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SUMMARY
Cell fate can be reprogrammed by ectopic expression of lineage-specific transcription factors (TFs). Howev-
er, the exact cell state transitions during transdifferentiation are still poorly understood. Here, we have gener-
ated pancreatic exocrine cells of ductal epithelial identity from human fibroblasts using a set of six TFs. We
mapped the molecular determinants of lineage dynamics using a factor-indexing method based on single-
nuclei multiome sequencing (FI-snMultiome-seq) that enables dissecting the role of each individual TF and
pool of TFs in cell fate conversion. We show that transition frommesenchymal fibroblast identity to epithelial
pancreatic exocrine fate involves two deterministic steps: an endodermal progenitor state defined by activa-
tion of HHEX with FOXA2 and SOX17 and a temporal GATA4 activation essential for the maintenance of
pancreatic cell fate program. Collectively, our data suggest that transdifferentiation—although being consid-
ered a direct cell fate conversion method—occurs through transient progenitor states orchestrated by
stepwise activation of distinct TFs.
INTRODUCTION

Direct cell fate conversion (transdifferentiation) is a process in

which somatic cells are reprogrammed to defined cell types of

another lineage without a pluripotent intermediate state using

eitherectopicexpressionofcell- and lineage-specific transcription

factors (TFs), non-coding RNAs, or small molecules in a defined

lineage-dependent media.1 For example, fibroblasts have been

directly converted to cells representing all three germ layers,

including induced neuronal cells (iNCs) from the ectoderm,2 cardi-

omyocytes from themesoderm,3 and hepatocytes from the endo-

derm.4 Transdifferentiation is controlled by coordinated action of

pioneer TFs suchasFOXAorGATA factors and other lineage-spe-

cific TFs, resulting in global reprogramming of epigenetic land-

scapeandgeneexpression.5Previousstudieshavedemonstrated

considerable cellular heterogeneity during lineage conversion,6–8

but the exact path of cellular states through which the direct line-

age conversion occurs is not fully understood.

Transdifferentiation approaches have been critical not only for

understanding basic developmental mechanisms governing cell
Developmental Cell 58, 1701–1715, Septemb
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identity but also for innovative experimental strategies in disease

modeling and potential therapeutic applications. These include,

for example, conversion of astrocytes to dopaminergic neurons

in Parkinson’s disease9 and glial cells into neurons after brain

injury,10 as well as combining direct transdifferentiation from

fibroblasts to induced hepatocytes (iHeps) with controlled

expression of cancer-specific oncogenes to model liver cancer

development.11 However, the lack of transdifferentiation factors

for many human cell and tissue types hampers the use of this

approach for understanding various human diseases. Pancreas

is a complex organ that harbors multiple specialized cell types

with endocrine (a, b, d, g, and ε cells) and exocrine (acinar

and ductal cells) functions. Enormous efforts have gone into

identifying the TFs required for the generation of endocrine b

cells,12–15 but the factors required for other defined cell types

are currently unknown. However, the exocrine cells such as

the ductal epithelial cells are important not only for the normal

physiological function of the pancreas but also in various disease

contexts.16 For example, chronic pancreatitis and cystic fibrosis

impair exocrine function, and highly lethal pancreatic cancer that
er 25, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1701
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is often diagnosed at the terminal stages typically originates

from the exocrine cells. Recent functional studies have

implicated the lineage-determining TFs in tumorigenic pro-

cesses.11,17,18 Thus, it is pertinent to study the role of defined

TFs in controlling pancreatic exocrine cell identity for a better

understanding of pancreatic cancer as well as for potential

regenerative medicine applications.

Here, we report the defined factors necessary and sufficient

for a direct conversion of human fibroblasts to induced pancre-

atic exocrine cells (iPECs) of ductal epithelial identity. We have

dissected themechanistic role of individual TFs in the transdiffer-

entiation process, identifying the critical factors that control the

process in a temporally coordinated manner.

RESULTS

Generation of pancreatic exocrine cells by direct
lineage conversion
To establish a direct cell fate conversion protocol for transdiffer-

entiating humanfibroblasts to iPECs in definedmedia (Figure 1A),

we set out to identify thepool of TFs required for inducing pancre-

atic exocrinecell fate.Weselected14candidateTFs (FigureS1A),

eight of which were literature-curated based on their reported

role in the maturation of exocrine cells during human pancreas

development21,22 and another eight predicted using the Mogrify

computational framework.23 Two TFs, FOXA2 and GATA4,

were suggested by both approaches. The candidate TFs were

cloned into a lentiviral expression vector and systematically stud-

ied in a series of reprogramming experiments by transducing 20

different TF combinations to human foreskin fibroblasts (HFFs;

Figure S1B). Transduced cells weremonitored for morphological

changes (Figure S2) and for the expression of pancreas-

related marker genes using quantitative real-time-PCR or RNA

sequencing (RNA-seq) at different time points (Figure S1B).

Briefly, after observing clear morphological changes in a pilot

experiment (condition 1; Figures S1B and S1C), we compared

the gene expression profiles of transduced cells with control fi-

broblasts and detected upregulation of pancreatic exocrine cell

markers as well as enrichment of pancreas-related gene set

among the differentially expresses genes (DEGs) (Figures S1D–

S1F). We then designed two sub-pools for generating acinar-

and ductal-like cells separately (conditions 2 and 3 with ten and

nine TFs, respectively; Figure S1B). Briefly, factors implicated in

the specification of endoderm and pancreatic progenitors (such

as FOXA2 and GATA4)21,22 were included in both conditions,

whereas factors with previously reported roles in cell type spec-

ification, such as PTF1A for acinar cells24 and HNF6 for ductal

cells,25 were restricted to these specific pools (see STAR

Methods). Reprogramming experiments using these pools

demonstrated the feasibility of producing iPECs since

quantitative real-time-PCR and RNA-seq analyses showed a

gradual increase in the expression ofmarker genes for pancreatic

exocrine cells and downregulation of fibroblast-related genes

(Figures S1G–S1J). The pools were further refined based on the

previous literature about pancreas development,26–30 resulting

in eight and six TFs for acinar and ductal cells, respectively (con-

ditions 5 and 7; Figure S1B; see STARMethods). The cells trans-

ducedwith acinar cell TFs (condition 5) did not develop epithelial-

likemorphology. However, the cells transducedwith a pool of six
1702 Developmental Cell 58, 1701–1715, September 25, 2023
TFs for ductal cells (condition 7), FOXA2, SOX17, PDX1, HNF1B,

HNF6 (ONECUT1), and SOX9 (henceforth referred to as 6F),

showed clear morphological changes during transdifferentiation

with several clusters of epithelial-like cells appearing around

3 weeks of reprogramming (Figure 1B). Dissociating the cells

and re-plating them on growth factor-reduced Matrigel-coated

dishes resulted in further maturation toward epithelial cell-like

morphology: cell clusters that were picked and re-plated at

4 weeks after induction could be expanded up to 8 weeks as

the cells mature (Figure 1B). Other than the 6F-pool (condition

7), few clusters of epithelial-like cells were also observed in con-

ditions 10 (6F without SOX17) and 12 (6F without SOX17 and

SOX9; Figure S1B), and these cells also showed upregulation

of ductal cell markers (Figures S3A–S3C). However, the 6F-

pool enabled robust induction of reprogrammed cells with both

sustainable epithelial-like morphology and elevated expression

of pancreatic ductal cell markers andwas thus used in the subse-

quent experiments.

For initial characterization of the identity of cells generated us-

ing the 6F combination, RNA-seq was performed from reprog-

rammed cells at 6 and 10 weeks after TF transduction using

hTERT-immortalized cells for the later time point, 10 weeksTERT,

as the epithelial-like cell clusters could only be expanded until

8 weeks after induction. Global gene expression analysis identi-

fied a distinct transcriptional program within the reprogrammed

cells compared with HFFs (Figures 1C and S3D). Pancreatic

marker genes such as secreted phosphoprotein 1 (SPP1),

prominin 1 (PROM1), and carbonic anhydrase 2 (CA2) were up-

regulated, and the genes highly expressed in fibroblasts were

efficiently downregulated (Figures 1D and S3E), consistent with

earlier reports of hepatic, cardiac, and neuronal conversion

from fibroblasts.3,31,32 Importantly, gene set enrichment analysis

(GSEA) for DEGs between 6F-reprogrammed cells and control fi-

broblasts showed statistically significant positive enrichment

specifically for pancreatic ductal cell gene signature among sig-

natures for all major cell types of endodermal origin (Figures 1E

and S3F) and among all pancreatic cell types (Figure S3G). Com-

parison of gene expression programs in iPECs to those in human

pancreatic acinar19 and ductal cells20 further supported the

observation that the iPECs resemble ductal cells rather than

acinar cells (Figure 1F). These results indicate that the 6F combi-

nation induces cell fate conversion toward iPECswith pancreatic

ductal cell identity.

Cell fate conversion results in iPECs with functional
properties of pancreatic ductal cells
Functional properties of iPECs induced with 6F were tested in

activity assays for three pancreatic enzymes: CA, which is the

key enzyme expressed in pancreatic ducts, as well as amylase

and trypsin, which are specific for acinar cells. Strong CA activity

was detected in iPECs (Figure 1G), whereas amylase and trypsin

activities were negligible. Of note, CA activity can originate from

several CA family proteins, such as CA2 and CA12 enzymes in

these cells, but only CA2 has been considered a ductal cell

marker.33 HFFs express CA12 (Figure 1H) resulting in their basal

CA activity (Figure 1G), whereas upregulated CA2 expression

along with increased CA activity detected in 6-week iPECs

speaks for their ductal cell attributes (Figures 1G and 1H). The

weaker CA activity in 10 weeksTERT iPECs suggests that
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Figure 1. Direct conversion of human fibroblasts to pancreatic ductal-like cells

(A) Experimental design for generating iPECs. Human foreskin fibroblasts (HFFs) were transduced with different combinations of lentiviral TF constructs. The

culture medium was changed to defined medium 2 days after transduction (see STAR Methods), and the cells were monitored for morphological changes.

(B) Brightfield images showing spindle-shaped HFFs and epithelial-like morphology of iPECs at days 21 and 42 after induction. Scale bars in all microscope

images represent 100 mm.

(C) Hierarchical clustering of DEGs in HFFs vs. iPECs at 6weeks (|log2FC|R 1.5, p value < 0.05); Z score of normalized expression values is indicated using a color

scale. All RNA-seq experiments in Figures 1, 2, and 3 were performed in three technical replicates.

(D) Volcano plot for DEGs in HFFs vs. iPECs at 6weeks. Significant upregulated and downregulated DEGs in iPECs (|log2FC|R 1.5, p value < 0.05; n = 3)marked in

red and blue, respectively.

(E) Normalized enrichment score from GSEA for gene signatures of all major cell types of endodermal origin among DEGs in iPEC at 6 weeks vs. HFF (*p

value < 0.01 and false discovery rate [FDR] < 5%).

(F) Pearson correlation coefficients for the top 10% most-variable genes from log2 normalized gene expression data of HFFs, iPECs and human acinar,19 and

ductal cells.20

(G) Measurement of enzyme activities (mean ± SEM; n = 6, including three biological replicates and two technical replicates for each biological replicate) for CA,

trypsin, and amylase in the lysates of HFFs and iPECs at 6 and 10 weeks (10-week sample immortalized with hTERT).

(H) Heatmap for expression levels of CA2 and CA12 from RNA-seq data in HFFs, iPECs at 6 and 10 weeks, and human ductal cells.20

(I) Flow cytometry analysis for CD133 and CD24 to determine the proportion of ductal-like cells in the iPEC population at 6 weeks after induction. Of note, CD133

protein is encoded by the PROM1 gene (see Figure 1D).

(J) Immunofluorescence staining for SPP1 and cellular DNA (Hoechst) to assess the epithelial phenotype of iPECs at 6 weeks.

See also Figures S1–S3.
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immortalization may have affected their functionality. Flow cy-

tometry analysis using cell surface markers for pancreatic ductal

and exocrine cells, CD133 and CD24,34 respectively, identified

that over 80% of iPECs expressed both markers, demonstrating

high purity of ductal cells in the isolated iPEC colonies (Figure 1I).

Moreover, clear immunofluorescence signal was detected for

SPP1, an essential regulator of human pancreatic duct cell matu-

ration and epithelial phenotype35 (Figure 1J). Taken together,
these results speak for the functional ductal phenotype and effi-

cient mesenchymal to epithelial conversion in the iPECs reprog-

rammed from human fibroblasts using the 6F pool.

iPEC reprogramming is controlled by temporal
activation of specific TFs
To gain detailed insights into the transcriptional changes during

direct lineage conversion between fibroblasts and iPECs, cells
Developmental Cell 58, 1701–1715, September 25, 2023 1703
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Figure 2. Gene expression dynamics during reprogramming

(A) Heatmap clustering for average normalized expression values for DEGs (|log2FC|R 1.5, p value < 0.05; n = 3) between reprogrammed cells at indicated time

points vs. HFF; DEGs detected in all time points are shown. GO enrichment analysis for biological processes was performed for the indicated clusters.

(B) GSEA for fetal pancreatic ductal cell signature in reprogrammed cells at 48 h and 6-week time points. NES, normalized enrichment score.

(C) Line plots showing the expression dynamics for the 6F transcripts at indicated time points.

(D) Immunofluorescence staining for the TFs from 6F pool in HFFs and iPEC at 6 weeks.

(E) Line plots showing gene expression dynamics of pancreas-related TFs.

In (C) and (D), the transcript and protein measurements do not differentiate between transduced and endogenously expressed genes.

In (C) and (E), normalized log2 transformed gene counts from RNA-seq data were plotted (mean ± SEM; n = 3). GLI represents the average expression levels of

GLI1, GLI2, and GLI3. For statistical analysis, the expression of each TF at each time point was compared with HFFs using two-tailed Student’s t test. Hollow

circles, not significant; solid-colored dots with black circles, p value < 0.01 (n = 3).

See also Figure S3.
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were collected for bulk RNA-seq analysis at six different time

points from 48 h to 6 weeks after 6F transduction. Transcrip-

tome-wide changes were analyzed using principal-component

analysis (PCA) (Figure S3H), and pairwise DEG analysis was per-

formed for reprogrammed cells at each time point against HFF.

Unsupervised hierarchical clustering for the significant DEGs

overlapping all pairwise comparisons identified two major clus-

ters (Figure 2A), the fibroblast-related genes that were downre-

gulated and the pancreas-related genes that showed dynamic

expression changes during transdifferentiation process. Gene

ontology (GO) terms related to epithelial cell differentiation

were significantly enriched among the genes that were induced

within the first week of reprogramming (Figure 2A), consistent

with recent studies showing that mesenchymal-epithelial transi-

tion is an essential early step in somatic cell reprogramming.36

Rapid downregulation of fibroblast-related genes already at

48 h time point and strong induction of ductal cell marker genes

such as SALL4, ACSM3, HABP2, CA2, and SPP1 during later

stages of reprogramming (Figure 2A) indicate a successful cell

fate switch between fibroblasts and iPECs and gradual matura-

tion of the ductal cells. Moreover, pancreatic ductal cell signa-

ture was markedly enriched at 6-week time point but not yet at
1704 Developmental Cell 58, 1701–1715, September 25, 2023
48 h after 6F transduction (Figure 2B), and the CA activity along

withCA2 expression was higher at 6-week iPECs compared with

those measured at 48 h (Figures S3I and S3J).

For a comprehensive understanding of the reprogramming

process, we analyzed the expression patterns for the six reprog-

ramming TFs as well as for endogenous pancreas-related TFs

that were not part of the 6F pool. The expression levels were

largely consistent for four reprogramming TFs, HNF6, HNF1B,

SOX9, and PDX1, whereas SOX17 and FOXA2 were downregu-

lated around 1–2 weeks of reprogramming (Figure 2C) despite

being expressed from a constitutively active promoter. From

week 4 onward, the expression of SOX17 increased again but

FOXA2 remained low, as seen frommRNAexpression (Figure 2C)

and protein levels (Figure 2D). However, the expression of

endogenous FOXA1 increased, potentially compensating for

the FOXA2 loss (Figure 2E, top). These results suggest that

SOX17 and FOXA proteins play distinct roles during the early

and late stages of cell fate conversion. Of the endogenous

pancreas-related TFs, GATA4 expression showed a striking

temporal control with strong induction of its mRNA at 4 weeks

and downregulation around 6 weeks of transdifferentiation (Fig-

ure 2E, top). Previous studies have shown that GATA4 loss



ll
OPEN ACCESSArticle
results in conversion of pancreatic cells to alternate intestinal

and gastric cell fates due to aberrant activation of sonic hedge-

hog (Shh) pathway in pancreatic progenitors37 and that elevated

levels of Shh signaling block pancreas formation.38 Thus, we

analyzed RNA-seq data for the expression of all canonical Shh

signaling pathway genes from the Molecular Signatures Data-

base (MSigDB; see STAR Methods) during reprogramming.

ZIC2, a downstream target of GATA4,39 has been earlier re-

ported to enhance Shh signaling through nuclear retention of

Gli1,40 and PTCH2 is a negative regulator of Shh signaling.41

Activation ofGATA4 at 4 weeks was concordant with downregu-

lation of ZIC2 and upregulation of PTCH2 (Figure 2E, bottom),

suggesting their role in suppressing the Shh pathway and

inducing pancreatic progenitor cell identity before ductal cell

maturation. Downregulation of GATA4 (Figure 2E, bottom) after

pancreatic endoderm progenitor specification agrees with previ-

ously reported GATA4 expression in the pancreatic progenitor

state that is subsequently restricted to acinar cells during

pancreaticmaturation.26 These results give amechanistic insight

into how pancreatic identity is established and maintained

through specific temporal suppression of Shh signaling.

Activation of other pancreas-related TFs such as NR5A2 and

NKX6.1 was also observed at 4 weeks of reprogramming (Fig-

ure 2E, top).NR5A2 expression remained strong also at 6weeks,

whereasNKX6.1 expression decreased, commensurate with the

previously reported role of NR5A2 in pancreatic exocrine cells30

and NKX6.1 in b cells of the mature pancreas.22 Notably, TFs

related to acinar cell specification such as PTF1A and endocrine

cell fate such asNEUROG3were not detected during the reprog-

ramming (Figure 2E, top), indicating that the 6F pool mediates re-

programming of iPECs specifically toward pancreatic ductal cell

identity.

Global chromatin remodeling during iPEC
reprogramming
As seen from the RNA-seq analysis in Figure 2A, the epithelial cell

differentiation program already starts within the first week of iPEC

reprogramming. Thus, to delineate the early changes in chromatin

state that facilitate these programs, we performed an assay for

transposase-accessible chromatin sequencing (ATAC-seq) at

the same time points that were used for RNA-seq within the first

week of reprogramming. Consistent with the temporal changes

in gene expression patterns, chromatin accessibility was altered

along the reprogramming time course, and six broad clusters of

differentially accessible regions were identified (Figure 3A). Chro-

matin immunoprecipitation sequencing (ChIP-seq) for histone 3

lysine 27 acetylation (H3K27ac) at the same time points showed

that epigenome reprogramming corresponds to changes in the

levels of activating chromatin marks at the same loci (Figure S3K).

Motif enrichment analysis of ATAC-seq peaks in different clusters

identified a shift in motif accessibility already around 96 h of re-

programming from TFs that control the somatic cell identity of

fibroblasts (FOS/TEAD/RUNX)42 to pancreas-related TFs corre-

sponding to 6F pool such as HNF6, HNF1, SOX, and FOXA (Fig-

ure 3A). The same pattern was observed from differential motif

analysis of accessible chromatin regions between 1-week reprog-

rammed cells and HFF (Figure 3B).

In addition to the motifs for the 6F reprogramming TFs, a

notable increase in the predicted binding activity was observed
for HHEX between 1-week reprogrammed cells and HFFs (Fig-

ure 3B). This was commensurate with a specific upregulation

of HHEX expression at 96 h and 1-week time points (Figure 3C).

Interestingly, HHEX is one of the earliest markers of the foregut

progenitor cells that is required for the formation of pancreas43,44

and the specification of hepatopancreatic ductal system.45 TF

footprinting analysis by TOBIAS framework46 showed dynamic

epigenome reprogramming of fibroblast chromatin during iPEC

conversion with decreased chromatin accessibility for TFs that

maintain the somatic cell identity of the fibroblasts (JUNB,

FOSL1)42 and increase for early endoderm specification TFs

like SOX17, FOXA2, and HHEX, as well as pancreas-lineage

determining TFs such as HNF6, HNF1B, and SOX9 (Figure 3D,

left). The chromatin regions that showed increased accessibility

for pancreatic development TFs were found to be near several

pancreas-related TFs (such as HNF1B, HNF6, GATA6, and

NR5A2), suggesting a regulatory loop in which the reprogram-

ming TFs activate the expression of pancreas-related TFs,

including the endogenous genes corresponding to the reprog-

ramming factors such as HNF1B and HNF6 (Figure 3D, right;

Table S1). The changes in the chromatin state measured by

ATAC-seq and H3K27ac ChIP-seq are commensurate with

gene expression changes during reprogramming as seen from

activation of pancreatic ductal marker genes such as CD24,

SPP1, and SALL4 and downregulation of fibroblast-related

genes such as MMP3 and PRRX2 (Figure 3E, top). The motifs

of somatic (TEAD, Bach)42 and mesenchymal (Twist)47 TFs

were enriched at the regulatory regions of MMP3 and PRRX2

(Figure 3E, bottom; Table S3). For ductal cell markers, motifs

for both reprogramming TFs (such as Hnf1 and ONECUT) as

well as other TFs (such as Pparg and Nfe2l2) were enriched (Fig-

ure 3E, bottom), suggesting both direct and indirect mechanisms

in the marker gene induction during cell fate conversion.

Taken together, these data suggest that transdifferentiation in-

volves transient intermediate progenitor states during which the

cells move toward a dedifferentiated state. Specific temporal

activation and inactivation of reprogramming TFs control these

distinct steps: (1) initiation of cell fate conversion by FOXA2

and SOX17, resulting in chromatin reprogramming and loss of

the gatekeeper TFs (e.g., FOS/JUN/TEAD/RUNX) that maintain

the fully differentiated somatic cell identities,42 (2) cell fate spec-

ification and determination by HNF6 and HNF1B, and (3) cell fate

maintenance and maturation by HNF6 and HNF1B together with

SOX9 and pancreas-specific PDX1. This process also involves

transient activation of distinct endogenous TF programs, namely

HHEX at the endoderm progenitor state and GATA4 at the

pancreatic progenitor state.

Factor-indexing approach for FI-snMultiome-seq to
dissect the role of defined TFs in gene expression and
chromatin accessibility
To analyze the role of each individual TF and different combina-

tions of TFs in cell fate control at single-cell resolution and segre-

gate the expression of exogenous and endogenous TFs, we

developed a factor-indexingmethod based on single-nuclei mul-

tiome sequencing (FI-snMultiome-seq) method. It combines a

TF-indexing (barcoding) strategy with the single-nuclei multiome

sequencing platform from 103 Genomics for concomitant

epigenome and gene expression profiling from the same
Developmental Cell 58, 1701–1715, September 25, 2023 1705
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Figure 3. Chromatin accessibility dynamics during reprogramming

(A) Unsupervised clustering heatmap of top 50% master ATAC-seq peaks across HFFs and iPECs at 48 h, 96 h, and 1 week. Line plots show the trend of each

cluster. Top representative motifs ranked by p value are shown. ATAC-seq was performed in two biological replicates.

(B) Volcano plot showing differential predicted binding activity of all investigated TF motifs between HFF (left) and 1-week reprogrammed cells (right). TFs with |

differential binding score| > 0.3 are colored on both sides. From each group, the top 1,000 highest-ranking peak regions according to reads per kilobase per

million mapped reads (RPKM) values were used.

(C) Heatmap showing the Z score of normalized expression values for FOXA2, SOX17, and HHEX from RNA-seq data during reprogramming.

(D) Aggregate accessibility profile of TF binding sites for selected differentially bound TFs shown in (B) from bias-corrected ATAC-seq footprints. Signal depletion

indicates TF binding. Representative pancreas-related TFs are shown fromoverlap analysis between nearby geneswithin a 10-kbwindow from theTFmotif center

in 1-week sample and the gene sets GOBP_ENDODERM_DEVELOPMENT, GOBP_PANCREAS_DEVELOPMENT, and MURARO_PANCREAS_DUCTAL_CELL

from GSEA database. Representative somatic TFs are shown from the overlapping genes between ‘‘nearby genes’’ in HFFs and the fibroblast marker genes

from Table S2.

(E) Genome browser snapshots showing ATAC-seq, H3K27ac ChIP-seq, and RNA-seq signals at indicated time points for marker genes of fibroblasts (MMP3,

PRRX2) and pancreatic exocrine cells (CD24, SPP1, SALL4). Representative TF motifs within ATAC-seq peaks at promoters (1 kb from transcription start site

[TSS]) and enhancers (>1 kb from TSS) highlighted for each gene are shown. H3K27ac ChIP-seq was performed in two biological replicates.

See also Figure S3 and Tables S1, S2, and S3.

ll
OPEN ACCESS Article
nuclei/cell using single-nuclear ATAC-seq (snATAC-seq) and

single-nuclear RNA-seq (snRNA-seq), respectively. For this, we

designed a lentiviral expression construct harboring unique

sequence barcodes at the 30 untranslated region (UTR) of the

open reading frame (ORF) (Figure 4A). Each TF from the 6F

pool was cloned into this vector, resulting in TF constructs with

transcribed barcodes that can be detected from the snRNA-

seq data (Figure 4A) after custom library preparation protocol.

Importantly, the FI-snMultiome-seq approach is an improvement

over the existing single-nuclei sequencing methods because the
1706 Developmental Cell 58, 1701–1715, September 25, 2023
TF barcodes enable linking TF expression directly to changes in

gene expression and chromatin accessibility in each individual

cell expressing one or multiple TFs and pooling different exper-

imental conditions into one Chromium multiome run, which is

not possible with the currently available methods.

Barcoded TFs were transduced to HFFs either individually or

as a 6F pool, and the cells weremaintained in the defined reprog-

rammingmedia. The cells were harvested for FI-snMultiome-seq

at three time points, 48 h, 1 week, and 2weeks after transduction

to analyze the intermediate states through which individual cells
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Figure 4. FI-snMultiome method for dissecting the role of defined TFs in reprogramming at single-cell resolution

(A) Schematic presentation of the lentiviral expression construct for barcoded TFs and the strategy for capturing the barcodes during 103Multiome snRNA-seq

workflow. UMI, unique molecular identifier.

(B) Reprogrammed cells transduced with six barcoded TFs individually or as a pool were harvested at different time points and multiplexed for the analysis of

transcriptomic (snRNA-seq) and epigenetic (snATAC-seq) changes from the same cell. Custom TF barcode library was generated by an additional PCR after the

pre-amplification step during the 103 Multiome workflow (see STAR Methods), enabling correlation of the TF barcodes with the 103 cell barcodes during

downstream analysis.

(C) Uniform manifold approximation and projection (UMAP) plots of all cells from different time points (indicated with colors) based on gene expression (left) and

chromatin accessibility (middle) separately and their integrated profiles using weighted nearest neighbor (WNN) analysis (right). HFFs transduced with green

fluorescent protein (GFP) reporter gene were used as a control. For all FI-snMultiome-seq analyses, 5,399 individual cells from 1 week, 6,921 from 2 weeks, and

10,276 from 48 h and HFFs were used.

(D) UMAPs showing the transcript levels of endogenous TFs (left), exogenous TFs detected from their barcodes (middle), andmotif accessibility analyzed from the

snATAC-seq data (right).
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progress during the early stages of reprogramming (Figure 4B).

Sequencing library for the TF barcodeswas prepared by an addi-

tional custom PCR step from the same pre-amplified material

that is used for snRNA-seq and snATAC library preparation

(see STAR Methods). This results in three distinct libraries—

snRNA-seq, snATAC-seq, and custom barcode libraries—that

all are marked by the cell barcodes introduced by the 103multi-

ome workflow (Figure 4B). Importantly, this strategy enables

mapping each TF barcode to the cell barcodes and analyzing,

which TFs are expressed in a cell and what are the correspond-

ing chromatin and transcriptional states.

All cells harvested at different time points were analyzed

together and projected into low-dimensional subspaces based

on snRNA-seq for gene expression (Figure 4C, left), snATAC-

seq for chromatin accessibility (Figure 4C, middle), or their

combination (Figure 4C, right). The cells collected at 48 h still
resemble HFF, but 1 and 2 weeks after TF transduction, they

have clearly distinct epigenome and transcriptome profiles (Fig-

ure 4C). The FI-snMultiome-seq method with barcoded TF con-

structs has threemajor advantages. First, it has high sensitivity in

detecting ectopically expressed TFs due to the barcoded vector

(Figure 4D). The motifs of 6F were enriched within accessible

chromatin in the cells where their barcodes were detected, sug-

gesting activity of the corresponding TFs in the transduced cells

(Figure 4D). Since the current 103 multiome workflow is based

on poly(A) capture and 30 RNA sequencing, it cannot capture

transcripts originating from typical lentiviral expression vectors

with >1 kb distance between poly(A) (located in the 30 long termi-

nal repeat [LTR]) and the ORF. In the FI-snMultiome-seq vector,

the TF barcodes reside close to 30 LTR (Figure 4A), enabling their

efficient capture and optimal library size for Illumina sequencing.

Second, FI-snMultiome-seq method allows dissecting the effect
Developmental Cell 58, 1701–1715, September 25, 2023 1707
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Figure 5. FI-snMultiome-seq identifies the specific enrichment of pancreatic ductal cell signatures in iPECs

(A) UMAP highlighting the control cells and the reprogrammed cells expressing the barcodes for 6F.

(B) UMAP showing the expression of fibroblast signatures among all the cells.

(C) UMAPs showing the expression of signatures for different pancreatic cell lineages.

(D and E) Coverage plots showing chromatin accessibility at genomic loci of ductal cell marker SPP1 and fibroblast marker MMP3 and their mRNA expression

levels.

(F) Violin plot showing enrichment score of pancreatic ductal cell signatures in HFFs and in cells expressing individual TFs and the 6F pool. Data are represented

as the median, top, and bottom quartiles.

(G) Violin plot showing the motif accessibility scores (Z scores) of individual TFs in the cells with 6F pool at three time points and in HFFs.

(D–G) Two-sided Wilcoxon rank-sum test, FDR from Benjamini-Hochberg (BH) adjusted p values; n.s., not significant; *FDR < 0.01. **FDR < 0.001.

See also Figures S4–S6.
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of each transduced barcoded TF from the respective endoge-

nous TF (Figure 4D) since the mRNA reads for each TF originate

exclusively from the endogenous gene. Third, FI-snMultiome-

seq enables analyzing only the cells that have been successfully

transduced with TFs of interest and discarding all non-trans-

duced cells from the analysis. Notably, the cell population that

expresses all 6F barcodes (Figure 5A) shows downregulation

of the fibroblast signature and enrichment of the ductal cell

signature (Figures 5B and 5C), whereas the signal for other

pancreatic cell types48 such as acinar cells or endocrine cell

types was weak (Figure 5C).

To further confirm the ductal cell identity of the reprogrammed

cells, we analyzed publicly available human single-cell RNA-seq

datasets for major pancreatic cell types49 and compared their

gene expression programs with the reprogrammed cells ex-

pressing 6F pool. This demonstrated that the reprogrammed

cells resemble human ductal cells more than any other pancre-

atic cell type at all analyzed time points (Figure S4A). However,

the time points analyzed here using the FI-snMultiome-seq

method are relatively early in the reprogramming timeline (cf. Fig-
1708 Developmental Cell 58, 1701–1715, September 25, 2023
ure 2), and the cells transdifferentiating toward ductal cell iden-

tity may still retain some fibroblast attributes. We computed a

probabilistic assignment for each cell to fibroblasts, major

pancreatic cell types, and transient states between them.

Consistent with the enrichment of ductal cell signature toward

later time points (Figure 5C), also the proportion of cells in fibro-

blast-ductal transient state increased during reprogramming

(Figures S4B and S4C). In conclusion, these results demonstrate

that FI-snMultiome-seq method is a powerful tool for analyzing

the molecular features during cell fate conversion at single-cell

resolution.

FI-snMultiome-seq method identifies regulatory
dynamics during cell fate conversion
The key feature of the FI-snMultiome-seq method is that it en-

ables concomitant analysis of chromatin accessibility and

gene expression from the same individual cells and correlates

them to TF expression. Different time points collected for FI-

snMultiome-seq analysis (48 h, 1 week, and 2 weeks after 6F

transduction) allow temporal analysis of these regulatory
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Figure 6. Reconstructing the reprogramming path from fibroblasts to pancreatic ductal-like cells using FI-snMultiome-seq data

(A) UMAP with cells colored by pseudotime (left) and experimental time points (right). The gray line corresponds to the principal graph learned by Monocle 3 (see

STAR Methods).

(B) HHEX expression.

(C) Motif accessibility for HHEX.

(D) Heatmap showing smoothed pseudotime-dependent motif accessibility of representative motifs of somatic and 6F pancreatic TFs.

(E) Heatmap showing smoothened expression levels of representative marker genes for fibroblasts and pancreatic cells.

See also Figure S7.
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changes during the early stages of reprogramming. Marker

genes for fibroblasts and ductal cells were clearly expressed in

different cell populations (Figures 5D, 5E, S4D, and S4E).

Genomic loci of fibroblast-related genes (e.g., MMP3, LOXL1,

and FBLN2) undergo dynamic reprogramming of chromatin

accessibility already 48 h time point commensurate with down-

regulation of their transcript expression (Figures 5D and S4F).

By contrast, the changes in chromatin accessibility and tran-

script expression for ductal marker genes (e.g., SPP1, HNF6,

and HNF1B) occur at 1-week time point (Figures 5E and S4G).

These observations agree with the bulk RNA-seq/ATAC-seq an-

alyses that showed dynamic epigenome reprogramming from

48 h onward, validating the population-level observations at sin-

gle-cell resolution.

Next, we used the FI-snMultiome-seq data to addresswhether

all six TFs from the 6F pool are necessary for pancreatic ductal

cell identity since the factor-specific barcodes identify the

combination of TFs expressed in each individual cell. Previous

reports have suggested that ectopic expression of a single TF

can induce cell fate conversion,50,51 such as conversion of fibro-

blasts to neurons by Ascl1.52 None of the individual TFs in the 6F

pool induced the expression of pancreatic ductal cell signature

(Figure 5F), indicating that a concerted action of multiple TFs is

necessary for pancreatic exocrine cell fate conversion. Similarly,

we analyzed the effect of all TF combinations from the 6F pool

(five, four, three, and two TFs) on iPEC conversion, showing

that the 6F pool was the most efficient in induction of ductal

cell signatures (Figures S5A–S5D). Among all TF combinations,

ductal cell signatures were more significantly enriched in the

conditions involving HNF6 (Figures S6A–S6F), suggesting a crit-

ical role for HNF6 in cell fate conversion. Increased motif acces-
sibility was observed for all six TFs from 48 h to 2-week time

points compared with control fibroblasts (Figure 5G), indicating

their functionality in the reprogramming process. Taken

together, 6F pool is the minimum combination of TFs for efficient

specification of ductal-like lineage from human fibroblasts.

Reconstructing the direct reprogramming path from
fibroblasts to pancreatic ductal-like cells
To generate a high-resolution view of combined transcriptomic

and epigenomic landscape in the heterogeneous cell population

during transdifferentiation, we reconstructed the reprogramming

path based on pseudo-temporal ordering of the cells from the

FI-snMultiome-seq data. The in silico ordering produced a con-

tinuum of intermediate cellular states (Figure 6A, left) that corre-

lated well with the true experimental timeline of reprogramming

(Figure 6A, right). This enabled detailed temporal analysis of

cell fate conversion at single-cell resolution, identifying specific

expression of endoderm progenitor marker HHEX in the early

stages of transdifferentiation (Figure 6B) commensurate with a

robust increase in the HHEX motif accessibility (Figure 6C), con-

firming the observation from bulk RNA-seq/ATAC-seq analyses

(cf. Figures 3B–3D). Importantly, upregulation of other definitive

endoderm markers such as KIT, KLF5, and early endoderm reg-

ulon controlling TFs such as YAP53–55 coincides with the HHEX

induction (Figure S7A), supporting the notion that the direct

cell fate conversion occurs through an intermediate progeni-

tor state.

Motif enrichment analysis showed that motif accessibility

increased markedly for pancreas-related TFs and decreased

for fibroblast-related TFs along the pseudo-time course

(Figures 6D and S7B). This enabled defining the role of individual
Developmental Cell 58, 1701–1715, September 25, 2023 1709



Figure 7. Schematic presentation of the transdifferentiation process from fibroblasts to iPECs in the context of Waddington’s epigenetic

landscape

Our results suggest that despite being considered direct cell fate conversion, transdifferentiating cells dedifferentiate toward distinct molecularly controlled

intermediate progenitor states: (1) definitive endoderm-like progenitor state controlled by FOXA2 and SOX17 andmarked by HHEX expression and (2) pancreatic

progenitor state controlled by specific activation of GATA4. iNCs, induced neuron cells; iHeps, induced hepatocytes.
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TFs from the 6F pool in the regulatory events controlling cell fate

conversion. The first event in the reprogramming path is high

FOXA2 motif accessibility (Figures 6D and S7B), indicating its

role in chromatin reprogramming and enhancer priming required

for the initiation of cell fate conversion. Second, increased motif

accessibility for HNF6 (ONECUT1) follows FOXA2, staying high

throughout reprogramming (Figures 6D and S7B), suggesting

that HNF6 may act as the master TF for pancreatic exocrine

cell fate specification (cf. Figure S6). Third, themotif accessibility

is increased for HNF1B, followed by the remaining TFs from the

6F pool—PDX1, SOX17, and SOX9—suggesting their role in

pancreatic cell maturation and differentiation (Figures 6D and

S7B). Of note, the strength of the pseudotime analysis in detect-

ing dynamic regulatory changes was highlighted by the substan-

tial increase in themotif accessibility observed for PDX1 that was

not clearly visible from the analysis based on the sample time

points (cf. Figure 5G). Motif accessibility for the TFs that maintain

the somatic cell identity, such as FOSL1 and JUNB,42 decreased

gradually along the pseudo-temporal axis (Figures 6D and S7B)

along with downregulation of fibroblast-specific genes such as

VIM and MMP3 as well as TFs important for fibroblast identities

such as ZEB1, TWIST2, and SNAI1 (Figures 6E and S7C). The

expression of genes reported in early pancreatic progenitors,

such as FOXA2, HHEX, and SOX17, as well as pancreatic ductal

cell and epithelial marker genes SPP1, CD24, and EPCAM

increased along the pseudotime (Figures 6E and S7C), providing

a time-resolved view of direct cell fate conversion from HFFs to

pancreatic ductal epithelial cells.

Taken together, we have identified the minimum and sufficient

combination of six TFs required for HFF conversion to iPECs of

ductal epithelial cell type. Our results show that transdifferentia-

tion—although being considered a direct cell fate conversion

method—occurs through transient progenitor states orches-

trated by stepwise activation of transduced and endogenous

TFs: an endodermal progenitor state defined by activation of

HHEX concurrently with FOXA2 and SOX17 and a pancreatic

progenitor state marked by temporal activation of GATA4 (Fig-
1710 Developmental Cell 58, 1701–1715, September 25, 2023
ure 7), suggesting a paradigm shift in our understanding of trans-

differentiation as a direct process in the context of Waddington’s

epigenetic landscape.

DISCUSSION

Transdifferentiation is a powerful method for converting

differentiated cells to other specialized cell types through direct

reprogramming. However, identifying TFs that are necessary

and sufficient for cell fate conversion has been challenging,

owing to the enormous compendia of cell and tissue types in hu-

man body. Computational frameworks based on gene regulatory

network analysis23,56 can predict the TFs required for cell fate

conversion for broad tissue types, but experimental approaches

are often required for determining the effective combinations of

reprogramming factors for distinct cell types. Understanding

the process of cellular differentiation is particularly challenging

when the target cell types arise from the same multipotent

progenitors and express similar TFs, such as definitive endo-

derm-derived tissues pancreas, liver, and intestine. For instance,

a combination of FOXA1 and HNF4A can give rise to both liver-

and intestine-like cells.57 For more definitive hepatocyte identity,

three TFs, FOXA3, HNF4A, and HNF1A, are required,31 whereas

combining KLF4/5 with FOXA1 and HNF4A results in stronger in-

testinal-like identity.57 Here, we report the minimal and essential

combination of six TFs, FOXA2, SOX17, PDX1, HNF1B, HNF6,

and SOX9, for converting human fibroblasts to iPECs with

epithelial-like morphology, and gene expression profile and

functional characteristics similar to pancreatic ductal cells.

TF-mediated cell fate conversion experiments often suffer from

low conversion efficiency and mixed cell populations. Therefore,

identification of the ‘‘real’’ reprogrammed cells from the heteroge-

neouspopulation is critical for their robustmolecular analyses.Our

FI-snMultiome-seq method with barcoded TF constructs enables

characterization of the cells that express all stochastic combina-

tions of transduced TFs, evaluation of the contribution of each

individual TF to the acquired cell fate by comparing the cells
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expressing sub-pools of reprogramming TFs, and segregation of

TF expression from the lentiviral constructs and endogenous

genes. Our results from conversion of fibroblasts to pancreatic

ductalcellsdemonstrated that (1)directcell fateconversionoccurs

through transient touch-and-go steps duringwhich the cells dedif-

ferentiate to distinct progenitor states, and (2) these steps are

regulated by dynamic and temporally controlled action of both

reprogramming TFs and endogenous tissue-specific TFs.

Previous developmental studies have implicated various TFs in

pancreatic differentiation, such as FOXA2 and SOX17 in establish-

ing definitive endoderm state58,59 and HNF6 and HNF1B in

exocrine ductal cell specification.25,60 Interestingly, cell fate plas-

ticity of progenitor populations was also recently reported during

pancreatic development.61 Here, our direct reprogrammingmodel

enableddetermining theexact regulatorystepscontrollingpancre-

atic ductal cell identity. First, cell fate switch is initiated by FOXA2

andSOX17 alongwith activation of endogenousHHEX,mimicking

thedefinitiveendodermprogenitor state.Early activationof FOXA2

speaks for its pioneer factor activity necessary for cell fate conver-

sion, consistent with its previously reported role during the devel-

opment of endodermal organs.62–64 Second, cell fate specification

is controlled by HNF6 and HNF1B, involving activation of endoge-

nous GATA4 that—consistent with previous reports37—specif-

ically downregulates Shh pathway during pancreatic progenitor

state. Finally, cell fate maintenance and maturation are controlled

by HNF6, HNF1B, SOX9, and PDX1 commensurate with downre-

gulation of the progenitor-state signals.

Dynamic expression and chromatin accessibility that we

observed for the reprogramming factors suggest that although

transduced as a pool and driven by a constitutively active pro-

moter, they mediate the cell fate switch in a highly ordered and

temporal fashion. During pluripotent stem cell reprogramming,

sequential activation of pluripotency genes has been shown to

be controlled by reorganization of genome topology,65 suggest-

ing a plausible mechanism for the regulation of transdifferentia-

tion factors. Furthermore, our results demonstrate that despite

being important regulators of iPEC reprogramming, ectopic

expression of some TFs such as GATA4 was not necessary

due to activation of respective endogenous genes at specific

time points during iPEC reprogramming.

Taken together, we report here a protocol for generating

pancreatic exocrine cells from human fibroblasts. This reprog-

ramming system provides a platform for further studies of

pancreatic malignancies and tissue engineering, suggesting

the possibility of restoring impaired exocrine functions. In the

broader context of regenerative medicine, our paradigm shift

findings about the transient progenitor states during direct cell

reprogramming can help in identifying proliferative cellular states

that are necessary for developing feasible cell-based therapies

for various human disorders. In conclusion, our results provide

a temporally resolved map of the molecular events that deter-

mine the defined cellular states during direct cell fate conversion,

opening avenues for further understanding of cell fate trajec-

tories in light of these findings.

Limitations of the study
We have proposed that transdifferentiation occurs through tran-

sient progenitor states. Our findings are based on converting hu-

man fibroblasts to pancreatic exocrine cells, but further studies
are required to determine whether similar mechanisms control

transdifferentiation to other cell types. Another limitation of this

study is the lifespan of iPECs. After 8weeks in culture, their growth

slows down, limiting their characterization and future applications.

TERT immortalization of the iPECs resulted in cells with strong

pancreatic ductal gene signatures but decreased enzyme activity.

Thus, further investigation on extending the lifespan of iPECs

without affecting their functional activity is required.
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Lead contact
Further information and requests for resources and reagents should be directed to the lead contact Biswajyoti Sahu (biswajyoti.

sahu@helsinki.fi, biswajyoti.sahu@ncmm.uio.no).

Materials availability
Plasmids generated in this study are available upon request from the lead contact with a completed Materials Transfer Agreement.

Data and code availability
All sequencing data generated in this study are available under GEO: GSE216859. Bulk RNA-seq data of human acinar and ductal

cells were downloaded from GEO: GSE179248 and GEO: GSE96784, respectively. Single-cell RNA-seq data of human pancreatic

acinar, ductal, alpha, beta, delta and gamma cells were downloaded fromArrayExpress: E-MTAB-5060. Blacklisted genomic regions

for hg38 were downloaded from ENCODE: ENCFF356LFX. This paper does not report original code. Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cells and cell line models
Human foreskin fibroblasts (HFF; ATCC, #CRL-2429) were cultured in fibroblast medium (DMEMsupplemented with 10%FBS, 2mM

L-Glutamine, 1mMSodiumpyruvate and 1%penicillin-streptomycin). Early-passage HFFswere plated onmatrigel-coated (Corning,

#356230) dish on day 0 and transduced with constructs for TF expression (MOI = 1 for SOX17, FOXA2 and PDX1; MOI = 2 for HNF1B,

HNF6 and SOX9) with 8 mg/ml polybrene on day 1. Themediumwas changed to fresh fibroblast medium on day 2. The basal medium

from day 3 to day 9 was DMEM/F12 (Gibco, #12634028) with 50 mg/ml ascorbic acid (Sigma-Aldrich, #A1300000), 1% B27 (Gibco,

#17504044), 1% KnockOut serum replacement (Gibco, #10828010), 1X GlutaMAX (Gibco, #35050038), 1% penicillin-streptomycin

(Gibco, #15140122), 25 mM HEPES (Gibco, #15630080), 0.1 mM 2-mercaptoethanol (Gibco, #21985023), 0.5X ITS-X (Gibco,

#51500056). On day 3, cells were cultured in basal medium supplemented with 100 ng/ml Activin A (Peprotech, #AF-120-14E),

1 mM CHIR99021 (StemMACS, #130-106-539) and 50 ng/ml FGF7 (Peprotech, #AF-100-19). After two days, the medium was

changed to basal medium supplemented with 100 ng/ml Activin A, and 50 ng/ml FGF7. On day 6, the medium was changed to basal

medium supplemented with 2 mM retinoic acid (Sigma-Aldrich, #R2625), 500 nM PD0325901 (Sigma-Aldrich, #PZ0162), 200 nM
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LDN193189 (StemMACS, #130-103-925). After one day, the medium was changed to basal medium with 100 ng/ml Activin A and

500 nM PD0325901. From day 10 onwards, the cells were maintained in serum-free human epithelial cell medium (Cell Biologics,

#PB-H-6621) supplemented with 5% KnockOut serum replacement and 50 mg/ml ascorbic acid. During days 21–28, iPEC colonies

were picked under microscope in a sterile hood, disassociated using Accutase (Gibco, #A1110501) and replated on matrigel-coated

dish. Lentiviral expression construct for hTERT (MOI=0.5) was used for the immortalization of iPECs. The images of reprogramming

cells were taken with ZEISS Axio Vert A1 microscope. All cell images throughout this manuscript were analyzed using Fiji (v1.53).

METHOD DETAILS

Cloning of human ORFs and lentivirus production
The full-length ORFs of all individual TFs were obtained from GenScript and cloned into lentiviral destination vector pLenti6/V5-

DEST� (Thermo Fisher Scientific, #V49610) using the Gateway� LR Clonase� II (Thermo Fisher Scientific, #11791020). The recom-

binant vectors were transformed into Stbl3� competent cells (Thermo Fisher Scientific, #C737303) followed by single-colony

screening. The plasmid pLV-eGFP (#36083) was obtained from Addgene. For virus production, each TF expression plasmid was

co-transfected with the packaging plasmids psPAX2 (Addgene #12260) and pMD2.G (Addgene, #12259) in 4:3:1 ratio into 293FT

cells (Thermo Fisher Scientific, #R70007) with Lipofectamine 2000 (Thermo Fisher Scientific, #11668019). The culture medium

was replenished on the following day and supernatant containing the viral particles was collected after 48 hours, filtered with

0.45 mm filters (Merck, #SE1M003M00), and concentrated using Lenti-X concentrator (Clontech, #631232), tittered using p24 assay

and stored as single-use aliquots in -80 �C.

Strategy for optimizing the combination of TFs for generating iPECs
In the first pilot experiment, HFFs were transduced with 13 TFs along with GFP (MOI=1; condition 1; Figure S1B) to induce pancreatic

exocrine cell fate. The observed morphological and gene expression changes (cf. Figures S1C–S1F) suggested that some combina-

tion(s) of these candidate TFs can induce pancreatic identity, but the progress of cell fate conversion was slow and the number of

cells showing morphological changes was small. We reasoned that constitutive expression of too many developmental TFs, or a po-

tential lack of an essential TFmay hamper efficient conversion. Therefore, we set out to optimize the reprogramming conditions, spe-

cifically by analyzing 1) if any TFs are redundant in the 13-TF pool, 2) if any essential TFs are still missing, and 3) by designing different

reprogramming conditions for generating acinar- and ductal-like cells. Of note, in the initial experiments with large pools of TFs,

MOI=1 was used for individual TFs to avoid lentivirus-related toxicity to the transduced cells. In the subsequent experiments with

TF pools comprising of fewer TFs, higher MOI values were tested to increase the expression levels of certain TFs (as detailed in Fig-

ure S1B). Based on flow cytometry analysis of GFP-positive HFFs, transduction with MOI=1 resulted in >85% and with MOI=10

around 95% infection efficiency.

To optimize the TF pool for reprogramming experiments, we first excluded the two TFs (XBP1, GATA6) that were already expressed

in HFFs and whose expression was not markedly induced at the two-week timepoint in the 13-TF sample. Based on the RNA-seq

data, four of the TFs had basal expression in HFFs [mean log2(normalized gene count) from three replicates for XBP1, GATA6,

SOX9, and HEYL being 10.9239, 7.4991, 6.5852, and 4.7049, respectively]. Further analysis of their expression in the 13-TF sample

with mean log2(normalized gene count) of 11.2108, 9.2251, 9.0446, 10.8986, respectively, showed only weak induction for XBP1 and

GATA6, suggesting their redundancy in the 13-TF pool. Moreover, GATA6 has been shown to be functionally redundant with GATA4

during pancreas development,26 further supporting its exclusion from the reprogramming pool. Next, we designed two sub-pools for

generating acinar- and ductal-like cells separately based on previous information about human pancreas development. Specifically,

FOXA2, GATA4, NKX6.1 PDX1, SOX9 and SOX17, which have been reported to be involved in the specification of pancreatic endo-

derm and progenitors,21,22 are included in both conditions. Themaster regulator of pancreatic acinar differentiation PTF1A and its co-

operator RBPJL are included in the pool for generating acinar-like cells,24 aswell as HEYL that was predicted to bemainly activated in

human adult acinar cells.87 HNF6 is restrained to the condition for ductal-like cells due to its predominant role in the development of

pancreatic ducts25 and much higher expression levels in pancreatic ducts compared to acinus based on RNA-seq data of human

acinar and ductal cells.19,20 Nr5a2 is required for exocrine pancreas formation during hepatopancreas progenitor specification,88

thus it was included in both conditions. For the ductal cell pool, we also included HNF1B that was not part of the initial 13-TF

pool, due to its previously reported role in ductal cells of postnatal and adult pancreas.27 In total, 14 candidate TFs were included

in the two reprogramming conditions, resulting in a 10-TF pool for acinar cells and a 9-TF pool for ductal cells (conditions 2 and

3, respectively; Figure S1B)

After transducing HFFs with the TF pools for acinar and ductal cells (conditions 2 and 3), we observed reduced expression of fibro-

blast-related genes and gradually increasing expression of acinar and ductal cell markers, respectively, from quantitative real-time-

PCR and RNA-seq analyses (cf. Figures S1G–S1J). In condition 2 for acinar cells, HFFs gradually lost their normal morphology after

induction but we did not observe clear epithelial-like morphology during reprogramming. In condition 3 for ductal cells, some epithe-

lial-like cells appeared at 21 days after induction, but these cells did not expand after passaging, potentially due to the small cell num-

ber. To increase the conversion efficiency, we further refined the TF pools based on previous literature.

First, we excluded NKX6.1 and SOX9 from condition 2, resulting in an 8-TF pool for generating acinar-like cells (condition 5; Fig-

ure S1B). The exclusion was justified by the fact that both factors are expressed in pancreatic progenitor cells, but NKX6.1 is

restricted to endocrine beta cells during pancreas maturation,22 whereas the cells that retain SOX9 expression undergo ductal
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fate specification.29 Furthermore, the cross-antagonism betweenNkx6.1 and Ptf1a in pancreaticmultipotent progenitors balance the

endocrine and acinar cell neogenesis during normal development.28 However, in the reprogramming experiments using the condition

5 for acinar cells, we still did not observe clear epithelial morphology, and thus the experiments towards the acinar fate were not

continued.

Second, to refine the TF pool for the ductal fate, we excluded GATA4, NR5A2 and NKX6.1 from condition 3 based on their previ-

ously reported roles in pancreatic development, resulting in a 6F pool (condition 7; Figure S1B). In mature pancreas, GATA4 is largely

exclusive to acinar cells26 and NKX6.1 to beta cells; NR5A2 is required for the development of exocrine pancreas but plays a more

important role in acinar formation.30 Reprogramming experiments identified that the 6F pool is able to generate pancreatic exocrine

cells with phenotypic and functional characteristics of ductal epithelial cells (cf. Figures 1 and 2). Other sub-combinations of candi-

date TFs were also tested, and the cells were characterized by their morphology (Figure S2) and by bulk RNA-seq and/or FI-

snMultiome-seq (cf. Figures S1B and S5A–S5D). Taken together, the combination of six TFs, FOXA2, SOX17, PDX1, HNF1B,

HNF6 (ONECUT1) and SOX9, is necessary and sufficient for efficiently inducing pancreatic ductal cell fate from human fibroblasts.

Immunofluorescence staining
Cells were fixed with 100% ice-cold methanol for 5 min at -20 �C and washed three times with PBS. After fixation, cells were

permeabilized with 0.2% Triton X-100 for 15 min at room temperature (RT) and then washed three times with PBS. After permeabi-

lization, cells were blocked by 5% BSA in PBS for 1 h at RT and then incubated with primary antibodies at 4 �C overnight. For the

secondary antibody staining, cells were incubated with appropriate fluorescence-conjugated secondary antibody for 1 h at RT in

dark. Nuclei were stained with Hoechst (Thermo Fisher Scientific, #62249). Primary and secondary antibodies were diluted in

PBS containing 3% BSA. The antibodies used were: FOXA2, 20 mg/ml (R&D, #AF2400); SOX17, 15 mg/ml (R&D, #AF1924); PDX1,

1:50 (Santa Cruz Biotechnology, #sc-390792); HNF1B, 1:200 (Sigma-Aldrich, #HPA002083); HNF6, 1:50 (Santa Cruz Biotechnology,

#sc-376167); SOX9, 1:1000 (Millipore, #AB5535); Osteopontin (SPP1), 1:500 (Proteintech, #22952-1AP); donkey anti-goat (Alexa

Fluor 488), 1:1000 (Abcam, #ab150129); goat anti-mouse (Alexa Fluor 488), 1:1000 (Thermo Fisher Scientific, #A-11029); goat

anti-rabbit (Alexa Fluor 594), 1:1000 (Thermo Fisher Scientific, #A-11012); goat anti-rabbit (Alexa Fluor 488), 1:1000 (Thermo Fisher

Scientific, #A-11034). The imageswere takenwith Nikon Eclipse Ti-E (with Primo) invertedmicroscope and analyzed using Fiji (v1.53).

Flow cytometry analysis
Cells were harvested and centrifuged at 300g for 10minutes. Cell pellet was resuspended in cell staining buffer containing 0.5%BSA

and 2 mM EDTA. FcR blocking reagent (Miltenyi Biotec, #130-059-901) was used to reduce non-specific staining. Cells were then

incubated with fluorescence-conjugated primary antibodies for 10 min in the dark at 4 �C. Cells were then washed twice in

1.5 mL of cell staining buffer and centrifuged at 300g for 10 minutes. Cell pellet was resuspended in 0.4 ml cell staining buffer for

analysis. The antibodies used and their dilutions were: CD24-PE, 1:20 (BioLegend, #311105); CD133/2-APC, 1:50 (Miltenyi Biotec,

#130-113-746). Cells were sorted using BD Accuri C6 flow cytometer and the data were analyzed using FlowJo (v10.6.1).

Enzyme activity analysis
Cells were harvested at different time points as indicated in the figures, washedwith cold PBS and centrifuged for 3minutes at 4 �C at

500g. Cell pellet was resuspended in 4X volumes of lysis buffer (150 mM NaCl, 10 mM Tris, 1% Triton X-100, pH = 7.2) and homog-

enized by vortex in cold room. Cell lysate was centrifuged for 2minutes at 4 �C at 18,000g to remove insoluble material. Supernatants

were then transferred to a clean tube and enzyme activities were analyzed using Carbonic Anhydrase Activity Assay Kit (Biovision,

#K472), Amylase Activity Assay kit (Sigma-Aldrich, #MAK009) and Trypsin Activity Colorimetric Assay Kit (Sigma-Aldrich, #MAK290),

following the instructions by the manufacturer. Optical density (OD) at 450 nm was read by FLUOstar Omega and the data were

plotted using GraphPad Prism (v8.3.0).

RNA isolation, quantitative real-time-PCR and bulk RNA-sequencing (RNA-seq)
iPECswere harvested for RNA isolation at 48 h, 96 h, one week, twoweeks, four weeks, six weeks and 10weeks after induction along

with control HFFs. Total RNA was isolated using RNeasy Plus Mini Kit (Qiagen, #74134). For quantitative real-time-PCR, cDNA syn-

thesis from at least three biological replicates was performed using the PrimeScript� RT Master Mix (TaKaRa, #RR036A) and real-

time PCRwas performed using SYBR Green I Master (Roche, #04707516001). The transcript levels of the target genes were normal-

ized to GAPDH mRNA levels. Bulk RNA-seq libraries were prepared from 500 ng of total RNA for each sample using KAPA mRNA

HyperPrep Kit for Illumina (Roche, #KR1352) following manufacturer’s instruction. Final libraries were quantified using Qubit HS

Assay kit (Thermo Fisher Scientific, #15850210) and Tapestation High Sensitivity D5000 Reagents (Agilent, #5067-5593) for concen-

tration and size distribution, respectively, then paired-end sequenced on Illumina Novaseq 6000.

Chromatin immunoprecipitation-sequencing (ChIP-seq)
HFFs transduced only with GFP reporter construct and the iPECs at 48 h, 96 h and 1 week after 6F transduction were collected for

ChIP-seq analyses. ChIP assays were performed as previously described.89 Briefly, cells were fixed in 1% formaldehyde for 10min at

RT. Glycine was added to a final concentration of 0.125 M and incubated for 5 min to quench the reaction. Cells were then washed

twice with ice-cold PBS and collected for lysis in RIPA buffer with protease inhibitors. Cross-linked chromatin was sonicated to an

average fragment size of 200-500 bp, and immunoprecipitated with either H3K27ac antibody (Diagenode, #C15410196) or normal
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rabbit IgG (Santa Cruz Biotechnology, #sc-2027), 2 mg of antibody per reaction. ChIP-seq libraries were prepared according to Illu-

mina’s instructions and single-end sequenced on Illumina Novaseq 6000.

Assay for Transposase-Accessible Chromatin-sequencing (ATAC-seq)
HFFs transduced only with GFP reporter construct and the iPECs at 48 h, 96 h and one week after 6F transduction were collected for

analysis. ATAC-seq libraries were prepared from 75,000 cells as previously described.90,91 Cells were washed with ice-cold PBS and

resuspended in 50 ml of lysis buffer and incubated for 3 min on ice. The nuclei were isolated and transposed with Tn5 transposase in

2X tagmentation buffer (Illumina, #20034197) and incubated at 37 �C on thermomixer for 30 min at 1,000 rpm. The reaction was pu-

rified using MinElute PCR Purification Kit (Qiagen, #28004) and eluted in nuclease-free water. The samples were amplified for 8-11

total cycles and purified with AMPure beads (Agencourt, #A63881). Libraries were paired-end sequenced on Illumina Novaseq 6000.

Factor barcoding design for FI-snMultiome-seq assay for snRNA-seq and snATAC-seq
A 20-bp random oligo (N20) with NheI site was introduced into the lentiviral expression vector pLenti6/V5-DEST� downstream of the

ORF and 78 bp upstream of its 3’ LTR region by PCR. The PCR generates a unique indexing barcode for every single molecule and

this unique barcode will be transcribed together with the respective ORF cloned into the expression vector allowing us to uniquely

index and barcode each factor. Since this indexing barcode is close to the poly(A) tail of the transcripts, a large fraction of the barc-

odes is captured during polyA enrichment and 3’RNA-seq library preparation protocol used in 10x multiome assay kit (10x Geno-

mics). For the barcoding PCR, 10 ng of pLenti6/V5-DEST� vector was used as template per reaction with Q5� High-Fidelity

DNA Polymerase (NEB, #M0491S). The PCR program used was: 98 �C for 30 s; 30 cycles of (98 �C for 10 s; 72 �C for 5 min); 72
�C for 10 min. The full-length primers used for creating the barcoding pLenti6/V5-DEST� construct were Barcode_Temp_Nhel_F:

CATGCTAGCNNNNNNNNNNNNNNNNNNNNCGAGCTCGGTACCTTTAAGACC and Barcode_Temp_Nhel_R: CATGCTAGCTTGT

GCTTAGCCCTCCCACAC. The PCR product was digested by Nhel (Thermo Fisher Scientific, #FD0974) and Dpnl (Thermo Fisher

Scientific, #FD1703) to create sticky ends for the following ligation and to get rid of pLenti6/V5-DEST� template, respectively.

The linear barcoded pLenti6/V5-DEST� vector was ligated using T4 DNA Ligase (Thermo Scientific, #EL0011) and transformed

into ccdB Survival� 2T1R (Thermo Fisher Scientific, #A10460) competent cells followed by single-colony screening. The pLenti6/

V5-DEST� vectors with unique barcode were verified by Sanger sequencing. ORFs for individual TFs were cloned into the barcoded

pLenti6/V5-DEST� vectors using the Gateway recombination system as described earlier. The primers used for Sanger sequencing

were: Sseq_F: GGAAATGAGAACAGGGGCATCTTG and Sseq_R: GCTGCAATAAACAAGTTCCTCTCAC. The barcodes for each TF

are as shown in Table S4.

FI-snMultiome-seq assay (snRNA-seq and snATAC-seq) from reprogramming cells
HFFs transduced only with GFP reporter construct and the iPECs at 48 h, one week and two weeks after induction were collected for

analysis. Nuclei isolation for snRNA-seq and snATAC-seq was optimized and performed following the demonstrated protocol

CG000365 from 10x Genomics. HFFs transduced with barcoded lentiviral expression constructs for 6F reprogramming TFs, both

as individual TFs and as a pool of six TFs, were harvested at different time points after induction. For each time point, equal number

of nuclei from each condition were pooled for library preparation. The libraries were prepared by the FIMM single-cell core facility

(University of Helsinki) following the 10x Genomics user guide CG000338 for Single Cell Multiome ATAC +Gene Expression Reagent

Bundle (10xGenomics, #PN-1000285). An aliquot of the pre-amplified cDNAwas used for preparing a custom library for detecting the

TF barcodes. This strategy enables correlating each TF barcode to the cell barcodes introduced by the 10x multiome workflow.

Custom barcode libraries were prepared using pre-amplified cDNA from Step 4 in protocol CG000338 by a two-step PCR process.

The first PCR step was to amplify TF barcodes from cDNA and to add Trueseq_Read 2 sequence to 5’ end of cDNA. For this, 3 ml of

cDNA from each sample was used as template per reaction with KAPA HiFi HotStart ReadyMix (Kapa Biosystems, #KK2602) with

primers Truseq_Read2_Vec_Amp_F: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGGCTAAGCACAAGCTAG*C and Tru-

seq_Read1_Amp_R: ACACTCTTTCCCTACACGACGCTCTTCCGATC*T. The PCR program used was 95 �C for 3 min; 22 cycles of

(98 �C for 20 s; 65 �C for 15 s; and 72 �C for 10 s). Reactions were purified with AMPure XP beads at a 0.8x ratio and quantified

by Qubit HS Assay kit. The second PCR was performed from 65 ng of the purified product per reaction from the first PCR. Index

primers from Dual Index Kit TT Set A (10x Genomics, #PN-1000215) were used to attach Illumina adapters and indices to the sam-

ples. The PCR program usedwas: 95 �C for 3min; 4 cycles of (98 �C for 20 s; 65 �C for 15 s; 72 �C for 10 s). The reactions were purified

with AMPure beads at a 0.8x ratio. The purified custom libraries were quantified and pooled together with gene expression (GEX)

libraries for sequencing. The required PCR cycles for each step were tested to generate libraries that are minimally PCR amplified.

The sequencing run parameters for the custom barcode libraries and GEX libraries were R1:28, i7-index: 10, i5-index: 10, R2:90 and

for ATAC libraries R1:50, i7-index:8, i5-index:24, R2:49 on Illumina Novaseq 6000.

RNA-seq data processing
The sample quality of the RNA-seq datasets were evaluated by FastQC analysis (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/). Sequence reads were aligned to the human reference genome (UCSC GRCh38/hg38) using STAR aligner

(v2.7.5c) with default parameters.66 Samtools (v1.9)67 was used to sort the bam files. Gene counts were quantified using HTSeq-

count (v0.11.2).68 Genes with low counts having an expression of less than 10 across all samples were filtered out and the remaining

genes were normalized using the DESeq2 (v1.30.1) pipeline.69 To identify the differentially expressed genes (DEGs) between two
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conditions, a threshold of |log2FoldChange| > 1.5 and adjusted p-value < 0.05 was applied. Pathway enrichment analysis was con-

ducted with a preranked gene list of all DEGs based on the sign of fold change and p-value using Gene Set Enrichment Analysis

(GSEA) Preranked tool (v4.2.3).70 PCA and volcano plots were generated using ggplot2 (v3.3.5) in R (v4.0.5). Heatmaps with hierar-

chical clustering using average linkage and euclidean as distance metric was created with pheatmap (v1.0.12). We overlapped the

DEGs from all the time points in 6F pool to visualize the transient change in their expression pattern. The integrated average expres-

sion of the biological replicates, scaled and centered by row were plotted in the heatmap. Genes from the cluster were used to

perform enrichment analysis for Gene Ontology terms by Metascape web-based platform.71 To fetch the genes involved in Shh

signaling pathway, we combined the gene sets of KEGG, Reactome, Pathway Interaction Database and WikiPathways from Molec-

ular Signatures Database (MSigDB) and created amaster set of 203 genes. We then analyzed the expression of these genes from our

RNA-seq data at two, four and six weeks of reprogramming to generate a line plot. To calculate the pairwise correlation coefficient

between the ductal, acinar, iPECs and HFF based on the normalized gene counts, the Pearson method was used with ‘cor’ function

in R.

ATAC-seq and ChIP-seq data processing
ATAC-seq and ChIP-seq data processing was performed as previously described.92 First, paired-end reads from all ATAC-seq time-

points were down-sampled to the similar sequencing read depth (36 and 32 million reads per sample for replicate 1 and 2, respec-

tively). The quality metrics of the ATAC-seq and single-end reads from ChIP-seq fastq files were checked with FastQC. The reads

were mapped to the human reference genome (UCSC GRCh38/hg38) by Bowtie2 (v2.2.5) (UCSC GRCh38/hg38) with option

‘–very-sensitive’.72 The ATAC-seq reads that mapped to mitochondrial DNA were discarded. Duplicates were marked using Picard

MarkDuplicates (http://broadinstitute.github.io/picard/) and removed using samtools (v1.9) viewwith option ‘-F 1024’. ATAC-seq and

ChIP-seq reads were subsequently filtered for alignment quality of less than 10 and 20 respectively. The peaks were called using

MACS2 (2.1.1) with the parameter ‘–keep-dup all’ and the blacklisted regions downloaded from ENCODE were removed.76 To

generate the bigwig signal tracks from the aligned bam files, deeptools (3.1.3) bamCoverage was used with options ‘—normalizeUs-

ing RPKM –binSize 10’.77 Along with the biological replicates, we also generated i) pooled replicates by combining the reads of bio-

logical replicates and ii) pseudoreplicates which was made by randomly shuffling the pooled replicates and equal splitting. A similar

peak calling strategy was used for these two methods as well and an overlap of peaks from all the methods was considered as the

high confidence peak set for each time point. The peakswere further filtered using q value < 0.0001. The signal tracks from the pooled

replicates were used for visualization in Integrative Genomics Viewer (IGV) genome browser (v2.5).78

ATAC-seq and ChIP-seq data clustering and motif searching
In order to observe the changes in chromatin accessibility across the time points, we employed CoBRA (v2.0) to pooled replicates of

time-series data from ATAC-seq.79 Briefly, the pipeline generates a master set of peaks from all samples and calculates the read

density across those regions. Quantile normalization was used to normalize the read count matrix. The top 50% peaks were consid-

ered for the downstream unsupervised analysis and the rest were filtered out based on low reads per kilobase per million mapped

reads (RPKM) values across multiple samples. k-means (k = 6) clustering was performed in the resulting peak set to highlight the

substantial disparities in open chromatin profiles. Each cluster was paired with timepoint-specific line plots with a mean trend line

using ggplot2 to visualize cluster trends. Peaks from each cluster were used to search for potential known and de novo motifs by

using HOMER (v4.10.4) with the option ‘-size 100’.80 A similar approach was used for the H3K27ac ChIP-seq data to generate

the master peak set. BEDTools (v2.30.0) intersect was implemented to investigate the overlap between H3K27ac peak set and

ATAC-seq peaks from each of the clusters.81 The normalized read counts of the overlapped peak set were calculated using

CoBRA and plotted in R with k-means 6 clustering. Transcription factor Occupancy prediction By Investigation of ATAC-seq Signal

(TOBIAS v0.13.3) was used to perform TF footprinting analysis in open chromatin regions.46 stat, ATACorrect was used to perform

bias correction of the reads in open chromatin by shifting +4 bp and �5 bp on positive and negative strands, respectively. Then we

used ScoreBigwig to calculate footprint scores from the corrected cutsites with default parameters. Finally, we used BINDetect to

find transcription factor motifs that were differentially footprinted at each time point usingmotifs from ‘The Human Transcription Fac-

tors’ (http://humantfs.ccbr.utoronto.ca/) database.75 The aggregate footprint across the transcription factor binding sites of the

differentially footprinted motifs were plotted using TOBIAS PlotAggregate. In addition, we looked for the nearby genes (±10kb) of

the bound sites of the representative genes from our TOBIAS footprinting analysis by Binding and Expression Target Analysis

(BETA).73 We searched for all motifs from the JASPAR74 database around the summit (±100bp) of the ATAC peaks of representative

genes using Find Individual Motif Occurences (FIMO) from the MEME Suite.

FI-snMultiome-seq (snRNA-seq and snATAC-seq) data processing
Raw sequencing data were processed using the Cell Ranger ARC pipeline (v2.0.1) with the GRCh38 reference (refdata-cellranger-

arc-GRCh38-2020-A-2.0.0) for demultiplexing, alignment, barcode and feature counting to generate both ATAC and GEX feature-

barcode matrices, which were loaded into Seurat (v4.1.1)82 and Signac (v1.7.0)83 for further analyses. We filtered out cells with

less than 1,000 RNA counts, 1,000 ATAC fragments or more than 100,000 RNA counts, 500,000 ATAC fragments, 30% mitochon-

drial-derived RNA counts. For scRNA-seq, the raw counts were normalized, scaled with the percentage of mitochondrial-derived

counts and cell cycle scores regressed out using SCTransform. The top 3,000 highly variable features were used for principal compo-

nent analysis (PCA), and the top 35 PCs were used for UMAP. For scATAC-seq, we called the peaks using MACS2 (v2.2.7.1).76 The
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peaks on nonstandard chromosomes and in GRCh38 genomic blacklist regions were removed. We performed the frequency inverse

document frequency (TF-IDF) normalization using RunTFIDF, identified the top features using FindTopFeatureswithmin.cutoff = ‘q5’,

performed latent semantic indexing (LSI) reduction using RunSVD, and the 2-35 dimensions used for calculating UMAP. We then

constructed the WNN graph using FindMultiModalNeighbors with the 1-35 PCs from the scRNA-seq data and the 2:35 LSI

dimensions from the scATAC-seq data for the joint UMAP visualization. Cells from different timepoints were analyzed in separate

10x Chromium runs but control HFFs transduced with GFP were pooled together with the 48h timepoint sample. During the analysis,

the cells were negative to all TF barcodes were assigned as a control.

snATAC-seq TF motif analysis
The same human motif position frequency matrices75 were used for snATAC-seq motif analysis that were used in the bulk analysis.

Per-cell motif activity scores were computed using chromVAR (v1.18.0)84 and the UCSC hg38 genome (BSgenome.Hsapien-

s.UCSC.hg38) with the Signac RunChromVAR wrapper.

Cell type score
The cell type scores were computed using ScType (v1.0)48 with cell-type-specific markers. The markers for pancreatic cell types

were obtained from the ScType in-build database and the fibroblast markers were collected from literature.93 All the markers

used are listed in Table S2.

Probabilistic cell type assignment
Cell type assignment were computed for HFFs and reprogrammed cells expressing 6F_pool using the reimplementation of the

CellAssign model94 in the scvi-tools library.85 We randomly downsampled 20 markers for fibroblast and major pancreatic cell

type including acinar, alpha, beta, delta, ductal and gamma cells from the ScType in-build database, respectively. These marker

genes are shown in Table S5. To quantify the reprogrammed cells at transient state and expressing marker genes for any two cell

types, we added those cells with mixed identities as separate ‘‘cell types’’ to the input marker gene matrix. Default parameters

were used and CellAssign returned the assignment probabilities to each cell type for each cell. Cells were labelled by the cell

type with the maximum assignment probability.

Trajectory and pseudotime analysis
The trajectory graph for control cells and the cells with six TFs was constructed using Monocle3 (v1.0.0).86 The expression data and

the joint UMAP projection was loaded into monocle3 using the as.cell_data_set function from SeuratWrappers (v0.3.0). The cells

were clustered using the leiden method with the number of nearest neighbors set to 50, and the trajectory graph was learned using

the learn_graph function with default parameters. Pseudotime was assigned using the order_cells function with setting the control

cells as the starting points, and graph_test was used to identify genes and motifs that vary over pseudotime.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using built-in tools in GraphPad8 or R. Two-tailed Student’s t test or Wilcoxon test was used for

statistical comparisons between the groups. Statistical parameters and the test used for each experiment are indicated in the figure

legends.
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