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Abstract. A classical technique to construct polynomial preserving exten-
sions of scalar functions defined on the boundary of an n simplex to the

interior is to use so-called rational blending functions. The purpose of this

paper is to generalize the construction by blending to the de Rham complex.
More precisely, we define polynomial preserving extensions which map traces

of k-forms defined on the boundary of the simplex to k-forms defined in the

interior. Furthermore, the extensions are cochain maps, i.e., they commute
with the exterior derivative.

1. Introduction

In applications such as the finite element approximation of partial differential
equations and in computer aided geometrical design problems, there often arises a
need for a method for extending a piecewise smooth function given on the boundary
of a domain to the entire domain, in particular when the domain is a hypercube or a
simplex. There is a considerable literature on this subject, dating back to early work
of Coons [11] in the context of computer aided design, while more mathematical
oriented studies of such problems were initiated in [7, 10]. The constructions were
often referred to as transfinite interpolation or blending function methods, since
the extension is obtained by combining, or blending, the transfinite boundary data
using rational or polynomial basis functions. In [21], the two dimensional scheme
described in [7] was generalized to the case of tetrahedra, and with a brief discussion
of its generalization to n simplices. Alternative approaches, using polynomial rather
than rational blending functions, were studied in [8, 19, 20, 23]. A summary of much
of this early work can be found in [6].

More recently, the study of extension operators that preserve a polynomial struc-
ture of the boundary data have played a key role in the analysis of finite element
methods of high polynomial order, cf. [1, 5, 9, 22]. In particular, the importance of
such extensions that commute with the exterior derivative, i.e., cochain extensions,
was illustrated by the analysis given in [13]. The results of these papers further
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motivated the theory developed in the series of three papers, [14, 15, 16], where
polynomial preserving cochain extensions are constructed for the de Rham complex
in three dimensions. An important additional property of these extensions is that
they require only weak regularity of the boundary data to be well defined.

The purpose of this paper is to extend the method of blending to define polyno-
mial preserving cochain extensions for differential forms of arbitrary order on n sim-
plices. More specifically, for Sn = [x0, x1, . . . , xn] ⊂ Rn, an n-dimensional simplex,
we define extensions Ekn which map single-valued piecewise smooth k-forms defined
on the boundary, ∂Sn, to smooth forms on Sn, such that they preserve polynomial
structures and commute with the exterior derivative. The extension operators Ekn
are defined without relying on any explicit decomposition of the given differential
forms defined on ∂Sn. The focus of this paper is entirely on the algebraic properties
of the operators Ekn. Stability in normed spaces, such as for example L2, is not con-
sidered. For scalar-valued functions, or zero-forms, the extensions presented here
correspond to operators defined in [21], while the general construction for higher
order forms appears to be new.

An outline of the paper is as follows. In Section 2, we introduce some basic nota-
tion and recall the construction of extensions by blending in the case of zero-forms,
i.e., for scalar-valued functions. In particular, we verify that these extensions are
polynomial preserving. We also present a summary of the main results of the paper
and an application of the construction. In Section 3, we discuss the extension in the
case of one-forms. The explicit construction in this basic case provides a motivation
for the general construction for k-forms to follow. The discussion in Section 3 also
motivates the construction of a family of order-reduction operators, presented in
Section 4, which will play a key role in designing the coefficient operators, AkI,J ,

that will be used to define the extensions Ekn. A precise definition of the coefficient
operators AkI,J is given in Section 5, and three key properties of these operators

are established. In Section 6, we then show that the operators Ekn are polynomial
preserving cochain extensions.

2. preliminaries

2.1. Notation. We will use [·, . . . , ·] to denote the simplex obtained by convex
combination of the arguments. The simplex Sn = [x0, x1, . . . , xn] ⊂ Rn, n ≥ 1,
will be considered to be a fixed n-simplex throughout this paper. The barycentric
coordinate associated to the vertex xi will be denoted by λi = λi(x), i.e., λi is a
linear function on Sn satisfying λi(xj) = δi,j and such that

x =

n∑
i=0

λi(x)xi, x ∈ Sn.

Furthermore, the boundary of Sn, ∂Sn, consists of all x ∈ Sn such that λi(x) = 0
for at least one index i ∈ {0, . . . , n}. We will use Λk(∂Sn) to denote the space
of single-valued piecewise smooth k-forms defined on ∂Sn. More precisely, each
element u ∈ Λk(∂Sn) is smooth on each (n − 1)-dimensional subsimplex of ∂Sn,
and with single-valued traces at the interfaces. Correspondingly, Λk(Sn) will denote

the space of smooth k-forms defined on Sn and Λ̊k(Sn) will denote the space of forms
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in Λk(Sn) with vanishing trace on ∂Sn. Our main goal is to construct extension
operators Ekn : Λk(∂Sn)→ Λk(Sn), k = 0, 1, . . . , n− 1, with desired properties.

We will use d = dk : Λk(Sn) → Λk+1(Sn) to denote the exterior derivative
defined by

dux(v1, . . . , vk+1) =

k+1∑
j=1

(−1)j+1∂vjux(v1, . . . , v̂j , . . . , vk+1),

where the hat symbol, e.g., v̂j , is used to indicate a suppressed argument and the
vectors vj are elements of Rn. We also use u1 ∧ u2 to denote the wedge product
mapping a j-form u1 and k-form u2 into a (j + k)-form. A smooth map F : Sn →
∂Sn provides a pullback of a differential form from ∂Sn to Sn, i.e., a map from
Λk(∂Sn)→ Λk(Sn) given by

(F ∗u)x(v1, . . . , vk) = uF (x)(DFx(v1), . . . , DFx(vk)).

The pullback respects exterior products and differentiation, i.e.,

F ∗(u1 ∧ u2) = F ∗u1 ∧ F ∗u2, F ∗(du) = d(F ∗u).

The pullback of the inclusion map of ∂Sn into Sn is the trace map, tr∂Sn
, and we

note that the spaces Λk(∂Sn) are precisely defined so that Λk(∂Sn) = tr∂Sn
Λk(Sn).

For each integer r > 0, the polynomial subspaces PrΛk(Sn) consist of all elements
u ∈ Λk(Sn) such that for fixed vectors v1, . . . , vk, the function ux(v1, . . . , vk), as a
function of x, is an element of Pr(Sn), i.e., the space of polynomials of degree less
than or equal to r defined on Sn. The trimmed space P−r Λk(Sn) is the subspace
consisting of all u ∈ PrΛk(Sn) such that uy(x − a) ∈ PrΛk−1(Sn) for any fixed
a ∈ Rn. Here, the symbol y is used to denote contraction, i.e.,

(uy(x− a))x(v1, . . . , vk−1) = ux(x− a, v1, . . . , vk−1).

The corresponding spaces on the boundary are defined by

PrΛk(∂Sn) = tr∂Sn PrΛk(Sn) and P−r Λk(∂Sn) = tr∂Sn P−r Λk(Sn).

We refer to [2, 3, 4] for more details on the polynomial and piecewise polynomial
spaces of differential forms.

If J = {j0, j1, . . . , jm} is an ordered subset of {0, 1, . . . , n}, but not necessarily
increasingly ordered, we will refer to J as an index set. We will use Γ to denote
the set of all increasingly ordered subsets of {0, 1, . . . , n}. In other words, if J ∈ Γ,
then J is an index set of the form

J = {j0, j1, . . . , jm}, where 0 ≤ j0 < j1 . . . < jm ≤ n.

The number of elements in J will be denoted |J |, and Γm is the subset of Γ consisting
of all J ∈ Γ with |J | = m+ 1. Furthermore, for any I ∈ Γ, we let

Γm(I) = {J ∈ Γm : J ⊂ I }.

For an index set J , the complement of J relative to the set {0, 1, . . . , n} will be
denoted Jc and [xJ ] will denote the simplex generated by the vertices {xj}j∈J ,
with orientation induced by the order of J . Furthermore, λJ = λJ(x) will denote
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P[0,1,2],2 = x2 x0 = P[0,1,2],0

x1 = P[0,1,2],1

x
P[0,2],2x P[0,2],0x

P[0,1],1x

P[1,2],1x

P[1,2],2x P[0,1],0x

Figure 2.1. Projections PI,jx for n = 2.

the corresponding sum of barycentric coordinates, i.e., λJ =
∑
j∈J λj , and we will

use φJ to denote the associated Whitney form, given by

φJ =

m∑
i=0

(−1)iλjidλj0 ∧ . . . ∧ d̂λji ∧ . . . ∧ dλjm , if J = {j0, j1, . . . , jm}.

We note that if J = {j} ∈ Γ0, then φJ = λJ = λj . Furthermore, the set {φJ}J∈Γk

is a basis for P−1 Λk(Sn). To simplify the presentation below, we introduce the
difference operator δ. In particular, we let

(δφ)J =

m∑
i=0

(−1)iφJ (̂i), J = {j0, j1, . . . , jm},

where J (̂i) refers to the set J , but with the index ji removed.

2.2. Scalar-valued functions. We next give a quick review of the extensions
studied in [21] for scalar-valued functions, or zero-forms, but in a slightly different
notation. For each index set I ∈ Γm, m ≥ 1, and j ∈ {0, . . . , n}, we define the map
PI,j : Sn → ∂Sn by

PI,jx = x+
∑
i∈I

λi(x)(xj − xi).

In fact, PI,j is a projection onto the set {x ∈ Sn : λi(x) = 0, i ∈ I, i 6= j}. Note
that if j ∈ I, then PI,j = PI′,j , where I ′ represents the index set obtained from I
by removing j. In Figure 2.1, we show all the possible points PI,jx, for j ∈ I, in
the case when n = 2.

To define the extension E0
n : Λ0(∂Sn)→ Λ0(Sn), we will utilize the corresponding

pullbacks P ∗I,j , defined by (P ∗I,ju)x = u(PI,jx). We define

E0
nu =

1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
∑
j∈I

λj
λI
P ∗I,ju.
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To see that E0
n is an extension, we need to check that tr∂Sn E

0
nu = u. Without loss

of generality, consider a point x ∈ ∂Sn such that λ0(x) = 0. Then we have that

1

n

∑
I∈Γ1
0∈I

∑
j∈I

(
λj
λI
P ∗I,ju)x = ux.

In addition, if I ∈ Γ such that 0 /∈ I, and I ′ = {0, I} then(λj
λI
P ∗I,ju

)
x

=
( λj
λI′

P ∗I′,ju
)
x
.

Therefore, the terms corresponding to I and I ′ cancel at the point x and we can
conclude that (E0

nu)x = ux. This shows that E0
n is an extension.

Because of the rational factors in the definition of E0
n, it is not entirely obvious

that the operator preserves the polynomial structure of u. However, since PI,j is
a linear map, the pullbacks P ∗I,j have the property that if u ∈ PrΛ0(∂Sn), then

P ∗I,ju ∈ PrΛ0(Sn). To show that the same property holds for the extension E0
n,

we fix an I ∈ Γ and consider the sum
∑
j∈I(λj/λI)P

∗
I,ju. If I is the maximal set

I = {0, . . . , n}, then λI(x) ≡ 1 on Sn, so the sum is simply
∑n
j=0 λj(x)uxj

, which
is the linear function that interpolates u at the vertices. For any other I, there is
at least a vertex xp such that p /∈ I, and∑
j∈I

(λj/λI)P
∗
I,ju =

∑
j∈I

(λj/λI)(P
∗
I,ju±P ∗I,pu) = P ∗I,pu+

∑
j∈I

(λj/λI)(P
∗
I,ju−P ∗I,pu).

The first term on the right hand side is polynomial preserving. Furthermore, since
PI,jx− PI,px = λI(x)(xj − xp), we have

(2.1) (P ∗I,ju)x − (P ∗I,pu)x =

∫ 1

0

d

dτ
u[(1−τ)PI,px+τPI,jx] dτ

= λI(x)

∫ 1

0

(du)[(1−τ)PI,px+τPI,jx]y(xj − xp) dτ,

which has λI as a factor. Furthermore, the curve (1−τ)PI,px+τPI,jx for τ ∈ [0, 1]

belongs to the set {x ∈ Sn : λi(x) = 0, i ∈ I(ĵ)} ⊂ ∂Sn. Therefore, we can
conclude that E0

n(PrΛ0(∂Sn)) ⊂ PrΛ0(Sn).

2.3. The main result. The discussion above shows that the operator E0
n : Λ0(∂Sn)

→ Λ0(Sn) is a polynomial preserving extension operator. The main result of this
paper is to construct corresponding operators Ekn : Λk(∂Sn)→ Λk(Sn), 1 ≤ k < n,
satisfying tr∂Sn E

k
nu = u and which are cochain extensions in the sense that the

diagram

Λ0(∂Sn)
d−−−−→ Λ1(∂Sn)

d−−−−→ . . .
d−−−−→ Λn−1(∂Sn)yE0

n

yE1
n

yEn−1
n

Λ0(Sn)
d−−−−→ Λ1(Sn)

d−−−−→ . . .
d−−−−→ Λn−1(Sn),

commutes. In other words, dEk−1
n = Eknd for 1 ≤ k < n, and we will also show

that dEn−1
n = 0. Furthermore, the extensions Ekn are polynomial preserving in the
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sense that

Ekn(PrΛk(∂Sn)) ⊂ PrΛk(Sn) and Ekn(P−r Λk(∂Sn)) ⊂ P−r Λk(Sn),

for 0 ≤ k < n and r ≥ 1.

All the operators Ekn, 0 ≤ k < n, that we construct will be rational functions of
the form

(2.2) Eknu =
1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
∑

J∈Γs(I)
0≤s≤k

φJ

λs+1
I

∧AkI,Ju,

where the coefficient operators AkI,J map Λk(∂Sn) to Λk−s(Sn) for J ∈ Γs(I), and

such that AkI,J = P ∗I,j for J = {j} ∈ Γ0. However, in contrast to what was done in

the series of papers [14, 15, 16], we will not perform a careful discussion of bounds
for the corresponding operator norms. It is clear that the extensions constructed by
blending will not be well defined on spaces with weak regularity, such as L2(∂Sn).
On the other hand, a lesson to be learned from the series mentioned above, see also
[17, 18], is that some additional averaging technique has to be used to be able to
construct such weak regularity extensions.

2.4. Polynomial complexes. As an example of a direct application of the ex-
tensions Ekn constructed below, we will briefly consider polynomial complexes of
differential forms on Rn, cf. [3, Section 3.5] and [12, Section 4.2]. For any r > 0,
the full polynomial complex

R ↪→ PrΛ0 d−−−−→ Pr−1Λ1 d−−−−→ · · · d−−−−→ Pr−nΛn → 0,

and the trimmed polynomial complex

R ↪→ P−r Λ0 d−−−−→ P−r Λ1 d−−−−→ · · · d−−−−→ P−r Λn → 0,

are both exact. In fact, by combining the full polynomial spaces and the trimmed
polynomial spaces, we can obtain 2n−1 different exact polynomial complexes of the
form

(2.3) R ↪→ PΛ0 d−−−−→ PΛ1 d−−−−→ · · · d−−−−→ PΛn → 0,

where PΛ0 = PrΛ0 = P−r Λ0 and Pr−kΛk ⊂ PΛk ⊂ P−r Λk. In particular, each
space PΛk is either a trimmed or a full polynomial space. Furthermore, the exact-
ness of these complexes can be established by a standard Poincaré-type operator of
the form

(Qku)x =

∫ 1

0

τk−1u[(1−τ)a+τx]y(x− a) dτ,

where a ∈ Rn is fixed. More precisely, if the spaces PΛk−1 and PΛk are related
as in (2.3), then the operator Qk maps PΛk to PΛk−1, and if u ∈ PΛk satisfies
du = 0, then u = dQku. In fact, any element u of the polynomial spaces PΛk

admits the representation

u = dQku+Qk+1du.

It also well-known that the corresponding polynomial complexes with boundary
conditions are exact. More precisely, we consider complexes of the form

P̊Λ0(Sn)
d−−−−→ P̊Λ1(Sn)

d−−−−→ · · · d−−−−→ P̊Λn(Sn)→ R,
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where the spaces P̊Λk(Sn) are the restriction of the spaces PΛk of (2.3) to Sn,
and with vanishing traces on ∂Sn. The exactness can in this case be established
by counting degrees of freedom, using the results of [3, Section 4] or [4, Section 5].
On the other hand, in this setting it is not straightforward to construct a simple
operator Q̊k which maps P̊Λk(Sn) to P̊Λk−1(Sn), and which has the property that

u = dQ̊ku if du = 0. For example, if we consider an operator of the form Qk above,
then it seems impossible to choose the point a ∈ Sn such that the vanishing trace
condition is preserved. However, by using the extension operator Ekn constructed

in this paper, we can define Q̊k as

Q̊ku = (I − Ek−1
n ◦ tr∂S)Qku,

where the operator Qk is a Poincaré-type operator of the form above, with a ∈ Sn.
It follows from the properties of Ek−1

n and Qk that the operator Q̊k maps P̊rΛk(Sn)

to P̊−r+1Λk−1(Sn) and P̊−r Λk(Sn) to P̊rΛk−1(Sn). Furthermore, we have

dQ̊ku+ Q̊k+1du = u− Ekn ◦ tr∂Sn u = u, u ∈ Λ̊k(Sn).

3. The case of one-forms

To motivate the general construction for k-forms, we first consider the con-
struction for one-forms. The operator E1

n must satisfy the commuting property,
E1
ndu = dE0

nu. The right hand side of this identity is known, and given by

dE0
nu =

1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
∑
j∈I

[
d
(λj
λI

)
P ∗I,ju+

λj
λI
P ∗I,jdu

]
,

where we have used the fact that P ∗I,j commutes with the exterior derivative. The
goal is to write the complete right hand side in terms of du. For a fixed j ∈ I, we
have

d
(λj
λI

)
=

1

λ2
I

[λIdλj − λjdλI ] =
1

λ2
I

∑
i∈I,i6=j

[λidλj − λjdλi] =
∑

i∈I,i6=j

φi,j
λ2
I

.

Since φj,i = −φi,j , we then obtain∑
j∈I

d
(λj
λI

)
P ∗I,ju =

∑
J∈Γ1(I)

φJ
λ2
I

(δP ∗I u)J ,

where (δP ∗I u)J = P ∗I,ju− P ∗I,iu if J = {i, j}. Furthermore, as in (2.1), we obtain

((δP ∗I u)J)x = λI(x)

∫ 1

0

(du)[(1−τ)PI,ix+τPI,jx]y(xj − xi) dτ, J = {i, j}.

Since the above formula depends on du, rather than u, this leads to a possible
definition of E1

nu such that the desired commuting relation holds. More precisely,
we can define

E1
nu =

1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
[∑
j∈I

λj
λI
P ∗I,ju+

∑
J∈Γ1(I)

φJ
λ2
I

R1
I,Ju

]
,
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where the operator R1
I,J is defined by

(R1
I,Ju)x = λI(x)

∫ 1

0

u[(1−τ)PI,ix+τPI,jx]y(xj − xi) dτ

for any I ∈ Γ and J an index set of length 2. Alternatively, we have

(R1
I,Ju)x =

∫ PI,jx

PI,ix

u, J = {i, j},

where we have used differential form notation for writing the integral of a one-form
u over the one-dimensional space [PI,ix, PI,jx]. The problem with the definition of
E1
n above is that the line [PI,ix, PI,jx] will in general not belong to the boundary

∂Sn, cf. Figure 2.1. We will therefore replace the operator R1
I,J by an alternative

operator, A1
I,J , given by

(3.1) A1
I,Ju =

1

n− 1

∑
p/∈J

[R1
I,{p,j}u−R

1
I,{p,i}u], J = {i, j}.

This operator will still satisfy the key relation A1
I,Jdu = (δP ∗I u)J , and the line

from [PI,jx, PI,px] will belong to the set λi = 0 if J = {i, j} and p /∈ J . As a
consequence, the operator A1

I,J maps one-forms defined on ∂Sn to scalar functions

defined on Sn, and the operator E1
n, defined by

(3.2) E1
nu =

1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
[∑
j∈I

λj
λI
P ∗I,ju+

∑
J∈Γ1(I)

φJ
λ2
I

A1
I,Ju

]
,

will satisfy the commuting relation dE0
nu = E1

ndu.

To see that the operator E1
n, defined by (3.2), is an extension, we have to show

that tr∂Sn E
1
nu = u. This follows by essentially the same argument as for zero-

forms, (cf. also the proof of Theorem 6.1 below). As in the case of zero-forms, we
will have

trλ0=0
1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
∑
j∈I

λj
λI
P ∗I,ju = trλ0=0 u.

To complete the argument, it will therefore be enough to show that

(3.3) trλ0=0

[ ∑
I∈Γm

1≤m≤n

(−1)m+1
∑

J∈Γ1(I)

φJ
λ2
I

A1
I,Ju

]
= 0.

If 0 ∈ J , then trλ0=0 φJ = 0. On the other hand, if 0 /∈ J , then we can conclude
from (3.1) that for any I ∈ Γ such that 0 /∈ I and J ∈ Γ1(I),

trλ0=0(A1
I,Ju−A1

I′,Ju) = 0, I ′ = {0, I}.
Therefore, the terms corresponding to I and I ′ on the left hand side of (3.3) cancel.
We can therefore conclude that the identity (3.3) holds, and as a consequence, E1

n

is an extension.

The fact that the operator E1
n maps single-valued, piecewise smooth one-forms

defined on ∂Sn, i.e., elements of Λ1(∂Sn), to smooth one-forms defined on Sn and
also preserves the polynomial structure is not at all obvious, since the operator RkI,J
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and hence the operator AkI,J has one factor of λI , but not two. However, we will

show in Section 6, using an alternative representation of the operator E1
n, that E1

n

does, in fact, have these properties.

4. The operators RkI,J and their properties

We have seen above that to define the extensions E1
n for one-forms, such that

dE0
n = E1

nd, we had to rely on the operators R1
I,J for index sets J with |J | = 2. Fur-

thermore, to make sure that the operator E1
n was well-defined for functions defined

on the boundary ∂Sn, we needed to use special combinations of these operators,
referred to as A1

I,J , cf. (3.1). To develop a formula for Ekn of the form (2.2), in the

general case, we will first consider how to generalize the operators RkI,J , introduced

above, to the case when k > 1 and J is a more general index set. If |J | = s+1, then
the operators RkI,J are order reduction operators in the sense that they map Λk(Sn)

to Λk−s(Sn). The special linear combinations that we need for the definition of the
extensions Ekn are then given in the next section, cf. formula (5.1) below.

We recall that when J is an index set, the set [xJ ] is the simplex generated
by the vertices {xj}j∈J . For any x ∈ Sn and index set I ∈ Γ, the corresponding
simplex [PI,Jx] is the convex combinations of the points {PI,jx}j∈J . In general,
the simplex [PI,Jx] will not be a subset of ∂Sn, cf. Figure 2.1. However, if I ∩ Jc
is nonempty, where we recall that Jc is the complement of J , we will indeed have
[PI,Jx] ⊂ ∂Sn, since any λi, with i ∈ I ∩ Jc, will be identically zero on [PI,Jx].

Key tools for the construction of the operators RkI,J are the maps FI : Sn×∂Sn →
Sn given by

FI(x, y) = x+
∑
i∈I

λi(x)(y − xi),

where I ∈ Γ. We observe that FI(x, xj) = PI,jx, cf. Figure 2.1, and that FI(·, y)
is linear in y. Therefore, if y ∈ ∂Sn is a convex combination of some of the
vertices {xj}, then FI(x, y) is the corresponding convex combination of {PI,jx}.
Furthermore, if we restrict the domain of the map FI to Sn × [xJ ], where I ∩ Jc is
nonempty, then the range is a subset of ∂Sn. The pullback F ∗I , is a map

F ∗I : Λk(Sn)→ Λk(Sn × ∂Sn).

In the discussion below, we will be interested in operators of the form trSn×[xJ ] ◦F ∗I ,

mapping Λk(Sn) to Λk(Sn×[xJ ]). In particular, it follows from the discussion above
that if I ∩ Jc is nonempty, then this operator maps Λk(∂Sn) to Λk(Sn × [xJ ]).

A space of k-forms on a product space can be expressed using the tensor product
⊗ as

Λk(Sn × ∂Sn) =

k∑
s=0

Λk−s(Sn)⊗ Λs(∂Sn).

In other words, elements U ∈ Λk−s(Sn)⊗Λs(∂Sn) can be written as a sum of terms
of the form

a(x, y)dxk−s ⊗ dys,
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where dxk−s and dys run over bases in Altk−s(Sn) and Alts(∂Sn), respectively, and

where a is a scalar function on Sn × ∂Sn. Here Altk is the corresponding space of
algebraic k-forms. Furthermore, for each s, 0 ≤ s ≤ k, there is a canonical map
Πs : Λk(Sn × ∂Sn)→ Λk−s(Sn)⊗ Λs(∂Sn) such that

U =

k∑
s=0

ΠsU, U ∈ Λk(Sn × ∂Sn).

The functions ΠsF
∗
I u ∈ Λk−s(Sn)⊗ Λs(∂Sn) can be identified as

(ΠsF
∗
I u)x,y(v1, . . . , vk−s, t1, . . . , ts)

= uFI(x,y)(DxFIv1, , . . . , DxFIvk−s, DyFIt1, . . . , DyFIts),

where the tangent vectors vi ∈ T (Sn) and ti ∈ Ty(∂Sn). For the special function
FI in our case, we have DyFI = λI(x)I, while

DxFI = Dxx+
∑
i∈I

(y − xi)dxλi =
∑
`∈Ic

(x` − y)dxλ`,

where Dxx is the identity matrix.

The basic commuting property for pull-backs, namely dF ∗ = F ∗d, can be ex-
pressed in the present setting as

(4.1) ΠsF
∗
I du = ΠsdF

∗
I u = dSΠsF

∗
I,Ju− (−1)k−sd∂SΠs−1F

∗
I u, u ∈ Λk(Sn),

where 0 ≤ s ≤ k + 1, and where dS and d∂S denote the exterior derivative with
respect to the spaces Sn and ∂Sn, respectively.

Let I ∈ Γ and J an index set with |J | = s + 1, 0 ≤ s ≤ k ≤ n. We introduce a
family of operators RkI,J , mapping Λk(Sn) to Λk−s(Sn), defined by

(4.2) (RkI,Ju)x =

∫
[xJ ]

(ΠsF
∗
I u)x.

For s > k, we define RkI,J to be zero. If v1, . . . , vk−s are vectors in Rn+1 and

t1, . . . , ts is any orthonormal basis for the tangent space T [xJ ] = T [PI,Jx], then

(RkI,Ju)x(v1, . . . , vk−s) = λI(x)s
∫

[xJ ]

uFI(x,y)yDxFIv1y . . .yDxFIvk−s

= λI(x)s
∫

[xJ ]

(uFI(x,y)yDxFIv1y . . .yDxFIvk−s)(t1, . . . , ts) dy.

Note that since u is a k-form, uFI(x,·)yDxFIv1y . . .yDxFIvk−s is an s-form with
respect to y, which we can then integrate over the s-dimensional space [xJ ]. In the
final formula, we see that the integral to be evaluated is an integral over [xJ ] for a
fixed x and vectors v1, . . . , vk−s.

In the special case when s = 0, i.e., when the simplex [xJ ] degenerates to a
vertex xj , the operator RkI,J is interpreted as P ∗I,j . When s = 1 and J = {i, j},
we can utilize the parameterization y = (1− τ)xi + τxj , τ ∈ [0, 1] of [xJ ] to verify
that the definition of R1

I,J given in Section 3 corresponds exactly to the defini-

tion given by (4.2). If I and J are related such that I ∩ Jc is nonempty, then
RkI,Ju will only depend on tr∂Sn u. Furthermore, if i ∈ I ∩ Jc, then all the vectors
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DxFIv1, . . . , DxFIvk−s and t1, . . . , ts will belong to the tangent space of the bound-
ary simplex {x ∈ Sn : λi(x) = 0}, a space of dimension < n. Hence, for k = n, it
follows that all operators of the form RnI,J are identically zero in this case.

We will summarize the key properties of the operator RkI,J in the three lemmas
given below.

Lemma 4.1. Let I ∈ Γ and assume that j ∈ {0, . . . , n} is such that j /∈ I. Then
for all index sets J ,

trλj=0R
k
I,Ju = trλj=0R

k
I′,Ju,

where I ′ ∈ Γ is equal to {j, I} up to a reordering. Moreover, if I ∩ Jc is nonempty,
then RkI,Ju only depends on tr∂S u, and the operators RnI,J are all identically zero.

Proof. The properties obtained when I∩Jc is nonempty are already observed above.
Furthermore, we have for all y ∈ ∂Sn

FI(x, y) ≡ FI′(x, y), {x ∈ Sn : λj(x) = 0}.
As a consequence,

trλj=0 FI(·, y)∗u = trλj=0 FI′(·, y)∗u, y ∈ ∂Sn.

The desired result follows directly from the definition of the operators RkI,J . �

It follows directly from the definition of the operators RkI,J and the smoothness

of the functions FI(·, y) on Sn for any fixed y ∈ ∂Sn, that the operator λ−sI RkI,J
maps Λk(Sn) to Λk−s(Sn). The corresponding result in the polynomial case is given
below.

Lemma 4.2. Let I ∈ Γ and J an index set with |J | = s+ 1.

i) If u ∈ PrΛk(Sn), then λ−sI RkI,Ju ∈ PrΛk−s(Sn);

ii) If u ∈ P−r Λk(Sn) then λ−sI RkI,Ju ∈ P−r Λk−s(Sn).

Furthermore, if I ∩ Jc is nonempty, then the assumptions in the two cases can be
reduced to the trace conditions u ∈ PrΛk(∂Sn) and u ∈ P−r Λk(∂Sn), respectively.

Proof. Recall that

λI(x)−s(RkI,Ju)x(v1, . . . , vk−s)

=

∫
[xJ ]

(uFI(x,y)yDxFIv1y . . .yDxFIvk−s)(t1, . . . , ts) dy,

where t1, . . . , ts is any orthonormal basis for the tangent space T [xJ ]. Since FI
is linear in x, the integrand preserves the polynomial degree of u for each fixed
y ∈ [xJ ]. Since the same will be true for the integral with respect to y, the first
part of the lemma follows.

To show the P−r spaces are also preserved, we look at λ−sI RkI,Juy(x−xj), where
j ∈ J . In fact, we choose j ∈ I ∩ J if this set is nonempty. It then follows that

DFx(x− xj) =
∑
`∈Ic

(x` − y)λ`(x) = FI(x, y)− y,
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which gives

(4.3) (RkI,Juy(x− xj))x =

∫
[xJ ]

(ΠsF
∗
I u
′)x,

where for each fixed y, we have u′x = uy(x − y). In other words, RkI,Juy(x − xj)
satisfies the same definition as RkI,Ju, but with u replaced by u′. However, if

u ∈ P−r Λk(Sn), then u′ ∈ PrΛk(Sn) for each y, and hence the same argument as
above shows that λ−sI RkI,Juy(x− xj) ∈ PrΛk(Sn). Alternatively, if I ∩ J is empty,
we obtain

DFx(x− xj) = x− xj +
∑
i∈I

(y − xi)λi(x) = FI(x, y)− xj .

Also in this case, we obtain an expression of the form (4.3), but now with u′ =
uy(x− xj). As above, we again can conclude that λ−sI RkI,Juy(x− xj) ∈ PrΛk(Sn)

if u ∈ P−r Λk(Sn). Hence, the second part of lemma has been established. The final
conclusion, related to the assumption I ∩ Jc nonempty, again follows from the fact
that RkI,Ju only depends on tr∂Sn u in this case. �

For I ∈ Γ and index sets J with |J | = s+ 1, we define

(δRkIu)J =

s∑
i=0

(−1)iRk
I,J (̂i)

.

The following relation will be a key tool to show that the extensions Ekn are cochain
maps.

Proposition 4.3. Let I ∈ Γ and J an index set with |J | = s + 1, where 0 ≤ s ≤
k + 1. The operators RkI,J satisfy the relations

d(RkI,Ju) = Rk+1
I,J du+ (−1)k−s(δRkIu)J , u ∈ Λk(S).

Proof. By applying (4.1), we get

dRkI,Ju =

∫
[xJ ]

dSΠsF
∗
I u =

∫
[xJ ]

[ΠsF
∗
I du+ (−1)k−sd[xJ ]Πs−1F

∗
I u]

= Rk+1
I,J du+ (−1)k−s

∫
∂[xJ ]

Πs−1F
∗
I u,

where we have used Stokes theorem for the last equality. The proof of the propo-
sition is completed by observing that∫

∂[xJ ]

Πs−1F
∗
I u = (δRkIu)J .

�
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5. The operators AkI,J and their properties

In this section, we define the coefficient operators AkI,J for I ∈ Γm, 1 ≤ m ≤ n,

and J ∈ Γs(I), 0 ≤ s ≤ k ≤ n− 1, as operators mapping Λk(∂Sn) to Λk−s(Sn). As
we saw already in Section 3, the simplices [PI,Jx], defined as all convex combinations
of the points PI,jx, j ∈ J , will in general not be a subset of ∂Sn, unless I ∩ Jc is
nonempty. As a consequence, the operators RkI,J are not well defined for functions

in Λk(∂Sn) unless this condition holds. We will therefore define the operators AkI,J
as linear combinations of these order reduction operators in such a way that they
are well defined for functions in Λk(∂Sn). We have already defined the operators
AkI,J for J = {j} ∈ Γ0(I) by AkI,Ju = RkI,Ju = P ∗I,ju, and in the case J ∈ Γ1(I)

by (3.1). The general definition given below will generalize the definitions given in
these special cases.

In the general case, we define the operators AkI,J of the form

(5.1) AkI,J = cks,n[(n− s)RkI,J −
∑
p∈Jc

(δRkI ){p,J}],

where cks,n are constants to be specified below. Here

(δRkI ){p,J} = RkI,J −
s∑
i=0

(−1)iRk
I,{p,J (̂i)},

and the index set {p, J (̂i)} is given by

{p, J (̂i)} = {p, j0, . . . ji−1, ji+1, . . . , js} if J = {j0, j1, . . . , js}.
Alternatively, we can express the operator AkI,J as

(5.2) AkI,J = cks,n
∑
p∈Jc

s∑
i=0

(−1)iRk
I,{p,J (̂i)}.

The constants ckn,s are given by

cks,n =
(−1)1+ks(s!)2

(n− 1) · · · (n− s)
, 1 ≤ s ≤ n− 1, and ck0,n = −1.

In fact, the key relations we will use below are that these constants satisfy

(5.3)
ck+1
s,n

cks,n
= (−1)s and

cks,n
cks−1,n

=
s2

(n− s)
(−1)k,

which can be easily checked. Note that when s = k = 1 and n > 1, we have
c11,n = 1/(n − 1), and as consequence, we see that (5.2) generalizes the definition

given in (3.1). Furthermore, AkI,J = 0 for J ∈ Γs(I), s > k.

We next establish three key properties of the operator AkI,J , using analogous

properties established for the operator RkI,J .

Lemma 5.1. The operators AkI,Ju only depend on the boundary traces of u and

satisfy for any J ∈ Γ(I) and j ∈ Ic,

(5.4) trλj=0A
k
I′,Ju = trλj=0A

k
I,Ju,
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where I ′ ∈ Γ is equal to {j, I} up to a possible reordering. Furthermore, the opera-
tors AnI,J are all identically zero.

Proof. For each i ∈ J ⊂ Γs(I), we have that i ∈ I ∩ {p, J (̂i)}c. As a consequence,
AkI,Ju only depends on tr∂Sn u. The rest of the results follow directly from the

corresponding properties of the operators RkI,J given in Lemma 4.1. �

Lemma 5.2. Let I ∈ Γ and J ∈ Γs(I). Then the operator λ−sI AkI,Ju maps the

spaces Λk(∂Sn) → Λk−s(Sn), PrΛk(∂Sn) → PrΛk−s(Sn), and P−r Λk(∂Sn) →
P−r Λk−s(Sn).

Proof. Since AkI,Ju is a linear combination of operators of the form RI,{p,J (̂i)}u, for

which I ∩ {p, J (̂i)}c is nonempty, the lemma follows directly from corresponding
properties of the operators RkI,J , cf. Lemma 4.2. �

Proposition 5.3. Let I ∈ Γ and J ∈ Γs(I). The operators AkI,Ju satisfy the
relations

(5.5) Ak+1
I,J du = (−1)sd(AkI,Ju) + s(δAkIu)J , 0 ≤ s ≤ k + 1, 0 ≤ k ≤ n− 1.

Proof. For s = 0, the relation dAkI.Ju = AkI,Jdu follows from the corresponding
property of the pullbacks P ∗I,j . Next we show that for for s ≥ 1 we have

(5.6) (δAkIu)J = −scks−1,n(δRkIu)J .

From (5.1), it follows that

(δAkIu)J = cks−1,n[(n− s+ 1)(δRkIu)J − (δW )J ],

where WJ =
∑
p∈Jc(δRkIu){p,J} for I and k fixed. However,

(δW )J =

s∑
a=0

(−1)a[(δRkIu){a,J(â)} +
∑
p∈Jc

(δRkIu){p,J(â)}]

= (s+ 1)(δRkIu)J +
∑
p∈Jc

s∑
a=0

(−1)aRkI,J(â)u−
∑
p∈Jc

((δ ◦ δ)RkI,pu)J

= (n+ 1)(δRkIu)J ,

where we have used the fact that for each fixed p,

((δ ◦ δ)RkI,pu)J =

s∑
a=0

(−1)a
[ a−1∑
i=0

(−1)iRI,{p,J(â,̂i)} −
s∑

i=a+1

(−1)iRI,{p,J(â,̂i)}

]
= 0.

This implies (5.6). For s ≥ 1, it follows from Proposition 4.3, (5.3), (5.6), and the
property δ ◦ δ = 0 that

d(AkI,Ju) = cks,n[(n− s)dRkI,Ju−
∑
p∈Jc

(δdRkIu){p,J}]

= cks,n[(n− s)Rk+1
I,J du−

∑
p∈Jc

(δRk+1
I du){p,J}] + cks,n(n− s)(−1)k−s(δRkIu)J
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=
cks,n

ck+1
s,n

Ak+1
I,J du+

cks,n(n− s)
scks−1,n

(−1)k−s+1(δAkIu)J .

= (−1)sAk+1
I,J du+ s(−1)s+1(δAkIu)J .

This completes the proof. �

6. The operator Ekn

In this final section, we prove that the operators Ekn, defined by (2.2), are poly-
nomial preserving cochain extensions.

Theorem 6.1. The operators Ekn, defined by (2.2), are extension operators.

Proof. We first note since the coefficients AkI,Ju only depend on the boundary traces

of u, the same is true of Eknu. To establish the extension property, we will, without
loss of generality, show that trλ0=0E

k
nu = trλ0=0 u. In fact, the primal operator

Ekn,0, given by

Ekn,0u =
1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
∑
j∈I

λj
λI
P ∗I,ju,

is already an extension. To see this, we can argue as we have done above for scalar-
valued functions and one-forms. The maps PI,j , where I ∈ Γ1 with 0, j ∈ I and
j 6= 0 are projections onto {x : λ0(x) = 0}. As a consequence,

trλ0=0

[ 1

n

∑
I∈Γ1
0∈I

∑
j∈I

λj
λI
P ∗I,i

]
u = trλ0=0 u,

while the rest of the terms of Ekn,0u give no additional contribution to the trace due
to the cancellation of terms corresponding to I and I ′ = {0, I}, where 0 /∈ I. So to
complete the proof, we need to show that

trλ0=0

[ 1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
∑

J∈Γs(I)
1≤s≤k

φJ

λs+1
I

∧AkI,Ju
]

= 0.

However, for terms corresponding to pairs (I, J), with 0 ∈ J , we have trλ0=0 φJ = 0,
while if 0 /∈ J , the trace of the terms corresponding to the pairs (I, J) and ({0, I}, J)
will cancel due to the trace property (5.4) of the coefficients. �

Theorem 6.2. The extensions Ekn are cochain maps, i.e., they satisfy dEkn =
Ek+1
n d for 0 ≤ k ≤ n− 2. In addition, dEn−1

n u = 0.

Proof. We first observe that for I ∈ Γ and J ∈ Γs(I), we have

(6.1) d
( φJ

λs+1
I

)
= (s+ 1)

∑
i∈I\J

φ{i,J}

λs+2
I

.

In particular, the right hand side is zero if J = I. By the Leibniz rule, we have
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dEknu =
1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
∑

J∈Γs(I)
0≤s≤k

d
[ φJ

λs+1
I

∧AkI,Ju
]

=
1

n

∑
I∈Γm

1≤m≤n

(−1)m+1
k∑
s=0

∑
J∈Γs(I)

[
d
( φJ

λs+1
I

)
∧ (AkI,Ju) + (−1)s

φJ

λs+1
I

d(AkI,Ju)
]
.

However, by using (6.1), we obtain for each fixed I ∈ Γ,

k∑
s=0

∑
J∈Γs(I)

d
( φJ

λs+1
I

)
∧ (AkI,Ju) =

k∑
s=0

(s+ 1)
∑

J⊂Γs(I)

∑
i∈I\J

φi,J

λs+2
I

∧ (AkI,Ju)

=

k∑
s=0

(s+ 1)
∑

J∈Γs+1(I)

φJ

λs+2
I

∧
s+1∑
i=0

(−1)iAk
I,J (̂i)

u

=

k+1∑
s=0

s
∑

J∈Γs(I)

φJ

λs+1
I

∧ (δAkIu)J .

Combining these results, noting that AkI,Ju = 0 for J ∈ Γk+1(I), and using (5.5),
we get that

dEknu = Ek+1
n du, 0 ≤ k ≤ n− 2, and dEn−1

n = 0.

This completes the proof.

�

The final result we need to prove is that the extensions Ekn preserve smoothness
and polynomial properties. The operator Ekn can be expressed as

Eknu =
1

n

∑
I∈Γm

1≤m≤n

(−1)m+1Ekn(I)u,

where each operator Ekn(I) is given by

Ekn(I) =
∑

J∈Γs(I)
0≤s≤k

φJ

λs+1
I

∧AkI,Ju.

We will show below that each operator Ekn(I) preserves smoothness and polynomial
properties. It is worth noting that it follows from Lemma 5.2 that the operators
Ekn(I) map Λk(∂Sn) to λ−1

I Λk(Sn), and also

(6.2) PrΛk(∂Sn)→ λ−1
I Pr+1Λk(Sn), and P−r Λk(∂Sn)→ λ−1

I P
−
r+1Λk(Sn).

In fact, to obtain the result for the trimmed spaces, we also need to use the wedge
product property for these spaces, for example expressed by formula (3.16) of [3].
To obtain preservation of smoothness and polynomial properties, we need to remove
the singular factor λ−1

I . The analysis below will lead to the following fundamental
result.

Theorem 6.3. The extension operator Ekn maps the spaces Λk(∂Sn) → Λk(Sn),
PrΛk(∂Sn)→ PrΛk(Sn), and P−r Λk(∂Sn)→ P−r Λk(Sn).
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The proof of this result will utilize the following alternative representation of the
operators Ekn(I).

Lemma 6.4. The operators Ekn(I) admit the representation

(6.3) Ekn(I)u =
1

m+ 1

[∑
j∈I

P ∗I,ju+ dQknu+Qk+1
n du

]
,

where the operator Qkn = Qkn(I) is given by

Qknu =
∑

J∈Γs(I)
1≤s≤k

1

s

(δφ)J
λsI

∧AkI,Ju.

Since the derivation of the alternative representation of the operators Ekn is
slightly technical, we will first use the representation (6.3) to prove Theorem 6.3.

Proof. (of Theorem 6.3) It is enough to show the desired mapping properties for
each operator Ekn(I). From the result of Lemma 5.2, it easily follows that the op-
erator Qkn(I) maps Λk(∂Sn) to Λk−1(Sn) and PrΛk(∂Sn) to Pr+1Λk−1(Sn). By
combining this with the fact that the operators PI,j are linear, the desired re-
sult in the smooth case and the full polynomial case follows. Furthermore, since
P−r Λk(∂Sn) is a subspace of PrΛk(∂Sn), it follows from (6.2) that Ekn(I) maps
P−r Λk(∂Sn) into

(6.4) PrΛk(Sn) ∩ λ−1
I P

−
r+1Λk(Sn).

However, this space is identical to P−r Λk(Sn). To see this, let u ∈ P−r+1Λk(Sn) such

that λ−1
I u ∈ PrΛk(Sn). It follows from the definition of the trimmed spaces that

for any xj ∈ ∆0(Sn)

uy(x− xj) ∈ Pr+1Λk−1(Sn).

But since λ−1
I u is also in PrΛk(Sn) we have

λ−1
I (uy(x− xj)) = (λ−1

I u)y(x− xj) ∈ Pr+1Λk−1(Sn).

In other words, the polynomial form uy(x − xj) has λI as a linear factor, and as

a consequence, λ−1
I (uy(x − xj)) is also a polynomial form, which then must be in

PrΛk−1(Sn). This implies that λ−1
I u ∈ P−r Λk(Sn). This shows that the space given

by (6.4) is included in P−r Λk(Sn), and the opposite inclusion is straightforward to
check. �

It remains to establish the alternative representation (6.3) for the operators
Ekn(I). Throughout the discussion below, the index set I ∈ Γm, 1 ≤ m ≤ n, will be
considered fixed. We first study the primal operator Ekn,0 = Ekn,0(I) given by

Ekn,0u =
∑

J∈Γ0(I)

φJ
λI
∧AkI,Ju =

∑
i∈I

λi
λI
∧ P ∗I,iu.

In particular, for k = 0 we have E0
n,0 = E0

n(I).
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Lemma 6.5. For I ∈ Γm, the operator Ekn,0 = Ekn,0(I) has a representation of the
form

(6.5) Ekn,0u =
1

m+ 1

[∑
j∈I

P ∗I,ju+ λ−1
I

∑
J∈Γ1(I)

(δφ)J ∧ (δAkIu)J

]
.

Proof.

λ−1
I

∑
i∈I

λiP
∗
I,iu =

1

m+ 1

∑
j∈I

[P ∗I,ju+ λ−1
I

∑
i∈I

λi(P
∗
I,iu− P ∗I,ju)]

=
1

m+ 1

[∑
j∈I

P ∗I,ju+ λ−1
I

∑
i∈I

∑
j∈I
j<i

(λi − λj)(P ∗I,iu− P ∗I,ju)
]

=
1

m+ 1

[∑
j∈I

P ∗I,ju+ λ−1
I

∑
J∈Γ1(I)

(δφ)J ∧ (δAkIu)J

]
.

The representation for Ekn,0 follows immediately. �

To establish an analogous result more generally, we will also need the following
preliminary result.

Lemma 6.6. For I ∈ Γm and 0 ≤ s ≤ m, the following identity holds.∑
J∈Γs(I)

d
( (δφ)J

λsI

)
∧AkI,Ju+

s

λs+1
I

∑
J∈Γs+1(I)

(δφ)J ∧ (δAkIu)J

=
(m+ 1)s

λs+1
I

∑
J∈Γs(I)

φJ ∧AkI,Ju.

Proof. If J ∈ Γs−1(I), we get from (6.1) that

d
(φJ
λsI

)
= s

∑
p∈I\J

φp,J

λs+1
I

.

As a further consequence, we obtain that if J ∈ Γs(I), then

d
( (δφ)J

λsI

)
=

s

λs+1
I

s∑
i=0

(−1)i
∑

p∈I\J (̂i)

φp,J (̂i)

=
s(s+ 1)

λs+1
I

φJ +
s

λs+1
I

s∑
i=0

(−1)i
∑
p∈I\J

φp,J (̂i).

If we wedge the second term with AkI,Ju and sum over J ∈ Γs(I), we obtain

∑
J∈Γs(I)

s∑
i=0

(−1)i
∑
p∈I\J

φp,J (̂i) ∧A
k
I,Ju = −

∑
J∈Γs+1(I)

s+1∑
a,i=0
a6=i

(−1)a+iφJ (̂i) ∧AI,J(â)u

= −
∑

J∈Γs+1(I)

(δφ)J ∧ (δAkIu)J + (m− s)
∑

J∈Γs(I)

φJ ∧AkI,Ju.

The desired result follows by collecting terms. �
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To establish Lemma 6.4, we will make use of the following operators,

Ekn,` = Ekn,`(I) =
∑

J∈Γs(I)
0≤s≤`

φJ

λs+1
I

∧AkI,Ju, 0 ≤ ` ≤ k.

In particular, we note that Ekn,k(I) = Ekn(I).

Proof. (of Lemma 6.4) We will prove by induction that the operator Ekn,` admits a
representation of the form

(6.6) Ekn,`u =
1

m+ 1

[∑
j∈I

P ∗I,ju+
∑

J∈Γ`+1(I)

(δφ)J

λ`+1
I

∧ (δAkIu)J

+ dQkn,`u+Qk+1
n,` du

]
,

where,

Qkn,` =
∑

J∈Γs(I)
1≤s≤`

1

s

(δφ)J
λsI

∧AkI,Ju,

such that Qkn,k = Qkn and Qkn,0 = 0. Note that when ` = 0, (6.6) is exactly the

identity (6.5), while for l = k, Ak+1
I,J du = (k + 1)(δAku)I,J . This gives

Qk+1
n,k du+

∑
J∈Γk+1

(δφ)J

λk+1
I

∧ (δAkIu)J = Qk+1
n du.

Therefore, the representation formula (6.3) follows from (6.6) for l = k.

It remains to carry out the induction argument to establish (6.6). If we assume
that (6.6) holds for `− 1, then

(m+ 1)Ekn,`u−
∑
j∈I

P ∗I,ju = dQkn,`−1u+Qk+1
n,`−1du

+
∑

J∈Γ`(I)

[
(m+ 1)

φJ

λ`+1
I

∧AkI,Ju+
(δφ)J
λ`I

∧ (δAkIu)J

]
= dQkn,`−1u+Qk+1

n,` du

+
∑

J∈Γ`(I)

[
(m+ 1)

φJ

λ`+1
I

∧AkI,Ju+ (−1)(`−1) 1

`

(δφ)J
λ`I

∧ dAkI,Ju
]
,

where we have used the relation (5.5). Now from Lemma 6.6, we get that

d(Qkn,` −Qkn,`−1) =
∑

J∈Γ`(I)

1

`
d
[ (δφ)J
λ`I

∧AkI,Ju
]

=
∑

J∈Γ`(I)

1

`

[
(−1)`−1 (δφ)J

λ`I
∧ dAkI,Ju+ (m+ 1)`

φJ

λ`+1
I

∧AkI,Ju
]

−
∑

J∈Γ`+1(I)

(δφ)J

λ`+1
I

∧ (δAkIu)J .
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Combining these results, we get

(m+ 1)Ekn,`u−
∑
j∈I

P ∗I,ju = dQkn,`u+Qk+1
n,` du+

∑
J∈Γ`+1(I)

(δφ)J

λ`+1
I

∧ (δAkIu)J ,

which completes the induction argument, and the proof of the lemma. �
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