which can be high (H) or low (L).
By means of type checking, it is ensured that security labels of variables are at
least as restrictive as the labels of values that they might contain at runtime.
Moreover, the outputs of a program can be high or low, where low outputs are
observable by an attacker or any unauthorized entity, and high outputs are only
observable by authorized entities. In terms of active object languages, objects
due to object encapsulations, objects fields are not accessible from outside but
methods can be accessed. Therefore, the result of a method is an output, and
objects can send sensitive data to each other through method calls. For example
an object can access sensitive data though method calls parameters or getting
a return value. Moreover, objects can be assigned high or low security levels
indicating if they are authorized or not.

We define a partial order relation ⊑ between security labels, where L ⊑ H.
Security labels form a lattice [21], where the least restrictive label ⊥ can flow
anywhere, and the most restrictive label ⊤ cannot flow anywhere less restrictive.
For simplicity, we consider only two security labels H and L. Thus, we have a
two-point lattice L ⊑ H. In computing security labels of variables, we use the
join operator ⊔, which returns the least upper bound between two labels.

In a strict approach (called flow-insensitive), we do not allow a flow from
high to low. For example, in the assignment l := h, h is a variable with high
security label and l has a low label, thus the assignment is an illegal flow, which
rises a compile time error. In a more permissive approach (called flow-sensitive),
instead of rejecting a program due to an illegal flow, we update the security
labels of variables if they are affected by variables with different security labels.
For example, in the assignment l := h, after the assignment, the security label of
l becomes H. However, to avoid sensitive information ending up at the hands of

28

Information-flow-control approaches

an illegal agent, we set the rules to check the security labels when variables are
sent out at the output points; for example, when returning a method’s result. In
fact, we do not allow sensitive information with a high security label to go to
low outputs, which are observable to unauthorized entities or an attacker.

Sensitive information can also leak through implicit flows in conditional
structures. For example, in the code x := 0; if b = 1 then x := 1;, given that
x is low and b is high, there is an implicit leakage of information from b to x.
Therefore, the conditional construct leads to an illegal flow from high to low.
Again, in a strict approach, one can reject the program due to the implicit flow.
In a more permissive approach, we update the security label of x after x := 1. In
order to track implicit flows, we use a program counter label pc, which becomes
high when there is a conditional construct with a high condition. For example,
in the code, since b is high pc becomes high. Then any expression’s security label
is computed with respect to pc. For example, in the conditional code, pc is high
since the condition b is high. In the assignment x := 1 since 1 is a constant with
a low security label and pc is high, the security label of x becomes L ⊔ pc = H.

We can extend a type system with typing rules that check the security label
of variables in each expression. The typing rules can be defined in flow-insensitive
way such as the one proposed in [71]. Typing rules can be more permissive in
flow-sensitive way as the ones proposed in [61, 70].

3.2.2 Dynamic vs. static approach

All static checks can be done at runtime with the expense of runtime overhead.
However, a static approach does not have any runtime overhead. A dynamic
approach is more permissive than a static one as discussed in [33, 70]. In order
to be safe, a static analysis over-approximates security levels of variables that
are unknown at the time of analysis to high, which can be low at run-time when
the program executes. Therefore, due to overapproximation, a static analysis
might reject a program, which can be safe. While, a dynamic approach deals
with the run-time and real security levels of variables, which makes it more
precise. Here is another example, showing that a dynamic approach is more
permissive: if h then return(l); else h := 0;, a static analysis rejects the
program because there is a leakage in the first branch, while a dynamic approach
accepts the program if h is false.

3.2.3 Noninterference

Attacker model We assume that an attacker is a low level object that has
access to public and observable outputs of a program. For example, an attackers
has access to a low level return value. Moreover, the attacker can change the
value of low inputs.

The goal of information-flow-control is to ensure noninterference where public
outputs of a program are independent of secret inputs. Therefore, the attacker
is not able to infer the secret inputs from the public outputs. A deterministic
program satisfies noninterference, if in two executions of the program, by changing

29

3. Distributed systems and information-flow-control approaches

secret inputs and the same public inputs, the public outputs remain the same.
Note that low equivalence captures the fact that an attackers is only able to
observe things that have low security levels, hence changes in high security things
are not observable. Low equivalent runs means program runs that have equal
values for low variables but variables with high security levels can be different.
For example, in active object languages, in two program runs, by changing the
values of high parameters of a method, while low variables have the same values,
the method returns low equivalent results or if the return value is high, then a
low-level object is not allowed to access high variables.

In non-deterministic systems, the definition of non-interference is more
complex, for example, due to the fact that messages can arrive in different
order or processes can be non-deterministically interleaved within an object.
Therefore, when comparing two runs for non-interference, one can consider the
sequence of input and output (such as method calls and return values), where
the histories are low equal [61].

There are 4 variants of noninterference: 1) termination-insensitive, 2)
termination-sensitive, 3) progress-insensitive, and 4) progress-sensitive. We
briefly explain these variants. The definitions are defined over two low equivalent
runs of a program. In termination-insensitive noninterference (TINI), we assume
that the divergence of a program is indistinguishable to an attacker. Thus,
termination-insensitive noninterference makes security guarantees under the
assumption that a program always terminates. If either of program runs diverges,
nothing is demanded from the non-interference guarantee, but if both runs
terminate, then public outputs must be low equivalent. In termination-sensitive
noninterference (TSNI), if one run terminates, then the other run must also
terminate and they must be low equivalent [33, 46]. In this work, we mainly
focus on termination-insensitive and progress insensitive since it is the simplest
form of noninterference.

If an attacker is able to inspect the intermediate steps of an execution,
then TINI and TSNI are not enough to guarantee security since the leakage of
information can be hidden due to non-termination. For example, a program
that sends secret data to a low output prior to a non-terminating loop is verified
as secure by TINI or TSNI since the program does not terminate. In this case,
progress-insensitive or progress-sensitive noninterference is needed to guarantee
security when an attacker is able to inspect the intermediate steps of execution.
In progress-insensitive noninterference (PINI), both equivalent runs remain low
equivalent, or they have low equivalent outputs prior to the step where one of
them diverges. In progress-sensitive noninterference (PSNI), both low equivalent
runs terminate and remain low equivalent in every step or they both diverge
[33].

30

Chapter 4

Summary of Papers
The research contributions of this thesis are presented in three papers, which
are shortly summarized in this chapter. The full version of the papers can be
found in part II, where the content is mostly similar to the published version.
The papers are presented from the most recent to the oldest. The first paper
is independent of the others, while the second paper gives an introduction and
opens a research question that is addressed in the third one. The authors of
each paper are listed in the same order as the published papers. Note that the
papers’ format is changed to fit the structure of this thesis.

In the first paper, we design a programming language, called DPL, with
formal guarantees for developing GDPR compliant systems. An introduction
to the GDPR requirements and the fact that enterprises are obliged to comply
with these requirements are described in Section 1.1. The rewriting logic that
is the basis of our formal definitions is described in Section 2.1. We simulate
DPL in Maude and use Maude’s model checker to prove our claims that GDPR
properties hold in DPL programs. An introduction to Maude, model checking,
and Maude’s model checker is provided in Section 2.2 and 2.3.

The second paper gives an overview of active object languages and the future
mechanism that they use for asynchronous communication. The paper discusses
the challenges to enforce confidentiality when futures are used in a distributed
setting. A brief introduction to active object languages and the future mechanism
are given in Section 3.1. The third paper addresses the security issues that arise
when futures are used in active object languages. In the third paper, we design
a language-based mechanism that protects the confidentiality of futures. To
define the formal semantics of our security mechanism we use the rewriting logic.
Our security mechanism uses information-flow-control approaches, which are
described in Section 3.2.

31

4. Summary of Papers

4.1 Paper 1: DPL A Language for GDPR Enforcement

Authors Farzane Karami, David Basin, Einar Broch Johnsen

Publication 35th IEEE Computer Security Foundations Symposium (CSF 2022),
pp 112–129

Summary The strict requirements of the GDPR raise the question of how
to develop a GDPR compliant system that enforces these requirements. In
this paper, we tackle this problem from a programming language perspective
and design a language that takes care of the GDPR requirements. We call
our language DPL, a data protection language. To the best of our knowledge,
DPL is the first programming language designed for developing programs that
comply with the GDPR requirements such as consent, purpose-limitation, storage-
limitation, and the right to withdraw consent, and the right to be forgotten. The
state-of-the-art mainly focuses on purpose-based access control, where runtime
errors arise if a method accesses data that is not compliant with consented
purposes by a data subject [80]. DPL enforces more strict policies of the GDPR
such as data consent (where consent is required prior to data collection), data
storage, and the right to be forgotten. Moreover, DPL syntax is customized
for the GDPR and is enriched with privacy-relevant constructs that help a
programmer to write error free codes. We also provide formal proof that DPL
programs satisfy the GDPR properties.

In this paper, we investigate language design principles that are essential
to enforce the GDPR requirements. DPL has an explicit representation for
purpose, where a purpose is declared as an interface and its methods are used
to achieve the purpose. In DPL, privacy policies are runtime elements that are
attached to collected data and restrict the data usage. Due to the temporal
requirements of the GDPR, privacy policies can change over time. For example,
data usage for a purpose becomes non-compliant if the user withdraws consent,
the user requests for data deletion, or the deadline for data deletion arrives.
Therefore, we design a dynamic approach where policies change over time based
on users’ actions and also the passage of time. DPL’s design involves 1) the
syntax for creating objects’ databases for data storage and retrieval, 2) interface
encapsulation where interfaces represent purposes and their methods are used to
achieve the purposes, 3) the syntax for data collection, opting-in for granting
consent, opting-out for revoking consent, 4) privacy policies that determine to
whom data belongs, for which purposes data can be used, and when data must
be deleted, and 5) runtime checking to enforce that processes can only access
and use data if their purpose is compliant with the data’s policy. In DPL, failure
to comply does not lead to privacy violations instead it raises runtime errors.
We enrich DPL with conditional constructs to perform privacy-relevant checks
and avoid actions that lead to runtime errors. This enables a programmer to
create error-free and GDPR compliant codes.

We formalize DPL’s operational semantics in rewriting logic and also specify
the semantics in Maude, which provides us with a prototype interpreter for

32

Paper 1: DPL A Language for GDPR Enforcement

executing DPL programs. We formalize the GDPR data usage requirements in
LTL formulas and use Maude’s model checker for a program example. Maude’s
model checker verifies that our case study satisfies the GDPR data usage
requirements. DPL’s operational semantics gives rise to a transition system with
infinitely many initial states reflecting infinitely many programs. In order to
prove our GDPR claims for infinitely many programs, we provide a pen-and-
paper proof and prove that DPL properties hold for all traces of DPL’s transition
system.

33

4. Summary of Papers

4.2 Paper 2: An Evaluation of Interaction Paradigms for
Active Objects

Authors Farzane Karami, Olaf Owe, Toktam Ramezanifarkhani

Publication Journal of Logical and Algebraic Methods in Programming Volume
103, pp 154-183, 2019

Summary Active object languages are programming languages that are used to
develop distributed systems. These languages have adopted the actor model and
object-oriented concepts. In the actor model, concurrent entities communicate
via asynchronous message passing, where no data structure is shared among the
entities. In active object languages, the autonomous entities are active objects
and communication is via asynchronous method calls.

In this paper, we give an overview of the communication mechanisms in
active object languages. We mainly focus on a number of active object languages,
including ABCL, Rebeca, Creol, ABS, Encore, and ASP/ProActive. The future
mechanism is a central communication mechanism in these languages. A future
is created as a result of an asynchronous method call, and it eventually holds the
method’s return value. It is a flexible and non-blocking way of sharing methods’
results. Each language has adopted a different strategy for creating, scheduling,
and fetching a future. We compare the various future mechanisms with respect
to the following criteria:

• expressiveness

• efficiency

• syntactic and semantic complexity

• simplicity of program reasoning and static analysis

• information security aspects.

We discuss the pros and cons of the various future mechanisms. Moreover, we
suggest some language improvements in the setting of asynchronous call/return
without the use of futures. We provide a unified syntax and semantics for
languages’ future mechanisms. We compare the program reasoning in languages
with and without the future mechanism. We conclude that specifications and
invariants verification is more indirect in languages with futures than in future-
free ones. We show that verification conditions become more complex for
languages with futures when a condition depends on a future get. Moreover,
we briefly explain the security issues for programs with futures and discuss the
challanges for enforcing confidentiality in these programs.

34

Paper 3: Information-Flow-Control by means of Security Wrappers for Active
Object Languages with Futures

4.3 Paper 3: Information-Flow-Control by means of Security
Wrappers for Active Object Languages with Futures

Authors Farzane Karami, Olaf Owe, Gerardo Schneider

Publication Nordic Conference on Secure IT Systems (NordSec 2020), pp 74–91

The following summary is similar to the version of our paper’s overview that
was presented at Nordic Workshop on Programming (NWPT 2018).

Summary As described in paper 2, future variables give a level of indirectness,
where the retrieval of a method’s result is no longer syntactically connected
to the method call, compared to future free languages. For instance, when a
future is received as a parameter, it may not statically correspond to a unique
call statement, and different call statements may have different security levels.
One may overestimate the security level of a future by considering the set of
call statements that correspond to the future, but it requires access to the
whole program. In this case, a static approach becomes imprecise and causes
unnecessary program rejections, especially when the complete program is not
statically known, which can be the case in distributed systems. In addition, the
future concept comes with a notion of future identity, but not a notion of the
associated caller, callee. These identities could in principle be incorporated into
the future identity, but only at run-time. At static time there is no information
about the caller and the creator of a future.

The state-of-the-art proposes a dynamic approach to enforce data confi-
dentiality in the ASP [14] language which uses the future mechanism [2]. In
[2], security levels of activities and variables are fixed and are assigned by the
programmer, but the compliance is checked at runtime when requesting a future
value. Our approach is flow-sensitive, where the security level of variables can
change, which makes our approach more precise and permissive. We use “secu-
rity wrappers”, where futures and objects are wrapped, and wrappers perform
dynamic checking. A wrapper controls an object’s communication and the future
access. For example, when a low level object attempts to access a high sensitive
future, the access is rejected because of incompatible security levels. The idea
of wrappers is a permissive and precise approach due to runtime checking and
flow-sensitive information-flow-control. We provide the operational semantics for
a basic active object language with futures and enrich it with runtime wrappers
and flow-sensitivity. We guarantee that an object will be given access only to
the information that it is allowed to access.

Our approach comes with the price of runtime overhead. In order to limit
this drawback, we combine it with static analysis proposed in [61]. We statically
identify objects that deal with sensitive data and only wrap those objects to
control their communication. Moreover, the runtime system only wraps futures
that contain sensitive data.

35

Chapter 5

Discussion and Conclusion

In this chapter, we present the contributions of this thesis and relate them to
the research questions stated in Chapter 1.4.

5.1 Summary of Contributions

In this thesis, we experiment with designing custom languages to enforce strict
policies such as the GDPR and confidentiality in distributed systems. In paper
I, we design an object-oriented language to enforce the GDPR’s data usage
requirements correctly and exactly. We call our language DPL, a data protection
language, and to the best of our knowledge it is the first language designed
for developing GDPR compliant programs. We formalize DPL’s operational
semantics in rewriting logic and prove that DPL programs are GDPR compliant.
DPL has the essential features for enforcing the GDPR requirements. GDPR
has temporal requirements such as the right to withdraw consent, request for
data deletion, or retention deadlines. In DPL, we use a runtime approach
to enforce these temporal requirements. Our runtime approach allows us to
enforce these requirements exactly. For example, if a user withdraws consent,
then data is no longer used for that purpose, which is the GDPR’s purpose
limitation requirement. DPL provides conditional constructs to perform privacy-
related checks prior to data-usage actions such as data collection, method calls,
assignments, etc. These privacy checks help to write hygienic programs and
avoid runtime errors. Note that a non-hygienic program does not lead to privacy
violations but rather runtime errors. We specify DPL’s operational semantics
in Maude, which provides us with an executable formal model for DPL. We
made a case study of an online retailer in Maude, and perform Maude’s model
checker to verify the GDPR’s properties. Maude verifies that GDPR violations
cannot occur in DPL programs. Moreover, we provide pen and paper proof for
our claims.

In paper II, we give a review of active object languages and their
communication mechanisms. We discuss the asynchronous method calls and
the future mechanism, which is a placeholder for the result of an asynchronous
call. Asynchronous calls and the future mechanism are widely used in active
object languages to avoid blocking calls. For example, an object calls a method,
creates a future for the result, and continues with other processes while waiting
for the result. An object that has a reference to a future can easily access the
value when the future is resolved. This gives rise to a security issue when a
future contains confidential data and unauthorized objects access the future.
We discuss the dynamic nature of the future mechanism and the security issues
when futures exist in a distributed system.

37

5. Discussion and Conclusion

In paper III, we introduce a security mechanism to enforce security for futures
in distributed systems. We enforce information-flow security in active object
languages that support the future mechanism. We track the flow of confidential
data by dynamic approach. We define a language primitive called wrapper to
monitor the flow of data at runtime. A wrapper wraps an object or a future
and controls the security levels of communicated messages. A wrapper prevents
sending secret data to low level objects or unauthorized objects. We extend
the operational semantics of Creol, which is an active object language, with
wrappers and information flow security. The operational semantics is defined
by means of rewriting logic. Since runtime checking has runtime overhead, we
combine our approach with a pre-existing static checking for Creol, where if an
object is statically checked and does not deal with sensitive data, then it does
not need a wrapper at runtime.

5.2 Discussion of research questions

The goals of this thesis are:

1. designing a custom-based programming language to enforce strict policies
of the GDPR,

2. proposing a security approach to enforce data confidentiality in a distributed
setting.

We approach the first goal by formalizing our designed language for the
GDPR and proving that programs written in our language satisfy the GDPR
requirements. For the second goal, for enforcing data confidentiality, we make
use of information-flow-control approaches and design a security approach that
is well-suited for distributed systems. In order to precisely state the purpose of
this thesis we define four research questions. Each question is addressed by the
research papers, presented in part II.

• What are language design principles to enforce the GDPR requirements?

In paper I, we describe the GDPR requirements from a programming language
perspective. We design a data protection language called DPL, where for each
requirement, DPL is enriched with the necessary syntax and semantics. We use
a runtime approach to enforce temporal requirements of the GDPR, where the
behavior of a system must remain GDPR compliant while a user can request for
data deletion or withdraw consent at any time.

In DPL, each interface represents one specific purpose, and the methods
of such an interface are used ot achieve that particular purpose. We define
constructs to create and manipulate privacy policies including policy to create
privacy policies, opt-in for granting consent, and collect for data collection.
In DPL, users actions for withdrawing consent and data deletion are captured
by rewrite rules without any premise, thus they can fire at any time. A policy
describes to whom data belongs, for which purposes data can be used, and

38

Discussion of research questions

when data must be deleted. In DPL, policy compliance is checked prior to data
usage, and if data usage is not compliant with the policy, a runtime error arises.
Moreover, to enable a programmer to write error-free DPL programs, we define
conditional constructs for privacy-relevant checks and compliance scopes, where
compliance is checked prior to data usage and remains compliant within the
scope.

• How can we design and formalize a data protection programming
language and verify that its semantics ensures compliance with the GDPR
requirements?

Maude is a common framework to model and formalize a programming language.
In paper I, we design a data protection language, called DPL, that enforces
GDPR data usage requirements. We formalize the operational semantics of DPL
in the form of Maude rewrite rules. Maude naturally captures non-determinism,
which enables us to model users’ non-deterministic actions for data deletion and
withdrawing consent. We capture these users’ actions with rules that do not
have axioms, thus they can fire at any time. We also map the GDPR data usage
requirements to LTL formulas and use Maude’s model checker to verify that
programs written in DPL satisfy the GDPR properties.

We make a case study in DPL, which is an online retailing example, where
users’ personal data are used for the purposes of purchasing, marketing, and
targeted-marketing. We simulate and analyze this case study program in DPL’s
Maude model. We formalize the GDPR requirements with LTL formulas and
use Maude’s model checker to verify that our case study program satisfies the
GDPR properties. Moreover, we define an executable formal model for DPL,
given by SOS-style operational semantics. This enables us to provide a pen and
paper proof that all programs written in DPL satisfy the GDPR requirements.

Overall, DPL is a programming language designed for developing programs
that comply to GDPR data usage requirements. DPL is user-centric, where users’
consent and requests are reflected in policies, and it provides exact enforcement of
privacy policies. Moreover, DPL enforces richer policies (in particular, temporal
requirements of the GDPR) than the static approaches. DPL is an object-
oriented programming language, and its core is inspired by ABS, an active object
language. We believe that our approach can be carried out for other Java-like
languages. We formalize DPL’s operational semantics in rewriting logic and
provide a pen and paper proof that GDPR violations cannot occur in programs
written in DPL. We also formalize DPL’s operational semantics in Maude and
use Maude’s model checker with model-checked examples to support our claims.

• What are the communication mechanisms of active object languages?
How do their communication paradigms challenge security enforcement in
distributed systems?

In paper II, we give an introduction to active object languages which are used
for developing distributed systems. We mainly focus on their communication
paradigms including the future mechanism. We discuss how the future mechanism

39

5. Discussion and Conclusion

can compromise the confidentially of data when a future contains sensitive data,
and objects with the future reference can access the sensitive data. The future
mechanism challenges the enforcement of security in active object languages. We
also discuss what type of a language-based security approach can be suitable for
active object languages with futures.

• How can we design a language-based approach to enforce security in a
distributed setting?

In paper III, we introduce a security mechanism based on wrappers, where
futures and objects are wrapped and their interactions are controlled by their
wrappers. We use a basic active object language and enrich the operational
semantics with wrappers and information-flow tracking. We guarantee that
objects can only have access to the information that they are allowed to access.
This compliance is checked at runtime precisely based on the security levels of
variables, futures, and objects.

5.3 Limitation and future work

Here, we discuss the topics that can be further investigated in this research
thesis. The GDPR has many requirements, and in this thesis, we only consider
the data usage requirements described in Section 1.1. One can investigate other
aspects and requirements of the GDPR from a language-based perspective. For
example, handling the GDPR requirements when data belongs to multiple data
subjects. This can be tricky since if one data subject decides to delete her data
while the others do not. Moreover, there are few research on enforcing the
GDPR requirements in distributed settings or investigating how can parallel
and concurrent paradigms can challenge the GDPR enforcement in language
based approaches? Therefore, we expect it to be an interesting line to extend our
research. Moreover, the research paper I can use a larger case study to better
assess DPL’s usability and runtime overhead. For a stronger correctness result,
the pen and paper proof in paper I can be formalized in a theorem prover like
Coq or Isabelle. In DPL compliance scopes are defined by conditional constructs
that perform privacy-relevant checks to avoid runtime errors. DPL can be
enriched with a type checking system to effectively enforce the correct use of
compliance scopes. For example, runtime errors can arise due to non-compliant
data usage in method calls, and in order to avoid runtime errors, method calls
must be in appropriate conditional constructs. Conditional constructs could
make programming in DPL easier, where well-typed programs are error free.
Other possibilities for future work could be extending DPL with binary and
general operations, where an operation is carried out on data with two different
policies from two different data subjects. In this case, one needs to consider
the GDPR compliance in scenarios where two policies from two different data
subjects are involved. This allows further investigation for a permissive approach
to keep the program error free and GDPR compliant when one data subject

40

Limitation and future work

revokes consent or data deletion deadline arrives for one policy. Moreover, DPL
is an experimental language modelled in Maude, it can be incorporated in Java.

For paper III, again a larger case study is required to better assess our
approach’s runtime overhead. The wrapper mechanism could be integrated
in a runtime system in a way that protects the wrapped components. Other
possibilities for future work could be to extend our language with different
concurrency paradigms and investigate their affect on noninterference. Moreover,
our security approach with wrappers can be further investigated to satisfy
progress-sensitive and termination-sensitive noninterference properties. For a
stronger correctness, our proof sketch for the noninterference property can be
thoroughly formalized.

41

Part II

Research papers

Papers

Paper I

DPL: A Language for GDPR
Enforcement

Farzane Karami, David Basin, Einar Broch Johnsen
Published in IEEE 35th Computer Security Foundations Symposium (CSF),
2022, pp. 112–129. DOI: 10.1109/CSF54842.2022.9919687.

I

Abstract

The General Data Protection Regulation (GDPR) regulates the handling
of personal data, including that personal data may be collected and stored
only with the data subject’s consent, that data is used only for the explicit
purposes for which it is collected, and that is deleted after the purposes
are served. We propose a programming language called DPL (Data
Protection Language) with constructs for enforcing these central GDPR
requirements and provide the language’s runtime operational semantics.
DPL is designed so that GDPR violations cannot occur: potential violations
instead result in runtime errors. Moreover, DPL provides constructs to
perform privacy-relevant checks, which enable programmers to avoid these
errors. Finally, we formalize DPL in Maude, yielding an environment for
program simulation, and verify our claims that DPL programs cannot
result in privacy violations.

I.1 Introduction

The General Data Protection Regulation (the GDPR) [69] regulates the
processing of personal data and is now part of European Union law. The
GDPR mandates transparent data processing, where data is collected with the
data subject’s consent and used only for the purposes for which it was collected.
Moreover, the GDPR requires the right to be forgotten, where data must be
deleted on request or after its purposes are served. It is an open question how
systems processing sensitive data should be built to satisfy these requirements.

We approach this problem from a programming language perspective: how
can one design a language to prevent data-protection violations? Conventional
programming languages do not support the features essential to enforce GDPR
compliance. For example, they lack an explicit representation of purpose,

The authors were partially funded by the Research Council of Norway through IoTSec
(project no. 248113.

47

https://doi.org/10.1109/CSF54842.2022.9919687

I. DPL: A Language for GDPR Enforcement

and there is no control over data collection and usage based on purposes and
consent. The state-of-the-art generally checks purpose-based privacy compliance
in programs using privacy labels and static information-flow analysis [32, 47,
74], where the enforced policies are determined by policy labels specified by
the programmer at compile time. This has its limitations. For example, users’
consent and deadlines for data deletion cannot be expressed in policies. Moreover,
temporal aspects cannot be handled when consent is dynamically granted or
revoked or retention deadlines are reached.

In this paper, we enforce GDPR requirements at runtime. Our approach
allows us to enforce richer policies than those enforced statically. For example, we
can express temporal requirements on data deletion, and the data will be deleted
from the system when the deadline arrives. In contrast to static approaches,
our runtime approach is also more exact, since users’ consent, given at runtime,
determines for what purposes their data can be used, and these purposes are
added to the policies. However, in contrast to static approaches, our approach
comes at the price of runtime overheads.

The GDPR requirements that we handle concern data usage (see Section I.2.1),
and we present language features to enforce these requirements. Our focus is on
object-oriented and service-oriented languages, where objects are entities, method
calls are processes, which may use personal data, and return values are the outputs
of processes. The language involves the following features: 1) Object databases
with commands for data storage and retrieval. 2) Interface encapsulation, which
enforces programming to interfaces and prevents remote access to fields and meth-
ods. 3) Language constructs to build and manipulate privacy policies including
policy to create privacy policies, opt-in for granting consent, and collect for
collecting data. The policies describe to whom data belongs, for which purposes
data can be used, and when data must be deleted. 4) Runtime checking to
ensure that processes only access data as authorized by their privacy policies.

We define DPL, a data protection language enriched with the above features.
Additionally, DPL supports the users’ rights to opt-out of policies or delete their
data at any time. Table I.1 summarizes the GDPR requirements we handle, the
object-oriented (OO) features exploited in DPL, and our specific extensions for
privacy-related operations. While we present DPL as a stand-alone language,
our language features could also be implemented as an extension of existing
languages. Its core is inspired by the concurrent active object language ABS
[42], which achieves encapsulation by typing objects by interfaces (instead of
classes). One could also use Java directly, which supports encapsulation using
the private modifier for defining local methods and fields in classes, whereas
methods in interfaces are defined with the public modifier. We believe that our
approach could be carried out with other Java-like languages such as Java 8 [75],
Scala/Akka [30, 84], and ASP [13].

In DPL, interfaces represent purposes, and their declared methods are the
processes used to achieve the purpose. Personal data is collected after a user gives
consent, and the identity of the corresponding privacy policy is attached to the
data, which is then called sensitive data. DPL supports dynamic policy changes,
where users grant or withdraw consent, and hence the policy evolves over time.

48

Background

GDPR requirements OO features Added features
consent opt-in, opt-out

purpose limitation interface encapsulation policy, collect

message passing runtime checking
storage limitation object model store, retrieve

objects’ databases
right to be forgotten delete

Table I.1: GDPR requirements and associated features.

Moreover, policies expire and are deleted from the system when deadlines arrive
or the user deletes her data. We define DPL’s runtime system that tracks the
flow of sensitive data and performs runtime checking (see Section III.4.2). A
process is allowed to access sensitive data if its intended usage complies with
the purpose in the privacy policy, and the policy has not expired. In DPL, the
failure to comply to a policy will not result in a privacy violation but rather a
runtime error. Moreover, DPL provides constructs to perform privacy-relevant
checks so that programmers can write programs that avoid actions that would
lead to policy violations rather than throwing runtime errors.

We formalize DPL’s operational semantics in rewriting logic [52], which is
supported by the Maude system [18]. This provides a prototype interpreter1 for
executing DPL programs. We also use Maude’s model checker to complement
our pen-and-paper proofs with model-checked examples that support our claims.

In summary, our contributions are as follows. We define DPL, an object-
oriented language extended with features that support data protection. We map
the GDPR data usage requirements to our language, and define an executable
formal model for DPL, given by an SOS-style operational semantics. We
provide a pen-and-paper proof that DPL programs satisfy the GDPR data usage
requirements. DPL provides exact enforcement of privacy policies, it is user-
centric in that users’ consent is reflected in policies, and it enforces richer policies
than those enforced by static approaches. We also formalize DPL in rewriting
logic, use Maude’s model-checker to verify our data protection properties on
concrete programs, and illustrate on examples how privacy violations cannot
occur. Overall, DPL is the first programming language designed for developing
programs that comply to GPDR data usage requirements.

I.2 Background

I.2.1 GDPR requirements

Our focus is on the following requirements, which are central to the GDPR’s
restrictions on data usage.

1The Maude model is available at https://github.com/maude-gdpr/maude.

49

I. DPL: A Language for GDPR Enforcement

Purpose limitation: “[Personal data shall be] collected for specified, explicit
and legitimate purposes and not further processed in a manner that is incompatible
with those purposes” [69, Article 5, Sec. 1 (b)]. Data is considered to be personal
data if it can be used, directly or indirectly, to identify a person [82]. To comply
with this, the purposes for which personal data is collected must be made explicit,
and the collected data must be used only for those purposes.

Consent: Personal data is collected only if the data subject’s consent is granted.
In order to give consent, a data subject should be aware of the identity of the
controller and the purpose of processes in which her data is used [69, Article 6].
Moreover, a data subject has the right to withdraw her consent at any time [69,
Article 7]. To comply with this, data collection requires consent, and personal
data must no longer be processed after consent is withdrawn.

Storage limitation: “[Personal data shall be] kept in a form which permits
identification of data subjects for no longer than is necessary for the purposes for
which the personal data are processed” [69, Article 5, Sec. 1 (e)]. To comply with
this, personal data shall be deleted after the purpose of processing is fulfilled [7].
For example, a credit card number is collected to make a purchase, and if a
data subject consents, this information can be stored for subsequent purchases.
The storage period shall be limited to a strict minimum, and a controller shall
establish time limits for data erasure [69, Rec. 39].

Right to be forgotten: “The data subject shall have the right to [...] the
erasure of personal data concerning him or her [...] and the controller shall have
the obligation to erase personal data without undue delay [...]” [69, Article 17].
To comply with this, data must be promptly deleted on request.

I.2.2 An example

To illustrate our methodology in subsequent sections, we use an example taken
from [7]. The example features an online retailer whose core processes are:

Register customer: A customer provides her credit card information, her
e-mail, and her postal address.

Purchase: A registered customer purchases a product from the retailer’s online
shop using her registered credit card. This process produces the customer’s order
along with an invoice, which is sent to her address.

Mass Marketing: A customer’s email or postal address is used to send
untargeted advertisements.

Targeted Marketing: A customer’s email or postal address and her shopping
history are used to send targeted advertisements.

The GDPR requires consent statements for processes using personal data.
A consent statement describes what data is used for which purposes. For
example, the consent statement for Mass Marketing is “we use your customer
information (name and email address) for mass marketing.”

50

DPL: a calculus for data protection

Figure I.1: The online-retailing example in our system model (after [7]).

I.2.3 System model

Our system model formalizes how distributed applications process users’ personal
data. It features users, objects, and databases, where objects share data through
message passing. We assume that all communication is cryptographically
protected, e.g., using TLS, and focus on data protection in this distributed
setting. Later we present DPL, which formalizes these distributed systems and
their behavior.

Figure I.1 shows the on-line retailing example in our system model. In this
example, the personal data is credit card information, customer information,
the order, and the user profile. Circles represent objects with the names r, p,
mm, and tm and contain the name of the processes that use the personal data.
Dashed cylinders represent the objects’ databases. The curved bidirectional
arrow represents interaction with a user to collect data over a user interface.
For example, the method register of the object r collects credit card information
and customer information from the user u and stores this data in its database.
Arrows from databases to objects represent database data used by the objects’
methods. Arrows from objects to databases represent that method results are
stored in the databases.

I.3 DPL: a calculus for data protection

We now describe the principles behind DPL as well as its syntax and semantics.
The complete formalization of the syntax and semantics in Maude, along with
all auxiliary functions and examples, can be found at https://github.com/maude-
gdpr/maude.

I.3.1 Language design principles

We now return to the GDPR requirements from Section I.2.1 and explain DPL’s
design principles and language features used to enforce the requirements.

51

https://github.com/maude-gdpr/maude
https://github.com/maude-gdpr/maude

I. DPL: A Language for GDPR Enforcement

In what follows, we will use the following notation. Let x1, x2, ..., xn represent
a sequence of n terms, where ϵ is the empty sequence. We use the notation x to
range over sequences, possibly empty, and x1 to emphasize that the sequence
has at least one element. We write lists using “:” and the empty list as []. We
also employ standard list notation and write a list like x1:(x2: []) as [x1, x2].

Purpose limitation To enforce this requirement, the purposes for which
personal data are collected and used should be made explicit. In DPL, instead of
using interfaces, we explicitly define purposes by a declaration purpose P{Sig1},
with P a name and Sig1 the method signatures (the methods’ return types and
parameters) required to achieve the purpose. Moreover, encapsulation is achieved
by typing objects by purposes. Objects created from classes implementing
purposes provide methods to achieve the purposes. We assume that programs
are well-typed, which could be enforced by adapting a standard type system for
interfaces (e.g., [42]), that all methods using personal data are declared in some
purposes, and that each purpose contains exactly the methods needed to achieve
it. For example, we can define the purpose Purchase as follows.

purpose Purchase {
Order purchase(String credit, String customer);
Invoice invoice(Order order, String customer); ... }

We propose a mechanism that prevents personal data from going to objects
that implement no purpose, the wrong purpose, or even the right purpose when it
has not been consented to by the data owner. First, we define contracts declaring
which object may use the methods associated with a purpose. Afterwards, we
define privacy policies, which are attached to collected data and contain sets of
contracts. Contracts can be added to or removed from policies when a user opts
in or opts out, respectively. The contracts define the objects’ access rights; i.e.,
if a contract belongs to a policy, then the associated object can use the data.

Definition I.3.1 (Contract). A contract is an expression contract(P, e), where
P is a purpose and e is an object that belongs to a class implementing P .

For example, the expression contract(Purchase, p) defines a contract for
the Purchase declaration, where p is an object of type Purchase. We say that
an object’s contract complies to a policy if the contract belongs to the runtime
representation of that policy, defined in the following.

Definition I.3.2 (Privacy policy). A privacy policy is a runtime element
represented as a five-tuple (u, cp, cm, b, t), where u is the identity of the user
whose data is collected, cp is a set of persistent contracts, cm is a set of mutable
contracts that are updated when opting in or out, b ∈ {true, false} denotes
whether the collected data should be stored persistently, and t∈N is a natural
number representing a timestamp specifying when the collected data should be
deleted.

The terms u, cp, and cm in a privacy policy are initialized when a user logs
in, the policy is created, and the user gives consent using opt-in statements,

52

DPL: a calculus for data protection

respectively. The Boolean b and the timestamp t capture retention and deletion
requirements, respectively. Time is an integral part of our model. We will
later specify a system clock that decrements the timestamps in all policies; data
deletion is triggered when deadlines arrive.

We require a privacy policy for all personal data collected. For example,
since credit card and customer data are used for different purposes, we define a
new policy for each kind of data. Note that a policy can be used for different
types of data if the data is used for the same purposes.

Consent Here we explain how to write strings for consent statements to
accurately represent intended purposes. In the declaration purpose P {Sig1}, if
the method parameters in Sig1 contain personal data such as credit card and
customer data, then the consent statements are “We use credit card data for
P” and “We use customer data for P”. Moreover, we can use the identifier X
of the entity that will use the data instead of “we” and extend the statement
with our retention and deletion policies. For example, the consent statement
for Purchase becomes: “X uses your credit card number for purchasing, and
your data is stored for one year” and similarly, for customer data. There is a
correspondence between the consent statement and the contract of a purpose
declaration. A consent statement is used to collect a user’s consent, and the
corresponding contract is used to control objects’ access to the user’s data.

Right to withdraw consent In DPL, a contract can be removed from a policy
anytime, and the data associated with that policy is no longer used for the
withdrawn purpose. This models the user action for withdrawing consent.

Storage limitation In DPL, objects encapsulate their states. An object state
consists of a substitution for process-local variables, mapping variables to data,
a substitution for fields, and a substitution for the object’s database. Local
variables are deleted after process termination, when a purpose is served. We do
not allow assigning sensitive data to fields because fields store data as long as
the object is alive, and all of the object’s methods may have access to the fields.

Data must sometimes be stored for a time period captured by a time value
t. For data storage, we integrate databases into DPL’s object model, where
for simplicity, our databases are just key-value stores. An object can store and
retrieve data in its database, and remote access to databases is prohibited. In
DPL, when the system clock advances, the timestamp of every policy is decre-
mented. When the timestamp reaches one, the policy is deleted from the system,
and data associated with the policy is also deleted from databases. Note that
sensitive data in local variables can no longer be used since the policy is deleted.

Right to be forgotten In DPL, a policy can be deleted anytime, and the data
associated with that policy is deleted from objects’ databases. This models a
user action for data deletion. Deletion is also triggered when deadlines arrive.
Handling these restrictions without undue delay is nontrivial, as there can be

53

I. DPL: A Language for GDPR Enforcement

race conditions involving the time of (authorization) check and the time of use.
For example, after we check compliance, a method is authorized to use data, but
prior to its use, a deletion deadline may arrive or consent may be withdrawn.

In DPL, errors will be thrown if expired data is used. But race conditions
between time-of-check and time-of-use mean that user-provided checks are
insufficient to prevent all errors from arising. We observe though that such
race-conditions are generally not critical in practice since data protection is not
a hard real-time requirement. When data is deleted (or alternatively consent
is revoked) “undue delay” does not mean that everything aborts and the data
is instantly deleted, but rather, as soon as reasonably possible, the system will
no longer process the data and it will be removed. When we use the services of
Google or Facebook, our expectations for deletion are on the order of minutes or
hours, not seconds.

To reflect this in DPL, we introduce compliance scopes where compliance
is checked and assumed to remain valid within the scope. Namely, within a
scope, we allow a finite number of program steps to proceed without checking
compliance since the compliance was checked when entering the scope. The
finite steps provide an abstract representation of the temporal notion “without
undue delay.” Of course, we must avoid non-terminating processes as otherwise
compliance would not be checked for an arbitrary amount of time. Hence loops
and recursive calls are omitted from our compliance scopes.

I.3.2 Syntax

We define DPL’s grammar in Fig. I.2. The types T are base types B, purposes PI,
as well as types for policies, contracts, users, consent statements (CStmt), keys,
and sensitive data with associated policies. A program PR includes purposes,
classes, and a main block. A class may implement one or more purposes P 1 and
has methods M1. A method signature consists of a return type T , a method name
m, and typed parameters declarations T x. A method definition M consists of a
signature and a body with local variables and statements. Statements s include
sequential composition, assignment, and privacy-specific constructs to be dis-
cussed shortly. There is no surface syntax for directly constructing sensitive data;
this happens indirectly via collect-statements. Right-hand-side expressions
rhs include (pure) expressions e and method calls, as well as object and policy
creation expressions, which create references at runtime. Although method calls
e.m(e) and return statements are standard, they can transfer sensitive data
between objects. Data d consists of contracts contract(P, e), where P is a pur-
pose and e an object implementing that purpose, consent statements cstmt(str),
constructed from strings, and keys key(u, str), where u is a user and str a string
used as a tag to denote a particular attribute associated with u, in addition to
strings, Boolean values, and natural numbers. Expressions e consist of data d,
variables x, and operations op on e (e.g., logical and arithmetic operators).

DPL has the following non-assignable reserved variables: the self reference
this, the self contract cnThis, the caller reference caller, the caller’s contract

54

DPL: a calculus for data protection

B ::= Bool | Nat | String
T ::= B | PI | Policy | Contract | User | CStmt | Key

| Sensitive⟨B, Policy⟩
PI ::= purpose P {Sig1}

PR ::= PI CL main{T x; s}
CL ::= class C(T x) implements P

1{T x; M
1}

Sig ::= T m(T x)
M ::= Sig {T x; s}

s ::= s; s | x := rhs | return e | skip | log-in()
| store(k, e) else {s} | opt-in(cs, cn, l) | log-out()
| if-comply(cn, e) {s} else {s′}
| if-consent(cn, l) {s} else {s′}
| retrieve(k, x) {s} else {s′} | collect(cn, l, x)

rhs ::= e | e.m(e) | new C(x) | policy(b, t)
d ::= contract(P, e) | cstmt(str) | key(u, str) | str | bool | nat
e ::= d | x | e op e

op ::= + | − | ...

Figure I.2: DPL’s grammar; to simplify the presentation, let b range over Boolean
expressions, u users, cs consent statements, cn contracts, l policies, P purposes,
t timestamps, and k keys.

cnCaller, and the reference user for a logged-in user.
In DPL, data can be collected only within a session, which starts with

log-in() and ends with log-out(), and a user can grant or deny consent using
opt-in(cs, cn, l) statements. Moreover, data collection is not a primitive, but
rather composed from atomic statements such as:

log-in(); l := policy(b, t); opt-in(cs, cn, l);
if-consent(cn, l){ collect(cn, l, x) }; log-out();

Here, a user logs-in and a new privacy policy is created by policy(b, t), which
returns a unique policy identity, assigned to l. Then, if the user gives consent to
the consent statement cs, the contract cn is added to the policy l. The condition
if-consent(cn, l) checks if consent has been granted for cn in the policy l, in
which case data is collected from the user interface by collect(cn, l, x), under
the contract cn; the policy l is attached to the data, and the resulting sensitive
data is assigned to x. Note that we allow syntactic sugar where we omit the
else-branches when they are not needed.

The statement store(k, e) checks compliance for storage and, when compliant,
the data e is stored in the database, with the key k. Otherwise, the data is
not stored, and the else-branch is executed. Conditional constructs enable the
programmer to make checks to ensure GDPR compliance. These checks may
be omitted, in which case the failure to comply will result in a runtime error in

55

I. DPL: A Language for GDPR Enforcement

DPL rather than a privacy violation in non-DPL systems.
The statement if-comply(cn, e) checks that all elements in the list e are

GDPR compliant with respect to the contract cn and if-consent(cn, l) checks
that consent has been granted to a contract cn under a policy l. The conditional
constructs open and close compliance scopes in the if-branch. The statement
retrieve(k, x) checks if the key k is in a database, in which case data is retrieved
and assigned to x. In all three of these statements, if the check succeeds then
the success branch (s) is executed and otherwise the else branch (s′) is executed.

Note that to analyze the GDPR compliance of DPL programs in this paper,
we capture the user actions for withdrawing consent and data deletion directly
in DPL’s operational semantics, such that they may occur at any time, instead
of programming them explicitly in the program’s surface syntax.

I.3.3 Example

We illustrate how DPL provides the essential ingredients needed to develop a
GDPR compliant system, as discussed in Section I.2.1, by implementing the
online-retailing example of Section I.2.2. Figure I.3 presents the DPL code,
focusing on consent statements, contracts, and data collection. We extend
this code in Appendix I.A.4 to show how DPL enforces purpose limitation and
storage limitation in remote objects receiving sensitive data. User actions for
data deletion and for withdrawing consent may occur at any time, reflecting the
user’s right to be forgotten and right to withdraw consent.

Lines 1–5 define purposes for Purchase, MassMarketing, and Registration.
We omit the details of classes Purchase-c, MMarketing-c, and Order, and focus
on the class Register, which implements data collection, and its register method
(line 8). First, a user is logged-in and two privacy policies l1 and l2 are created,
which both expire at a given time t (here one year, written in seconds). The
opt-in statements (line 14) let the user grant (or deny) consent to the consent
statements cs1, cs2, and cs3, in which case the associated contracts are added
to the policies. Credit card and customer data are collected from the user (lines
16 and 18), returning data credit and customer of types Sensitive⟨String,l1⟩ and
Sensitive⟨String,l2⟩, respectively. Keys are constructed with the tags “credit”
and “customer” and are used to store the sensitive data in the database (lines 17
and 19). The log-out() statement ends the registration, which returns a tuple
with the user identifier and the two policies. (We go slightly beyond the defined
syntax here by directly returning a tuple instead of creating a result object.)

In the main block, remote calls initiate the processing of the users’ data. The
main block first creates objects r, p, and mm, typed by purposes. Then consent
statements (lines 34–39) and contracts (lines 40–41) are defined. The consent
statements and contracts are passed to the method r.register (line 43), which
returns a user identifier and policies (for simplicity, we simultaneously assign to
all three variables u, l1, and l2 instead of going via a result object). Then, the
methods r.getCredit and r.getCustomer are called to retrieve the user’s credit
card and customer data, respectively (lines 44–45). Afterwards, the purchase
and m-marketing methods are called (lines 47–48).

56

DPL: a calculus for data protection

1 purpose Purchase {
2 Order purchase(String credit, String customer); ... }
3 purpose MassMarketing{ String m-marketing(String customer);}
4 purpose Registration{ ⟨String, Policy, Policy⟩ register(...);
5 String getCredit(User u); String getCustomer(User u);}
6 // Definitions of classes Purchase−c, MMarketing−c, Order, ...
7 class Registration-c implements Registration () {
8 ⟨String, Policy, Policy⟩ register(Contract cn1, CStmt cs1, CStmt cs2,
9 Contract cn2, CStmt cs3) {
10 String credit; String customer; Nat t; t := 31,536,000; // Seconds
11 log-in(); // binds a user identifier to the variable user
12 // Privacy policies for collected data items
13 Policy l1 := policy (true, t); Policy l2 := policy (true, t);
14 opt-in(cs1, cn1, l1); opt-in(cs2, cn1, l2); opt-in(cs3, cn2, l2);
15 // Data collection and storage
16 if-consent(cn1, l1) { collect(cn1, l1, credit);
17 store(key(user,‘‘credit’’), credit) };
18 if-consent(cn1, l2) { collect(cn1, l2, customer);
19 store(key(user,‘‘customer’’), customer) };
20 log-out();
21 return (⟨user, l1, l2⟩);
22 }
23 String getCredit(User u) { String credit;
24 retrieve(key(u,‘‘credit’’), credit) {
25 if-comply(cnCaller, credit){return(credit)} else { return(‘‘0’’)}
26 else { return(‘‘0’’)} }
27 String getCustomer(User u) { ... }
28 }
29 main{ String credit, customer;
30 User u; Policy l1; Policy l2; Purchase p := new Purchase-c();
31 MassMarketing mm := new MMarketing-c();
32 Registration r := new Registration-c();
33 // Consent statements and contracts
34 CStmt cs1 := cstmt(‘‘X uses your credit card number for
35 purchasing and your data is stored for one year.’’);
36 CStmt cs2 := cstmt(‘‘X uses your customer information for
37 purchasing and your data is stored for one year.’’);
38 CStmt cs3 := cstmt(‘‘X uses your customer data for
39 mass marketing.’’);
40 Contract cn1 := contract(Purchase, p);
41 Contract cn2 := contract(MassMarketing, mm);
42 // Call the register method for data collection
43 ⟨u, l1, l2⟩ := r.register(cn1, cs1, cs2, cn2, cs3);
44 if-consent(cn1, l1) { credit := r.getCredit(u) };
45 if-consent(cn1, l2) { customer := r.getCustomer(u) };
46 if-comply(cn1, (credit, customer)) {
47 Order order := p.purchase(credit, customer) };
48 if-comply(cn2, customer) {mm.m-marketing(customer)}... }

Figure I.3: Online-retailing example in DPL.

The example uses conditional constructs to avoid runtime errors. For example,
in line 44, if-consent(cn1, l1) checks if consent for Purchase is granted, in which
case the method getCredit is called. In line 46, if-comply(cn1, (credit, customer))

57

I. DPL: A Language for GDPR Enforcement

Cfg ::= {cfg}
cfg ::= ∅ | obj | msg | policy | class | error | cfg cfg
obj ::= o(a, p, db)

msg ::= m(v, o′, o, cn) | com(v, o) | n(process)
policy ::= l(u, cp, cm, b, t)
error ::= errorU(o, cn) | errorC(o, cn) | error(o)

p ::= process | idle
process ::= (σ, s@V)

v ::= o | l | d | sensitive(d, l)
s ::= m? | cScope(S) | cont(n) | . . .

Figure I.4: The runtime elements, where S is a set of policy-contract pairs.

checks if the contract cn1 complies to the privacy policies of the variables credit
and customer, which are passed as parameters to the method purchase. Here,
the method is only called if the compliance check holds. In line 16, if consent is
not granted, data is neither collected nor stored. In line 25, if-comply(cnCaller,
credit) checks compliance with respect to the caller’s contract before the return-
statement; if compliance fails, some default value “0” is sent instead of the
credit card number. Moreover, if retrieve(key(u,“credit”), credit) in line 24 fails,
a default “0” is sent in line 26. We omit further error handling in this example
and do not test against these default values, but remark that they play the role
of ad hoc option-types, suggesting ways to further enrich DPL.

I.3.4 Operational semantics

We define DPL’s operational semantics using multiset rewriting [52]. Although
DPL is presented as a single-threaded system, multiple rewrite rules may be
simultaneously enabled, and the execution of a program gives rise to multiple
transition sequences (traces). For example, time can always advance, consent be
withdrawn, or data deletion be triggered. These interleavings can give rise to
race conditions between time-of-check and time-of-use for GDPR compliance.

Runtime elements DPL’s runtime syntax is shown in Fig. I.4. A global
configuration Cfg is a bracketed multiset of runtime elements: objects, messages,
privacy policies, and classes. An object o(a, p, db) has an identifier o, a
substitution a, which maps the object’s fields to values, an active process p,
which may be idle, and a database db, which maps keys to data. A process
combines a substitution σ, which maps process-local variables to values, with a
runtime statement s@V , where s is a statement and V a compliance scope.

Messages represent process invocation, completion, and suspension. In an
invocation message m(v, o′, o, cn), m is the name of the called method, v the
actual parameters, o′ the callee, o the caller, and cn the caller’s contract. A
completion message com(v,o) contains a result value v and a receiver object o. In

58

DPL: a calculus for data protection

a suspension message n(process), n is a name and process a suspended process.
Policies were already defined in Def. I.3.2. Classes are simple look-up tables for
method definitions, and are omitted here. We use white space to denote the
composition of configurations and ∅ for the empty configuration, which is the
identity for the composition.

We consider three kinds of errors for a process executing in an object o:
errorU(o, cn) is a data usage error expressing that data usage in o is not compliant
with the contract cn; errorC(o, cn) is a data collection error expressing that
consent associated with the contract cn is not granted; and error(o) represents
other errors.

Values v include identifiers o and l for objects and privacy policies, data
d, and sensitive data sensitive(d, l). We extend the statements s of Fig. I.2 as
follows: m? blocks an object after calling a method, cScope marks the end of
a compliance scope; and cont(n) schedules a suspended process n.

Substitutions bind fields, process-local variables, or keys to values, respectively.
Thus, a substitution θ is a finite map, written [x1 7→v1, . . . , xn 7→vn]. We write
θ(x) to lookup the variable x in θ, and θ[x 7→v] to update θ with the binding
[x 7→ v]. In the composition θ ◦ θ′, the bindings in θ′ shadow those in θ, so
θ ◦ θ′(x)=θ′(x) if x∈dom(θ′) and θ ◦ θ′(x)=θ(x) otherwise. The notation θ|C
denotes domain restriction of θ to a set C of variables and [] denotes the empty
substitution.

Compliance At runtime, execution happens in the context of compliance
scopes. DPL features specific condition constructs to interact with these scopes.
The dynamic checking of compliance is formalized by a predicate comply that
captures our notion of compliance between policies and a contract, either by
inspecting the compliance scope of the executing process or by a direct dynamic
check of the configuration. Since the scope is only extended by performing a com-
pliance check, the scope introduces a delayed effect for compliance checking in that
execution may continue within the scope even after consent has been withdrawn.

Let V be a compliance scope and ls a list of policies. The comply predicate is
defined inductively over a list of policies with an auxiliary predicate performing
the runtime check:

comply([], cn, cfg, V) = true
comply((l : ls), cn, cfg, V) =

(⟨l, cn⟩∈V ∨ check(l, cn, cfg)) ∧ comply(ls, cn, cfg, V)

check(l, cn, cfg) =
{

cn ∈ (cp ∪ cm) if l(u, cp, cm, b, t) ∈ cfg
false otherwise

The transition system DPL’s operational semantics is defined using multiset
rewrite rules [52], which define a transition relation on configurations. Rewrite
rules may be conditional, and we present them as inference rules with zero or
more conditions as premises and a labelled transition lhs l−→ rhs between patterns
lhs and rhs as the conclusion. The rule can be applied to a sub-multiset cfg

59

I. DPL: A Language for GDPR Enforcement

of a configuration if lhs matches cfg for some substitution θ and the premises
hold. The rule’s effect is to replace cfg in the global configuration with rhs,
to which the substitution θ is applied. Matching is modulo associativity and
commutativity in the multiset and hence no structural rules are needed to
reorder runtime elements in configurations.

We present the rewrite system in three parts: rules for user interaction,
rules for storage, deletion and scopes, and rules for the standard execution of
statements. Our focus here is on sensitive data; standard rules for non-sensitive
data are given in Appendix I.A.2. We have formalized the rewrite system in
Maude [18], and this formalization is further described in Appendix I.A.3.

The evaluation of expressions is formalized by a function [[e]]θ from expressions
e and substitutions θ to values. For example, contract(P, e) evaluates to
contract(P, o) where o is an object reference. Evaluation is untyped: we
assume that programs are well-typed such that evaluation does not get stuck and
produces meaningful values. We also employ other auxiliary functions, which
are briefly explained the first time they are referenced.

Article 20 of the GDPR states that the processing of data shall not adversely
affect the rights and freedoms of others. Therefore, we disallow binary operations
on two sensitive data items where the policies belong to different users. For
simplicity, binary operations are also disallowed if the policies belong to the
same user but different data types. This avoids complications regarding the
withdrawal of consent from one policy. We leave open more permissive solutions,
e.g., involving the intersection of (consented) purposes in policies, as future work.

User interaction Figure I.5 presents rewrite rules involving sessions, policies,
consent, data collection, and data deletion. Labels on the transition relation
represent input data from a user interface or a “tick” from an external clock. A
transition is unlabeled if no input is required.

Data can only be collected and contracts only added to a privacy policy
within a session. We first consider the effects of log-in() on the active process
of an object. If no user is currently logged-in, the reserved variable user is bound
to the user identifier u in log-in, starting a session. Otherwise, error-log-in
triggers an error. Rule log-out removes user from the local variables, ending
the session. If no user is logged-in, error-log-out triggers an error.

Rule Policy creates a privacy policy with identifier l. The predicate fresh(l)
expresses that the name l is unique in the global configuration. The persistent
contracts are initialized to the contracts of o and ob(main), and the set of mutable
contracts is initially empty. These sets reflect the policy for data collection;
only mutable contracts can be removed by the user. If no user is logged-in,
error-policy triggers an error.

A user may grant consent to the policy for a given contract. In opt-in,
the user accepts a consent statement cs, represented by the label “yes”, and
the associated contract cn is added to the mutable contracts cm of the policy
l. If no user is logged-in, the policy does not exist in cfg, or the user denies
consent, no-opt-in formalizes that the opt-in has no effect. Here, idExist(l, cfg)

60

DPL: a calculus for data protection

log-in
user /∈ dom(σ)

o(a, (σ, (log-in(); s)@V), db)
“u”−−→ o(a, (σ[user 7→u], s@V), db)

error-log-in
user ∈ dom(σ)

o(a, (σ, (log-in(); s)@V), db)
→ error(o)

policy
v1 = [[b]]a◦σ v2 = [[t]]a◦σ

user ∈ dom(σ) u = σ(user) fresh(l)
o(a, (σ, (x := policy(b, t); s)@V), db)→

o(a, (σ, x := l; s@V),db) l(u, {contract(main,ob(main)), a(cnThis)}, ∅, v1, v2)

log-out
user ∈ dom(σ)

o(a, (σ, (log-out(); s)@V), db)
→ o(a, (σ|dom(σ)\{user}, s@V), db)

error-log-out
user /∈ dom(σ)

o(a, (σ, (log-out(); s)@V), db)
→ error(o)

opt-in
cs = [[e1]]a◦σ l = [[e3]]a◦σ

cn = [[e2]]a◦σ user ∈ dom(σ)
o(a, (σ, (opt-in(e1, e2, e3); s)@V), db) l(u, cp, cm, b, t)

“yes”−−−→ o(a, (σ, s@V), db) l(u, cp, cm ∪ {cn}, b, t)

tick
{cfg} tick−−→
{dec(cfg)}

no-opt-in
l = [[e3]]a◦σ

user /∈dom(σ) ∨ ¬idExist(l, cfg) ∨ x = “no”
{o(a, (σ, (opt-in(e1, e2, e3); s)@V), db) cfg} x−→ {o(a, (σ, s@V), db) cfg}

error-policy
user /∈ dom(σ)

o(a, (σ, (x := policy(b, t); s)@V), db)
→ error(o)

opt-out
l(u, cp, {cn, cn}, b, t)
→ l(u, cp, {cn}, b, t)

collect
user ∈ dom(σ) cn = [[e1]]a◦σ l = [[e2]]a◦σ

sd = sensitive(d, l) (⟨l, cn⟩ ∈ V ∨ cn ∈ (cp ∪ cm))
o(a, (σ, (collect(e1, e2, x); s)@V), db) l(u, cp, cm, b, t)

“d”−−→ o(a, (σ[x 7→ sd], s@V), db) l(u, cp, cm, b, t)

delete
{l(u, cp, cm, b, t) cfg}
→ {del(l, cfg)}

error-collect
cn = [[e1]]a◦σ l = [[e2]]a◦σ

user /∈ dom(σ) ∨ ¬comply(l, cn, cfg, V)

{o(a, (σ, (collect(e1, e2, x); s)@V, db) cfg} “d”−−→ {errorC(o, cn) cfg}

Figure I.5: Rewrite rules for user interactions.

61

I. DPL: A Language for GDPR Enforcement

expresses that a policy with identifier l is found in the configuration. To ensure
the correct application of this predicate, the rule pattern matches over the
global configuration. Note that no-opt-in does not throw an error; doing so
would require defining sanity checks for opt-in to avoid runtime errors. Instead,
errors are triggered in subsequent commands if they try to use data for purposes
associated to the missing contracts. In opt-out, a mutable contract cn is
removed from the policy l.

Data can be collected from the user under a given contract. In collect,
the user provides data d if the contract cn is compliant with the policy l. The
data is paired with the policy and stored in the local substitution σ. In error-
collect, a data collection error is triggered when no user is logged-in or the
comply predicate is false.

Time advancing is captured by tick. It applies to global configurations and
is always enabled to reflect that GDPR compliance is independent of execution
speed. The function dec decrements each policy’s timestamp by one. When a
policy’s timestamp is one and tick fires, dec deletes the policy from cfg and
associated sensitive data from the objects’ databases. Rule Delete captures
that a user can request policy deletion at any time, and the policy is deleted
from the configuration. The function del deletes the data associated with l
from the objects’ databases. The functions dec and del are formally defined in
Appendix I.A.1.

Storage, deletion, and scopes Figure I.6 presents rules for storage, retention,
and conditional constructs. Sensitive data is stored in the object’s database
in Store if the object’s contract complies to the policy l and data storage is
allowed (i.e., b = true). Expired data can never be stored, so policy compliance
is checked in Store regardless of the compliance scope. Rule no-store applies
when policy compliance does not hold or data storage is not allowed (the latter
is captured by the negated auxiliary predicate dataStorage(l, cfg)).

Data from the database can be fetched to local variables in retrieve, which
selects the success branch s when the object’s contract complies to the associated
policy l. Otherwise the else-branch is selected in no-retrieve. Data can never
be retrieved with an expired policy, which is reflected by the empty scope in
the comply predicate in no-retrieve. Note that an object storing data cannot
retrieve the data if the policy is deleted or consent is withdrawn.

Policy compliance is checked dynamically in if-consent. If the contract cn
complies to the policy l, the compliance scope is extended and the if-branch is
selected. Here, cScope marks the scope’s end. Otherwise, the scope is unchanged
and the else-branch is selected in no-consent. Rule close-scope reduces the
compliance scope at scope’s end.

Compliance between expressions and a contract is checked in if-comply,
where policies are extracted from the evaluated expressions and added to the
compliance scope and execution continues with the if-branch before closing the
scope. Otherwise, no-comply selects the else-branch. The function policyIn(v)
returns a list of policies from the sensitive data in v and pairs(ls, cn) pairs

62

DPL: a calculus for data protection

store
sd = [[e]]a◦σ sd = sensitive(d, l)

cn = a(cnThis) cn ∈ (cp ∪ cm) b = true
o(a, (σ, (store(k, e) else{s}; s′)@V), db) l(u, cp, cm, b, t)

→ o(a, (σ, s′@V), db[k 7→ sd]) l(u, cp, cm, b, t)

no-store
¬dataStorage(l, cfg) ∨ ¬comply(l, cn, cfg, ∅)
sensitive(d, l) = [[e]]a◦σ cn = a(cnThis)

{cfg o(a, (σ, (store(k, e) else{s}; s′)@V), db)}
→ {cfg o(a, (σ, (s; s′)@V), db)}

retrieve
sd = db(k) sd = sensitive(d, l)

x ∈ dom(σ) cn = a(cnThis) cn∈(cp ∪ cm)
o(a,(σ, (retrieve(k, x){s} else{s′}; s′′)@V),db) l(u, cp, cm, b, t)

→ o(a, (σ[x 7→ sd], s; s′′@V), db) l(u, cp, cm, b, t)

no-retrieve
x /∈ dom(σ) ∨ k /∈ dom(db) ∨ cn = a(cnThis)
sensitive(d, l) = db(k) ¬comply(l, cn, cfg, ∅)

{cfg o(a,(σ, (retrieve(k, x){s} else{s′}; s′′)@V),db)}
→ {cfg o(a, (σ, (s′; s′′)@V), db)}

if-consent
cn = [[e1]]a◦σ l = [[e2]]a◦σ cn ∈ (cp ∪ cm)

o(a, (σ, (if-consent(e1, e2){s} else{s′}; s′′)@V), db) l(u, cp, cm, b, t)
→ o(a, (σ, (s; cScope(⟨l, cn⟩); s′′)@V ∪ {⟨l, cn⟩}), db) l(u, cp, cm, b, t)

if-comply
v = [[e]]a◦σ ls = policyIn(v) comply(ls, cn, cfg, ∅) S = pairs(ls, cn)
{cfg o(a, (σ, (if-comply(cn, e){s} else{s′}; s′′)@V), db)}

→ {cfg o(a, (σ, (s; cScope(S); s′′)@V ∪ S), db)}

no-comply
v = [[e]]a◦σ ls = policyIn(v) ¬comply(ls, cn, cfg, ∅)
{cfg o(a, (σ, (if-comply(cn, e){s}else{s′}; s′′)@V, db)}

→ {cfg o(a, (σ, (s′; s′′)@V), db)}

close-scope
o(a, (σ, (cScope(S); s)@V), db)
→ o(a, (σ, s@V \S), db)

no-consent
¬comply(l, cn, cfg, ∅

cn = [[e1]]a◦σ l = [[e2]]a◦σ)
{cfg o(a, (σ, (if-consent(e1, e2){s}

else{s′}; s′′)@V), db)}
→ {cfg o(a, (σ, (s′; s′′)@V), db)}

Figure I.6: Rewrite rules for data storage, deletion and scopes.
63

I. DPL: A Language for GDPR Enforcement

each policy in the list of policies ls with the contract cn and returns the set of
policy-contract pairs.

Standard Rules Figure I.7 presents the rules for standard statements,
augmented to dynamically check compliance. Sensitive data can be assigned to
local variables by assign-local if compliance between the object’s contract and
the policy is guaranteed by the scope. Otherwise, error-assign triggers an
error. Since sensitive data cannot be assigned to fields (see Sec. I.3.1), error-
assign-field triggers an error. Object creation initialises an object with an
empty database in new, but triggers an error in error-new if the constructor’s
actual parameters contain sensitive data. The function atts(C, v, o) returns the
initial substitution a for fields, where the formal parameters are bound to v, the
reserved variable this to the identifier o, and the reserved variable cnThis to
contract(P, o), where P is the purpose implemented by C.

In Call, method calls may only occur if the called method’s actual parameter
values are compliant with the callee’s contract (accessed via an auxiliary function
contract(o′), where o′ is the callee). In this case, a message is sent to the
callee. This message includes the caller’s contract a(cnThis), such that the
callee can check compliance before returning the method’s result to the caller.
The caller is blocked until it receives the result. Since the waiting time is
unknown, the compliance scope is emptied and data will need to be rechecked
once computation resumes. If the actual parameter values are not compliant
with the contract, error-call triggers a data usage error. The callee receives
the message in callee-invc. The function class(o) returns the class of object
o and bind(o, C,m, v, o′, cn) creates a new process (σ, s@∅), where the reserved
variable caller is bound to o′ in σ, the reserved variable cnCaller to the caller’s
contract cn, and the formal parameters to v. Moreover, s is the method body of
m in the class C and the compliance scope is empty. Data may have expired and
needs to be checked using the appropriate conditional constructs in the method
body.

Upon method completion with sensitive data as the return value, return
sends a completion message to the caller if the caller’s contract, which is stored in
the callee’s local variable cnCaller, complies with the policy l. Otherwise, error-
return triggers a data usage error. Observe that the error can be avoided
by testing the caller’s contract; e.g., if-comply(cnCaller, e){return(e)}. The
caller receives the completion message and gets unblocked in get-data. The
data might have expired before the message is received, potentially triggering an
error in subsequent statements.

Figure I.8 presents self calls, which are supported by self-call. (Observe
that cyclic call chains give rise to deadlock in our semantics; these could be
handled with scheduling messages by adapting the pattern of self-call to
blocked objects with incoming calls.) In self-call, the compliance scope is
emptied so the calling process will need to recheck compliance when it resumes.
The new process, also with an empty compliance scope, ends with a cont(n)
statement and the old process is wrapped in a scheduling message. These

64

DPL: a calculus for data protection

assign-local
cn = a(cnThis) x ∈ dom(σ) ⟨l, cn⟩ ∈ V ∨ cn ∈ (cp ∪ cm)

sd = [[e]]a◦σ sd = sensitive(d, l)
o(a, (σ, (x := e; s)@V), db) l(u, cp, cm, b, t)→
o(a, (σ[x 7→sd], s@V), db) l(u, cp, cm, b, t)

error-assign-field
x ∈ dom(a)

sensitive(d, l) = [[e]]a◦σ
o(a, (σ, (x := e; s)@V), db)

→ error(o)

error-assign
x ∈ dom(σ) sensitive(d, l) = [[e]]a◦σ

cn = a(cnThis) ¬comply(l, cn, cfg, V)
{o(a, (σ, (x := e; s)@V), db) cfg}

→ {errorU(o, cn) cfg}

new
d = [[e]]a◦σ a′ = atts(C, d, o′) fresh(o′) contract(P, o′) = a′(cnThis)

o(a, (σ, (x := new C(e); s)@V), db)→
o(a, (σ, (x := o′; s)@V), db) o′(a′, idle, [])

error-new
sd ∈ [[e]]a◦σ sd = sensitive(d, l)
o(a, (σ, (x := new C(e); s)@V), db)

→ error(o)

error-call
o′ = [[e]]a◦σ v = [[e]]a◦σ cn = contract(o′)

ls = policyIn(v) ¬comply(ls, cn, cfg, V)
{o(a, (σ, (x := e.m(e); s)@V), db) cfg}

→{errorU(o, cn) cfg}
call

o′ = [[e]]a◦σ v = [[e]]a◦σ cn = contract(o′)
ls = policyIn(v) comply(ls, cn, cfg, V)
{o(a, (σ, (x := e.m(e); s)@V), db) cfg} →

{o(a, (σ, (x := m?; s)@∅), db) m(v, o′, o, a(cnThis)) cfg}

return
sd = [[e]]a◦σ sd = sensitive(d, l) o′ = σ(caller)
cn = σ(cnCaller) ⟨l, cn⟩ ∈ V ∨ cn ∈ (cp ∪ cm)
o(a, (σ, return e @V), db) l(u, cp, cm, b, t)→
o(a, idle, db) l(u, cp, cm, b, t) com(sd, o′)

get-data
o(a, (σ, (x := m?; s)@V), db)

com(v, o)
→ o(a, (σ[x 7→ v], s@V), db)

callee-invc
(σ, s@∅) = bind(o, C,m, v, o′, cn) C = class(o) σ(caller) = o′ σ(cnCaller) = cn

{o(a, idle, db) m(v, o, o′, cn) cfg} → {o(a, (σ, s@∅), db) cfg}

error-return
sensitive(d, l) = [[e]]a◦σ o′ = σ(caller) cn = σ(cnCaller) ¬comply(l, cn, cfg, V)

{o(a, (σ, return e @V), db) cfg} → {errorU(o, cn) cfg}

Figure I.7: Rewrite rules for standard statements.

65

I. DPL: A Language for GDPR Enforcement

self-call
o = [[e]]a◦σ v = [[e]]a◦σ

(σ′, s′@∅) = bind(o, C,m, v, o, a(cnThis))
fresh(n) ls = policyIn(v) comply(ls, a(cnThis), cfg)

{o(a, (σ, (x := e.m(e); s)@V), db) cfg}→
{o(a, (σ′, (s′; cont(n))@∅), db) n(σ, (x := m?; s)@∅) cfg}

self-return
a(cnThis)∈(cp ∪ cm) o = σ(caller) v = [[e]]a◦σ

o(a, (σ, (return e; cont(n))@V), db)
n(σ′, (x := m?; s)@V ′) l(u, b, cp, cm, t)→
o(a, (σ′[x 7→ v], s@V ′), db) l(u, b, cp, cm, t)

error-self-return
¬comply(l, cn, cfg, V) cn = a(cnThis) sensitive(d, l) = [[e]]a◦σ o = σ(caller)

{o(a, (σ, (return e; cont(n))@V), db) cfg} → {errorU(o, cn) cfg}

error-self-call
¬comply(ls, a(cnThis), cfg, V) o = [[e]]a◦σ v = [[e]]a◦σ ls = policyIn(v)
{o(a, (σ, (x := e.m(e); s)@V), db) cfg} → {errorU(o, cn) cfg}

Figure I.8: Rewrite rules for standard statements part 2.

are matched to resume execution in self-return, provided that the object’s
contract, found in the field cnThis, complies with the policy. Otherwise, error-
self-return triggers a data usage error.

The initial state is derived from the main block main{T x; s} by creating an
object ob(main)([cnThis 7→contract(main, ob(main))], ([], s@∅), []), with identity
ob(main) and contract contract(main, ob(main)). Note that this contract must
be added to created policies so that the ob(main) object can access sensitive
data. In the object, the local substitution and the database are empty, and the
active process ([], s@∅) corresponds to the activation of main’s statements s.

I.4 Correctness

DPL’s operational semantics gives rise to a transition system, where states
are configurations and transitions correspond to rule applications. There are
infinitely many initial states reflecting the starting configurations of infinitely
many programs. Moreover, a program may give rise to a nonterminating
application of rules and, therefore, also infinitely many states.

We reason about this infinite state transition system and prove that DPL
programs cannot lead to GDPR violations with respect to the requirements given
in Section I.2.1. Namely, we formalize properties that ensure purpose limitation,

66

Correctness

Auxiliary formulas Explanation

use(o, ⟨d, l⟩, cn) the object o uses the data ⟨d, l⟩ for a
purpose associated with the contract cn

complyTo(l, cn) the policy l exists and
the contract cn complies to the policy

checked-scope(o, ⟨l, cn⟩) the pair ⟨l, cn⟩ is in o’s compliance scope
noExecIn(o) the current execution step is not in o

errorU(o, cn) a data usage error associated with the
contract cn occurred in the object o

errorC(o, cn) a data collection error in o when consent
associated with the contract cn is not granted

collect(o, cn, l) o is executing a collect(cn, l, x) statement
optedIn(l, cn) the contract cn is added to the policy l

optedOut(l, cn) the contract cn is removed from the policy l
expired(l) the policy l is deleted from the configuration

dbDel(l) sensitive data associated with the policy
l is deleted from databases

deleted(l) the policy l is deleted

Table I.2: Explanation of predicates.

consent, the right to withdraw consent, storage limitation, and the right to be
forgotten. Formal definitions and proofs are given in Appendix I.A.1.

In our formalization, we define a trace as a sequence of configuration and
action pairs (cfg0, R0), (cfg1, R1), · · · , where an action is the name of the rule
that is fired at the configuration (i.e., cfgi → cfgi+1 by applying the rule Ri). To
formalize and reason about temporal properties of DPL programs, we use linear
temporal logic (LTL) [4, 49] with the standard temporal operators: ⃝ (next),
□ (always), ♢ (sometime), and Until and W , which are the strong and weak
until operators respectively. The notation |= φ denotes that the LTL property φ
holds for all traces of our transition system.

Table I.2 shows the state formulas we use and their informal interpretation.
Note that some of our definitions state that predicates must eventually hold and
for this to be the case we require a fair transition system. Since the rules tick,
delete, and opt-out can fire infinitely often and at anytime, we specify strong
fairness for our transition system, where if a rule is enabled infinitely often, then
it fires infinitely often. We express strong fairness for our transition system as
follows.

fair = □♢enabled1 ⇒ □♢fired1 ∧ · · · ∧ □♢enabledi ⇒ □♢firedi.

In this formula, the index i ranges over the names of our rules, enabledi is true
(i.e., satisfied at a given point in a trace) when the rule i is enabled namely,
the premises of the rule are true and the left-hand-side of the rule matches the
current configuration, and firei is true when the rule i is fired. We shall assume
strong fairness when proving all our properties.

67

I. DPL: A Language for GDPR Enforcement

The following property P formalizes purpose limitation, where compliance is
checked for any data usage. Namely, an object cannot use data for a purpose that
is not compliant with the policy, and an error arises if the object attempts a non-
compliant usage. In DPL, the only statements using data are assignments, calls,
and return-statements. The use formula is true if one of these three statements
is the first statement in the active process of an object. The property P1 says
that if whenever use is true, then checked-scope is true (i.e., if compliance is
checked prior to the usage in the appropriate conditional construct), then a data
usage error never arises. Note that P1 holds regardless of whether the complyTo
formula is true or false. The property P2 says that if data is used and the
formulas complyTo and checked-scope are false, then in the next step, execution
does not continue in the object until a data usage error arises or the user opts in.

P = P1 ∧ P2

P1 = ∀o, d, l, cn.

□(use(o, ⟨d, l⟩, cn) ⇒ checked-scope(o, ⟨l, cn⟩))
⇒ □¬errorU(o, cn)

P2 = ∀o, d, l, cn.

□((use(o, ⟨d, l⟩, cn) ∧ ¬complyTo(l, cn)
∧ ¬checked-scope(o, ⟨l, cn⟩))
⇒ ⃝(noExecIn(o) Until (errorU(o, cn) ∨ optedIn(l, cn))))

Theorem I.4.1 (Purpose limitation). The property P holds for all traces of our
transition system.

The proof of this theorem and all theorems in this section can be found in
Appendix I.A.1.

The following property C formalizes that data is collected only if consent
has been granted. The formula collect is true if there is a collect(cn, l, x)
statement in the active process of an object as the first statement. The property
C1 says that if collect(cn, l, x) is always in a conditional construct that checks
compliance between a policy l and a contract cn, then a data collection error
never arises. The property C2 says that when collecting data, if the formulas
complyTo and checked-scope are false, then in the next step, execution does not
continue in the object until a data collection error arises or the user opts in.

C = C1 ∧ C2

C1 = ∀o, l, cn.

□(collect(o, l, cn) ⇒ checked-scope(o, ⟨l, cn⟩))
⇒ □¬errorC(o, cn)

C2 = ∀o, l, cn.

□((collect(o, l, cn) ∧
¬complyTo(l, cn) ∧ ¬checked-scope(o, ⟨l, cn⟩))
⇒ ⃝(noExecIn(o) Until (errorC(o, cn) ∨ optedIn(l, cn))))

68

Correctness

Theorem I.4.2 (Consent). The property C holds for all traces of our transition
system.

The following property W formalizes the right to withdraw consent: A
user can withdraw consent, and the corresponding purpose is removed from
the policy, which prevents subsequently using the data for that purpose. The
formula optedOut(l, cn) is true when the contract cn is removed from the policy
l. The formula optedIn(l, cn) is true when the contract cn is added to the policy
l. The property W says that when optedOut(l, cn) is true, then compliance with
respect to the policy and the contract remains false until optedIn(l, cn) is true
(if it ever becomes true, hence we use LTL’s weak-until operator).

W = ∀l, cn.

□(optedOut(l, cn) ⇒ (¬complyTo(l, cn) W optedIn(l, cn)))

Theorem I.4.3 (Right to withdraw consent). The property W holds for all traces
of our transition system.

The following property S formalizes storage limitation: Data is deleted from
the objects’ databases when the deadline for data deletion arrives. It says that
if the formula expired(l) is true (due to policy expiration or the delete rule),
then data with that policy is deleted from the objects’ databases. In the rules
tick and delete, policy deletion and data deletion are specified using functions
and equations. Thus when a policy is deleted, its data is deleted in the same
state as well.

S = ∀l. □(expired(l)⇒ dbDel(l))

Theorem I.4.4 (Storage limitation). The property S holds for all traces of our
transition system.

The following property F formalizes the right to be forgotten: A user
can request to delete her data, and the data is then deleted from the objects’
databases. The predicate deleted(l) is true when the policy l is deleted by the
rule delete. The property F says that when a policy is deleted, the formula
expired is true for that policy. Moreover, by Theorem I.4.4, data with that policy
is deleted from databases.

F = ∀l. □(deleted(l)⇒ expired(l))

Theorem I.4.5 (Right to be forgotten). The property F holds for all traces of
our transition system.

As mentioned, attempted GDPR violations do not succeed; they instead
produce runtime errors. These errors can be systematically avoided by the
following hygienic measures, which amount to good GDPR practice: i) all
methods that use personal data are specified in the corresponding purpose
declarations; ii) for each purpose declaration, the corresponding consent
statement and contract are specified; iii) the pattern in Section I.3.2 is used

69

I. DPL: A Language for GDPR Enforcement

for data collection, which requires a logged-in user, a privacy policy for the
user, opt-in options, and the appropriate if-consent construct prior to data
collection; and iv) the construct if-comply(cn, e) is used prior to the commands
that use sensitive data in e. That these hygienic measures are sufficient follows
by careful inspection of the rules, and we also confirm this for concrete programs
by model checking hygienic and non-hygienic programs (see Appendix I.A.3 for
some examples).

I.5 Maude formalization

We have formalized DPL’s operational semantics in Maude [18]. This yields a
prototype environment for simulating DPL programs and thereby provides us
some confidence in our rules. Maude supports multiset rewriting logic, which
we use to model the non-deterministic behavior of our system, where enabled
rules can be interleaved at any point after each rewrite. We use a user object to
non-deterministically give “yes” or “no” input to opt-in statements.

Our Maude formalization provides a prototype verification environment
for DPL programs. It can be used to check all our properties on finite-state
programs, such as the program given in Fig. I.3. (Technically, the programs
may be infinite state, e.g., involve data from unbounded domains, provided only
finitely many states are reachable.) We also validate statements about “hygienic
programs" given in Section I.4. We check P1, C1, W , S , and F for the hygienic
program given in Fig. I.3, where all the usage constructs are protected with
conditional constructs. Maude verifies that errors never arise and all specified
properties hold. We checked the properties P2 and C2 concerning programs
raising errors on the program where different combinations of the conditional
constructs are removed. Maude verifies that the corresponding errors arise and
the properties hold. We present our results with Maude in Appendix I.A.3.

I.6 Related Work

Purpose-based access control mechanisms [11, 12] have been proposed to control
access to data in databases based on intended purpose information associated with
the data. Users must state their access purposes when requesting data and can
access the data if their stated purposes comply with the data’s intended purpose.
Both kinds of purposes are organized hierarchically, and compliance is defined
based on a partial-order relation. In contrast, we enforce GDPR requirements
using programming language constructs and runtime checks. In DPL, intended
purposes are added to policies when users give consent, and policies can change
over time when data subjects consent to new purposes or withdraw their consent.

Privacy by Design (PbD) [16] is a framework that introduces principles
that should be considered when designing a system architecture. Schneider
[72] explains that since a model specification can be very different from the
implementation, PbD, by itself, cannot in general guarantee privacy unless it
also encompasses the implementation. We believe that languages like DPL have

70

Related Work

an important role to play in building privacy-by-design systems as DPL directly
supports many of the principles espoused there. For example, it is a proactive
approach that provides privacy by default.

Another design-oriented approach is [7], where GDPR compliance is checked
at the design level. Business processes represent one or more purposes, and
formal models of inter-process communication identify data collection and data
usage points [7]. In order to identify purposes and data usage points, we build
on the approach proposed in [7]. However, instead of business processes, the
methods that implement a process are grouped together in a purpose declaration.
Moreover, we provide language support for policy enforcement, whereas [7] only
supports data protection through audits.

Researchers have used information-flow analysis [70, 71] to check privacy
policy compliance in programs. There, types are annotated with privacy policy
labels, and a notion of policy compliance is defined. We also track the flow
of sensitive data, where left-hand-side expressions get the policy identity of
right-hand-expressions. We expand upon the most closely related work here in
the following.

In [56], the authors propose a decentralized label model for Jif to enforce role-
based access control in programs. Jif principals represent entities with specific
roles, which have a hierarchical structure. Program variables are annotated with
policy labels, where a label contains the principal that owns the data and a set of
readers who can read the data. Jif’s type checking enforces information-flow con-
trol and protects principals’ privacy. Moreover, a principal may declassify the la-
bel of the data that it owns. Declassification of roles requires runtime checking to
determine whether a process is authorized to declassify data. However, most of a
program can be certified statically with no overhead. In contrast, we enforce richer
data protection policies, as required by the GDPR, such as the necessity of provid-
ing consent, the right to withdraw consent, purpose limitation, storage limitation,
and the right to be forgotten. GDPR temporal requirements, where users can
withdraw consent or data is automatically deleted when deadlines arrive cannot be
enforced statically. In DPL, we enforce these requirements by runtime checking.

In [32], the authors enforce purpose-based and storage-based restrictions in
Jif. Jif’s principals represent purposes, ordered hierarchically. Data is annotated
with the principal that owns the data, representing the purpose for which the
data is collected. Methods that are needed for a purpose are annotated with
the corresponding principal. By means of Jif’s type checking, compile-time
errors arise if data is used for non-compliant purposes. Similarly, for enforcing
retention restrictions, Jif’s principals represent retention labels. In [32], storage
restrictions are limited to retention labels (in the sense of P3P), intended purposes
are fixed, and access purposes are associated by the programmer. In DPL, users’
consent determines the intended purposes in policies, and access purposes are
automatically associated with created objects. Moreover, in DPL, instead of
policies themselves, references to policies are attached to data, and thus if a
policy changes due to the user actions or the passage of time, then this change is
automatically enforced on any usage or storage of data with the policy reference.
In addition, this requires less storage overhead at runtime and we can also enforce

71

I. DPL: A Language for GDPR Enforcement

deletion policies.
In [74], the authors propose a static approach to check privacy policy

compliance in Bing, where privacy policies are specified in LEGALEASE, and
GROK maps data types in a code to policies and tracks the flow of information.
By taking a static approach, there are no runtime overheads. However, their
approach cannot be used to enforce the GDPR requirements such as consent, the
right to withdraw consent, the right to be forgotten, and temporal requirements
for data deletion, where a runtime approach would be required.

I.7 Conclusion

We have presented DPL, a programming language designed for data protection
with provable guarantees. DPL and our Maude-based simulation environment
are prototypical and allow us to simulate programs and experiment with our
new language features. Our initial experience supports the thesis that custom
language support can play an important role in building systems meeting strict
data protection requirements like those of the GDPR.

Our work constitutes a first significant step in building a robust, usable
language with formal GDPR guarantees. This work could be strenghtened in
several ways, which suggest interesting directions for future work: (1) Large-scale
case studies are needed to better assess the language’s usability and further
evaluate the runtime overheads involved. (2) For stronger correctness results, our
pen-and-paper proofs (in Appendix A) could be further formalized in a theorem
prover such as Coq or Isabelle. (3) A type and effect system for DPL could be
used to enforce the correct use of scopes, with an associated type preservation
theorem. This would make programming in DPL easier by eliminating runtime
errors for well-typed programs. We have also highlighted other possibilities for
future work in this paper’s body. This includes defining fine-grained compliance
scopes in programs, developing a more permissive solution for binary and general
operations on data items with different policies, and, finally, building real
language support.

Acknowledgements. This work was partly funded by the Research Council of
Norway through IoTSec (project no. 248113).

I.A Appendix

I.A.1 Proofs

We prove that the properties in Section I.4 hold for all strongly fair runs of
our transition system. To define the fairness and some of our formulas, we
must track the current rule that is executed and the object’s identity that
the rule is applied to. We define a trace τ as a sequence of tuples, such as
τ = (cfg0, R0, Id0), (cfg1, R1, Id1), · · · , that in addition to the configuration cfg
and the rule label R, also tracks the identity Id of the object, which can be
an object’s identity or other, when the rules tick, delete, and opt-out are

72

Appendix

fired. We define formulas on a state denoted by ϕ(cfg), or on tuples, denoted by
ϕ(cfg, R, Id) as needed. We formalize the formulas in Table I.2 as follows.

use(o, sensitive(d, l), cn)(cfg) = ∃a, σ, x, e, e′, e, m, s, s′, V, db, o′.

o(a, (σ, (s; s′)@V), db) ∈ cfg ∧
(s = x := e ∧ sensitive(d, l) = [[e]]a◦σ ∧ cn = a(cnThis)) ∨
(s = return(e) ∧ sensitive(d, l) = [[e]]a◦σ ∧ o′ = σ(caller)

∧ cn = σ(cnCaller)) ∨
(s = return(e) ∧ sensitive(d, l) = [[e]]a◦σ ∧ o = σ(caller)

∧ cn = σ(cnThis)) ∨
(s = x := e′.m(e) ∧ sensitive(d, l) ∈ [[e]]a◦σ ∧ o′ = [[e′]]a◦σ

∧ cn = contract(o’)) ∨
(s = x := e′.m(e) ∧ sensitive(d, l) ∈ [[e]]a◦σ ∧ o = [[e′]]a◦σ

∧ cn = a(cnThis))

(I.1)

complyTo(l, cn)(cfg) = ∃u, cp, cm, b, t.

l(u, cp, cm, b, t) ∈ cfg ∧ cn ∈ (cp ∪ cm)
(I.2)

checked-scope(o, ⟨l, cn⟩)(cfg) = ∃a, σ, s, V, db.

o(a, (σ, s@V), db) ∈ cfg ∧ ⟨l, cn⟩ ∈ V
(I.3)

errorU(o, cn)(cfg) = errorU(o, cn) ∈ cfg
errorC(o, cn)(cfg) = errorC(o, cn) ∈ cfg

(I.4)

collect(o, l, cn)(cfg) = ∃a, σ, e1, e2, e3, s, s′, V, db.

o(a, (σ, (s; s′)@V), db) ∈ cfg ∧
s = collect(e1, e2, e3) ∧ cn = [[e1]]a◦σ ∧ l = [[e2]]a◦σ

(I.5)

optedOut(l, cn)(cfg, R, Id) = ∃u, b, cp, cm, t.

l(u, b, cp, cm, t) ∈ cfg ∧ R = opt-out(l) ∧ cn /∈ cm
(I.6)

optedIn(l, cn)(cfg, R, Id) = ∃u, b, cp, cm, t.

l(u, b, cp, cm, t) ∈ cfg ∧ R = opt-in(l) ∧ cn ∈ cm
(I.7)

expired(l)(cfg) = ∃u, b, cp, cm, t. l(u, b, cp, cm, t) /∈ cfg (I.8)

dbDel(l)(cfg) = ∃o, a, p, db, d.
o(a, p, db) ∈ cfg ∧ sensitive(d, l) /∈ db

(I.9)

deleted(l)(cfg, R, Id) = R = delete(l) (I.10)

noExecIn(o)(cfg, R, Id) = Id ̸= o (I.11)

In the following, we prove the properties in Section I.4. The initial state of
the program CL PI main{T x; s} is a multiset including the object ob(main),
the classes CL, and the purposes PI, where cfg0 = {CL PI ob(main)([cnThis 7→

73

I. DPL: A Language for GDPR Enforcement

contract(main, ob(main))], ([], s@∅), [])}.

P = P1 ∧ P2

P1 = ∀o, d, l, cn.

□(use(o, sensitive(d, l), cn) ⇒ checked-scope(o, ⟨l, cn⟩))
⇒ □¬errorU(o, cn)

P2 = ∀o, d, l, cn.

□((use(o, sensitive(d, l), cn) ∧ ¬complyTo(l, cn)
∧ ¬checked-scope(o, ⟨l, cn⟩))
⇒ ⃝(noExecIn(o) Until (errorU(o, cn) ∨ optedIn(l, cn))))

Theorem I.A.1 (Purpose limitation). The property P holds for all traces of our
transition system.

Proof. First, we prove P1 using a proof by contradiction. Let τ be a fair trace.
The premise of P1 says that in every state in τ , for all o, d, l, and cn, whenever
use(o, sensitive(d, l), cn) holds, then checked-scope(o, ⟨l, cn⟩) holds. To achieve
a contradiction, assume that errorU(o, cn) holds in a reachable state in τ and
consider the first such state cfg′ that it holds. This cannot be the initial state
in τ (per definition) so there must be a transition from a predecessor state cfg
to cfg′ adding errorU(o, cn) to the configuration. The only rules that could have
added errorU(o, cn) are the following:

• error-assign: In o(a, (σ, (x := e; s)@V), db), let sensitive(d, l) = [[e]]a◦σ
and cn = a(cnThis). Since the current program statement in cfg is an
assignment, then use(o, sensitive(d, l), cn) holds in this state. Therefore,
checked-scope(o, ⟨l, cn⟩) holds in cfg, and hence also ⟨l, cn⟩ ∈ V . Thus, in the
rule error-assign, the premise comply holds, and this rule cannot fire in cfg.
Thus, errorU(o, cn) does not hold in cfg′.

• error-call: In o(a, (σ, (x := e.m(e); s)@V), db), let o′ = [[e]]a◦σ,
sensitive(d, l) ∈ [[e]]a◦σ, and cn = contract(o′). Since the current program
statement in cfg is a call, then use(o, sensitive(d, l), cn) holds in this state. The
rest of this case is identical to the error-assign case.

• error-self-call: In o(a, (σ, (x := e.m(e); s)@V), db)}, let o = [[e]]a◦σ,
sensitive(d, l) ∈ [[e]]a◦σ, and cn = a(cnThis). Since the current program
statement in cfg is a self-call, then use(o, sensitive(d, l), cn) holds in this state.
The rest of this case is identical to the error-assign case.

• error-return: In o(a, (σ, return e@V), db), let sensitive(d, l) = [[e]]a◦σ,
o′ = σ(caller), and cn = σ(cnCaller). Since the current program statement
in cfg is a return, then use(o, sensitive(d, l), cn) holds. The rest of this case
is identical to the error-assign case.

• error-self-return: In o(a, (σ, (return e; cont(n))@V), db) n(σ′, (x :=
m?; s)@∅), let sensitive(d, l) = [[e]]a◦σ, o = σ(caller), and cn = a(cnThis).

74

Appendix

Since the current program statement in cfg is a self return, then
use(o, sensitive(d, l), cn) holds. The rest of this case is identical to the
error-assign case.

In all these cases, we conclude that ¬errorU(o, cn) holds, so P1 holds.
Next, we prove P2. Given a fair trace τ , consider any reachable

state cfg where the premise of P2 holds, i.e., for some o, d, l, and cn,
use(o, sensitive(d, l), cn), ¬checked-scope(o, ⟨l, cn⟩), and ¬complyTo(l, cn) hold.
Let cfg′ be the next state in τ . We show that there exists a state cfg′′ after cfg′
where errorU(o, cn) ∨ optedIn(l, cn) holds, and noExecIn(o) holds for all states
from cfg′ up to (but not necessarily including) cfg′′.

For the rest of the proof, we use the fact that noExecIn(o) holds when enabled
rules not involving the object o fire. There are four such kinds of rules: 1) tick, 2)
delete, 3) opt-out, and 4) all enabled rules that apply to other objects than o.

Now, since use(o, sensitive(d, l), cn) holds in cfg, there are five possible pro-
gram statements that can execute within o. These correspond to the five disjunc-
tions in the definition of use (Equation I.1). We consider the Assignment case be-
low and four other cases for Call, Self-Call, Return, and Self-Return are analogous.

For the assignment case, consider how execution can progress after an
assignment, from the next state cfg′. Either a program statement in the object
o fires, or one of the four kinds of rules fire not involving o. This yields the
following two cases: 1) The only enabled rule involving o is error-assign,
which produces a state cfg′′ where errorU(o, cn) holds. 2) For the other four
kinds of rules that can be enabled, as discussed previously, (i) for all of these
rules, error-assign remains enabled except (ii) when the rule opt-in, enabled
in another object o′, fires and thereby adds the contract cn to the policy l.
If 2(i) holds, then noExecIn(o) holds in the successor state. We can only
repeat this case finitely often since error-assign remains enabled, and by
fairness, it must eventually fire, leading to state cfg′′ where errorU(o, cn) holds.
If 2(ii) applies (to any successor state), we then reach a state cfg′′ where
optedIn(l, cn) holds. We conclude that from cfg′ onwards, noExecIn(o) holds
until we reach cfg′′ when either errorU(o, cn) or optedIn(l, cn) holds. This
establishes ⃝(noExecIn(o) Until (errorU(o, cn) ∨ optedIn(l, cn))). ■

C = C1 ∧ C2

C1 = ∀o, l, cn.
□(collect(o, l, cn)⇒ checked-scope(o, ⟨l, cn⟩))
⇒ □¬errorC(o, cn)

C2 = ∀o, l, cn.
□((collect(o, l, cn) ∧
¬complyTo(l, cn) ∧ ¬checked-scope(o, ⟨l, cn⟩))
⇒⃝(noExecIn(o) Until (errorC(o, cn) ∨ optedIn(l, cn))))

75

I. DPL: A Language for GDPR Enforcement

Theorem I.A.2 (Consent). The property C holds for all traces of our transition
system.

Proof. The proof of C1 is analogous to our previous proof of P1. Namely, we
prove C1 using a proof by contradiction. Let τ be a fair trace. The premise of C1
says that in every state in τ , for all o, l, and cn, whenever collect(o,l,cn) holds,
then checked-scope holds. To achieve a contradiction, assume that errorC(o, cn)
holds in a reachable state in τ and consider the first such state cfg′ that it holds.
This cannot be the initial state in τ (per definition) so there must be a transition
from the predecessor state cfg to cfg′ adding errorC(o, cn) to the configuration.
The only rule that could have added errorC(o, cn) is error-collect. In
o(a, (σ, (collect(e1, e2, e3); s)@V), db), let cn = [[e1]]a◦σ and l = [[e2]]a◦σ. Since
the current program statement in cfg is collect(e1, e2, e3), then collect(o, l, cn)
holds. Therefore, checked-scope(o, ⟨l, cn⟩) holds in cfg, and hence also ⟨l, cn⟩ ∈ V .
Thus, in the rule error-collect, the premise comply holds and this rule
cannot fire in cfg. Thus, errorC(o, cn) does not hold in cfg′, so C1 holds.

The proof of C2 is analogous to our proof of P2. In particular, given a
fair trace τ , consider any reachable state cfg, where the premise of C2 holds,
i.e., for some o, l, and cn, the formulas collect(o,l,cn), ¬complyTo(l, cn), and
¬checked-scope hold. Let cfg′ be the next state in τ . We show that there exists a
state cfg′′ after cfg′ where errorC(o, cn) ∨ optedIn(l, cn) holds, and noExecIn(o)
holds for all states from cfg′ up to (but not necessarily including) cfg′′.

As with the previous proof of P2, we will use the fact that noExecIn(o)
holds when enabled rules not involving the object o fire. There are four such
kinds of rules: 1) tick, 2) delete, 3) opt-out, and 4) all enabled rules that
apply to other objects than o.

Since collect(o,l,cn) holds in cfg, there is only one possible program statement
that can execute according to the definition of collect in Equation I.5, which is
collect(cn, l, x). Now consider how execution can progress from the next state
cfg′. Either a program statement in the object o fires, or one of the four kinds
of rules fire not involving o. This yields the following two cases: 1) The only
enabled rule involving o is error-collect, which produces a state cfg′′ where
errorC(o, cn) holds. 2) For the other four kinds of rules that can be enabled, as
discussed previously, (i) for all of these rules, error-collect remains enabled ex-
cept (ii) when the rule opt-in, enabled in another object o′, fires and thereby adds
the contract cn to the policy l. If 2(i) holds, then noExecIn(o) holds in the suc-
cessor state. We can only repeat this case finitely often since error-collect re-
mains enabled, and by fairness, it must eventually fire, leading to state cfg′′ where
errorC(o, cn) holds. If 2(ii) applies (to any successor state), we then reach a state
cfg′′ where optedIn(l, cn) holds. We conclude that from cfg′ onwards, noExecIn(o)
holds until we reach cfg′′ when either errorC(o, cn) or optedIn(l, cn) holds. This
establishes ⃝(noExecIn(o) Until (errorC(o, cn) ∨ optedIn(l, cn))). ■

W = ∀l, cn.

□(optedOut(l, cn) ⇒ (¬complyTo(l, cn) W optedIn(l, cn)))

76

Appendix

Theorem I.A.3 (Right to withdraw consent). The property W holds for all traces
of our transition system.

Proof. Given a fair trace τ , consider any reachable state cfg where optedOut(l, cn)
holds, i.e., according to the definition optedOut (in Equation I.6), the rule
opt-out has been fired and the contract cn does not belong to the policy l.
We show that if there exists a state cfg′ in τ , where optedIn(l, cn) holds, then
¬complyTo(l, cn) holds from cfg up to cfg′. Moreover, if optedIn(l, cn) never
holds in any state in τ , then ¬complyTo(l, cn) holds forever from cfg onwards.

Since optedOut(l, cn) holds in cfg, the contract cn does not belong to
the policy l, thus the formula ¬complyTo(l,cn) also holds in cfg. Note that
¬complyTo(l, cn) is invariant over all the rules except opt-in. So either 1) the
rule opt-in eventually fires yielding a state cfg′ where optedIn(l, cn) holds, and
¬complyTo(l, cn) holds from cfg up to this point, or 2) opt-in never fires and
then ¬complyTo(l, cn) continuously holds from cfg. ■

For deletion, we formalize the auxiliary functions dec and del (in Sec-
tion III.4.2) in the following. The function delData(db, l) deletes sensitive data
associated with the policy l from the database db, which is a substitution.
Equations are applied in order, top-down.

dec(l(u,cp,cm,b,t) cfg) = l(u, cp, cm, b, t − 1) dec(cfg) if t > 1
dec(l(u,cp,cm,b,1) cfg) = dec(del(l, cfg))
dec(cfg) = cfg

(I.12)

del(l,o(a,p,db) cfg) = o(a, p, delData(db, l)) del(l,cfg)
del(l, cfg) = cfg
delData([sensitive(d, l′), v], l) = delData([v], l) if l = l′

delData([sensitive(d, l′), v], l) =
[sensitive(d, l′), delData([v], l)] if l ̸= l′

delData([], l) = []

(I.13)

S = ∀l. □(expired(l)⇒ dbDel(l))

Theorem I.A.4 (Storage limitation). The property S holds for all traces of our
transition system.

Proof. Given a fair trace τ , consider any reachable state cfg where expired(l)
holds by Equation I.8, a policy l does not exist in the state cfg. We show
that dbDel(l) also holds in cfg, where data with the policy l is deleted from all
objects’ databases. Note that the state cfg cannot be the initial state because
in the initial state there is no policy. In the predecessor state of cfg, the only
rules that could have deleted a policy l, yielding expired(l) in cfg, are the following:

77

I. DPL: A Language for GDPR Enforcement

store*
d = [[e]]a◦σ

o(a, (σ, (store(k, e) else{s}; s′)@V), db)
→ o(a, (σ, s′@V), db[k 7→d])

assign-local*
x ∈ dom(a) d = [[e]]a◦σ
o(a, (σ, (x := e; s)@V), db)
→ o(a, (σ[x 7→ d], s@V), db)

assign-field*
x ∈ dom(a) d = [[e]]a◦σ

o(a, (σ, (x := e; s)@V), db)→
o(a[x 7→ d], (σ, s@V), db)

return*
d = [[e]]a◦σ o′ = σ(caller)

o(a, (σ, return e @V), db)→
o(a, idle, db) com(d, o′)

self-return*
o = σ(caller) d = [[e]]a◦σ

o(a, (σ, (return e; cont(n))@V), db) n(σ′, (x := m?; s)@V ′)
→ o(a, (σ′[x 7→ d], (s)@V ′), db)

Figure I.9: Rewrite rules for operations on non-sensitive data.

• Tick: The tick rule was applied and the timestamp of the policy was one.
In this case, the dec function (in Equation I.12), deletes the policy, where
expired(l) holds in cfg, and the function del (in Equation I.13) deletes sensitive
data associated with the policy l from databases, so that dbDel(l) holds in cfg.
Hence, S holds.

• Delete: The rule delete was applied. In this case, the policy is deleted, where
expired(l) holds in cfg, and the function del deletes sensitive data associated
with the policy l in databases, so that dbDel(l) holds in cfg. Hence, S holds.

■

F = ∀l. □(deleted(l)⇒ expired(l))

Theorem I.A.5 (Right to be forgotten). The property F holds for all traces of
our transition system.

Proof. In a fair trace τ , consider any reachable state cfg where deleted(l) holds
by Equation I.10, the rule delete was applied to a policy l. We show that
expired(l) also holds in cfg, and by Theorem I.A.4 data with that policy is deleted
from databases. Note that the state cfg cannot be the initial state because in
the initial state there is no policy. Since deleted(l) holds in cfg, then in the
predecessor state of cfg, the rule delete was applied, which deletes the policy,
yielding expired(l) in cfg, so F holds. ■

78

Appendix

I.A.2 Rewrite rules for non-sensitive data

Figure I.9 shows the rewrite rules for non-sensitive data, omitted from Sect. III.4.2.
These rules mirror their non-starred counterparts for sensitive data, but without
compliance checks. Rule store* stores non-sensitive data d in the database,
assign-local* assigns non-sensitive data d to local variables, assign-field*
assigns non-sensitive data d to fields, and return* returns non-sensitive data d
to the caller.

I.A.3 Maude formalization

Maude model We specify DPL’s operational semantics in Maude, which gives
us a prototype environment for program simulation and verification.

In our Maude model, a program is written in a main block with a multiset of
classes: main{L, SL} cfg, where L is an initial state (substitution), SL is a list
of statements, and cfg specifies the classes. An object is represented as

⟨ O : C | Att: S, Pr: (L, SL), Lcnt: N, Db: DB ⟩

consisting of the object name O, the class name C, attributes S, the active
process (L, SL) with local variables L and statements SL, a counter for creating
unique identities N, and the database DB. The counter is a technical device,
omitted from the previous sections, used to create fresh identifiers, corresponding
to the use of the fresh predicate in the operational semantics. For simplicity,
class names represent purposes, and an object created from a class C gets the
purpose C.

A policy is represented as

PL ⟨ U, Cp, Cm, B, T ⟩

where PL is the policy identity, U is a user identity, Cp is a set of persistent
contracts, Cm is a set of mutable contracts, B is true if data is allowed to be
stored persistently, and T is the timestamp.

For opt-in options, we assign a user object to consent to or deny an opt-in
option. The user object sends the message optInMsg(true, ’contract, ’policy)
to consent and optInMsg(false, ’contract, ’policy) to deny consent. In Maude’s
syntax, a name is represented by ’name. Input data for data collection is given
in the collect command; i.e., collect(int(1), ’contract, ’policy, ’x), where int(1)
is the input data, and the function int(1) creates data of type Integer. Moreover,
a userId is given in the command logIn(str(’u)), where the function str() creates
data of type String.

The rules tick, delete, and opt-out can be interleaved at any point in
the program reflecting clock ticks and user actions. To specify fairness and
some of the formulas in Table I.2, we add the element ruleLabel(Id, R) to the
configuration, where Id is the identity of the current object that is executing,
and R is the current rule’s label that is fired. When a rule fires, the parameters
of ruleLabel change accordingly.

79

I. DPL: A Language for GDPR Enforcement

A rewrite rule example Here, we present the formalization of the delete
rule in Maude. Note that in this paper, we omit the ruleLabel(Id, R) from
the rules, where Id is the identity of the object that is executing, and R is an
event constructed from a rule label and possibly parameters. In our Maude
model, ruleLabel(Id, R) is added to all the rules. In the following, when the rule
delete fires, Id changes to Other, which is a constant of type Identity, and R to
delete(PL) of type Event. Note that if an object O is executing, then Id changes
to O, which is also of type Identity.

rl [delete] :
{ PL ⟨ U, Cp, Cm, B, T ⟩ ruleLabel(Id, R) Cfg }
=>

{ del(PL, ruleLabel(Other, delete(PL)) Cfg) } .

Model checking results for programs We define the LTL formulas in Section
I.4 in Maude and use Maude’s model checker to verify the GDPR properties
that we previously formalized on the online retailer example in Fig. I.3.

Hygienic programs: We verify the properties P1, C1, W , S , and F on
the (hygienic) online retailer program. Maude verifies that errors cannot occur
and returns true for each of these properties.

Non-hygienic programs: To check the properties concerning programs
giving rise to errors, we model check different scenarios for non-hygienic programs
for Fig.I.3. Namely, we remove different combinations of the statements to
systematically check the necessity of the all conditions for hygienic programs
given in Section I.4.

The scenarios are as follows: i) For the Purchase purpose, we do not define
the consent statements cs1 and cs2 and the contract cn1. Therefore, in the
register method, credit card data and customer data are collected with the
MassMarketing’s consent statement and contract (cs3, cn2). Maude throws a
data usage error when the method p. purchase(credit, customer) is called. To
avoid this error, the if-comply(cn1, (credit, customer)) is required (line 45). ii)
The pattern for data collection, in Section I.3.2, is not followed. In this case, we
check two scenarios: 1) We skip the log-in() (line 11). Maude throws an error
when creating a policy (line 13). 2) We remove the if-consent in line 16, to
check that the appropriate error arises when collecting data for the Purchase
purpose. Maude verifies that a data collection error arises. We check the consent
property C2 for the credit data with the policy l1 with respect to the Purchase
contract. Maude verifies the property C2. iii) We remove the if-comply for
the call mm.m-marketing (line 47), and check P2. Maude verifies that the
appropriate error arises when making the call m-marketing. Note that we check
the purpose limitation property P2 on the customer data with respect to the
’MassMarketing contract.

Here, we present Maude’s model checker results for a non-hygienic variant
of the program in Fig.I.3, where the if-consent in line 16 and the if-comply
for the call mm.m-marketing (line 47) are removed. In the following commands,
init is the initial configuration built from the program’s main block. The

80

Appendix

term sensitive(str(’mail), policy(2)) is sensitive data associated with the
customer data and the policy policy(2). The term contract(str(’MassMarketing),
ob(’MassMarketing0)) is the contract for the object MassMarketing0. The term
contract(str(’Purchase), ob(’Purchase0)) is the contract for the object Purchase0.
The term policy(1) is the policy for the credit data. In the following, Maude
verifies the properties P, C , W , S , and F , respectively:
red modelCheck(init, purposeLimitationconf

(init, sensitive(str(’mail), policy(2)),
contract(str(’MassMarketing), ob(’MassMarketing0)))) .

result Bool: true

red modelCheck(init, consentconf(init,
policy(1), contract(str(’Purchase), ob(’Purchase0)))) .

result Bool: true

red modelCheck(init, withdraw(init,
contract(str(’Purchase), ob(’Purchase0)), policy(1))) .

result Bool: true
red modelCheck(init, storageLimitationconf(init, policy(2))) .
result Bool: true

red modelCheck(init, forget(init, policy(2))) .
result Bool: true

I.A.4 Case study extension

We expand on the example from Section I.3.3 and show that DPL prevents
illegal data usage and storage in objects receiving sensitive data. These objects
can only store or process sensitive data if their contracts comply with the policy,
i.e., if consent for the object’s purpose is given. When a user withdraws consent
or requests data deletion, the corresponding policy changes. Thus, prior to any
data usage, conditional constructs are needed to avoid errors. Moreover, objects
cannot illegally send sensitive data to other objects since errors occur.

We present the classes Purchase-c and MMarketing-c. The corresponding
objects p and mm receive the credit and customer data. In class Purchase-c,
the method purchase stores the customer data if storage is allowed and the
user’s consent for the Purchase purpose is given. In line 7, the object’s contract
is checked for compliance, then data processing continues; otherwise, the default
value “0” is returned. In line 11, the caller’s contract is checked for compliance
before returning the method result. In the class MMarketing-c, we create a new
object tm for targeted marketing and try to illegally send customer data to this
object via a method call (line 28). The call triggers an error since tm’s contract
is not defined and does not comply with the customer’s policy. Moreover, if we
define the corresponding contract/consent statement, we still need a session and
the user’s consent to add the contract to the policy. In line 34, the m-marketing
method checks if the object’s contract complies with the policy, then continues
processing the data. A message with the given text is sent to the customer and
a copy of the message is returned to the caller, which is our main object.

81

I. DPL: A Language for GDPR Enforcement

1 class Purchase-c implements Purchase() {
2 Order purchase(String credit, String customer){
3 user = ... // Make user accounts for data storage
4 // Store data if storage is allowed, otherwise skip:
5 store(key(user, ‘‘customer’’), customer) else { skip; }
6 // Check if data usage is allowed:
7 if-comply(cnThis, credit, customer){
8 ...
9 Order order=...
10 // Check if the caller is allowed to receive the result
11 if-comply(cnCaller, order) { return(order); }
12 else{ return 0; }
13 } // End of if-comply(cnThis, credit, customer)
14 else {return 0; }
15 }// End of the purchase method
16 } // End of class
17
18
19 purpose TargetedMarketing {
20 String targetedMarketing(String customer){...}}
21
22 class TargetedMarketing-c implements TargetedMarketing() {...}
23
24 class MMarketing-c implements MassMarketing() {
25 TargetedMarketing-c tm = new TargetedMarketing-c();
26 String m-marketing(String customer){
27 // Let us send data illegally to tm
28 tm.targetedMarketing(customer); // This results in an error
29
30 user = ... // Create user accounts for data storage
31 // Store data if storage is allowed, otherwise skip
32 store(key(user, ‘‘customer’’), customer) else { skip; }
33
34 if-comply(cnThis, customer){ // Self-sanity check
35 String text=...
36 ... // Send MassMarketing text to the customer
37 return text;
38 } // End of if-comply
39 else {return 0; }
40 } // End of m-marketing method
41 } // End of class

Figure I.10: Extension of the online-retailing example in DPL from Fig. I.3.

Similarly, we run Maude’s model checker for the program in Fig. I.10, and
Maude verifies all the properties in Section I.4.

Authors’ addresses

First Author University of Oslo, Oslo, Norway, farzanka@ifi.uio.no

Second Author ETH Zurich University, Zurich, Switzerland, basin@inf.ethz.ch

Third Author University of Oslo, Oslo, Norway, einarj@ifi.uio.no

82

mailto:farzanka@ifi.uio.no
mailto:basin@inf.ethz.ch
mailto:einarj@ifi.uio.no

Paper II

An Evaluation of Interaction
Paradigms for Active Objects

Farzane Karami, Olaf Owe, Toktam Ramezanifarkhani
Published in Journal of Logical and Algebraic Methods in Programming, 2019,
Volume 103, pp. 154–183. DOI: https://doi.org/10.1016/j.jlamp.2018.11.008

II

Abstract

Distributed systems are challenging to design properly and prove correctly
due to their heterogeneous and distributed nature. These challenges
depend on the programming paradigms used and their semantics. The
actor paradigm has the advantage of offering a modular semantics, which is
useful for compositional design and analysis. Shared variable concurrency
and race conditions are avoided by means of asynchronous message passing.
The object-oriented paradigm is popular due to its facilities for program
structuring and reuse of code. These paradigms have been combined by
means of concurrent objects where remote method calls are transmitted by
message passing and where low-level synchronization primitives are avoided.
Such kinds of objects may exhibit active behavior and are often called
active objects. In this setting the concept of futures is central and is used
by a number of languages. Futures offer a flexible way of communicating
and sharing computation results. However, futures come with a cost, for
instance with respect to the underlying implementation support, including
garbage collection. In particular this raises a problem for IoT systems.

The purpose of this paper is to reconsider and discuss the future
mechanism and compare this mechanism to other alternatives, evaluating
factors such as expressiveness, efficiency, as well as syntactic and semantic
complexity including ease of reasoning. We limit the discussion to the
setting of imperative, active objects and explore the various mechanisms
and their weaknesses and advantages. A surprising result (at least to the
authors) is that the need of futures in this setting seems to be overrated.

II.1 Introduction

Programming paradigms are essential in software development, especially for
distributed systems since these affect large programming communities and a
large number of applications users. The actor model [36] has been adopted
by a number of languages as a natural way of describing distributed systems.
The advantages are that it offers high-level and yet efficient system designs,

83

https://doi.org/https://doi.org/10.1016/j.jlamp.2018.11.008

II. An Evaluation of Interaction Paradigms for Active Objects

and that the operational semantics may be defined in a modular manner,
something which is useful with respect to scalability. The actor model is based on
concurrent autonomous units (actors) communicating by means of asynchronous
message passing, and with a “sharing nothing” philosophy, meaning that no
data structure is shared between actors. The actor model offers high level, yet
efficient, constructs for synchronization and communication.

A criticism of the interaction mechanism of the actor model has been that its
one-way communication paradigm may lead to complex programming when there
are dependencies among the incoming messages. It is easy to make programming
errors such that certain messages are never handled. And it is not straightforward
to augment an actor model with support of additional messages and functionality.
In the actor model one may not classify and organize the communication messages
in request messages and reply messages, and it does not support object-oriented
(OO) principles such as inheritance, late binding, and reuse (even though the
original actor concept was inspired by the ideas behind object-orientation).

To overcome these limitations, one may combine the actor model and object-
orientation, using the paradigm of concurrent, active objects and using methods
rather than messages as the basic communication mechanism, thereby supporting
imperative programming in a natural manner. The active object model has
gained popularity and is an active research area [8]. A call of method m on a
remote object o could have the form x := o.m(e) where e is the list of actual
parameters. This opens up for two-way communication where both the method
call and the corresponding return value are transmitted by message passing
between then caller and callee objects. The naive execution model is that the
caller waits while the callee performs the call, and then stores the result in the
program variable x. However, this can result in undesired blocking and possibly
deadlock. Therefore non-blocking call mechanisms are needed.

One way of avoiding unnecessary waiting is provided by the future mechanism,
originally proposed in [5] and exploited in MultiLisp [31], ABCL [85], and several
other languages. A future is a read-only placeholder for a result that is desirable
to share by several actors, where the placeholder may be referred to using the
identity of the future. In particular, one may refer to a result even before it
is produced, and a future identity may refer to a future method result. In
languages with first-class futures, future identities can be passed around as
first-class objects like references. Futures can give rise to efficient interaction,
avoiding active waiting and low-level synchronization primitives such as explicit
signaling and lock operations. The notion of promises gives even more flexibility
than futures by allowing the programmer to refer to a computation result before
it is known how to generate it, and by which process. For instance, a promise
may be used to refer to the result of one of several futures.

A future object with its own identity can be generated when a remote method
call is made. Then the caller may go on with other computations until it needs
the return value, while the callee executes. The callee executes the called method
and sends the return value back to the future object upon termination of the
method invocation, at which time the future is said to be resolved (i.e., the
future value is available). When the caller needs the future value it may request

84

Introduction

the future value, and is blocked until the future is resolved. A programming
language may have implicit or explicit support of futures. Consider first explicit
futures: Typically a call statement defines the future identity, say f := o!m(e),
where f is a future variable used to hold the future identity of the call (with m, o,
and e as above). Here the symbol “!” indicates the difference from a blocking call
(assuming both are allowed). When the result of the call is needed, the caller uses
a construct like get f where f is an expression giving the future identity, for
instance in an assignment x := get f . By letting futures be first-class entities,
the objects may communicate future identities and thereby allow several objects
to share the same method result, given as a future. Any object that has a
reference f to a future may perform get f . Implementation of call requests and
future operations can be done by means of message passing.

Implicit futures are similar, except that the future variable is not available
for the programmer, and the get operations are made implicitly as defined by
the semantics. The call may now look like x := o.m(e) (or say x := o!m(e) to
distinguish it from that of a synchronous call, if both are desired) where x is of
the return value type, and the implicit get operations may happen when the
value of x is needed (first time after the call). This is attractive in functional
languages, avoiding the distinction between a function returning a future and
one returning the future value, or receiving a future input versus a future value.
However, implicit futures make static program analysis difficult since the waiting
points are implicit, possibly depending on dynamic factors. In particular, certain
kinds of textual analysis become infeasible.

In languages with futures, the two-way communication mechanism is replaced
by a more complex pattern, namely that a method call generates a future object
where the result value can be read by a number of objects, as long as they know
the future identifier. A normal two-way call can be done by letting the caller ask
and wait for the future. This means that each call has a future identity, and that
the programmer needs to keep track of which future corresponds to which call.
This gives an additional layer of indirectness in programming. Our experience is
that the full functionality of futures is only needed once in a while, and that basic
two-way communication suffices in most cases. Thus the flexibility of futures (and
promises) comes at a cost. Implementation-wise, garbage collection of futures is
non-trivial, and static analysis of various aspects including deadlock detection
in presence of futures is more difficult. Even if one introduces a short-hand
notation for the simple two-way call interaction, there is still a future behind the
scene, and thus all calls are typically handled uniformly by this more expensive
implementation mechanism.

Another drawback of the basic future mechanism is that once a get operation
is done, the current object is blocked as long as the future is not yet resolved.
To overcome this, one may allow polling, i.e., testing if a future is resolved or
not, without blocking, for instance used in an if-test where the branches deal
with the two cases. But polling may result in complex program structures since
it opens up for explicit program control of the possible message ordering.

Another way of avoiding blocking is the notion of cooperative scheduling
suggested in the Creol language [39], and the OUN language [19, 62], generalizing

85

II. An Evaluation of Interaction Paradigms for Active Objects

the concept of guards from the guarded command language of Dijkstra [23] by
adding a notion of process suspension. Cooperative scheduling can be achieved by
a language construct, await c, where c is a condition, either a boolean condition
or a waiting condition, such as the presence of the result of a remote method
call. If c is not satisfied, the current executing method invocation (“process”) is
placed on the process queue of the object, which allows another enabled process
on the queue, or an incoming request, to continue. A process on the queue is
not enabled if it starts with an await with a condition that is not satisfied. Thus
a method invocation may passively wait in the queue while the object is active
and able to take care of other (enabled) processes. Thus cooperative scheduling
provides local synchronization control and provides a constructive approach to
the scheduling of processes internally in an object. Cooperative scheduling may
be combined with the future mechanism, for instance with first-class futures as
in the ABS language, or with non-first-class futures as in the Creol language,
where the futures are local to a process. We refer to such non-first-class futures
as local futures; and in general, we may talk about object-local and method-local
futures. Object-local futures may not be communicated to other objects, but
assignment of futures to fields and local variables is acceptable as well as passing
of futures through parameters or return values of local methods. Method-local
futures are local to a method instance (process) and may not be assigned to
fields and may not be passed as parameters or return values of method calls.

In this paper, we will focus on the interaction mechanisms in imperative,
active object languages, especially the paradigm of asynchronous call/return
without use of futures, versus the different versions of the future mechanism,
as well as cooperative scheduling and polling. The contribution of the paper
is a comparison on the different interaction mechanisms, based on a survey of
representative languages, and a unified syntactic and semantic formalization of
the various language combinations. We give a critical discussion on the pros
and cons of the various combinations of these mechanisms. As most recent
imperative languages for active objects support explicit, first-class futures, we
leave out implicit futures from our discussion. To complement the discussion, we
suggest some language improvements in the setting of asynchronous call/return
without use of futures. We compare the various interaction paradigms wrt. the
following criteria:

• expressiveness

• efficiency

• syntactic and semantic complexity

• simplicity of program reasoning and static analysis

• information security aspects.

The paper is organized as follows: Section II.2 provides the context of
the work, giving an overview of the interaction mechanisms of a number of
active object languages, including ABCL, Rebeca, Creol, ABS, Encore, and

86

Background

ASP/ProActive. A complementary communication model and language is
proposed in Subsection II.2.7. In order to make a comparison easier, Section II.3
defines a unified syntax and semantics for the different interaction paradigms.
Then Section II.4 evaluates the different interaction mechanisms along the
comparison dimensions. Finally, conclusions are given in Section II.5.

II.2 Background

In this section we review some representative languages based on active objects,
and give a summary of their interaction models. We limit the discussion
to imperative languages, since a majority of modern active object languages
(with some exceptions like Scala) are imperative. For each language we
identify support of active and/or passive behavior and interaction mechanisms,
including synchronization mechanisms involving waiting and blocking, as well as
cooperative scheduling. In particular, we explain support of explicit or implicit
futures and polling mechanisms. We focus on explicit futures since the semantical
issues of these are more clearly connected to syntactic constructs. This allows
us to make a syntax-oriented, language-based comparison.

Furthermore, we look at shared futures as well as local futures. Local futures
include object-local futures, not permitted to be communicated and shared with
other objects, and method-local futures, not permitted to be stored in fields or
passed to other method invocations than the one creating the future. Local as
well as shared futures may in principle be read multiple times, but for method-
local futures the value of multiple reads is questionable. It can be statically
checked that a method-local future is read at most once, leading to a notion of
single-use, method-local futures, which gives the simplest form of futures.

To illustrate and compare the interaction mechanisms in the different
languages, we use a running example. It is part of a subscriber service that was
originally made to take advantage of the benefits of first-class futures. The ABS
solution in Figure III.2 is most close to the original version, and should be read
first. In this example, the server, defined by class Service, searches for news and
publishes them to subscribing clients, using proxies. The server communicates
news to the proxies by means of first-class futures, so that the server itself does
not wait for incoming news and is free to respond to any client request (apart
from doing synchronized database operations). Instead the proxies wait for the
incoming news. The proxies are organized in a list (growing upon need), letting
each proxy handle a limited number of clients.

II.2.1 ABCL

The integration of the actor model with object-oriented concepts was first
introduced in ABCL [85]. In this language, concurrent objects interact via
asynchronous message passing and futures. An object definition as depicted
in Figure II.1 includes: the object’s name, its state declaring the local object
variables (fields) and initialization, and its script including patterns of messages

87

II. An Evaluation of Interaction Paradigms for Active Objects

[object object-name
(state representation of local memory ...)

(script
(=> message pattern1)
(=> message pattern2))]

Figure II.1: Object definition in ABCL.

received by the object, and a set of corresponding actions. Each object has its
own queue for storing the messages according to their arrival time. When an
object receives a message matching one of the declared patterns, it performs the
corresponding actions. ABCL uses first-class futures, which are explicitly created
by the syntax make-future. Moreover, a future is a queue, and all receiving
objects can write to it, but only the object which creates it, can access and check
the future values, in contrast to other languages supporting first-class futures.
In fact, most other languages implement a future object as once-writable and
multiple-readable (by many objects).

Assuming an object o sends a message m to an object o′, ABCL supports
three types of message passing [85]:

1. Past-time message passing (send and no wait):
After sending the message, the sender o immediately continues its process
without waiting for a reply or delivery. If the reply should be sent to other
objects, the (optional) reply-destination is the destination of those objects.
The syntax for this kind of message passing is:

o′ <= m @reply-destination

2. Now-time message passing (send and wait):
Object o blocks while waiting for the result from o′, then assigns the result
to a program variable x. The notation for this type of message passing is:

x := o′ <== m

3. Future-type message passing (reply to me later):
In this case, o does not need the result immediately, and instead of blocking
it can continue and later on check whether the future object contains the
result or not. In this case of message passing, the reply destination is the
specified future object. The notation for this kind of message passing is:

o′ <= m $f

where the future variable f is bound to the future object.

In ABCL, an object that creates a future can check its values by the operation:

ready? f

88

Background

If at least one reply is stored in the future f , the value of this form is t (i.e.,
true); otherwise, nil. Thus polling is supported. Moreover, the operation

next-value f options

returns the first element stored in the future f , and if the future is empty the
owner object waits until a reply arrives. And with a :remove t option the
future value is removed from the future-object. Whereas, with the :remove nil
option, it still remains in the future queue even after evaluation of this form.
The default option is :remove t.

Example Figure II.2 shows a subscriber example in the ABCL language. In
ABCL, bracket forms are often used to build message patterns; and in a message
pattern, a symbol starting with a colon (:) represents a tag, and other symbols
are pattern variables. Executing an expression [object...] creates an object with
a specified behavior defined in the expression. In this language, the symbol
Me stands for the object which executes the operation in which the “Me” exists.
Moreover, by using a reply form !form, the evaluation result of the form is sent
back as a reply to the currently processed message.

In the subscriber example, the publish call in the state definition of service
creates a cycle between service and proxy objects, since each such call leads
to a produce and indeed another publish call in the object proxy. In the object
service, since publish and detectNews calls are past-time, interleaving of other
calls (such as subscribe and unsubscribe calls) is possible between each execution
of publish or produce. In line 2, object service sends a [:publish] message to
proxy. As a response, in lines 15 and 19, object proxy creates a future and
appends it to a produce message toward object service, respectively. Therefore,
waiting points for detecting news are delegated to the proxy by using futures.
Object proxy owns the future, and only this object has the access to values,
while other objects can only write to the future. In line 6, when object service
receives a produce message, it sends a past-time detectNews message to the object
producer, searching for news, with a reply destination Me. And according to an
exclamation mark ! in line 35, the reply from evaluation of detectNews is sent
back to Me. In line 6, according to the exclamation mark ! the result from the
evaluation is replied to the future variable. In line 21, object proxy first checks
if the future is available, then by the command next-value retrieves the value
and multi-casts it to clients. In line 24, if nextProxy is empty, the object proxy
continues to search for new news; otherwise, it publishes current news to clients
subscribed to the nextProxy.

II.2.2 Rebeca

Rebeca [76, 78] is an active object language that is more close to the actor-based
model than the other languages considered here. In this language, active objects
are called rebecs (reactive object). Each rebec is instantiated from a reactive
class and has its own thread of control. A reactive class consists of an interface,

89

II. An Evaluation of Interaction Paradigms for Active Objects

1 [object service
2 state dataBase db; int limit; [proxy <= [:publish]];)
3 // proxy does the main job and initiates a produce call
4 (script
5 (=> [:produce proxy]
6 ![producer <= [:detectNews] @ Me]; //reply destination is Me
7 db <= [:logging];)
8 ...
9 (=> [:subscribe]...)

10 (=> [:unsubscribe]...))
11]
12
13 [object proxy
14 (state list myClients:=nil; News ns; proxy nextProxy:=nil;
15 future := (make-future);)
16 (script
17 ...
18 (=> [:publish]
19 [service <= [:produce Me] $ future];
20 // replies from object service saved in the future
21 if (ready? future){ // polling on the future
22 [ns := (next-value future)];
23 [myClient <= [:signal ns]];} // multi-cast the result
24 if (= nextProxy nil)
25 [Me <= [:publish]]
26 else
27 [nextProxy <= [:publish]];))
28]
29
30 [object producer
31 (state News ns;)
32 (script
33 (=> [:detectNews]
34 ...
35 ! ns:=...))
36]
37
38 [object myClient
39 (script
40 (=> [:signal ns]))
41]

Figure II.2: A version of the subscriber example in the ABCL language.

90

Background

variables, method definitions (message server) for dealing with messages and
initial methods. An initial method of a rebec triggers declared messages toward
other rebecs. The receiving objects react to these messages according to their
method definitions. Communication in this model is one-way asynchronous
message passing, without shared variables, blocking receive, nor futures. Since
the communication is by asynchronous message passing, each rebec has its own
message queue, with FIFO order. Rebeca actors are isolated, therefore their
analysis and verification become feasible.

Sometimes it is necessary to have synchronous communication, thus in
extended versions of Rebeca the component concept is defined. A component
encapsulates rebecs that may have internal synchronous communications [77].
External communication beyond a component is either an asynchronous broadcast
or an asynchronous message toward another rebec. RebecaSys [67] is another
extended model of Rebeca supporting global variables and the wait(e) statement.
This statement temporarily stops the execution of the process. The Boolean
expression e may only contain global variables that all rebecs have access to.
Hence, the wait statement depends on the rebecs that update these variables.

Example Figure II.3 represents the subscriber example with the extended
version of Rebeca, considering futures as global variables. The initial produce
message in reactiveclass Service creates a cycle since each such message leads
to a publish message, which in turn leads to another produce message. The
future variable is a Boolean global variable that the prod rebec sets to true
when it completes a detectNews call, in line 19. The service rebec as a server
asynchronously broadcasts a detectNews message to anonymous receivers, which
only one of the rebecs providing these messages reacts to, and also sends an
asynchronous publish message to object proxy. In line 30, proxy rebec is blocked
waiting for the future to become true. Then in line 31, it sends a send message,
provided in prod rebec, to signal news to subscribed clients. It is possible to
make a simpler version in Rebeca without global variables, but we here want to
illustrate how futures can be simulated.

II.2.3 Creol

Creol was developed from the OUN language [19] based on the notion of
active concurrent objects. Interaction is by means of asynchronous methods,
implemented by message passing, and remote field access is not allowed. The
synchronization mechanisms include suspension, allowing passive (non-blocking)
waiting on a Boolean condition or on the arrival of a return value from another
object [39–41, 44]. This allows non-blocking as well as blocking method calls.

The visible behavior of objects is specified through interfaces. Thus methods
not exported through an interface may only be used for self calls. The behavior
of objects can change dynamically between active and passive (reactive) by
means of asynchronous self calls. Multiple inheritance is supported as well as
dynamic code modification. Basic Creol supports method-local futures (so-called
“call labels”), i.e., futures may neither be passed as parameters nor assigned to

91

II. An Evaluation of Interaction Paradigms for Active Objects

1 globalvariables {boolean future;}
2 reactiveclass Service() {
3 init() {Producer prod; Proxy nextProxy; self.produce(DataBase db); }
4 // initial action, starting a produce cycle
5 produce(DataBase db){
6 detectNews();
7 proxy.publish(self, prod, nextProxy); // no waiting
8 logging(){. . .} } // logging in a database for services
9 ...

10 subscribe(Client me){...}
11 unsubscribe(Client me){...}
12 }
13
14 reactiveclass Producer() {
15 News ns;
16 init() { future= false;} // initialization
17 detectNews(){
18 ns=...; // wait for more news
19 future= true;
20 }
21 send(Client myClients){
22 if (future)
23 myClients.signal(ns); }//assuming multi-casting is ok in Rebeca
24 }
25
26 reactiveclass Proxy() {
27 List[Client] myClients:=null;
28 ...
29 publish(Service s, Producer prod, Proxy nextProxy){
30 wait(future); // wait for the future
31 send(myClients);
32 if nextProxy == null
33 s.produce();
34 else
35 nextProxy.publish();}
36 }
37
38 reactiveclass Client(){
39 News latestNews;
40 signal(News ns){ latestNews= ns;}
41 }
42
43 main {Service s(Database db); Proxy proxy;}

Figure II.3: A subscriber example in the Rebeca language.

92

Background

fields. However, first-class futures are allowed in extensions of Creol. Methods
are given with the keyword op and Creol methods may have several inputs as
well as several outputs (indicated by the keyword out). Variables are declared
by the syntax var name : T = e where e is the initial value of type T . Creol has
a small-step operational semantics defined by a set of rewrite rules in the Maude
format [26], used for proving the soundness of analysis and verification [24, 25,
38], and also providing an executable interpreter.

Communication between Creol objects is two-way, passing actual parameters
from the caller to the callee object when a method is called, and passing method
return values from the callee to the caller when the method execution terminates.

The asynchronous method call command t!o.m(e) where t is a call label
(“tag”), sends a call request message to the callee o and the caller object proceeds
without waiting. This call generates a unique call identity for referencing the
call, assigned to t. Passive waiting for return values is possible by means
of cooperative scheduling. Each active object has an internal process queue
containing the processes that are suspended, either waiting for a return value or
a Boolean condition. In addition there is an external queue for receiving method
call requests from other objects.

A process is suspended when the suspension statement await c is executed
in a state where the condition c is false. The executing process is moved to
the process queue of the object, and the object is then free to do something
else, like serving an incoming call request or continuing an enabled process in
the process queue of the object. Similarly the statement await t? suspends
when the return value for the call with the identity of t has not arrived.
Otherwise, the await statement is enabled, and execution continues with the
next statement. In contrast, the command t?(x) blocks while waiting for
the return values, and assigning these to the variable list x. A label t is
local to the current process and cannot be passed to other processes, nor
assigned or read by other kinds of statements. The sequence t!o.m(e); t?(x)
(abbreviated o.m(e;x)) corresponds to a synchronous method call, blocking the
processor of the current object until the return values are available, whereas the
sequence t!o.m(e); await t?(x) (abbreviated await o.m(e;x)) corresponds to a
non-blocking call, where await t?(x) abbreviates await t?; t?(x). The label t
may be omitted in a ! call statement if that t is not needed in a ? statement.
Multi-casting can be allowed by the syntax !o.m(e) where o is a list of objects,
in which case the replies cannot be received (since there is no associated label).
Note that labels (of type Label) are not typed by the return value. Static type
checking is possible by certain language restriction (avoiding that the same label
is used for several return value types, at a given program point).

Example The subscriber example, which originally makes use of first-class
futures, must be redesigned in Creol, for instance as done in Figure II.4. Here
the passing of a future is replaced by suspension, which means that the Service
object may continue with other tasks as in the version with first-class futures.
The suspended process can be compared to an added proxy-like object, while the

93

II. An Evaluation of Interaction Paradigms for Active Objects

1 type News = ...
2
3 interface ServiceI{
4 with ClientI
5 op subscribe(out result:Bool)
6 op unsubscribe(out result:Bool)
7 with Any
8 op produce()
9 }
10 interface ProxyI{
11 with ServiceI, ProxyI
12 op publish(ns:News)
13 ...
14 }
15 interface ProducerI{
16 with ServiceI op detectNews(out result:News)
17 ...
18 }
19 interface ClientI{with Any op signal(ns:News) ...}
20 interface DataBase{with Any op logging(...) ...}
21
22 class Service(limit:Nat, prod:ProducerI, db:DataBase) implements ServiceI {
23 var proxy:ProxyI = new Proxy(limit,this); //proxy does the main job
24 {!this.produce() } // initial action, starting a produce cycle
25
26 op produce(){var ns:News;
27 var t: Label;
28 t!prod.detectNews();
29 db.logging(. . .) // logging in a database for services
30 await t?(ns)// waiting while suspending
31 !proxy.publish(ns) } // sends the value
32
33 with ClientI
34 op subscribe(out result:Bool) {...}
35 op unsubscribe(out result:Bool) {...}
36 }
37
38 class Proxy(limit:Nat, s:ServiceI) implements ProxyI{
39 var myClients:List[ClientI]=Nil; var nextProxy:ProxyI;
40 ...
41 op publish(ns:News){
42 !myClients.signal(ns); // multi−cast the result
43 if nextProxy=null
44 then !s.produce() else !nextProxy.publish(ns) fi}
45 }

Figure II.4: A version of the subscriber example in the Creol language.

94

Background

Proxy objects in the Creol solution are not blocked in contrast to the ABS version
with first-class futures. Note that Creol insists on typing of object variables
by interfaces, and we therefore sketch all interfaces. An interface consists of
a number of operations (and semantic specifications, ignored here), and each
operation has a co-interface, restricting what kind of objects may appear as
callers. For instance, subscribe has ClientI as co-interface, meaning that method
subscribe may only be called by objects supporting ClientI. This implies that
the implicit caller parameter is of interface ClientI, which allows us to ensure
statically that myClients is a list of ClientI, say by passing caller to a method

1 op add(c:ClientI) {
2 if length(myClients) < limit
3 then myClients:=append(myClients,c)
4 else if nextProxy=null then nextProxy:=new Proxy (limit,s) if;
5 !nextProxy.add(c) fi }

of class Proxy, by the asynchronous call !proxy.add(caller). Thus the co-interface
ClientI is needed in the implementation of subscribe and unsubscribe in order
to obtain a type-correct program, but it is not needed for the implementation
of subscribe since caller is not used. By using the implicit caller parameter,
one does not need the explicit caller parameter (ClientI me) used in the other
solutions for subscribe and unsubscribe. For simplicity, we use the syntax {. . .}
rather than begin . . . end.

II.2.4 ABS

Abstract Behavioral Specification language (ABS) [43] is an object-oriented
language, inspired by Creol and JCoBox [73]. It is a concurrent programming
language based on the cooperative scheduling from Creol and the notion of object
groups from JCoBox, named Concurrent Object Groups (COG) [8]. Software
product lines with Deltas are supported, but not class inheritance. In ABS, the
unit of concurrency and distribution is the COG. Each COG includes a group of
objects, a queue, and a processor. Objects in a COG share a common heap and
processor, and there is no data sharing between COGs. At most one process
(method activation) is active in a COG, while other processes are suspended in a
process pool. In other words, parallel processes are executed by multiple threads
in different COGs, but only one thread is active in a particular COG.

Objects in different COGs call each other asynchronously. Inside a COG,
objects can call each other asynchronously or synchronously. The communication
syntax is like Creol as well, using conditional await or await on a result/future.
The statement release gives unconditional suspension. The await releases the
thread if the specified condition does not hold, or if the future is not resolved
(in case of await on a future), whereas the get f statement blocks the thread
until the future f is resolved. Thus, the whole COG gets blocked. ABS futures
are explicit, first-class, and typed by a parametric type Fut [T], where T is the
type of the future value.

95

II. An Evaluation of Interaction Paradigms for Active Objects

1 data News = ...
2
3 interface ServiceI{
4 Bool subscribe(ClientI me)
5 Bool unsubscribe(ClientI me)
6 Void produce()
7 }
8 interface ProxyI{
9 Void publish(Fut[News] fut)
10 ...
11 }
12 interface ProducerI{
13 News detectNews()
14 ...
15 }
16 interface ClientI{Void signal(ns:News) ...}
17 interface DataBase{Void logging(...) ...}
18
19 class Service(Int limit, ProducerI prod, DataBase db) implements ServiceI {
20 ProxyI proxy:= new Proxy(limit,this); //proxy does the main job
21 {this!produce() } // initial action, starting a produce cycle
22
23 Void produce(){
24 Fut[News] fut := prod!detectNews();
25 proxy!publish(fut); // sends future, no waiting
26 db.logging(. . .) } // logging in a database
27 ...
28 Bool subscribe(ClientI me){...}
29 Bool unsubscribe(ClientI me){...}
30 }
31
32 class Proxy(Int limit,ServiceI s) implements ProxyI{
33 List[ClientI] myClients:=nil; ProxyI nextProxy;
34 ...
35 Void publish(Fut[News] fut){
36 News ns := get fut; // wait for the future
37 myClients!signal(ns); // multi−cast the result
38 if nextProxy==null
39 then s!produce() else nextProxy!publish(fut) fi}
40 }

Figure II.5: A subscriber example in the ABS language.

96

Background

Example Figure III.2 illustrates the subscriber example in ABS, making use
of first-class futures, passing a future in the publish calls rather than the news
value. In line 24, the asynchronous call creates a future identity, assigned to fut.
Then fut is passed to a proxy object in line 25. In line 36, the proxy object is
blocked until fut is resolved, after which the proxy continues to execute the next
statement. For simplicity, we omit return void at the end of the body of a void
method.

II.2.5 Encore

Encore [9] is a parallel programming language based on active objects with
explicit first-class futures, inspired by Creol and ABS. It is designed for multi-core
platforms and is optimized for efficient execution. Encore supports both active
object parallelism for coarse-grained parallelism, as in Creol, and parallelism
within an object, using parallel combinators for building high-level coordination
of active objects and low-level data parallelism. Encore offers high-level language
constructs for coordination of parallel computations such as building pipelines of
these computations. It offers parallel types, an abstraction of parallel collections,
and also parallel combinators for operating on them. The parallel type Par T is
a handle to a collection of parallel computations, and it can be thought of as a
list of futures, which will eventually produce zero to multiple values of type T.
Then operations on parallel types are called parallel combinators; accordingly,
high-level typed coordination patterns, parallel dataflow pipelines, speculative
evaluation and pruning, and low-level data parallel computations are supported
by Encore [9].

Encore provides both passive and active classes (with the latter as default).
Active objects have their own thread of control, or possibly multiple threads
of control, and a FIFO message queue, and interact via asynchronous method
calls. Passive objects do not have their own thread of control, like standard
objects of Java. An object class is active by default or is declared as passive by
a keyword passive. An asynchronous method call to an active object is stored
inside the active object’s queue. And the result of this asynchronous method
call is a future. If the type of the return value is T , the returned future would
be of type Fut T . Explicit synchronization constructs for accessing a future are
get, await, and future chaining. Like Creol/ABS, get blocks an active object
until the future is resolved, and await waits for resolving the future and blocks
the current process, but not the current active object. Thus other methods of
the active object can be invoked. In the chaining construct (∼∼>), a closure is
attached to a future, and when resolved, the thread executes the closure, which
might result in another future, containing the result of the executed closure. A
closure is a set of computations, possibly including method calls.

Example To illustrate these operations on futures, Figure II.6 represents the
subscriber example with the Encore language. In line 7, a future with identity
fut is created as a result of an asynchronous call to the active object prod, and

97

II. An Evaluation of Interaction Paradigms for Active Objects

1 passive class DataBase{...}
2 class Service(limit: int, prod: Producer, db: DataBase) {
3 proxy:= new Proxy(limit,this); //proxy does main job
4 {this.produce();} // initial action, starting a produce cycle
5 ...
6 def produce(): void{
7 let fut := prod.detectNews();
8 proxy.publish(fut); // sends future, no waiting
9 db.logging(. . .) } // logging in a database for services

10 def subscribe(me:Client): bool;
11 def unsubscribe(me:Client): bool;
12 }
13
14 class Proxy(limit: int, s: Service){
15 myClients: [Client];
16 nextProxy: Proxy;
17 ...
18 def publish(fut: Fut News): void{
19 ns : News;
20 ns := get fut; // wait for the future
21 myClients.signal(ns); // multi−cast the result
22 if nextProxy==null;
23 s.produce();
24 else nextProxy.publish(fut);}
25 }

Figure II.6: A subscriber example in the Encore language.

then passed to the object proxy in line 8. In line 20, object proxy blocks until
fut is resolved.

II.2.6 ASP/ProActive

The goal of ASP [13] and ProActive [15] is to design a transparent concurrent
programming language. ProActive is a Java library programming language [15],
which implements ASP semantics in Java and inherits many properties from
ASP. In ASP, an active object with its thread of control, its request queue, and
its passive objects is called an activity. In addition, active objects are defined by
a newActive command, and passive objects are standard Java objects. Only
active objects are accessible between activities. Method calls to active objects
are transparently turned into asynchronous calls, and those to passive objects
are turned into synchronous local calls. Moreover, futures are created implicitly
as a result of asynchronous method calls to an active object. In other words,
an asynchronous method call is stored in the request queue of the callee, and

98

Background

the caller creates a future object with a unique identity, referencing this request.
When a future gets resolved, a reference to the corresponding request gets
updated by the value.

ASP supports first-class futures, and its synchronization mechanism for
accessing a future is wait-by-necessity. This synchronization mechanism blocks
the thread whenever it needs to access a future value, until it is resolved.
Although futures in ASP are implicit, the ASP runtime system needs constructs
for implementation, update, garbage collection and synchronization of futures. It
supports an explicit synchronization primitive waitfor which triggers an explicit
wait-by-necessity on a future. It also provides primitives to test whether a future
is updated or not. The primitive is denoted by awaited(a), which returns true if
a is a future and false otherwise. An extension to multiactive objects has been
made recently in [34].

Example Figure II.7 shows the subscriber example with the ProActive language.
In ProActive, active objects are instantiated using the ProActive API:

B b = (B) ProActive.newActive(”B”, params, node);

It creates a new active object of type B, in which params specifies constructor
parameters, and node specifies the location to put the active object. Another
method to create an active object is by using turnActive(obj, node), which
makes an existing object (obj) active on a specified location (node). In fact, a
thread is created and an associated pending request queue. In line 5, an active
object proxy is defined by the newActive command, and in line 6 a passive
object prod is transformed to an active one by the keyword turnActive. In
addition, we assume that all object instantiations of class service is active as well.
Correspondingly, all method calls toward these objects are implicitly transformed
to asynchronous ones. Line 7 starts a produce cycle. In line 10, variable v is
the result of an asynchronous detectNews call toward object prod, which is an
implicit future. In line 11, this future is passed to object proxy without blocking.
Then, in line 20, when the future value is needed to continue execution, an
explicit wait-by-necessity synchronization waitfor is applied on the future v.

Implementation strategies To represent flow of futures and different update
strategies for implicit futures, Figure II.8 is adopted from [13]. The gray arrows
with numbers show the flow of futures between activities, and the black ones,
indexed with letters, show the future references. In this example, activity γ
initiates a remote method call to activity δ and future f1 is associated to the
result of this call. Future flow number 1 corresponds to the creation of future f1
involving γ and δ. Then γ sends f1 to β, for instance as the result of a request,
flow number 2, and β forwards the f1 reference to α as the result of another
request, flow number 3a. In parallel, γ sends a request to α′ with f1 as a request
parameter, flow number 3b. Finally, δ consumes the result associated with f1,
flow number 4.

99

II. An Evaluation of Interaction Paradigms for Active Objects

1 class Service(Int limit, ProducerI prod, DataBase db) extends ServiceI
2 implements Active {
3 // assuming active instantiation of object service
4 Object [] params= {limit,this}
5 Proxy proxy:= (Proxy) ProActive.newActive ("Proxy", params, Node);
6 prod = (Producer) ProActive.turnActive (prod, Node);
7 {this.produce(); }
8
9 void produce(){

10 News v := prod.detectNews();//implicit asynchronous call
11 proxy.publish(v); // v can be passed without blocking
12 db.logging(. . .) }
13 ...
14 }
15
16 class Proxy(Int limit,ServiceI s) extends ProxyI implements Active{
17 Client[] myClients:=null; ProxyI nextProxy;
18 ...
19 void publish(News v){
20 News ns := waitfor(v); // explicit wait-by-necessity on v
21 myClients.signal(ns);
22 if nextProxy==null;
23 then s.produce(); else nextProxy.publish(v);}
24 }

Figure II.7: A subscriber example in the ProActive language.

In the case of first-class futures, a future value list Fα inside an activity stores
future values calculated by itself or other activities. There are three strategies for
updating a future value: 1) no partial object forwarding, 2) eager strategy: either
forward-based or message-based, and 3) lazy strategy. The simplest strategy is
that no partial object (the objects containing future references or values) can be
forwarded between activities. In other words, futures are not first-class. This
strategy leads to fewer number of future references, simpler update process,
and avoids maintaining a future value list inside an activity. However, it is
too synchronized and may lead to waste of time and deadlock. For example,
according to Figure II.8, while γ is waiting for a response from δ, other activities
are stuck (waste of time).

The second strategy is called the eager strategy, a future gets updated as soon
as it is resolved, thus future value lists are avoided. In the case of forward-based
strategy, when a future reference is sent to an activity, the sender is responsible
for updating its value, but not the source activity; hence the source activity
does not need to keep the future value any longer. Consequently, when there are
too many intermediate nodes, this strategy increases the delay between when

100

Background

Figure II.8: Future flow in ASP [13].

a future is resolved and when it gets updated. In Figure II.8, when based on
this strategy, the future f1 is first updated in γ, then it sends this value to β, α′,
and then β can forward this value to α. Consequently, there is a delay before
updating the future value of α.

In the case of message-based strategy, when a future is forwarded between
two activities, a message, created from the receiver or the sender activity, is
sent to the source activity. Hence the source activity gets informed about them,
and when the future value is calculated, it can directly update it in all other
activities. This message-based mechanism minimizes the delay of updating. For
example, in Figure II.8, when γ sends the future reference f1 to α′, either γ or
α′ sends a message to the source activity δ; correspondingly, when the future
value is calculated in δ it can be immediately updated in α′.

The third strategy is the lazy future update. A future gets updated only
when an activity requires it (wait-by-necessity). The activity directly asks for
the future value by sending a message to the source activity. In the lazy strategy,
a future value list is required to be kept in the source activity in order to store
the future values and update them whenever there is a request for them.

The implementation of ProActive supports several update strategies, including
no partial object forwarding and forward-based strategy [13], and Henrio et al.
have implemented the four strategies in ProActive as a middleware to study the
efficiency of different update strategies [13]. The lazy strategy is faster than

101

II. An Evaluation of Interaction Paradigms for Active Objects

the two eager ones, since less updates are required. This strategy is suitable
for scenarios in which the number of processes requiring the future value are
considerably less than the total number of processes. In this strategy, there
is less load at the source process. However, it leads to additional delays and
needs more resources to keep the future value list inside the source process for
later updates. The eager forward-based strategy gives more delay since the
intermediate nodes have to forward a future value to a target. As a result, this
strategy is suitable for scenarios with small number of nodes. Eager message-
based strategy necessitates more bandwidth and resources at the source process,
since all other nodes communicate with it.

To complement the discussion we introduce some additional language features
and a new language called FutFree, in the next section.

II.2.7 A proposed future-free language with improved
expressiveness (FutFree)

As we have seen, implicit futures have the weakness that the implicit occurrences
of the get operation cannot always be identified in a context-free manner. This
makes modular reasoning and static analysis difficult. And a weakness of the
future-free paradigm, as represented by the future-free subsets of the languages
discussed above, is that there is no way of expressing that a get operation
should be performed in a given state. For the purpose of this paper, we therefore
propose a new language exploiting the future-free interaction paradigm while
adding a new mechanism for non-blocking waiting. The language is an extension
of the future-free subset of Creol/ABS and is called FutFree. We do this in order
to complement the comparison of languages with and without futures.

FutFree is without call-labels, and without explicit/implicit futures, and
consists of the asynchronous call statement o!m(e), the high-level future-free
call mechanisms of Creol, including the await construct, extended with a “tail”
construct to better control return value points, and a delegation mechanism to
enable simple sharing (to an object other than the caller). The tail construct
may or may not be combined with await:

[await] x := o.m(e)< s >

where the tail s is any statement list, being performed while waiting
for the future of the call to m to be resolved, and therefore s may not
use (the new value of) x. The syntax [await] denotes an optional await,
allowing the statement to suspend after s if the future is not resolved at that
point. Thus, the statement x := o.m(e)< s > will block after execution of s
while waiting for the return value to appear (if it has not already appeared).
And the statement await x := o.m(e)< s > will suspend after execution of
s while waiting for the return value to appear. The former statement is
equivalent to f := o!m(e); s;x := get f , using ABS, and the latter is equivalent
to f := o!m(e); s; await x := get f .

102

Background

Note that < s > may be empty or include additional calls as in for instance

[await] x := o1.m1(e1) < calculate e2; [await] y := o2.m2(e2) < s >; use y >

Here the first suspension point is after s, passively waiting for the last call to
complete (receiving the result in y), and the second suspension point passively
waits for the m1 call to complete. With respect to the expressiveness of this
construct, we observe that programs with nested call-get structures can be
expressed without futures. In particular, one may wait for completions of several
calls and continue when all calls have completed by letting the right brackets
(“>”) stand together, as in:

[await] call1 < ...; [await] call2 < ... >>

To await completions in one specific order, one would need to make the calls in
the opposite order, as in

[await] call1 < ...; [await] call2 < ... >; ... >

where the return value of call2 is handled before that of call1. We use await
when passive waiting is desired.

Delegation Consider the case that a method body (say method m) ends
by returning the result of a call to n, as in the method body {...;x :=
o.n(e); return x} where x is a local variable in the body. Here the result
of the call is not used by the current process, and it may be desirable to avoid
the waiting. With futures this could be done efficiently by returning a future, as
in {...; f := o!n(e); return f} changing the type of the return value accordingly.
The same efficiency can be achieved in the future-free setting by a form of
delegation [58]. The body of m is now written as {...; delegate o.n(e)}. The
statement

delegate o.n(e)

makes the current call (of m) terminate without producing a result, while
delegating to the remote call o.n(e) to send a result back to the caller of m.
Type checking must ensure that the result type of n is appropriate. This gives
the same efficiency for the current process as in the solution with futures, and
without the need to change the return type.

FutFree is more high-level than languages with futures or call labels, since
the syntactic complication of futures/labels is avoided, and it is more expressive
than the future-free restriction of both Creol and ABS. However, FutFree does
not support non-parenthetic nesting of calls and returns, nor delegation to more
than one object.

A weakness of the tail construct is that it involves blocking at the end of the
tail. The delegation mechanism delegate o.n(e) avoids this waiting point and
still makes use of the result. If o here is this, a local continuation (i.e., relative to
the caller) will be triggered asynchronously. This is a bit similar to a continuation

103

II. An Evaluation of Interaction Paradigms for Active Objects

1 class Service(Int limit, ProducerI prod) implements ServiceI {
2 ProxyI proxy:= new Proxy(limit,this); //proxy does the main job
3 {this!produce{}} // initial call
4 ...
5 Void produce(){ News ns;
6 await ns := prod.detectNews() // no blocking
7 < db.logging(. . .) >;
8 proxy!publish(ns)} // send the news
9 }
10 class Proxy(Int limit,ServiceI s) implements ProxyI{
11 List[ClientI] myClients:=Nil; ProxyI nextProxy;
12 ...
13 Void publish(News ns){
14 myClients!signal(ns); // multi−cast the result
15 if nextProxy==null
16 then s!produce() else nextProxy!publish(ns)}
17 }

Figure II.9: The Publishing Example rewritten in the future-free language

associated to a future, which could be added as a suspended process and enabled
when the associated future is resolved. Such a continuation should then maintain
the class invariant. When a method body contains a number of continuations,
there may be a need for coordination of the different activities. Encore has
solutions for this using futures [9]. A syntax for this concept of asynchronous
continuation can also be made in the future-free setting (i.e., without explicitly
mentioning the associated future). However, we will not add further syntax to
FutFree since this can be simulated (even though less elegant). The concept of
delegation is also useful in the setting of languages with futures, avoiding one
level of future referencing, reducing a result of type Fut[T] to T .

Example In Figure II.9 we show the publishing example rewritten to the new
format without futures (with changes in blue). This is essentially the same
solution as that in Creol, Figure II.4, but expressed without call labels/local
futures. We also assume interfaces as in the Creol. The changes are straight
forward. The plService object makes the same call to plpublish, but at a later
time, when the news are available. By using a suspending plpublish call, the
plService object is not blocked and has therefore similar efficiency as in the first
version. And the blocking that used to be in the plProxy object is removed,
and thus the plProxy objects will be more responsive. This indicates that
passing futures as parameters can be avoided without loss of efficiency by using
asynchronous call/return in combination with suspension. Instead of having
a responsive plService object at the cost of blocking in plProxy objects, as in
the original version, the future-free version has a responsive plService object
as well as plProxy objects, but now the process queue of the plService object
may be non-empty. Thus there is less need for first-class futures in a future-free
language with cooperative scheduling than in one without. In general one may

104

Background

ABCL Rebeca Creol ABS Encore ASP FutFree
futures yes no yes yes yes no no
syntactic yes yes yes yes yes no yes
first-class yes no no yes yes yes no
cooperative no no yes yes yes no yes
polling yes no no no no yes no
dyn. creation yes no yes yes yes yes yes
passive data obj obj adt adt obj obj adt

Figure II.10: Overview of future support in the selected languages.

use the process queue and suspension rather than blocking separate object(s)
in get statements. Forwarding a future can be replaced by a suspended process
forwarding the future value. And this gives a deadlock-free solution.

The versions in Figures II.9 and III.2 are similar in that the Service objects
are not blocked (apart from the logging part). And if there are no other produce
and publish calls than the ones in Service and Proxy, there will be at most
one uncompleted produce process and also at most one uncompleted publish
process, for either version. For the version in Figure II.9 there is an explicit
interleaving point after the logging, whereas in the other version (in Figure III.2)
this interleaving is implicit since the produce process terminates. Thus the two
versions may give rise to different executions.

II.2.8 A summary of active object languages

A summary of the main interaction-related features of some different languages
for active objects is given in Figure II.10. In the table, the entry “futures" is
indicating whether a language supports the future implementation explicitly or
not. The entry “syntactic" shows whether the waiting points are syntactically
identified or not, in the context of a given class. For example, in ASP when
a future is passed to an activity and its value is needed inside that, it is not
textually clear whether it is a waiting point or not. For Rebeca the “yes” refers to
the extension with wait. Moreover the table compares whether these languages
support first-class, cooperative, polling, cooperative scheduling or not. The table
entry “dyn. creation" indicates if dynamic object creation is supported, and the
entry “passive data" indicates how temporary internal data structure is built,
either by means of (passive) objects without their own execution thread, marked
“obj”, or user-defined data types, marked “adt”.

An advantage of explicit futures is that it provides explicit (syntactic)
identification of waiting points, typically by the get construct. For the category
of languages with implicit future support, we may distinguish between those
with explicit and implicit identification of waiting points.

The table summarizes the support of futures and related concepts for the
different languages. The considered languages are chosen to give a certain variety,
all in the setting of imperative programming with active objects.

105

II. An Evaluation of Interaction Paradigms for Active Objects

For the category of implicit futures, there is a distinction between languages
where the waiting points are syntactically given and those where they are not,
as in the case of wait-by-necessity where the usage of a variable x bound to the
result of a method call requires that the value is available. Thus sending x as a
parameter does not require that the value is there, but updating or testing the
value would normally require the value to be available. For instance, this means
that a method m(Int x){s1; y := x+1; s2} will have an implicit potential waiting
point at y := x+ 1 when m is called with an actual parameter representing an
implicit future (and when s1 does not use x) whereas there is no such waiting
point when m is called with an actual parameter representing an available value.
This makes program reasoning complicated, for instance deadlock reasoning, and
modular semantics is not possible since waiting depends on external objects. We
will therefore limit the discussion to languages with explicit waiting points.

Operations on futures can be blocking, such as getting the result from a
future, suspending, or it can be asynchronous and non-blocking, such as attaching
a callback or a continuation to a future. For example, in AmbientTalk the future
access is a non-blocking asynchronous operation, in which actors desiring a future
value are registered as observers, then when the future is resolved, its value is sent
to these registered observers. An observer actor can register a closure, a block of
code, to a future that is applied when the future gets resolved [20]. An extended
version of Encore [27] also offers high-level non-blocking coordination constructs
operating on futures. For instance, it can apply a function on the first result of
a bunch of futures and terminate the computations associated with the other
futures. It offers complex coordination, including pipe-lining and speculative
parallelism on futures, when they might be dependent on other futures. To have
these complex coordinated workflows, they offer a new non-blocking asynchronous
parallel abstraction ParT (or Par T), which is a handle to parallel computations
or a data structure for collecting future values, and also offer parallel combinators
to operate on. Parallel combinators are non-blocking constructs that control
and coordinate ParT collections without blocking threads.

A recent survey [8] compares several active object languages such as ABS,
Encore, Rebeca and ASP/Proactive according to their design aspects, the
degree of synchronization, the degree of transparency and the degree of data
sharing. It identifies the design purpose of these languages. For example
Creol, ABS, and Rebeca are designed with program analysis in mind, while
Encore and ASP/ProActive are optimized for efficient execution. The degree of
synchronization is compared according to their synchronization primitives. This
survey compares explicit and implicit futures as a degree of transparency. The
degree of data sharing between active objects are compared as well. None of the
active object languages support data sharing, apart from futures, since they are
oriented toward distributed systems, where copying and sending data is more
safe and efficient.

106

Unified Syntax and Semantics

II.3 Unified Syntax and Semantics

Based on the overview above, we consider the main categories of language support
for interaction mechanisms, given by

• support of first-class futures, object-local and method-local futures, and
future-free (asynchronous call/return) interaction

• cooperative scheduling or not

• polling or not (for languages with futures)

This gives the following main categories for interaction mechanisms, where
the six first categories (those with futures) may be with or without polling: i)
cooperative scheduling and first-class futures with ABS/Encore as representatives,
ii) cooperative scheduling and object-local futures, iii) cooperative scheduling
and method-local futures with Creol as a representative, iv) non-cooperative
scheduling and first-class futures with something in the direction of ABCL as a
representative, v) non-cooperative scheduling and object-local futures, vi) non-
cooperative scheduling and method-local futures, vii) cooperative scheduling and
no support of futures, with FutFree as a representative, and viii) non-cooperative
scheduling and no support of futures, with Rebeca (or the await-free restriction
of FutFree) as representative. However, basic Rebeca does not use the call/reply
paradigm.

As mentioned, we restrict ourselves to imperative languages, and assume
syntactic identification of any waiting points. In particular, to keep the discussion
uniform, we use the following ABS-inspired syntax for the different language
mechanisms representing the basic ways of using futures or asynchronous
call/return interaction without futures.

II.3.1 Syntax

The unified syntax is given in Figure III.1. We assume static type checking. The
different language combinations are obtained by including/excluding polling,
await, first-class, or object/method-local futures. In the case of method-local
futures, futures may not be assigned to fields nor passed as parameters or method
results. In the case of object-local futures, futures may be assigned and passed
as parameters/result but only for local methods (methods not exported through
any interface). This guarantees static control of what is legal. For first-class
future languages, futures may be assigned and passed to parameters/result to
any method (modulo static typing restrictions).

Moreover, the different language combinations are achieved by taking the
basic and future-free constructs, adding no futures, or adding futures, either with
first-class future operations (assignment and parameter passing), no first-class
future operations (other than assignment to local variables) for the case of method-
local futures, or assignments to future variables and passing of futures in local
methods for the case of object-local futures, and furthermore adding suspension

107

II. An Evaluation of Interaction Paradigms for Active Objects

Basic constructs
x := e assignment (x a variable, e an expression)
x := new C(e) [at o] object creation (e actual class parameters)
return e creating a method result/future value
if c then s [else s′] fi if-statement (c a Boolean condition)
while c do s od while-statement

Future-free constructs
o!m(e) simple asynchronous call, non-blocking
[await] x := o.m(e) blocking/non-blocking call
[await] x := o.m(e) < s > blocking/non-blocking call with tail
delegate o.m(e) termination and delegation

Basic future constructs
f := o!m(e) asynchronous call, non-blocking
[await] x := get f getting a future value

Cooperative scheduling
await c conditional suspension
await f? await on a future

Polling
f? checking if a future is resolved

Figure II.11: Unified Syntax. Here f is a declared future variable and x an
ordinary program variable, s, s′ denote statement lists, and [. . .] denotes optional
parts.

(by the await keyword) or not, and adding polling or not for combinations
with futures. Furthermore, languages with method-local futures may be divided
further by allowing multiple-read or single-read futures. Single-read futures
depend on static constraints ensuring that each path through a method has at
most one read of a given future, whereas multiple-read languages are free from
this restriction. Thus we cover in all eighteen language combinations.

The future-free constructs (including tail) are included in all language
combinations, however, some of these constructs can be omitted in languages
with futures since they can be expressed by means of futures. For instance,
the following statements are inter-definable: The call [await] x := o.m(e) is the
same as [await] x := o.m(e) < skip >, and the call [await] x := o.m(e) < s >
may be simulated by means of futures by f := o!m(e); s; [await] x := get f , for
some fresh future variable f , where [await] x := get f again can be seen as a
shorthand for [await] f?;x := get f . Furthermore, we may extend the await
notation to a conjunction of futures. We use dot-notation for suspending/blocking
calls and ! for making an invocation request.

Polling of a future means checking if a future is resolved or not, for instance

108

Unified Syntax and Semantics

in an if-test, say

if f? then x := get f else ... fi

Polling may lead to complicated branching structures, and is often avoided in
languages with support of explicit futures. Basic constructs are quite standard,
but object creation has as an optional part (at o) for specifying the placement
of the new object. The default is at this, i.e., the same location as the parent
object.

II.3.2 Operational Semantics

In this part, we present (relevant parts of) the operational semantics of the
different language combinations, including future-free, method-local, object-
local, and first-class future languages, using the style of structural operational
semantics. The purpose of the operational semantics is to show the underlying
asynchronous communication between active objects at runtime. Each rule in
the operational semantics corresponds to one execution step.

A system state is given by a configuration, which is a multi-set of objects and
messages, either invocation messages or reply messages, in addition to future
objects in the case of first-class future languages. An object is represented as

ob(o | s, a, l, q)

where o denotes the object identity, s is the list of active statements, a the
state of object fields (attributes), l the state of local variables defined in a
method (including the parameters), and q the internal process queue. The
process queue is only needed in languages with cooperative scheduling. The pair
(s& l) represents (the remaining part of) the active process, with statements
s and local state l. At suspension, this active process is moved to the process
queue, making the object idle. When idle, an object may continue with another
(enabled) process from the process queue, or start a new method invocation. We
use the syntax

invoc (o, u,m, d) to o′

for an invocation message from object o to object o′ where m is the name of
the called method, u the identity of the call/future, and d the list of actual
parameters. An object will have an associated invocation queue, and also a reply
queue in the case of non-first-class future languages. We let iq(o | p) denote the
invocation queue associated with o containing messages (p) to o.

It is worth mentioning that an object identity is unique, which can be achieved
by using the parent object identity and a counter [39]. Similarly a unique call
or future identity u can be achieved by using the caller object identity and a
separate counter. The counters can be represented by implicit fields in a. In the
case of first-class future languages, this identity acts as the future identity.

The operational semantics is given by a number of rewrite rules. A rule
can be applied to a configuration if the left-hand-side matches a subset of the

109

II. An Evaluation of Interaction Paradigms for Active Objects

configuration (possibly reordered). If the left-hand-sides of two rules match
disjoint parts, they can be applied at the same time, reflecting concurrent
behavior. Each rule involves at most one object, reflecting that the objects
are executing independently from each other. Thus the objects execute in
parallel. Non-determinism is achieved when (at least) two left-hand-sides match
overlapping parts of a configuration.

States are given by mappings from variable names to values, and l[x 7→ d]
denotes the local state l updated so that variable x binds to data value d (adding
such a binding if x is not bound in l). We use + for map composition with
overwriting, so that a+ l is the union of map a and l, using l for variable names
with a binding in both a and l, reflecting that the binding of a variable name
in the inner scope l shadows any binding of that name in the outer scope a.
Therefore, a+ l represents the total state of an object as used for evaluation. For
an expression e, the notation [e]a+l abbreviates the evaluation of e in the context
of a+ l. For a variable x, the evaluation [x]a+l equals [x]l if l has a binding for
x, otherwise [x]a, i.e., the value of a variable x is found in l if l has a binding for
x, otherwise in a. Therefore the semantics of an assignment statement is given
by two rules; one for the case that x is a local variable and one for the case that
x is a field:

assign-local : ob(o |x := e; s, a, l, q)
−→ ob(o | s, a, l[x 7→ [e]a+l], q)
if x ∈ l

assign-field : ob(o |x := e; s, a, l, q)
−→ ob(o | s, a[x 7→ [e]a+l], l, q)
if x ̸∈ l

Type checking ensures that x is defined in l or a. Similarly there are two rules
for if-statement, depending on the value of the if-condition.

if-then : ob(o | if c then s1 else s2 fi; s, a, l, q)
−→ ob(o | s1; s, a, l, q)
if [c]a+l = true

if-else : ob(o | if c then s1 else s2 fi; s, a, l, q)
−→ ob(o | s2; s, a, l, q)
if [c]a+l = false

The semantics of the call [await] x := o.m(e) is given by that of f :=
o!m(e); s; [await] x := get f , for some fresh future variable f . And similarly
the semantics of the call o!m(e) is given by that of f := o!m(e), for some fresh
future variable f . Thus the semantics of the future-free languages is given by
means of futures at the run-time level.

The operational semantics of languages with first-class futures differs from
those with local futures or without futures, since they need a representation of
shared future objects, and we therefore consider the two classes of operational
semantics in two subsections.

110

Unified Syntax and Semantics

II.3.2.1 Operational semantics of languages without first-class futures

In the case of local or no futures, we need to deal with reply messages,
and let reply (u, v) to o represent a reply message to the caller o, where
u is the call identity and v the returned value. Each object o must keep
track of the received reply messages, in a reply queue rq(o | r), where r is a
queue of (u, v) pairs. When a get f operation is executed, one must check
if there is a value for f in the reply queue. Thus the order of the reply
queue is irrelevant, and the handling of the internal process queue can be
seen as non-deterministic. Call identities are invisible to the programmer
and cannot be passed to other objects (where these call identities would be
unknown). For a statement containing get f , the future (expression) f must
first be evaluated. Therefore ob(o | [await] x := get f ; s, a, l, q) reduces to
ob(o | [await] x := get [f]a+l; s, a, l, q).

Figure II.12 defines the operational semantics for local futures, with or
without suspension (ignoring all rule instances with await in the latter case),
and with polling if including polling rules similar to those in Figure II.13 (using
the reply queue for checking the presence of a future). The difference between
object-local and method-local futures is not visible in the rules, but in the
underlying language, restricting assignment and passing of futures (in the ways
mentioned). The operational semantics for the future-free languages is obtained
by replacing future-free calls by calls with futures as explained above, and
allowing/disallowing suspension as desired. The syntax [await] denotes an
optional await, o and o′ denote object identities, and an object is idle when
there is no active process. In a left hand side or condition, the symbol “_”
matches any term.

The async-call rule executes an asynchronous call where o is the caller
invoking method m of object e with e as actual parameters. This rule generates
a globally unique call identity (u), which is assigned to the future variable f . The
call creates the invocation message invoc (o, u,m, [e]a+l) to [e]a+l, where the
actual parameters e and the callee e are evaluated before sending this message.

The start rule says that when an object is idle and there is an invocation
message in its invocation queue, the object may start to execute the corresponding
method. It then captures the method’s body s as its active process with local
variables given by the method declaration (bound to default values), binding
formal parameters to the actual ones, and storing the caller object in the (implicit)
caller parameter and the call identity in the (implicit) callid parameter. These
two implicit variables are needed to execute the return statement.

The reply rule represents the case when an object o returns a value e to the
caller o′. It creates a reply message with the callid as its first argument and the
evaluation of [e]a+l as the value and forwards this message back to the caller, as
given by the local variable caller. We assume each method body ends with a
return statement.

The get-reply rule describes how a reply message to an object o with label u
and return value v enters into the reply queue (rq(o | r)) of object o.

The get, suspend, await-pq rules represent query statements for retrieving

111

II. An Evaluation of Interaction Paradigms for Active Objects

async-call : ob(o | f := e!m(e); s, a, l, q)
−→ ob(o | f := u; s, a, l, q)

invoc (o, u,m, [e]a+l) to [e]a+l

where u is a fresh locally unique identity

invocation : invoc (o, u,m, d) to o′

iq(o′ | p)
−→ iq(o′ | p · invoc(o, u,m, d))

start : iq(o | invoc(o′, u,m, d) · p)
ob(o | idle, a, empty, q)

−→ iq(o | p)
ob(o | s, a, [caller 7→ o′, callid 7→ u, x 7→ d, l 7→ l0], q)
where method m binds to m(x){T l; s}
(with initial values l0 of l)

reply : ob(o | return e, a, l, q)
−→ ob(o | idle, a, empty, q)

reply ([callid]l, [e]a+l) to [caller]l

get-reply : reply (u, v) to o
rq(o | r)

−→ rq(o | r · (u, v))

get : rq(o | r)
ob(o | [await] x := get f ; s, a, l, q)

−→ rq(o | r)
ob(o |x := v; s, a, l, q)

if ([f]a+l, v) ∈ r

suspend : rq(o | r)
ob(o | await x := get f ; s, a, l, q)

−→ rq(o | r)
ob(o | idle, a, empty, q · (await x := get [f]a+l; s& l))

if ([f]a+l,_) ̸∈ r

await-pq : rq(o | r)
ob(o | idle, a, empty, q · (await x := get u; s& l) · q′)

−→ rq(o | r)
ob(o |x := v; s, a, l, q · q′)

if (u, v) ∈ r

tail : ob(o | [await] x := e.m(e) < s >; s′, a, l, q)
−→ ob(o | f := e!m(e); s; [await] x := get f ; s′, a, l[f 7→ nil], q)

where f is a fresh local (future) variable

Figure II.12: Operational rules for local futures and future-free statements.

112

Unified Syntax and Semantics

the reply. For the first two rules the query is already in the active process, and
for the third it is in the internal queue. The reply value is not removed from the
reply queue, thus multiple reads are possible. (For single-read futures it should
be removed.) When a reply is needed and the reply message is in the queue,
the response value v is fetched. The suspend rule takes care of the case when a
reply is needed in an await statement, but the corresponding reply message is
not in the queue. Then the whole process with its local variables are suspended
and placed at the end of the internal queue. The notation q · z denotes that
a process z is appended to q. A suspended process with the state of its local
variables are represented by a pair, written (await x := get u; s& l)), where
await x := get u; s is the suspended process with local state l.

The tail rule says that we implicitly create a fresh local variable f (like a
future) to talk about the value resulting from the method call. Then in the
next step, the async-call rule binds the f variable to a unique identity u. We
ignore here the rules for other statements such as if and while, since they are
not central to our discussion.

The rules in Figure II.12 can be used to define object-local futures as well
as method-local futures and future-free languages, restricting the language
accordingly (disallowing passing of futures in non-local methods, disallowing
all passing of futures and assignments of futures to fields, and disallowing the
use of futures variables in a program, respectively). In the latter case, future
variables and the get statement are not part of language syntax. However, call
identities and get statements are implicitly generated by the rules. Asynchronous
calls, which use futures, are therefore not part of the language as seen by the
programmer, but simple asynchronous call is. The rule for a simple asynchronous
call is similar to that of asynchronous call, i.e.,

ob(o | e!m(e); s, a, l, q) −→ ob(o | s, a, l, q) invoc (o, u,m, [e]a+l) to [e]a+l

where u is locally fresh as before. There is no state update since there is no
future variable involved. (In fact, one could use nil instead of u in the invocation
message to indicate that no return is needed.)

As mentioned, the rules in Figure II.12 define object-local and method-local
futures. For both these language classes we can define the versions without
cooperative scheduling by removing the process queue (pq) and removing rules
involving await statements. However, the addition of first-class futures requires
sharing of futures, which is not possible with the rules of Figure II.12. This is
considered below.

The rules for polling (given for the case of first-class futures in Figure II.13)
describe that the test f? gives true if and only if the future is resolved/the reply
is in the reply queue.

II.3.2.2 Operational semantics of languages with first-class futures

In Figure II.13, we define operational semantics of first-class futures, representing
a future as a global object with a unique identity (the future/call identity). We
let (fut(u |)) denote an unresolved future object with identity u, and (fut(u | v))

113

II. An Evaluation of Interaction Paradigms for Active Objects

async-call’ : ob(o | f := e!m(e); s, a, l, q)
−→ ob(o | f := u; s, a, l, q)

fut(u |)
invoc (o, u,m, [e]a+l) to [e]a+l

where u is a fresh and globally unique identity

reply’ : fut(u |)
ob(o | return e, a, l, q)

−→ fut(u | [e]a+l)
ob(o | idle, a, empty, q)

if [callid]l = u

get’ : fut(u | v)
ob(o | [await] x := get f ; s, a, l, q)

−→ fut(u | v)
ob(o |x := v; s, a, l, q)

if [f]a+l = u

suspend’ : fut(u |)
ob(o | await x := get f ; s, a, l, q)

−→ fut(u |)
ob(o | idle, a, empty, q · (await x := get u; s& l))

if [f]a+l = u

await-pq’ : fut(u | v)
ob(o | idle, a, empty, q · (await x := get u; s& l) · q′)

−→ fut(u | v)
ob(o |x := v; s, a, l, q · q′)

polling1 : fut(u | v)
ob(o | if f? then s1 else s2 fi; s, a, l, q)

−→ fut(u | v)
ob(o | s1; s, a, l, q)

if [f]a+l = u

polling2 : fut(u |)
ob(o | if f? then s1 else s2 fi; s, a, l, q)

−→ fut(u |)
ob(o | s2; s, a, l, q)

if [f]a+l = u

Figure II.13: Operational rules for first-class futures.

114

Evaluation

denote a resolved future object with value v. In this paradigm, a future is
once writable, but readable many times by objects that have a reference to it.
Objects can individually and synchronously access the future object value when
resolved. Some of the rules from Figure II.12 must then be modified, as shown
in Figure II.13 with primed versions of the relevant rules. The rules invocation,
start, and tail are as before and are therefore not redefined.

The async-call’ rule represents the creation of a unique future object
corresponding to a method call. It creates an unresolved future object with a
unique identity (details omitted). This rule creates an invocation message to
the callee as before. However, the caller identity (o) is not needed in the case
of first-class futures unless the language supports the implicit caller parameter,
and one could remove o from the invocation message in this case (simplifying
both the async-call’ and the invocation rule).

The reply’ rule says that when object o returns the value of e, it becomes
idle and the reply goes to the future object with identity u. The get’, await-pq’,
and suspend’ rules capture the cases when there is a query statement to get
the result as before, but now using the future object. In the get’ rule, the query
succeeds since the reply value is resolved in the future object fut(u | v), hence if
the evaluation of [f]a+l according to the local variables and object fields equals
u, then the object can update x. For the await-pq’ rule, this query is in the
internal queue and the active process is idle, and then the object deals with this
suspended query. If the reply value is resolved, the object can update x. For the
suspend’ rule, an await statement is in the internal queue and the reply is not
resolved yet, therefore the whole process with its corresponding local variables is
suspended in the internal queue.

The semantics of polling is similar to that of get/get’ for the case that the
future is resolved, in which case the expression f? is replaced by true, and
suspend/suspend’ for the case that the future is not resolved, in which case the
expression f? is replaced by false.

For languages without cooperative scheduling we omit pq and omit the
suspend’ and await-pq’ rules, and the optional await in get’. This means that
we have defined the operational semantics of all the chosen classes of languages.
For simplicity we have not considered aspects such as garbage collection of
futures.

II.4 Evaluation

We evaluate the various mechanisms for interaction between active objects with
respect to the dimensions stated in the introduction. As mentioned we consider
imperative languages with or without futures but not implicit futures.

II.4.1 Syntactic complexity

We compare the different versions of the unified syntax in Figure III.1, including
related static checking aspects and also immediate pragmatic issues. It is obvious
that explicit futures require programming awareness of call identities or futures,

115

II. An Evaluation of Interaction Paradigms for Active Objects

representing a new kind of entity, and new programming choices like how and
when to use them. Thus the notion of future variables comes with a syntactic
and pragmatic cost, especially since the addition of future variables does not
reduce the need of ordinary variables.

When a new method is declared in a language with first-class futures, one
must decide for each parameter and return value if it should be represented by
a future or not. Moreover, the passing of futures in a typed language requires
typing support of future types, as in Fut[T]. And if T ′ is a subtype of T , one
may want Fut[T ′] to be a subtype of Fut[T]. This means that first-class futures
and object-local futures give a more complex type system, whereas method-local
futures can be handled with a simple predefined type, say Fut. Pragmatically,
the resolving of futures of futures may lead to some confusion.

For local futures, we have seen in subsection II.3.2.1 that it is possible to
ensure that futures really are object-local or method-local, as appropriate, by
means of simple language restrictions. First-class future operations reuse basic
language mechanisms and do not add further to the syntactic restrictions of
a language. For all languages with futures, one may add static restrictions to
ensure that a get operation is not done on a nil future (one that has not been
associated with a call yet), a problem which is similar to avoiding nil references.
For first-class or object-local futures, one may for instance insist that a future can
only be passed when statically not nil. For method-local futures, the situation is
much simpler since there is no passing of futures. However, static restrictions
are needed to ensure that a get statement x := get f is type-correct when x is
simply typed by the predefined type Fut [41].

Future variables give a level of indirectness in that the retrieval of the
result of a call is no longer syntactically connected to the call, compared
to future-free languages. The connection might range from trivial (as in
f := o.m(...);x := get f) to non-trivial, for instance when the future is received
as a parameter. In the latter case a get statement in a given method may not
statically correspond to a unique call statement. This is a complicating factor in
static analysis, especially modular static analysis. One may overestimate the set
of call statements that correspond to a given get statement, but this requires
access to the whole program, which is not possible in open-ended software
systems.

From a pragmatic point of view, we notice that in languages with first-class
futures, the passing of futures is decided when a method is declared rather than
when it is called, i.e., for each method parameter or return value one must
decide at declaration time if it should be represented by a future or not, and
all calls made later must obey this regime. Then, too few parameters given as
futures may imply that desired passing of futures is not supported, and too many
future parameters lead to dummy future variables on the call-site and syntactic
overhead. This can be a problem in languages with first-class futures since the
need of the future mechanism depends on the calling objects. Thus first-class
future languages may not provide the desired flexibility. This is not a problem
for method-local futures since there is no passing of futures. And the problem
is rather limited for object-local futures since future passing is limited to local

116

Evaluation

methods, for which all calls appear in the class definition (but class inheritance
may reintroduce the flexibility problem).

Consider next cooperative scheduling. The await mechanism can be decided
for each call upon need, and is not pre-decided in method declarations. This
means that the same method may be called by means of blocking calls as well
as by suspending calls. This gives a high degree of flexibility. The addition of
cooperative scheduling is syntactically cheap since essentially only one keyword
(await) is needed, and type analysis is not affected. Pragmatically, the use of
suspension should reflect the need to wait for something without blocking, and
the choice between blocking and non-blocking waiting should be obvious for
a conscious programmer. However, the combination of first-class futures and
cooperative scheduling gives two different mechanisms that may be used to deal
with waiting without blocking, and the choice between them is less obvious.

Finally we consider the concept of polling. Adding polling is syntactically
cheap, essentially a new predefined function (“f?”) is added. Type checking
issues are trivial, but some language restrictions may be added to control where
polling is allowed, for instance restricting it to if-conditions (possibly allowing
Boolean expressions involving several polling checks). Pragmatically, the use of
polling gives increased programmer control. For instance, one may wait for two
results and react to them in the order they appear. This may look like

if f1? then react1; get f2; react2 else if f2? then react2; get f1; react1 fi fi.

However, when there are more than two futures that should be handled
individually, the branching becomes rather involved and with repetition of
parts of the code. Use of futures or cooperative scheduling may provide more
elegant solutions: With cooperative scheduling one may start one process for
each future, and let each process await the corresponding future. With first-class
futures one may pass each future to a new object taking care of the proper
reaction.

All in all, we have considered syntactic complexity and immediate pragmatic
issues. We have seen that futures add more syntactic complexity and more
pragmatic complications than cooperative scheduling and polling. And first-class
futures add more pragmatic complications than object-local futures, which again
add more pragmatic complications than method-local futures. Polling without
cooperative scheduling may lead to a complex programming style, whereas
languages with first-class futures or cooperative scheduling are less depending
on polling.

II.4.2 Semantic complexity

The operational semantics (Figures II.12 and II.13), although abstractly defined,
shows that local futures and future-free languages can be handled by reply
queues (or sets) on the caller side, whereas first-class futures is handled by
shared future objects. For method-local futures, the replies can be removed
when the method instance (process) that generated the future has terminated.
This can be formalized in the semantics by including the identity of the calling

117

II. An Evaluation of Interaction Paradigms for Active Objects

process (given by callid) in the future identity, for instance as a pair (i, j) where
i is the process identity and j the future identity relative to i. We may then add
a rule

rq(o | r · ((i, j), v) · r′) ob(o | s, a, l, q) −→ rq(o | r · r′) ob(o | s, a, l, q) if i̸∈q

where i̸∈q checks whether a process with callid equal to i is in the process queue
q. In the case of single-read futures as well as future-free languages, a reply in
rq may even be removed as soon as it is read, in the rules get and await-pq (by
removing the reply message from r in the right-hand-side). This still requires
that removal is handled upon method termination, as for multiple-read local
futures, in case the future is not read. (Alternatively this could be controlled by
commands inserted in the code during static checking.) Thus for method-local
futures (both single-read and multiple-read), the reply messages can be removed
efficiently without general garbage collection. The same scheme can be used for
future-free languages.

First-class futures involve the creation of future objects. The placement of
the futures in a distributed system is not specified by the abstract operational
semantics (other than being placed somewhere in the system configuration), nor
is the removal of these objects, but could be added by rules that consider the total
system (letting futures that are no longer referred to in the system be deleted).
A more efficient implementation is possible, as discussed in subsection II.4.4.

The notion of cooperative scheduling adds an internal process queue to each
active object, together with en-queuing and de-queuing operations. The semantics
of basic statements (other than call, return, get, await, polling) is not affected by
futures nor cooperative scheduling. For the considered mechanisms, first-class
futures make the most complex change of the basic operational semantics, since
this mechanism changes the notion of system configuration and necessitates
garbage collection of futures, while that of cooperative scheduling is less involved,
and that of polling is fairly trivial.

II.4.3 Expressiveness

We first show that the future mechanism can be encoded in an active
object language with future-free constructs, using the asynchronous call/return
paradigm together with dynamic object creation. Given a method V m(T x)
declared in an interface I (where V is the type of the return value), we define
an interface for futures for this call by
1 interface Future_m {
2 Bool resolve() // waiting until resolved
3 V get() // gets the value when resolved
4 }

and an extension of this interface for the case that we allow polling:
1 interface PFuture_m extends Future_m{
2 Bool resolved() // polling
3 }

118

Evaluation

1 class PFUTURE_m(I o, T x) implements PFuture_m {
2 Bool res:= false; // is the future resolved?
3 V val; // the value of the future when resolved
4 // initial code
5 {await val:=o.m(x); res:=true}// non−blocking
6 Bool resolved(){return res}
7 Bool resolve(){await res; return true}
8 V get(){await res; return val}
9 }

1 class FUTURE_m(I o, T x) implements Future_m {
2 Bool res := false; // is the future resolved?
3 V val; // the value of the future when resolved
4 // initial code
5 {val:=o.m(x); res := true} // blocking
6 Bool resolve(){return true} // await res is implicit
7 V get(){return val} // await res is implicit
8 }

Figure II.14: Implementation of simulated futures with and without polling.

These interfaces are implemented by two classes, FUTURE_m and PFUTURE_m
respectively, given in Figure II.14. A new future then corresponds to a new
future object, using the appropriate class. Thus, if f is an object of interface
Future_m, the creation of a future by

f := new FUTURE_m(o, e)

corresponds to the call f := o!m(e) in a language with futures. The call
f.resolve() corresponds to blocking while waiting for a result, and the call
x := f.get() corresponds to x := get f in a language with futures. For
f of interface PFuture_m, the call f.resolved() corresponds to the test f?.
Furthermore, first-class operations on f correspond to first-class future operations.
In case of cooperative scheduling, the call await x := f.get() corresponds to
await x := get f in a language with futures, and the call await f.resolve()
corresponds to await f? in a language with futures.

Consider the implementation of futures with polling given in Figure II.14 by
class PFUTURE_m (for a given method m as above). The call to m in the class
implementation uses await so that the future object will be able to perform
incoming calls before the future is resolved, and in this way be able to return the
appropriate result of polling requests. Thus, implementation of polling requires
suspension (or could be predefined outside the language).

For the case without polling we may implement the future mechanism without
use of suspension, by class FUTURE_m in Figure II.14. Here we can use a blocking
call to m since nothing can be done by the future object when not resolved.
Therefore we do not need await res in the implementation since the object
cannot respond to any request when the future is not resolved. This could lead
to more efficient scheduling. Since this implementation requires only the blocking

119

II. An Evaluation of Interaction Paradigms for Active Objects

call construct, it can be expressed in all considered languages. Thus built-in
futures are not strictly needed in languages without futures since they can be
expressed (simulated) within these languages, but polling requires suspension
(or similar mechanisms). In either case, the implementation of a future uses one
object with its own thread. This gives a simple high-level model of the future
mechanism. It may seem like an inefficient solution, but due to the passiveness
of the future objects, it suffices that they are given CPU time only when there
is an incoming call/reply from the environment.

Each call involving a future is implemented as an object of class FUTURE
(or PFUTURE). The future object makes the call and (eventually) receives the
return value, as well as dealing with requests about the future value. We support
polling of future values as well as blocking and non-blocking waiting primitives
for requesting the future value.

On one hand it is obvious that the addition of language features may increase
the expressive power. With our unified syntax the future-free language is a subset
of that for method-local futures, which is a subset of that for object-local futures,
which again is a subset of that for first-class futures. Their expressiveness is
accordingly. And it is clear that the addition of cooperative scheduling adds
expressive power. On the other hand we have seen that first-class futures can be
expressed in languages without first-class futures or without futures, by means of
object generation using predefined classes. Thus if shared futures are occasionally
desirable, they can be defined by means of explicit future objects definable within
the language. We have also seen that simulation of polling requires the await
mechanism (or similar).

II.4.4 Efficiency

In this part we compare the efficiency of active object languages, considering the
amount of message exchange and complexity of the garbage collection process.
For example, in a distributed system with wireless IoT devices, the amount of
network traffic is vital, and should be taken into account. Since IoT devices suffer
from resource and power limitations, communication efficiency, as well as space
and time limitations, matter. Correspondingly, a high amount of message passing
and cumbersome garbage collection cause high resource and power consumption,
which in general should be avoided.

In active object languages, the future paradigm and the interaction
mechanisms influence the number of communication messages and the garbage
collection. Consider a method result that is needed by several objects in addition
to the caller. For languages supporting the asynchronous call/return paradigm,
the network traffic consists of two messages (i.e., from caller to callee and back).
Assuming n (other) objects need the value and that the caller can reach them
indirectly, it then takes at least n messages to forward this value to them, say n′
(n′ ≥ n). Thus the number of exchanged messages is 2 + n′. We assume that
the forwarding is done by parameter passing, say through void methods with no
return message, and we count the number of messages needed for all n objects to

120

Evaluation

receive the value (including the forwarding), not counting other related messages.
Moreover, by using suspension one can avoid blocking the caller.

In the case of first-class futures, the number of exchanged messages depends
on the update strategy, as mentioned in the ASP part (in subsection II.2.6). We
here assume that the future object is kept on the caller side. In the eager-forward-
based strategy, the caller forwards the future reference to n objects and forwards
the future value when resolved. With the assumptions above, the number of
exchanged messages would be 2 + 2n′. Considering the eager-message-based
strategy or subscription scheme, the caller sends the future reference to n objects,
each object receiving the future subscribes itself to the future, and then the
future value is sent back to all of them when resolved. Hence the number of
exchanged messages would be 2 + 3n′, assuming the n′ messages go to distinct
objects. In the case of lazy strategy with blocking when needed, the caller sends
the future reference to n objects, and when the value is required, they ask for
it from the future object, which sends back the value. Hence the number of
messages would be 2 + n′ + 2 n, assuming all n objects really need the value.

We see that the number of messages gets higher with the future mechanism.
In a distributed system this could cause problems. And in particular for IoT
systems, this could lead to exhaustion of network capacity or battery time if n
is greater than 1 for a large portion of the calls.

Consider next garbage collection. The purpose of garbage collection is to
deallocate memory resources that are no longer in use at runtime. There are
different kinds of strategies for garbage collection. One is reference counting,
in which the number of references to an object (say a future object) is counted.
An object can be deallocated when the number of references to it reaches zero.
A disadvantage of reference counting is that for every object a resource must
be reserved for storing the number of references to it, and this number must
continuously be updated.

Another common way of garbage collection is reference tracing, i.e., following
all references. It distinguishes between reachable and unreachable objects,
and deallocates the latter ones. An object is reachable if it is referenced
by a variable in an (potentially) active object directly or through a chain of
references. A traditional reference tracing collector temporarily stops the program
execution when it wants to deallocate unreachable objects. This guarantees that
reachablility does not change while doing garbage collection. Halting the program
execution can be undesirable in distributed systems with active entities. In these
systems, an object might be used by several distributed units, necessitating
distributed garbage collection which is complex, slow, and costly.

The given operational semantics does not include garbage collection. Futures
are typically many and short-lived, which may cause much garbage. In contrast,
the active objects are long-lived. Thus in languages without passive objects,
there is then little or no need for garbage collection other than the future objects.
Therefore the garbage collection of futures can be a problematic issue. For
the given operational semantics, a straightforward implementation of garbage
collection for first-class futures requires distributed garbage collection of future
objects, since the futures are global runtime objects, whereas object-local futures

121

II. An Evaluation of Interaction Paradigms for Active Objects

require local garbage collection within each object, since the futures are stored
and referenced locally in each object.

As already explained in subsection II.4.2, method-local futures can be disposed
without use of garbage collection, and the reply messages used in future-free
languages can be removed efficiently. And the same implementation can be used
for single-read futures.

For languages with first-class futures, the garbage collection mechanism for
futures highly depends on the future update strategy, as already discussed in
subsection II.2.6. If a strategy is eager, a future is updated as soon as its value
is computed, then a local garbage collection is enough since it does not need
to be stored globally. Local garbage collection can be performed by classical
garbage collection within an object or by combining different garbage collection
techniques with static analysis approaches [13]. If an update strategy is lazy, a
future value must be kept in a future value list in the callee for potential later
requests; moreover, a future can be disseminated to many active objects, thus it
is non-trivial to decide when a future value can be removed from a future value
list. In this case, distributed garbage collection is required, which can be done
by reference counting or a combination of garbage collection mechanisms [13].

II.4.5 Security/Privacy challenges

The future concept comes with a notion of future identity, but not a notion of
associated caller, callee, or creator. However, if the identity of the caller of the
associated method call is incorporated in the future identity (as indicated in the
operational semantics), it could in principle be possible to extract this at runtime.
But the object creating the value would still in general be unknown. For instance,
in the case of first-class futures, a caller may create a future corresponding to a
method call on o and pass the future reference as a parameter to other objects.
When the future is resolved, they obtain its value from the future object without
knowing who has created this value. In fact, for a future received as a parameter
there is in general no available static or dynamic information about the creator.
It is not known where the future value comes from, who has generated it, or
how fresh it is. This opens up for third party information with indirect/implicit
handling of private information. An object may implicitly reveal futures with
private information. However, dynamic information could be provided by the
addition of language attributes. Thus with some overhead dynamic checking
would be possible.

Static information flow analysis of the secrecy level of first-class futures is
therefore imprecise. In order to have secure information flow for first-class futures,
dynamic checking is required, which is expensive compared to static analysis.
Class-wise information flow analysis has been suggested for a future-free version
of Creol [60]. The approach is based on static declaration of secrecy levels for
each input parameter and result value of a method. This would be difficult when
allowing futures as parameters, because the set of external calls that may result
in an actual parameter is not statically given, and because the calls in this set
are not uniform with respect to secrecy levels. Static declaration of secrecy levels

122

Evaluation

must consider the worst case possibility (i.e., the highest secrecy level), and this
will easily lead to inflation of secrecy levels, something which is not desirable
since then it would severely limit statically acceptable information passing and
call-based interaction, or require dynamic checking.

In a paper by Attali et al. [2], secure information flow for the ASP language
is provided by dynamically checking for unauthorized information flows. In
their approach security levels are assigned to activities and transmitted data
between these activities. For verification, dynamic checks are implemented at
activity creation, requests, and replies. However, future references can be freely
transmitted between activities because they do not hold any valuable information,
they just hold addresses. But for updating a future and getting its value, the
secrecy level of this transmission will be performed dynamically by security rules
of a secure reply transmission.

Therefore static information flow checking of first-class futures is problematic,
which means that it must be compensated by dynamic checking. In this sense,
first-class futures do not promote security at the programming level.

II.4.6 Program reasoning

We compare the simplicity of rules for reasoning about method calls for future-
free and future-based languages, and the usefulness of these rules in practice,
considering two typical kinds of applications. The rules given below cover
future-free and future-based languages, with or without suspension and the tail
construct.

In the setting of active objects, compositional reasoning is typically based on
the notion of communication traces, often called histories [79]. The specification
of an object can then be given by specifying invariants by means of predicates over
the local history, i.e., the history of events generated or observed by that object.
Modular reasoning about classes can be based on class invariants referring to
the fields of the class and the local history h. The class invariant considers a
given object (this) and should hold whenever the object is idle, but may be
violated when not idle [25]. In addition, one may use pre- and post-conditions to
specify any additional properties of the methods in the class. The Hoare triple
{P} : s :{Q} specifies that if the program s is started in a state satisfying the
precondition P then the final state will satisfy the postcondition Q, provided the
program terminates, thereby expressing partial correctness [37]. For instance,
an assignment statement x := e satisfies the triple {Qx

e} : x := e : {Q}, where
the notation Qx

e denotes textual substitution, replacing the expression e for
all (free) occurrences of the variable x in Q. This assignment axiom holds in
our language setting since there is no remote field access. This rule is left-
constructive, expressing the weakest precondition. A class invariant I must hold
after class initialization and be maintained by each method of the class, as well
as between any suspension points. This allows us to rely on the invariant when
a new method is started or re-started after suspension. The triple {I} :s :{I}
expresses that the statement list s maintains the invariant I.

123

II. An Evaluation of Interaction Paradigms for Active Objects

simple call {Qh
h·(this→o.m(e))} :o!m(e) :{Q}

sync-call {o ̸= this ∧ ∀x′ . Qx,h
x′,h·(this→o.m(e))·(this←o.m(e;x′))} :x := o.m(e) :{Q}

tail
{o′ = o ∧ e′ = e ∧ P} :s :{∀x .Qh

h·(this←o′.m(e′;x))}
{o ̸= this ∧ Ph

h·(this→o.m(e))} :x := o.m(e) < s >:{Q}

await {L ∧ I ∧ h = h′} :await e :{L ∧ I ∧ h′ ≤ h ∧ e}

Figure II.15: Reasoning rules for call-related statements for future-free languages.
Here L is a local condition (not referring to fields).

Notation For histories, we let h/S denote projection by means of a set S, i.e.,
the sub-sequence of all the events in the set S. And we let h · z denote the
history h appended with the event z. Furthermore, ≤ denotes the sequence
prefix relation, i.e., h′ ≤ h expresses that h′ is an initial part (prefix) of h, and ⊆
denotes the subsequence relation, i.e., h′ ⊆ h expresses that h′ is a subsequence
of h.

The local history h of an object o is related to the global history, H, by
the equation h = H/α(o) where α(o) is the alphabet of o (the set of events
generated/observed by o), i.e., h is the projection of H by the events visible
to o. Compositional reasoning is then possible by conjunction of the local
invariants, replacing the local history h byH/α(o), together with a “compatibility”
assertion stating the partial order between the events corresponding to meaningful
execution order (i.e., an event reflecting a method invocation must come
before the event reflecting the corresponding method completion), following
the compositional principle of [79].

II.4.6.1 Rules for future-free calls

Reasoning rules for the future-free call constructs, including call with and without
tail, are given in Figure II.15, based on [58]. In this setting we consider two
kinds of events: call events and return events. (Events reflecting the start and
end of a method execution may be considered as well, but we here focus on
the treatment of calls.) The execution of the asynchronous call o!m(e) by this
object is represented by the call event this → o.m(e), and the observation by
this object of the return value v generated by object o resulting from this call is
represented by the return event this ← o.m(e; v). Thus, call statements have
side-effects on the local history, a simple call appends the local history by a call
event, and a synchronous call (with or without a tail) appends the local history
by a call event as well as a return event. In the case of a synchronous call with
a tail, the call and return events are added to the history before and after the
tail, respectively.

124

Evaluation

Rule simple call expresses that the execution of the simple asynchronous
call o!m(e) has the effect of appending the corresponding call event to the local
history. Rule sync-call expresses that a synchronous call x := o.m(e) has the
effect of appending the history with both the call event and the corresponding
return event. The rules involving return events use universal quantification to
reflect that the return values are under-specified in local reasoning, and primed
variables are used to freeze pre-values of program variables that may change
(when needed in a postcondition). Since self calls have a different semantics than
remote synchronous calls, we add the restriction o ̸= this in the precondition of a
synchronous call to o with or without tail. The call rules are all left-constructive.
In Rule tail, the return event is added when transforming the overall postcondition
Q to a postcondition of the tail, and the call event is added when transforming
the precondition of the tail to an overall precondition. The reasoning rules can
be understood by letting the call to o have the side-effect

h := h · (this→ o.m(e))

on the history, where e are the actual parameters, and letting the observation of
a return have the side-effect

h := h · (this← o.m(e; v))

where v is the return value. More precisely, reasoning about the statement
[await] x := o.m(e) < s > is the same as reasoning about the sequence

h := h · (this→ o.m(e)); s; [await true;] x := some;h := h · (this← o.m(e;x))

where some is a locally unknown value such that {∀x .Q} :x := some :{Q}. The
tail rule (without await) can be derived from this understanding. In fact, all
call rules can be derived from this understanding when ignoring any optional
parts (await/tail s) not used. And for languages supporting suspension, rules
for await-call with or without tail can be derived as well, using the await rule.

The await rule says that the class invariant I will be maintained over
suspension, even though fields may change. The history may only grow, as
formalized by the postcondition h′ ≤ h where h′ is the history in the prestate.
And since the local state is unchanged during suspension, any local condition
L, not referring to fields, is also preserved. In addition the await condition e
is guaranteed immediately after suspension. In the same way as a conditional
await, an await-call statement must ensure the invariant at the beginning of
suspension, and may assume the invariant immediately after suspension.

II.4.6.2 Rules for calls with futures

For languages with futures, the asynchronous call invocation is textually
separated from the result query (the get statement). Thus in the analysis
of a get statement, neither the method name (m) nor the callee are in general
known at verification time, not even in the case of local futures. Therefore neither

125

II. An Evaluation of Interaction Paradigms for Active Objects

async-call {∀f ′ . Qf,h
f ′,h·(this→o.m(f ′,e))} :f := o!m(e) :{Q}

get {∀x′ . Qx,h
x′,h·(this←(e,x′))} :x := get e :{Q}

Figure II.16: Hoare style rules for futures.

of these can be part of the event reflecting the completion of a get statement,
in contrast to the case of future-free languages. Instead, the future identity
must be included in the call and get events: We now let a call generate the call
event this→ o.m(u, e) where u is the future identity. And we let the get event
o← (u, v) correspond to the observation by o of the value v of future u.

The reasoning rules for calls with futures are shown in Figure II.16, based
on [25]. Rule async-call is similar to Rule simple call, but the generated future
identity is under-specified, which explains the quantifier. Rule get expresses that
the history is appended with the corresponding get event, with an under-specified
future value. Thus this setting gives rise to events where the connection between
call and get events is made by means of the future identity, rather than the
method name. The rules for futures are therefore more indirect and complex to
apply in practice, as discussed next in Subsection II.4.6.3.

II.4.6.3 Application of the rules

We will consider two typical cases of program reasoning, namely reasoning
about method calls by means of input/output relations, and reasoning about
the ordering of method calls, exemplified by verification of sequential ordering.

Reasoning about input/output relations Reasoning about a method call
often deals with the relationship between the input and output values of a
method call. For a method body s; return e with parameters x and return
value e, one may specify and verify such a relationship, say R(x, e), by verifying
the Hoare triple {true} :s :{R(x, e)} by ordinary Hoare analysis. However, for
external calls with futures, it is not straight forward to use such facts, since the
input and output to a call may not in general be known in a single state of the
caller, due to the decoupling of the get statement form the invocation statement.
But one may use the history. Consider the code f := o!m(e); ...; y := get f
where o is an external object (different from this). This gives rise to the call
event (this → o.m(u, e)) where u is the future identity assigned to the future
variable f , and the query gives rise to the get event (this ← (u, y)) for some
return value y. We may then state

(∃u . (this→ o.m(u, x)); (this← (u, y)) ⊆ h)⇒ R(x, y)

(for any values of x, y) expressing that R holds for the input and output values
(found in separate call and get events in h) for the same u. Therefore reasoning
from this fact involves quantifiers.

126

Evaluation

In contrast, for a synchronous call [await] y := o.m(e), where o is different
from this, we may use the fact

(this←o.m(x; y)) ∈ h⇒ R(x, y)

(for any values of x, y), and we obtain R(e, y) in the post-state of the call since
(this ← o.m(e; y)) ∈ h obviously holds in the post-state of the call (for y not
occurring in e). Such return events appear for synchronous calls with or without
a tail as well as for suspending calls with or without a tail. Thus reasoning about
such calls from the history can be done in the same manner, without quantifiers.

Finally, we may look at simulated futures. In this case, events are generated
from the creation of the future object o′ and from the interaction with that
object, typically through the get method. This gives one creation event, one call
event, and one return event, of which the first (the creation event) and last are
the ones needed to express an input/output relation R. Similarly to the case of
first-class futures, the identity of the future object is arbitrary. This means that
for a method m (with body as above, satisfying R), called by simulated futures,
we may state

(∃o′ . (this→ o′.new FUTUREm(o, x)); (this← o′.get(; y)) ⊆ h)⇒ R(x, y)

where this → o′.new C(x) denotes the creation event of an object o′ of class
C with class parameters x. Thus the situation is quite similar to the case of
futures and involves quantifiers. Hoare-style reasoning about method calls by
means of input/output relations is therefore substantially more complicated for
languages with futures than for future-free languages. And reasoning about
simulated futures is comparable to reasoning with futures.

Reasoning about ordering of calls A history-based invariant may for instance
state that the remote m calls to o made by the current object are sequential, in
the sense that a new m call can only be made when the results of the previous m
calls to the same object o have been observed by the current object. To express
this in the setting of future-free languages, we may write the class invariant

∀o .#(h/{this→ o.m}) follows #(h/{this← o.m})

where follows denotes sequential connection as defined by x follows y ≜
(x = y ∨ x = y + 1), and # denotes sequence length, and {this→ o.m} denotes
the set of call events to o from this object for method m. (Alternatively, one
could use equality since the invariant is only required to hold when the object is
idle.)

In the case of languages for futures, the above invariant will be more
complicated since the method name m is not visible in the event observed
at a get statement. In this case the class invariant can be expressed by

∀o .#(h/{this→ o.m}) follows #(h/{this← (u,_) | u ∈ futures(h, o,m)})

letting futures(h, o,m) be defined as the set of futures generated by a call event
of form this→ o.m, and letting {this← (u,_) | c} be the set of all get events to

127

II. An Evaluation of Interaction Paradigms for Active Objects

this object with future identity u such that condition c is satisfied. Clearly, it is
significantly harder to formulate the invariant in this case, and also reasoning
becomes more complicated. Proving maintenance of the invariant by a call
y := o.m(e) is straight forward in the case of future-free languages. For instance

{I} :y := o.m(e) :{I}

reduces to I → ∀y′ . Ih
h·(this→o.m(e))·(this←o.m(e;y′)), which is trivial for our invariant

since m is explicit in the events. In the case of languages with futures, the
reasoning becomes non-trivial, since the m is no longer explicit in the get event.
One must reason indirectly through future identities across events, possibly also
generated by different processes (on this object). This involves the u implicitly
quantified through the conditional set expression.

For simulated futures we may use the invariant

∀o .#(h/{this→ _.new FUTUREm(o,_)}) follows

#(h/{this← o′.get | o′ ∈ futures(h, o,m)})

with futures defined almost as above. Reasoning in this case is similar to the
case of languages with futures.

We may conclude that specifications and invariants are more indirect in
languages with futures than in future-free ones. In particular it is harder to
express relationships between input parameters and corresponding result values.
Verification conditions get more complex to prove when they depend on get
events, as demonstrated in the examples. We have also seen that the reasoning
rules for local futures and first-class futures mainly have the same complexity.
Furthermore reasoning about simulated futures is comparable to reasoning about
futures. Thus reasoning with a future-free language is significantly simpler than
reasoning about future-based calls and simulated futures.

II.5 Conclusion

Programming paradigms are essential in software development, especially for
distributed systems since these affect large programming communities and a
varied range of applications. Thus, investigation and comparison of different
programming paradigms are valuable. We have focused on interaction paradigms
for imperative programming languages based on the active object model, ignoring
implicit futures. This model has gained popularity due to its modular semantics
and natural support of concurrency and autonomy. Most of the recent active
object languages adopt the future mechanism, rather than a two-way interaction
paradigm. First-class futures give a possibility of sharing information and of
partially avoiding blocking. An active object that has generated a call with a
future may pass the future to a number of clients, and as long as it does not need
the future value itself, it can continue to serve clients without being blocked.
Waiting is then delegated to those clients that need the future value. This gives
a programming style that avoids deadlocking and blocking in server objects,
allowing the servers to be continuously responsive to client requests.

128

Conclusion

criteria FF+CS FF LF+P LF+CS NF+CS NF
expressiveness + 0 0/0 0 0 –
efficiency – – –/0 + 0 –
synt./sem. complexity – – 0/0 0 + +
security aspects – – 0/+ + + +
static analysis – – –/0 0 + +
program reasoning – – –/– – + +

Figure II.17: A simplified summary of the evaluation of the different paradigms.
The case of local futures with polling (LF+P) is split in two subcases, object-local
and method-local futures.

Cooperative scheduling for active objects is another recent mechanism that
avoids blocking and allows passive waiting. Without use of futures, a server
object can wait for the future value in a suspended (sleeping) process, avoiding
blocking, and thereby be continuously responsive to client requests, even in the
case that the server itself needs the value. In this case the clients will get the
future value when it is available (when the suspended process is enabled), and
thus waiting is also avoided in the clients as well. This means that there is less
need for futures in languages with cooperative scheduling than in those without,
even though cooperative scheduling does not provide sharing. This means that
languages with first-class futures or cooperative scheduling more directly support
propagation of method results without waiting, and are in this respect more
expressive than those without neither of these two mechanisms.

Polling has the advantage of more fine-grained synchronization control. For
instance one may await the results of a number of outstanding calls in a given
order. However, polling may lead to more complex program structure. For
instance to cover any ordering of the completions of n calls, one could end up
with n! branches. In contrast, with cooperative scheduling there could be one
suspended process for each of the outstanding calls. With first-class futures one
could delegate to n other objects (by passing futures), so that each waits for one
completion. Thus there is less need for polling in languages with cooperative
scheduling or first-class futures.

Object-local futures offer more flexibility than method-local futures, but in
the presence of cooperative scheduling one may use suspension to compensate.
In particular single-read method-local futures give several advantages in the case
of cooperative scheduling.

This leaves seven language paradigms for interaction as the most interesting:
i) first-class futures and cooperative scheduling (FF+CS), ii) first-class futures
without cooperative scheduling (FF), iii) method-local futures and cooperative
scheduling (LF+CS), iv and v) local futures with polling (LF+P), with subcases
for object-local and method-local futures, vi) no futures and cooperative
scheduling (NF+CS), and vii) no futures (NF). We have focused on these
interaction paradigms and evaluated them along the chosen criteria. For a
rough overview, some main points of the evaluation results are illustrated in

129

II. An Evaluation of Interaction Paradigms for Active Objects

Figure II.17. Here + is better than 0, which is better than −.
With respect to expressiveness, we have seen that first-class futures can be

expressed by means of explicit object generation (using predefined classes). Thus
the need for built-in first-class futures is not so critical. Even though simulated
futures are less flexible (at least syntactically) than built-in futures, they have the
advantage that the cheaper (implementation-wise) alternatives are available by
default when first-class futures are not strictly needed. Cooperative scheduling
gives an expressiveness that cannot be simulated with (first-class) futures without
use of dynamic object generation and blocking. Languages with built-in first-class
and cooperative scheduling futures have the highest expressiveness (marked as “+”
in Figure II.17) whereas the ones without (only simulated ones) have somewhat
less expressiveness. Future-free languages are less expressive than those with
futures, but the addition of the tail construct results in similar expressiveness as
languages with local futures. Polling allows non-blocking programming (while
compromising program structure), and increases expressiveness and efficiency in
the setting of local futures without cooperative scheduling.

We have seen that first-class futures require garbage collection, which is
non-trivial in the case of distributed systems. And we have seen that first-
class futures give raise to more messages than languages without. There is no
uniformly best choice of update strategy for first-class futures [35]. Different
implementation strategies may give more efficient garbage collection, but at
the cost of more internal messaging. For IoT systems this could be critical. In
contrast, cooperative scheduling adds to efficiency, and gives scheduling control.
Local future languages may sometimes lead to less waiting than in future-free
languages due to more expressive synchronization control.

We have also seen that first-class futures may cause difficulties with respect
to information security. In particular information flow analysis is problematic.
Furthermore, the notion of futures, even local futures, make program reasoning
more complex than reasoning for future-free languages, by adding a level of
indirectness in the reasoning. The considered examples show properties where
simple reasoning in the future-free setting becomes non-trivial in the case of
futures, due to additional quantifiers. Static analysis has similar problems, and
for first-class futures this is in general more complex than for local futures. For
several kinds of static reasoning it is necessary to detect the set of calls that
corresponds to a given get statement. In the case of first-class futures this set
cannot be detected in class-wise analysis.

In general the more constructs a language has, the more expressive it is, but
on the negative side, the more complex it is wrt. syntax, semantics, security,
and analysis. This is illustrated clearly in the (somewhat oversimplified) table
in Figure II.17. There is a trade-off between these different choices depending
on the requirements in a given context, considering expressiveness, efficiency,
and simplicity. The main benefits of first-class futures are the added flexibility
and information sharing, some of which can be compensated by cooperative
scheduling. For distributed IoT programs we have argued that first-class futures
are less suited. This is also the case for information flow analysis. And if
simplicity of program reasoning is a major concern, first class, and even local

130

Conclusion

futures, raise non-trivial complications. In our treatment, the limitations of
future-free programming have been reduced by the addition of delegation and a
syntactic tail construct for calls. Consequently, future-free programming can be
attractive in a number of settings.

We have focused on imperative languages for single-threaded active objects.
The setting of multi-threaded active objects is attractive in that it may
provide higher efficiency, but its semantics is more complex. To keep our
framework simple, we have avoided the multi-threaded setting, as well as
advanced coordination constructs for futures, such as asynchronous continuations
associated with futures. With respect to our evaluation criteria, these constructs
increase the expressiveness and efficiency of first-class futures.

Acknowledgements. We thank the reviewers for their insight and thorough
feedback, which definitely has increased the quality of the paper.

This work was partially supported by the project IoTSec - Security in
IoT for Smart Grids, with number 248113/O70 part of the IKTPLUSS
program funded by the Norwegian Research Council, and by the project
SCOTT (www.scott-project.eu) funded by the Electronic Component Systems
for European Leadership Joint Undertaking under grant agreement No 737422.
This Joint Undertaking receives support from the European Unions Horizon
2020 research and innovation programme of Austria, Spain, Finland, Ireland,
Sweden, Germany, Poland, Portugal, Netherlands, Belgium, and Norway.

Authors’ addresses

First Author University of Oslo, Oslo, Norway, farzanka@ifi.uio.no

Second Author University of Oslo, Oslo, Norway, olaf@ifi.uio.no

Third Author University of Oslo, Oslo, Norway, toktamr@ifi.uio.no

131

mailto:farzanka@ifi.uio.no
mailto:olaf@ifi.uio.no
mailto:toktamr@ifi.uio.no

Paper III

Information-Flow-Control by means
of Security Wrappers for Active
Object Languages with Futures

Published in Nordic Conference on Secure IT Systems, 2020, Lecture Notes in
Computer Science, volume 12556, pp. 74–91. DOI: 10.1007/978-3-030-70852-
8_5

Abstract

This paper introduces a run-time mechanism for preventing leakage of
secure information in distributed systems. We consider a general concur-
rency language model where concurrent objects interact by asynchronous
method calls and futures. The aim is to prevent leakage of secure informa-
tion to low-level viewers. The approach is based on a notion of security
wrappers, where a wrapper encloses an object or a component and controls
its interactions with the environment. Our run-time system automatically
adds a wrapper to an insecure component. The wrappers are invisible
such that a wrapped component and its environment are not aware of it.

The security policies of a wrapper are formalized based on a notion
of security levels. At run-time, future components will be wrapped upon
need, and objects of unsafe classes will be wrapped, using static checking to
limit the number of unsafe classes and thereby reducing run-time overhead.
We define an operational semantics and sketch a proof of non-interference.
A service provider may use wrappers to protect its services in an insecure
environment, and vice-versa: a system platform may use wrappers to
protect itself from insecure service providers.

III.1 Introduction

Given the large number of users and service providers involved in a distributed
system, security is a critical concern. It is essential to analyze and control how
confidential information propagates between nodes. When a program executes,
it might leak secure information to public outputs or send it to malicious nodes.
Information-flow-control approaches track how information propagates during
execution and prevent leakage of secure information [71]. Program variables are
tagged typically with security levels; such as high and low, to indicate secure

0The Norwegian Research Council has funded this work by project IoTSec (no. 248113/O70).

133

https://doi.org/10.1007/978-3-030-70852-8_5
https://doi.org/10.1007/978-3-030-70852-8_5

III. Information-Flow-Control by means of Security Wrappers for Active Object
Languages with Futures

and public data. In this setting, an “attacker” could be seen as a low-level
object that is not supposed to see high information. The basic semantic notion
of information-flow security is non-interference [29]. This means that in any
two executions of a program, if high inputs are changed, but low inputs are the
same, then the low outputs will be the same (at least for locally deterministic
programs). This way, an attacker (a low object) cannot distinguish between
observable behaviors of the two executions since low outputs are independent of
the high inputs [33].

We will consider a high-level model for object-oriented distributed systems
suited for service-oriented systems, namely the active object model [8]. Method
interaction is implemented by message passing; moreover, most active object
languages support a communication paradigm called futures [8]. A future is a
component that is created by a remote method call and eventually will contain
the corresponding return value [5]. Therefore, the caller does not need to block
while waiting to get the return value: it can continue with other tasks and later
get the value from the corresponding future. Futures can be passed to other
objects, called first-class futures. In this case, any object that has a reference
to a future can access its content, which may be a security threat if the future
contains secure data. Futures offer a flexible way of communication and sharing
results, but handling them appropriately in order to avoid security leakages
requires run-time checking (described in Sec. III.2.1).

Our goal is to design a permissive and precise security mechanism for
controlling object communications in active object languages supporting first-
class futures. Our security mechanism is inspired by the notion of wrappers in [63],
where a wrapper encloses an object and enforces safety rules. In the present
paper, we suggest a notion of security wrapper, which wraps an object or a future
at run-time and performs security controls. Such wrappers are added by the
operational semantics upon need, and a wrapped component and its environment
are not aware of the presence of the wrapper. Security wrappers block object
communications that lead to leakage of secure data to low objects. A future is
wrapped if it contains a high value, and the wrapper blocks illegal access by low
objects. The operational semantics of a wrapper is defined based on run-time
security levels, resulting from a flow-sensitive information-flow enforcement [70].
We enrich the operational semantics with dynamic information-flow rules [70]
where security levels of variables are allowed to change after an assignment.
Therefore, our dynamic approach guarantees a degree of permissiveness and is
precise since it deals with the exact run-time security levels.

The operational semantics of our security framework is provided in the style
of Structured Operational Semantics (SOS). In order to minimize run-time
overhead, we suggest static analysis to limit the number of classes where security
checking and wrappers are needed since often only a few methods deal with secure
information. In the resulting hybrid approach, the static analysis determines
which classes cannot produce any high output, so-called safe classes, while the
run-time system takes care of the precise security checking of objects of unsafe
classes and futures created by such objects. Assuming a sound static analysis, we
show that our proposed hybrid approach ensures the non-interference property.

134

Background

In summary, our contributions are: i) a notion of security wrappers for
enforcing noninterference and security control in object interactions (Sec III.4),
ii) the use of static analysis to reduce the run-time overhead (Sec III.4.1), iii)
defining the operational semantics for the dynamic information-flow enforcement
with automatic deployment of wrappers (Secs. III.4.2, III.4.3) for our language
(Sec III.4), and iv) an outline of the proof that our approach satisfies non-
interference.

III.2 Background

Information-flow-control approaches detect illegal flows. During program
execution, there are two kinds of leakage of information, namely explicit and
implicit flows [71]. For simplicity, we assume two security levels, L (low) and
H (high). In the setting with observable and non-observable variables, an
explicit flow happens when assigning a low variable (l) with a high value (h) by
l := h. In the setting without observable variables, one may deal with this by
letting the level of l be dynamically changed to H. In an implicit flow, there
is an indirect flow due to control structures. For example, in the if statement:
l := 0 if h then l := 1 fi, the guard h is high, and it affects the value of
l indirectly. In order to avoid implicit flows, a program-counter label (pc) is
introduced [71]. If the guard is high, then pc becomes high, indicating a high
context. (In run-time analysis, one may use a stack to deal with nested control
structures.)

Information-flow-control approaches are divided into two categories, static
and dynamic [70]. Static analysis is conservative [33]: to be sound, it over-
approximates security levels of variables (for example, it over-approximates a
formal parameter to high, while at run-time, a corresponding actual parameter
can be low). This causes unnecessary rejections of programs, especially
when the complete program is not statically known, as is usually the case
in distributed systems. On the other hand, static analysis has less run-time
overhead since security checks are performed before program execution [33].
Dynamic information-flow techniques perform security checks at run-time, and
this introduces overhead. But they are more permissive and precise since they
deal with the exact security levels instead of an over-approximation [33].

For example, consider the following method body:
{if low_test then x := high_exp else x := low_exp fi; return x}

where low_test and low_exp evaluate to low values, while high_exp evaluates
to a high value. A sound static analysis will detect a high method result here
since the value of low_test is not known; while at run-time, an execution of the
method may give a low result (when low_test evaluates to false). The example
shows that static analysis over-approximates the security level, in contrast to
run-time analysis. Similarly, the parameter mechanism gives rise to static
over-approximation. For a method T triv(T x){return x}, where T is a type
containing both high and low values, static analysis will detect a (potentially)
high result, whereas for calls with a low input value, the result is detected as low

135

III. Information-Flow-Control by means of Security Wrappers for Active Object
Languages with Futures

at run-time. However, this could be handled by multiple static method profiles
as in [59] (when low T values are reflected by a subtype of T). For first-class
futures, the situation is worse: a get statement on a future is detached from the
call statement and also from the method name. Therefore, the static analysis of
a get statement must over-approximate the level of the possible future values,
while the exact level is revealed during run-time. This means that static analysis
of security levels in languages with first-class futures can easily lead to a high
degree of over-approximation.

In what follows, we briefly explain some of the terminologies of information-
flow security that we use in this paper:
Security levels. Variables are tagged with security levels, organized by a partial
order ⊑ and a join ⊔ operator, such that L ⊑ H and L⊔H = H. The ⊔ operator
returns the least upper bound of two security levels. Inside a class, declarations
of fields, class parameters, and formal parameters may have statically declared
initial security levels. These levels may change with statements. We define a
new syntax for object creation to assign security levels to objects.
Flow-sensitivity. By a dynamic flow-sensitive analysis, security levels of
variables propagate to other variables, and precise levels are evaluated during
execution. Variables start with their declared security levels (the ones without
levels are assumed as L), but levels may change after each statement. In an
assignment, the left-hand-side level becomes high if pc is high, or there is a
high variable on the right-hand-side. The left-hand-side level becomes low if
pc is low, and there is no high variable on the right-hand-side [70]. Otherwise,
the security level of a variable does not change. E.g., a flow-sensitive analysis
accepts the program h := 0; if h then l := 1 fi; return l; since the level of
h is updated to L after the first assignment, hence there is no leakage. In if
statements, in order to avoid implicit flows, when the guard is high, the security
levels of variables appearing on the left-hand side of assignments in the taken and
untaken branches are raised to high [70]. E.g., considering an initial environment
Γ ={h 7→ H, l1 7→ L, l2 7→ L} and the program: if h then l1 := 1 else l2 := 0 fi
when the condition is true, Γ changes to Γ ={h 7→H, l1 7→H, l2 7→H} for a sound
flow-sensitive analysis [70]. In a dynamic approach, in order to have a sound
flow-sensitive analysis, the assigned variables in the untaken branches should be
given to the analysis, which can be provided by static analysis of the program
code [6, 70].

III.2.1 Active object languages

Active object languages are based on a combination of the actor model [1]
and object-oriented features [8]. Some well-known active object languages are
Rebeca [76, 78], Scala/Akka [30, 84], Creol [39], ABS [43], Encore [9], and
ASP/ProActive [13, 15]. In communication with futures, when a remote method
call is made, a future object with a unique identity is created. Futures can be
explicit with a specific type and access operations like in ABS or can be implicit
with automatic creation and access [8]. E.g., in ABS, explicit futures are created
as in Fut[T] f := o!m(e); v := f.get, where f is a future variable of type Fut[T],

136

Our core language

and T is the type of the future value. The symbol “!” indicates an asynchronous
method call m of object o with actual parameters e, and the future value is
retrieved with a get construct when needed. The variable f can be passed to
other objects as a parameter (first-class futures). The caller may continue with
other processes while the callee is computing the return value. The callee sends
back the return value to the corresponding future, and then the future is called
resolved. A synchronous call is denoted by o.m(e), which blocks the caller until
the return value is retrieved.

Information-flow security with futures. Static analysis is in general difficult
for programs with futures, where the result of a call is no longer syntactically
connected to the call, compared to the call/return paradigm in languages without
futures [45]. For example, a future may be created in one module and received
as a parameter in another. Thus, a future may not statically correspond to
a unique call statement. One could overestimate all future values as high,
but this would severely restrict the set of acceptable programs. It would be
better to overestimate the set of possible call statements that corresponds to
a given get statement, but this requires access to the whole program, which
is often problematic for distributed systems. Moreover, the return values of
these overestimated calls may have different security levels, which also results in
overestimation.

A static analysis that assumes references as low, allows passing of future
references. However, the exact security level of a future value is revealed when it
becomes resolved, which goes beyond static analysis. For example, if a low-level
object performs x := f.get, and f refers to a future with a high value, it is a
leakage of information. A dynamic approach is required to control access to a
future value at run-time when it is resolved, and if the value is high it needs
protection. The futures concept makes static checking less precise, and the need
for complementary run-time checking is greater, as provided in the present paper.

III.3 Our core language
In order to exemplify our security approach, the security semantics (in Sec. III.4.2)
is embedded in a simple, high-level core language. All remote calls are made by
means of futures, where the method result is always returned to the corresponding
future. Figure III.1 gives the syntax of statements. The statement f := o!m(e)
is an asynchronous call with futures, and o!m(e) is an asynchronous call without
waiting for the result and associating a future. We define an extended syntax for
object creation newlev c(e), where lev is the object’s level (it can be L or H).

Figure III.2 illustrates a health care service in our core language, involving
futures for the sharing of secure medical records. Personnel and patients with
lower-level access are not allowed to access medical records. High variables are
emphasized based on user specifications, in this case reflecting patients’ medical
test results. The server, specified by the class Service, searches for a patient’s
test result, and the object proxy publishes the result to the patient and personnel.
In Fig III.2, in line 10, a produce cycle is initiated between the server and proxy.

137

III. Information-Flow-Control by means of Security Wrappers for Active Object
Languages with Futures

Basic constructs
x := newlev c(e) object creation with the security level lev
return e creating a method result/future value
if b th s [el s′] fi if statement (b a Boolean condition)
f := o!m(e) remote asynchronous call, future variable f
x := f.get blocking access operation on future f
o!m(e) simple asynchronous remote call

Figure III.1: Statement syntax. Here e is an expression list. Brackets denote
optional parts.

1 data type Result = ... // definition of medical data
2 interface ServiceI { Void produce() ... }
3 interface ProxyI { Void publish(Fut[Result] q, PatientI a, List[PersonnelI] d) ... }
4 interface LabI { ResultH search(PatientI a) ... }
5 interface PatientI { Void send(ResultH r) ... }
6 interface PersonnelI { Void send(ResultH r) ... }
7 interface DataBase { ... }
8 class Service(LabI lab, DataBase db) implements ServiceI {
9 ProxyI proxy = newH Proxy(this);
10 this!produce(); // initial action, starting a produce cycle
11 Void produce() { Fut[Result] f; PatientI a; List[PersonnelI] d = Nil;
12 // finding a patient and the associated personnel in a database
13 f:=lab!search(a); // searching for the test result of patient a
14 proxy!publish(f, a, d); } } //sending the future f, not waiting for the result
15
16 class Proxy(ServiceI s) implements ProxyI{ ResultH x;
17 Void publish(Fut[Result] f, PatientI a, List[PersonnelI] d) {
18 x:=f.get; // waiting for future and assigning the value to x. x becomes H
19 a!send(x); // x is now H
20 d!send(x); // multicasting, x is H
21 s!produce(); } }

Figure III.2: Example of sharing high patients’ test results by means of futures.

In line 13, the server searches for the test result of a patient with the userId
a by sending a remote asynchronous call to the laboratory f := lab!search(a),
where f is the future variable. In line 14, the server calls proxy!publish(f, a, d)
and passes the future f , userId a, and personnelId d to the object proxy. Both
search and publish are asynchronous calls, thus the server does not wait for the
return values and is free to respond to any client request. In line 18, the object
proxy waits for the test result and assigns the result to variable x by performing
x := f.get. Then proxy sends x to the patient and personnel.

A static analysis over-approximates the security levels of test results as high,
which leads to rejections of information passing. Note that the two send calls
in the class Proxy would not be allowed if we only use static checking since we
cannot tell which patients and personnel have a high enough level. A static
analysis which considers references as low allows passing the future f to the
object proxy (line 14), but later when it is resolved, the future value can be high,
and the proxy compromises security by sending this value to other objects.

138

A framework for non-interference

III.4 A framework for non-interference

Like Creol, our core language is equipped with interface encapsulation, which
means that created objects are typed by interfaces, not classes [39]. As a
result, remote access to fields or methods that are not declared in an interface
is impossible. Therefore, observable behavior of an object is limited to its
interactions through remote method calls. Illegal object interactions are the
ones leading to an information-flow from high information to low level objects.
An object can reveal confidential information in method calls by sending actual
parameters with high security levels to low-level objects. If a future contains
data with a high security level, low-level objects’ access is illegal.

We exploit the notion of wrappers to perform dynamic checking for enforcing
non-interference in object interactions. A wrapper blocks illegal interactions.
Wrappers’ security policies are based on run-time security levels. Inside an
object, in order to compute the exact security levels of created messages or
return values, the flow-sensitivity must be active. The operational semantics for
the dynamic flow-sensitive analysis, is given in Sec. III.4.2 and for wrappers, in
Sec. III.4.3.

We can be conservative and wrap all objects and correspondingly activate
flow-sensitivity, but this will cost run-time overhead. In order to be more efficient
at run-time, it is important to perform dynamic checking only for components
where it is necessary. We benefit from static analysis to categorize a class
definition as safe or unsafe. A class is safe if it does not have any method
calls with high actual parameters and return values. A class is unsafe if it has
a method call with at least one high actual parameter or a high return value.
Objects created from unsafe classes are wrapped, and flow-sensitivity will be
active inside these objects. Objects from safe classes do not need a wrapper or
active flow-sensitivity. This will make the execution of objects of safe classes
faster, as we avoid a potentially large number of run-time checks and wrappers.

III.4.1 Static analysis
Our security approach can be combined with a sound static over-approximation
for detecting security errors and safe classes, e.g., the one proposed in [60],
which is more permissive (to classify a class as safe) than the static analysis
indicated here, in that high communication is considered secure as long as the
declared levels of parameters are respected. In a class, variables are declared with
maximum security levels (the maximum level that can be assigned at run-time).
The same for future variables at the time of declaration, for example, Fut[TH] x
indicates that x is a high future variable. Local variables without a declared
security level start with the level L (as default) but may change after each
statement due to the flow-sensitivity. Dataflow typing rules inside an object
can be defined similar to [60]; however, we change the typing rules for method
calls and return values to classify unsafe and safe classes. A class is defined as
safe if the confidentiality of each method is satisfied. The confidentiality of a
method is satisfied if the typing rules for its return value and actual parameters

139

III. Information-Flow-Control by means of Security Wrappers for Active Object
Languages with Futures

config ::= ϵ | object | flowsen-obj | msg | future | wrapper | class |
config config

object ::= ob(o, a, p, lev) d ::= v | vlev
flowsen-obj ::= ob(o, a, p, lev, pcs) p ::= (l, s) | idle
msg ::= invc(f,m, d, o)lev | Comp(d, f)lev
future ::= fut(f, d)
wrapper ::= Wr{wId, lev | config }
class ::= Cl(c | a′,mm)lev

Figure III.3: The components of a configuration.

are satisfied. The typing rules check that each occurrence of an actual parameter
and a return value are not high; then, the class is safe; otherwise, it is unsafe
and needs dynamic checking. The typing rule for getting a future, checks that if
a future variable is high, then the class is classified as unsafe. Alternatively, we
could have used another sound static analysis, for instance (the relevant parts
of) the static analysis defined for ABS in [64], and adapt it to our setting.

We categorize safe and unsafe classes for the example in Fig. III.2. The
interface laboratory LabI has a method with a high return value (search). Thus
the object lab is unsafe and flow-sensitivity is active to compute the security level
of the return value at run-time. The class Proxy is unsafe since it has at least
one method call with a high actual parameter (a!send(x)), thus object proxy is
active flow-sensitive and wrapped.

III.4.2 Security semantics

We here discuss the operational semantics of our core language with the embedded
notions of flow-sensitivity and security wrappers in Figs. III.4, III.5. The small-
step operational semantics is defined by a set of rewrite rules [52]. In a rule,
premises are above the line and one step rewrite is under the line. A rule is
applied to a subset of a configuration if the premises are satisfied, and the subset
is changed from the left-hand-side to the right-hand-side of the rewrite rule.

In Fig. III.3, an execution state is modeled as a configuration config, which is
a multiset of objects (with or without active flow-sensitivity), messages, futures,
wrappers, and classes. (Classes are included in a configuration to provide
static information about fields and methods.) An object is represented as:
ob(o, a, p, lev), where o is the object identity, a is the field state, p is the current
active process, and lev is the object’s level (lev ∈ {L,H}). An active process p
is a pair (l, s), where l is the local variables state, and s is a list of statements,
or it is idle representing an empty local state and no statements. A state is a
mapping (substitution) binding variables to values. A flowsen-obj represents
an flow-sensitive object with an extra field pcs that denotes a stack of context
security levels inside an object, where pcs = emp denotes an empty stack.

140

A framework for non-interference

A class is represented as: Cl(c | a′,mm)lev, where c is the class name, a′
is the initial state of the class fields (attributes), mm is a multiset of method
declarations (with local variables and code), and lev denotes the type of the
class, i.e., if lev = L, the class is safe, and if lev = H, the class is unsafe. A msg
represents an invocation message or a completion message. In an invocation
message, f is the future identity, m is the method name, d is a list of actual
parameters, and lev is a level attached to the message at time of creation. If
a message is created in a high context, then lev = H; otherwise, lev = L. A
completion message contains a return value d and a future identity f , and lev
represents the context level. The notation d denotes a value v or a value with
security level vlev. The future component shows a resolved future with identity
f and the value d, and fut(f,_) denotes an unresolved future. A security
wrapper is represented as: Wr{wId, lev | config}, where wId is the wrapper’s
identity, lev is the level, and config denotes the configuration inside the wrapper.

Auxiliary functions. Let Γ be a mapping and [x 7→ d] be a binding, mapping
x to d. The notation Γ[x 7→ d] represents the update of Γ with the binding.
The look-up function is represented as Γ(x), where Γ[x 7→ d](x) = d. The map
composition a#l indicates that the binding of a variable in the inner scope l
shadows any binding of that variable in the outer scope a. Thus a#l(x) gives
l(x) when defined, otherwise a(x). Consider an object with attribute state a and
local state l. Then the composition a#l defines the object state. The notation [[e]]
denotes the evaluation of expression e, where variables are evaluated according
to the object state. The evaluation in [[e]] is strict in the sense that the resulting
level is high if e contains variables that have a high security level. Other auxiliary
functions are given as follows:

• The function level(d) returns the security level of d, such that level(vlev) =
lev, and for an untagged value level(v) = L. If e is a list of expressions,
then [[e]] = d returns a list of data, and level(d) = ⊔ level(di),∀di ∈ d (the
join of all data in d).

• The function level(o) returns the level of the object o.

• The function level(pcs) returns the join of security levels in pcs, where if
pcs = emp, level(pcs) = L, and if pcs ̸= emp, level(pcs) = H.

• The function updateH(s) raises the security levels of variables appearing
in the left-hand-side of assignments in s to high.

• The function fresh() returns a unique identity for an object or a future.

• The function bind(o,m, d, f) returns a process, where the method m in the
class of the object o is activated, and the method’ parameters are bound
to the actual ones (d), and a reserved local variable label is bound to f ,
denoting where to send the return value of the method [43].

• The function bind(o,m, d) returns a process without the binding for the
label, in case the method’s result is not needed.

141

III. Information-Flow-Control by means of Security Wrappers for Active Object
Languages with Futures

• The function safe(Cl (c | a,mm)lev) returns true if lev = L and false
otherwise.

Figure III.4 represents the flow-sensitivity semantics of objects. The new
rule shows the command x := newlevc

′(e) in the active process of an object o,
where c′ is an unsafe class. The rule creates an active flow-sensitive object o′
and a wrapper and assigns o′ to x. The active process of the new object o′ is
initially idle, denoting an empty active process. The level of o′ is lev as it is
specified in the command newlevc

′(e), if not, the level is assumed low. The stack
of pcs is empty, denoted by emp. The wrapper has the same identity (o′) and
the level (lev) of the object o′. The semantics of the actual class parameters is
treated like parameters of an asynchronous call x!init(e) (creating an invocation
message by the rule call), where init is the name of the initialization method
of a class. Note that if e contains high security level data, the wrapper does not
send the corresponding invocation message to the new object if the new object
is low-level (see rule wr-invc-error in Fig. III.5, which we explain later). The
Rule assign-local shows an assignment x := e, where x is in the local state l,
e is evaluated to vlev′ , and x is updated in l with the new value v and the level
lev′ ⊔ level(pcs). Therefore, the level of x is updated with the right-hand-side
level joined with that of pcs. In if-low-true, the guard’s security level is
low, and the guard is true (trueL), thus the corresponding branch s′ is taken.
While in if-low-false, since the guard is false, the else branch s′′ is taken. In
if-high-true and if-high-false, since the guard’s security level is high, similar
to the approach in [70], the security levels of variables appearing in assignments
in both branches are raised to high to avoid implicit flows. In the rules, the
guard’s security level H is pushed to the pcs stack, resulting in a high security
context, where all the messages created in a high context will have high security
levels (see rules call-fut, call). Moreover, assignments in the taken branch
result in high security levels (see assign-local and assign-attribute). The
added statement endif (s′′), where s′′ is the untaken branch, marks the join point
of the if structure and raises the assigned variables’ levels in the untaken branch.
In the endif rule, the function updateH(s′′) raises the security levels of variables
appearing in the left-hand-side of assignments in s′′ to high, and these variables
are updated in the local state. Moreover, the last element of pcs is removed
(pcs.pop()), reflecting the previous context level.

In the rules, we do not cover local calls, which do not involve object
interactions (therefore, less interesting here). The call-fut rule deals with an
asynchronous call x := e!m(e), where x is a future variable, and e is the callee.
The call generates a (not resolved) future with a unique identity f , where f is
assigned to x, and an invocation message containing f , m, actual parameters d,
and the callee o′. The invocation message’s level is level(pcs), which is needed to
avoid indirect leakage from the caller. The rule call shows an asynchronous call
e!m(e) without an associated future, where the method’s result is not needed.
The call creates an invocation message containing m, d, and the callee o′, and the
message’ level is level(pcs). The start-fut rule is applied when an object is idle,
and there is an invocation message to the object. The object’s active process

142

A framework for non-interference

new
o′ = fresh() false = safe(C ′)

ob(o, a, (l, x := newlev c
′(e); s), lev′)→ ob(o, a, (l, x := o′;x!init(e); s), lev′)

Wr{o′, lev | ob(o′, a′[this 7→ o′], idle, lev, emp)}

assign-local
x ∈ dom(l) vlev′ = [[e]]

ob(o, a, (l, x := e; s), lev, pcs)→ ob(o, a, (l[x 7→ vlev′⊔level(pcs)], s), lev, pcs)

assign-attribute
x ∈ dom(a) vlev′ = [[e]]

ob(o, a, (l, x := e; s), lev, pcs)→ ob(o, a[x 7→ vlev′⊔level(pcs)], (l, s), lev, pcs)

if-low-true
trueL = [[e]]

ob(o, a, (l, if(e) s′ el s′′ fi; s), lev, pcs)→ ob(o, a, (l, s′; s), lev, pcs)

if-low-false
falseL = [[e]]

ob(o, a, (l, if(e) s′ el s′′ fi; s), lev, pcs)→ ob(o, a, (l, s′′; s), lev, pcs)

if-high-true
trueH = [[e]]

ob(o, a, (l, if(e) s′ el s′′ fi; s), lev, pcs)→
ob(o, a, (l, s′; endif (s′′); s), lev, pcs.push(H))

call
o′ = [[e]] d = [[e]]

ob(o, a, (l, e!m(e); s), lev, pcs)
→ ob(o, a, (l, s), lev, pcs)

invc(m, d, o′)level(pcs)

if-high-false
falseH = [[e]]

ob(o, a, (l, if(e) s′ el s′′ fi; s), lev, pcs)→
ob(o, a, (l, s′′; endif (s′); s), lev, pcs.push(H))

start-fut
p = bind(o,m, d, f)

ob(o, a, idle, lev, pcs) invc(f,m, d, o)lev′

→ ob(o, a, p, lev, pcs.push(lev′))

call-fut
f = fresh()

o′ = [[e]] d = [[e]]
ob(o, a, (l, x := e!m(e); s), lev, pcs)
→ ob(o, a, (l, x := f ; s), pcs)

fut(f,_)invc(f,m, d, o′)level(pcs)

start
p = bind(o,m, d)

ob(o, a, idle, lev, pcs) invc(m, d, o)lev′

→ ob(o, a, p, lev, pcs.push(lev′))

endif
l′ = l[updateH(s′)]

ob(o, a, (l, endif (s′); s), lev, pcs)
→ ob(o, a, (l′, s), lev, pcs.pop())

return
d = [[e]] f = l(destiny)

ob(o, a, (l, return(e);), lev, pcs)→ ob(o, a, idle, lev, pcs) Comp(d, f)level(pcs)

Figure III.4: Flow-sensitive operational semantics, lev, lev′ ∈ {l,H}.

143

III. Information-Flow-Control by means of Security Wrappers for Active Object
Languages with Futures

is updated with p, which is the bind’s result, where method m is activated,
formal parameters are bound to the actual ones (d), and the local variable
label is bound to the future identity (f) for sending the method’s result to the
future by a return statement. The level of the received message lev′ is added
to the object’s stack pcs. This avoids implicit leakage from the sender. In the
start rule, the invocation message does not contain a future identity, and the
object starts execution the corresponding method, which is activated by the bind
function without the binding for the label variable. The return rule interprets
a return statement, which creates a completion message to the corresponding
future, which is looked up in the local state (l(label)), and the object becomes
idle. The security level of the completion message is level(pcs) to avoid indirect
leakage from the callee to the recipients of the future value. We assume that
each method body ends with a return statement. The rules for objects without
active flow-sensitivity are similar but without security levels, pcs, and wrappers.

III.4.3 Operational semantics of security wrappers

In this section, we discuss the operational semantics of security wrappers. As
mentioned, a wrapper for an object is created in the rule new in Fig.III.4. A
wrapper has the same identity as the wrapped component; thereby, the wrapper
represents the component to the environment. Invocation messages generated
by the call-fut and call rules will first meet the object’s wrapper for security
checking before being sent to the callee. The wr-invc rule in Fig. III.5, represents
a wrapper with an invocation message inside, which is produced by the object
o. If the join (⊔) of the message’s level lev′ and the actual parameters’ levels
level(d) is less than or equal to the destination object’ level (level(o′)), then the
wrapper allows the message to go out. In wr-invc-error, since the recipient
object’s level is less than the message’s level, the invocation message is deleted
and the corresponding future value is replaced by an error value. This can
be combined with an exception handling mechanism such that an exception is
raised when a get operation tries to access an error value. However, as this
is beyond the scope of this paper, we ignore the exception handling part. We
simply indicate exceptions by assignments with error in the right-hand-side.
The error-fut rule represents the case where a future value is error; the
object performing the get command x := e.get, where e refers to the future,
assigns an error to x. The rule assign-attribute shows an assignment, where
x is in the object’s fields.

The invc-wr rule represents a wrapper and an incoming invocation message
to the object o. The notation Λ[m, i] indicates the level of the ith formal
parameter of the method m as declared in the class. If the security level of
each actual parameter (levi) is less than or equal to the security level of the
corresponding formal parameter, then the wrapper allows the message to go
through and adds it to its configuration inside. Otherwise, the invocation
message is deleted in invc-wr-error. In low-fut, an unresolved future gets
the corresponding completion message containing d, hence the future becomes
resolved with d. The join of the message’s level lev and level(d) is low, thus no

144

A framework for non-interference

wr-invc
lev′ ⊔ level(d) ⊑ level(o′)

Wr{o, lev | invc(f,m, d, o′)lev′ config } →
Wr{o, lev | config } invc(f,m, d, o′)lev′

high-fut
H = level(d) ⊔ lev

fut(f,_) Comp(d, f)lev →
Wr{f,H | fut(f, d) }

wr-invc-error
lev′ ⊔ level(d) ⊐ level(o′)

Wr{o, lev | invc(f,m, d, o′)lev′ config } fut(f,_)
→Wr{o, lev | config } fut(f, error)

low-fut
L = level(d) ⊔ lev

fut(f,_) Comp(d, f)lev
→ fut(f, d)

error-fut
f = [[e]]

fut(f, error) ob(o, a, (l, x := e.get; s), lev, pcs)→
fut(f, error) ob(o, a, (l, x := error; s), lev, pcs)

high-fut
H = level(d) ⊔ lev

fut(f,_) Comp(d, f)lev
→Wr{f,H |fut(f, d)}

invc-wr
∀levi ∈ level(d) : levi ⊑ Λ[m, i]

Wr{o, lev | config} invc(f,m, d, o)lev′ →Wr{o, lev | invc(f,m, d, o)lev′ config}

invc-wr-error
∃levi ∈ level(d) : levi ⊐ Λ[m, i]

Wr{o, lev | config } invc(f, m, d, o)lev′ →Wr{o, lev | config}

error-high-fut-get
f = [[e]] lev ⊏ H

Wr{f,H | fut(f, d)}
ob(o, a, (l, x := e.get; s), lev, pcs)→

Wr{f,H | fut(f, d)}
ob(o, a, (l, x := error; s), lev, pcs)

high-fut-get
f = [[e]] lev ⊒ H

Wr{f,H | fut(f, d)}
ob(o, a, (l, x := e.get; s), lev, pcs)

→Wr{f,H | fut(f, d)}
ob(o, a, (l, x := d; s), lev, pcs)

low-fut-get
f = [[e]]

fut(f, d) ob(o, a, (l, x := e.get; s), lev, pcs)→
fut(f, d) ob(o, a, (l, x := d; s), lev, pcs)

Figure III.5: Operational semantics involving wrappers, lev, lev′ ∈ {l,H}.

145

III. Information-Flow-Control by means of Security Wrappers for Active Object
Languages with Futures

wrapper is created. In high-fut, lev ⊔ level(d) = H, thus the future becomes
wrapped and resolved. Since the future is high, a wrapper is created to protect it,
and the wrapper has the same identity and level as the future. The error-high-
fut-get rule represents a wrapped future and an object that wants to get the
future value. If the security level of the object (lev) asking for the value is less
than the wrapper (H), then the wrapper sends an error value. In high-fut-get,
the object gets the value from the wrapped future since the object’s level is
greater than or equal to H. The low-fut-get rule shows that an object gets
the value from an unwrapped future without security checking.

III.4.4 Non-interference

We show that our security framework satisfies non-interference. Non-interference
considers the observable behavior of different executions. The observable behavior
of an object consists of invocation messages and completion messages. Even
the observable behavior of object creation, by the new rule in Fig. III.4, is an
asynchronous call x!init(e), which creates an invocation message. Since object
and future identities may change from execution to execution, we must compare
executions relative to a correspondence of such identities in one execution to
those in another execution. Corresponding objects must be of the same class.

A message is said to be low if it does not have a high tag nor contain
any parameters with high tags. Two low messages are indistinguishable, ≃,
if the identities in the messages correspond to each other, and other values
are equal. Two execution states of corresponding objects o and o′ are said
to be indistinguishable if the values of their local variables and attributes are
indistinguishable and they have the same remaining statement lists, and also
agree on other system variables, including flow sensitivity (with same values of
pcs).

Definition III.4.1. Global non-interference means that for any two executions
with corresponding objects and futures, such that the history of messages
consumed or produced by an object in one execution state is indistinguishable
from that of the corresponding object in a state of the other execution, and such
that the next communication event of the first object is a low output, then the
next low communication output event of the other object will be indistinguishable.

Definition III.4.2. Local non-interference means that for two executions with
corresponding objects o and o′, and for execution states where o and o′ are
non-idle and where the execution states of o and o′ are indistinguishable, the
next execution states of these objects will also be indistinguishable when both
have executed the next statement, and in case the statement gives an output,
both make indistinguishable output (or neither makes no low output).

Note that our security approach includes termination aspects. We next prove
that each object is locally deterministic, in the sense that the next state of a
statement, other than idle and get, is deterministic, i.e., depending only on the

146

A framework for non-interference

prestate. The only source of non-determinism is get and the independent speed
of the objects, which means that the ordering in the messages queues is in general
non-deterministic. Thus only idle states and get cause local non-determinism.

Lemma III.4.3. In our security model, each object is locally deterministic.

Proof. According to our operational semantics, for each statement (other than
idle and get) there is only one rule to apply, and for an if statement, the choice
of the rule is given deterministically by testing the security level and value of
the guard. There is no interleaving of processes inside an object as well. ■ ■

Definition III.4.4. Low-to-low determinism means that any low part of a state
or output resulting from a statement, other than get, is determined by the low
part of the prestate and the statement, when ignoring states where pcs is high.

Lemma III.4.5. In our security model, each object is low-to-low deterministic.

Proof. This can be proved by case analysis on the statements. For an if with a
high test, the taken branch does not result in low state changes nor low outputs.
In particular, any invocation message made has label H, and the execution
of that method invocation by the same or another object, will start in a high
context (see the start-fut and start rules), and so will a new object created
from the branch. This ensures that there is no implicit leakage from a high
branch. However, the choice of branch could depend on high information, and
lead to distinguishable states, but this is compensated by endif (s′′), which raises
the level of variables updated in the untaken branch s′′. For an if with low
test, the choice of branch is given by the low part of the prestate and the test.
For an assignment, the level of the left-hand-side becomes low if the level of
the right-hand-side is low and pcs is low. Otherwise, the left-hand-side’ level
becomes high after the assignment. The cases for the other statements are
straightforward. ■ ■

Theorem III.4.6. Our security model guarantees local and global non-interference,
and an attacker (i.e., a low object) will only receive low information.

Proof. Local non-interference can be proved by induction of the number of
execution steps considering two executions of an object. The low part of each
state and the low outputs must be the same by the two previous lemmas, using
the fact that future values of corresponding futures will be indistinguishable,
since these are given by earlier outputs, which are indistinguishable by the
induction hypothesis. Global non-interference can be proved by induction on the
number of steps considering two executions. It follows by local non-interference
for all objects. Since an attacker is a low object, the wrappers will prevent it
from receiving high inputs. ■ ■

This theorem implies that an attacker will not be able to obtain high
information explicitly or implicitly, nor obvserve difference of termination aspects.

147

III. Information-Flow-Control by means of Security Wrappers for Active Object
Languages with Futures

III.5 Related work

Starting with the work of Denning and Denning [22], a number of static techniques
for lattice-based security information flow analysis have been suggested.

In [60], a secure type system has been suggested for Creol without futures to
enforce noninterference in object interactions. Typing rules check that the security
levels of variables respect the declared security levels in the interfaces. In [60],
since the run-time security levels of objects, indicating the access rights, might
not be available at static time, an if-test construct is added to check the security
level of an object before sending data. Our approach is a dynamic technique,
which is more permissive and precise and supports futures confidentiality. In [64],
Pettai and Laud present a type system for ABS to ensure non-interference by
means of over-approximation. E.g., a future’s security level is the upper bound of
the tasks’ levels that the future refers to, while our run-time system does not use
over-approximation (assuming the labels are exact). This work also deals with
other concurrency features of ABS such as cogs and synchronization between
tasks, where security issues are prevented by using the operational semantics
and the type system. The cog feature of ABS is not relevant to our paper.

In [2], a dynamic information-flow-control approach is performed for the
ASP language. Security levels are assigned to activities and communicated data.
The security levels do not change when they are assigned. Dynamic checks are
performed at activity creations, requests, and replies. Since future references are
not confidential, they are passed between activities without dynamic checking,
but getting a future value is checked by a reply transmission rule. In [2], the
security model guarantees data confidentiality for multi-level security (MLS)
systems. Our approach adds flow-sensitivity, which allows security levels of
variables to change during execution of an object. It makes our approach more
permissive and a wrapper deals with run-time security levels. In addition to
enforcing the non-interference property in object interactions, our approach
guarantees that an object will be given access only to the information that it is
allowed to handle.

In [57], Nair et al. implement and design a run-time system, named Trishul,
to track the flow of information within the Java virtual machine (JVM). This
paper focuses on implicit and explicit flows through the Java control flows and
the architecture and does not enforce non-interference. Due to the Trishul’s
modular nature, our security wrappers can be deployed to prevent illegal flows.

Russo and Sabelfeld [70] prove that a sound flow-sensitive dynamic
information-flow enforcement is more permissive than static analysis. In [48],
the notion of wrappers is used to control the behavior of JavaScript programs
and enforce security policies to protect web pages from malicious codes. A policy
specifies under which conditions a page performs a specific action, and a wrapper
grants, rejects, or modifies these actions. Moreover, the notion of wrappers has
been developed for the safety of objects [63], where the programmer needs to
specify which objects should have a wrapper and to program what each wrapper
should do based on any input/output. In contrast, we apply wrappers to security
analysis, letting the runtime system automatically decide which components

148

Conclusion

should be wrapped, and also what the wrappers should do to prevent illegal
flows.

III.6 Conclusion

We have proposed a framework for enforcing secure information-flow and non-
interference in active object languages based on the notion of security wrappers.
We have considered a high-level core language supporting asynchronous calls and
futures. In our model, due to encapsulation, there is no need for information-
flow restrictions inside an object. Wrappers perform security checks for object
interactions (with methods and futures) at run-time. Furthermore, wrappers
control the access to futures with high values. Security rules of wrappers
are defined based on security levels of communicated messages. Inside an
object, the security levels of variables might change at run-time due to flow-
sensitivity. Wrappers on unsafe objects and future components protect exchange
of confidential values to low objects. Wrappers on objects protect outgoing
method calls and prevent leakage of information through outgoing parameters.
The wrappers are created automatically by the run-time system without the
involved parties being aware of it. Their behavior is also defined by the runtime
system. We define non-interference for our language and outline a proof of it.
By combining results from static analysis, we can improve run-time efficiency by
avoiding wrappers when they are superfluous according to the over-approximation
of levels given by the static analysis.

Acknowledgements. We thank Christian Johansen for useful interactions. The
Norwegian Research Council has funded us by project IoTSec (no. 248113/O70).

Authors’ addresses

First Author University of Oslo, Oslo, Norway, farzanka@ifi.uio.no

Second Author University of Oslo, Oslo, Norway, olaf@ifi.uio.no

Third Author Chalmers University of Technology, Gothenburg, Sweden, ger-
ardo@cse.gu.se

149

mailto:farzanka@ifi.uio.no
mailto:olaf@ifi.uio.no
mailto:gerardo@cse.gu.se
mailto:gerardo@cse.gu.se

Bibliography

[1] Agha, G. A. Actors: A model of concurrent computation in distributed
systems. Tech. rep. Massachusetts Inst of Tech Cambridge Artificial
Intelligence Lab, 1985.

[2] Attali, I. et al. “Secured information flow for asynchronous sequential
processes”. In: Electronic Notes in Theoretical Computer Science vol. 180,
no. 1 (2007), pp. 17–34.

[3] Bae, K., Escobar, S., and Meseguer, J. “The Maude LTL LBMC Tool
Tutorial”. In: ().

[4] Baier, C. and Katoen, J.-P. Principles of model checking. MIT press, 2008.
[5] Baker Jr, H. C. and Hewitt, C. “The incremental garbage collection of

processes”. In: ACM SIGART Bulletin, no. 64 (1977), pp. 55–59.
[6] Balliu, M., Schoepe, D., and Sabelfeld, A. “We are family: Relating

information-flow trackers”. In: European Symposium on Research in
Computer Security. Springer. 2017, pp. 124–145.

[7] Basin, D., Debois, S., and Hildebrandt, T. “On purpose and by necessity:
compliance under the GDPR”. In: International Conference on Financial
Cryptography and Data Security. Springer. 2018, pp. 20–37.

[8] Boer, F. D. et al. “A survey of active object languages”. In: ACM Computing
Surveys vol. 50, no. 5 (2017), p. 76.

[9] Brandauer, S. et al. “Parallel objects for multicores: A glimpse at the
parallel language Encore”. In: International School on Formal Methods for
the Design of Computer, Communication and Software Systems. Vol. 9104.
Lecture Notes in Computer Science. Springer, 2015, pp. 1–56.

[10] Bruni, R. and Meseguer, J. “Generalized rewrite theories”. In: International
Colloquium on Automata, Languages, and Programming. Springer. 2003,
pp. 252–266.

[11] Byun, J.-W., Bertino, E., and Li, N. “Purpose based access control of
complex data for privacy protection”. In: Proceedings of the tenth ACM
symposium on Access control models and technologies. 2005, pp. 102–110.

[12] Byun, J.-W. and Li, N. “Purpose based access control for privacy protection
in relational database systems”. In: The VLDB Journal vol. 17, no. 4 (2008),
pp. 603–619.

[13] Caromel, D. and Henrio, L. A Theory of Distributed Objects: Asynchrony-
Mobility-Groups-Components. Springer, 2005.

151

Bibliography

[14] Caromel, D., Henrio, L., and Serpette, B. P. “Asynchronous and
deterministic objects”. In: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 2004,
pp. 123–134.

[15] Caromel, D. et al. “ProActive: an integrated platform for programming
and running applications on Grids and P2P systems”. In: Computational
Methods in Science & Technology vol. 12.1 (2006), p. 16.

[16] Cavoukian, A. “Privacy by design: origins, meaning, and prospects for
assuring privacy and trust in the information era”. In: Privacy protection
measures and technologies in business organizations: aspects and standards.
IGI Global, 2012, pp. 170–208.

[17] Clarke, E. M. and Emerson, E. A. “Design and synthesis of synchronization
skeletons using branching time temporal logic”. In: Workshop on logic of
programs. Springer. 1981, pp. 52–71.

[18] Clavel, M. et al. All About Maude-A High-Performance Logical Framework:
How to Specify, Program, and Verify Systems in Rewriting Logic. Springer,
2007.

[19] Dahl, O.-J. and Owe, O. Formal Methods and the RM-ODP. Research
Report 261. (Full version of a paper presented at NWPT’98: Nordic Work-
shop on Programming Theory, Turku). Dept. of informatics, University of
Oslo, Norway, May 1998, p. 18.

[20] Dedecker, J. et al. “Ambient-Oriented Programming in AmbientTalk”.
In: European Conference on Object-Oriented Programming (ECOOP’06).
Vol. 4067. Lecture Notes in Computer Science. Springer, 2006, pp. 230–254.

[21] Denning, D. E. “A lattice model of secure information flow”. In:
Communications of the ACM vol. 19, no. 5 (1976), pp. 236–243.

[22] Denning, D. E. and Denning, P. J. “Certification of programs for secure
information flow”. In: Communications of the ACM vol. 20, no. 7 (1977),
pp. 504–513.

[23] Dijkstra, E. W. “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs”. In: Commun. ACM vol. 18, no. 8 (Aug. 1975),
pp. 453–457.

[24] Din, C. C., Dovland, J., and Owe, O. “Compositional Reasoning about
Shared Futures”. In: Software Engineering and Formal Methods. Ed. by
Eleftherakis, G., Hinchey, M., and Holcombe, M. Vol. 7504. LNCS. Springer,
2012, pp. 94–108.

[25] Din, C. C. and Owe, O. “A sound and complete reasoning system for
asynchronous communication with shared futures”. In: Journal of Logical
and Algebraic Methods in Programming vol. 83, no. 5-6 (2014), pp. 360–383.

[26] Durán, F. et al. “All about Maude: A high-performance logical framework”.
In: LNCS vol. 4350 (2007).

152

Bibliography

[27] Fernandez-Reyes, K., Clarke, D., and McCain, D. S. “ParT: An Asyn-
chronous Parallel Abstraction for Speculative Pipeline Computations”. In:
International Conference on Coordination Languages and Models. Springer,
2016, pp. 101–120.

[28] Flanagan, C. and Felleisen, M. “The semantics of future and an application”.
In: Journal of Functional Programming vol. 9, no. 1 (1999), pp. 1–31.

[29] Goguen, J. A. and Meseguer, J. “Security policies and security models”. In:
1982 IEEE Symposium on Security and Privacy. IEEE. 1982, pp. 11–11.

[30] Haller, P. and Odersky, M. “Scala actors: Unifying thread-based and event-
based programming”. In: Theoretical Computer Science vol. 410, no. 2-3
(2009), pp. 202–220.

[31] Halstead Jr, R. H. “Multilisp: A language for concurrent symbolic
computation”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) vol. 7, no. 4 (1985), pp. 501–538.

[32] Hayati, K. and Abadi, M. “Language-based enforcement of privacy policies”.
In: International Workshop on Privacy Enhancing Technologies. Springer.
2004, pp. 302–313.

[33] Hedin, D. and Sabelfeld, A. “A Perspective on Information-Flow Control.”
In: Software Safety and Security vol. 33 (2012), pp. 319–347.

[34] Henrio, L. and Rochas, J. “Multiactive objects and their applications”. In:
Logical Methods in Computer Science vol. Volume 13, Issue 4 (Nov. 2017),
pp. 1–41.

[35] Henrio, L. et al. “First Class Futures: Specification and Implementation of
Update Strategies.” In: Euro-Par Workshops. Springer, 2010, pp. 295–303.

[36] Hewitt, C., Bishop, P., and Steiger, R. “Session 8 Formalisms for
Artificial Intelligence A Universal Modular ACTOR Formalism for Artificial
Intelligence”. In: Advance Papers of the Conference. Vol. 3. Stanford
Research Institute. 1973, p. 235.

[37] Hoare, C. A. R. “An Axiomatic Basis for Computer Programming”. In:
Communications of the ACM vol. 12, no. 10 (1969), pp. 576–580.

[38] Hähnle, R. “The abstract behavioral specification language: a tutorial
introduction”. In: International Symposium on Formal Methods for
Components and Objects (FMCO 2012). Vol. 7866. Lecture Notes in
Computer Science. Springer, 2012, pp. 1–37.

[39] Johnsen, E. B. and Owe, O. “An asynchronous communication model for
distributed concurrent objects”. In: Software & Systems Modeling vol. 6,
no. 1 (2007), pp. 39–58.

[40] Johnsen, E. B., Owe, O., and Arnestad, M. “Combining Active and Reactive
Behavior in Concurrent Objects”. In: Proc. of the Norwegian Informatics
Conference (NIK’03). Tapir, Nov. 2003, pp. 193–204.

153

Bibliography

[41] Johnsen, E. B., Owe, O., and Yu, I. C. “Creol: A type-safe object-oriented
model for distributed concurrent systems”. In: Theoretical Computer
Science vol. 365, no. 1-2 (2006), pp. 23–66.

[42] Johnsen, E. B. et al. “ABS: A core language for abstract behavioral
specification”. In: International Symposium on Formal Methods for
Components and Objects. Springer. 2010, pp. 142–164.

[43] Johnsen, E. B. et al. “ABS: A core language for abstract behavioral
specification”. In: Formal Methods for Components and Objects. Vol. 6957.
Lecture Notes in Computer Science. Springer, 2011, pp. 142–164.

[44] Johnsen, E. B. et al. “Intra-Object versus Inter-Object: Concurrency
and Reasoning in Creol”. In: Electronic Notes in Theoretical Computer
Science vol. 243 (2009). Proceedings of the 2nd International Workshop on
Harnessing Theories for Tool Support in Software (TTSS’08), pp. 89–103.

[45] Karami, F., Owe, O., and Ramezanifarkhani, T. “An evaluation of
interaction paradigms for active objects”. In: Journal of Logical and
Algebraic Methods in Programming vol. 103 (2019), pp. 154–183.

[46] Kashyap, V., Wiedermann, B., and Hardekopf, B. “Timing-and termination-
sensitive secure information flow: Exploring a new approach”. In: 2011
IEEE Symposium on Security and Privacy. IEEE. 2011, pp. 413–428.

[47] Kumar, N. N. and Shyamasundar, R. “Realizing purpose-based privacy
policies succinctly via information-flow labels”. In: 2014 IEEE Fourth
International Conference on Big Data and Cloud Computing. IEEE. 2014,
pp. 753–760.

[48] Magazinius, J., Phung, P. H., and Sands, D. “Safe wrappers and sane
policies for self protecting Javascript”. In: Nordic Conference on Secure
IT Systems. Springer. 2010, pp. 239–255.

[49] Markey, N. “Temporal logic with past is exponentially more succinct”. In:
Bulletin-European Association for Theoretical Computer Science vol. 79
(2003), pp. 122–128.

[50] Martí-Oliet, N. and Meseguer, J. “Rewriting logic as a logical and semantic
framework”. In: Electronic Notes in Theoretical Computer Science vol. 4
(1996), pp. 190–225.

[51] Martí-Oliet, N. and Meseguer, J. “Rewriting logic: roadmap and bibliogra-
phy”. In: Theoretical Computer Science vol. 285, no. 2 (2002), pp. 121–
154.

[52] Meseguer, J. “Conditional rewriting logic as a unified model of concurrency”.
In: Theoretical computer science vol. 96, no. 1 (1992), pp. 73–155.

[53] Meseguer, J. “Membership algebra as a logical framework for equational
specification”. In: International Workshop on Algebraic Development
Techniques. Springer. 1997, pp. 18–61.

154

Bibliography

[54] Meseguer, J. “Rewriting logic as a semantic framework for concurrency:
a progress report”. In: International Conference on Concurrency Theory.
Springer. 1996, pp. 331–372.

[55] Meseguer, J. “Twenty years of rewriting logic”. In: The Journal of Logic
and Algebraic Programming vol. 81, no. 7-8 (2012), pp. 721–781.

[56] Myers, A. C. and Liskov, B. “Protecting privacy using the decentralized
label model”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) vol. 9, no. 4 (2000), pp. 410–442.

[57] Nair, S. K. et al. “A virtual machine based information flow control system
for policy enforcement”. In: Electronic Notes in Theoretical Computer
Science vol. 197, no. 1 (2008), pp. 3–16.

[58] Owe, O. “Verifiable Programming of Object-Oriented and Distributed
Systems”. In: From Action Systems to Distributed Systems - The
Refinement Approach. Ed. by Petre, L. and Sekerinski, E. Chapman and
Hall/CRC, 2016, pp. 61–79.

[59] Owe, O. and Dahl, O. “Generator Induction in Order Sorted Algebras”.
In: Formal Aspects Comput. vol. 3, no. 1 (1991), pp. 2–20.

[60] Owe, O. and Ramezanifarkhani, T. “Confidentiality of Interactions in
Concurrent Object-Oriented Systems”. In: Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Vol. 10436. lncs. Cham:
Springer, 2017, pp. 19–34.

[61] Owe, O. and Ramezanifarkhani, T. “Confidentiality of interactions in
concurrent object-oriented systems”. In: Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Springer, 2017, pp. 19–34.

[62] Owe, O. and Ryl, I. OUN: A formalism for open, object oriented, distributed
systems. Research Report 270. Dept. of informatics, University of Oslo,
Norway, Aug. 1999.

[63] Owe, O. and Schneider, G. “Wrap your objects safely”. In: Electronic Notes
in Theoretical Computer Science vol. 253, no. 1 (2009), pp. 127–143.

[64] Pettai, M. and Laud, P. “Securing the Future — An Information Flow
Analysis of a Distributed OO Language”. In: SOFSEM 2012: Theory and
Practice of Computer Science. Springer, 2012, pp. 576–587.

[65] Pnueli, A. “The temporal logic of programs”. In: 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). ieee. 1977, pp. 46–57.

[66] Queille, J.-P. and Sifakis, J. “Specification and verification of concurrent
systems in CESAR”. In: International Symposium on programming.
Springer. 1982, pp. 337–351.

[67] Razavi, N. et al. “Sysfier: Actor-based formal verification of systemc”. In:
ACM Transactions on Embedded Computing Systems (TECS) vol. 10, no. 2
(2010), p. 19.

155

Bibliography

[68] Regulation, G. D. P. “Regulation EU 2016/679 of the European Par-
liament and of the Council of 27 April 2016”. In: Official Journal of
the European Union. Available at: http://ec. europa. eu/justice/data-
protection/reform/files/regulation_oj_en. pdf (accessed 20 September
2017) (2016).

[69] “Regulation 2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation)”. In:
Official Journal of the European Union (2016), L119:1–88.

[70] Russo, A. and Sabelfeld, A. “Dynamic vs. static flow-sensitive security
analysis”. In: 2010 23rd IEEE Computer Security Foundations Symposium.
IEEE. 2010, pp. 186–199.

[71] Sabelfeld, A. and Myers, A. C. “Language-based information-flow security”.
In: IEEE Journal on selected areas in communications vol. 21, no. 1 (2003),
pp. 5–19.

[72] Schneider, G. “Is Privacy by Construction Possible?” In: International
Symposium on Leveraging Applications of Formal Methods. Springer. 2018,
pp. 471–485.

[73] Schäfer, J. and Poetzsch-Heffter, A. “JCoBox: Generalizing Active
Objects to Concurrent Components”. In: ECOOP 2010–Object-Oriented
Programming. Lecture Notes in Computer Science vol. 6183 (2010), pp. 275–
299.

[74] Sen, S. et al. “Bootstrapping privacy compliance in big data systems”. In:
2014 IEEE Symposium on Security and Privacy. IEEE. 2014, pp. 327–342.

[75] Serbanescu, V. et al. “Towards type-based optimizations in distributed
applications using ABS and JAVA 8”. In: International Workshop on
Adaptive Resource Management and Scheduling for Cloud Computing.
Springer. 2014, pp. 103–112.

[76] Sirjani, M., Movaghar, A., and Mousavi, M. R. “Compositional Verification
of an Object-Based Model for Reactive Systems”. In: Proceedings of the
Workshop on Automated Verification of Critical Systems (AVoCS’01),
Oxford, UK. Citeseer. 2001, pp. 114–118.

[77] Sirjani, M. et al. “Extended Rebeca: A component-based actor language
with synchronous message passing”. In: Application of Concurrency to
System Design, 2005. ACSD 2005. Fifth International Conference on.
IEEE. 2005, pp. 212–221.

[78] Sirjani, M. et al. “Modeling and verification of reactive systems using
Rebeca”. In: Fundamenta Informaticae vol. 63, no. 4 (2004), pp. 385–410.

[79] Soundarajan, N. “Axiomatic Semantics of Communicating Sequential
Processes”. In: ACM Transactions on Programming Languages and Systems
vol. 6 (1984), pp. 646–662.

156

Bibliography

[80] Tokas, S. and Owe, O. “A formal framework for consent management”.
In: Formal Techniques for Distributed Objects, Components, and Systems:
40th IFIP WG 6.1 International Conference, FORTE 2020, Held as Part
of the 15th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2020, Valletta, Malta, June 15–19, 2020, Proceedings
40. Springer. 2020, pp. 169–186.

[81] Tokas, S., Owe, O., and Ramezanifarkhani, T. “Static checking of GDPR-
related privacy compliance for object-oriented distributed systems”. In:
Journal of Logical and Algebraic Methods in Programming vol. 125 (2022),
p. 100733.

[82] Voigt, P. and Bussche, A. von dem. The EU general data protection
regulation (GDPR): A Practical Guide. Springer, 2017.

[83] Winskel, G. The formal semantics of programming languages: an introduc-
tion. MIT press, 1993.

[84] Wyatt, D. Akka concurrency. Artima Incorporation, 2013.
[85] Yonezawa, A., ed. ABCL: An Object-oriented Concurrent System. Cam-

bridge, MA, USA: MIT Press, 1990.
[86] Ölveczky, P. C. Designing Reliable Distributed Systems. Springer, 2017.
[87] Ölveczky, P. C. Designing Reliable Distributed Systems: A Formal Methods

Approach Based on Executable Modeling in Maude. Springer, 2018.

157

List of Figures

2.1 Transition system of a beverage machine [4]. 23
2.2 Semantics of temporal logic. 23

I.1 The online-retailing example in our system model (after [7]). . . 51
I.2 DPL’s grammar . 55
I.3 Online-retailing example in DPL. 57
I.4 The runtime elements, where S is a set of policy-contract pairs. . 58
I.5 Rewrite rules for user interactions. 61
I.6 Rewrite rules for data storage, deletion and scopes. 63
I.7 Rewrite rules for standard statements. 65
I.8 Rewrite rules for standard statements part 2. 66
I.9 Rewrite rules for operations on non-sensitive data. 78
I.10 Extension of the online-retailing example in DPL from Fig. I.3. . 82

II.1 Object definition in ABCL. 88
II.2 A version of the subscriber example in the ABCL language. . . . 90
II.3 A subscriber example in the Rebeca language. 92
II.4 A version of the subscriber example in the Creol language. . . . 94
II.5 A subscriber example in the ABS language. 96
II.6 A subscriber example in the Encore language. 98
II.7 A subscriber example in the ProActive language. 100
II.8 Future flow in ASP [13]. 101
II.9 The Publishing Example rewritten in the future-free language . 104
II.10 Overview of future support in the selected languages. 105
II.11 Unified Syntax . 108
II.12 Operational rules for local futures and future-free statements. . 112
II.13 Operational rules for first-class futures. 114
II.14 Implementation of simulated futures with and without polling. . 119
II.15 Reasoning rules for call-related statements for future-free languages. 124
II.16 Hoare style rules for futures. 126
II.17 A simplified summary of the evaluation of the different paradigms. 129

III.1 Statement syntax. 138
III.2 Example of sharing confidential patients’ test results by means of

futures. 138
III.3 The components of a configuration. 140
III.4 Flow-sensitive operational semantics, lev, lev′ ∈ {l,H}. 143
III.5 Operational semantics involving wrappers, lev, lev′ ∈ {l,H}. . . 145

159

List of Tables
I.1 GDPR requirements and associated features. 49
I.2 Explanation of predicates. 67

161

