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A SINGULAR LIMIT PROBLEM FOR CONSERVATION LAWS RELATED
TO THE CAMASSA-HOLM SHALLOW WATER EQUATION

GIUSEPPE MARIA COCLITE AND KENNETH HVISTENDAHL KARLSEN

Abstract. We consider a shallow water equation of Camassa-Holm type, containing nonlinear

dispersive effects as well as fourth order dissipative effects. We prove that as the diffusion and
dispersion parameters tend to zero, with a condition on the relative balance between these two

parameters, smooth solutions of the shallow water equation converge to discontinuous solutions

of a scalar conservation law. The proof relies on deriving suitable a priori estimates together
with an application of the compensated compactness method in the Lp setting.

1. Introduction

The aim of this paper is to study rigorously the convergence of solutions u = uε,α, as ε, α → 0+,
to the following scalar nonlinear partial differential equation

∂tu− α∂3
txxu + ∂xf(u)

= 2α∂xu∂2
xxu + αu∂3

xxxu + ε∂2
xxu− εα∂4

xxxxu,
(1.1)

where f is a smooth, genuinely nonlinear, and at most quadratically growing function.
At least formally, by taking ε = 0, α = 0 in (1.1) we recover the nonlinear conservation law

(1.2) ∂tu + ∂xf(u) = 0.

It is well known that solutions to nonlinear conservation laws in general form discontinuities, and
due to this loss of regularity or blow-up it becomes necessary to work with distributional (weak)
solutions. However, since various physical mechanisms have been neglected, weak solutions are
not unique, so that an additional condition is needed to single out a unique weak solution. This
additional condition is called the entropy condition. The prototype example of a conservation law
for which all these features are present is the Burgers equation (f(u) = u2

2 ). For an introduction
to conservation laws, see for example [21].

In this paper we prove rigorously that uε,α converges strongly to a limit function u that is a
weak solution u of (1.2), as long as the parameters α and ε are kept in balance in the sense that

α = O(ε4).

The convergence takes place in Lp
loc, for each 2 < p < 4. Under the stronger condition

α = o(ε4),

we prove that the limit u dissipates energy, that is, the entropy inequality

∂t

(
u2

2

)
+ ∂xq(u) ≤ 0, q′(u) = uf ′(u),

holds in the weak sense. When f is globally Lipschitz continuous we prove similar results with L4

replaced by L2 and α = O(ε4), o(ε4) replaced by α = O(ε2), o(ε2) respectively.
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Before we discuss the motivation for studying the singular limit problem associated with (1.1),
we give a brief overview of previous work on singular perturbation problems for conservation laws.

The classical problem is that of vanishing viscosity ε → 0+ in solutions u = uε to the uniformly
parabolic equations

∂tu + ∂xf(u) = ε∂2
xxu.

While a solution to the conservation law possesses discontinuities, the solution to the above par-
abolic equation is always smooth thanks to the regularization effect of the operator ε∂2

xxu. The
vanishing viscosity limit lies at the heart of the matter of the famous theory of Kružkov [27]. This
theory says, among many other things, that uε converges strongly (in Lp

loc, 1 ≤ p < ∞) to a limit
u, which is a weak solution of the conservation law and moreover satisfies an infinite family of
entropy inequalities of the form

∂t |u− c|+ ∂x [sign (u− c) (f(u)− f(c))] ≤ 0, ∀c ∈ R,

which is the so-called Kružkov’s entropy condition. The key ingredients in this theory are the
maximum principle and BV estimates, which can be viewed as consequences of the fundamental
L1 contraction property shared by entropy solutions.

A different singular perturbation problem is that of vanishing dispersion δ → 0+ in solutions
u = uδ to the generalized KdV equation

∂tu + ∂xf(u) = −δ∂3
xxxu.

It is known that when t exceeds the time of shock formation for the conservation law (1.2), the
dispersive solution u = uδ behaves in an oscillatory manner. Moreover, as δ → 0+ the amplitude
of these oscillations stays bounded but does not tend to zero, and its wave length is of order δ.
Hence, uδ converges only weakly to some limit function u as δ → 0+, which does not satisfy the
conservation law (1.2). We refer to Lax and Levermore [28, 29, 30] for more information on the
KdV small dispersion limit problem.

Schonbeck [39] studied the combined singular limit problem of vanishing diffusion ε → 0+ and
vanishing dispersion δ → 0+ (with ε and δ kept in balance) in solutions u = uε,δ to

∂tu + ∂xf(u) = ε∂2
xxu− δ∂3

xxxu,

∂tu− δ∂3
txxu + ∂xf(u) = ε∂2

xxu.
(1.3)

The first equation in (1.3) is often referred to as the generalized KdV-Burgers equation, while
the second equation is often referred to as the generalized BBM-Burgers equation (see for [2]
for the BBM equation). For these equations L1 contraction principles, maximum principles, or
BV estimates are not available. Instead Schonbek [39] developed and used the Lp version of the
compensated compactness method [42]. Schonbek’s convergence results for the (generalized) KdV-
Burgers equation have been extended in various directions by LeFloch and Natalini [32], Correia
and Lefloch [14], Kondo and Lefloch [26], and also Hwang and Tzavaras [24].

Depending on the relationship between ε and δ when performing the limit ε → 0+, δ → 0+,
different results are obtained. For example, for the generalized KdV-Burgers equation with a
globally Lipschitz flux f , the following results are known [26]: (i) δ � ε2. The solutions uε,δ

then converge strongly to a Kružkov entropy solution of (1.2). (ii) δ � ε2. The solutions uε,δ

then become highly oscillatory and do not converge strongly to a solution of (1.2) (cf. also the
discussion above on the KdV type equation). (iii) δ = Cε2 with C fixed. In this intermediate
regime, the solutions uε,δ converge strongly (in Lp

loc, 1 < p < 2) but in general not to a Kružkov
entropy solution of (1.2), unless f is convex.

In the intermediate region it is possible that the limit function contains so-called non-classical
shock waves that dissipate the single entropy η(u) = 1

2u2 (the ”energy”) but not all convex
entropies. Hence non-classical shock waves may violate the entropy condition of Olĕınik and in
that sense they are undercompressive. We refer to the book of LeFloch [31] for an introduction to
the highly active field of non-classical shocks in (systems of) conservation laws.

Lucier [35] proved that the solutions u = uε,δ to the equation

(1.4) ∂tu− δ∂3
txxu + ∂xf(u) = ε∂2

xxg(u)
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converge strongly (in Lp
loc, 1 ≤ p < ∞) to a Kružkov entropy solution of (1.2) provided that

the ratio α = ε2/δ is kept fixed as ε, δ → 0, and the functions f and g are globally Lipschitz
continuous and εg(u) ±

√
δf(u) are nondecreasing in u. Observe that if f, g are continuously

differentiable, this latter condition is equivalent to the relation εg′(u) ≥
√

δ|f ′(u)| for all u. The
above relation thus says that diffusion effects must dominate the interaction between nonlinear
convection and dispersion terms. Under these circumstances, Lucier was able to use the theory of
L1 contractive semigroups, the maximum principle, and BV estimates to prove his results. His
analysis should be compared with the Lp compensated compactness analysis for the (generalized)
BBM-Burgers equation by Schonbeck [39], who proved strong convergence to a weak solution
under the assumption that δ = O(ε4).

To conclude this (incomplete) overview of singular limit problems for conservation laws, we
mention that there are also some papers that study the singular limit ε → 0+, δ → 0+ for
solutions u = uε,δ to fourth (or higher) order equations of the form

∂tu + ∂xf(u) = ε∂2
xxu− δ∂4

xxxxu,

see Cassis [4], Zhao [45], Hwang [23], and also Tadmor [41].
Before returning to (1.1), let us recall that the KdV(-Burgers) and BBM(-Burgers) equations are

used as models for the study of weakly nonlinear unidirectional long waves. They arise in physical
contexts in which there is a balance between nonlinearity and dispersion at leading order. For
example, they model surface waves of small amplitude and long wavelength on shallow water. The
KdV and BBM equations are asymptotically equivalent to the neglected order of approximation.
However, while the KdV equation is completely integrable and possesses solitary wave solutions
that are solitons, the BBM equation does not share these properties. On the other hand, for the
KdV equation the linearized dispersion relation is not bounded for large wave numbers, whereas
it is for the BBM equation (in fact it tends to zero as the wave number tends to infinity).

In the early 1990s a new equation for shallow water waves entered the arena, namely the so-
called Camassa-Holm equation [3]. This nonlinearly dispersive wave equation, which has received
a considerable amount of attention in recent years, takes the form

∂tu− α∂3
txxu + κu∂xu + 3u∂xu = 2α∂xu∂2

xxu + αu∂3
xxxu.(1.5)

Observe that (1.5) can be obtained by taking ε = 0 and f(u) = κu + 3
2u2 in (1.1). As already

alluded to, in one interpretation, the Camassa-Holm equation models the propagation of unidi-
rectional shallow water waves on a flat bottom, and then u(t, x) represents the fluid velocity at
time t in the horizontal direction x [3, 25]. Within this context, α > 0 is a length scale (related to
the shallowness) and κ ≥ 0 is a constant that is proportional to the square root of water depth.
In another interpretation, Dai [15] derived (1.5) (in a more general form) as an equation describ-
ing finite length, small amplitude radial deformation waves in cylindrical compressible hyperelastic
rods. For a discussion of Camassa-Holm and related equations as well as their analytical/numerical
properties, see the recent paper by Holm and Staley [22].

The Camassa-Holm equation goes beyond the linear order KdV and BBM equations in the
sense that (1.5) appears as a water wave equation at quadratic order in an asymptotic expansion
for unidirectional shallow water waves modeled by the incompressible Euler equations, whereas
the KdV and BBM equations appear at first order in this asymptotic expansion [3, 25]. Indeed,
(1.5) takes into account nonlinear dispersive effects in addition to the terms associated with the
BBM equation, and for that reason it can be viewed as a generalization of the BBM equation. The
Camassa-Holm equation (1.5) contains higher order nonlinear/nonlocal balances not present in the
KdV and BBM equations. Moreover, as in the BBM equation but not in the KdV equation, the
linear dispersion relation in the Camassa-Holm equation remains bounded for large wave numbers.

The Camassa-Holm equation possesses many astonishing properties. Let us mention its bi-
Hamiltonian structure (and thus an infinite number of conservation laws) [19, 3] and that, as is
the case with the KdV equation but not the BBM equation, it is completely integrable [3, 1, 12, 8].
Moreover, when κ = 0 it has an infinite number of non-smooth solitary wave solutions called
peakons (due to the discontinuity of their first derivatives at the wave peak), which interact like
solitons. Although the KdV equation admits solitary waves that are solitons, it does not model
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wave breaking. The Camassa-Holm equation is remarkable in the sense that it admits soliton
solutions and at the same time allow for wave breaking.

From a mathematical point of view the Camassa-Holm equation is by now well studied. Local
well-posedness results are proved in [9, 20, 33, 38]. It is also known that there exist global solutions
for a certain class of initial data and also solutions that blow up in finite time for a large class of
initial data [7, 9, 11]. Existence and uniqueness results for global weak solutions of (1.5) have been
proved by Constantin and Escher [10], Constantin and Molinet [13], and Xin and Zhang [43, 44],
see also Danchin [16, 17]. The generalized Camassa-Holm equation (1.1) with ε = 0 was analyzed
recently in [5], while the easier case when ε > 0 (so that smooth solutions exist) is contained as a
special case of a more general class of equations analyzed in [6].

We recall that weak solutions of, say, (1.5) are sought in the class L∞(R+;H1(R)) and is based
on a distributional interpretation of the system

(1.6) ∂tu + u∂xu + ∂xP = 0, −α∂2
xxP + P = u2 +

α

2
(∂xu)2 ,

where it may be instructive to recall that the Green’s function of the elliptic operator P 7→
−α∂2

xxP +P is e−|x|/
√

α

2
√

α
. It is not difficult to see that the scalar equation (1.5) is equivalent to the

system (1.6), at least when the solutions are smooth.
One way to prove existence of a weak solution to (1.6) goes via the vanishing viscosity method,

that is, one attempts to take the limit ε → 0+ in smooth solutions u = uε to the system

(1.7) ∂tu + u∂xu + ∂xP = ε∂2
xxu, −α∂2

xxP + P = u2 +
α

2
(∂xu)2 .

We refer to [43] for an implementation of this strategy, which is highly nontrivial due to the
nonlinear nature of the system (1.7). Writing out (1.7) as a scalar equation yields the fourth order
equation (1.1) with f(u) = 3u2

2 . In this paper we will consider equation (1.1) with a “general”
f , which can be viewed as a generalized Camassa-Holm equation that accounts for nonlinear
dispersive effects as well as (linear) dissipative effects.

In passing, let us mention another important ingredient in the mathematical treatment of the
Camassa-Holm equation, namely the “vorticity caricature” m := u − α∂2

xxu (see, e.g., [10, 13]),
which satisfies the equation

(1.8) ∂tm + u∂xm + 2m∂xu = 0.

Assuming that m|t=0 is a bounded nonnegative measure, it is not hard to see that the solution
m(t, ·) to (1.8) remains a nonnegative measure at later times. Consequently, one can easily bound
∂u/∂x in L∞ and ∂2u/∂x2 in L1. These rather strong a priori bounds can then be used as basis
for proving existence (and uniqueness) of an energy conservative weak solution [10, 13].

Unfortunately, in the present paper we can neither exploit the “system formulation” nor the
“vorticity formulation” of the Camassa-Holm equation. Indeed, most of the a priori estimates and
technical tools associated with these formulations are too strong to capture the (discontinuous)
limit of solutions uε,α to (1.1) as the diffusion and dispersion parameters tend to zero. Instead, we
will derive suitable a priori estimates by working directly on the scalar equation (1.1). Following
Schonbek [39], we then use the Lp compensated compactness method to obtain strong convergence
of a subsequence of {uε,α}ε,α to a limit function that is a weak solution of the conservation law
(1.2). Here we reiterate that due to the (nonlinear) dispersion terms we do not have uniform
L1, L∞,BV estimates at our disposal. Depending on the relationship between α and β, we also
prove that the limit dissipates the entropy η(u) = u2

2 . However, different from KdV-Burgers type
singular limit problems, it seems that the limit function u does not dissipate all convex entropies,
even if we impose a stronger condition on the balance between ε and α.

The remaining part of this paper is organized as follows: In Section 2 we give precise conditions
on the data our problems and state our main theorem (Theorem 2.1). Some tools needed for the
convergence analysis are recalled in Section 3. A priori estimates are derived in Section 4, while
the proof of Theorem 2.1 is given in Section 5.
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2. Statement of the main result

Consider the nonlinear conservation law

(2.1) ∂tu + ∂xf(u) = 0, (t, x) ∈ R+ × R,

which is supplemented with initial data

(2.2) u(0, x) = u0(x), x ∈ R.

Consider the Camassa-Holm type equation

∂tuε,α − α∂3
txxuε,α + ∂xf(uε,α)(2.3)

= 2α∂xuε,α∂2
xxuε,α + αuε,α∂3

xxxuε,α + ε∂2
xxuε,α − εα∂4

xxxxuε,α, (t, x) ∈ R+ × R,

which is supplemented with initial data

(2.4) uε,α(0, x) = uε,α,0(x), x ∈ R.

We assume that the flux f : R → R is a C2 function satisfying

(2.5) |f ′(u)| ≤ κ0|u|, |f(u)| ≤ κ1|u|2, u ∈ R,

or

(2.6) |f ′(u)| ≤ κ2, |f(u)| ≤ κ3|u|, u ∈ R,

for some constants κ0, κ1, κ2, κ3 > 0, and the genuinely nonlinearity condition

(2.7) meas {u ∈ R : f ′′(u) = 0} = 0.

We assume that the initial function u0 satisfies

u0 ∈ L4(R) ∩ L2(R), if (2.5) holds,

u0 ∈ L2(R), if (2.6) holds.
(2.8)

We assume that the initial functions uε,α,0 satisfy

uε,α,0 ∈ H2(R), uε,α,0 → u0 in L2(R) ∩ L4(R) as ε, α → 0, if (2.5) holds,

uε,α,0 ∈ H2(R), uε,α,0 → u0 in L2(R) as ε, α → 0, if (2.6) holds
(2.9)

and

‖uε,α,0‖L1(R) + ‖uε,α,0‖L2(R) + ‖uε,α,0‖L4(R) +
(
α +

√
α + ε2

)
‖∂xuε,α,0‖L2(R)

+
√

α2 + ε2α‖∂2
xxuε,α,0‖L2(R) ≤ C0, ε, α > 0, if (2.5) holds,

‖uε,α,0‖L1(R) + ‖uε,α,0‖L2(R) +
(
α +

√
α + ε2

)
‖∂xuε,α,0‖L2(R)

+
√

α2 + ε2α‖∂2
xxuε,α,0‖L2(R) ≤ C0, ε, α > 0, if (2.6) holds,

(2.10)

for some constant C0 > 0 that is independent of ε, α.
The main result of this paper is the following theorem:

Theorem 2.1. Assume that (2.7)-(2.10) hold.
If (2.5) is satisfied and

(2.11) α = O(ε4),

then there exist two sequences {εk}k∈N, {αk}k∈N, with εk, αk → 0, and a limit function

u ∈ L∞(R+;L4(R) ∩ L2(R)),

such that
(i) uεk,αk

→ u strongly in Lp
loc(R+ × R), for each 1 ≤ p < 4, and

(ii) u is a distributional solution of the Cauchy problem (2.1), (2.2).
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If (2.6) is satisfied and

(2.12) α = O(ε2),

then
u ∈ L∞(R+;L2(R)),

(ii) holds, and
(iii) uεk,αk

→ u strongly in Lp
loc(R+ × R), for each 1 ≤ p < 2.

Moreover, if (2.5) holds and

(2.13) α = o(ε4),

or if (2.6) holds and

(2.14) α = o(ε2),

we have
(iv) dissipation of the energy, that is,

∂t

(
u2

2

)
+ ∂xq(u) ≤ 0 in the weak sense on R+ × R,

where q : R → R is defined by q′(u) = uf ′(u),

Remark 2.1. We proved in [6] the existence of a unique smooth solution uε,α to (2.3), (2.4),
which moreover depends continuously on the initial condition uε,α,0 and on the function f .

Remark 2.2. Different from KdV-Burgers type singular limit problems [32, 14, 26, 24, 23], we are
not able to prove that the limit function constructed in Lemma 5.2 dissipates all convex entropies,
even if we were to impose a stronger condition on the balance between ε and α than we did in
Theorem 2.1. Morever, we have not be able to derive any uniform L1 bound on uε,α.

In the convex case (f(u) = u2

2 ) a recent result of De Lellis, Otto, and Westdickenberg [18] (see
also an earlier result by Panov [37] in the L∞ context) shows that the satisfaction of the entropy
inequality for a single strictly convex entropy is enough to characterize an L4 Kružkov entropy
solution to Burgers’ equation. We refer to Szepessy [40] for the L1 ∩ Lp version of Kružkov’s
well-posedness theory [27].

3. Mathematical preliminaries

Later we will use Schonbek’s Lp version [39] of the compensated compactness method [42].
However, to avoid assuming strict convexity of the flux function, we will use a refinement of
Schonbek’s method found in [34], which is stated next.

Lemma 3.1. Let Ω be a bounded open subset of R+ × R. Let f ∈ C2(R) satisfy

|f(u)| ≤ C |u|s+1 for u ∈ R, |f ′(u)| ≤ C |u|s for u ∈ R,

for some s ≥ 0, and

(3.1) meas {u ∈ R : f ′′(u) = 0} = 0.

Define functions Il, fl, Fl : R → R as follows:{
Il ∈ C2(R), |Il(u)| ≤ |u| for u ∈ R, |I ′l(u)| ≤ 2 for u ∈ R,
|Il(u)| ≤ |u| for |u| ≤ l, Il(u) = 0 for |u| ≥ 2l,

and
fl(u) =

∫ u

0

I ′l(ζ)f ′(ζ)dζ, Fl(u) =
∫ u

0

f ′l (ζ)f ′(ζ)dζ.

Suppose {un}∞n=1 ⊂ L2(s+1)(Ω) is such that the two sequences

(3.2) {∂tIl(un) + ∂xfl(un)x}∞n=1 , {∂tfl(un) + ∂xFl(un)}∞n=1

of distributions belong to a compact subset of H−1
loc (Ω), for each fixed l > 0.
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Then there exists a subsequence of {un}∞n=1 that converges to a function u ∈ L2(s+1)(Ω) strongly
in Lr(Ω) for any 1 ≤ r < 2(s + 1).

When we later apply Lemma 3.1, the following lemma of Murat [36]) is useful:

Lemma 3.2. Let Ω be a bounded open subset of RN , N ≥ 2. Suppose the sequence {Ln}∞n=1 of
distributions is bounded in W−1,∞(Ω). Suppose also that

Ln = L1
n + L2

n,

where
{
L1

n

}∞
n=1

lies in a compact subset of H−1
loc (Ω) and

{
L2

n

}∞
n=1

lies in a bounded subset of
Mloc(Ω). Then {Ln}∞n=1 lies in a compact subset of H−1

loc (Ω).

4. A priori estimates

The main results in this section are collected in two lemmas. The first one contains the energy
estimate that yields L2 estimates for various quantities involving partial derivatives up to order
two, while the second one contains additional L4/L2 bounds on various quantities containing
partial derivatives of uε,α up to order three.

Lemma 4.1. Assume that (2.9) and (2.10) hold. Then the following identity holds∫
R

[
(uε,α(t, x))2 + α (∂xuε,α(t, x))2

]
dx

+ 2ε

∫ t

0

∫
R

[
(∂xuε,α(τ, x))2 + α

(
∂2

xxuε,α(τ, x)
)2]

dxdτ

=
∫

R

[
u0,ε,α(x)2 + α (∂xu0,ε,α(x))2

]
dx,

(4.1)

for each t ≥ 0, ε, α > 0. In particular,

‖uε,α‖L∞(R+;L2(R)),
√

α‖∂xuε,α‖L∞(R+;L2(R)) ≤ C0,(4.2)
√

ε‖∂xuε,α‖L2(R+×R),
√

εα‖∂2
xxuε,α‖L2(R+×R) ≤

C0√
2
.(4.3)

Moreover,

(4.4) ‖uε,α‖L∞(R+×R) ≤
√

2C0α
−1/4.

Proof. Multiplying (2.3) by uε,α and integrating on R we have∫
R

uε,α∂tuε,αdx− α

∫
R

uε,α∂3
txxuε,αdx +

∫
R

f ′(uε,α)uε,α∂xuε,αdx

= 2α

∫
R

uε,α∂xuε,α∂2
xxuε,αdx + α

∫
R

u2
ε,α∂3

xxxuε,αdx

+ ε

∫
R

uε,α∂2
xxuε,αdx− εα

∫
R

uε,α∂4
xxxxuε,αdx.

(4.5)

Observe that∫
R

uε,α∂tuε,αdx− α

∫
R

uε,α∂3
txxuε,αdx =

d

dt

∫
R

u2
ε,α + α(∂xuε,α)2

2
dx,

ε

∫
R

uε,α∂2
xxuε,αdx− εα

∫
R

uε,α∂4
xxxxuε,αdx = −ε

∫
R

(
(∂xuε,α)2 + α(∂2

xxuε,α)2
)
dx,

2α

∫
R

uε,α∂xuε,α∂2
xxuε,αdx + α

∫
R

u2
ε,α∂3

xxxuε,αdx−
∫

R
f ′(uε,α)uε,α∂xuε,αdx = 0.

Hence, we can rewrite (4.5) in the following way

(4.6)
d

dt

∫
R

(
u2

ε,α + α(∂xuε,α)2
)
dx + 2ε

∫
R

(
(∂xuε,α)2 + α(∂2

xxuε,α)2
)
dx = 0.

Integrating (4.6) on the interval [0, t], we get (4.1).
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To prove (4.4), we use (4.2) and the Hölder inequality as follows:

u2
ε,α(t, x) ≤ 2

∫
R
|uε,α∂xuε,α|dx

≤ 2‖uε,α(t, ·)‖L2(R)‖∂xuε,α(t, ·)‖L2(R)

≤ 2C2
0√
α

, for every t ≥ 0, x ∈ R, ε, α > 0.

�

Lemma 4.2. Assume that (2.9) and (2.10) hold.
If (2.5) and (2.11) are satisfied, then

i) the family {uε,α}ε,α is bounded in L∞(R+;L4(R));

ii) the following families are bounded in L∞(R+;L2(R)):

{√
α∂xuε,α

}
ε,α

,
{
ε∂xuε,α

}
ε,α

,{
α∂2

xxuε,α

}
ε,α

,
{
ε
√

α∂2
xxuε,α

}
ε,α

;

iii) the following families are bounded in L2(R+ × R):

{√
ε∂tuε,α

}
ε,α

,
{√

εα∂2
txuε,α

}
ε,α

,
{√

εuε,α∂xuε,α

}
ε,α

,{√
εαuε,α∂2

xxuε,α

}
ε,α

,
{√

εα∂3
xxxuε,α

}
ε,α

.

If (2.6) and (2.12) are satisfied, then only ii) and iii) hold.
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Proof. We begin by assuming (2.5) and (2.11). Let λ, µ > 0 be two numbers that will be specified
later. Multiplying (2.3) by u3

ε,α + λ∂tuε,α − µ∂2
xxuε,α and integrating the result over R we get∫

R
∂tuε,αu3

ε,αdx︸ ︷︷ ︸
I1(t)

+λ

∫
R
(∂tuε,α)2dx︸ ︷︷ ︸

I2(t)

−µ

∫
R

∂tuε,α∂2
xxuε,αdx︸ ︷︷ ︸

I3(t)

− α

∫
R

∂3
txxuε,αu3

ε,αdx︸ ︷︷ ︸
I4(t)

−αλ

∫
R

∂3
txxuε,α∂tuε,αdx︸ ︷︷ ︸

I5(t)

+ αµ

∫
R

∂3
txxuε,α∂2

xxuε,αdx︸ ︷︷ ︸
I6(t)

+
∫

R
f ′(uε,α)∂xuε,αu3

ε,αdx︸ ︷︷ ︸
I7(t)

+ λ

∫
R

f ′(uε,α)∂xuε,α∂tuε,αdx︸ ︷︷ ︸
I8(t)

−µ

∫
R

f ′(uε,α)∂xuε,α∂2
xxuε,αdx︸ ︷︷ ︸

I9(t)

= 2α
∫

R
∂xuε,α∂2

xxuε,αu3
ε,αdx︸ ︷︷ ︸

I10(t)

+2αλ

∫
R

∂xuε,α∂2
xxuε,α∂tuε,αdx︸ ︷︷ ︸

I11(t)

− 2αµ

∫
R

∂xuε,α(∂2
xxuε,α)2dx︸ ︷︷ ︸

I12(t)

+α

∫
R

u4
ε,α∂3

xxxuε,αdx︸ ︷︷ ︸
I13(t)

+ αλ

∫
R

uε,α∂tuε,α∂3
xxxuε,αdx︸ ︷︷ ︸

I14(t)

−αµ

∫
R

uε,α∂2
xxuε,α∂3

xxxuε,αdx︸ ︷︷ ︸
I15(t)

+ ε

∫
R

u3
ε,α∂2

xxuε,αdx︸ ︷︷ ︸
I16(t)

+ ελ

∫
R

∂tuε,α∂2
xxuε,αdx︸ ︷︷ ︸

I17(t)

− εµ

∫
R
(∂2

xxuε,α)2dx︸ ︷︷ ︸
I18(t)

− εα

∫
R

u3
ε,α∂4

xxxxuε,αdx︸ ︷︷ ︸
I19(t)

− εαλ

∫
R

∂tuε,α∂4
xxxxuε,αdx︸ ︷︷ ︸

I20(t)

+ εαµ

∫
R

∂2
xxuε,α∂4

xxxxuε,αdx︸ ︷︷ ︸
I21(t)

.

(4.7)

Notice that I7(t) = 0 for all t. We rewrite the remaining terms in (4.7) as follows:

I1(t)− I3(t) + I6(t)− I17(t) + I20(t)

=
d

dt

∫
R

(
u4

ε,α

4
+

µ + ελ

2
(∂xuε,α)2 +

α(µ + ελ)
2

(∂2
xxuε,α)2

)
dx,

(4.8)

I2(t)− I5(t)− I16(t) + I18(t)− I21(t)

= λ

∫
R
(∂tuε,α)2dx + αλ

∫
R
(∂2

txuε,α)2dx + 3ε

∫
R

u2
ε,α(∂xuε,α)2dx

+ εµ

∫
R
(∂2

xxuε,α)2dx + εαµ

∫
R
(∂3

xxxuε,α)2dx,

(4.9)
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and finally, using (4.2),

−I19 = 3εα
∫

R
u2

ε,α∂xuε,α∂3
xxxuε,αdx

= −3εα

∫
R

u2
ε,α(∂2

xxuε,α)2dx− 6εα

∫
R

u(∂xuε,α)2∂2
xxuε,αdx

= −3εα

∫
R

u2
ε,α(∂2

xxuε,α)2dx + 2εα

∫
R
(∂xuε,α)4dx

≤ −3εα

∫
R

u2
ε,α(∂2

xxuε,α)2dx + 2c1εα

∫
R

u2
ε,αdx

∫
R
(∂2

xxuε,α)2dx

≤ −3εα

∫
R

u2
ε,α(∂2

xxuε,α)2dx + 2c1C
2
0εα

∫
R
(∂2

xxuε,α)2dx,

(4.10)

for some constant c1 > 0.
Hence, using (4.8), (4.9), and (4.10), we can write (4.7) in the form

d

dt

∫
R

(
u4

ε,α

4
+

µ + ελ

2
(∂xuε,α)2 +

α(µ + ελ)
2

(∂2
xxuε,α)2

)
dx

+ λ

∫
R
(∂tuε,α)2dx + αλ

∫
R
(∂2

txuε,α)2dx + 3ε

∫
R

u2
ε,α(∂xuε,α)2dx

+ εµ

∫
R
(∂2

xxuε,α)2dx + εαµ

∫
R
(∂3

xxxuε,α)2dx

+ 3εα

∫
R

u2
ε,α(∂2

xxuε,α)2dx− 2c1C
2
0εα

∫
R
(∂2

xxuε,α)2dx

≤ α

∫
R

∂3
txxuε,αu3

ε,αdx− λ

∫
R

f ′(uε,α)∂xuε,α∂tuε,αdx

+ µ

∫
R

f ′(uε,α)∂xu∂2
xxudx + 2α

∫
R

∂xuε,α∂2
xxuε,αu3

ε,αdx

+ 2αλ

∫
R

∂xuε,α∂2
xxuε,α∂tuε,αdx− 2αµ

∫
R

∂xuε,α(∂2
xxuε,α)2dx

+ α

∫
R

u4
ε,α∂3

xxxuε,αdx + αλ

∫
R

uε,α∂tuε,α∂3
xxxuε,αdx

− αµ

∫
R

uε,α∂2
xxuε,α∂3

xxxuε,αdx

= J1(t) + J2(t) + J3(t) + J4(t) + J5(t) + J6(t),

(4.11)

where

J1(t) := 2α

∫
R

∂xuε,α∂2
xxuε,αu3

ε,αdx + α

∫
R

u4
ε,α∂3

xxxuε,αdx,

J2(t) := −2αµ

∫
R

∂xuε,α(∂2
xxuε,α)2dx− αµ

∫
R

uε,α∂2
xxuε,α∂3

xxxuε,αdx,

J3(t) := α

∫
R

∂3
txxuε,αu3

ε,αdx,

J4(t) := −λ

∫
R

f ′(uε,α)∂xuε,α∂tuε,αdx,

J5(t) := µ

∫
R

f ′(uε,α)∂xuε,α∂2
xxuε,αdx,

J6(t) := 2αλ

∫
R

∂xuε,α∂2
xxuε,α∂tuε,αdx + αλ

∫
R

uε,α∂tuε,α∂3
xxxuε,αdx.



A SINGULAR LIMIT PROBLEM OF CAMASSA-HOLM TYPE 11

Now we estimate the terms J1, . . . , J6:

J1(t) = −2α

∫
R

∂xuε,α∂2
xxuε,αu3

ε,αdx(4.12)

≤ α

ε

∫
R

u4
ε,α(∂xuε,α)2dx + αε

∫
R

u2
ε,α(∂2

xxuε,α)2dx

≤ 2C2
0

√
α

ε

∫
R

u2
ε,α(∂xuε,α)2dx + αε

∫
R

u2
ε,α(∂2

xxuε,α)2dx,

J2(t) = 3αµ

∫
R

uε,α∂2
xxuε,α∂3

xxxuε,αdx(4.13)

≤ 9αµ

2ε

∫
R

u2
ε,α(∂2

xxuε,α)2dx +
αµε

2

∫
R
(∂3

xxxuε,α)2dx,

J3(t) =− 3α

∫
R

∂2
txuε,α∂xuε,αu2

ε,αdx(4.14)

≤ αλ

6

∫
R
(∂2

txuε,α)2dx +
27α

2λ

∫
R

u4
ε,α(∂xuε,α)2dx

≤ αλ

6

∫
R
(∂2

txuε,α)2dx +
27C2

0

√
α

λ

∫
R

u2
ε,α(∂xuε,α)2dx,

J4(t) ≤ κ0λ

∫
R

∣∣uε,α∂xuε,α∂tuε,α

∣∣dx(4.15)

≤ λ

2

∫
R
(∂tuε,α)2dx +

κ2
0λ

2

∫
R

u2
ε,α(∂xuε,α)2dx,

J5(t) ≤ κ0µ

∫
R

∣∣uε,α∂xuε,α∂2
xxuε,α

∣∣dx(4.16)

≤ κ0µ

2ε

∫
R

u2
ε,α(∂xuε,α)2dx +

κ0µε

2

∫
R
(∂2

xxuε,α)2dx,

J6(t) = αλ

∫
R

∂tuε,α∂xuε,α∂2
xxuε,αdx− αλ

∫
R

uε,α∂2
txuε,α∂2

xxuε,αdx(4.17)

= −αλ

2

∫
R

∂2
txuε,α(∂xuε,α)2dx− αλ

∫
R

uε,α∂2
txuε,α∂2

xxuε,αdx

≤ αλ

6

∫
R
(∂2

txuε,α)2dx +
3αλ

2

∫
R
(∂xuε,α)4dx

+
αλ

6

∫
R
(∂2

txuε,α)2dx +
3αλ

2

∫
R

u2
ε,α(∂2

xxuε,α)2dx

≤ αλ

3

∫
R
(∂2

txuε,α)2dx

+
3c1αλ

2

∫
R

u2
ε,αdx

∫
R
(∂2

xxuε,α)2dx +
3αλ

2

∫
R

u2
ε,α(∂2

xxuε,α)2dx

≤ αλ

3

∫
R
(∂2

txuε,α)2dx +
3c1C

2
0αλ

2

∫
R
(∂2

xxuε,α)2dx

+
3αλ

2

∫
R

u2
ε,α(∂2

xxuε,α)2dx.

We used (4.4) to estimate J1(t), J3(t) and (2.5) to estimate J4(t), J5(t). To estimate J6(t) we used
the inequality

(4.18)
∫

R
(∂xuε,α)4dx ≤ c1

∫
R

u2
ε,αdx

∫
R
(∂2

xxuε,α)2dx,

where c1 is some universal constant.
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Substituting (4.12), (4.13), (4.14), (4.15), (4.16), (4.17) into (4.11), we get

d

dt

∫
R

(
u4

ε,α

4
+

µ + ελ

2
(∂xuε,α)2 +

α(µ + ελ)
2

(∂2
xxuε,α)2

)
dx

+ λ

∫
R
(∂tuε,α)2dx + αλ

∫
R
(∂2

txuε,α)2dx + 3ε

∫
R

u2
ε,α(∂xuε,α)2dx

+ εµ

∫
R
(∂2

xxuε,α)2dx + εαµ

∫
R
(∂3

xxxuε,α)2dx + 3εα

∫
R

u2
ε,α(∂2

xxuε,α)2dx

≤ Λ1

∫
R
(∂2

xxuε,α)2dx + Λ2

∫
R

u2
ε,α(∂xuε,α)2dx + Λ3

∫
R

u2
ε,α(∂2

xxuε,α)2dx

+
αεµ

2

∫
R
(∂3

xxxuε,α)2dx +
αλ

2

∫
R
(∂2

txuε,α)2dx +
λ

2

∫
R
(∂tuε,α)2,

(4.19)

where

Λ1 := 2c1C
2
0εα +

3c1C
2
0αλ

2
+

κ0µε

2
,

Λ2 :=
2C2

0

√
α

ε
+

27C2
0

√
α

λ
+

κ2
0λ

2
+

κ0µ

2ε
,

Λ3 := αε +
9αµ

2ε
+

3αλ

2
.

Finally, choosing (see (2.11))

(4.20) α ≤ k1ε
4, λ = k2ε, µ = k3α(≤ k1k2ε

4),

for some constant k1, k2, k3 > 0 (which are independent of ε, α), we have

Λ1 = O(εα) = O(εµ), Λ2 = O(ε), Λ3 = O(εα).

Hence, from (4.3),

(4.21) Λ1

∫ t

0

∫
R
(∂2

xxuε,α)2dτdx ≤ c2,

for some constant c2 > 0 depending only on C0. Next, we can choose k1, k2, k3 small enough
(independently of ε, α) such that

(4.22) 3ε− Λ2 ≤
ε

2
, 3εα− Λ3 ≤

εα

2
.

Integrating (4.19) on the interval (0, t), using (4.19), (4.21), and (4.22), yields∫
R

(
u4

ε,α

4
+

µ + ελ

2
(∂xuε,α)2 +

α(µ + ελ)
2

(∂2
xxuε,α)2

)
dx

+
λ

2

∫ t

0

∫
R
(∂tuε,α)2dxdτ +

αλ

2

∫ t

0

∫
R
(∂2

txuε,α)2dxdτ

+
ε

2

∫ t

0

∫
R

u2
ε,α(∂xuε,α)2dτdx + εµ

∫ T

0

∫
R
(∂2

xxuε,α)2dxdτ

+
εαµ

2

∫ t

0

∫
R
(∂3

xxxuε,α)2dxdτ +
εα

2

∫ t

0

∫
R

u2
ε,α(∂2

xxuε,α)2dxdτ ≤ c3,

(4.23)

for some constant c3 > 0 depending only on C0. Thanks to (4.20) the proof is done.
We now turn to the case in which (2.6) and (2.12) hold. Since the proof is similar we simply

sketch it. Let λ, µ > 0 be two numbers to be specified later. Multiplying (2.3) by λ∂tuε,α−µ∂2
xxuε,α
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and manipulating the terms as in (4.7), we find eventually

d

dt

∫
R

(
µ + ελ

2
(∂xuε,α)2 +

α(µ + ελ)
2

(∂2
xxuε,α)2

)
dx

+ λ

∫
R
(∂tuε,α)2dx + αλ

∫
R
(∂2

txuε,α)2dx

+ εµ

∫
R
(∂2

xxuε,α)2dx + εαµ

∫
R
(∂3

xxxuε,α)2dx

= −λ

∫
R

f ′(uε,α)∂xuε,α∂tuε,αdx + µ

∫
R

f ′(uε,α)∂xu∂2
xxudx

+ 2αλ

∫
R

∂xuε,α∂2
xxuε,α∂tuε,αdx− 2αµ

∫
R

∂xuε,α(∂2
xxuε,α)2dx

+ αλ

∫
R

uε,α∂tuε,α∂3
xxxuε,αdx− αµ

∫
R

uε,α∂2
xxuε,α∂3

xxxuε,αdx

= J2(t) + J7(t) + J8(t) + J6(t),

(4.24)

where

J7(t) := −λ

∫
R

f ′(uε,α)∂xuε,α∂tuε,αdx,

J8(t) := µ

∫
R

f ′(uε,α)∂xuε,α∂2
xxuε,αdx.

We can estimate the terms J7 and J8 in the following way:

J7(t) ≤ κ2λ

∫
R

∣∣∂xuε,α∂tuε,α

∣∣dx(4.25)

≤ λ

2

∫
R
(∂tuε,α)2dx +

κ2
2λ

2

∫
R
(∂xuε,α)2dx,

J8(t) ≤ κ2µ

∫
R

∣∣∂xuε,α∂2
xxuε,α

∣∣dx(4.26)

≤ κ2µ

2ε

∫
R
(∂xuε,α)2dx +

κ2µε

2

∫
R
(∂2

xxuε,α)2dx.

Substituting (4.12), (4.25), (4.26), (4.17) into (4.24), we get

d

dt

∫
R

(
µ + ελ

2
(∂xuε,α)2 +

α(µ + ελ)
2

(∂2
xxuε,α)2

)
dx

+ λ

∫
R
(∂tuε,α)2dx + αλ

∫
R
(∂2

txuε,α)2dx

+ εµ

∫
R
(∂2

xxuε,α)2dx + εαµ

∫
R
(∂3

xxxuε,α)2dx

≤ Λ4

∫
R
(∂2

xxuε,α)2dx + Λ5

∫
R
(∂xuε,α)2dx + Λ6

∫
R

u2
ε,α(∂2

xxuε,α)2dx

+
αεµ

2

∫
R
(∂3

xxxuε,α)2dx +
αλ

3

∫
R
(∂2

txuε,α)2dx +
λ

2

∫
R
(∂tuε,α)2,

(4.27)

where

Λ4 :=
3c1C

2
0αλ

8
+

κ2µε

2
, Λ5 :=

κ2
2λ

2
+

κ2µ

2ε
, Λ6 :=

9αµ

2ε
+

3αλ

2
.

Arguing as in the previous case and employing (2.12), choosing

(4.28) α ≤ k1ε
2, λ = k2ε, µ = k3α(≤ k1k2ε

2),

for some sufficiently small constants k1, k2, k3 > 0 (which are independent of ε, α), we have

Λ1 = O(εα) = O(εµ), Λ2 = O(ε), Λ3 = O(εα).
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Integrating (4.27) over the time interval (0, t) yields∫
R

(
µ + ελ

2
(∂xuε,α)2 +

α(µ + ελ)
2

(∂2
xxuε,α)2

)
dx

+
λ

2

∫ t

0

∫
R
(∂tuε,α)2dxdτ +

αλ

2

∫ t

0

∫
R
(∂2

txuε,α)2dxdτ

+
ε

2

∫ t

0

∫
R

u2
ε,α(∂xuε,α)2dτdx + εµ

∫ T

0

∫
R
(∂2

xxuε,α)2dxdτ

+
εαµ

2

∫ t

0

∫
R
(∂3

xxxuε,α)2dxdτ +
εα

2

∫ t

0

∫
R

u2
ε,α(∂2

xxuε,α)2dxdτ ≤ c,

(4.29)

for some constant c > 0 depending only on C0. Thanks to (4.28) the proof is done. �

5. Proof of Theorem 2.1

In this section we prove Theorem 2.1. The proof will be accomplished through Lemma 5.2
(convergence) and Lemma 5.3 (entropy satisfaction) below. We begin however with deriving a
precise estimate on the entropy production, which eventually results in its H−1

loc compactness.
A pair of functions (η, q) is called an entropy-entropy flux pair if η : R → R is a C2 function

and q : R → R is defined by

q(u) =
∫ u

0

η′(ζ)f ′(ζ)dζ.

An entropy-entropy flux pair (η, q) is called a convex/compactly supported if, in addition, η is
convex/compactly supported.

Lemma 5.1. Assume that (2.7)-(2.10) hold. If (2.5) and (2.11) or (2.6) and (2.12) are satisfied,
then for any compactly supported entropy-entropy flux pair (η, q),

∂tη(uε,α) + ∂xq(uε,α) = L1
ε,α + L2

ε,α,

where the distributions L1
ε,α, L2

ε,α possess the following properties:

L1
ε,α → 0 in H−1(R+ × R),

L2
ε,α is uniformly bounded in M(R+ × R).

Proof. First of all, notice that the constant

K0 := sup
ε,α

{
‖
√

ε∂tuε,α‖L2 , ‖
√

εα∂2
txuε,α‖L2 ,

‖
√

εuε,α∂xuε,α‖L2 , ‖
√

εαuε,α∂2
xxuε,α‖L2 , ‖α

√
ε∂3

xxxuε,α‖L2

}(5.1)

is finite thanks to Lemma 4.2.
Writing the nonlinear dispersive terms on the right-hand side of (2.3) as

2α∂xuε,α∂2
xxuε,α + αuε,α∂3

xxxuε,α =
α

2
∂x(∂xuε,α)2 + ∂x(αuε,α∂2

xxuε,α)

and introducing the function

(5.2) Γε,α := α∂2
txuε,α +

α

2
(∂xuε,α)2 + αuε,α∂2

xxuε,α + ε∂xuε,α − εα∂3
xxxuε,α,

multiplying (2.3) by η′(uε,α) yields

∂tη(uε,α) + ∂xq(uε,α)

=
(
α∂3

txxuε,α + 2α∂xuε,α∂2
xxuε,α + αuε,α∂3

xxxuε,α

+ ε∂2
xxuε,α − εα∂4

xxxxuε,α

)
η′(uε,α)

= η′(uε,α)∂xΓε,α

= ∂x (η′(uε,α)Γε,α)− η′′(uε,α)∂xuε,αΓε,α.

(5.3)
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We claim that

Γε,α → 0 strongly L2(R+ × R) as ε, α → 0+,(5.4)

∂xuε,αΓε,α is uniformly bounded in L1(R+ × R),(5.5)

which immediately proves the lemma.
In view of (4.18) and (4.2), the following inequality holds:∫

R+

∫
R
(∂xuε,α)4dxdt ≤ c1

∫
R+

(∫
R

u2
ε,αdx

)(∫
R
(∂2

xxuε,α)2dx

)
dt

≤ c1C
2
0

∫
R+

∫
R
(∂2

xxuε,α)2dxdt.

Using this inequality, (2.11) or (2.12), (4.3), and (5.1), we obtain

‖Γε,α‖L2(R+×R)

≤ ‖α∂2
txuε,α‖L2(R+×R) +

1
2
‖α(∂xuε,α)2‖L2(R+×R)

+ ‖αuε,α∂2
xxuε,α‖L2(R+×R) + ‖ε∂xuε,α‖L2 + ‖εα∂3

xxxuε,α‖L2(R+×R)

≤
√

α

ε
‖
√

εα∂2
txuε,α‖L2(R+×R) +

√
c1C0

2

√
α

ε
‖
√

εα∂2
xxuε,α‖L2(R+×R)

+
√

α

ε
‖
√

εαuε,α∂2
xxuε,α‖L2 +

√
ε‖
√

ε∂xuε,α‖L2 +
√

ε‖α
√

ε∂3
xxxuε,α‖L2(R+×R)

≤
√

α

ε
K0 +

√
c1C

2
0

2
√

2

√
α

ε
+
√

α

ε
K0 +

√
ε

C0√
2

+
√

εK0 = O

(√
α

ε
+
√

ε

)
,

which clearly proves (5.4). Moreover, using Hölder’s inequality, (4.3), and (2.11) or (2.12),

‖∂xuε,αΓε,α‖L1(R+×R)

≤ ‖∂xuε,α‖L2(R+×R)‖Γε,α‖L2(R+×R)

≤ C0√
2ε

(√
α

ε
K0 +

√
c1C

2
0

2
√

2

√
α

ε
+
√

α

ε
K0 +

√
ε

C0√
2

+
√

εK0

)
=

C0√
2

(√
α

ε
K0 +

√
c1C

2
0

2
√

2

√
α

ε
+
√

α

ε
K0 +

C0√
2

+ K0

)
= O(1),

and this proves (5.5). �

Lemma 5.2. Assume that (2.7)-(2.10) hold.
i) If (2.5) and (2.11) are satisfied, then there exist two sequences {εk}k∈N, {αk}k∈N, with

εk, αk → 0, and a limit function u ∈ L∞(R+;L4(R) ∩ L2(R)), such that

uεk,αk
→ u strongly in Lp

loc(R+ × R), for each 1 ≤ p < 4.

ii) If (2.6) and (2.12) are satisfied, then there exist two sequences {εk}k∈N, {αk}k∈N, with
εk, αk → 0, and a limit function u ∈ L∞(R+;L2(R)), such that

uεk,αk
→ u strongly in Lp

loc(R+ × R), for each 1 ≤ p < 2.

Moreover, in both cases the limit function u is a weak solution of (2.1), (2.2):∫
R+

∫
R

(u∂tφ + f(u)∂xφ) dxdt +
∫

R
u0(x)φ(0, x)dx = 0, ∀φ ∈ C∞c ([0,∞)× R).

Proof. Let (η, q) be a compactly supported entropy-entropy flux pair. According to Lemma 5.1,
∂tη(uε,α) + ∂xq(uε,α) equals one term that tends to zero in H−1(R+×R) plus another one that is
uniformly bounded in the sense of measures on R+×R. In addition, since η is compactly supported,
it is immediate that ∂tη(uε,α) + ∂xq(uε,α) is uniformly bounded in W−1,∞(R+ × R). Therefore,
by Lemma 3.2, the sequence of distributions {∂tη(uε,α) + ∂xq(uε,α)}ε,α belongs to compact subset
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of H−1
loc (Ω), for fixed bounded open subset Ω of R+ × R. Lemma 3.1 (with s = 1) then yields the

existence of a subsequence of {uε,α}ε,α that converges strongly in Lr(Ω) for any 1 ≤ r < 4 in the
first case and 1 ≤ r < 2 in the second one, for each fixed bounded open set Ω ⊂ R+×R. The first
part of the lemma then follows by a standard diagonal argument. Using this strong convergence,
the second part follows by passing to the limit in the weak formulation of (2.3), (2.4), see (5.3)
with η(u) = u, q(u) = f(u) and (5.4). �

The next lemma shows that the limit function u constructed in Lemma 5.2 dissipates the energy.

Lemma 5.3. Assume that (2.7), (2.9), (2.10), and (2.5)-(2.13) or (2.6)-(2.14) hold. Define
q : R → R by q(u) :=

∫ u

0
ζf ′(ζ)dζ. Then the the limit function u constructed in Lemma 5.2

satisfies ∂t

(
u2

2

)
+ ∂xq(u) ≤ 0 in the weak sense on R+ × R.

Proof. Since uε,α is bounded in L∞(R+;L4(R)) or in L∞(R+;L2(R)), multiplying (2.3) by uε,α is
meaningful and yields

∂t

(u2
ε,α

2

)
+ ∂xq(uε,α) = ∂x (uε,αΓε,α)− ∂xuε,α∆ε,α − ε(∂xuε,α)2 + εα∂xuε,α∂3

xxxuε,α,(5.6)

where Γε,α is defined in (5.2) and

∆ε,α := α∂2
txuε,α +

α

2
(∂xuε,α)2 + αuε,α∂2

xxuε,α.

Arguing as in the proof of (5.5), using also (2.13)

‖∂xuε,α∆ε,α‖L1(R+×R) ≤
C0√

2

(√
α

ε
K0 +

√
c1C

2
0

2
√

2

√
α

ε
+
√

α

ε
K0

)
= O

(√
α

ε

)
,

and hence

(5.7) ∂xuε,α∆ε,α → 0 L1(R+ × R) as ε, α → 0.

Let ϕ ∈ C∞c (R+ × R) be a nonnegative function. Using (4.2), (4.3), (5.4) and (5.7), we then
calculate as follows:∫

R+×R

[
∂t

(
u2

ε,α

2

)
+ ∂xq(uε,α)

]
ϕdtdx

=
∫

R+×R

[
∂x (uε,αΓε,α)− ∂xuε,α∆ε,α

− ε(∂xuε,α)2 + εα∂xuε,α∂3
xxxuε,α

]
ϕdtdx

≤
∫

R+×R

[
−uε,αΓε,α∂xϕ− ∂xuε,α∆ε,αϕ

− εα(∂2
xxuε,α)2ϕ− εα∂xuε,α∂2

xxuε,α∂xϕ

]
dtdx

≤ ‖uε,α‖L∞(R+;L2(R))‖Γε,α‖L2(R+×R)‖∂xϕ‖L∞(R+×R)

+ ‖∂xuε,α∆ε,α‖L1(R+×R)‖ϕ‖L∞(R+×R)

+
εα

2

∫
R+×R

(∂xuε,α)2∂2
xxϕdtdx

≤ C0‖Γε,α‖L2(R+×R)‖∂xϕ‖L∞ + ‖∂xuε,α∆ε,α‖L1(R+×R)‖ϕ‖L∞(R+×R)

+
εα

2
‖∂xuε,α‖2L2(R+×R)‖∂

2
xxϕ‖L∞(R+×R)

≤ C0‖Γε,α‖L2(R+×R)‖∂xϕ‖L∞(R+×R) + ‖∂xuε,α∆ε,α‖L1‖ϕ‖L∞(R+×R)

+
C2

0α

4
‖∂2

xxϕ‖L∞(R+×R) → 0,

(5.8)
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which proves the lemma. �

Proof of Theorem 2.1. Assertions (i), (ii), and (iii) are contained in Lemma 5.2, while Assertion
(iv) follows from Lemma 5.3. �
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Verlag, Basel, 2002. The theory of classical and nonclassical shock waves.

[32] P. G. LeFloch and R. Natalini. Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear
Anal., 36(2, Ser. A: Theory Methods):213–230, 1999.

[33] Y. A. Li and P. J. Olver. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model

wave equation. J. Differential Equations, 162(1):27–63, 2000.
[34] Y. G. Lu. Convergence of solutions to nonlinear dispersive equations without convexity conditions. Appl. Anal.,

31(4):239–246, 1989.

[35] B. J. Lucier. On Sobolev regularizations of hyperbolic conservation laws. Comm. Partial Differential Equations,
10(1):1–28, 1985.
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