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Introduction 

Antibiotics and antimicrobial resistance (AMR) 

Antibiotics were the miracle drugs of the 20th century. They have saved millions of lives across 

the globe since their discovery and facilitated significant advancements in medicine and surgery 1. 

Antibiotics treat bacterial infections by either killing the bacteria or inhibiting their growth. Most 

known antibiotics we use today originated from microbial sources, with a few exceptions of 

synthetically developed antibiotics (e.g., quinolones and sulfonamides)2,3. The majority were 

discovered and synthesized between 1940 and 1962, a period referred to as the golden era of 

antibiotics 4. However, there has been a lack of novel antibiotics after this era, and only a few 

new classes of antibiotics have been approved for clinical use 4,5. Not long after the discovery of 

each new antibiotic agent, bacteria developed resistance to their killing and inhibitory effects 6. 

Unfortunately, this phenomenon arose rapidly for all other antimicrobial drugs following their 

introduction into the market or clinics 7. One of the best examples is the first commercially used 

antibiotic, penicillin, for which a bacterial enzyme, penicillinase, capable of inactivating penicillin, 

was identified immediately after its introduction 8. Today, resistance to almost all antimicrobials, 

including those regarded as last-resort treatments for life-threatening infections, has been 

documented 6,9,10. Moreover, bacterial strains have evolved over time, developing from resistance 

to single classes of antibiotics to becoming multidrug-resistant (MDR). This leads us to the current 

situation, where the increasing prevalence of MDR superbugs renders common bacterial infections 

difficult to treat or even untreatable, thus posing a severe health crisis 11,12. 

Antimicrobial resistance (AMR) is the property of microorganisms to resist or thwart the effects 

of antibiotics, thus making drugs previously used to treat infections ineffective. AMR is one of the 

biggest and most urgent threats to global public health, economic development and food security 
13,14. According to a recent report published by Murray CJ et al., it has been estimated that bacterial 

AMR was associated with almost 5 million deaths and was directly responsible for at least 1.27 

million deaths globally in 2019 15. Several national and international public health organizations 

recognize AMR as an immediate danger and unanimously agree that monitoring its emergence, 

prevalence and spread is crucial to mitigate risks to human health 16,17. 
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Bacterial antimicrobial resistance is primarily genetically encoded and is thought to be mediated 

predominantly by antibiotic resistance genes (ARGs) 18. However, in some cases, bacteria are 

intrinsically resistant to antibiotics, i.e., resistance does not alter over time and is present in all 

members of particular clades. For instance, Gram-negative bacteria have outer membranes that 

physically constrain the action of certain antibiotics that target the cell wall 19. On the other hand, 

genetically encoded resistance can be facilitated through several different mechanisms, including 

the duplication or overexpression of existing genes, point mutations, or acquisition of new ARGs 

through horizontal gene transfer (HGT) 18,20. These acquired ARGs can be found in chromosomal 

DNA and as part of plasmids. Mobile genetic elements (MGEs), such as plasmids and transposons, 

play an essential role in the transfer of ARGs within and between bacterial species, contributing 

significantly to the challenge of AMR faced today 21,22. In addition to the transmission of ARGs 

between bacteria, the resistant bacteria themselves can be disseminated throughout the 

environment via food and water 23,24, as well as between humans and animals 25,26, and among 

healthcare facilities (e.g., hospitals) and communities 27,28. Furthermore, these bacteria can spread 

globally through travel 29,30. All these collective factors further exacerbate the increasing AMR 

burden worldwide, thus making it difficult to mitigate and control it.  

Irrational use of antibiotics is a major driver of AMR 31,32. The misuse and overuse of antibiotic 

treatments have led to an increase in selection pressure, which has contributed to the rapid 

emergence of resistant bacteria with acquired resistance 33. Antibiotics, often called a panacea for 

eradicating bacterial infections, have inadvertently driven the development of AMR in pathogens 
34. However, many human pathogens are not originally carriers of these ARGs. Instead, it is

theorized that many of the ARGs found in clinical environments initially originated from natural 

settings 35. Groundbreaking studies have discovered ARGs identical and similar to those present 

in pathogenic bacteria in natural environments free from human intervention, such as in glaciers 
36 and permafrost sediments 37. This suggests that AMR is an ancient and natural phenomenon. 

However, the situation we find ourselves in during this post-antibiotic era, with pathogenic-

resistant bacteria causing treatment failures, is unnatural. Instead, it is a consequence of the 

prolonged imprudent use of antibiotics 31. Moreover, recent studies demonstrate that 

environmental and commensal microbial communities harbor a vast diversity of ARGs, many of 

which have not yet been discovered in clinical settings 38,39. AMR is ubiquitous in various 
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microbial communities, including humans, animals, and the environment. This widespread 

prevalence has prompted the development of a “One-Health” approach to address the global 

challenge of AMR 40. 

Resistomes: the landscape of antimicrobial resistance genes in 

microbial communities 

The term “resistome” refers to the collection of all types of ARGs in a microbial community, 

including intrinsic and acquired genes, their precursors, and potential resistance mechanisms. 

Among these mechanisms are silent ARGs, which require alterations in expression to confer 

resistance, and proto ARGs, which exhibit little or no activity until they mutate 41. The abundance 

and diversity of resistomes are largely influenced by the microbial composition, which can host 

different types of ARGs, and the type of exposure the microbial community has had to 

anthropogenic factors, particularly antimicrobials 38,42. Due to the increased availability of next-

generation sequencing (NGS) techniques and significant advancements in culture-independent 

methods (such as metagenomics), the complex and diverse commensal and pathogenic microbes 

living in and on humans (referred to as the human microbiota) have gained increased attention as 

an important reservoir of ARGs 43. The genomes of all the microbes within human microbial 

communities are collectively known as the human microbiome. Understanding the compositional 

characteristics and dynamics of the human resistome, including the factors that affect the diversity, 

abundance, and transmission of ARGs, is crucial for developing preventive and therapeutic 

strategies to prevent the development and spread of AMR 1,44. 

The human resistome 

NGS technology-based metagenomics has been utilized to study the resistomes of human 

microbiomes found in the gut, oral cavity, skin, and respiratory tract 45-48. The different niches in 

the human body have varying resistome profiles with differing ARG abundances 49. One 

functional metagenomics-based study characterizing the microbiomes and resistomes of 

uncontacted Amerindians in different body sites found that ARGs from all resistance classes, other 

than ribosomal protection proteins, were exclusively present in either oral or gut metagenomes 50. 

There has been a recent flurry of metagenomic studies focusing on the human gut niches (stomach 
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and intestines). In fact, one of the first whole metagenomic studies to characterize the resistome of 

healthy adults worldwide was performed on fecal samples 47. A total of 507 unique ARG types, 

conferring resistance to 20 different classes of antibiotics, were identified in 180 fecal samples 

collected from 11 countries. Additionally, the study also found that differences in gut microbial 

composition between adults are co-localized with differences in the composition of their 

resistomes. This finding underscores the importance of the human gut microbiome as an AMR 

reservoir. The well-recognized role of the human gut microbiome in health and disease, along with 

its abundance and accessibility, may have contributed to a greater emphasis on whole 

metagenomic resistome investigations in the gut compared to other body sites. As a result, the 

majority of recent metagenomic studies, which provide insights into the dynamics of the human 

resistome in early and adult life, as well as during exposure to various types of antimicrobial drugs 

(mostly antibiotics), are primarily focused on the gut 51-53. The resistome in adults generally 

remains relatively stable without any significant perturbations 46,54. 

The period of microbiome maturation is considered the most crucial for the acquisition and 

establishment of the resistome. Yet, little is known about the trajectory and dynamics of resistome 

development in infants 42. A few reports seem to indicate, however, that the diversity of ARGs in 

the gut can be significant already within the first months of life 52,55,56, and that for some groups, 

such as preterm infants, the hospital environment seems to function as an important source of 

resistance, particularly for those exposed to antibiotics 57. Such effects can be long-lasting, 

resulting in microbiome scars observed months after hospital discharge 53. The elevated early-life 

resistome is associated with the taxonomic composition in the gut microbiome 51,52,55,56. 

Additionally, the infant gut resistome can be seeded from their mother, as bacteria containing 

ARGs can be transferred from maternal milk to the infant gut through breastfeeding 58. As a result, 

the infant gut resistome shares ARGs with the maternal milk and gut resistomes early in life 59. 

In other body sites, the respiratory tract is becoming an area of increasing interest. However, 

resistome studies in such sites are still scarce and mostly use single sampling time points, which 

limits our understanding of the dynamics of the respiratory resistome 60. One of the main 

challenges in conducting metagenomic studies lies in the low microbial biomass and high human 
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DNA content in the samples 61,62. Recent studies focused on optimizing methods to address these 

issues will likely contribute to advancements in the field 63. 

Impact of antibiotics on human resistome 

Selection pressures, such as antibiotic exposure, enhance the selection of antibiotic-resistant 

bacteria and increase the gene pool of resistance mechanisms, ultimately exacerbating the risk of 

spreading ARGs in microbial communities 64. Antibiotic treatment promotes resistance in target 

pathogens and off-target microbes, including bystander opportunistic pathogens, which may 

become a source of future infections 65. Studies have shown that antibiotics can significantly 

impact the abundance and diversity of ARGs in the human gut microbiome 66-68. However, reports 

of lasting changes in ARGs or the resistome vary per study depending on the antibiotic spectrum, 

class, mode of action, duration, route, and dosage 44. In addition, several host-intrinsic and other 

external factors such as genetics, baseline microbiome composition, age, co-morbidities, diet, and 

environment can also affect the impact of antibiotic treatment on the human microbiome and 

resistome 42. For example, early antibiotic administration in hospitalized neonates with developing 

microbiota had a profound impact on the gut resistome diversity and composition 69,70. However, 

the effect persisted long-term in some cases, depending on the type of antibiotics and treatment 

duration. During childhood, antibiotic exposures usually consist of short courses of relatively 

narrow-spectrum agents for respiratory tract and oropharyngeal infections 71. In the previous study, 

a significant increase in ARG diversity in the gut of a young child was observed one month after 

the administration of narrow-spectrum penicillin V 72. However, no such increase was observed in 

the oral cavity. In adults, the impact of higher acute and lower chronic antibiotic regimens can 

exert diverse effects on the microbiome and resistome composition, both in the short- and long 

term. For example, a cocktail of three last-resort, broad-spectrum antibiotics (i.e., meropenem, 

gentamicin, and vancomycin) was orally administered to healthy adult subjects for four days, 

which resulted in nine common species becoming undetectable in the gut microbiome after 180 

days (6 months) 73. Bacterial species harboring β-lactam, aminoglycoside, and glycopeptide ARGs 

colonized the gut for long-term after treatment completion. Although this study indicates minor 

yet long-term effects on healthy adults gut microbiome and resistome, it is essential to note that 

the research used a short course of multiple broad-spectrum antibiotics, which are not commonly 

administered in clinical settings. In comparison to the gut, a one-week course of the most 
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commonly used broad-spectrum antibiotics (clindamycin, ciprofloxacin, minocycline, or 

amoxicillin) in 66 healthy adults showed a remarkable recovery of the microbiome and resistome 

in the oral cavity after 12 months 74. However, one of the main reasons the oral microbiome and 

resistome may be more resilient to antibiotics than the gut is the greater bioavailability and 

extended exposure time of orally administered antimicrobial drugs in the gut compared to the oral 

cavity.  

In addition to inducing resistome enrichment, antibiotics have been reported to increase the 

frequency of HGT. Previous studies by Prudhomme et al. showed that antibiotics such as 

aminoglycosides and fluoroquinolones could induce genetic transformation of competent 

Streptococcus pneumoniae in response to general antibiotic stress 75. This is also the case for other 

streptococci 76. Increased conjugation frequency promoting ARG transmission is also reported to 

be associated with antibiotic exposure. For instance, exposure to several beta-lactam antibiotics 

increased the conjugation of plasmids containing extended-spectrum beta-lactamase ARGs in E.

coli 77. 

Methods and approaches to study resistomes 

Current methods of surveillance for AMR in clinical settings rely on culture-based methods of 

determining resistance phenotype from a colony of an isolated bacterial strain, followed by 

sequencing of its genome to identify genetic AMR determinants. Molecular methods, such as 

polymerase chain reaction (PCR)-based approaches and metagenomics, can be employed to 

investigate genetic AMR determinants (ARGs) in microbial communities without the need for 

culture-based methods (Figure. 1) 40,78. The relative merits and contributions of these methods for 

assaying ARGs (or AMR) are discussed in detail in the following section. 
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Figure 1: Overview of methodologies used for characterizing antibiotic resistance genes (ARGs) 

in resistome studies. The figure is based on Van Schaik, W., 2015 78. 

Culture-dependent approach 

The culture-based approach is a traditional method where microorganisms are isolated from patient 

or environmental samples and cultured in agar or liquid broth to probe AMR phenotypes 18. These 

culture-based tests describe the phenotype of a microorganism with AMR by exposing it to certain 

antimicrobial concentrations to determine how well it grows in the presence of antimicrobials. 

Two measurements are widely used to define this: the minimum inhibitory concentration (MIC) 

and the epidemiological cut-off values (ECOFFs) for resistance. The MIC is the lowest antibiotic 

concentration that inhibits the visible growth of a microbial strain. Culturing of the isolate is 

performed on agar plates or in liquid broth containing a gradient of antimicrobial concentrations, 

and the minimum concentration that inhibits the growth of the inoculum is reported as the MIC 79. 

Alternatively, a disk 80 or paper strip 81 diffusion test can also be used to determine the 

susceptibility of a microbe to antimicrobials by calculating the distance of microbial clearance 

from the source of the antimicrobial. The area around the antimicrobial disc or strip with no 

microbial growth is known as the zone of inhibition. The concentration of the antimicrobial 

decreases as it diffuses away from the disk. Thus, no visible rings around the disk indicate 

resistance while a broader inhibition zone indicate susceptibility to low concentrations of the 

antimicrobial. Standards published by the Clinical and Laboratory Standards Institute (CLSI) or 
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the European Committee on Antimicrobial Susceptibility Testing (EUCAST) are referenced to 

convert MICs or zones of inhibition measurements to categorical resistance interpretations. 

Antimicrobial susceptibility testing (AST) is commonly used in clinical settings because it 

provides actionable phenotypic information to guide the selection of optimal treatment for 

individual patients 18. It has provided valuable insights into geographical variations and trends in 

antimicrobial susceptibility. For example, one study utilized the broth dilution method to 

demonstrate that the antimicrobial susceptibility profiles of Acinetobacter baumannii isolates 

causing intra-abdominal infections (IAIs) and urinary tract infections (UTIs) varied across six 

global regions but were low everywhere with no antibiotics inhibiting more than 70% of the 

isolates in any region 82. While these phenotype-based resistance determination methods can offer 

important information for clinical management and surveillance, they provide little or no direct 

information on resistance gene epidemiology, including resistance mechanisms, transmission 

routes, or pathogen evolution 83. 

Whole genome sequencing (WGS) 

Phenotypic testing alone does not offer information on how the AMR is mediated at a genotypic 

level. WGS is a molecular-based AMR surveillance approach that can be used to determine the 

entire or nearly entire DNA sequence (i.e., genome) of a microorganism. By comparing DNA 

sequence of a microbe with a database containing reference sequences of ARGs and mutations in 

well-characterized microbial genomes, it is possible to infer their phenotypic traits such as AMR 

and virulence. Similarly, one can also differentiate between phenotypically identical isolates (same 

AST profile), identify putatively novel resistant genes and identify whether they were acquired 

through HGT. It also provides information on the location of AMR determinants on the bacterial 

chromosome or on plasmids, which can help in monitoring their spread and dissemination 84. This 

method provides a higher resolution compared to other molecular-based approaches by enabling 

not only the determination of possible origin of the host bacteria but also the investigation of 

genetics of the loci responsible for resistance. It has been used successfully in AMR surveillance 

for pathogens such as in multidrug resistant tuberculosis 85,86. Comparison of the whole microbial 

genomes of different isolates can facilitate reconstruction of putative transmission chains for both 

antimicrobial-resistant clones and mobile genetic elements of AMR as well as the evolutionary 
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tracing of newly characterized AMR microorganisms and disease outbreaks 84. For example, WGS 

was applied to trace the evolutionary origin and genetic characteristics of a meropenem-resistant 

Streptococcus pneumoniae serotype 5A-ST63 after the introduction of pneumococcal conjugate 

vaccines in Japan 87. Another WGS-based study of multiple extended-spectrum β-lactamase 

(ESBL)-producing Klebsiella pneumoniae strains in a specialized geriatric care ward identified 

that the referring hospital was the source of acquired resistance and where strain-to-strain 

dissemination of a blaCTX-M-15 FIBK/FIIK plasmid happened 88. 

Despite its application in public health AMR surveillance, WGS may lead to false positive or 

negative results if not complemented with phenotypic testing. This method can be used only 

to detect and interpret known/novel ARGs or mutations that are similar to previously known 

ones. Failure to identify the presence of unknown ARGs may result in incorrect predictions 

regarding the absence of AMR. Conversely, a result indicating a positive molecular result and 

a resistant phenotype denotes the expression of the ARG. However, genes (silent) or pseudo 

genes may be present but not expressed, which can wrongly predict the AMR if only 

WGS is performed. Although, WGS is a powerful approach for ARG surveillance, the need 

for pure culture is a major drawback, as a large proportion of microbial communities that 

harbor a wide variety of genetic resistance determinants (ARGs) in complex and diverse 

microbial communities are yet uncultured in the laboratory condition 89,90.

Polymerase chain reaction (PCR)-based methods 

PCR is another molecular-based assay that amplifies a target nucleic acid sequence (such as an 

ARG) present in a sample. This is achieved using a pair of oligonucleotide primers that are 

complementary to each end of the target sequence. Initially, researchers targeted a small select set 

of ARGs, but with the ongoing reduction in the cost of NGS technologies and the consequent 

expansion in bacterial genome sequencing, the availability of ARG targets in databases has 

significantly increased. Similarly, more recent advancements in the field of PCR-based techniques 

have further enhanced their application in clinical diagnostics 91,92. This enables the simultaneous 

detection and quantification of a large number of targeted ARGs (resistome) in a faster, more 

convenient, and high-throughput manner across various environments 93-96. PCR has been 

extensively used to monitor the spread of Vancomycin-resistant Enterococci (VRE) and Extended 



19 

Spectrum Beta-Lactamases (ESBLs) producing Enterobacteriaceae 97-99. In addition, it has been 

shown to reveal HGT mechanisms of ARG transfer. For instance, Class 1 integrons and Salmonella 

Genomic Island 1 (SGI1) were identified using PCR in Salmonella isolates that were previously 

non-carriers 100. However, while PCR is highly sensitive, it does not provide information on 

bacterial hosts or the complete genetic context of the ARGs. Furthermore, this technique can only 

detect previously identified ARGs that are fully complementary to the primers and probes, often 

overlooking homologous sequences that could also contribute to similar resistance phenotypes. To 

overcome these limitations, a less targeted methodology is needed to detect all known and 

unknown ARGs, i.e., the resistome. Metagenomics sequencing offers a culture-independent 

solution to profile the complete resistome. 

Metagenomics 

Metagenomics is the study of all the DNA or genomes from microorganisms present in a 

community or sample, collectively referred to as the metagenome. Over the past decade, 

metagenomic sequencing has become increasingly prevalent in assessing the composition, 

diversity, and structure of microbial communities in humans, animals, food, and the environment. 

Since a large proportion of microbes inhabiting these communities are uncultivable under standard 

laboratory conditions, the development of metagenomics has provided an unprecedented 

opportunity to explore and understand the role of these communities under unbiased conditions. 

With the increasing knowledge and understanding of the commensal and environmental bacterial 

present in these communities as key reservoirs of ARGs and their contribution to the emergence 

and dissemination of AMR 101-103, it is crucial to focus on them to elucidate the actual abundance 

and diversity of ARGs, i.e., the resistome. 

Metagenomic approaches for ARG profiling can be divided into two main types: functional 

metagenomics and whole metagenomics. These methods have been commonly used to detect novel 

ARGs (functional metagenomics) and to investigate ARGs at the microbiome level (whole 

metagenomics). However, the initial step for both these methods remains the same: to extract the 

metagenomic DNA from the sample of interest. 
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Functional metagenomics 

Functional metagenomics is a sequence-unbiased, culture-independent method for resistome 

characterization 18. It aims to characterize the function of genes, including the mechanisms of novel 

ARGs, based on phenotypic expression rather than relying on bioinformatics predictions 104. In 

this method, total microbial DNA is isolated from the sample of interest, fragmented, and 

subsequently cloned into a suitable expression vector (e.g., a plasmid). This vector, with the 

inserted DNA, is introduced into a culturable host, such as E. coli, to create a metagenomic library. 

This library, containing transformed clones, is then screened for antibiotic resistance by culturing 

with antibiotics at a concentration toxic to the wild-type host. The inserts from surviving 

recombinant, antimicrobial-resistant, or phenotypically positive clones are then sequenced to 

determine potential genetic determinants of that response. This method circumvents limitations 

imposed by bacteria that are difficult to culture and explicitly selects for ARGs that can 

disseminate through HGT, as only transferable phenotypes to a heterologous host are found. An 

earlier study revealed that a significant proportion (79%) of newly discovered ARGs in their 

functional metagenomic libraries had low identity to known ARGs and were not present in ARG 

databases 51. The application of functional metagenomics is further highlighted by the discovery 

of novel ARGs, including tetracycline-inactivating enzymes 105 and rifamycin phosphorylases 106. 

The first report of a functional metagenomic investigation of the human gut resistome screened 

metagenomic DNA from fecal and saliva samples from two unrelated healthy humans against 13 

antibiotics 39. Sequencing of 95 unique inserts containing functional ARGs, encoding resistance to 

all antibiotics screened, showed they were distantly similar to the closest previously known ARGs. 

They also discovered 10 novel β-lactamases in the two gut microbiomes. However, there are 

limitations to this method. For example, ARGs expressed in certain organisms (such as Gram-

positives) may not exhibit a discernible phenotype, be efficiently expressed in heterologous hosts, 

or under in vitro conditions. It has also been observed that some genes confer resistance when 

overexpressed in a surrogate host but may not function as bona fide resistance genes in their 

original host 107. Additionally, depending on insert size and the location of genetic resistance 

determinants, an ARG may be truncated, or multiple ARGs encoding multiple regulatory elements 

and promoters might not be captured in a vector 107,108. 
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Whole metagenomics 

In whole metagenomics, also commonly referred to as shotgun metagenomics, the total DNA 

extracted from a sample is directly sequenced using a high-throughput DNA sequencing platform, 

effectively bypassing the culturing step (Figure 2). Consequently, this method theoretically enables 

the identification of all viable or non-viable microbes that can be cultured, as well as those that 

have not yet been cultured 109. After the total DNA is extracted from the sample and the microbial 

community present, it is randomly sheared into small fragments. These fragments are then ligated 

with adapters that are identifiable by the sequencing platform prior to the sequencing process. 

The resulting sequence reads can then be directly or indirectly compared with public databases 

containing all known reference ARG sequences to profile the resistome 18,110. This approach can 

collectively profile multiple domains, including bacterial, archaeal, eukaryotic, and viral 

sequences. In addition, it can also be used to predict the functional potential (or any gene profile 

such as mobilome) and obtain the whole genome sequences 109. 

Figure 2: Summary of a suggested metagenomics workflow for studying resistome in complex 

and diverse microbial environments using metagenomic sequencing data. The figure is based on 

M Boolchandani et al., 2019, Nature Reviews Genetics 18. 
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However, the many advantages of whole metagenomics are complemented by some challenges. 

This approach relies on existing resistance gene annotations (ARG databases), which limits its 

potential to identify fundamentally novel ARGs. Furthermore, the accuracy of characterized 

resistome profiles greatly depends on the sequencing depth, as this impacts the sensitivity to detect 

low abundant or rare ARGs of interest. Consequently, many studies encounter a trade-off between 

sequencing depth and sensitivity (undersampling), where rare sequences may remain undetected 

or lack coverage 111. This issue becomes particularly prominent when characterizing microbial and 

resistome composition from metagenomes derived from complex microbial communities, such as 

natural environments that contain DNA from a large number of species. Additionally, the data 

from the sequencing process can often be highly fragmented, making it challenging to reconstruct 

the complete genomes of all the microorganisms found in the sampled community by assembling 

short reads into longer contigs 18,20,60. Lastly, and most importantly, the analysis and interpretation 

of large and complex metagenomic data sets is challenging, requiring significant computational 

resources and bioinformatics expertise 112. 

Nonetheless, this method is being extensively used to characterize the resistome in complex 

microbial communities and environments, offering unprecedented knowledge about the large 

reservoir of ARGs and its global distribution within human 113-116, animal 25,117, and environmental 
118-120 microbial communities. Furthermore, an increasing number of whole metagenomics-based 

resistome studies have already provided unparalleled insights into the development of the 

resistome in early life 51,55,69,121,122, and how it can be affected by the use of antibiotics in humans 
70,73,74,123. This method has been implemented in the surveillance of AMR across various 

environments113,117,124-127. The sequencing-based metagenomics approach is becoming 

increasingly popular, feasible, and accessible, thanks to continuous improvements in NGS 

technologies, decreasing sequencing costs, and the development of bioinformatics tools and 

pipelines for the rapid identification and characterization of ARGs in complex and diverse 

metagenomes 18. 

DNA sequencing and technologies 

The process of determining the arrangement or order of nucleotides in DNA or RNA is known as 

sequencing. Over the past two decades, genome sequencing has played a vital role in interpreting 
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information encoded in bacterial genomes. The first major advancements in sequencing happened 

with the introduction of the first and foremost successful commercially feasible DNA sequencing 

method (i.e., Sanger sequencing) in 1977. Using this method, Craig Venter and colleagues 

performed the first whole genome sequencing of a non-pathogenic bacterial strain, i.e., 

Haemophilus influenza, in 1995 128. Sanger sequencing is based on chain termination method 

where the function of DNA polymerase is utilized by adding specific chain-termination 

dideoxynucleotide triphosphates (ddNTPs) to disrupt DNA synthesis reaction in vitro 129. The 

ddNTPs are labelled with nucleotide-specific (ddATP, ddGTP, ddCTP, and ddTTP) 

radioisotopes. Alternatively, they may be labeled with fluorescent markers. When one of the 

ddNTPs forms a phosphodiester bond with a nucleotide from the original sequence, it inhibits the 

DNA polymerase from elongating the DNA. The products of such reactions with nucleotide-

specific radioisotopes can then be run via polyacrylamide gel electrophoresis, and the order of 

nucleotide sequence can be determined according to the positions of the electrophoretic bands. If 

using fluorescently labeled ddNTPs, a laser excites the dye-labeled DNA fragments as they pass 

through a small window based on capillary electrophoresis. The excited dye produces a light at a 

specific wavelength that is detected by a sensor. Then, software can infer the detected signal and 

translate it into a call to identify the chain-terminating nucleotide. Sanger sequencing is also 

referred to as "first-generation" sequencing. This method has very high accuracy but is relatively 

expensive, time and labor-consuming, and is low throughput, thereby limiting its applications for 

large-scale sequencing projects.  

Majorly driven by attempts to sequence the human genome as a part of the Human Genome 

Project, a much larger breakthrough was the development of high-throughput "second-

generation", also referred to as "next-generation" sequencing (NGS) techniques 130. NGS 

machines increased the yield of sequencing efforts significantly and enabled sequencing for 

large-scale, automated sequencing projects way faster and cheaper compared to Sanger 

sequencing. However, Sanger sequencing is still used for precise sequencing of smaller DNA 

molecules. The sequence reads produced with NGS techniques are typically not very long and 

hence, it is also known as short-read sequencing. This technique is based on parallel sequencing 

of spatially separated fragments (or reads) of DNA molecules. NGS technologies have been 

further developed with the objective of sequencing longer reads while preserving the low cost 

per read achieved with the second-generation techniques 131. 
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This led to the development of third-generation sequencing technologies. High-throughput 

sequencing technologies have made it simpler and faster to sequence more DNA, implying 

metagenomes could be sequenced by short-read and long-read sequencing technologies. However, 

the quality of the metagenomic data is dependent on the type of technologies used. In the next 

sections, short-read and long-read sequencing technologies are assessed for their advantages and 

disadvantages in sequencing metagenomes for their resistomes. 

Short-read sequencing 

Short-read Illumina sequencing is the current gold-standard sequencing technology, which is 

generally used for its high throughput, accuracy, as well as its affordability. For instance, the latest 

NovaSeq 6000 can practically generate up to 6000 gigabase (Gb) in a single run with a cost of less 

than $0.01 per million bases and at a 0.1% error rate in base calling (process of ascribing nucleotide 

bases from signals). The adapter ligated DNA fragments are amplified into multiple identical 

copies (clusters generation) of the same fragments on the surface of a glass flow cell. After clonal 

amplification, the sequencing is carried out by synthesis. The four modified nucleotides (A, T, C, 

G) with a reversible fluorescent blocker are then washed onto the surface of a flow cell. The DNA

polymerase can add only one nucleotide that complements a nucleotide of the fragment at a time 

due to having a reversible fluorescent blocker. The corresponding fluorescent dye of the added 

nucleotide is recorded and determined afterward by fluorescent imaging. After recording is done, 

the fluorescent blockers are removed from the newly synthesized nucleotides to enable the next 

round of synthesis. During sequencing, the recorded images are processed into much smaller 

files of nucleotide characters, which can be further interpreted and analyzed using bioinformatics 

tools and software. At present, Illumina dominates the NGS market by offering several high 

throughput sequencing platforms or models such as HiSeq, MiSeq and NextSeq, each of them 

varying in terms of their speed, cost, output range and other parameters 132. 

Illumina sequencing can be achieved in single-read or paired-end mode. Single-read sequencing 

means sequencing DNA fragments from only one end, while paired-end sequencing enables 

sequencing of both ends of the DNA fragments. Ion Torrent is another short-read sequencing 

technology alternative to Illumina, which has been used occasionally for its cost-effectiveness, 

though, it compromises on precision. In this technology, the fragment amplification is done using 
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emulsion PCR on micro-sized diameter beads instead of a solid surface. DNA polymerase is 

added, and natural nucleotides (deoxynucleoside triphosphates (dNTPs)) are washed in a similar 

stepwise procedure to Illumina’s cycle, but the incorporation of dNTPs are monitored by a 

change in pH of the solution due to protons release, which is detected by electronic sensors 132. 

Long-read sequencing 

Alternative sequencing technologies capable of sequencing much longer strands are available for 

metagenomic sequencing. These technologies sequence a DNA molecule, thereby eliminating 

amplification bias and generate sufficiently long fragments that overlap and facilitate better 

sequence assembly. Long-read sequencing offers several advantages over short-read sequencing 

when investigating AMR in bacterial isolates and metagenomic samples. It enables longer de novo 

assemblies capable of resolving repeated sequence regions, thus reducing the complexity 

associated with assembling short reads. Moreover, it provides better resolution and allows for a 

more robust interpretation of genetic context, thereby facilitating more in-depth studies to 

understand the horizontal gene transfer of ARGs 18,60.  

There are two predominant long-read sequencing technologies: Pacific Biosciences single-

molecule real-time (SMRT) sequencing and Oxford Nanopore Technologies. The SMRT PacBio, 

the first long-read sequencer, is commonly used to sequence much longer strands (10-60 kilobases 

(kb)) compared to Illumina sequencers, which have a typical read length of up to 250 base pairs 

(bp) 133. It can detect a single DNA molecule in real-time. The principle behind it is based on 

DNA replication and the detection of fluorescent light emission signals as each nucleotide is 

incorporated by a DNA polymerase fixed to the bottom of 50 nm-wide wells, known as zero-mode 

waveguides (ZMWs) 134. This allows real-time detection of nucleotide incorporation events during 

the elongation or synthesis of the replicated strand from the non-amplified single-stranded 

template. However, these technologies are still costlier than short-read sequencing. PacBio also 

requires a greater amount of extracted DNA as the libraries are not amplified. As such, 

metagenomic DNA needs to be pooled together from multiple samples 135. This is more 

challenging for metagenomic samples with very low microbial DNA, such as the nasopharynx. 
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On the other hand, Oxford Nanopore Technologies platforms (Nanopore and MinIon) are routinely 

capable of sequencing DNA fragments that are hundreds of kb in length. They are generally less 

expensive and faster than PacBio and short-read technologies, but they have a considerably higher 

error rate 136. Unlike other sequencing technologies, they detect changes in electric current or 

voltage as the nucleotides pass through nanopores (transmembrane proteins). Like PacBio, 

Nanopore technology does not require DNA amplification and allows for real-time sequencing. 

Due to its speed, affordability, portability, and the ability to sequence long fragments, Nanopore 

technology has been a breakthrough in large-scale WGS of microbes and pathogens. For instance, 

it has been clinically used as a diagnostic tool for the rapid detection of AMR pathogens and ARGs 
137-139, and for surveillance of the Ebola virus 140. However, more reads are required from single 

microbes to have enough read depth to overcome high error rate of Nanopore technology and to 

obtain higher accuracy 141. This could be achieved by using DNA amplification or concentration 

techniques, such as those used in Illumina sequencing, prior to sequencing in the Nanopore 

workflow. The accuracy can also be increased by sequencing not only the template but also its 

complement strand (2D read sequencing) 142. However, for resistome profiling from complex 

metagenomic samples like respiratory tract, DNA amplification techniques are still needed to 

detect ARGs before sequencing 143. While most resistome studies have relied on metagenomic data 

generated from short-read Illumina sequencing 109, long-read technologies are proving increasingly 

valuable for linking ARGs with MGEs and their potential host species 120,144. 

In this thesis, WMS data generated using short-read sequencing technologies (shotgun 

metagenomics) are leveraged to explore the resistome within the human microbiome. The 

following section discusses the bioinformatics methods and tools used to characterize resistomes 

in such high-throughput metagenomic sequencing data (Figure 2). 

Bioinformatics resources for resistome profiling 

Computational processing
After sequencing, high-throughput reads are usually output as plain text files in a format 

called FASTQ or FASTA. Firstly, the sequencing data is organized, a crucial processing step 

before it is analyzed for the in-silico identification of ARGs. The low-quality sequences and  



27 

contamination, such as adapter sequences added during library preparation, are filtered and 

sequence trimmed using quality control tools 20,110. FastQC 145 is one such tool that is commonly 

used to perform quality control check on sequencing reads by calculating various compositional 

statistics such as base quality, sequence length distribution, CG content, adapter content, etc. 

Quality filtering and adapter trimming of reads are typically done using software like 

Trimmomatic 146 and Cutadapt 147. If the metagenomic data is derived from a host with 

sequenced genome, like a human or animal, it is also crucial to identify and remove any host 

sequences (contaminants) using sequence mapping tools before proceeding with any further 

analysis 110 (Figure 2A). 

Sequence analysis 

Due to significant advancements in bioinformatics, there are several bioinformatics methods and 

tools publicly available to identify ARGs from clean and processed metagenomic reads. 

These analysis methods can be categorized into two main categories: Read-based or De novo 

assembly-based mapping 20,110,112 (Figure 2B). 

Read-based profiling 

To detect known ARGs, reads can be directly aligned to ARG reference databases such as the 

Comprehensive Antibiotic Resistance Database (CARD), AMRFinder, ResFinder, and 

MEGARes. Reads can be aligned using pairwise alignment-based algorithms such as Bowtie 2 148 

or Burrow-Wheeler Alignment (BWA) 149. Alternatively, reads can be split into k-mers, and then 

mapped to reference database for identification of ARGs using k-mer-based counting algorithm, 

like KMA 150, which matches the coverage of k-mer frequencies between reference and query 

sequences. k-mer-based alignment algorithms are more accurate and sensitive in differentiating 

between ARGs from databases that contain redundant or highly similar ARG sequences, as these 

algorithms retrieve exact matches between sequences 20,150. Though, read-based algorithms have 

the benefit of calculating the absolute abundance of an ARG present in a sample based on number 

of reads that are mapped, which can be useful in directly comparing the differences in abundances 

between samples. In case of k-mer based alignment, a KMA algorithm estimates the total number 

of k-mers matches with each nucleotide of a reference ARG divided by the total number of 

nucleotides of that ARG, which is a less precise estimation for ARG abundance. There are several 

freely available bioinformatics tools and pipelines available to profile ARG from metagenomic 

contamination, such as adapter sequences added during library preparation, are filtered and 

sequence trimmed using quality control tools 20,110. FastQC 145 is one such tool that is commonly 

used to perform quality control check on sequencing reads by calculating various compositional 

statistics such as base quality, sequence length distribution, CG content, adapter content, etc. 

Quality filtering and adapter trimming of reads are typically done using software like 

Trimmomatic 146 and Cutadapt 147. If the metagenomic data is derived from a host with 

sequenced genome, like a human or animal, it is also crucial to identify and remove any host 

sequences (contaminants) using sequence mapping tools before proceeding with any further 

analysis 110 (Figure 2A). 
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reads using read-based approach including AMRPlusPlus 151, ARG-OAPs 152, KmerResistance 153 

and shortBRED 154. AMRPlusPlus is one such commonly used tool that aligns reads to a curated 

ARG reference database (MEGARes 151) using BWA aligner. In contrast, KmerResistance splits 

reads into k-mers, matches them and counts the co-occurrence of k-mers between reads and a 

reference database to characterize ARG in the sample. 

De novo assembly-based profiling 

On the other hand, sequencing reads can be assembled into larger contiguous sequences (contigs) 

using metagenomic assembler tools such as metaSPAdes 155, MEGAHIT 156 and MetaVelvet 157. 

The open reading frames (ORFs) or protein-encoding regions were predicted on the assembled 

contigs, which are subsequently annotated for ARG by comparing against ARG reference 

databases using commonly used pairwise alignment tools such as BLAST 158, DIAMOND 159 or 

USEARCH 160,20. As opposed to the read-based approach, the abundance of ARGs from 

assemblies are calculated based on the coverage depth of each contig or by mapping the raw reads 

against the contigs. Assembly-based approach can construct longer contigs or whole genomes that 

enables not only annotation of ARGs but also other surrounding genetic elements to inform its 

genetic context; for instance, whether an ARG is a part of an MGE or taxonomic assignment of 

microbial hosts harboring the ARGs 18,111,161. This approach can also identify ARGs that are 

distantly similar or lack homology to known ARG sequences in the reference databases 18.  

Read vs assembly-based approach

There is no clear consensus on whether read or assembly-based profiling is better, and the choice 

between approaches strongly depends on the availability of computational resources and research 

objective 18,20. Both approaches have their own advantages and limitations. For instance, an 

assembly-based approach enables more precise identification of protein-coding ARGs and 

facilitates better exploration of upstream and downstream regulatory elements of detected ARGs, 

which cannot be accomplished through a read-based method. However, de novo assembly is very 

computationally expensive, may result in data loss and requires high genome coverage compared 

to read-based approaches, particularly when analyzing complex metagenomic samples with large 

microbial diversity and uneven composition 20,162,163. As a result, read-based methods have 

received increased attention in the recent years, particularly in clinical ARG surveillance 
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applications due to their ease of computation and faster speed, as they circumvent the de novo 

assembly and ORF prediction steps. Additionally, read-based methods are more sensitive in 

detecting potential ARGs from low-abundant organisms present in complex communities that may 

remain undetected by assembly-based methods where assemblies are incomplete or poor 18. 

However, it is important to note that direct mapping of unassembled reads to large databases may 

lead to high false positive predictions because of false mapping of reads to other ARGs due to 

local sequence similarity 112. Ideally, one should use tools and pipelines that utilize both read and 

assembly-based profiling approaches on the same metagenomic data to achieve better resolution 

of resistome 20. Nevertheless, both read and assembly-based methods provide in silico prediction 

of ARGs in complex microbial communities and metagenomic samples based upon comparing 

DNA sequences against publicly available ARG reference databases. Both use existing ARG 

databases to predict whether a sequence is genuinely an ARG using a sequence similarity and 

coverage cutoff.  

Antimicrobial resistance gene (ARG) databases 

There is a plethora of ARG databases available publicly as online platforms, containing 

information about known genetic determinants of resistance and other AMR-related data for 

annotation of ARGs. In general, alignment-based tools map nucleotide or protein sequences to an 

existing database containing reference ARG sequences and return ARG predictions 20,163. These 

predictions usually comprise annotations with confidence scores based on the 'best-hit' approach. 

Thus, in-silico prediction of ARGs in metagenomes is heavily dependent on the accuracy and 

quality of available ARG databases 111. The functional information on ARGs present in these 

databases usually represent phenotypic information gathered from several studies, including AST 

of microbes harboring ARGs 18. However, these reference databases are considerably different in 

the types of information that they offer for annotations and the scope of AMR mechanisms that 

they encompass 164,165. 

These ARG databases can be primarily grouped into two categories: specialized or generalized 

databases. Specialized databases like Lactamase Engineering Database (LacED) 166, 

Comprehensive β-lactamase Molecular Annotation Resource (CBMAR) 167 and User-friendly 

Comprehensive Antibiotic resistance Repository of Escherichia coli (u-CARE) 168 are designed to 
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provide comprehensive information for specific ARG families or species. On the other hand, 

generalized ARG databases such as CARD 169, ResFinder 170, PointFinder 171, Antibiotic 

Resistance Gene-ANNOTation (ARG-ANNOT) 172, NCBI-AMRFinder 173, Structured ARG 

reference database (SARG) 152, DeepARG-DB 164 and MEGARes 151 have been developed to 

encompass a broad spectrum of ARGs from all the sources. Nonetheless, these databases also 

differ in the types of resistance mechanisms that they cover. For example, ResFinder database is 

specialized and comprises only acquired ARGs, while the PointFinder focuses only on mutations 

associated ARGs. On the other hand, there are databases like CARD or NDARO, which 

comprise information on both AMR mechanisms 20. Most of the metagenomics-based studies 

which aim at exploring the entire landscape of ARGs present in the microbial communities relied 

on the generalized databases. Hence for such community-wide studies, it is essential that the 

reference databases are comprehensive and comprehend all variants of the ARGs. The selection 

of the appropriate database become more crucial when characterizing resistome from less studied 

microbial communities such as soil or oceans, as resistance genes that are distantly homologous to 

known ARGs in database or previously unknown (novel), will remain uncharacterized 174. Thus, 

the choice of database is primarily dependent on the objective, type of data and the community or 

ecosystem studied 175,176. 

However, many of these databases are not updated frequently, lack curation pipelines and contain 

multiple inconsistencies 1,177. These generalized reference databases not only differ in their 

content and scope of mechanisms but also in the annotation and metadata information that they 

provide for ARG sequences 176. This makes it impossible to compare the characterized resistome 

profiles from different reference databases. These databases also lack standardized ARG 

nomenclature, naming and annotation schema 177,178. For instance, an aminoglycoside gene 

ANT(3'')-Ia is present under different names across the available ARG databases (aadA, aadA1, 

aadA1-pm, aad(3'')(9) and ant3ia). In particular, the classification of ARGs does not follow the 

standard acyclic, hierarchical taxonomy scheme used for microbial organisms, which does not 

allow the same microorganism to link to multiple categories or groups. Use of cyclic annotation 

structure may lead to inflation of counts during the downstream analyses of resistome profile at 

different annotation levels 151. However, there are databases such as MEGARes and SARG 

which have manually curated a simple, acyclic and hierarchical functional scheme for annotation  
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of ARGs, suitable for accurate downstream analyses. More recently, most up-to-date databases 

like CARD and ResFinder have also adopted similar annotation structure and classification 

scheme.  

A few comparative studies assessing the performance of different databases suggested that the 

most frequently updated and comprehensive database (i.e., CARD) performs better and should be 

the preferred choice for predicting well-annotated ARGs in most cases 20,176. NDARO and 

ResFinder are somewhat superior resources compared to CARD in correctly predicting the ARGs 

related to acquired resistance. It is important to note that all these databases are biased towards 

ARG sequences derived from clinically relevant human pathogens and easily culturable bacteria, 

imposing difficulties in detecting remote homologs or novel ARG sequences found in uncultured 

or fastidious bacteria. A potential solution to mitigate this bias includes using Hidden Markov 

model (HMM)-based databases such as Resfams 179, or another database like Mustard 180, which 

is based on three-dimensional (3D) protein structure. These databases utilize structural and 

functional similarities for identifying resistance proteins, which might be difficult to detect based 

solely on sequence similarity or alignment. 

Downstream analysis 

Both read-based and assembly-based bioinformatics pipelines involve preprocessing of raw 

sequencing reads, which are then summarized into ARG count abundance tables (Figure 2C). 

These tables represent the number of reads that align with each representative ARG sequence in 

each sample. Accompanied by associated sample information (i.e., metadata) and functional 

annotations, these ARG tables serve as the primary input for downstream analyses and functional 

interpretation. 

However, such analyses are not straightforward due to inherent challenges associated with count 

data analysis 181,182. The ARG abundance tables are characterized by: (i) large variation in the 

number of sequencing reads obtained between samples (uneven sampling depth) due to sequencing 

effort, bias, or inconsistencies in library preparation; (ii) excessive “zero” values (i.e., sparsity), 

resulting from under-sampling or the actual absence of features; (iii) skewed distribution (not 

normally distributed) due to a high proportion of zeros; (iv) high dimensionality, given the large 

number of features typically analyzed in a single sample; and (v) overdispersion (i.e., the variance 
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is much higher than the mean). Furthermore, the total number of counts per sample is constrained 

by the maximum number of sequence reads that a DNA sequencer can generate. This total count 

constraint induces strong interdependencies among the abundances of the different ARGs, 

preventing them from being interpreted independently, thus characterizing the compositional 

nature of metagenomic data 181. Ignoring the compositionality in metagenomic data may yield 

biased and misleading results 183. Moreover, classical statistical methods are insufficient for 

directly analyzing such data 112,184. Recently, compositional data analysis (CoDa) methods have 

been proposed to overcome this issue by transforming the read counts to ratios of read counts, for 

example, centered log-ratio (CLR) – log ratio of each feature count to the geometric mean of all 

feature counts within a sample 183,185. The log-ratio eliminates the restrain of the total read count 

capped by sequencing platform and transforms the data into an unbounded (Euclidean) space 

where standard statistical methods can be used. All these inherent characteristics of metagenomic 

data significantly influence data exploration, visualization, and statistical analysis. Consequently, 

it is crucial to properly normalize or transform the data before analysis and to employ statistical 

methods that can manage these challenges, to yield comparable samples and meaningful results 
111,186. 

Downstream analysis of the ARG count abundance table – also referred to as resistome abundance 

data – typically begins with normalization. This is then followed by the exploration of resistome 

composition and diversity, employing a variety of visualization and diversity analysis methods 

that are standard practices in microbial community studies. The exploratory analysis typically 

involves analyzing dissimilarities between samples (using clustering and ordination techniques), 

assessing associations between features such as ARGs using correlation analysis, and visualizing 

the results using ordination plots, dendrograms, and heatmaps. These approaches can help identify 

potential hidden patterns or group structures within the data 181. Exploratory analysis can also be 

performed at higher functional levels, such as ARG class or mechanisms of action, to gain a more 

comprehensive understanding of the resistome data. Subsequently, an inference analysis is 

conducted to determine if there is an association between resistome composition and a variable of 

interest. Association tests can be either multivariate (when investigating overall differences in 

resistome composition among sample groups) or univariate (when identifying differentially 

abundant features or ARGs between sample groups). Finally, an integrative analysis is performed 
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to explore the association between resistome and microbiome composition using multivariate and 

univariate correlation-based omics integration methods to gain insight into the complex 

interactions between microbial community composition, function, and antibiotic resistance. 

In the following sections, various types of downstream analysis approaches for resistome data 

are discussed. These include normalization, diversity profiling, differential abundance testing, 

and integrative analysis. Some of the most popular methods for these steps are also highlighted, 

distinguishing between standard methods and those suited for compositional data. 

Data normalization 

Normalization aims to remove or reduce the systematic variability from the data, which may arise 

due to technical factors (above mentioned) and biological factors, and thus underline the true 

biological differences between samples 187. One commonly used normalization approach is to 

rarefy the count abundance table to the same depth, thereby accounting for differences in library 

sizes 186,188. Rarefaction works by randomly subsampling the same number of reads for each 

sample to the size of the smallest library such that all samples have the same number of total read 

counts. Despite being a straightforward approach, it has been criticized due to the potential loss 

of useful data as it excludes sequences from samples with larger library sizes from being 

analyzed    . 
188

The second set of normalization methods is based on scaling the data. These methods account for 

differences in sequencing depth by multiplying or dividing feature (gene) counts with a sample-

specific scaling factor, transforming raw reads into relative abundances. The simplest and most 

commonly used approach is to divide read count abundances by the total number of counts in each 

sample (known as Total Sum Scaling (TSS)) 184,189. Additionally, the resulting relative abundances 

(proportions) are sometimes multiplied by a constant sum (e.g., 106 (million)) to obtain the feature 

abundance per million total read counts for easier interpretation of data. However, the resulting 

relative abundances after such normalization can be biased, particularly when the total number of 

reads in a sample is dominated by a few highly abundant features 190. This can result in an 

overestimation of the abundance of these features and an underestimation of the abundance of 

other less abundant features 191. To overcome this challenge, other scaling factors, such as upper 
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quantile (UQ 192) and cumulative sum scaling (CSS 193), have been recommended. For instance, 

CSS calculates the scaling factors as the cumulative sum of observed count abundances for each 

sample up to a data-derived percentile threshold to reduce the biases resulting from preferentially 

sampled features (genes). More complex normalization techniques, including variance stabilizing 

transformations such as relative log expression (RLE) and trimmed mean of M-values (TMM) 

methods are also commonly used to compare differential abundance between genes 194. Recently, 

the CLR transformation is becoming a more popular method 195. As described earlier, it uses a log-

ratio approach rather than relative abundances between features to deal with the data 

compositionality. 

To date, there is no consensus on which method performs optimally and should be adopted for all 

types of datasets and downstream analyses 184,186,187. The choice of normalization methods can 

influence the results of downstream analyses 184. Moreover, studies assessing the performance of 

different normalization methods have demonstrated that depending on the type of analysis and 

data characteristics (such as sample size, sequencing depth, etc.), some methods can perform 

equally well 186,187,196,197. Therefore, a careful evaluation of data characteristics and the selection 

of an appropriate normalization method are crucial for achieving the most accurate results in 

metagenomic data analysis. 

Diversity analysis 

Resistome data are multi-dimensional, represented by hundreds or thousands of different ARGs. 

Therefore, it is essential to evaluate not only the abundance of individual ARGs but also the overall 

diversity of associated ARGs to obtain meaningful insights. Similar to microbial ecology, diversity 

is typically described or estimated within (alpha diversity) or between (beta diversity) samples. 

Alpha diversity  

Alpha diversity is a measure of diversity within an individual sample. It is often characterized 

using various diversity indices that account for either the total number of features (i.e., richness), 

their relative abundances (i.e., evenness), or both 111,198. For instance, richness-based indices such 

as 'Observed' calculates the actual number of features (in the case of resistomes, ARGs) present in 
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each sample. Indices like Chao1 and ACE, on the other hand, estimate richness by extrapolating 

the number of rare features that may be undetected due to undersampling. These indices introduce 

a correction factor to the observed number of features, accounting for rare ones by resampling the 

data and recalculating the estimator multiple times 199. As these indices only consider the presence 

or absence of features without their abundances, they are referred to as qualitative measures. 

Other metrics, such as Shannon and Simpson, consider both richness and evenness to describe 

the diversity within a metagenomic sample, with varying importance given to evenness. 

Additionally, they are less sensitive to the number of sequences per sample in comparison to 

richness-based indices 200.  

However, it remains unclear which diversity indices are most suitable for estimating ARG 

diversity in metagenomic samples. A recent study that evaluated the predictive power of different 

indices suggested that the Chao1 estimator performs well in approximating ARG diversity in 

metagenomic datasets 201. Nevertheless, each diversity index has its strengths and limitations, and 

the choice of the most appropriate one depends on the specific dataset, sample composition, and 

research question 184. In general, more than one indices is presented in resistome papers, as they 

assist in providing a more comprehensive interpretation of resistome data. 

Beta diversity 

Beta diversity represents the differences between samples. It is used in resistome studies to 

measure the similarity or dissimilarity in the overall resistome composition between samples 113. 

In a similar vein to alpha diversity, there are several different ecological-based indices 

(distances)for quantifying beta diversity. There are several different ecological-based indices 

(distances) for quantifying it. Each of the measures reflects different aspects of composition 

heterogeneity. For instance, some of the most commonly used indices, such as the Bray-Curtis 

distance, incorporate the abundance of features (ARGs). In contrast, qualitative indices such as 

the Jaccard index and Jensen-Shannon divergence (JSD) focus on the presence or absence of 

features, ignoring their abundance, to estimate dissimilarities in resistome composition 189. 

Abundance-based measures are less sensitive to misclassification errors involving small numbers 

of reads, insufficient sampling, or variations in sequencing depth across samples 202. Depending 

on the specific research question, some measures may more accurately reflect changes in the 
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overall resistome composition, whether the focus is on ARGs that are more abundant or those 

that are relatively rare 184. Regardless, these beta diversity estimates can be summarized as a 

pairwise distance matrix. This matrix contains for each sample the similarity or dissimilarity 

score to every other sample and can be further visualized to identify patterns using ordination 

techniques.

Ordination methods are often used to visualize beta diversity data by summarizing large and 

complex dissimilarity or distance matrices between samples in lower-dimensional spaces or fewer 

principal components (2D-3D plots). The goal of these plots is to visualize patterns in resistome 

composition, identify clusters or groups of samples with similar resistome composition, and 

elucidate the impact of specific experimental factors on resistome composition 113,181,200. Samples 

that are closer to each other in these plots indicate a higher degree of similarity in their resistome 

composition. Principal coordinate analysis (PCoA) and non-metric dimensional scaling (NMDS) 

are the most commonly used and widely accepted ordination methods to explore differences in 

resistome composition 181. However, these methods require the dissimilarity or distance matrix as 

an input and are sensitive to the distance method used 203,204. Therefore, identified clusters or 

patterns should be confirmed by multiple methods 184. Another frequently used ordination method 

is principal component analysis (PCA), which is simply PCoA using Euclidean distance. PCA 

based on the Euclidean distances between the CLR data (i.e., Aitchison distance) can serve as an 

alternate CoDa-based approach for beta diversity analysis, which can account for data 

compositionality 183. 

Significance testing of alpha and beta diversity 

To determine whether there are statistically significant differences in alpha diversity measures 

between the groups or conditions under investigation (predictor variables), parametric tests such 

as ANOVA and t-test or non-parametric tests such as the Wilcoxon rank-sum test or Kruskal-

Wallis test are commonly used 184. However, these tests may not perform as efficiently in handling 

continuous predictor variables, unbalanced designs, and missing data. In such instances, linear 

models like the generalized linear model (GLM) are often more suitable. These models also allow 

control for multiple confounding variables (both categorical and continuous) to yield more reliable 

results regarding the effect of the main (predictor) variable of interest on the alpha diversity 

measure 202. In the context of experimental design, it is important to note that certain study designs, 
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such as repeated measures, may introduce correlations between samples. For instance, in 

longitudinal resistome studies, repeated sampling from the same individual may produce samples 

that are more similar to each other in terms of composition and diversity (inter-individual 

variation) compared to samples from different individuals 205. Hence, it is crucial to use statistical 

methods that can account for such between-sample correlations 206. More sophisticated tests, such 

as Linear mixed-effects models (LMEs), are gaining popularity for the comparative analysis of 

alpha diversity measures 29,207. These models control for potential confounding variables (fixed 

effects) and account for between-sample correlation (included as random effects), thereby 

improving the power and accuracy of identifying significant differences between groups. 

On the other hand, to test the statistical significance of beta diversity differences between groups, 

multivariate permutation-based tests such as permutational multivariate analysis of variance 

(PERMANOVA), analysis of similarities (ANOSIM), or the test for homogeneity of group 

dispersions (PERMDISP) are commonly used 20. These tests are more powerful than classical 

methods (such as analysis of variance (ANOVA) or multivariate analysis of variance 

(MANOVA)) and can be used to assess global differences in resistome composition among groups 
184. Most of these tests compare the distances within samples of the same group to the distances 

between groups based on a dissimilarity (or distance) matrix. PERMANOVA is one of the most 

widely accepted robust tests that can handle the inclusion of multiple potential confounding 

variables (both categorical and continuous) and within-sample correlation to test the independent 

impact of predictor variable(s) on the composition 208. It tests the null hypothesis that the 'centroids' 

of all groups are not significantly different from each other 209. However, this method is sensitive 

to differences in variance within groups (multivariate dispersion). Therefore, the PERMDISP test 

can be used in conjunction with PERMANOVA to determine whether the variances of distances 

within groups differ from the variances of distances between groups. To address the issue of 

dispersion heterogeneity, it is recommended to use ANOSIM, a method that is more sensitive to 

such heterogeneity 210. This test assesses the hypothesis that the dissimilarities between groups are 

greater than or equal to the average dissimilarities within groups based on the distance matrix, 

using the ranks of all pairwise sample distances 211. 
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Differential abundance analysis 

The primary goal of differential abundance analysis (DAA) is to identify features with significantly 

different relative abundances between two or more conditions (sample groups) of interest 181. In 

resistome studies, this analysis is commonly employed to detect significantly differentially 

abundant ARGs, classes or mechanisms associated with various conditions or interventions, such 

as antibiotic therapies. Although it may seem straightforward, several unique challenges (zero-

inflation, overdispersion, skewed distribution, uneven sequencing depths, and compositionality) 

arise due to the inherent features of metagenomic count data, making it unsuitable for direct 

application of statistical methods developed in other omics fields. A widely used approach 

involves nonparametric (including permutations-based) tests, such as the Wilcoxon Rank-Sum or 

Kruskal-Wallis tests, after normalizing the count data to identify differentially abundant genes. 

Linear discriminant analysis (LDA) effect size (LEfSe) combines these standard nonparametric 

univariate tests for statistical significance with methods related to biological consistency and effect 

size estimation for discovering biomarkers in metagenomic datasets 212. However, these standard 

nonparametric methods lack statistical power (high false discovery rates) and cannot model 

confounding factors to accommodate complex study designs 188,213. Moreover, they do not account 

for the complex inherent features of metagenomic abundance data, which may significantly impact 

the results of DAA. Therefore, it is generally more appropriate and recommended to use statistical 

models that either assume distributions accounting for count data characteristics or employ 

techniques to transform the data (normalization) to fit standard test assumptions 111. In recent years, 

significant advancements have been made in this area. For example, the metagenomeSeq (R 

package) tool implements a novel normalization (Cumulative sum scaling) technique combined 

with a statistical framework for modeling count data with zero-inflated Gaussian (ZIG) or zero-

inflated Log-Gaussian (ZILG) distributions to account for sparsity (zero-inflation) and 

undersampling-related bias in metagenomic count data 214. Other distribution-based models, such 

as DESeq2 215 and edgeR 216 (originally developed for RNA-seq data analysis), are also frequently 

used and appear to perform better than many other methods for detecting differentially abundant 

genes in metagenomic datasets 196. These methods fit a generalized linear model and assume that 

count abundances follow a negative binomial (NB) distribution after normalizing data with 

corresponding scaling-based methods to address uneven sequencing depths. However, these RNA-

Seq inspired methods may also produce spurious results, as some of their assumptions are not 
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entirely valid for metagenomic data 196. Additionally, these methods do not directly account for 

the compositional nature of sequencing data. 

More recently, two CoDa methods, ANOVA-Like Differential Expression tool for compositional 

data (ALDEx2217) and Analysis of Composition of Microbiomes (ANCOM218), have been 

designed for differential abundance analysis of compositional high-throughput sequencing data. 

These methods intrinsically remove the effect of sampling fraction (compositionality) by 

transforming the observed abundances to log-ratios. ALDEx2 uses the geometric mean of observed 

abundance (relative) of all features within each sample as a reference for converting the 

abundances of each feature to log ratios for that sample (i.e., CLR transformation). ALDEx2 

performs a Monte Carlo sampling with an underlying assumption that the data follow a 

multivariate abundance distribution based on a Dirichlet-multinomial model to account for 

technical and biological variation 191. After CLR transformation, the log-ratio of all pairs of 

features is tested for differences across different sample groupings using standard parametric or 

non-parametric tests, such as Welch's t-test, Wilcoxon test, Kruskal-Wallis tests, or one-way 

ANOVA using a generalized linear model (GLM). In comparison, ANCOM uses a pre-specified 

feature as a reference and converts the observed count abundances to log ratios of the observed 

abundance of each feature relative to the reference feature (aka additive log transformation (ALR)) 

within each sample. ANCOM tests the log-ratios of the abundance of each feature to the abundance 

of every other feature for the differences in their means across groups using non-parametric tests. 

The proportion of significant results involving each feature is used to determine its significance 
181. Most of these DAA methods are also able to model confounding covariates to accommodate 

complex study designs. Although flexible, these methods cannot explicitly model the within-

subject correlations for repeated measures (random effects) in longitudinal studies 206. Alternative, 

more advanced tools and methods, such as MaAsLin2 219 or mixed-effects models, may be more 

suitable for accounting for random effects in longitudinal study designs 206. 

To date, most benchmarking studies have evaluated the performance of different DAA methods 

on microbiome datasets (mainly those derived from 16S rRNA sequencing) rather than on 

metagenomic datasets 186,191,196,220,221. Nonetheless, these studies have analyzed different sets of 

methods and dataset types, leading to less agreement regarding the performance of tools across 

studies 213. Currently, there is no clear consensus on the best DAA method for a specific dataset. 
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Furthermore, comparative studies have suggested that no method is simultaneously robust, 

powerful, and flexible for all types of datasets and study designs 220. The performance and outcome 

of different DAA methods are significantly influenced by data characteristics, such as sample (or 

group) size, sequencing depth, gene abundances, and effect size differences 184,196. Thus, various 

methods may be needed for different metagenomic datasets and research questions addressed. 

Nevertheless, these large-scale comparative benchmarking studies can provide valuable guidance 

to researchers when selecting methods for their own data. Moreover, it is recommended that 

researchers either employ multiple methods and focus on significant features (genes) detected by 

most of the approaches or utilize a consensus approach based on several DAA methods to ensure 

the robustness and validity of the results of differential analysis tool choice 213.  

Regardless of the method employed for detecting significantly differentially abundant ARGs in a 

group of samples, a probability (p) value will be derived for each ARG feature examined. 

Consequently, in multi-dimensional resistome profiles characterized using a large reference 

database, this process entails conducting hundreds or even thousands of tests. When multiple 

features (ARGs) are tested simultaneously, the likelihood of false-positive (Type I errors) 

observations increases 222. Thus, it is essential to apply a correction for multiple testing to control 

the false discovery rate (FDR) 111. Most DAA methods automatically perform such FDR 

corrections using widely accepted methods, such as the Bonferroni or Benjamini–Hochberg 

procedures, to adjust the p-value and obtain more reliable and robust results in differential analysis. 

Integrative analysis 

The resistome and taxonomic composition are closely interconnected, with each influencing the 

other in several ways. Understanding the complex interplay between the resistome and microbiome 

is crucial for advancing our understanding of the ecology of AMR in microbial communities and 

to gain more novel insights into the interactions between microbial communities and their 

environments, including their response to antibiotic exposure. To identify and quantify these 

potential associations, microbiome and resistome count abundances of the same samples can be 

integrated using a variety of statistics-based computational approaches 223. These integrative 

analyses are becoming increasingly popular to explore which microbial taxa are associated with 

antibiotic resistance, as well as which ARGs are present in those taxa across diverse 



41 

metagenomes, including humans 47, animals 224,225 and environments 226. Currently, such 

analyses are exploratory in nature with an aim to reveal inherent patterns and trends from the 

datasets mainly using correlation-based statistical methods. One of the simplest approaches for 

microbiome and resistome integration is univariate correlation analysis, such as Pearson and 

Spearman correlation. These methods enable us to determine if there are strong pairwise 

associations present between individual ARGs (resistome) and taxa (microbiome) based on 

different measures such as correlation and co-abundance. For example, V Carr et al. performed 

Spearman correlation analysis between the human oral microbiome and resistome to predict the 

potential microbial host of ARGs 46. However, they are prone to false positives due to the high dimensionality and sparsity of

metagenomic datasets. Multivariate correlation methods based on dimensional reduction 

techniques have become the predominant methods to conduct integration of microbiome and 

resistome data. For example, Procrustes analysis is a statistical method that utilizes dimension 

reduction techniques such as PCA or PCoA for visual integration of microbiome and resistome 

dataset 227. It essentially correlates the principal components or coordinates of two datasets at the 

lower-dimensional space (ordinations) rather than individual features, allowing users to assess the 

overall similarity between microbiome and resistome data. For instance, J Feng et al. used PA to 

establish that microbial phylogeny structured the antibiotic resistome in healthy human gut 

microbiota 47. More advanced univariate and multivariate correlation-based methods have been 

recently developed for the integration of different paired omics datasets, such as CCLasso, 

Maximal Information Coefficient (MIC), regularized canonical correlation analysis (rCCA), and 

sparse partial least squares (sPLS). These methods can also be used to integrate microbiome and 

resistome data while addressing issues of sparsity and compositionality in metagenomic data 228,229. 

In general, the integrative analysis of omics data remains an active research area, with an 

increasing availability of novel statistical methods that have yet to be extensively evaluated for 

metagenomic datasets. 

In addition to statistical-based approaches, microbiome and resistome data can be integrated by 

leveraging our existing knowledge framework of the microbial hosts that harbor or carry ARGs 

(knowledge-driven integrations). Information on these relationships can be acquired either directly 

or indirectly from public ARG databases, utilizing text mining techniques or through manual data 

collection. Such information can be complex due to the presence of multiple ARGs in a single 
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microbial taxon and the distribution of single ARGs across various taxa. This can be intuitively 

represented as interaction networks to gain more comprehensive insights into AMR mechanisms 

and shed light on possible dissemination routes of ARGs. However, currently, there are no such 

visual analytics tools leveraging the existing knowledge present in available databases to explore 

the known associations between ARGs and microbial taxa. 
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Knowledge and Research Gap 

AMR profiling using metagenomic sequencing data is still an evolving field with many research 

opportunities. In this thesis, three different research challenges are addressed, as mentioned below: 

• Metagenomic-based sequencing studies have significantly enhanced our understanding of

resistomes and the ecological impact of interventions like antibiotic therapy on complex

microbial communities such as human microbiomes. However, our knowledge on the collateral

effects of antibiotics on the selection and development of AMR is still limited compared to

disturbances in microbial community composition. Furthermore, there is a lack of long-term

follow-up studies examining the lasting effects of antibiotic exposure on the microbiome and

resistome. Existing studies have primarily focused on short-term (<7 days) and immediate

effects of antibiotic therapies 66,73,74,123,230. However, longer treatments are commonly

prescribed for conditions like recurrent otitis media 231, urinary tract infections 232, chronic

low back pain 233, and chronic respiratory conditions 234, with the potential for long-lasting

effects on microbiomes and the associated resistomes. Such effects remain largely

uncharacterized, even for the gut, which has been the focus of most microbiome studies.

• Respiratory infections caused by common pathogens, including those that are commonly

present in the nasopharynx, are the leading cause of deaths associated with AMR worldwide
15. Nevertheless, the landscape of ARGs (i.e., the resistome) present in the microbial

communities of the nasopharynx remains largely unexplored. Consequences of preterm birth 

and respiratory infections are the leading causes of mortality globally in early life 235. Infant's 

microbiota is immature, and their immune system is not yet fully functional, making the 

negative consequences of antibiotic treatment more acute and long-lasting than in adults 
236,237. Preterm infants, in particular, are often given empiric antibiotics within 72 hours of 

birth, mainly due to suspected infections or sepsis 238,239. Recent metagenomics-based studies 

have also shown that early antibiotic exposure during the microbiome maturation phase has 

persistent and detrimental effects on the microbiome and selection of AMR 53. Furthermore, 

such exposure during infancy has been linked to numerous unintended adverse short- and 

long-term health consequences 239-242. However, most of this knowledge comes from gut 
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microbiota studies. In general, the dynamics of the resistome and the factors that influence its 

trajectory are still poorly understood, even for the gut 42. For other body sites, such as the 

nasopharynx (a reservoir of respiratory pathogens and a gatekeeper of respiratory health 243), 

knowledge on the dynamics that shape resistome establishment and the effect of such early 

antibiotic exposure remain largely unknown. 

• Significant advancements in high-throughput DNA sequencing (HTS) technologies and the

development of computational tools have accelerated the rapid identification and

characterization of the landscape of ARGs (i.e., resistome profiles) in complex and diverse

microbial communities, including humans, animals, and the environment 18. However, the data

generation capabilities are currently outpacing the development of computational tools and

pipelines. To date, the primary computational effort in data analysis has focused on raw data

processing, annotation, and abundance estimation of ARGs in metagenomic sequencing data.

Consequently, the subsequent step of data understanding and interpretation of these

characterized resistome abundance profiles remains a critical bottleneck in the field 112. This is

mainly due to the fact that analyzing such data is exploratory in nature (no gold standards) 184,

and it typically requires interdisciplinary skills in both bioinformatics and biological

knowledge to perform in-depth analysis. The available bioinformatics tools are designed to

accomplish specific data analysis tasks and are often challenging for bench scientists and

clinical researchers due to their extremely technical nature and the requirement for basic

programming knowledge. However, there are currently no easy-to-use bioinformatics

platforms for comprehensive visual, statistical and functional analysis of high-throughput

metagenomic resistome data.
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Aims of the research 

Overall aim: 

The overarching objective of this work was to deepen our understanding on the ecological 

consequences of antibiotics on resistomes and to develop a bioinformatics platform that facilitates 

resistome data analysis and interpretability. 

More specifically, the aims of this thesis were to:

• assess the impact of prolonged amoxicillin therapy on the human gut microbiome and

resistome. (Paper I)

• investigate the development dynamics and impact of early-life antibiotics on the

nasopharyngeal resistome of preterm infants. (Paper II)

• develop a user-friendly, easily accessible and intuitive bioinformatics platform to

democratize the analysis, visualization and interpretation of metagenomics resistome data.

(Paper III)



46 

Summary of the results 

The main results from each of the studies are summarized in the following section. 

Paper I 

Differential response to prolonged amoxicillin treatment: long-term resilience of the 

microbiome versus long-lasting perturbations in the gut resistome 

In this study, fecal specimens collected from 20 adult subjects, randomly assigned to either a 

placebo group (n = 12) or an amoxicillin-treated group (n = 8), were investigated to explore the 

long-term consequences of prolonged antibiotic treatment. These subjects were participants in a 

larger double-blind, placebo-controlled, randomized, multicenter trial (The AIM study), which 

evaluated the clinical efficacy of three months of amoxicillin treatment compared to placebo in 

patients with chronic low back pain and Modic changes. Fecal samples were collected from the 

selected patients at three time points: before the initiation of treatment (baseline), immediately 

after the cessation of treatment (3 months), and 9 months post-antibiotic or placebo exposure (12 

months). Approximately 200 Gb of metagenomic DNA from 60 fecal samples were analyzed 

through shotgun metagenomic sequencing to elucidate the long-term effects of prolonged 

amoxicillin treatment on the human gut microbiome and resistome. 

Impact of amoxicillin on Gut microbiome: The microbiome composition was primarily 

dominated either by Bacteroides or Prevotella genera across all the studied participants in both the 

amoxicillin and placebo groups. Our results showed that prolonged amoxicillin exposure led to a 

significant reduction in species richness and a shift in the overall microbiome composition 

immediately after cessation of treatment (3 months). Further, significant differences were detected 

among species with low abundance in the amoxicillin-treated group. In particular, health-

associated short-chain fatty acid (particularly butyrate) producers significantly decreased in 

proportion immediately after exposure to amoxicillin (3 months) as compared to baseline. 

However, all these perturbations due to amoxicillin treatment were transient as no significant 

alterations in microbial diversity, composition, and abundances were observed at 9 months post-

treatment. 
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Impact of amoxicillin on Gut Resistome: A total of 147 unique ARGs belonging to 15 ARG 

classes that confer resistance via 5 distinct mechanisms were identified across all the fecal 

samples. In both groups, tetracycline resistance genes were the most abundant class of ARGs in 

most patients. Higher inter-individual variation in the resistome than in microbiome composition 

(R2 = 0.82 vs 0.79) was observed, with many ARGs detected in a limited number of patients. 

Contrary to the microbiome results, the effects of amoxicillin exposure on the resistome persisted 

for long-term after treatment termination. The results showed an increase in the total AMR 

abundance and richness (Shannon index) of ARGs upon amoxicillin treatment, which remained 

significantly higher even at 9 months post-treatment compared to baseline (all adjusted p < 0.05). 

In particular, a significant portion of these long-lasting changes seemed targeted to the antibiotic 

treatment, as an enrichment of beta-lactamase ARGs in response to amoxicillin was observed. This 

included instances showing the enrichment of beta-lactamase genes associated with extended 

spectrum of activity (ESBLs) and those acting against carbapenems, which are clinically important 

as they could severely affect potential treatment outcomes. These responses to amoxicillin 

interventions were highly individualized and particularly evident in the resistome results. 

In the placebo group, no significant changes in the microbiome and resistome diversity and 

composition were detected over time. This underlines the relative stability and robustness of the 

healthy adult human gut microbiome and resistome without antibiotic perturbations. Overall, the 

findings suggest that prolonged amoxicillin exposure has a more common, pronounced yet 

transient impact on the microbiome, compared to the more individualized and long-lasting changes 

in the human gut resistome.  

Paper II 

Unravelling the landscape of antibiotic resistance determinants in the nasopharynx and the 

impact of antibiotics: a longitudinal study of preterm infants 

This prospective observational cohort study involved preterm infants born at the Neonatal 

Intensive Care Unit (NICU) of Oslo University Hospital, Ullevål, Norway. To investigate the 
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respiratory resistome development dynamics, nasopharynx aspirate samples were collected at six 

distinct time points, spanning from birth to 6 months corrected age (T1-T6). This paper focuses on 

a subset of preterm infants, namely those who had nasopharyngeal samples collected on the same 

day as the initiation of broad-spectrum antibiotic treatment (amoxicillin + gentamicin) for 

suspected early-onset neonatal sepsis (n = 15), as well as antibiotic-naïve infants as controls (n =

21), to assess the temporal consequences of early antibiotics on the nasopharyngeal resistome. 

Deep shotgun metagenomic sequencing was utilized to characterize the resistome of 181 

nasopharyngeal samples, which were longitudinally collected from 36 preterm infants. 

Nasopharynx resistome composition: In total, 373 ARGs conferring resistance to 15 different 

classes of antibiotics were identified across all samples. These ARGs were detected in the majority 

(~95%) of the samples in both the antibiotic-treated and naïve groups, including potentially high-

risk ARGs. Among these, multidrug resistance genes and efflux pump mechanisms were the 

most dominant types of ARGs present in the nasopharynx of preterm infants.  

Impact of early antibiotics: Early antibiotic exposure to broad-spectrum antibiotics (amoxicillin 

+ gentamicin) was associated with a significant increase in the diversity (Shannon) and total 

abundance of ARGs directly after the cessation of treatment (T2). A few high-risk and clinically 

relevant ARGs that appeared only at T2 were also observed in antibiotic-treated infants. Further, 

a minor yet significant shift in the overall resistome composition was detected between the 

antibiotic-treated and naïve infants immediately after the end of treatment (T2). However, no 

significant changes in diversity, abundance, composition, or carriage of high-risk ARGs persisted 

at 6 months of corrected age in antibiotic-treated compared to naïve groups, suggesting that the 

effects of early antibiotics on the nasopharynx resistome in preterm infants were transient. 

Factors shaping the nasopharynx resistome: A strong correlation between ARG abundance and 

taxonomic abundance profiles (r = 0.85, p = 0.001) was observed, suggesting that the microbial 

community composition structured the resistome composition in the nasopharynx of preterm 

infants. The overall relative abundance of the resistome was moderately associated (29%, adjusted 

p = 0.01) with Streptococcus mitis relative abundance in the nasopharynx microbiome. Inter-

individual variation (R2 = 30.03%, adjusted p = 0.001) and age were found to be the main factors 
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explaining most of the resistome compositional variation observed in the overarching cohort. 

Additionally, prenatal maternal antibiotic exposure (R2 = 3.6%, adjusted p = 0.001) was found to 

be a significant clinical covariate influencing the overall nasopharynx resistome composition, 

which was a subgroup found only in the early antibiotic group of preterm infants. 

Overall, the study provides to the best of our knowledge, the most comprehensive understanding 

of the characteristics and dynamics of resistome development in the nasopharynx of preterm 

infants, spanning the first six months of life, which is a crucial period for airway development. 

The results suggest that the nasopharynx in preterm infants is enriched with a diverse resistome 

and early antibiotic exposure can negatively impact its development, although the effects are 

transient. Adverse changes to the resistome during early life pose a risk, particularly for preterm 

infants with immature immune and organ systems. The study highlights the need to focus on this 

understudied yet critical reservoir of pathogens and ARGs, given the significant contribution of 

respiratory pathogens to the global AMR burden. 

Paper III 

ResistoXplorer: a web-based tool for visual, statistical and exploratory data analysis of resistome 

data 

This paper introduces ResistoXplorer, a user-friendly, web-based platform for comprehensive 

downstream analysis of resistome data generated from AMR metagenomic studies. The tool was 

implemented using three programming languages: Java, R, and JavaScript, and consists of three 

main modules for data processing, analysis, and result exploration. The accompanying web 

interface provides a wide variety of options and produces several tabular and graphical outputs to 

assist users in intuitively navigating through different analysis tasks. It is publicly available at 

www.resistoxplorer.no. 

ResistoXplorer supports a comprehensive suite of standards and advanced methods for 

composition profiling, functional profiling, comparative analysis, and statistical analysis of 

resistome abundance data. The tool offers several intuitive visualization methods to provide a 

comprehensive view of the diversity, abundance, and composition of resistome profiles. It also 

http://www.resistoxplorer.no/
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includes functional annotation information from several reference databases, allowing for analysis 

and profiling of resistome at higher functional categories or levels. The "Integrative analysis" 

module in ResistoXplorer enables users to perform integrative analysis on paired microbiome and 

resistome data using several univariate and multivariate omics integration statistical methods. In 

addition, ResistoXplorer's network-based visual analytics system allows users to explore and 

understand the complex relationships between ARGs and microbial hosts. 

Figure 3: Workflow of ResistoXplorer 

ResistoXplorer fills an important gap between data generation and analysis by offering 

comprehensive support for visual, statistical, and exploratory analysis of resistome profiles and 

signatures generated from AMR metagenomics studies. Overall, ResistoXplorer enables 

researchers and members of interdisciplinary groups without prior bioinformatics expertise to 

easily explore and analyze resistome datasets using a variety of approaches in real-time and 

through interactive visualization. The tool facilitates data understanding, hypothesis generation, 

and knowledge discovery in the field. 
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Methodological considerations 

In the following section, methodological considerations pertaining to Papers I-III are discussed. 

The section is divided into two main parts due to the nature of the work and methodologies used. 

The first part discusses the common challenges, methodological choices, and considerations 

related to the application of shotgun metagenomics in clinical studies (Papers I and II). The second 

part discusses the considerations involved in developing an easy-to-use, comprehensive 

downstream bioinformatics tool, as presented in Paper III. This includes the design aspects, 

choices of visual and analytical methods, the selection of supported tools, methods and parameters, 

as well as other factors that can influence the reliability and reproducibility of the downstream 

results. 

Paper I and II 

Whole metagenome sequencing (WMS) (or shotgun metagenomics) studies typically involve 

multiple experimental and computational steps, after the initial study design: (i) collection and 

storage of samples, (ii) DNA extraction, (iii) library preparation and sequencing, (iv) 

computational preprocessing of the reads, (v) sequence analysis to profile taxonomic and resistome 

features of the microbiome and (vi) statistical and biological post-processing analysis. Several 

approaches exist for each of these steps, and the choice of a specific approach can significantly 

influence the end results. This presents a considerable challenge to the reproducibility of 

metagenomic research, primarily due to the absence of universally accepted standardized methods 

and approaches 112. 

Study designs 

In the thesis, the suitable research design for both the experimental studies (I & II) was identified 

by keeping the main research question (i.e., window into the consequences of antibiotic exposure 

on the human resistome and microbiome) and ethical considerations in mind. The MODIC study 

leading to Paper I is an interventional study (part of a larger double-blind, placebo-controlled, 

randomized, multicenter trial (The AIM study233) using longitudinal data generated from shotgun 

metagenome sequencing of human fecal samples. Such clinical trials are considered as the gold 

standard and provide the most powerful evidence of causal relationships between interventions 
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(antibiotics) and outcomes (microbiome and resistome) 244. On the other hand, the study resulting 

in Paper II is a prospective cohort study using clinical metadata and predominantly shotgun 

metagenomics data from preterm infants nasopharyngeal samples.  

Longitudinal sampling from the same individual was used in both the clinical studies, owing to 

the fact that the human microbiome is not only highly individualized but can also be highly 

dynamic within the same individual 245,246. These studies are often recommended to estimate and 

account for such intra and inter-individual variability in order to draw robust interpretations from 

the data. Moreover, samples taken from the same individual over time can also serve as better 

and additional control, particularly when it is impossible to have a separate control group free 

from other confounding variables for comparison. The longitudinal changes in these samples can 

then be correlated with associated metadata 112. 

Similar to microbiome, the human resistome is also known to be influenced by several factors 

such as host genetics, age, sex, antibiotics, diet, mode of birth, lifestyle variables, environmental 

surroundings, etc. These known and other unknown factors may influence the outcome between 

the groups, independent of the primary variable (antibiotics) being studied. In study I, the subjects 

were completely randomized to the antibiotics/control groups to minimize such potential 

confounding factors. In both the clinical studies (especially in study II where randomized treatment 

allocation and matching the control group is practically impossible), as much metadata (clinical 

covariates) about each of the treatment groups was collected as possible. The plan was to 

statistically adjust for confounding factors (if present) when comparing groups during the analysis. 

Sample collection and storage 

Procedures for sample collection and preservation can impact the quality of DNA and the accuracy 

of metagenomics data 247. Collection and storage methods were chosen according to different 

sample types (feces vs nasopharynx) in our two clinical studies, as methods that have been 

corroborated for one sample type cannot be expected to be ideal for other sample types 112. Though, 

methods were consistent for all the samples from different time points within a given study. In 

Paper II, a suction device was used to collect nasopharyngeal aspirate samples from preterm 

infants. Although obtaining an aspirate is more invasive than practical alternatives such as 
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nasopharyngeal swabs, this method was used to minimize contamination with the microbiome of 

the anterior nostrils 248. Prior to collection, standard operating procedures (SOPs) were established 

for obtaining aspirate samples from all preterm infants63. To further minimize potential 

contamination, standard protective equipment was used, and the number of people involved in the 

sample collection was kept to a minimum, as these samples are more prone to contamination due 

to low microbial biomass 249. After collection, the nasopharyngeal aspirate samples were stored in 

a sterile tube containing glycerol and rapidly frozen for long-term storage at -80°C 250. 

To characterize the gut resistome of adult patients in Paper I, fecal samples were collected in 
sterile containers without preservatives and directly frozen at -80°C until further processing. It is 
critical to be aware that different collection and storage methods can influence the results, and in 
some conditions, the effect size of these steps can be larger than the effect size of the biological   
variables 

251
. 

DNA extraction 

DNA extraction methods can greatly influence the composition of the resulting sequencing data, 

as reported in numerous metagenomic studies 252-254. Ideally, the optimal DNA extraction method 

would be able to extract DNA from all cell types present within a sample, ensuring their accurate 

representation in the subsequent sequence data 112. Most of the available extraction methods 

generally rely on mechanical (bead-beating), chemical (or enzymatic) or a combination of both, 

with each method impacting the DNA yield, purity, integrity and degradation differently. Methods 

combining mechanical lysis (bead chemical and beating) and chemical lysis are considered 

superior for extracting DNA from fecal samples 255. However, due to differences in efficiency 

and accuracy of different DNA extraction methods, in addition to immense variation present 

within the same type of samples, it is very challenging to find an extraction protocol that will 

work best for all sample types without bias. In Paper I, the Stratec® PSP Spin Stool DNA Kit, 

one of the most commonly used commercial DNA extraction kits, was used for fecal samples, 

consistent with several other studies 256.

Nasopharyngeal aspirates collected in paper II are low-microbial biomass and high host (human) 

DNA samples. These samples are more vulnerable to biases or false positives due to contamination 
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during the processing stages 249,257-259. To ensure that sufficient microbial biomass is extracted 

from nasopharyngeal aspirate samples of preterm infants for sequencing and comprehensive 

resistome profiling, a prior method optimization study was conducted and published (Paper IV) 
63. In this study, the efficiency of three commercially available DNA extraction protocols was 

compared for processing nasopharyngeal aspirate samples from premature infants. In addition, 

three host DNA depletion methods were also tested to enrich the microbial cell and DNA content 

prior to the extraction step in such samples. Based on those results, MolYsis™ Basic5 was used 

for host DNA depletion, and then the MasterPure™ Gram Positive DNA Purification Kit was used 

for extraction of microbial DNA from preterm infant’s nasopharyngeal samples in the main study 

(Paper II). However, prior to DNA extraction, nasopharyngeal samples (pellets) were also spiked 

with ZymoBIOMICS Spike-in Control II (low microbial load), which contains three different types 

of bacterial strains, serving as an in situ positive control. To account for contamination, reagent 

blanks were incorporated as negative controls and processed using the same kits or reagents as the 

actual samples. Furthermore, the level of biomass present in samples was gauged using qPCR 

before sequencing. 

Library preparation and sequencing 

Similar to previous steps in the metagenomic workflow, the choice of library preparation and 

sequencing platform may significantly affect the results of metagenomic sequence data 260,261. The 

process of library preparation includes fragmentation, adaptor ligation or tagmentation followed 

by PCR amplification (optional). Several kits are available for constructing sequencing libraries, 

which generally differ in the methods used for fragmenting metagenomic DNA, such as sonication, 

enzymatic fragmentation, and tagmentation by transposomes. The most suitable protocol available 

for fecal (paper I) and nasopharyngeal (paper II) samples was recommended by the Norwegian 

Sequencing Center, with whom the choice of library preparation and sequencing platforms was 

made in collaboration. In both clinical studies, the DNA sequencing libraries of samples were 

prepared using the most commonly used and current gold standard Nextera DNA Flex kit from 

Illumina. The DNA Flex kits have been widely adopted in metagenomics investigations owing to 

their speed and greater flexibility for input type, amount, and a wide range of supported 

applications 262. These kits also resolved sequencing biases detected in the previous Nextera XT 

kit that occur in genomic regions with high GC content 263. The best available (at time of 



55 

sequencing) sequencing platform with higher throughput and accuracy (low error rates) at an 

affordable cost was primarily used to deeply sequence metagenomic DNA libraries in our studies. 

Consequently, DNA libraries were sequenced earlier on Illumina HiSeq 3000 platform in Paper I, 

while Illumina NovaSeq S4 platform was used in more recent study (Paper II). 

Bioinformatics processing of sequencing reads 

Preprocessing of raw reads obtained from high-throughput NGS platforms includes running 

variety of quality control computational tools for identification and removal of adapter 

sequences, low-quality reads and host DNA contaminants. There are several preprocessing tools 

and pipelines available for such quality control and trimming. In our projects, FastQC, 

Trimmomatic (paper I), and Cutadapt (paper II) were used, as they are the most commonly 

recommended and efficient preprocessing tools for this purpose 20,110. Host DNA contamination 

is an important challenge in human-derived metagenomic samples, especially in nasopharyngeal 

samples. The proportion of human-to-microbial DNA in metagenomics data varies widely by 

body site. For instance, data from the Human Microbiome Project (HMP) demonstrated that 

more than 90% of the sequenced reads were aligned to the human genome in nasal cavity 

samples compared to <10% human DNA contamination in fecal samples from healthy 

individuals 264. In our study II, a host DNA depletion kit (MolYsis™ Basic5) was also utilized 

prior to DNA extraction for depletion of human reads from the nasopharyngeal samples. 

However, due to loss of microbial DNA and potential bias toward Gram-positive bacteria, such 

pre-extraction host DNA depletion techniques are not commonly used in most metagenomic 

studies. Nonetheless, it is common practice to computationally remove sequence reads 

containing human DNA before further analyzing the remaining (microbial) sequences from 

human-derived metagenomic data. There are numerous tools developed based on two main 

approaches: subtractive alignment and direct classification. In both of our clinical studies, human 

DNA were removed by aligning all the sequenced reads against a human reference genome 

(GRCh38) using one of the most commonly used, ultrafast, memory-efficient and highly precise 

alignment tool called Bowtie 2.  

Sequence analysis for resistome and microbiome profiling  

There are two main methods when analyzing metagenomic sequencing data, read-based 

or assembly-based analysis, and the choice may affect the downstream results 265. In papers I and 

II, read-based analysis was conducted in which high-quality clean reads were directly mapped to 
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reference databases using the pairwise alignment tool Bowtie 2 for identification and 

quantification of ARGs in metagenomic samples. The read-based approach is generally faster, 

requires less computational resources, and more importantly, enables the identification of 

potential ARGs from low-abundant organisms present in complex communities, which may 

remain undetected by assembly-based methods due to poor or incomplete assemblies. 

Importantly, this approach is more accurate, efficient and recommended for samples derived 

from previously well-characterized metagenomes/microbiomes with updated databases, as 

compared to samples obtained from more diverse and understudied environments 18,112,200. This 

approach aligns with our aim of investigating and exploring the impact of antibiotics on the 

entire landscape of known ARGs (the resistome) present in the better characterized and well-

studied human microbiome. 

However, the accuracy and completeness of resistome profiles is mainly dependent on the 

reference ARG database. Several large, comprehensive and updated reference databases for 

annotation of sequences to ARGs are available. In both papers (I & II), the CARD database was 

utilized, which is the most comprehensive, commonly used, continuously updated, and 

rigorously curated resource, currently containing over 5000 reference ARGs. Studies have shown 

that CARD is often the first choice or the most preferred option for the in-silico identification of 

ARGs across metagenomes 20,176. 

In these studies, Metagenomic Phylogenetic Analysis (MetaPhlAn3) was used for taxonomic 

profiling, a tool also utilized in the HMP. This method employs a marker-gene approach, with 

approximately 1.1 million unique clade-specific marker genes identified from around 17,000 

reference microbial genomes, to assign the reads to their appropriate taxonomic groups with 

species-level resolution 266. This method is faster and less computationally intensive than most 

other approaches because the reference database only contains a small subset of the genomes 

(marker genes) rather than full genomes for all the species. In addition, MetaPhlAn relies on 

Bowtie 2 aligner to make the assignment more accurate and faster. MetaPhlAn was primarily 

chosen for these studies because it has a higher precision (very low false positive discovery rate) 

compared to other methods, as demonstrated by several benchmarking studies 265-267. This is 
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important because false positive classifications can be a significant challenge when interpreting 

metagenomic data, particularly when analyzing human clinical samples 268. 

Selecting the most appropriate approach for analyzing WMS data is a challenging task. At present, 

there is no consensus on which sequence analysis approach is the best, and the choice of analysis 

should be ultimately determined by the aim of the study, costs and technical considerations 
112,184,269. However, unlike the initial steps of the WMS study workflow, the choice of methods in 

this step can be easily reevaluated using other methods. This extensive scope for further 

investigations renders WMS a valuable asset in the field of resistome and microbiome research.

Statistical analysis 

In papers I and II, several robust statistical testing methods were used to analyze the resistome and 

microbiome abundance data, based on the type of analysis or research questions to be addressed. 

All statistical analyses were performed in R using several CRAN and Bioconductor packages. For 

simple, independent comparisons of group differences, the one-way ANOVA, Wilcoxon rank-sum 

test, Kruskal-Wallis test, or chi-square test were used as appropriate. Due to longitudinal study 

designs, a linear mixed-effect model or repeated-measures ANOVA was used to assess the 

difference in α-diversity and total AMR abundance over time within the groups. Additionally, in 

these models, individual subjects were incorporated as a random effect to account for 

interindividual variation (between-sample correlation). Further, adjustment for confounding 

variables, such as the age of developing preterm infants in paper II, was done to discern the effects 

of the primary variable more accurately and minimize the risk of false positives. PERMANOVA, 

a robust and flexible method, was used to test the difference between groups based on measures 

of β-diversity. This method also allowed us to adjust for covariates or confounding factors, as in 

paper II. However, PERMANOVA can also generate false positive results when dealing with 

unbalanced samples exhibiting heterogeneous dispersion across groups. Consequently, the 

homogeneity of multivariate dispersion between treatment groups and time points was assessed 

using the PERMDISP test. In paper II, due to significant heterogeneity in dispersions, more 

omnibus tests, such as Analysis of Similarities (ANOSIM) and Mantel tests (for continuous 

variables), were applied. These tests, which are particularly sensitive to heterogeneity in 

dispersion, helped to ensure the validity of the results. Additionally, inferential analysis was 
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performed only on α and β-diversity measures that are less sensitive to the variation in sequencing 

depth (in paper II).  

To evaluate the significance of Procrustes results (statistics) in both our studies, another 

permutation-based test using the protest function from the vegan R package was performed. Most 

of these permutation-based tests are also supported in ResistoXplorer (paper III) to enable users to 

conduct robust inferential analysis on their resistome abundance data. In paper I, differentially 

abundant ARGs and taxa between time points within treatment groups were identified using one 

of the most commonly employed Linear Discriminant Analysis Effect Size (LEfSe) algorithm. The 

Benjamini-Hochberg false discovery rate (FDR) procedure was used for corrections for multiple 

testing, which is essential for controlling the rate of false positives (Type I errors) when conducting 

multiple comparisons 270. 

Ethics 

As the studies presented in the thesis involved human microbiome research, our three major ethical 

considerations were: informed consent, confidentiality and anonymity of subjects and data sharing 
271. 

The Regional Committees for Medical and Health Research Ethics (REK) South East Norway 

(2014/158/REK sør-øst) and the Norwegian Medicines Agency (SLV, reference number 

14/01368-11, EudraCT Number: 2013-004505-14) approved the AIM study leading to Paper I. 

The AIM study was registered at https://clinicaltrials.gov/ (ClinicalTrials.gov Identifier: 

NCT02323412). Written informed consent was obtained from all the subjects.  

The Norwegian Regional Committee for Medical and Health Research Ethics (REK) South East 

Norway (Approval number: 2018/1381 REKD) approved the Born in the Twilight study 

resulting in Paper II. Patients received written information about this retrospective study. Written 

informed consent was obtained from the parents of all the preterm infants enrolled in the study. 

To maintain the confidentiality and anonymity of the subjects involved in Study I and II, all their 

personal metadata is stored inside a secured platform (TSD, Services for Sensitive Data, University 

https://clinicaltrials.gov/
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of Oslo, Oslo, Norway). Due to the sensitive nature of human metagenomic data, computational 

pre-processing of sequencing data (until the removal of human contamination from the 

metagenomes) was conducted inside the same secured platform. 

To follow the FAIR (Findable, Accessible, Interoperable and Reusable) principles 272, the metadata 

(after proper anonymization) and clean metagenomic sequencing data (after removal of human 

reads) from the published paper I were made publicly available at NCBI SRA under BioProject 

ID: PRJNA894204. The same principles will be applied to Paper II upon its publication. 

Paper III 

ResistoXplorer (Paper III) was developed as a comprehensive bioinformatics tool suite for the 

downstream analysis of resistome data from metagenomics studies. It takes into account the 

exploratory nature of data analyses and aims to support reliable and robust analyses while ensuring 

accurate and meaningful interpretation of resistome datasets. Several key steps that were 

considered during the development of ResistoXplorer to facilitate these objectives are presented 

below. 

Implementation and design 

ResistoXplorer is a freely accessible, web-based, comprehensive visual analytics tool suite that 

was developed using three open-source programming languages: Java, R, and JavaScript. The user 

interface of ResistoXplorer was designed using the Java Server Faces (JSF) framework and the 

PrimeFaces and BootsFaces component libraries, creating an intuitive and user-friendly 

experience. All the back-end computation, including data processing, analysis, and visualization, 

was performed in R (version: 4.1.0)273 using more than 20 packages from the CRAN and 

Bioconductor projects, along with some built-in functions. JavaScript libraries such as sigma.js, 

CanvasXpress.js, and D3.js were also utilized to improve the user experience by generating 

interactive and dynamic visualizations of complex datasets on web pages. Through its modern 

interface design and high-performance implementation, ResistoXplorer offers a real-time visual 

analytics experience that allows researchers to intuitively go over the complex tasks of resistome 

data processing, analysis and interpretation. 
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The three supported modules share the same overall workflow, starting with data processing, 

followed by data analysis and visual exploration. In the data processing stage, the user’s data are 

uploaded for filtering and normalization. Following this, a wide suite of standard and advanced 

statistical and visualization methods can be conducted on the processed data to identify, for 

example, overall trends and patterns, significant features, potential biomarkers, and functional 

insights. 

Data upload and processing 

Users can upload a list of ARG and feature (ARG/taxa) abundance tables as input to 

ResistoXplorer. Several powerful and commonly used bioinformatics pipelines for metagenomic 

data, such as DeepARG, ARG-OAPs, AMRPlusPlus, Kraken274, and MetaPhlan3, can preprocess 

raw metagenomic sequencing reads. The results from these pipelines can be summarized into 

feature abundance tables, which are compatible with and can be easily uploaded into 

ResistoXplorer for comprehensive downstream analysis. 

ResistoXplorer carries out two essential processing steps, namely data filtration and normalization, 

on uploaded metagenomic (resistome or microbiome) abundance data. These steps are crucial for 

removing overall systemic variability, artifacts, and noise, thus ensuring the reliability and 

accuracy of downstream analyses. ResistoXplorer supports a variety of typical filtering options to 

mainly exclude features (ARGs) having a low mean abundance or present in only a few samples, 

as well as samples that exhibit low variation across samples. Such features are less likely to be 

informative for downstream analysis, particularly comparative analyses, which aim at detecting 

differences between experimental conditions or groups. Filtering such features can improve the 

statistical power by reducing the need for stringent multiplicity corrections in differential 

abundance analysis 275. However, some analyses, such as alpha diversity, are sensitive to data 

filtering. The removal of features could potentially introduce biases, thereby affecting the 

interpretation of such results. To avoid this, the ResistoXplorer provides the option to conduct such 

analysis on unfiltered data.  

Normalization is another important step. An appropriate normalization method must be employed 

to ensure meaningful comparisons across samples, adjusting for technical and biological 
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variability that can arise during the processes of sample collection, DNA extraction, sequencing, 

and upstream data preprocessing. To account for systemic variability and the challenges associated 

with count data, ResistoXplorer incorporates several widely utilized and standard normalization 

methods. These can be broadly categorized into three main groups: data rarefaction, scaling, and 

transformation-based methods. Multiple methods are supported in the tool as there is no consensus 

on one best method that works for all datasets with different characteristics as well as for all types 

of downstream analysis. In ResistoXplorer, users can evaluate the impacts of various 

normalization methods on resistome composition. They can do this by visually exploring the 

potential clustering patterns or data structures with regard to experimental factors or covariates 

of interest using ordination plots, dendrograms, and heatmaps. 

Data analysis and visual exploration 

ResistoXplorer provides a flexible and comprehensive framework that supports the utilization of 

multiple descriptive and inferential analysis methods for conducting an in-depth exploratory 

analysis of resistome data. Given the absence of a universally agreed-upon analysis approach or 

one-size-fits-all method for all types of datasets, ResistoXplorer offers a variety of methods and 

approaches to empower researchers in selecting the most suitable ones that align with the specific 

characteristics of their dataset and research question. This flexibility enhances the reliability and 

relevance of the analysis results, allowing for a more comprehensive exploration of the resistome 

data and facilitating robust interpretations. For example, the ARG Table module in ResistoXplorer 

currently offers more than 15 carefully selected analysis methods based on the current best 

practices in the field. These methods enable users to perform comprehensive visualization, 

statistical analysis, and exploratory analysis of their uploaded resistome abundance data.  

The accompanying web interface for each analysis method enables users to adjust and choose from 

different key parameters and measures for interactive analysis and visual exploration of the results. 

For example, ResistoXplorer supports >10 commonly used alpha and beta diversity measures, 

providing users with the flexibility to explore different aspects of resistome structure based on 

their research questions. The default options are selected based on their wide acceptance and best 

performance in benchmarking studies, whenever available. This allows users to start their analysis 
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with established and validated methods, while still having the option to explore other approaches 

based on their specific needs and preferences.  

ResistoXplorer provides a range of widely used and robust statistical approaches for inference 

analysis. In the context of differential abundance testing, ResistoXplorer supports both standard 

and advanced methods, including DESeq2, edgeR, metagenomeSeq, LEfSe, ALDEx2, and 

ANCOM. As different methods can yield divergent results and p-values, ResistoXplorer provides 

users with an optimal solution by allowing them to employ a consensus-based approach. This 

approach utilizes multiple DAA methods to validate the results, enhancing the confidence and 

reliability of the interpretation. To ensure the integrity of the analysis and prevent p-hacking, 

ResistoXplorer restricts each DAA method to use its own default normalization. This is due to the 

lack of benchmark studies examining the performance of different combinations of normalization 

approaches with different DAA methods. Additionally, since differential analysis involves testing 

hundreds or thousands of features simultaneously, ResistoXplorer always applies multiplicity 

correction for all supported methods. This correction helps maintain the robustness of the findings 

by reducing the risk of Type I errors (false positives). 

However, it is important to acknowledge that different statistical methods and algorithms have 

their own strengths and limitations. In ResistoXplorer, the default option for testing the difference 

between groups based on beta-diversity measures is the robust and powerful multivariate statistical 

method, PERMANOVA. While PERMANOVA is sensitive and recommended, it may produce 

false positive results in unbalanced samples that exhibit heterogeneity in dispersion across 

groups. To address this issue, ResistoXplorer provides alternative tests, such as ANOSIM, which 

are less sensitive (in general) and can enhance the validity of findings in such scenarios. Users 

can choose the appropriate test based on the specific characteristics of their dataset to obtain 

accurate and reliable results. In the statistical methods supported by ResistoXplorer for 

inferential analysis, the reporting goes beyond p-values. The tool also provides the effect size, 

which represents the likely importance of the findings. This approach enables users to evaluate 

the potential biological significance of their results with more reliability and interpret their 

findings in a more robust manner. For example, in the LEfSe algorithm, ResistoXplorer provides 

the LDA score for differentially abundant genes, which indicates their discriminative power. In  
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PERMANOVA analysis, the tool offers the R2 value, which represents the proportion of variance 

in the overall resistome composition explained by the experimental factor or covariate of interest. 

These additional metrics enhance the interpretability and meaningfulness of the results obtained 

from ResistoXplorer. 

As a visual analytics tool, ResistoXplorer incorporates robust visualization capabilities that 

empower users to visually explore and analyze their data. It generates a variety of compact 

visualizations and graphics such as charts, graphs, plots, tables, diagrams, heatmaps and 

dendrograms to aid users in interpreting the results of all downstream, including both descriptive 

and inferential analyses. Moreover, ResistoXplorer supports a range of robust and interactive 

visualization techniques for an in-depth visual examination of complex resistome data structures 

and their associations, such as Sankey diagrams, zoomable sunbursts, treemaps, and networks. 

This interactive approach allows users to intuitively reveal patterns, trends, and draw insights 

into the potential biological implications of the data.  

Further, it is important to note that all statistical, exploratory, and visualization analyses of ARG 

profiles can be conducted at higher levels to gain functional insights, facilitating a better 

understanding of their biological significance. To streamline this process, ResistoXplorer offers 

comprehensive support by gathering and pre-compiling the functional annotation information of 

ARGs from nine commonly used reference AMR databases. This eliminates the traditionally 

tedious, time-consuming, and error-prone process of manually collecting annotation information 

from individual databases. 

Reproducibility, documentation and support 

ResistoXplorer is freely accessible at https://www.resistoxplorer.no. ResistoXplorer thrives for 

transparency and reproducibility of resistome data analysis by providing the underlying R scripts, 

which can be found at: https://github.com/FCPLab007/ResistoXplorerR. Further, it also records 

all the steps that users have taken and provides its R command history to reproduce and validate 

their results locally. Further, the information on the version numbers of all software used, 

including all R packages, are mentioned in the ‘About’ section, and users can download any 

underlying data that ResistoXplorer used, such as functional annotation information of supported 

ARG databases from ‘Downloads’ section. 

https://www.resistoxplorer.no/
https://github.com/FCPLab007/ResistoXplorerR
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ResistoXplorer provides extensive documentation, including user manuals, FAQs, tooltips, and 

example datasets, to ensure users understand the tool's functionalities, limitations, and result 

interpretation. Detailed instructions are available on dedicated web pages for easy navigation. 

Furthermore, ResistoXplorer offers a user forum through Google Group, allowing users to seek 

assistance, share insights, and engage in collaborative discussions with other users. An 

introduction to ResistoXplorer is also featured in a one-week training module within a massive 

open online course (MOOC) entitled “Exploring the Landscape of Antibiotics in Microbiomes” 

(www.futurelearn.com/courses/exploring-the-landscape-of-antibiotic-resistance-in-

microbiomes).

https://www.futurelearn.com/courses/exploring-the-landscape-of-antibiotic-resistance-in-microbiomes
https://www.futurelearn.com/courses/exploring-the-landscape-of-antibiotic-resistance-in-microbiomes
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Discussion 

Metagenomics approaches based on high-throughput NGS technologies are powerful and 

increasingly used methods for comprehensively investigating the distribution and dynamics of 

AMR in microbiomes. They enable unbiased cataloging and profiling of the entire landscape of 

ARGs in host and environmental-associated microbiomes 163. In this thesis, such approaches 

were used to address knowledge limitations on the resistome composition and development in 

humans, including the ecological consequences of antibiotic therapy (Papers I and II). Further, a 

bioinformatics-based platform was developed to facilitate overall metagenomic resistome data 

analysis and interpretability (Paper III). 

Human microbiomes exhibit significant plasticity, with ecological changes driven by various 

factors, including diet, lifestyle, medications, environmental exposures, and host genetics 
245,276,277. Among these, antibiotic usage is one of the most pervasive factors due to the potential 

to select for antibiotic resistance 42,278,279. The most studied human microbiome is the one in the 

gut, for which advancements in NGS technologies and methodological developments are starting 

to capture the immediate changes caused by short-term antibiotic exposures 73,74,280. However, 

there is a lack of evidence-based data regarding the long-term ecological consequences of 

prolonged antibiotic regimens on the microbiome and resistome. Other studies for which key 

information is still needed are those focusing on body sites other than the gut, in particular those 

of critical importance in relation to infections, such as the respiratory tract. 

In paper I, the issue of the long-term consequences of prolonged antibiotic therapy was addressed. 

This was achieved by utilizing deep shotgun sequencing and functional metagenomics to analyze 

the microbiome and resistome in the gut of adults before, immediately after, and 9 months 

following a prolonged (3 months) amoxicillin treatment. The findings revealed that prolonged 

amoxicillin therapy leads to severe perturbations in the human gut microbiome, with a significant 

reduction in bacterial diversity, changes in overall community composition, and decrease in 

abundances of beneficial bacteria. These results contrasted with previous sequencing-based 

studies, which have demonstrated that the adult human gut microbiome generally exhibits 

resilience towards short-term amoxicillin intervention, with minimal or no impact on its microbial 
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composition 230,281. A significant depletion of short-chain fatty acid producers was observed, in 

particular butyrate, immediately after the cessation of amoxicillin treatment, despite high 

individual variation in baseline microbiome composition among patients. These butyrate 

producers play a crucial role in maintaining gut health by sustaining homeostasis, protecting the 

intestinal epithelium from inflammation, inhibiting pathogen proliferation, and promoting 

pathogen clearance 282,283. Conversely, Clostridium bolteae, a gastrointestinal opportunistic 

pathogen typically associated with infections in immunocompromised individuals or those with 

underlying health conditions 284, was found to be significantly enriched in most of our patients 

following prolonged amoxicillin treatment. Our study corroborates previous findings that C.

bolteae can serve as a potential marker of beta-lactam or antibiotic-induced dysbiosis 280,285. 

Additionally, genera Bacteroides, well-known for harboring beta-lactamase ARGs, also 

systematically increased immediately after the cessation of amoxicillin treatment 39,286,287. 

However, the effects of prolonged amoxicillin treatment seemed short-lived, as no such changes 

in the microbiome composition were observed 9 months post-treatment, suggesting the long-term 

resilience and stability of the adult gut microbiome to such perturbations. Despite their transient 

nature, these instances of microbial dysbiosis could potentially lead to significant long-term health 

consequences, including an increased susceptibility to recurrent, pathogenic, and potentially 

untreatable antibiotic-resistant infections such as Clostridioides difficile 288. 

Compared to the microbiome, the results in Paper I indicate that prolonged amoxicillin exposure 

has a long-lasting impact on the human gut resistome, leading to a more diverse and enriched 

resistome long after antibiotic use termination. In particular, the total abundance and diversity of 

ARGs significantly increased immediately after the amoxicillin treatment (3 months), which 

remained significantly higher even after 9 months post-treatment. A previous study by Zaura et al. 

reported a substantial enrichment of various classes of ARGs in the human adult gut resistome 

following short-term amoxicillin therapy 74. However, the majority of their results were derived 

from predictive analysis, with only a single sample being analyzed through WMS. In contrast, the 

study performed in Paper I demonstrated that prolonged amoxicillin intervention leads to an 

enrichment of the resistome in ARGs that confer resistance directly against the antibiotic class 

used, specifically beta-lactams. This includes instances of enrichment of clinically relevant beta-

lactamase ARGs associated with an extended spectrum of activity (ESBL) and those active against 
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carbapenems, considered last-resort antibiotics. Though the increase in abundances or emergence 

of beta-lactamase ARGs observed were highly individualized, the potential relevance of 

personalized antimicrobial therapies. Overall, these findings underscore the potential risks 

associated with prolonged antibiotic exposure in selecting and promoting the development of 

AMR in human gut microbiome. Given the persistent changes observed in the resistome, in 

contrast to the transient alterations in the microbiome, it is plausible that exposure to amoxicillin 

could independently facilitate the selection and spread of ARGs through mechanisms such as 

horizontal gene transfer (HGT). However, due to the inherent limitations of the short-read 

metagenomic sequencing and read-based profiling approaches used in our study, detailed 

information on the genetic context of ARGs is lacking. This restricts the ability to discern whether 

an ARG is present on a MGE - a factor that significantly influences the potential for HGT - and 

consequently hinders the understanding of how these ARGs might spread within gut microbial 

communities. On the other hand, no significant changes were observed in the diversity and 

composition of the microbiome and resistome over time in patients who did not receive long-term 

amoxicillin treatment, thus confirming the stability and resilience of the healthy adult human gut 

microbiome without significant perturbations 289,290. 

In Paper II, the focus was on the impact of antibiotics on the resistome development of preterm 

infants using samples from the nasopharynx, a site of particular importance in mediating 

susceptibility to respiratory tract infections 291. In contrast with the gut, for which establishment 

and development of the infant microbiome and resistome has been studied to a certain extent 45,51-

53,55,56,59, little is known about the diversity and dynamics of antibiotic resistance determinants in 

the microbial communities of the nasopharynx. The resistome and its dynamics in the 

nasopharynx were explored by characterizing them using deep shotgun metagenomic sequencing. 

Further, in accordance with primary objective, the long-term effects of early antibiotic therapy 

(ampicillin + gentamicin) on the resistome were also assessed by analyzing nasopharyngeal 

samples collected from birth until six months corrected age. 

The findings in this paper indicate that early broad-spectrum antibiotic treatment with a 

combination of ampicillin and gentamicin can lead to acute perturbations in the developmental 

trajectory of the nasopharyngeal resistome in preterm infants. A significant enrichment of the 
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resistome was observed, characterized by an increase in the total abundance and diversity of 

ARGs directly after the cessation of early antibiotic treatment. This led to minor yet significant 

shifts in the overall resistome composition of the early antibiotic-treated infants compared to the 

naive infants. A few potentially high-risk and clinically significant ARGs, encoding for 

aminoglycoside-modifying enzymes, extended-spectrum beta-lactamases (ESBLs) activity, and 

those conferring resistance against carbapenems (such as the presence of ACT-beta lactamase), 

also appeared in some infants immediately after the cessation of early antibiotic treatment. These 

compositional changes in the resistome upon early antibiotic treatment were more profound in 

infants whose mothers had also received prenatal antibiotics during pregnancy. However, no 

significant changes in diversity, composition, or carriage persistence of high-risk ARGs in 

treated preterm infants compared to controls at 6 months corrected age were found. This suggests 

the effect of early antibiotic treatment on the nasopharyngeal resistome was short-term. 

Interestingly, this transient nature is in line with a recent study by Reyman et al., who also 

reported short-term effects on the pediatric intestinal resistome following the administration of 

various early antibiotic regimens (penicillin + gentamicin, co-amoxiclav + gentamicin, and 

amoxicillin + cefotaxime) in the first week of life 70. Despite their transient nature, any adverse 

changes in the resistome during early life in such a vulnerable population are particularly 

concerning, especially those that favor the selection of antibiotic-resistant pathogens, commonly 

found in the nasopharynx, that have the potential to spread and cause invasive infections. 

To the best of my knowledge, paper II is the first study to perform a comprehensive 

characterization of nasopharyngeal resistome development in neonates using a shotgun 

metagenomics approach. To date, one of the most comprehensive attempts to investigate ARGs 

in the nasopharynx of infants using a shotgun sequencing approach identified ARGs in 64% of 

the samples, but the samples were enriched for streptococci prior to DNA extraction, thus 

presenting biased information 292. The main challenge with characterizing the nasopharyngeal 

resistome is the low microbial biomass and high content of human host DNA 60. Prior to the 

main study in paper II, an optimization protocol for DNA extraction and library preparation was 

developed, with a key emphasis on depleting human DNA and recovering maximum amounts of 

microbial DNA 63. Using this protocol, ARGs were identified in almost all (∼95%) of the 

nasopharyngeal samples in the main cohort. Our results suggest that the nasopharynx of preterm 

infants harbors a rich and diverse resistome, which undergoes dynamic changes with age during
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the first six months of life and can be negatively affected by prenatal and postnatal antibiotic 

exposure. The majority of the variation observed in the resistome composition of preterm infants 

was attributed to inter-individual differences, thus highlighting the importance of longitudinal 

time-series studies. Considering the disproportionate contribution of respiratory pathogens that 

colonize the respiratory tract (including the nasopharynx) to AMR-associated deaths 15, our study 

could serve as a baseline for future research focusing on this relatively understudied yet critical 

reservoir of ARGs and pathogens. 

There is a swift increase in awareness regarding the impact of antibiotics on emergence and 

evolution of AMR in pathogenic bacteria, the disruption of microbial communities (dysbiosis), 

and potential health-related risks at the population level. Currently, most hospitals enforce 

antimicrobial stewardship programs (ASPs) to optimize the usage of antibiotics, reducing the 

development of AMR and improving patient outcomes. However, these programs have not yet 

incorporated considerations of these ecological side effects of antibiotic therapies, primarily due 

to the absence of such information 70. This thesis provides evidence-based data on these ecological 

consequences, highlighting their relevance for antimicrobial stewardship practices. Additionally, 

our results underscore the importance of weighing these side effects against the potential clinical 

benefits of antibiotic therapies. For instance, in Paper I, adult subjects from a multicenter, 

randomized, double-blind, placebo-controlled trial in Norway, known as the AIM study, were 

analyzed. This study found no significant clinical benefits of prolonged amoxicillin therapy in 

patients suffering from chronic low back pain and Modic changes. Our findings reinforce the lack 

of support for prolonged antibiotic therapy for these conditions and also stress the need to consider 

such risks in relation to other conditions that receive minor or no clinical benefits from 

prolonged antibiotic therapy. On the other hand, the cohort in our study II, i.e., preterm infants, 

being especially vulnerable, are frequently exposed to antibiotic interventions within the first few 

days or weeks following birth due to the potential risk of early-onset neonatal sepsis. In Norway, 

approximately 75% of preterm infants (<32 weeks of gestation) receive empirical antibiotics 

within 72 hours after birth due to suspicions of early-onset neonatal sepsis 239. However, only 1 in 

100 is estimated to develop a confirmed infection, suggesting an unnecessary over-prescription of 

antibiotics in preterm infants. Emerging research suggests that early antibiotic-induced 

perturbations to the microbiome and resistome, particularly during this critical developmental 
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phase, may have far-reaching consequences such as asthma development 55,240,293,294. Additionally, 

early and prolonged antibiotic exposure in very preterm infants has been associated with adverse 

outcomes such as bronchopulmonary dysplasia 295 and late-onset sepsis 296, with conflicting results 

regarding necrotizing enterocolitis 297-299 and mortality 296. Therefore, the risk-benefit balance of 

antibiotic use in this vulnerable population necessitates more careful consideration. In general, 

the development and enrichment of the resistome may cause treatment failure, the spread of 

AMR, limited therapeutic options, and increased healthcare costs. 

The microbiome in humans is complex and diverse, exhibiting distinct types and abundances of 

microbes and ARGs according to the different body sites and maturity stage 49. Despite 

differences in body sites sampled, baseline microbiome composition, antibiotic dosage and 

duration, maturity of the microbiome (developing vs stable), diet, environment, and the co-

morbidities of the cohorts in Papers I and II, the results highlight the detrimental ecological 

consequences of antibiotics on the human resistome. Also, in both studies, it was found that the 

resistomes are structured by the composition of the microbiome and that they exhibit 

considerable variation among individuals. Adults exhibited greater inter-individual variations in 

the resistome, which is expected due to the stability, complexity, and diversity of the adult gut 

microbiome (Paper I) compared to the developing microbiome in the nasopharynx of preterm 

infants (Paper II) (R2: 79% vs 30%). This is in line with studies from gut microbiomes showing 

individualized resistome responses to antibiotic therapies in both infants and adults 67,121,280,300. 

Future studies will benefit from characterizing the respiratory resistome and the impact of 

antibiotics in other age groups, including term infants, adults, and older adults. 

Driven by the growing number of metagenomic-based investigations across different reservoirs 

of ARGs - including humans, animals, and environmental sources - there is a strong demand for 

an easy-to-use and intuitive bioinformatics platform. Such a platform would enable researchers 

to easily understand and interpret the large and complex datasets generated from these studies 
269. At present, most of these studies and their data analysis are mainly exploratory in nature. It is 

recommended to use multiple methods and tools for analysis and visualization rather than relying 

on a single method 184. To address these needs, a user-friendly, web-based tool called 

ResistoXplorer was developed and launched, detailed in Paper III of the thesis. This tool assists 
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researchers in performing visual, statistical, functional, and exploratory analysis of resistome 

data without requiring prior programming expertise. Users can choose from a wide array of well-

established methods, as well as more advanced compositionally appropriate (CoDa) methods, 

and explore results in real-time to gain a better and more comprehensive understanding of their 

data. ResistoXplorer also enables data and knowledge-driven integrative analysis of resistome 

and microbiome datasets using a variety of sophisticated statistics-based methods and a powerful 

network-based visual analytics system. Such a tool suite facilitates more complex analyses, 

typically restricted to experienced bioinformaticians, leading to the democratization of resistome 

data analysis. Over the past two years, the web server has processed over 13,000 data analysis jobs 

submitted by more than 3,000 users worldwide. The current features and the functional annotation 

information from supported ARG databases have been actively updated, as well as new functions 

added based on user feedback and advancements in the field. 

Several functions and methods supported by ResistoXplorer were utilized for the analysis of 

resistome data in our clinical studies (Papers I and II). However, it is important to acknowledge 

that certain analyses exceeded the current capabilities of ResistoXplorer due to the complex 

experimental designs, including complex metadata, present in our longitudinal studies. 

Additionally, while our tool does support various standard and advanced statistical methods, it is 

worth noting that these methods may not be entirely suitable for analyzing longitudinal (time-

series) data due to specific characteristics associated with such data. These characteristics comprise 

a low number of replicates, varying numbers of samples per subject, differing numbers of subjects 

per group, samples collected at inconsistent time points, and within-subject correlation resulting 

from repeated measures 206. Consequently, in both of our longitudinal clinical studies, more 

sophisticated statistical methods were opted for, specifically mixed-effects models implemented 

in R packages. By utilizing these models, it was possible to effectively evaluate the true impact of 

antibiotic exposure on ARG diversity while appropriately adjusting for covariates and accounting 

for within-subject correlation. Looking ahead, our future plans entail further enhancing 

ResistoXplorer by incorporating additional novel and robust statistical methods, as well as 

advanced data visualization techniques tailored for the time-series (longitudinal) analysis of 

resistome data. In the long term, the aim is to integrate an upstream sequence analysis pipeline that 

directly links to downstream analysis, enabling raw sequencing data processing and ARG 
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annotation. The goal is that ResistoXplorer will become a one-stop-shop for high-throughput 

bioinformatics analysis and interpretation of metagenomics resistome data. For now, it is essential 

to acknowledge that the success and validity of the results obtained from any downstream analysis, 

including those performed in ResistoXplorer, are significantly influenced by the 

comprehensiveness and quality of available ARG databases, upstream bioinformatics tools and 

analysis parameters 18,20,111. 

In the methodological considerations section, possible biases introduced from sampling to 

sequencing steps were discussed. Other steps in the bioinformatic analysis of resistome data 

deserve further consideration, as they introduce a certain degree of uncertainty (Papers I and II). 

For instance, our analysis relied primarily on homology-based alignment of sequences with known 

ARGs in a reference database. This approach has inherent limitations, such as potentially missing 

undiscovered ARGs or those not present in the reference ARG database. Read-based profiling of 

short reads can be prone to incorrect mapping based on sequence homology and may lead to false-

positive identification of ARGs 301. However, such an approach provides higher sensitivity for 

identifying low-abundance ARGs compared to assembly-based approaches, which are 

computationally intensive and time-consuming 18,20. Additionally, the assembly of 

nasopharyngeal samples (as in paper II) remains a significant challenge due to their low-

microbial-biomass nature, which can potentially obscure the detection of a lower number of 

microbial reads 60. Furthermore, sequence similarity-based searches with stringent conservative 

coverage thresholds were used to identify ARGs from short-reads by aligning them to reference 

sequences. This approach was employed to minimize false positives and over-classification of 

ARGs. The ARG is only considered to be “present” in a sample only if at least 80% of the 

nucleotides in a reference ARG sequence must have at least one read perfectly aligned to it. This 

approach, widely used in numerous publications and computational pipelines, strikes a balance 

between efficiency, sensitivity, and stringency 20,111,151,164,302. However, this method may result in 

missing actual ARGs with coverage below the defined thresholds or those sharing low similarity 

compared to the reference sequence, potentially affecting the number and type of ARGs detected. 

Alternatively, recent approaches like fARGene 174 and DeepARG employ machine learning to 

improve sensitivity and accuracy in identifying new ARGs with limited sequence similarity 

directly from short reads. 
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Additionally, in Papers I and II, our reads were annotated using one of the most comprehensive, 

regularly updated ARG databases, i.e., CARD. However, it is important to note that the CARD 

database, as any other database, is biased towards ARGs characterized in clinically associated 

pathogens and commensals that have been experimentally validated, limiting the ability to detect 

environmental and non-clinical ARGs or emerging resistance mechanisms 179. For instance, in 

Paper I, it was observed that the resistome of the adult gut microbiome, cataloged using a sequence-

unbiased approach (functional metagenomics), only shared a median identity of 33% with the 

reference protein sequences in the CARD and AMRFinder database. This discrepancy highlights 

a significant gap between the actual diversity of ARGs and the known diversity captured by the 

databases. Moreover, the CARD database includes certain chromosomal point mutations and 

presumptive ARGs, which may not reliably confer resistance based solely on short-read 

sequencing data and are less likely to be directly involved in clinical AMR. Consequently, to 

minimize the inclusion of false positives in the studies, the decision was made to exclude these 

ARGs from the downstream analyses 29. Conversely, it is important to note that not all ARGs 

identified in metagenomes pose the same risk to public health, as many ARGs are ubiquitous 

among bacteria in various environments. For instance, efflux pumps, which are abundantly found 

in the nasopharyngeal microbiome of preterm infants (Paper II), are widely distributed in bacteria 

and serve diverse biological functions beyond conferring resistance 303,304. Some studies do not 

strictly categorize them as ARGs, considering their primary role in homeostasis and cell-cell 

signaling 305,306. While this is a valid approach, it has the disadvantage of overlooking an important 

class of ARGs. 

Recent efforts have focused on evaluating the human health risks associated with different types 

of ARGs 304,307,308. Following an omics-based risk framework proposed by Zhang et al., ARGs 

enriched in human-associated environments, mobile (present on MGEs), and harbored by 

ESKAPE pathogens, have been classified as high-risk ARGs (Rank I) 304. In Paper II, this 

information was utilized to identify potential high-risk ARGs in the nasopharynx microbiome of 

preterm infants during their first six months of life. This study revealed the presence of a small 

proportion of potential high-risk ARGs at multiple time points in the nasopharynx of almost all 

preterm infants, irrespective of antibiotic treatment. However, these were classified as potentially 
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high-risk due to the lack of detailed genomic context information, including mobility and host 

pathogenicity, resulting from our use of direct profiling of short-reads approach. As the field 

progresses, more research efforts are anticipated to concentrate on the timely and cost-effective 

detection of these high-risk or critical ARGs among the numerous thousands identified in large 

and complex metagenomes. 

Metagenomic sequencing data and their analysis have the potential to contribute to antibiotic 

stewardship in clinical settings 111,309. However, there are several limitations that currently restrict 

its application as a surveillance or diagnostics tool, including the lack of high-resolution 

information on the genetic context of ARGs and individual resistomes 60,310, longer turnaround 

time for processing clinical samples into actionable results, and the need for significant sample 

handling expertise. Advancements in sequencing technologies, particularly long-read and 

chromosome conformation capture (Hi-C) sequencing, have the potential to revolutionize the field 

by enabling the analysis of ARGs in the context of their genetic surroundings, allowing for the 

linkage of ARGs, mobile genetic elements (MGEs), and bacterial hosts 311. This capability would 

enhance our understanding of the spread and transmission of ARGs and the dynamics of resistomes 

within and between microbial communities. Recent efforts have focused on the application of 

long-read sequencing technologies, such as Nanopore and SMRT sequencing, for rapid and 

effective surveillance of ARGs and as point-of-care diagnostic tools in clinical settings 309,312. For 

instance, studies have demonstrated the use of MinION (Oxford Nanopore Technologies) 

sequencing-based clinical metagenomics to accurately characterize and analyze pathogenic gut 

bacteria associated with sepsis or necrotizing enterocolitis (NEC), along with their corresponding 

resistome profiles, within just 5 hours using fecal samples 313. Looking into the near future, it is 

highly likely that the integration of resistome data generated from long-read sequencing into AI 

models will greatly enhance the metagenomic surveillance of ARGs in clinical settings 309. This 

approach will likely play a significant role in guiding antibiotic stewardship and potentially 

accelerate appropriate antibiotic administration (personalized medicine) in time-critical settings 

such as NICUs, and informing future clinical decision-making around AMR. Furthermore, the 

development of bioinformatics tools and pipelines, optimization of ARG databases, and 

standardization of methodologies are still necessary to improve the reliability of metagenomic 

resistome data and its analysis, thereby maximizing its potential for AMR surveillance 60. 
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Conclusion 

The work in this thesis broadens our understanding of AMR from an ecological perspective by 

comprehensively profiling the landscape of ARGs (resistomes) in the human microbiome using 

metagenomic sequencing approaches. Several laboratory protocols, along with various 

bioinformatics tools, statistical and integrative analysis methods, as well as visualization 

approaches, were utilized in the clinical studies (Papers I and II) to investigate the impact of 

antibiotic therapies on human resistomes. Though Papers I and II investigate different antibiotic 

regimens with varying degrees of perturbation, they share a common theme: understanding how 

selective pressures induced by antibiotic exposure affect the emergence, transmission, and 

evolution of AMR from an ecological perspective. The findings underscore the need for 

reinforced surveillance of antibiotic therapies and the reduction of unnecessary antibiotic 

exposure. This knowledge is invaluable for the design of personalized prescription strategies and 

rational administration guidelines, and could potentially strengthen antibiotic stewardship 

programs. In addition to providing a common framework for understanding the collateral impact 

of antibiotics, these papers utilize whole shotgun metagenomics analysis to elucidate the adverse 

ecological effects of antibiotic therapies on the human microbiome and resistome, including 

dysbiosis and the emergence and development of AMR. This thesis provides, for the first time, a 

comprehensive characterization of the development of the nasopharyngeal resistome in infants, 

an understudied reservoir for the emergence and spread of ARGs. 

Interpreting and understanding the large and complex datasets generated from any metagenomic-

based resistome studies remains a key bottleneck, requiring substantial computational tools and 

bioinformatics expertise. In the work of this thesis, this gap was addressed by introducing the 

development of a user-friendly, web-based bioinformatics tool, ResistoXplorer. This tool allows 

researchers to conveniently visualize, analyze, and explore their resistome datasets, promoting 

hypothesis generation and knowledge discovery in the field. Several statistical and integrative 

analysis methods, as well as visualization approaches supported by this tool, were utilized in our 

clinical studies (Papers I and II). The development of such high-throughput analysis tools promotes 

the application of metagenomics-based resistome investigations for surveillance, enhancing our 
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understanding of AMR and its dynamics in humans, animals, and environmental 

microbial communities. 

It is expected that the data, results, and bioinformatics resources generated as part of this thesis 

may provide valuable insights and contribute to the field, enhancing our understanding and 

facilitating future studies in this area to help combat the global threat of AMR. 
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Differential response to prolonged amoxicillin treatment: long-term resilience of 
the microbiome versus long-lasting perturbations in the gut resistome
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ABSTRACT
The collateral impact of antibiotics on the microbiome has attained increasing attention. However, the 
ecological consequences of long-term antibiotic exposure on the gut microbiome, including anti
biotic resistance, are still limited. Here, we investigated long-term exposure effects to amoxicillin on 
the human gut microbiome and resistome. Fecal samples were collected from 20 patients receiving 
3-months of amoxicillin or placebo treatment as part of a Norwegian multicenter clinical trial on 
chronic low back pain (AIM study). Samples were collected at baseline, last day of treatment, and 
9 months after antibiotic cessation. The abundance and diversity of microbial and resistome composi
tion were characterized using whole shotgun and functional metagenomic sequencing data. While 
the microbiome profiles of placebo subjects were stable over time, discernible changes in diversity 
and overall microbiome composition were observed after amoxicillin treatment. In particular, health- 
associated short-chain fatty acid producing species significantly decreased in proportion. However, 
these changes were short-lived as the microbiome showed overall recovery 9 months post-treatment. 
On the other hand, exposure to long-term amoxicillin was associated with an increase in total 
antimicrobial resistance gene load and diversity of antimicrobial resistance genes, with persistent 
changes even at 9 months post-treatment. Additionally, beta-lactam resistance was the most affected 
antibiotic class, suggesting a targeted response to amoxicillin, although changes at the gene level 
varied across individuals. Overall, our results suggest that the impact of prolonged amoxicillin 
exposure was more explicit and long-lasting in the fecal resistome than in microbiome composition. 
Such information is relevant for designing rational administration guidelines for antibiotic therapies.
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Introduction

Global health-care systems are under severe threat 
due to the increasing prevalence of antibiotic- 
resistant pathogens, causing treatment failure, higher 
mortality, and increased economic burden.1,2 

Imprudent use of antibiotics is one of the significant 
drivers for the emergence and spread of antibiotic 
resistance.3–6 Increased consumption of antibiotics 
may not only affect us at the individual patient level 
but may also lead to greater resistance at regional, 
national and global levels.7

The advancements in next-generation sequencing 
technologies have led to an increased understanding 
of the gut microbiome and its role in modulating 
human health and physiology.8,9 Our gut microbiome 

is a complex ecosystem of microbial communities and 
an important well-known reservoir for a vast number 
of antibiotic resistance genes (ARGs). Moreover, it 
has been shown to contribute to the spread of resis
tance by promoting the horizontal gene transfer 
(HGT) or exchange of ARGs to opportunistic patho
genic bacteria.10–13 Since the human gut microbiome 
is a crucial player in the emergence and dissemination 
of antibiotic resistance, it is important to characterize 
the landscape of antibiotic resistance (resistome) in 
this microbial environment to contribute to persona
lized antimicrobial stewardship strategies.

Antibiotics can target not only the infective patho
gen but also commensal and opportunistic bacteria 
inhabiting the human gut. Such collateral off-target 
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effects can disrupt the composition or diversity of the 
gut ecosystem and are associated with significant 
health consequences.14–17 Antibiotic administration 
can also influence the gut microbiome by selecting 
antibiotic-resistant bacteria,18 increasing the abun
dance of particular ARGs19,20, and altering the resis
tome composition.21,22 Antibiotic exposure not only 
gives rise to resistance to the antibiotic used but also to 
other classes of antibiotics via cross-resistance or 
selection of co-localized genes that confer resistance 
to multiple antibiotics.23,24 In addition, the use of 
antibiotics also affects the dynamics of overall HGT, 
and thus enables the global spread of resistance by 
promoting the dissemination of ARGs located on 
mobile genetic elements (MGEs) within and between 
bacterial species.25 These disruptive effects on the 
microbiome and resistome can be transient or persis
tent, depending upon the antibiotics class, mode of 
action, dosage, duration, pharmacokinetic properties, 
and baseline taxonomic composition.15,18,22,26–28

Amoxicillin is one of the most commonly pre
scribed antibiotics worldwide, used to treat common 
bacterial infections in the ear, nose and throat.29 It is 
a broad-spectrum beta-lactam antibiotic that inter
feres with bacterial cell wall synthesis. So far, several 
culture and sequencing-based studies have shown that 
the adult human gut microbiome is generally resilient 
toward amoxicillin intervention, with little or no 
impact on its microbial composition.30,31 However, 
these studies are largely limited to taxonomic charac
terization and cannot elucidate the repertoire of 
ARGs, as they are mainly based on 16S rRNA gene 
amplicon sequencing. For identifying the landscape of 
antibiotic resistance (repertoire of ARGs) in micro
biomes, whole metagenomic sequencing stands as the 
most powerful high-throughput method. This 
approach was recently used to assess the impact of 
5-days amoxicillin therapy on the adult microbiome 
and its associated resistome. Although the results 
indicated a substantial enrichment of multiple classes 
of ARGs in the human gut due to amoxicillin treat
ment, most of the results were based on predictive 
analysis, and only one sample was analyzed using 
whole metagenomic sequencing.32 The impact of dif
ferent class of antibiotics has also been examined, but 
primarily focusing on short-term (<7 days) 
treatments.18,20–22,30,32,33 For prolonged antibiotic 

therapy regimens, the effects on the human gut 
microbiome and resistome remain largely unknown.

Conditions for which prolonged amoxicillin 
treatment are generally used include recurrent oti
tis media, prophylaxis of urinary tract infection, 
and chronic respiratory conditions. Long-term 
amoxicillin treatment is also used to treat patients 
with chronic low back pain and vertebral endplate 
changes (Modic changes) visible on magnetic reso
nance imaging. The underlying rationale is a theory 
that Modic changes are often due to a low-grade 
bacterial infection.34 However, a recent multicen
ter, randomized, double-blind, placebo-controlled 
trial (the AIM study)35 concluded that the 3 months 
of amoxicillin use did not provide a clinically sig
nificant benefit in patients with chronic low back 
pain and Modic changes. Such prolonged antibiotic 
therapies are of special concern as the pressure in 
selecting and promoting the development of anti
biotic resistance is expected to be higher than for 
short-term therapies.

In the present study, we have utilized next- 
generation deep shotgun sequencing and func
tional metagenomics to investigate the prolonged 
consequences of long-term antibiotic treatment on 
the gut microbiome and resistome of patients with 
chronic low back pain and Modic changes as com
pared to placebo. Here, we have examined the 
changes in the abundance, diversity and composi
tion of microbial taxa and ARGs as well as explored 
the potential associations between them by analyz
ing the fecal samples from the subset of patients 
included in the AIM study. Overall, our results 
suggest that the impact of amoxicillin was severe 
yet short-lived in the microbiome composition 
compared to the changes in the resistome, which 
were more explicit and persistent, leading to a more 
diverse and abundant resistome even after 9 months 
post-antibiotic exposure.

Materials and methods

Ethics statement

The clinical trial was ethically approved by the 
regional Committees for Medical Research Ethics 
in Norway (2014/158/REK sør-øst) and the 
Norwegian Medicines Agency (SLV, reference 
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number 14/01368-11, EudraCT Number: 2013– 
004505-14). It was registered at ClinicalTrials.gov 
(NCT02323412) on December 23, 2014. The risks 
and benefits of the study were explained, and writ
ten informed consent was obtained from all the 
participants.

Study design and participants

To investigate the impact of prolonged broad- 
spectrum antibiotic (amoxicillin) exposure on the 
gut microbiome and resistome, we have included 20 
patients who were randomly assigned to either amox
icillin (n = 8) or the placebo (n = 12) group (Table 1). 
The patients were recruited from a larger double- 
blind, placebo-controlled, randomized, multicenter 
trial (The AIM study), testing the efficacy of antibiotic 
treatment in 180 patients with chronic low back pain 
and Modic changes.35 The 20 selected patients were 
those enrolled at two of the study centers, Oslo 
University Hospital and Østfold Hospital, from 
April 2016 to September 2017. Fourteen patients did 
not provide samples for all time points and an addi
tional two patients in the placebo group took antibio
tics during the trial. These were excluded from the 
study. In this study, patients were relatively healthy 
adult human subjects aged between 27 and 62 y 
(mean ± SD: 45 ± 11), 15 (68%) were women, and 
their BMI ranged from 18 to 35 kg/m2 (mean ± SD: 
24 ± 4). At baseline, 6 patients (27%) smoked while 8 
(36%) were former smokers. All 20 patients in the 
amoxicillin group were compliant, i.e., took more 
than 80% of their study medication. Two patients in 
the amoxicillin group and four in the placebo group 
had gastroenteritis/diarrhea during the 3-month 
treatment period. The detailed inclusion and exclu
sion criteria for the main trial have already been 
described in the previously published protocol.36 In 
brief, participants had not taken any antibiotics 1 
month before treatment intervention, nor did they 
travel abroad for a period exceeding 4 weeks. These 
patients were treated thrice a day with an oral dose of 
750 mg amoxicillin or placebo for 3 months. All 
patients and research staff were blinded, and study 
medication was encapsulated to secure equal taste and 
smell. Fecal samples were collected at three time 
points: before the antibiotic treatment (baseline), 
post-treatment (3 months after the start of interven
tion), and 9 months (12 months from baseline) after 

the cessation of the treatment. In total, 60 fecal sam
ples were collected in sterile tubes and stored at −80°C 
within 24 h until further processing and analysis. The 
basic metadata information for samples is also pro
vided as Supplementary Table S8.

DNA isolation and metagenomic sequencing

The microbial DNA from the fecal samples was 
extracted manually using the PSP® Spin Stool 
DNA Kit (Stratec molecular, Berlin, Germany) as 
per the manufacturer’s protocol. The quantity and 
quality of extracted DNA were accessed using 
a NanoDrop™ 2000c spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA), Qubit 
(Thermo Fisher Scientific) and agarose gel electro
phoresis. Libraries for shotgun metagenomic 
sequencing were prepared using the Illumina 
Nextera Flex DNA library prep kit according to 
the manufacturer’s instructions. The DNA libraries 
were then sequenced with 150-nucleotide-long 
paired-end reads on an Illumina HiSeq 3000 plat
form (Illumina Inc., San Diego, CA, USA) at the 
Norwegian Sequencing Center (Oslo, Norway).

Bioinformatics preprocessing

Low-quality and adapter sequences from paired-end 
reads were filtered using Trimmomatic37 (v.0.35) with 
the following parameters: ILLUMINACLIP: Nextera 
PE:2:30:10 LEADING:3 TRAILING:3 SLIDING 
WINDOW:4:15 MINLEN:36. After quality filtering, 
the human DNA contaminant sequences were dis
carded from all samples by filtering out the reads 
that mapped against the human reference genome 
(GRch38, downloaded from NCBI GenBank) using 
Bowtie238 (v.2.3.4) with parameters q -N 1 -k 1 – fr – 
end-to-end – phred33 – very-sensitive – no- 
discordant. The quality of raw and clean reads was 
assessed using FastQC39 (v.0.11.8).

Microbiome and resistome profiling

To investigate the microbial community composi
tion, the clean, high-quality reads were subjected to 
taxonomic classification using MetaPhlAn 3.040

containing ~17000 reference genomes of bacteria, 
archaea, eukaryotes and viruses. The resistome 
annotation of metagenomic reads was performed 
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by mapping them against the nucleotide_fasta_pro
tein_homolog_model from the Comprehensive 
Antibiotic Resistance Database (CARD)41 (v.3.0.9) 
antimicrobial resistance (AMR) database using 
Bowtie2 (v.2.3.4) with parameter – very-sensitive- 
local. Additionally, the ARGs that are not confi
dently expected to confer resistance based solely 
on a short-read marker were removed from further 
analysis as described by D’Souza et al.42 For anno
tation of ARGs, a coverage threshold of 80% (100% 
nucleotide homology with reference across 80% of 
target gene) was used. The mapped reads were 
filtered from unmapped reads, sorted and indexed 
using Samtools43 (v.1.9). The number of read 
counts mapped for each ARG was calculated 
using Bedtools44 (v.2.27.1). The counts were then 
normalized for differences in both gene lengths and 
bacterial abundances by calculating reads per kilo
base reference per million bacterial reads (RPKM) 
values for every sample. The relative abundance of 
ARGs for each sample was estimated by dividing 
the RPKM by the sum of the RPKM for each sam
ple. In addition to gene level, we also summed the 
RPKMs to higher functional levels, as annotated in 
their respective databases.

Functional metagenomics

Three functional metagenomic libraries were con
structed from pooled stool DNA of amoxicillin- 
treated patients, one for each time point, according 
to the published protocol,45 with minor modifica
tions. In brief, each metagenomic library was cloned 

into pZE21 (kanamycin-resistant) and screened 
individually on Mueller–Hinton agar plates against 
14 antibiotics (amoxicillin–clavulanate, aztreonam, 
carbenicillin, cefepime, cefoxitin, ceftazidime, colis
tin, meropenem, penicillin G, piperacillin, tigecy
cline, amoxicillin, ciprofloxacin and gentamicin), 
using the selective concentrations listed in 
Supplementary Table S2. All plates were incubated 
aerobically at 37°C for 24 h. In addition, a negative 
control plate of E. coli clones transformed with 
unmodified pZE21 (without metagenomic insert) 
was plated for each antibiotic selection to confirm 
that the concentration of antibiotic used completely 
inhibited the growth of clones with only pZE21. The 
functionally selected colonies were subsequently col
lected from the agar plate using an L-shaped cell- 
spreader and stored at – 80°C. To isolate the meta
genomic inserts, the frozen stocks were then thawed, 
subjected to cell lysis, and pelleted by centrifugation 
at 15,000 × g for 2 min. The supernatants were then 
collected and used as a template for PCR amplifica
tion of metagenomic DNA fragments. These were 
further purified using the MinElute PCR 
Purification Kit (Qiagen) and prepared for sequen
cing using the NEXTFLEX® Rapid DNA-Seq Kit 2.0 
(PerkinElmer).

The samples were sequenced on an Illumina 
NovaSeq platform (2 × 150 bp reads), and the 
quality of sequenced reads was accessed using 
FastQC. Similar to shotgun metagenomic data, 
quality filtering of sequenced reads was also per
formed using Trimmomatic with a slight change in 
the MINLEN:60 parameter. These quality-trimmed 

Table 1. Patient Demographics table.

Amoxicillin (n = 8) Placebo (n = 12)

Age, mean (SD) 41.0 (11)  46.6 (10)  

Women (%) 7 (88%) 8 (67%)
BMI, mean (SD) 24.6 (4.7)  24.4 (4.2) 
Smoking (%)

Current smokers 1 (13%) 5 (42%)
Former smokers 4 (50%) 4 (33%)

Never smoked 3 (38%) 3 (25%)
missing 0 2 (17%)

Medications other than study medication (%)
Probiotics 6 (75%) 2 (17%)
Lipid-lowering drugs 1 (13%) 1 (8%)

Adverse events (%)
Diarrhoea/gastroenteritis during 0–3 months’ follow-up 2 (25%) 4 (33%)

Diarrhoea/gastroenteritis during 3–12 months’ follow-up 3 (38%) 1 (8%)
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reads for each selection were assembled into contigs 
using metaSPAdes46 (v.3.13.0). Quality assessment 
of assembled contigs was done using MetaQUAST 
from QUAST47 (v.5.0.2) with (-m 1000) parameter. 
Notably, the selections were excluded from the 
analysis if the number of contigs assembled was 
more than tenfold of the number of colonies on 
the selection plate. Contigs with a length shorter 
than 500 bp were also filtered out. Finally, the open 
reading frames (ORFs) were predicted from the 
remaining contigs using the Prodigal48 (v.2.6.3) 
software. These ORFs were annotated hierarchi
cally by searching them first against the BLAST- 
based (ResFinder,49 CARD,41 AMRFinder-Prot50) 
ARG databases, and then the residual ORFs were 
annotated using HMM-based (AMRFinder- 
hmm,50 Resfams51) ARG databases using publicly 
available resAnnotator.py pipeline (https://github. 
com/dantaslab/resAnnotator). The objective for 
such sequential annotation of ARGs was to first 
identify perfect hits to known resistance determi
nants through BLAST-based databases (with a 
high percent identity (>95%) and coverage (>95%) 
threshold) and afterward detect the variants of 
known resistance determinants using HMM-based 
databases. Further, FASTA files of all the annotated 
ARG sequences from all antibiotic selections were 
concatenated and perfectly identical ARGs were 
merged into one sequence using CD-HIT52 

(v.4.8.1) with options: -c 1.0 -aS 1.0 -g 1 -d 0. 
The percent identity of all ARGs was determined 
using BlastP query against both a custom database 
that combined all ARG proteins from CARD and 
AMRFinder, and the database provided by NCBI 
for non-redundant proteins (nr database, retrieved 
January 25, 2022). The best local hit identified was 
then used for a global alignment using the needle 
program with the following non-default para
meters: -gapopen-10 -gapextend = 0.5. The detailed 
protocol on functional validation of novel resis
tance gene along with its amino acid and nucleotide 
sequence is presented in Additional file S2.

The putative MGEs were detected from func
tional metagenomic assemblies through string 
searches to one of the following keywords in their 
Pfam and TIGRFAMs annotations: ‘transposon’, 
‘plasmid’, ‘transposase’, ‘integron’, ‘conjugative’, 
‘integrase’, ‘recombinase’, ‘conjugal’, ‘mobilization’ 
or ‘recombination’, as previously described.53

Statistical analysis and data visualization

Statistical analysis was accomplished in 
R (v.3.6.4). The graphical illustrations were 
mainly made using ggplot2 (v.3.3.5) R package 
with post-editing in Adobe Illustrator (v.16.0.0). 
Diversity analysis (α- and β-diversity) were per
formed using the vegan (v.2.5.7) and phyloseq 
(v.1.34.0) packages. The changes in α-diversity 
over time points in groups were statistically 
evaluated using lnear mixed-effects (LME) 
model and Tukey’s HSD post hoc test using 
R nlme package. β-Diversity was conducted on 
centered log-ratio (CLR) transformed species 
and ARG relative abundance data, and principal 
component analysis (PCA) ordination techni
que was used to further understand which 
metadata variables were associated with the dis
persion of samples microbiome and resistome 
compositions, respectively. Permutational mul
tivariate analysis of variance (PERMANOVA) 
test by adonis function (vegan R package) was 
used to determine the statistical significance of 
β-diversity. The homogeneity of multivariate 
dispersion between treatment groups and time 
points was evaluated prior by permutational 
analysis of multivariate dispersion 
(PERMDISP) test with function betadisper 
(vegan). The dispersion of the data was homo
genous at all time points within the treatment 
groups. Patient_ID was used as a random effect 
or strata in the models to account for interin
dividual variation present in the dataset. The 
compositional shifts were quantified and com
pared across individuals or pairs using Bray– 
Curtis and Jaccard distance metrices. The 
Jaccard distance accounts for the presence/ 
absence of features (species or ARGs) and is 
thus more sensitive to changes driven by rare 
features. While Bray–Curtis distance accounts 
for differences in the relative abundance of fea
tures. For comparisons of group differences, 
Wilcoxon test using wilcox.test function was 
applied with paired = T/F, as appropriate. 
Differentially abundant features between time 
points within treatment groups for all the data
sets were identified using LEfSe54 algorithm. 
Enterotypes were identified using the Dirichlet 
multinomial mixture (DMM) models approach 

GUT MICROBES 5

https://github.com/dantaslab/resAnnotator
https://github.com/dantaslab/resAnnotator


using the DirichletMultinomial (v.1.38.0) pack
age. Procrustes analysis was performed to 
determine the association or effect of underly
ing bacteriome on the resistome. The sym
metric Procrustes correlation coefficients and 
significance were retrieved through the ‘protest’ 
function from the vegan package with 999 per
mutations. Heatmaps and synteny maps were 
generated using the Pheatmap (v.1.0.12) and 
Gggenes (v.0.4.1) R package, respectively. The 
P-values below or equal to 0.05 were considered 
significant and corrected for false discovery rate 
(FDR) where appropriate using Benjamini– 
Hochberg (BH) method.

Results

Detrimental short-term alterations in the diversity 
and composition of the human gut microbiome 
upon prolonged amoxicillin therapy

To examine the post-treatment and long-term 
taxonomic response to prolonged amoxicillin expo
sure, total DNA was extracted from fecal samples 
and sequenced on Illumina platform, resulting in 
~200 Gb of raw sequencing data. From 60 fecal 
samples, we obtained a total of ~1.5 billion raw 
sequences with a number of reads ranging from 
11.3 to 41.6 million (M) per sample with an average 
of 25.1 M reads. Overall, 49.5% (0.72 billion in 
total) of high-quality clean sequences with 
a number of reads ranging from 5.07 to 23.2 M 
per sample with an average of 12 M reads were 
classified as bacterial (Supplementary Table S1). 
In most of the samples, Bacteroidetes (mean 
65.31%; SD 15.75%) and Firmicutes (mean 
29.53%; SD 13.94%) were the most abundant 
phyla, followed by Actinobacteria (mean 2.94%; 
SD 3.57%) and Proteobacteria (mean 1.72%; SD 
4.22%). These four phyla had a combined relative 
abundance of 99.5% across samples. At genus level, 
the microbiome composition was primarily domi
nated by Bacteroides (mean 39.06%; SD 17.68%), 
with Prevotella (mean 11.04%; SD 22.40%) and 
Alistipes (mean 7.87%; SD 6.37%) being 
the second and third most abundant genera. 
Parabacteroides, Eubacterium, Blautia, Roseburia 

and Faecalibacterium were the other most preva
lent genera identified in all the patients at all time 
points. In total, 118 different genera (range: 41– 
71 per patient) were identified, with 16 common 
genera present across all patients.

The overall individual microbial profiles did not 
differ substantially following antibiotic exposure, 
and most changes observed varied from individual 
to individual (Figure 1a & Supplementary Table S6). 
However, a common response to amoxicillin was 
observed in the treatment group. Indeed, the genera 
Ruminococcus, Oscillibacter and Lachnospira were 
decreased considerably in their relative abundances 
after amoxicillin intake, while the proportion of 
Bacteroides and Lachnoclostridium increased signifi
cantly in majority of the individuals. At higher taxo
nomic levels, we also observed changes in the 
proportion of two bacterial families, i.e., 
Bacteroidaceae and Oscillospiraceae, upon amoxicil
lin treatment (Supplementary Figure 1). In contrast, 
no substantial changes at genus and higher taxo
nomic levels were identified in the overall gut micro
biome composition between any time points in the 
placebo group, suggesting the relative stability of the 
gut microbiome without antibiotic perturbations. 
Despite differences, enterotyping analysis using 
Dirichlet multinomial mixture (DMM) model 
dichotomized all the fecal samples into Bacteroides 
and Prevotella dominant genera based on the simila
rities in the composition of gut microbiome 
(Supplementary Figure 2).

The dominant species detected in the gut micro
biome were typically associated with 1 of the 15 species 
belonging to the Bacteroides, Faecalibacterium, 
Prevotella, Ruminococcus, Eubacterium, Roseburia, 
Alistipes, Coprococcus and Parabacteroides genera 
(Figure 1b). Faecalibacterium prausnitzii, Bacteroides 
vulgatus, Bacteroides uniformis, Alistipes putredinis 
and Parabacteroides distasonis were among the most 
common and abundant species found across most of 
the patients. At the same time, some of the other 
bacterial species such as Prevotella copri, Bacteroides 
dorei and Bacteroides stercoris were predominantly 
present in some fecal samples. These findings were 
coherent with previously published studies, indicating 
the existence of a global core gut microbiome.55 

Nevertheless, the changes in the microbiome compo
sition at the species level were mostly specific for each 
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individual, and no major changes in the dominant 
species were observed after exposure to antibiotics.

Next, we characterized the alteration in α- 
diversity using richness (Chao1) and evenness 
(Shannon) measures. Amoxicillin administration 
led to a significant reduction in species richness 
immediately after treatment cessation (3 months) 
as compared to placebo (LME: adj P = 1.94e-05), 
whereas evenness was not significantly reduced (adj 
P = .20). The species richness returned to baseline 
levels after 9 months post-treatment (Figure 2a). 
Contrarily, no significant alteration in Chao1 and 
Shannon diversity index was observed in the pla
cebo group at all time points, revealing the overall 
stability of α-diversity over time.

Then, to assess the overall changes in the micro
bial community composition and structure, β- 
diversity analysis using principal component ana
lysis (PCA) ordinate with Euclidean distance was 

conducted. PCA plot reveals a significant shift in 
the microbiome composition immediately after 
cessation of amoxicillin intervention (3 months) 
(PERMANOVA: R2 = 0.070; P = .007) (Figure 2b). 
However, the microbial shifts were not discernible 
after 9 months post-treatment (PERMANOVA: 
R2 = 0.02; P = .25). In addition, PERMANOVA 
analysis showed that the inter-individual differ
ences in microbiome profile is greater than the 
effect of antibiotics as the samples from same indi
vidual tend to primarily cluster together 
(Supplementary Figure 3A, PERMANOVA: 
R2 = 0.79; P = .0001; nperm = 999). No significant 
alterations in the overall bacterial community com
position were observed at any time point in the 
placebo group.

Microbial compositional shifts between the base
line and each of the other two time-point samples 
within each individual were quantified using 

Figure 1. Composition of bacterial communities in all patients before exposure (baseline), 3 months later and 9 months after cessation 
of treatment (i.e., 12 months). (a) Bar plot representing the relative abundance of top 30 most abundant bacterial genera in amoxicillin 
(top) and placebo-exposed (bottom) participants. Genera with lower abundance were merged into “Others” category. Source Data: 
Supplementary Table S6. (b) Heat map representing the relative abundance of bacterial species that constituted >1% of the community 
in at least two samples. P precedes the identification number of the patient. (c) Histogram of LDA scores of bacterial taxa that were 
significantly different in abundance between baseline and 3 months in amoxicillin group identified using linear discriminant analysis 
(LDA) combined with effect size (LEfSe) algorithm, are shown, with a cutoff value of LDA score (log10) above 2.0. Bacterial taxa enriched 
in baseline are indicated with a positive LDA score (green) and taxa enriched immediately after the cessation of treatment (3 months) 
are represented by a negative score (red).
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Jaccard distance to determine the extent of altera
tion upon amoxicillin intervention. We observed 
that the average compositional differences between 
baseline and 3-month samples were significantly 
larger in the amoxicillin than in the placebo group 
(0.33 vs. 0.24, respectively, P = .042, Wilcoxon 
rank-sum test) (Figure 2c), though the composition 
in the amoxicillin group did not differ significantly 
from the placebo group at 12 months (0.28 vs. 0.27, 
respectively, P = .73, Wilcoxon rank-sum test).

We also investigated whether the gut micro
biome presents a more common than an individua
lized response to amoxicillin treatment by targeting 
similar sets of species and converging the 

microbiome profile across individuals. In such 
case, we would expect the microbiome profiles to 
become more similar after amoxicillin treatment 
across individuals as a result of the selective stress 
imposed by antibiotics. However, the results from 
our analysis revealed that the average dissimilarity 
of the microbiome composition measured by the 
Jaccard distance between individuals increased sig
nificantly immediately after the amoxicillin treat
ment (0.57 at baseline vs. 0.61 at 3 months, P = .047, 
Wilcoxon signed rank exact test), but 9 months 
after the cessation of the amoxicillin, microbiome 
profiles converged to baseline levels (Figure 2d). No 
significant increase in microbiome divergence was 

Figure 2. Impact of amoxicillin on fecal microbiota diversity and composition. (a) Violin plots reporting the species α-diversity 
measured and compared over time points in amoxicillin and placebo groups using Chao1 (richness; left) and Shannon (evenness; right) 
index, respectively. Each point corresponds to a given sample, and each box span from the first to third quartiles with a horizontal line 
inside the boxes representing the median. Adjusted P values were computed using the LME mixed effect model and the Tukey’s HSD 
post hoc test. Adjusted P values (P): ***P < .001, **P < .01; *P < .05. (b) Principal component analysis (PCA) based on the centered-log 
ratio (clr) transformed species abundance matrix. Each point represents the bacterial microbiome of an individual sample. Different 
symbols indicate different treatment groups; colors indicate different time points in different treatment groups. Ellipses represent 95% 
confidence intervals (CI) around the group clustered centroid. (c) Dissimilarity in microbiome composition between the baseline and 
the other time points, i.e., 3 and 12 months. Each point corresponds to Jaccard dissimilarity calculated between baseline and each of 
the other time point samples of the respective individual. Black horizontal line on the top connects statistically significantly different 
groups within each visit pair (*P < .05; Wilcoxon rank-sum test). (d) β-Diversity boxplots showing the distribution of the Jaccard 
dissimilarity in microbiome profile between individuals at the same time point within each treatment group. Each point is 
a comparison between two samples within the same time point group. The distributions are displayed to the right of the points, 
and boxplots showing the median and interquartile ranges are superimposed on top of the points (Statistical significance: paired 
Wilcoxon test (P values (P): *P < .05, **P < .01 and ***P < .001).
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observed in the placebo group over time. In gen
eral, these findings indicate that the overall compo
sition of the microbiome diversified due to 
prolonged amoxicillin exposure, and that such 
effect persisted only for a short term.

Lastly, we explored the effect of treatment on 
individual microbial taxa. In concordance with the 
results regarding the alteration in richness and com
position described above, significant differences 
were observed among species with low abundance. 
At the species level, well-known short-chain fatty 
acids (including butyrate) producers, such as 
Roseburia inulinivorans, Ruminococcus torques, 
Lachnospira pectinoschiza, Ruminococcus lactaris, 
Veillonella atypica and Blautia obeum were signifi
cantly reduced immediately after exposure to amox
icillin as compared to baseline (LEfSe). More 
recently discovered, “healthy gut” marker bacteria, 
i.e., Oscillibacter sp. 57_20, was also found to be 
differentially decreased in abundance after cessation 
of treatment. Most of these species belong to phylum 
Firmicutes and class Clostridia (except Veillonella 
atypica) and are part of the normal gut microbiome. 
They play a crucial role in maintaining homeostasis, 
inflammation and oxidative stress in the human gut. 
However, all these species except Lachnospira pecti
noschiza almost returned to their baseline abun
dance levels at 9 months post-treatment. In 
contrast, two species associated with overall poor 
gut health, i.e., Clostridium bolteae and Clostridium 
bolteae CAG 59,56 were increased in most individuals 
exposed to amoxicillin and returned to baseline at 
the 12 months sampling time point (Figure 1c, 
Supplementary Figure 1 & Table S3). However, for 
C. bolteae CAG 59, but not C. bolteae, we also 
observed an increase in its proportion for some of 
the patients (4 out of 12) in the placebo group. In 
general, the microbiome composition in the placebo 
group remained stable, as no other microbial taxa 
were significantly increased or decreased over time.

Long-term changes in the abundance and diversity 
of the gut resistome upon prolonged amoxicillin 
therapy

In total, we detected 147 unique ARGs conferring 
resistance to 15 classes of antibiotics via 5 resistance 
mechanisms in the fecal microbiome of all the 

studied participants using shotgun metagenomic 
data (Supplementary Table S7). Tetracycline 
(mean 64.59%; SD 18.47%), beta-lactam (mean 
14.10%; SD 13.45%), macrolide-lincosamide- 
streptogramin (MLS) (mean 12.48%; SD 13.40%), 
aminoglycoside (mean 1.78%; SD 6.35%) and mul
tidrug (mean 2.36%; SD 6.35%) were the most 
abundant class of ARGs across samples, with the 
tetQ, tetW, tetO, cfxA, mef(En2) and ermF genes 
comprising the majority of alignments within these 
classes (Figure 3a & Supplementary Figure 4). The 
total AMR abundance measured as the total reads 
per kilobase million bacterial reads (RPKM) of all 
ARGs in the gut was lower in the amoxicillin than 
in the placebo group at baseline. Notably, the total 
AMR abundance significantly increased over time 
after amoxicillin treatment, suggesting that antibio
tic treatment may enrich the microbiome for AMR 
determinants (Figure 3b). This increase in abun
dance corresponded with the increase in α-diversity 
evenness (Shannon) of ARGs in the resistome at 
3-month timepoint (LME: adj P = .02), which 
remained significantly higher after 9 months post- 
treatment (LME: adj P = .01). A similar increase in 
ARG richness (Chao1) was observed after amoxi
cillin exposure, though the trend was not statisti
cally significant. In contrast, no significant 
differences in the total ARG abundance and α- 
diversity measures were observed over time in the 
placebo group (Figure 4a).

Similar to the microbiome, the β-diversity 
PCA plot also showed that variation between 
different individuals (inter-individual variation) 
is the most dominant factor affecting the resis
tome composition (PERMANOVA: R2 = 0.82, 
P = .0001; nperm = 999; Supplementary 
Figure 3B). Moreover, the inter-individual varia
bility of resistome was even higher than in 
microbiome composition, with most ARGs 
observed in a limited number of participants. 
At the same time, no visible pattern of resistome 
profile changes over time was observed in both 
placebo and treated groups (Figure 4b). 
However, PERMANOVA analysis with Bray– 
Curtis distance demonstrated a significant shift 
in the overall resistome composition after amox
icillin exposure at 3 months (PERMANOVA: 
Bray: R2 = 0.072; P = .046; strata = Patient) 
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and 12 months (PERMANOVA: Bray: 
R2 = 0.074; P = .01; strata = Patient) when 
taking significant interindividual variation into 
account. Further, the compositional differences 
(Bray) observed upon amoxicillin exposure were 
higher and long-lasting, which remained statisti
cally significant compared to the placebo group 
up to 12 months (Figure 4c; Wilcoxon rank-sum 
test), unveiling persistent diversification of resis
tome composition after antibiotic treatment. We 
also found that amoxicillin exposure was asso
ciated with prolonged resistome diversification 
through an individualized selection of ARGs as 
the dissimilarity of the resistome composition 
among the individuals significantly increased over 
time (Figure 4d; Wilcoxon signed rank exact test). 
When considering ARGs presence/absence rather 
than the abundance, similar resistome divergence 
was observed in the amoxicillin treatment group. 
In contrast, we observed that the resistome com
position significantly converged at 3 months based 
on Jaccard distance in the placebo group 
(Supplementary Figure 5; Wilcoxon signed rank 
exact test). No significant divergence or conver
gence based on Bray–Curtis distance was detected 
in the resistome composition over time among 
placebo-treated individuals. Thus, these long-term 

changes observed in the resistome profiles may 
have resulted from a drug-specific selection rather 
than from short-term shifts discerned in the 
microbiome profiles.

Additional investigation of AMR determinants 
into the gut resistome revealed a common targeted 
response toward the amoxicillin treatment at the 
ARG-Class level. The class which directly corre
sponded to the treatment, i.e., beta-lactam, signifi
cantly increased in abundance in the amoxicillin 
group. Such effect persisted even after 9 months 
completion of the treatment (LEfSe) (Figure 5a). 
Also, the mean relative abundance of multidrug 
class increased by more than fourfold (log2 FC > 2) 
compared to baseline after amoxicillin treatment, 
while several other ARG classes with a threefold 
increase in relative abundances were observed over 
time in both the amoxicillin and placebo groups. 
Thus, such changes could not be linked to antibiotic 
treatment (Supplementary Figure 6). At the gene 
level, there was a high inter-individual variation of 
increase in abundances or emergence of beta- 
lactamase ARGs noticed after amoxicillin interven
tion (Figure 5b). The most consistent effect of the 
antibiotic was a threefold increase in abundance of 
cfxA beta-lactamase and its gene variants (cfxA2, 
cfxA3, cfxA4 and cfxA6) at 3 months in five out of 

Figure 3. Beta-lactam and total AMR gene abundance increases after amoxicillin exposure. (a) Box plots showing the relative 
abundance measured as reads per kilobase million (RPKM) of antibiotic resistance gene (ARG) classes across all samples, stratified 
by treatment group and time points. The center horizontal line of box is median, box limits are upper and lower quartiles, whiskers are 
1.5× interquartile ranges. (b) The total abundance, measured as the total reads per kilobase million (RPKM): Violin plots showing the 
total AMR genes abundance level per sample (represented as point), stratified by treatment and time points. The horizontal box lines 
represent the first quartile, the median and the third quartile. Whiskers denote the range of points within the first quartile − 1.5× the 
interquartile range and the third quartile + 1.5× the interquartile range. The black horizontal line on the top of plot connects 
statistically significantly different time points within each treatment group (Adjusted P values (P): ***P < .001, **P < .01; *P < .05; one- 
way ANOVA with repeated measures followed by post hoc pairwise t-test is used to check the statistical significance).
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eight amoxicillin-exposed participants. The abun
dance of these genes remained higher at 9 months 
post-treatment compared to their baseline levels. 
These cfxA beta-lactamase family resistance genes 
are commonly found in multiple bacterial genera, 
including Bacteroides, and are associated with peni
cillin and cephamycin resistance. Notably, the rela
tive abundance of Bacteroides species was 
significantly increased in the amoxicillin patients, 
indicating that Bacteroides may have harbored the 
cfxA genes. Similarly, another clinically relevant 
beta-lactamase ARG, i.e., cepA encoding resistance 
to cephalosporins enriched immediately following 
antibiotic intake in patients, when present above 

detection levels at baseline (four out of eight 
patients). Additionally, we observed a post- 
antibiotic increase in abundances or induction of 
ampC-type beta-lactamase ARGs (ampC, ampC1 
and ampH) in three patients. Interestingly, their 
relative abundance pattern is congruent with 
Escherichia coli, a known microbial host harboring 
these ARGs. Further, we detected several of the TEM 
beta-lactamase ARGs (TEM-70, TEM-168, TEM- 
105, TEM-171, TEM-183, TEM-205) in one partici
pant (P17) that were initially undetectable and 
selected toward higher abundance immediately 
after antibiotic exposure (3 months) and returned 
to lower levels following antibiotic withdrawal. 

Figure 4. Impact of amoxicillin on fecal ARG diversity and composition. (a) Violin plots showing the ARG α-diversity measured and 
compared over time points in amoxicillin and placebo groups using Chao1 (richness; left) and Shannon (evenness; right) index, 
respectively. Each point corresponds to a given sample, and each box span from the first to third quartiles with a horizontal line inside 
the boxes representing the median. Adjusted P values were computed using the LME mixed effect model and Tukey’s HSD post hoc 
test. Adjusted P values (P): ***P < .001, **P < .01; *P < .05. (b) β-diversity was analyzed using principal component analysis (PCA) based 
on the clr-transformed ARG count abundance matrix. Each point represents a single sample, shape indicate treatment group, colored 
according to different time points and groups. Ellipses indicate 95% confidence intervals (CI). (c) ARG β-diversity measured by Bray– 
Curtis dissimilarity is compared between the amoxicillin (red) and placebo (blue) samples at baseline and the other time points, i.e., 
3 and 12 months. Each point represents the dissimilarity in one individual’s resistome at baseline compared each of the other time 
point samples. Center line is median, box limits are upper and lower quartiles, whiskers are 1.5× interquartile ranges and points 
beyond whiskers are outliers (P < .05; Wilcox rank sum test). (d) Distribution of the Bray–Curtis distance of resistome (ARGs) between 
patients at the same time point within treatment groups. The statistical difference between the timepoints in both groups was tested 
by the paired Wilcoxon test, and the significance is marked with * P < .05, **P < .01 and ***P < .001.
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These TEM-genes are potentially clinically relevant 
ARGs because they confer resistance toward com
monly used antibiotics, including penicillins and 
cephalosporins, and because they are known to be 
precursors for beta-lactamases with an extended 
spectrum of resistance (ESBLs). Also, a fivefold 
increase in abundance of another clinically signifi
cant metallo beta-lactamase ARG (ccrA) encoding 
resistance to last-resort antibiotic (i.e., carbapenem) 
was observed for patient P18 at 3 months 
(Figure 5b).

Finally, the Procrustes analysis revealed that the 
resistome composition (ARG level) was signifi
cantly correlated with the microbiome (species 
level) in both placebo (Protest: sum of squares 
(m2) = 0.21; R2 = 0.88; P = .001; permutations = 999) 
and amoxicillin (Protest: sum of squares 
(m2) = 0.27; R2 = 0.85; P = .001; permutations = 999) 
groups, indicating that microbial community com
position shapes the ARG distribution in the human 
gut. However, the overall correlation was more 
robust in placebo. More importantly, the baseline 

Figure 5. Impact of amoxicillin on abundance of beta-lactam ARGs and association between microbiome and resistome compositions. 
(a) Violin plots showing the relative abundance of class Beta-lactam measured as log10 of reads per kilobase million (RPKM) of Beta- 
lactam ARGs, stratified by treatment group and then time points. The changes in abundance were statistically evaluated using one- 
way ANOVA with repeated measures followed by post hoc pairwise t-test. The horizontal box lines represent the first quartile, the 
median and the third quartile. Whiskers denote the range of points within the first quartile − 1.5× the interquartile and the third 
quartile + 1.5× the interquartile. (Adjusted P values (P): ***P < .001, **P < .01; *P < .05 one-way ANOVA with repeated measures 
followed by post-hoc pairwise t-test). (b) Heat map displaying the log-transformed RPKM relative abundance of beta-lactam ARGs 
identified in amoxicillin-exposed patients. The x-axis displays all the samples at different time points which are stratified by the 
participants. (c) Procrustes analysis of resistome composition (filled triangles) and species composition (filled circles) for amoxicillin 
(left) and placebo (right)-treated groups using Hellinger transformation and PCoA ordination. The points are colored based on 
sampling time points in both groups. The length of line connecting two points indicates the degree of dissimilarity or distance 
between microbiome and resistome composition of the same sample.
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has a tighter correlation than post-treatment sam
ples in the amoxicillin group, supporting the 
hypothesis that additional factors, such as antibiotic 
exposure, may have influenced the resistome 
changes independently of the microbiome 
(Figure 5c & Supplementary Table S5).

Functional characterization of the antibiotic 
resistance reservoir in human gut microbiota

To functionally investigate the resistome, including 
the diversity of ARGs that remain undetected by 
conventional AMR databases in the gut microbiome, 
we next complemented shotgun metagenomics with 
functional metagenomic analysis. The constructed 
functional libraries encompassed a total of ~14.7 
gigabase (Gb) pairs of metagenomic DNA with 
library sizes of 6Gb (baseline), 4.4Gb (3 months), 
and 4.3Gb (12 months), respectively, and an average 
insert size of 1.5–kb. Resistance was identified 
against 8 out of the 14 antibiotics screened. 
Importantly, we did not recover any resistant trans
formants for all the last-resort antibiotics tested, 
including meropenem, colistin and tigecycline. 
These antibiotics are considered as the last line of 
defense against infection caused by multidrug- 
resistant organisms (MDROs). In addition, none of 
the libraries constructed from feces of antibiotic- 
treated adult individuals retrieved ciprofloxacin, 
cefoxitin or gentamicin resistance (Supplementary 
Figure 7). Of the 42 selections performed, 24 yielded 
antibiotic-resistant E. coli transformants, of which 19 
resulted in successfully sequenced and assembled 
libraries. On average, we assembled 3082 contigs 
with lengths greater than 500 bp with 4083 ORFs 
predicted in these contigs (Supplementary Table S2). 
In total, 1089 complete sequences were assigned to 
antibiotic resistance functions after hierarchical 
annotation of ORFs using multiple AMR databases, 
representing 599 unique sequences. These function
ally discovered ARGs included multiple beta- 
lactamase classes (mainly class A and no class C), 
transcriptional regulators, multidrug efflux pumps, 
transporter proteins, acetyltransferases, aminotrans
ferases, resistance modulators, aminoglycoside- 
modifying enzyme, tetracycline resistance protein, 
among others. Most of the functional ARGs 
(89.31%) were annotated through the Resfams-full 

database that contains additional HMM profiles of 
specific AMR genes that can contribute to antibiotic 
resistance, such as acetyltransferases, AraC tran
scriptional regulators, and ATP-binding cassette 
(ABC) efflux pumps.

The mean identity of these functionally selected 
ARGs to the CARD and AMRFinder-Protein data
base was 35.8% (median: 33%), whereas their mean 
identity to NCBI non-redundant protein entries 
was 98.1% (median 100%) (Figure 6a). This indi
cates that while most of the functionally identified 
ARGs in our selections are similar to previously 
sequenced proteins, these ARGs are remarkably 
infrequent in the current AMR databases. 
Interestingly, we also found that several of the 
functionally identified genes have already been 
annotated as ARGs in the NCBI database but are 
not functionally characterized with similar 
approach (HMM-based), across various habitats 
and environments in large-scale studies.51,53,57 

The predicted microbial hosts of these functional 
ARGs (determined by the best BLAST hit to the 
NCBI non-redundant protein database) were pre
dominantly commensal bacteria from the order 
Bacteroidales (Figure 6b). The detection of these 
commensal Bacteroidales as the potential hosts of 
ARGs in the human gut microbiome is not surpris
ing and is in concordance with the current under
standing of Bacteroidales as traffickers and prolific 
hosts of ARGs.12,58–60 Additionally, we identified 
uncultured bacterium as one of the top potential 
hosts of these ARGs (11 ORFs), suggesting that 
even not well-represented uncultured organisms 
can be important sources of ARGs in the gut 
microbiome.

We next investigated the influence of amoxicillin 
intake on the prevalence of functionally discovered 
ARGs over time. To avoid false positives and over- 
inflation of ARGs abundance levels in the 
sequenced metagenomes, we only mapped ARGs 
identified using the Resfams-core database to the 
shotgun data.42,61 We noticed a similar pattern as 
for the shotgun metagenomics of high inter- 
individual variation in the abundance of functional 
ARGs in the gut microbiome of the treated subjects 
(Supplementary Figure 8A). These ARGs were 
found both in the treated and in the placebo sub
jects. The abundance of functional beta-lactamases 
slightly increased after treatment in the 
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amoxicillin-treated subjects, though, unlike shot
gun metagenomic data, these changes were not 
statistically significant (Supplementary Figure 8B). 
In comparison, no such trend was noticed in the 
placebo group.

We also discovered at least 13 putatively novel 
ARGs in the gut microbiome of antibiotic- 
treated patients. No sequence homologs were 
detected for eight of these ARGs in known 
AMR sequence databases. The list of putatively 
novel ARGs annotated based on AMR (CARD, 
AMRFinder) and NCBI non-redundant protein 
database is presented in Table 2. We further 
experimentally validated a putative class A beta- 
lactamase resistance protein with 100% amino 

acid identity to serine hydrolase and 38% iden
tity to known beta-lactamase resistance gene 
(CARB-11) by expressing it in E. coli. The 
results showed that this novel ARG conferred 
resistance toward carbenicillin, as observed by 
the increase in the minimal inhibitory concen
tration (MIC) by more than 400-fold compared 
to the control. For amoxicillin, we found 
approximately a 108-fold (650 μg/ml) increase 
in the MIC values. It also demonstrated reduced 
susceptibility, ranging from 16- to 30-fold, to 
other penicillins such as penicillin G and piper
acillin. These are typical characteristics of class 
A carbenicillin-hydrolyzing beta-lactamases 
(CARB-type) (Figure 6c and Additional file S4).

Figure 6. Functional metagenomic screening using E. coli as a surrogate host reveals an enriched gut resistome in amoxicillin exposed 
patients. (a) Amino acid identity between all of the functionally identified ARGs and their top hit in CARD/AMRFinder versus their top 
hit in the NCBI non-redundant protein database, colored by their mechanism of action. The vertical and horizontal dotted lines 
indicate the mean percentage identity of functional ARGs in the CARD/AMRFinder and NCBI database, respectively. (b) Horizontal bar 
plot showing the top 20 most commonly predicted hosts of functionally selected ARGs on the basis of maximum identity BLAST hits in 
the NCBI non-redundant protein database. Different colored bars represent different bacterial species orders. (c) Minimum inhibitory 
concentrations (MICs) of putatively novel ARG for Escherichia coli pZE21 transformants producing class A beta-lactamase and 
Escherichia coli pZE21 without the insert. This novel ARG has 100% amino acid identity to serine hydrolase (NCBI GenBank) and 
38% of amino acid identity to known class A beta-lactamase (CARB-11) gene identified using BLASTP against the Comprehensive 
Antibiotic Resistance Database (CARD). Bars represent the average value from three independent experiments each. (d) Synteny of 
functionally selected ARGs with mobile genetic elements. Putative mobile genetic elements were identified syntenic to ARGs 
recovered from amoxicillin-clavulanate (a,b), aztreonam (c), ceftazidime (d, g, i), penicillin G (e), carbenicillin (f), amoxicillin (h) and 
piperacillin (j) selections. The x-axis shows the metagenomic coordinates.
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To underline the potential of horizontal ARG 
transfer within the gut microbiome, we explored 
the presence of mobile genetic elements in the 
assembled contigs (in synteny with ARGs). 4.43% 
of the total contigs encoded a putative mobile 
genetic element. These were observed in all selec
tions against beta-lactam antibiotics, commonly 
appearing in penicillin, amoxicillin and piperacillin 
selections, but also in lower numbers in, the cefta
zidime selections (Supplementary Figure 9B). 
Nevertheless, antibiotic treatment differences did 
appear. We noticed a significantly higher load of 
putative MGEs in post-antibiotic treatment selec
tions than in baseline selections in our functional 
metagenomic data (Supplementary Figure 9A) 
(pairwise Wilcoxon test). Interestingly, these post- 
treatment selections had the most putative MGE- 
associated annotations despite lower sequencing 
reads and lower input libraries. MGEs colocalized 
with AMR genes are of serious concern due to the 
ease of their spread. In particular, we recovered 
a functionally identified class A beta-lactamase 
ARG colocalized with a plasmid element selected 
in penicillins (amoxicillin, piperacillin, amoxicillin- 
clavulanate) and cephalosporin (ceftazidime). Such 
ARGs with typical characteristics of extended- 
spectrum beta-lactamases (ESBLs) can play 
a crucial role in resistance dissemination 
(Figure 6d). All these findings emphasize the use
fulness of functional metagenomics as a culture- 
independent and sequence-unbiased approach for 
resistome characterization.

Discussion

In this study, we explored the ecological side effects 
of prolonged amoxicillin exposure on the human 
gut microbiome and resistome. We found that 
long-term amoxicillin therapy in a relatively 
healthy population had more pronounced yet tran
sient effects on microbiome composition. This was 
in contrast with the effects on the resistome, for 
which changes persisted for long-term after treat
ment cessation. Enrichment of antibiotic resistance 
genes was mostly specific to beta-lactam antibiotics, 
including instances showing enrichment of beta- 
lactamase genes associated with extended spectrum 
of activity (ESBL) and with action against 
carbapenems.

Perturbations in gut microbiome balance by short- 
course amoxicillin interventions have reported minor 
or not significant effects on microbiome 
composition.30–32,62 Our results indicate that in con
trast to short-course, prolonged use of amoxicillin can 
have severe side-effects. We found that amoxicillin 
had a common and reproducible impact on the 
microbiome with most noticeable changes observed 
in the species with lower abundance. Among these 
were known short-chain fatty acid (particularly buty
rate) producers, significantly depleted upon antibiotic 
therapy completion. Contrarily, bacterial genera 
Bacteroides, well-known for carrying resistance to 
beta-lactams, systematically increased upon amoxicil
lin treatment.60,63 In addition, we validated previous 
findings where the potential marker of beta-lactam or 
antibiotic-induced dysbiosis, i.e., L. bolteae, signifi
cantly enriched upon amoxicillin treatment.18,64 

Upon treatment, we also observed depletion of 
a recently discovered health-associated species, i.e., 
Oscillibacter sp. 57_20.56 The effects on microbiome 
composition were short-lived as the microbiome 
returned to pre-treatment levels at 9 months after 
amoxicillin treatment, which can be explained by 
community resilience.33,65 Despite their transience, 
such microbial disturbances can also have negative 
health-related consequences such as increased sus
ceptibility to recurrent Clostridioides difficile infec
tions, which can be more detrimental for patients 
with an already dysbiotic microbiome (diseased).21,66

Further, our work also highlights that amoxicil
lin exposure led to a short-term but significant 
increase in microbiome dissimilarity between base
line and post-treatment samples. The possible 
explanation behind such diversification would be 
considerable variations in baseline microbiome 
composition across patients, which may result in 
different levels of severity and vulnerability to anti
biotic perturbation. The influence of inter- 
individual variability on microbiome responses 
was particularly evident on the resistome results, 
with a higher inter-individual variability in 
response to amoxicillin for the resistome than the 
microbiome. Such difference may reflect the fact 
that most of the ARGs are specific to individuals, 
while microbial taxa are more conserved across 
patients. In line with our results, individualized 
responses to antibiotic interventions have also 
been reported for resistome studies evaluating 
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short-course antibiotic therapies.18,67,68 Notably, no 
significant changes were observed in the micro
biome and resistome diversity and composition 
over time in patients who did not take amoxicillin, 
thus confirming the stability, resilience and robust
ness of the healthy, adult human gut 
microbiome.69,70

Complementation of whole metagenomic 
sequencing with functional metagenomics enables 
broader characterization of resistance determinants 
in metagenomes.42,45 Functional metagenomics 
provides not only functional information on the 
ARGs present in microbial communities but also 
enables the discovery of novel ARGs. The technique 
utilizes a heterologous host, e.g. E. coli, for gene 
expression via library cloning which poses as 
a strong advantage given that it allows for the 
identification of ARGs from uncultured bacteria. 
We found that one of the top potential hosts of 
functionally identified ARGs included an uncul
tured bacterium, along with the well-known and 
predominant (identified through shotgun metage
nomics) Bacteroides and Prevotella species. 
Notably, although we did not identify resistance 
against last resort antibiotics in the functional 
screening, some were detected by whole metage
nomic sequencing, thus highlighting the comple
mentarity of the two methods. We have also 
discovered several putatively novel ARGs (1 vali
dated functionally) in the gut microbiome of the 
amoxicillin-treated patients, with most of them 
detected in selections from post-treatment libraries. 
Lastly, detection of MGEs mediating the spread of 
ARGs (colocalized) in our functional metagenomic 
data highlights the likelihood of a mobilizable resis
tome within the human gut microbiome. 
Interestingly, most putative MGE-associated anno
tations were in the post-treatment samples, sug
gesting an additional possible collateral effect of 
prolonged amoxicillin therapy.

The small treatment group size limits the gener
alization of our conclusions and makes it difficult 
to discern significant relationships at the popula
tion level, mainly due to high inter-individual 
variability and personalized response to antibiotics 
perceived in our data. Nonetheless, we rigorously 
controlled for such variability by using individuals 
as their controls in pre- and post-treatment com
parisons. Moreover, additional sampling time 

points before and during antibiotic administration, 
would have provided a better understanding of the 
dynamics and natural variability of the human gut 
microbiome overtime. Functional metagenomics 
was employed to complement the resistome infor
mation from whole metagenomic analysis. While it 
provides precious information based on phenotypic 
characterization, this approach is still limited in 
scope due to definite classes of antibiotics and the 
lack of efficient cloning systems for expression in 
Gram-positives.71 Additionally, the isolation of 
mobile genetic elements colocalized with ARGs is 
technically constrained, as little information 
regarding the genetic background of the functional 
ARGs is available because of small DNA fragments 
(insert) size in our functional selections. Still, func
tional metagenomics is the only high-throughput 
metagenomics method that enables identification 
of completely novel ARGs. Future multicenter, 
longitudinal sequencing-based studies with 
increased sampling density, complemented with 
functional metagenomics assays using multi-host- 
systems would have the potential to provide solid 
evidence of relevance for antibiotic stewardship 
practices. However, large cohort prospective stu
dies to investigate the impact of prolonged use of 
antibiotics in humans would need special ethical 
considerations regarding benefits and risks, which 
only in rare cases would be justifiable. Such con
siderations highlight the critical relevance of the 
high-throughput microbiome and resistome analy
sis of unique data from our randomized trial of 
relatively healthy individuals, despite limitations 
in sample size.

In conclusion, our results provide compelling 
evidence that the human adult gut microbiome 
and resistome respond differently to prolonged 
amoxicillin treatment. The persistent increase in 
AMR abundance and diversity along with enrich
ment of beta-lactam resistance genes long after 
antibiotic use termination, including resistance 
genes to last resort antibiotics detected by whole 
metagenomic sequencing, highlights the risks asso
ciated with prolonged antibiotic exposure. Such 
risks need to be considered in view of potential 
benefits. Patients with chronic low back pain and 
Modic changes included in the current study were 
part of a multicenter study in Norway that showed 
a lack of significant effects of prolonged amoxicillin 
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use in self-reported measures of disability, pain 
intensity or quality of life.35 Thus, our study adds 
an additional layer of support against the general 
recommendation of antibiotic therapy for chronic 
low back pain and Modic changes and emphasizes 
the importance of considering such risks in relation 
to other conditions with no or minor benefits from 
prolonged antibiotic therapy.
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ABSTRACT 31 

Respiratory infections caused by common pathogens that colonize the respiratory tract, including 32 

the nasopharynx, are a leading global cause of deaths associated with antimicrobial resistance. Yet, 33 

little is known about the antibiotic resistance determinants in the microbial communities of the 34 

respiratory tract. In this study, we examined the development of the resistome (collection of 35 

antibiotic resistance genes) in the nasopharynx of preterm infants and the impact of early 36 

ampicillin plus gentamicin exposure in those requiring broad-spectrum antibiotic treatment for 37 

suspected early-onset neonatal sepsis. We analyzed the resistome of 181 nasopharyngeal samples 38 

collected longitudinally from 36 preterm infants using deep shotgun metagenomic sequencing. 39 

Antibiotic resistance genes were found in most samples (~95%) of both naive and antibiotic-40 

treated infants. We observed a significant increase in the diversity and total abundance of antibiotic 41 

resistance genes primarily immediately after early antibiotic therapy. The nasopharyngeal 42 

resistome in preterm infants was mainly driven by the microbiome (r = 0.85, p-value = 0.001), 43 

with inter-individual differences explaining most of the variation observed in the resistome 44 

composition (R2 = 30.03%, adjusted p-value = 0.001). We also noted a discernible impact of 45 

prenatal maternal antibiotic exposure on the overall resistome composition (R2 = 3.6%, adjusted 46 

p-value = 0.001), which was observed as a subgroup within the antibiotic-treated group. Overall, 47 

these data suggest that the nasopharynx in preterm infants is characterized by a rich resistome with 48 

a trajectory that is negatively affected by antibiotics. Although the effects appear to be transient, 49 

any adverse changes in resistome during the first days of life bear risks, particularly those selecting 50 

for drug resistant colonizers with the potential to spread and cause invasive infections. 51 

 52 

Keywords: respiratory resistome, metagenomics, nasopharynx, microbiome, preterm infants, 53 

antibiotics, antimicrobial resistance 54 
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INTRODUCTION 61 

Antimicrobial resistance (AMR) is one of the biggest global health threats, estimated to be 62 

associated with approximately 5 million deaths in 2019. Among these, respiratory infections are 63 

the leading AMR infection burden, accounting for more than 1.5 million deaths [1]. These are 64 

often caused by pathogens such as Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella 65 

pneumoniae, and Haemophilus influenzae, which are part of the normal human microbiome found 66 

in the respiratory tract, including the nasopharynx. Recent studies have shown that for these 67 

pathogens, more than 90% of antibiotic exposure represents bystander events, in which they are 68 

not the infective agent [2]. This highlights the importance of the potential off-target impact of 69 

antibiotics in the selection and development of antibiotic resistance by human pathogens. These 70 

pathogens share common niches with commensals, which provide colonization resistance by 71 

preventing pathogen overgrowth. However, commensals can also serve as reservoirs of antibiotic 72 

resistance genes (ARGs) that can readily be transferred between different strains and species of 73 

bacteria in microbiomes [3-5]. Together, commensals and pathogens interact to provide additional 74 

benefits, such as immune system education and development [6, 7]. Such interactions highlight 75 

the importance of an ecological perspective when considering AMR and the impact of antibiotics 76 

on microbiomes. 77 

Recent studies have contributed to an increased understanding of the landscape of ARGs, known 78 

as resistomes, and the impact of antibiotics on the gut microbiome and resistome [8-12]. Of critical 79 

relevance are studies focusing on vulnerable groups, in particular preterm infants, who are highly 80 

exposed to antibiotic interventions early in life [9, 13-15]. Sepsis is a serious complication for 81 

preterm infants and one of the main reasons why many receive empiric antibiotics in the first days 82 

or weeks after birth [16, 17]. However, the risks associated with suspected early onset sepsis 83 

(sEONS) vary, and over-prescription of antibiotics in low sepsis risk preterm infants may result in 84 

unnecessary microbiome and resistome disturbances with potential short- and long-term health 85 

implications [18]. Early and prolonged antibiotic use in this group has been associated with an 86 

increased risk of various adverse outcomes, including bronchopulmonary dysplasia, late-onset 87 

sepsis, invasive fungal infections, and mortality, with conflicting results regarding necrotizing 88 

enterocolitis [19-26]. Furthermore, antibiotic use in early life may have unwanted consequences 89 

beyond the neonatal period, such as an increased risk of asthma and obesity [27-29]. In relation to 90 

antibiotic resistance, studies focusing on gut resistomes indicate that infants exhibit higher 91 



resistome burden than their adult mothers, and that antibiotic exposure amplifies this burden [9-92 

11, 14, 15, 30, 31].  93 

 94 

Although most of the associations between microbial disturbances and the risk of common 95 

morbidities are well-acknowledged for the gut microbiome in infants, growing evidence suggests 96 

that respiratory health is also significantly influenced by microbial communities in the upper 97 

respiratory tract. This includes the nasopharynx, which serves as a critical reservoir of respiratory 98 

pathogens and a gatekeeper of respiratory health [5-7, 32, 33]. Recent studies have highlighted the 99 

potential negative impact of antibiotic treatment on the nasopharynx microbiome and its 100 

association with an increased risk of developing asthma and respiratory infections in infants [10, 101 

33, 34]. There is currently a significant gap in our understanding of how the infant respiratory 102 

resistome develops, including the trajectory, dynamics, and factors that can influence its 103 

establishment in preterm infants.  104 

 105 

We recently developed an optimization strategy for DNA extraction and library preparation that 106 

helped to circumvent the challenges posed by low biomass and high host DNA content in 107 

nasopharynx samples of preterm infants [35]. In this study, we applied the optimized protocol to 108 

nasopharyngeal aspirate samples to characterize the development of the resistome in 36 preterm 109 

infants from birth up to 6 months corrected age. By analyzing ~1.85 terabytes (Tb) of metagenomic 110 

DNA data generated from deep shotgun sequencing, we obtained the most comprehensive 111 

information to date on the characteristics and dynamics of resistome development in the respiratory 112 

tract of preterm infants. Our hypothesis was that early exposure to broad-spectrum antibiotics for 113 

treatment of sEONS in preterm infants, may promote the enrichment of ARGs and compositional 114 

alterations in the respiratory resistome, which would persist until 6 months corrected age, as 115 

compared to antibiotic-naive preterm infants. Additionally, we explored the extensive metadata 116 

collected to gain insights into additional clinical covariates that may be associated with resistome 117 

development. 118 

MATERIALS AND METHODS  119 

Ethics statement  120 

Premature infant metadata and all nasopharynx aspirate samples used in this study were collected 121 

at the Neonatal Intensive Care Unit (NICU) at Oslo University Hospital, Ullevål, Norway, as part 122 



of the Born in the Twilight of Antibiotic project. The study received approval from the Regional 123 

Committee for Medical and Health Research Ethics – South East, Norway (2018/1381 REKD), 124 

and followed the principles of the Declaration of Helsinki guidelines. Infants were enrolled in the 125 

study after obtaining written informed consent from their parents. 126 

 127 

Study design and sample collection 128 

The study is a prospective observational cohort study. Between July 2019 and January 2021, we 129 

included preterm infants born (or transferred within 48 hours) at the NICU (Ullevål) who were 130 

between 28+0 and 31+6 weeks of gestational age (GA). In total, 66 preterm infants were enrolled 131 

in the study, and followed from birth until six months corrected age (i.e., adjusted for prematurity) 132 

during their stay in the NICU and after discharge. Five of the infants were lost to follow-up. 133 

Extensive metadata and covariates from infants and mothers, including mode of delivery, 134 

gestational age (GA) at birth, postmenstrual age (PMA), gender, birth weight (BW), postnatal 135 

infant antibiotics usage (duration, type, days), maternal antibiotic usage, feeding regimen during 136 

hospitalization and after discharge, and other demographic characteristics, were collected through 137 

medical records. This data is stored in secured server at the Services for Sensitive Data (TSD), 138 

University of Oslo. 139 

In our cohort of 66 infants, 33 infants with sEONS received broad-spectrum antibiotics, consisting 140 

of a combination of ampicillin (a beta-lactam antibiotic) and gentamicin (an aminoglycoside 141 

antibiotic), within 24 hours after birth. Due to the circumstances of premature birth and the 142 

instability of the infants, baseline samples could not be collected before antibiotic therapy 143 

initiation. Instead, the first nasopharyngeal aspirate samples (baseline) were obtained within 48 144 

hours after the initiation of early antibiotic therapy. To investigate temporal changes in the 145 

resistome in response to antibiotics and control for potential baseline differences as confounding 146 

factors, this study included only infants who had nasopharyngeal samples collected on the same 147 

day as the initiation of early antibiotic treatment (n = 15) and antibiotic-naive infants as controls 148 

(n = 21). The baseline characteristics of the infants stratified by antibiotic exposure are presented 149 

in Table 1. 150 

Nasopharyngeal aspirate samples were collected from infants at six distinct time points: days of 151 

life (DOL) 0, 7, 14, 28, 56, and at 6 months corrected age. Additional samples were taken if the 152 



antibiotic therapy was initiated or terminated more than 48 hours before/after a predefined 153 

sampling time. In cases where the sample could not be collected at the scheduled time points (such 154 

as with an unstable infant), a new sample was obtained as soon as possible. Infants who were 155 

transferred to another hospital before discharged to home adhered to the study protocol. When the 156 

infants reached six months of corrected age, they were either invited to an outpatient visit at Ullevål 157 

or their local hospital or visited at home for sample collection. Nasopharynx aspirates were 158 

collected as previously described [35] and stored at -80°C until further processing. 159 

Metagenomic DNA extraction and sequencing 160 

Metagenomic DNA was extracted by first thawing the aspirate samples (2 ml) on ice, pelleting 161 

them by centrifugation at 10,000 g for 10 minutes at 4°C, and then using MolYsis™ for host DNA 162 

depletion (Molzym, Bremen, Germany), following the manufacturer's protocol with some 163 

modifications, as previously described [35]. After depletion of human DNA, fresh pellets were 164 

spiked with 20 µl of ZymoBIOMICS Spike-in Control II (catalog number: D6321 & D6321-10), 165 

and bacterial DNA was extracted using the MasterPure™ Gram Positive DNA Purification Kit 166 

(Epicentre, Madison, WI, USA), according to the manufacturer's recommendations. The bacterial 167 

DNA was eluted in 35 µl of TE buffer and stored at -80°C until further use. Final DNA 168 

concentration was quantified using Qubit dsDNA HS assay kits in a Qubit 4.0 Fluorometer 169 

(Invitrogen, Thermo Fisher Scientific, USA). Metagenomic sequencing libraries were constructed 170 

using the Nextera DNA Flex library preparation kit (Illumina Inc., CA, USA). All samples were 171 

subjected to paired-end sequencing at 2 × 150 bp on an Illumina NovaSeq S4 high-output platform 172 

at the Norwegian Sequencing Centre (Oslo, Norway). 173 

 174 

Controls for low microbial biomass  175 

The study followed recent recommendations for low microbial biomass microbiome research [36]. 176 

This involved the following steps: (1) collecting samples from the included infants in the two 177 

groups within the same time period, (2) using standard protection measures during sample 178 

collection (such as clean suits, disposable gloves, and face masks), (3) including sampling and 179 

DNA extraction blank controls (negative controls), (4) conducting DNA extraction and library 180 

preparation while wearing laboratory coats and disposable gloves in a carefully cleaned 181 

environment , and (5) using unique barcodes in library preparation. The negative controls had no 182 



or extremely low DNA concentrations to proceed to library preparation as determined by RT-PCR 183 

using the Femto Bacterial DNA Quantification Kit from Zymo and were therefore excluded from 184 

further analysis (n =10; mean = 0.00043 ng per µL). Additionally, spike-in controls (n = 6) were 185 

extracted and used as positive controls, and longitudinal samples from each preterm infant were 186 

extracted within the same run. 187 

 188 

Bioinformatics processing 189 

The raw metagenomic sequencing data was pre-processed using our in-house bioinformatics 190 

pipelines using a high-performance computing cluster inside a secured environment, i.e., TSD at 191 

the University of Oslo. In brief, the Nextera adaptor sequences and low-quality reads were filtered 192 

using Trim Galore (v.0.6.1) with default parameters [37]. Next, the human DNA contaminant 193 

sequences were identified and removed by mapping the quality-trimmed reads against the human 194 

reference genome (GRCh38) using Bowtie2 (v.2.3.4.2) [38] (non-default parameters: q -N 1 -k 1 195 

--fr --end-to-end --phred33 --very-sensitive –no-discordant) along with SAMtools (v.1.9) [39] and 196 

BEDTools (v.2.27.1) [40]. The sequence quality reports on raw and processed reads were 197 

generated using FastQC (v.0.11.9) [41] and summarized using MultiQC (v.1.7) [42]. 198 

 199 

Resistome profiling 200 

To characterize the presence of ARGs, cleaned high-quality reads for each sample were mapped 201 

against the nucleotide_fasta_protein_homolog_model from the Comprehensive Antibiotic 202 

Resistance Database (CARD) (v.3.2.2) [43] using Bowtie2 under parameter –very-sensitive-local. 203 

The mapped reads from each sample were then filtered, sorted, and indexed using SAMtools. The 204 

number of reads mapped to each ARG was calculated using SAMtools idxstats and BEDTools. 205 

ARGs with a coverage of at least 80% from the alignment were retained for further downstream 206 

analyses. The mapped read counts were normalized for bacterial sequence abundances and gene 207 

lengths by calculating reads per kilobase of reference gene per million bacterial reads (RPKM) for 208 

each CARD reference sequence. The relative abundance of ARGs for each sample was computed 209 

by dividing the RPKM by the total sum of the RPKM for each sample. For keeping the acyclic 210 

hierarchical annotation structure for accurate resistome profiling at higher functional levels, ARGs 211 

were manually re-annotated based on the drug class to which they confer resistance. ARGs 212 

belonging to macrolides, lincosamides and streptogramins were congregated into the MLS class. 213 



While ARGs belonging to carbapenem, cephamycin, cephalosporin, penem, penam and 214 

monobactam were congregated into the Beta-lactam class. Rarefaction analysis was performed 215 

using Rarefaction Analyzer [44] to determine the saturation of samples at various sequencing 216 

depths for recovery of ARGs.  217 

 218 

Statistical analysis and data visualization 219 

All statistical analyses were conducted in R (v.4.2.1) within RStudio (v.2022.07.2+576) [45, 46]. 220 

The ARG abundance, annotation table, and metadata file were compiled into a single data object 221 

using the phyloseq (v.1.40.0) package [47]. Figures, unless stated otherwise, were created using 222 

the ggplot2 (v.3.4.0) package [48] and further edited using Adobe Illustrator (v.16.0.0). α- and β-223 

diversity analysis was performed using the vegan (v.2.6.2) [49] and phyloseq R packages. α-224 

diversity was calculated using the Shannon diversity metric, and differences over time points in 225 

groups were assessed using a linear mixed-effects (LME) model with infants set as a random effect 226 

while correcting for age. The overall resistome composition of nasopharyngeal samples was 227 

visualized using principal component analysis (PCA) ordination plots. The ordinates were based 228 

on the Euclidean dissimilarity matrix of centered log-ratio (CLR) transformed relative abundance 229 

data (i.e., Aitchison distance). Associations of clinical covariates with the dispersion of sample 230 

resistome compositions were statistically evaluated with the Permutational multivariate analysis 231 

of variance (PERMANOVA) test using the adonis2 function (vegan package) with 999 232 

permutations. To test the homogeneity of multivariate dispersion, the permutational analysis of 233 

multivariate dispersion (PERMDISP) test was used. In case of heterogeneity, the analysis of 234 

similarities (ANOSIM) test using the anosim function (vegan package) was further used to 235 

statistically re-assess the association of variables with the overall resistome composition. In the 236 

multivariable, temporal analyses, only the variables that individually showed a significant 237 

association with resistome composition were included. 238 

 239 

To identify the resistotypes, the Dirichlet multinomial mixture (DMM) model approach was 240 

utilized using the DirichletMultinomial (v.1.38.0) R package [50]. Procrustes analysis was 241 

performed to examine the effect of underlying microbiota on the resistome. The ARG RPKM 242 

abundance matrix and the species-level count per million (CPM) abundance matrix were 243 

Hellinger-transformed and ordinated using PCoA (Principal coordinates analysis) on Bray–Curtis 244 



dissimilarities. The symmetric Procrustes correlation coefficients between the ordinations and P-245 

values were obtained through the protest function from the vegan package. Spearman’s correlation 246 

was applied to resistome and microbiome relative abundance profiles for paired samples. To avoid 247 

the potential bias introduced by Spearman's rank when ranking zero values, we removed ARGs 248 

and species that were present in less than half of the samples. The correlation coefficient and 249 

corresponding adjusted p-values were calculated using the associate function from the microbiome 250 

(v.1.18.0) package [51]. Associations between individual taxa and overall resistome outcomes 251 

were calculated using repeated measure correlation analysis from the rmcorr (v.0.5.4) package 252 

while controlling for inter-individual variation [52]. Heatmaps were created using the pheatmap 253 

function from the pheatmap R package (v.1.0.12) [53]. For simple, independent comparisons of 254 

group differences, we used a one-way analysis of variance test, Wilcoxon rank-sum test, Kruskal-255 

Wallis test, or chi-square test as appropriate, and we considered p < 0.05 to be significant. For all 256 

analyses involving multiple comparisons, we applied the Benjamini-Hochberg (BH) method to 257 

correct for multiple testing. The statistical analysis scheme used in the study is shown in 258 

Supplementary Fig. 1. 259 

 260 

RESULTS 261 

Study cohort and sample characteristics 262 

Infants exposed to early antibiotics (n = 15) had significantly lower GA and BW, and their mothers 263 

had a more prolonged period of ruptured membranes before delivery compared to antibiotic-naive 264 

infants (n = 21). None of the mothers of naive infants received antibiotics during pregnancy 265 

(prenatal antibiotics) before onset of delivery (Table 1). The average early antibiotic treatment 266 

duration was 5 days (SD: 2 days). The sampling time point T2 corresponds to the first available 267 

sample collected (except in one infant) after the cessation of early antibiotic treatment. In addition 268 

to early antibiotics, one of the included infants received subsequent antibiotics initiated > 72 hours 269 

after birth and before discharge from NICU and two other infants received antibiotic therapy 270 

between discharge from NICU and 6 months corrected age. A timeline of sample collection and 271 

antibiotic administration is represented in Fig. 1. 272 

 273 

In total, we collected and extracted metagenomic DNA from 198 nasopharyngeal samples obtained 274 

from 36 preterm infants, from day of birth until six months corrected age. The DOL at which 275 



samples were obtained for each time point varied: T1 (DOL: 0-3), T2 (DOL: 4-9), T3 (DOL: 12-276 

19), T4 (DOL: 20-31), T5 (DOL: 32-76) and 6 months corrected age (DOL: 229-288). Four (2%) 277 

samples were excluded after DNA extraction due to negative 16S rRNA values (qRT-PCR) after 278 

subtracting spike-in background. The remaining 194 samples proceeded to library preparation and 279 

whole metagenomic sequencing (WMS). Detailed information on sample exclusion and inclusion 280 

statistics is described in Supplementary Table 1.  281 

 282 

Overall Sequencing results 283 

A total of 6.14 billion raw sequencing reads were obtained with a mean value of sample reads 284 

counts of 33.97 million (M) ranging from 4.19 to 69.25 M reads. The mean Phred quality score of 285 

raw reads for samples ranged from 32 to 37. More than 99% of the total reads generated across all 286 

samples passed the sequence quality filtering and trimming. On average 46.71% (range: 1.09 - 287 

97.69%) of total quality-filtered reads were identified as belonging to the human genome. After 288 

removal of the human-associated metagenomic reads, a total of 2.98 billion remaining high-quality 289 

clean reads across all samples with number of reads ranging from 0.76 to 59.9 M per sample, and 290 

with median of 16.4 M reads were subjected to resistome profiling. In general, 0.31% (range: 0 - 291 

2.8%; 9.32 million in total) of the clean reads were classified as ARGs. Results from rarefaction 292 

analysis suggested that most of the samples had sufficient sequencing depth for ARG 293 

characterization (Supplementary Fig. 2). More detailed information regarding the overall 294 

sequencing results is presented in Supplementary Table 2. Ten samples were excluded from 295 

downstream analysis as no reads were assigned to ARGs. In two infants there was more than one 296 

sample available for the defined time points (collected due to initiation or discontinuation of 297 

antibiotics more than 48 hours before/after scheduled time point). Therefore, to conduct time point-298 

wise analysis, only one sample was considered for each of the time points (Supplementary Table 299 

1 & Fig. 1). Collectively, we assessed the resistome of the nasopharyngeal microbiome in a total 300 

of 181 samples collected from 36 preterm infants. 301 

 302 

Distribution and characterization of ARGs in the preterm infant nasopharyngeal 303 

microbiome 304 

In total, we found 373 ARGs belonging to 15 ARG classes conferring resistance via 5 distinct 305 

mechanisms. Multidrug efflux mediated ARGs comprised the majority of the resistome with an 306 



average of 27% at T1 to T5 and 17.8% at T6 (six months corrected age) of the total relative 307 

abundance. There was a median of 18 (mean: 24) unique ARGs ranging from 1 to 157 per analyzed 308 

sample. On average, maximum number of ARGs were detected after the discontinuation of 309 

treatment (T2) (mean: 40) in most infants receiving early antibiotics treatment. In the non-treated 310 

group, the corresponding mean value at T2 was 19. Only 13 ARGs were both most prevalent 311 

(detected in > 40% of all samples) and highly abundant with mean relative abundance of 64.8% 312 

(SD: 32.06%) across all preterm infant nasopharyngeal resistome. These core set of resistance 313 

genes included multidrug resistance genes (acrB, oqxB, mexI), macrolide-lincosamide-314 

streptogramin (MLS) resistance genes (mel, pmrA, rlmA(II)), two beta-lactam resistance genes 315 

(blaZ, SST-1), fluoroquinolone resistance genes (patA, patB), tetracycline resistance genes 316 

(tet(41), tetM), and the aminoglycoside resistance gene AAC(6')-Ic. 317 

 318 

In both antibiotic-treated and naive group, the most abundant class of ARG was multidrug (mean: 319 

27.85%; SD: 21.90%), followed by fluoroquinolone (mean: 17.41%; SD: 20.18%), beta-lactam 320 

(mean: 15.27%; SD 16.99%), tetracycline (mean: 14.70%; SD: 10.75%), MLS (mean: 13.06%; 321 

SD: 15.29%) and aminoglycoside (mean: 8.77%; SD: 12.48%) (Fig. 2A). In terms of prevalence, 322 

aminoglycoside (76/82) and beta-lactam (75/82) were the most common class present in the 323 

samples from antibiotic-treated group, while multidrug (92/99) and beta-lactam (91/99) were the 324 

most common class in the naive infants. When classified based on resistance mechanism, antibiotic 325 

efflux (mean: 59.56%; SD: 20.97%) was the most abundant category in both the groups across all 326 

time points (Supplementary Fig. 3). At baseline (T1), the ARG composition of antibiotic-treated 327 

group was found to be more heterogenous (higher inter-individual variability) and diverse 328 

compared to naive infants (Fig. 2B). 329 

 330 

Homology to ARGs posing major current threat for public health, including those identified by 331 

recent omics-based framework [54], were identified in nasopharyngeal samples of our cohort. 332 

Most of these potential high-risk ARGs (rank I) were detected at multiple time points across infants 333 

in both antibiotic-treated and naive group (Supplementary Fig. 4). We also observed a few high 334 

risk and clinically relevant ARGs that appeared directly after the early antibiotic treatment at T2. 335 

For instance, high-risk ARGs specific to the antibiotics encoding for aminoglycoside-modifying 336 

enzymes (AAC(3)-II) along with extended-spectrum TEM beta-lactamase (blaTEM-1) were detected 337 



in two infants. These ARGs co-occurred with other non-targeted high-risk ARGs such as qnrS, 338 

floR and aadA (rank II). Previous studies have shown the co-carriage of these ARGs on multidrug 339 

resistance plasmids in Enterobacter species [55]. Also, other clinically relevant Extended Spectrum 340 

Beta-Lactamase (ESBL) genes belonging to SHV beta-lactamase (rank II) family were detected in 341 

two other infants following antibiotic exposure. In one patient, the plasmid-mediated AmpC-type 342 

β-lactamase (ACT-beta lactamase), known to confer resistance against all classes of beta-lactam 343 

antibiotics such as penicillins, cephalosporins and carbapenems was detected only after the 344 

treatment cessation (T2). These high-risk ARGs were observed mainly in early antibiotics exposed 345 

infants whose mothers had also received antibiotics during pregnancy (prenatal). Nonetheless, they 346 

did not persist in nasopharyngeal samples collected after discharge at the corrected age of 6 347 

months. Amongst ARGs that are found in Gram-positive pathogens, the Staphylococcus aureus 348 

methicillin-resistance gene i.e., mecA was detected in 44 samples from almost all (14/15) 349 

antibiotic-treated infants and 10 of the 21 naive infants. 350 

 351 

Impact of early antibiotics on preterm infant nasopharyngeal resistome 352 

Firstly, we investigated the total ARG abundance (quantified as the sum of RPKM) and ARG α-353 

diversity (quantified by Shannon index) across sampling time points. In both the antibiotic-naive 354 

and treated groups, we found that total ARG abundance and diversity increased from T1 to T3-T4, 355 

before descending at T5 until 6 month corrected age (T6). In treated infants, total ARG abundance 356 

and diversity increased more rapidly upon antibiotic treatment, whereas the changes were 357 

generally more gradual over time points in naive infants (Fig. 3A, B). To identify the direct effects 358 

of early antibiotic treatment on the total ARG abundance and diversity, we used a generalized 359 

linear mixed model with individual set as random effect while correcting for age (DOL). Early 360 

antibiotics were significantly associated with increase in both total ARG abundance (LME model: 361 

p.adj = 0.008) and Shannon diversity (p.adj = 0.008) after treatment (T2) as compared to baseline 362 

(T1) samples in preterm infant nasopharyngeal resistome. Moreover, the significant effect of 363 

antibiotics on increase in total ARG abundance was observed until T3 (p.adj = 0.001). 364 

Nonetheless, such effects were short-lived, as we did not identify significant differences at any of 365 

the following timepoints compared to baseline (T1) in antibiotic-treated group. In naive group of 366 

infants, no significant differences appeared in total ARG abundance and α-diversity between any 367 

timepoints during the first 6 months of life while correcting for age. 368 



 369 

β-diversity analysis revealed that the overall resistome composition did significantly differ 370 

between the two groups (PERMANOVA: R2 = 8.2%, p.adj = 0.02) at baseline (T1). Infants that 371 

received early antibiotic treatment had more dissimilar (dispersed) resistome composition than the 372 

naive infants (Fig. 4A). Further, we observed that nasopharyngeal samples were clustering more 373 

effectively according to birth weight group (R2 = 16.4%, p.adj = 0.012; Supplementary Fig. 5A). 374 

No significant difference in baseline resistome composition between antibiotic-treated and naive 375 

infants (R2 = 0.03, p.adj = 0.319) was found while correcting for birth weight group. However, a 376 

minor yet significant compositional difference in resistome was still observed between the two 377 

groups (R2 = 5.9%, p.adj = 0.03) directly after the cessation of early antibiotic treatment (T2) (Fig. 378 

4B). Moreover, the compositional changes due to early antibiotics at T2 were more discernible in 379 

infants whose mothers had received prenatal antibiotics during pregnancy (prenatal + early (n = 8) 380 

vs naive (n = 20): R2 = 10.09%, p.adj = 0.006; Supplementary Fig. 5B). Following treatment, 381 

resistome normalized rapidly as no significant differences in composition between naive and 382 

treated group were detected from T3 until 6 months of corrected age (T6) (Fig. 4C). 383 

 384 

Clinical covariates associated with preterm infant nasal resistome composition development 385 

The associations between resistome composition and clinical factors were analyzed using 386 

PERMANOVA-tests (all p.adj ≤ 0.001) and principal component analysis (PCA) across all 387 

nasopharyngeal samples from preterm birth until 6 months corrected age, using centered log-ratio 388 

(CLR) transformed relative abundance data (Supplementary Fig. 1). The PCA was explained by 389 

two main principal components, describing 18.5% and 17.7% of the variation, respectively. 390 

Besides inter-individual variation (PERMANOVA (univariate): R2 = 37.7%, p.adj  = 0.001), age 391 

was the other significant covariate found to be associated with overall resistome composition in 392 

the overarching cohort. A moderate yet statistically significant effect was observed with GA (R2 393 

4%, p.adj = 0.001) and BW group (R2 4.1%, p.adj = 0.001), which are highly correlated variables 394 

(as indicated by chi-squared test: p < 2.2e-16). Mode of delivery, gender, and intrapartum 395 

antibiotic treatment did not appear to shape the overall nasopharyngeal resistome composition 396 

(Supplementary Table 3). Covariates that differed between the antibiotic-treated and naive infants 397 

at baseline and that also had a significant association with the overall resistome composition (GA 398 



and prenatal antibiotics (R2 4.5%, p.adj = 0.001)) were used for correction in the subsequent 399 

multivariate analysis. 400 

 401 

Multivariate PERMANOVA analysis showed that the largest effect on overall resistome 402 

composition remained attributed to inter-individual variation (R2 30.03%), followed by PMA (R2 403 

9.7%) and chronological age group (sampling time points) (R2 8.4%, all p.adj = 0.001). Although 404 

we observed a high degree of variation between samples with no obvious discrete spatial clustering 405 

in relation to these variables upon visual inspection (Fig. 5A-C). We found no significant influence 406 

of early antibiotics (R2 = 0.6%, p.adj = 0.31) and its duration (R2 = 1.2%, p.adj = 0.009) after 407 

adjusting for confounding variables. However, we observed a significant effect of prenatal 408 

antibiotics (R2 = 3.6%, p.adj = 0.001) and its duration (categorized) (R2 = 4.4%, p.adj = 0.001) in 409 

shaping the overall nasopharyngeal resistome composition in preterm birth. To account for the 410 

likelihood of prenatal antibiotics with early antibiotics exposure in our analyses (Chi-squared test, 411 

p < 0.0003), we further categorized our early antibiotic-treated group based on whether the mothers 412 

had also received antibiotics during pregnancy (prenatal + early, n = 9) or not (only early, n = 6). 413 

Post-hoc analysis revealed significant differences in the overall resistome composition of infants 414 

having exposure to both prenatal and early life antibiotics (prenatal + early) compared to infants 415 

receiving either only early or naive (no prenatal + no early) (p.adj = 0.001; Fig. 5D). No difference 416 

in overall resistome composition was observed between the only early antibiotics and naive group 417 

(p.adj = 0.14), underlining the relevance of prenatal antibiotic exposure in shaping the overall 418 

resistome composition of preterm infants during the first six months of life (corrected). 419 

 420 

Unsupervised clustering classifies nasopharyngeal samples into distinct clusters based on 421 

composition differences 422 

Next, we determined whether the nasopharyngeal samples were organized into clusters (i.e., 423 

resistotypes) according to their ARG abundance profiles using an unsupervised method, i.e., DMM 424 

models. This way, we identified three distinct clusters (or resistotypes) that were driven by specific 425 

ARGs. Majority of our samples (~90%) were classified into two main resistotypes, R1 and R2. No 426 

significant difference in the sequencing depth, was detected between the two Resistotypes 427 

(pairwise Wilcox test: p = 0.14), suggesting that sequencing depth was not driving their separation. 428 

The first resistotype (R1) was characterized by a predominance of fluoroquinolone resistance 429 



genes (patA, patB) and rlmA(II) (Supplementary Fig. 6). On the other hand, resistotype R2 was 430 

driven mainly by relatively higher abundance of the beta-lactam resistance gene SST-1 and the 431 

tetracycline resistance gene tet(41). While resistotype R3 was enriched with the blaZ β-lactamase 432 

resistance gene. The identified resistotypes did vary in their overall ARG composition (β-433 

diversity), as shown in a PCA plot (Fig. 6A). Further, PERMANOVA analysis showed that 434 

resistotypes were more strongly (larger effect size) and significantly associated with the resistome 435 

than other clinical covariates or early-life factors in preterm infants during the first 6 months of 436 

life (R2 = 19.05%, p.adj = 0.001). 437 

 438 

Nasopharyngeal resistome composition of preterm infants is linked to microbial composition  439 

To investigate the impact of microbial composition on resistome composition, we taxonomically 440 

profiled the infant nasopharyngeal samples using MetaPhlAn3 (manuscript under preparation, 441 

Rajar et al. 2023). We noticed that microbial community types, as determined by DMM models, 442 

were highly linked with the resistotypes (chi-square test: p < 0.0001). Resistotype R2 was very 443 

specific to the Serratia community type. Resistotype R1 was associated with the community types 444 

mainly driven by Streptococcus and Gemella and Resistotype R3 was enriched in community types 445 

predominated by Staphylococcus and Cutibacterium (Fig. 6B). These community types were also 446 

significantly associated to the overall composition of the resistome (PERMANOVA: R2 = 13.01%, 447 

p.adj = 0.001; Fig. 6C). Additionally, result from Procrustes analysis showed a strong and 448 

significant association between the microbial taxa abundance and ARG abundance profiles 449 

(correlation coefficient (r) = 0.85, p = 0.001, m2 = 0.26), underlining that bacterial community 450 

composition structured the resistome composition in the nasopharyngeal microbiome of preterm 451 

infants. However, the correlation was more robust in the antibiotic-naive infants (r = 0.94, p = 452 

0.001, m2 = 0.11) as compared to antibiotic-treated infants (r = 0.85, p = 0.001, m2 = 0.27; Fig. 453 

7A, B).  454 

 455 

Next, we performed pairwise Spearman’s correlation analysis between ARG and microbial species 456 

abundances to predict the origin or potential microbial host of ARGs in nasopharyngeal samples. 457 

As expected, the strongest positive correlation (r ≥ 0.8, p.adj < 0.05) was found between the 458 

Resistotype 2 enriched ARGs i.e., SST-1, AAC(6')-Ic, tet(41), MexI and Serratia 459 

marcescens/nematodiphila. The highly prevalent and Resistotype R1 associated ARGs like patA, 460 



patB and rlmA(II) were found to have strong co-occurrence with Streptococcus mitis/oralis and 461 

Gemella haemolysans/sanguinis (Fig. 7C). While Staphylococcus aureus and epidermidis 462 

correlated only with blaZ beta-lactam ARG. Interestingly, these associations are in accordance 463 

with information present in the literature and AMR gene databases on the known microbial host 464 

of these ARGs, highlighting the potential of such analysis approach to predict the origin of ARG 465 

in metagenomes. However, this analysis is only applicable on the features (ARGs or taxa) that are 466 

present in high prevalence across samples to reduce the bias due to false ranking of features with 467 

many zero values. 468 

 469 

Lastly, we also examined whether some of these strongly associated bacterial species with ARGs 470 

would also directly correlate with our overall resistome outcomes. We plotted the relative 471 

abundance of each species versus the total ARG abundance (sum of RPKM) and the number of 472 

unique ARGs from all samples. Our analysis revealed that only the relative abundance of 473 

Streptococcus mitis (rmcorr correlation coefficient (rrm = 0.29, p.adj = 0.01) showed a moderately 474 

linear association with the total ARG abundance while adjusting for inter-individual variability 475 

(Supplementary Fig. 7). However, we did not observe a significant correlation between the relative 476 

abundance of S. mitis and the number of unique ARGs (rrm = 0.19, p.adj = 0.12). To statistically 477 

assess whether S. mitits relative abundance explains the dispersion of resistomes across samples, 478 

we conducted PERMANOVA test and found that Streptococcus mitis significantly explains 479 

11.69% (p.adj = 0.001) of the variation in the overall resistome composition. Only Serratia 480 

marcescens (R2 = 11.8%, p.adj = 0.001) can describe rather similar variation than Streptococcus 481 

mitis in the resistome, though it was not found to be positively associated with any overall 482 

resistome outcomes in our data. 483 

 484 
DISCUSSION 485 

In this study, we (1) examined the dynamics of nasopharynx resistome development in preterm 486 

infants, (2) assessed the impact of early antibiotics on its trajectory, and (3) explored the potential 487 

associations between clinical variables and the overall resistome composition in preterm infants. 488 

We detected ARGs in nearly all (∼95%) samples from both the antibiotic-treated and naive groups, 489 

including some potentially high-risk ARGs. Our analysis revealed that early antibiotic exposure 490 

was transiently associated with an increase in both the diversity and total abundance of ARGs, as 491 



well as changes in the overall resistome composition. The resistome composition was strongly 492 

correlated with the microbiome composition, with inter-individual variation and age explaining 493 

most of the compositional variation in the resistomes. Among the clinical variables, prenatal 494 

maternal antibiotic use, which was a subgroup found only in the antibiotic group of preterm infants, 495 

appeared to be one of the most significant factors influencing the overall nasopharyngeal resistome 496 

composition in preterm infants. 497 

 498 

The nasopharynx represents a highly accessible microbial community and also serves as a crucial 499 

diagnostic window in combating respiratory infections and AMR [56]. It is also the primary 500 

ecological niche for common respiratory pathogens [6]. To date, one of the closest attempts for an 501 

in-depth investigation of ARGs in the respiratory tract using a culture-free approach identified 502 

ARGs in 86% of the samples. However, this was based on the microbiomes of the anterior nares 503 

and from an adult population (Human Microbiome Project) [57], which are different from the 504 

groups and collection sample sites used in our study. In a recent study focusing on infants, ARGs 505 

were detected in 64% of nasopharynx samples [58]. Samples in this study were enriched for 506 

streptococci, thus precluding general conclusions on the extension of ARG presence in the natural 507 

microbiome. In our study, ARGs were present in 95% of the preterm infant samples from the 508 

nasopharynx, regardless of whether they were exposed to antibiotics or not. Although our study 509 

differs in several aspects from the ones above, the combined findings indicate that the respiratory 510 

tract is likely an important reservoir of ARGs and an integral component of human respiratory 511 

microbiomes. For preterm infants, the detection of ARGs in the nasopharynx during the first few 512 

hours of life might occur due to microbiome colonization from multiple sources such as 513 

transgenerational transfer from mothers and the environment [31, 59]. In addition, preterm infants 514 

usually have longer stay in the hospital than term infants after birth. This most likely contributes 515 

to an increased risk for respiratory tract colonization with drug resistant microorganisms, as 516 

recently reported in relation to the gut resistome [9]. 517 

We found that ARGs conferring multidrug resistance via efflux pumps encompassed a large 518 

proportion of the nasopharyngeal resistome in the preterm infants. Similar findings have been 519 

previously reported in the gut and oral resistome of preterm and term infants by other metagenomic 520 

studies [10, 59-61]. In addition, we detected many of the same aminoglycoside-modifying 521 

enzymes, tetracycline protection proteins, and beta-lactamases ARGs identified previously in the 522 



nasopharynx of South African infants, despite the fact that the samples in the South African study 523 

were culture-enriched for streptococci and were from a country with higher AMR challenges than 524 

the origin of samples used in the present study. Such similarities in resistome composition may, at 525 

least in part, be explained by the large proportion of streptococci found in the natural microbial 526 

communities of the infant nasopharynx. Together, these findings suggest the existence of a core 527 

infant nasopharyngeal resistome.  528 

Staphylococcus aureus is one of the leading pathogens causing neonatal sepsis, and one of the 529 

priority drug resistant pathogens by the WHO [62]. We found a strong correlation between the 530 

abundance of Staphylococcus aureus/epidermidis and the PC1-beta-lactamase (blaZ) gene. This is 531 

a gene found in the chromosome and mobile plasmids of staphylococci, thus representing high risk 532 

ARGs. Another strong correlation was found between Serratia species and specific resistance 533 

genes such as SST-1, which confers resistance against cephalosporins. Other resistance genes 534 

correlated with this group included aminoglycoside and tetracycline resistance genes. This is of 535 

relevance, since Serratia spp. are associated with hospital infection outbreaks, especially in NICUs 536 

[63]. However, it is uncertain whether the identified Serratia spp. in the study were acquired from 537 

the hospital environment or not, as this group of bacteria has been also found as part of the nasal 538 

microbiome in healthy adults [64]. 539 

Our results showed a significant effect of early broad-spectrum antibiotic regimen 540 

(ampicillin + gentamicin) on the total abundance, diversity, and composition of ARGs in the 541 

nasopharynx of preterm infants. These effects on the resistome were short-lived and only observed 542 

directly after the cessation of antibiotic treatment (T2). In a recent study investigating the impact 543 

of antibiotics used in the first week of life on intestinal resistome, Reyman et al. reported that three 544 

other antibiotic combinations (penicillin + gentamicin, co-amoxiclav + gentamicin, and 545 

amoxicillin + cefotaxime) also had a transient impact on the infant resistome [11]. As the effects 546 

of antibiotics on microbiome and resistome composition are unique to each individual and 547 

dependent on the antibiotics used and the body site, caution should be taken when extending the 548 

interpretation of such general findings. Interestingly, the transient effects of 549 

ampicillin + gentamicin on the nasopharyngeal resistome were more discernible in preterm infants 550 

whose mothers were exposed to antibiotics during pregnancy before delivery (prenatal antibiotics). 551 

Moreover, we also observed a more profound effect of prenatal antibiotic exposure on the 552 



nasopharyngeal resistome of preterm infants at T2 (after cessation of early antibiotics), which 553 

persisted until the last sampling time point before discharge from the NICU (T4-T5), but not at 6 554 

months corrected age. Although very few studies have focused on the association between prenatal 555 

antibiotic exposure and the resistome, a recent study based on the gut indicates a possible 556 

correlation of prenatal antibiotics with increased abundance of ARGs, at least when used 5 to 6 557 

weeks before birth [10]. Additionally, in concordance with other studies on the infant gut [15, 59], 558 

our data showed no significant impact of intrapartum antibiotic therapy on the overall 559 

nasopharyngeal resistome composition. The nasopharyngeal samples of preterm infants at 6 560 

months corrected age were still clustered according to the birth weight group (similar to T1, 561 

Supplementary Fig. 5C), suggesting a strong but transient influence of other environmental factors, 562 

such as antibiotic exposures. Nonetheless, there is a paucity of relevant studies on nasopharynx 563 

that can corroborate our findings, as they are mainly restricted to the infant gut resistome [9, 11, 564 

14, 15, 31, 59]. 565 

One of the strengths of this study is that it presents the most comprehensive information to date on 566 

the characteristics and dynamics of resistome development in the nasopharynx, including results 567 

for the first six months of life (corrected) – a critical period of airway development in infants. In 568 

addition, the naive group was enrolled at the same time as our treated group from the same hospital, 569 

thus removing potential confounding differences in enrollment years or sampling duration. On the 570 

other hand, the small number of samples at each time point and inter-individual response to 571 

antibiotic exposure may be insufficient to unravel significant associations between antibiotic 572 

regimen and resistome development. Moreover, the baseline samples for the antibiotic-treated 573 

group ideally would represent samples taken before treatment. However, antibiotic treatment 574 

initiation for sEONS and clinical stabilization of the preterm infants were a high priority that 575 

needed to precede nasopharynx sample collection. To partially address this issue, we included only 576 

preterm infants with samples collected no more than 24 hours after antibiotic initiation. Even so, 577 

this choice may have resulted in the selection of more clinically stable infants, which could 578 

possibly limit the generalizability of our results. Despite this approach, the differences in resistome 579 

changes between baseline and after treatment found in our study may underestimate the true impact 580 

of antibiotics on the resistome. We rigorously adjusted for such confounding factors and inter-581 

individual variation using multivariable methods or matched analysis to ensure the reliability of 582 

our observations as a consequence of early antibiotics. Nevertheless, we cannot isolate early 583 



antibiotic effects from other adverse pre-life events that coincide with premature birth, such as 584 

prenatal and antepartum maternally administered antibiotics. Furthermore, for low biomass 585 

samples such as those used in our study, sensitive approaches such as deep sequencing are 586 

necessary to obtain meaningful microbiome information. This increases the risk of detecting 587 

potential DNA contaminants. Although it is not possible to completely eliminate the potential 588 

identification of contaminants, we adopted various control procedures, starting from sample 589 

collection to analysis, to ensure that the data presented in our study is a reliable representation of 590 

the ARGs found in the nasopharynx. 591 

 592 

In conclusion, our findings suggest that early-life treatment with broad-spectrum antibiotics for 593 

sEONS can cause acute perturbations in the nasopharyngeal resistome of preterm infants. 594 

However, these perturbations were transient, as we did not observe a significant alteration in 595 

diversity, abundance, composition, or carriage persistence of high-risk ARGs in treated preterm 596 

infants compared to controls at 6 months of corrected age. The individual variability in the uneven 597 

distribution of high-risk ARGs and the changes in the resistome following antibiotic treatment 598 

highlight the potential benefits of developing resistome profiling tools for point-of-care use, which 599 

could aid in informing and tailoring antibiotic treatment decisions [65]. Future multicenter studies 600 

with long-term follow-up are needed to assess the ecological side-effects of different antibiotic 601 

regimens, including alternatives to broad-spectrum antimicrobial therapy on infant respiratory 602 

resistome development. This study also emphasizes the need to further investigate the 603 

underappreciated effect of different antibiotic exposures (pre, peri, post-birth) during the critical 604 

period of the nasopharyngeal microbiome and resistome development in infants, and the 605 

subsequent development of respiratory infections later in life. Understanding the development of 606 

the respiratory resistome and the impact of antibiotic therapies is relevant for striking a balance 607 

between the conflicting goals of minimizing the risk of serious infectious complications to preterm 608 

birth on one side, and minimizing the selection of organisms with ARGs on the other. Such 609 

knowledge can also help to strengthen antibiotic stewardship programs. In general, the 610 

disproportionate contribution of respiratory pathogens to drug-resistant deaths at all ages 611 

highlights the importance of future studies focusing on this yet rather unexplored reservoir of 612 

pathogens and ARGs. 613 

 614 
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Fig. 1: Sample collection and antibiotic exposure for preterm infants in this study. Sampling 

timeline of 198 nasopharyngeal samples collected from 36 preterm infants over first six months 

(corrected age), together with information regarding the time of early antibiotic exposure (red and 

blue colored circles), exposure to subsequent antibiotic treatment (green colored circles) and 

included/excluded samples. The x-axis represents the days of life (i.e., age) and the y-axis 

represents the infants. NP = nasopharyngeal; AB = antibiotics. 

 



 

Fig. 2: Resistome composition in the nasopharynx microbiome of preterm infants. Stacked 

bar plot showing the relative abundance of (A) antibiotic resistance genes (ARGs) clustered at the 

Class level for the naive and antibiotic-treated groups over time; (B) top 30 most abundant ARGs 

identified across samples at baseline (T1) in early antibiotics treated (left) and naive (right) groups. 

All other ARGs are grouped into the “Other” category. MLS = macrolide-lincosamide-

streptogramin.  
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Fig. 3: Impact of early antibiotic treatment on nasopharynx total ARG abundance and ARG 

α-diversity Boxplots showing the (A) total ARG abundance (sum of RPKM) and (B) ARG 

Shannon diversity per sample, stratified by antibiotic treatment and time points. The lower and 

upper horizontal box lines correspond to the first and third quartiles, with the line in the middle of 

the boxes representing the median. Whiskers extending from the boxes represent the range of data 

points within 1.5 times the interquartile range below the first quartile and within 1.5 times the 

interquartile range above the third quartile. (Statistical significance: LME mixed effect model. 

Adjusted p-values (p): *p < .05, **p < .01 and ***p < .001). RPKM = reads per kilobase of 

reference gene per million bacterial reads. 
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Fig. 4: β-diversity PCA plots of overall nasopharyngeal resistome composition stratified per 

time point. Principal component analysis (PCA) based on Euclidean distances of CLR-

transformed ARG abundances (i.e., Aitchison dissimilarity) between samples, visualizing the 

overall nasopharyngeal resistome composition stratified for antibiotic-treated infants and naive at 

time point (A) T1 (baseline) and (B) T2 (immediately after cessation of early antibiotic therapy). 

Each data point represents the resistome composition of one sample. The ellipses represent the 

95% confidence interval around the centroid of resistome composition for each group. Statistical 

significance (adjusted p-values) and effect size (R2) of the differences in beta diversity were 

assessed using PERMANOVA. In panel (C), the results of the PERMANOVA-tests for the later 

time points are presented. Data points of early antibiotic-treated infants are colored red and those 

of naive infants are blue. PERMANOVA = permutational multivariate analysis of variance; p.adj 

= adjusted p-values.  
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Fig. 5: Factors influencing the overall nasopharyngeal resistome composition in the preterm 

infants. PCA visualizations of Aitchison dissimilarities between all the nasopharyngeal samples 

from birth until 6 months corrected age at ARG level. Each data point corresponds to a sample, 

colored by (A) Infant, (B) PMA, (C) Time points and (D) Prenatal and post-natal antibiotic 

exposure and shaped according to early antibiotic exposure or naive groups. Effect sizes (R2) and 

corresponding adjusted p-values (p.adj, corrected using the Benjamini-Hochberg method) are 

calculated using PERMANOVA-tests (as shown in the bottom right of each plot). Percentage 

refers to the percentage of variance explained by the principal component. PMA = postmenstrual 

age; PC1 = principal component 1; PC2 = principal component 2; PERMANOVA = permutational 

multivariate analysis of variance; p.adj = adjusted p-values.  
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Fig. 6: Association between resistotypes, community types, and ARG abundance profiles. 

The PCA plot showing the association between overall ARG abundance profile with respect to 

their (A) resistotypes and (C) community types identified among all the nasopharyngeal samples 

using the DMM models. R2 was obtained using the PERMANOVA test. (B) Samples proportions 

for each resistotype shown as a function of community type. DMM = dirichlet multinomial 

mixture; Strep = Streptococcus ; Staph = Staphylococcus. 
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Fig. 7: The resistome variation in nasopharynx is explained by microbiome variation. The 

ARG and microbial abundance profiles were correlated with each other for antibiotic treated (A) 

and naive (B) groups using Procrustes analysis. The length of line connecting two points denotes 

the degree of dissimilarity or distance between the microbiome (filled square) and resistome (filled 

circle) composition of the same sample. The line and points are colored based on time points in 

both groups. The correlation coefficients and significance were calculated using the protest 

function in vegan package. (C) Heatmap depicts the Spearman’s pairwise correlation coefficients 

(r) between individual ARGs and microbial species from nasopharyngeal samples. Hierarchical 

clustering using Euclidean distance was performed on both rows and columns. Correlation 

coefficients (r) was shown only where adjusted p-value < 0.05. ARGs = antibiotic resistance genes. 
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Supplementary Fig. 1: Statistical analysis design used in the study. ARGs = antibiotic resistance 

genes; PERMANOVA = permutational multivariate analysis of variance. 

Baseline characteristics 

Kruskal Wallis/Chi-square/one way ANOVA
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• Post-menstrual age (PMA)

• Prenatal maternal antibiotics

• Prenatal maternal antibiotics duration (categorized)

• Ruptured membranes duration
• Apgar score
• Intrapartum maternal antibiotics

Underline variables are different at baseline characteristics between the
groups, and Bold variables are significantly associated with resistome
composition, thus included in the corresponding multivariate models

Variables tested with correction for confounders

Multivariate PERMANOVA (p.adj ≤ 0.001)
• GA at birth and prenatal maternal antibiotics were adjusted for, as they

differed between the early antibiotics and naive group at baseline and showed
a significant association with the overall resistome.
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GA)

Univariate PERMANOVA (p.adj ≤ 0.001)
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Supplementary Fig. 2: Rarefaction curve for the number of unique ARGs identified at 

subsampled sequencing depth. The red line indicates the median sequencing depth for all samples, 

while the gray shading represents one standard deviation. 

 



 
 
Supplementary Fig. 3: Mean normalized relative abundances of different ARG mechanisms 

found in the nasopharynx of early antibiotic treated and naive preterm infants at different time 

points (T1-T6). 

 

 

Supplementary Fig. 4: Heatmap showing the log10-transformed RPKM abundance of potential 

high-risk antibiotic resistance genes (ARGs) identified in the nasopharynx of all preterm infants 

across samples. The x-axis represents the names of samples, which are arranged by treatment group 

and time points. RPKM = reads per kilobase of reference gene per million bacterial reads. 



 

 

Supplementary Fig. 5: PCA visualizations of beta diversity analysis using the Aitchison distances 

at time points: (A) T1, (B) T2 and (C) T6 (6 month corrected age). Each point corresponds to a 

sample colored based on birth weight group (A, C) and prenatal and postnatal antibiotic exposure 

(B). Ellipses indicate 95% confidence intervals (CI). Adjusted p-values and effect size (R2) are 

based on PERMANOVA test. CLR = centered-log ratio; BW= Birth Weight. 
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Supplementary Fig. 6: Box plots of the relative abundances of the main ARG contributors are 

shown for each Resistotype cluster identified across all the preterm infants' nasopharyngeal 

resistomes using DMM models. The X-axis displays the three identified clusters, and the Y-axis 

represents the relative abundance of the ARGs. DMM = dirichlet multinomial mixture. 

 



 

Supplementary Fig. 7: Scatterplots showing the association between correlated species and 

overall resistome outcomes across all infant samples from birth to 6 months corrected age. The 

total ARG abundance in RPKM was positively correlated with the relative abundance of 

Streptococcus mitis (A) and non-linearly negatively associated with the relative abundance of 

Serratia marcescens (C). Plots (B) and (D) depict the relationship between the number of unique 

ARGs and the relative abundance of Streptococcus mitis and Serratia marcescens, respectively. 

Plot (A) and (C) are colored by the relative abundance of Streptococcus mitis, while plots (B) and 

(D) are colored by the relative abundance of Serratia marcescens. RPKM = reads per kilobase of 

reference gene per million bacterial reads. 
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Table 1: Baseline characteristics of preterm infants analyzed in this study 
 

 

 

NP cohort Naive 
Early-
antibiotics p 

n 21 15  

Male, n (%) 12 (57%) 11 (73%) 0.484 

GA, weeks (mean, SD) 31, 6/7 29 5/7, 1 <0.001 

BW, grams (mean, SD) 1562, 188 1306, 277 <0.05 (0.0022) 

BW, group, n (%)  <0.05 (0.013) 

ELBW 0 (0%) 2 (13%)  

VLBW 8 (38%) 10 (67%)  

LBW 13 (62%) 3 (20%)   

Mode of delivery, n (%)  0.694 

Vaginal 4 (19%) 4 (27%)  

C-section 17 (81%) 11 (73%)  

Antibiotics during pregnancy, n (%)  <0.001 

None 21 (100%) 6 (40%)  

< 10 days 0 7 (47%)  

>= 10 days 0 2 (13%)   

Intrapartum antibiotics (IAP), n (%)  0.50 

None documented 2 (10%) 0 (0%)  

Given 19 (90%) 15 (100%)   

ROM, hours (means, SD) 3, 12 432, 733 <0.05 (0.0108) 

Apgar10 (mean, SD) 9, 1 8, 1 0.3039  

Nutrition (discharge to 6 months CA)   <0.05 (0.039) 

fully breastfed 7 (33%) 4 (29%)  
at least 50% mother milk, but also 
some formula 3 (14%) 6 (42%)  
mostly formula and some mothers 
milk 6 (29%) 0 (0%)  

formula 2 (10%) 4 (29%)  

Lost to follow up 3 (14%) 1 (7%)  0.626 



Supplementary Table 1. Sample flowchart. Flowchart showing number of nasopharyngeal 
aspirate samples from preterm infants (n=36) available at several steps in the study including at 
sampling, DNA extraction, sequencing and bioinformatics analysis. 
 

 

 

 

 

Time points T1 T2 T3 T4 T5 T6 Total 

Days of life (DOL) 0-3 4-9 12-19 20-31 32-76 229-288 
 

Extracted samples 
(before library 

prep) 

35 37 36 35 23 32 198 

Exclude samples 
(Low DNA yield) 

2 1 1 0 0 0 4 

Exclude samples 
(Low DNA yield) 

(%) 

5.7% 2.7% 2.8% 0% 0% 0% 2% 

Sequenced 
samples 

33 36 35 35 22 32 194 

Samples failed 
during Resistome 

profiling 

5 1 2 0 1 1 10 

Samples with 
double sampling 

time points 

0 1 0 1 1 0 3 

Included in the 
final analysis 

28 34 33 34 21 31 181 



Supplementary Table 2: Sequence reads statistics 

Sample Raw reads Reads after 
Trimming 

Human 
reads 

Remaining 
(Clean) 
reads 

Reads 
aligning to 
CARD 
database 

% of clean 
reads 
aligned to 
CARD 

S_103 26080501 26067155 16513464 9553691 17435 0.1825 

S_104 22764460 22752830 20748076 2004754 10262 0.5119 

S_105 20970229 20964496 3419609 17544887 506 0.0029 

S_106 28332496 28321717 15003675 13318042 6043 0.0454 

S_119 27475272 27457851 25839804 1618047 105 0.0065 

S_120 22266609 22253052 20695679 1557373 82 0.0053 

S_121 26201196 26188557 22868983 3319574 11179 0.3368 

S_122 33790528 33772729 28966515 4806214 6608 0.1375 

S_123 28686631 28676796 1679787 26997009 22095 0.0818 

S_124 36678862 36580731 32369824 4210907 330 0.0078 

S_125 37839541 37794781 27178195 10616586 302677 2.851 

S_127 27688873 27682506 593223 27089283 181147 0.6687 

S_128 31005030 30983206 27167769 3815437 15888 0.4164 

S_129 28691309 28680175 17478848 11201327 17478 0.156 

S_130 33163819 33076882 19478139 13598743 401 0.0029 

S_137 31372046 31329501 14342527 16986974 13164 0.0775 

S_138 21667917 21662586 846609 20815977 504320 2.4228 

S_140 24503529 24497786 2632209 21865577 26203 0.1198 

S_141 32823359 32806877 26585210 6221667 27575 0.4432 

S_142 26789831 26776365 22169024 4607341 3279 0.0712 

S_154 33191448 33139128 27972056 5167072 39874 0.7717 

S_156 26884193 26874230 546850 26327380 586046 2.226 

S_157 37364064 37340342 32241091 5099251 30575 0.5996 

S_158 21680884 21674017 651114 21022903 25474 0.1212 

S_159 32047093 32031086 26619128 5411958 4165 0.077 



S_160 37292025 37257965 16861312 20396653 12196 0.0598 

S_161 45235114 45148815 41399286 3749529 1241 0.0331 

S_162 67632600 67539141 62221411 5317730 28064 0.5277 

S_163 38901430 38869031 36914900 1954131 22451 1.1489 

S_164 44585351 44483261 8951337 35531924 288242 0.8112 

S_165 25628648 25540450 10013320 15527130 61843 0.3983 

S_166 25531087 25512936 21798951 3713985 3399 0.0915 

S_167 23680492 23663333 6734120 16929213 116337 0.6872 

S_168 45431318 45401429 35864464 9536965 59284 0.6216 

S_169 55896867 55855030 52825510 3029520 9542 0.315 

S_170 30624654 30570075 19822065 10748010 26921 0.2505 

S_171 27481415 27469324 11777603 15691721 2894 0.0184 

S_172 37856150 37836322 25830529 12005793 16131 0.1344 

S_173 32620409 32598666 2520144 30078522 144584 0.4807 

S_174 29843735 29836353 8305978 21530375 41500 0.1928 

S_175 28853583 28843865 8770011 20073854 42924 0.2138 

S_176 40254779 40230614 38052826 2177788 4703 0.216 

S_177 35925057 35889012 19426456 16462556 18834 0.1144 

S_178 20274695 20263845 4157655 16106190 27812 0.1727 

S_179 28497251 28482477 685432 27797045 64980 0.2338 

S_180 23519660 23515651 1775004 21740647 87325 0.4017 

S_181 23879524 23867846 23099772 768074 4218 0.5492 

S_182 27132318 27127749 3087081 24040668 45811 0.1906 

S_183 31972863 31964880 2266406 29698474 50764 0.1709 

S_184 31108627 31101186 1126947 29974239 57650 0.1923 

S_185 31622571 31616517 3735586 27880931 60664 0.2176 

S_186 46757985 46730502 44193952 2536550 4820 0.19 

S_187 30402571 30396836 3688615 26708221 47750 0.1788 

S_188 33765529 33756376 1114356 32642020 62286 0.1908 

S_189 33083199 33073575 2904430 30169145 57677 0.1912 



S_190 30060393 30040023 26669757 3370266 18826 0.5586 

S_191 33250280 33222469 16861645 16360824 101214 0.6186 

S_193 47659319 47614810 14786449 32828361 56496 0.1721 

S_214 52537220 52508963 49589032 2919931 5637 0.1931 

S_215 29571723 29543447 8765633 20777814 47796 0.23 

S_216 35053190 35033550 6769117 28264433 76971 0.2723 

S_217 39517504 39487561 38163679 1323882 625 0.0472 

S_218 30675257 30665911 1270181 29395730 56564 0.1924 

S_219 27547953 27529357 972788 26556569 111748 0.4208 

S_220 33157900 33149181 484150 32665031 66541 0.2037 

S_221 21346517 21337082 831108 20505974 31847 0.1553 

S_222 26286828 26273899 25340090 933809 919 0.0984 

S_223 33944591 33939850 414140 33525710 66865 0.1994 

S_224 40663366 40642802 38200609 2442193 2399 0.0982 

S_225 31198454 31171888 11201529 19970359 96199 0.4817 

S_226 28486798 28471399 21921787 6549612 11262 0.1719 

S_227 23681140 23676886 758241 22918645 45401 0.1981 

S_228 22840259 22827956 12959279 9868677 18766 0.1902 

S_229 32833037 32813316 29804790 3008526 4748 0.1578 

S_230 32797647 32777151 27045604 5731547 8726 0.1522 

S_234 23368571 23345781 15243726 8102055 2282 0.0282 

S_235 29631358 29616146 9188612 20427534 924 0.0045 

S_236 24316377 24307110 10727801 13579309 5898 0.0434 

S_237 31936082 31906503 3105384 28801119 81934 0.2845 

S_238 27183251 27160033 9761467 17398566 61606 0.3541 

S_241 21273396 21265742 2856634 18409108 35437 0.1925 

S_242 37922507 37895061 34772369 3122692 17337 0.5552 

S_243 49645886 49619252 46731003 2888249 14157 0.4902 

S_244 66190561 66123529 63015475 3108054 9000 0.2896 

S_245 24627154 24616003 12421581 12194422 31173 0.2556 



S_247 42327108 42314690 484772 41829918 230967 0.5522 

S_248 47197213 47176488 26244459 20932029 30315 0.1448 

S_249 51501346 51474520 13469371 38005149 93014 0.2447 

S_250 32355912 32328838 13242506 19086332 8192 0.0429 

S_251 27317957 27289175 17759907 9529268 914 0.0096 

S_252 61163417 61088642 47722474 13366168 36220 0.271 

S_253 45402778 45377662 39162898 6214764 9007 0.1449 

S_254 32164676 32143130 6335296 25807834 88170 0.3416 

S_255 39009857 38993377 25088212 13905165 25987 0.1869 

S_256 44877026 44838912 37951047 6887865 9660 0.1402 

S_257 34093993 34087358 3603064 30484294 64242 0.2107 

S_258 21659477 21650879 1178683 20472196 111693 0.5456 

S_259 33243536 33235008 1377165 31857843 84420 0.265 

S_26 30270838 30256072 26479542 3776530 14701 0.3893 

S_260 35892679 35854245 17290178 18564067 36661 0.1975 

S_266 33878209 33871694 778911 33092783 52270 0.1579 

S_267 29882106 29867961 3938949 25929012 127336 0.4911 

S_268 32997828 32992621 2002198 30990423 54318 0.1753 

S_269 48795323 48743359 18996479 29746880 175072 0.5885 

S_27 49542796 49483919 35050025 14433894 172882 1.1978 

S_270 30056925 30048511 785470 29263041 22344 0.0764 

S_271 51738432 51716699 48204756 3511943 5587 0.1591 

S_278 29095206 29082097 17430590 11651507 147 0.0013 

S_279 29498360 29486657 2167755 27318902 214738 0.786 

S_28 37996875 37978461 36894669 1083792 1639 0.1512 

S_280 39383489 39340791 14014208 25326583 176136 0.6955 

S_281 20907270 20894105 2682760 18211345 106040 0.5823 

S_282 31922829 31901011 7462386 24438625 93232 0.3815 

S_283 37846534 37832711 1040092 36792619 139836 0.3801 

S_284 29863131 29846583 24399378 5447205 67 0.0012 



S_285 34228242 34214505 14192796 20021709 73436 0.3668 

S_286 41765816 41726214 30517072 11209142 66965 0.5974 

S_287 32011138 32000174 2080267 29919907 149226 0.4988 

S_288 34869195 34833718 19684842 15148876 58922 0.389 

S_289 39559968 39542758 1775686 37767072 105574 0.2795 

S_29 38045611 38021180 34100541 3920639 5300 0.1352 

S_290 37264718 37245276 26298029 10947247 18539 0.1693 

S_291 32072825 32065914 1094390 30971524 56532 0.1825 

S_292 63816388 63807235 3838178 59969057 109957 0.1834 

S_293 29500665 29493003 5380549 24112454 41039 0.1702 

S_294 33573848 33566767 1050194 32516573 68572 0.2109 

S_295 29125110 29118244 889487 28228757 46684 0.1654 

S_296 34647449 34641389 2501224 32140165 55314 0.1721 

S_297 27768840 27758959 1480206 26278753 145877 0.5551 

S_298 33622191 33613344 2308277 31305067 72539 0.2317 

S_299 22661274 22654821 287602 22367219 66621 0.2979 

S_30 28267450 28256137 5690538 22565599 6201 0.0275 

S_300 20301912 20296120 296296 19999824 37094 0.1855 

S_301 24829638 24825480 540037 24285443 50436 0.2077 

S_302 31874316 31867866 833258 31034608 76222 0.2456 

S_303 39962863 39916697 18377375 21539322 92682 0.4303 

S_304 26868511 26861459 297886 26563573 62060 0.2336 

S_305 32243814 32235699 429181 31806518 71735 0.2255 

S_306 28410746 28404637 5017057 23387580 48409 0.207 

S_307 27609393 27603414 1085057 26518357 56119 0.2116 

S_308 32232733 32227923 351812 31876111 63333 0.1987 

S_309 26565516 26560390 766174 25794216 57990 0.2248 

S_310 36884546 36844010 16364759 20479251 43776 0.2138 

S_311 24334581 24314320 1204496 23109824 50555 0.2188 

S_312 31069699 31062500 976160 30086340 1325 0.0044 



S_313 36354561 36333646 28072594 8261052 178 0.0022 

S_314 39811266 39782498 37746037 2036461 205 0.0101 

S_315 54249580 54222485 51664787 2557698 7333 0.2867 

S_316 44061982 44039723 40399113 3640610 7186 0.1974 

S_317 44116478 44095092 42622292 1472800 633 0.043 

S_331 29644028 29624401 13828912 15795489 31192 0.1975 

S_332 39672217 39644362 38196480 1447882 827 0.0571 

S_333 26467120 26441980 13851310 12590670 97356 0.7732 

S_334 28679182 28648634 11319308 17329326 105763 0.6103 

S_335 29706172 29701470 1533135 28168335 46960 0.1667 

S_342 4190563 4185620 997864 3187756 873 0.0274 

S_343 26076305 26063824 20907404 5156420 4327 0.0839 

S_344 28905903 28893140 19415003 9478137 8856 0.0934 

S_345 36832919 36821990 776032 36045958 136753 0.3794 

S_346 61044890 61004312 59371452 1632860 2000 0.1225 

S_347 69251411 68623791 64379680 4244111 1229 0.029 

S_354 27433235 27422512 16225329 11197183 53 0.0005 

S_356 27229735 27221424 4719264 22502160 86767 0.3856 

S_357 27546962 27535322 18225311 9310011 27877 0.2994 

S_364 64520057 64429899 62001636 2428263 979 0.0403 

S_365 24055590 24045067 10406711 13638356 24613 0.1805 

S_366 55484020 55321634 52415053 2906581 4562 0.157 

S_367 28470266 28444380 8614772 19829608 96588 0.4871 

S_368 20964782 20957580 7515333 13442247 25918 0.1928 

S_369 31720586 31709062 3007642 28701420 42042 0.1465 

S_53 34434233 34414250 32019563 2394687 7072 0.2953 

S_55 26470453 26463326 7666968 18796358 2006 0.0107 

S_86 28423053 28408167 23773990 4634177 13285 0.2867 

S_87 66938909 66905387 64680249 2225138 6394 0.2874 

S_88 30976709 30958246 4982552 25975694 72811 0.2803 



S_89 25774477 25760044 24970857 789187 46 0.0058 

S_90 46594816 46555570 45060476 1495094 395 0.0264 

S_91 36674226 36641370 35795529 845841 1172 0.1386 

S_93 53178273 53147304 51682818 1464486 2822 0.1927 

S_95 33533344 33517467 32593464 924003 1464 0.1584 

S_96 26810898 26796813 22625616 4171197 492 0.0118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 3: PERMANOVA results 

Univariate analysis 

Factor Df SumOfSqs R2 F p.adj 

Early antibiotics 1 3574 0.02283 4.1813 0.001 

Individual ID 35 59041 0.37705 2.5075 0.001 

Time points (age groups) 5 12832 0.08195 3.1241 0.001 

Mode of Delivery 1 600 0.00383 0.6884 0.756 

Gender 1 1856 0.01185 2.1468 0.02 

Birth weight (BW) group 2 6393 0.04083 3.7885 0.001 

Days of life (DOL) 1 2466 0.01575 2.8645 0.005 

Post-menstrual age (PMA) 10 15136 0.09666 1.8191 0.001 

Gestational age (GA) at birth 3 6313 0.04032 2.4787 0.001 

Prenatal maternal antibiotics duration 
(categorized) 2 8162 0.05212 4.8942 0.001 

Prenatal maternal antibiotics 1 7008 0.04475 8.386 0.001 

Early antibiotics duration 1 4640 0.02963 5.4662 0.001 

Ruptured membranes duration 1 1692 0.0108 1.9551 0.046 

Apgar score 1 1412 0.00902 1.6285 0.082 

Intrapartum maternal antibiotics 1 2311 0.01476 2.6813 0.007 

 
Multivariate analysis 

Factor Df SumOfSqs R2 F p.adj 

Individual ID 31 47028 0.30033 2.255 0.001 

Early antibiotics 1 947 0.00605 1.1577 0.31 

Early antibiotics duration 1 2009 0.01283 2.4664 0.009 

Time points (age groups) 5 13213 0.08438 3.4531 0.001 

Post-menstrual age (PMA) 10 15261 0.09746 1.959 0.001 

Prenatal maternal antibiotics 1 5700 0.0364 6.9391 0.001 

Prenatal maternal antibiotics duration 
(categorized) 2 6961 0.04445 4.25 0.001 
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ABSTRACT

The study of resistomes using whole metagenomic
sequencing enables high-throughput identification
of resistance genes in complex microbial commu-
nities, such as the human microbiome. Over recent
years, sophisticated and diverse pipelines have been
established to facilitate raw data processing and an-
notation. Despite the progress, there are no easy-to-
use tools for comprehensive visual, statistical and
functional analysis of resistome data. Thus, explo-
ration of the resulting large complex datasets re-
mains a key bottleneck requiring robust computa-
tional resources and technical expertise, which cre-
ates a significant hurdle for advancements in the
field. Here, we introduce ResistoXplorer, a user-
friendly tool that integrates recent advancements in
statistics and visualization, coupled with extensive
functional annotations and phenotype collection, to
enable high-throughput analysis of common outputs
generated from metagenomic resistome studies. Re-
sistoXplorer contains three modules––the ‘Antimi-
crobial Resistance Gene Table’ module offers various
options for composition profiling, functional profiling
and comparative analysis of resistome data; the ‘In-
tegration’ module supports integrative exploratory
analysis of resistome and microbiome abundance
profiles derived from metagenomic samples; finally,
the ‘Antimicrobial Resistance Gene List’ module en-
ables users to intuitively explore the associations be-
tween antimicrobial resistance genes and the micro-
bial hosts using network visual analytics to gain bio-
logical insights. ResistoXplorer is publicly available
at http://www.resistoxplorer.no.

INTRODUCTION

Antimicrobial resistance (AMR) represents a major threat
to global public health and the economy (1). Consequently,

examining the emergence and dissemination of AMR ge-
netic determinants is one of the priorities in global research
(2–4). Until recently, genetic determinants were mostly un-
derstood in the context of specific pathogens; however,
to fully understand how antimicrobial resistance genes
(ARGs) emerge and disseminate, a more holistic approach is
required. In this respect, advancements in short-read based
high-throughput DNA sequencing (HTS) technologies and
computation methods have facilitated rapid identification
and characterization of ARGs across microbial genomes
present in a sample (metagenome) (5,6). They have been
shown to provide unprecedented knowledge into the large
reservoir of ARGs and contributed to elucidate the ARG
composition and the spread of AMR between human, ani-
mal and environmental microbial communities (7–12). Cur-
rently, resistome profiles describing ARGs in complex and
diverse microbial metagenomes are primarily generated us-
ing whole metagenome shotgun sequencing in which the
total DNA extracted from a microbial community is se-
quenced. The resulting DNA fragments can be analyzed
using read or assembly based approaches to characterize
their resistome composition (5,6). These derived sequencing
datasets are both large and complex, causing considerable
‘big data’ challenges in downstream data analysis.

The main computational effort in resistome analysis of
metagenomic datasets so far has focused on processing,
classification, assembly and annotation of sequenced reads.
This has led to the development of a number of excellent
bioinformatic tools and databases for detecting and quan-
tifying ARGs in metagenomes (5,6,13,14). However, there
is still no clear consensus with regards to standard anal-
ysis pipelines and workflows for high-throughput analysis
of AMR metagenomic resistome data (14,15). Nonetheless,
the outputs from most of these pipelines can be summarized
as a data table consisting of ARGs abundance informa-
tion across samples, i.e. resistome profiles, along with their
functional annotations and sample metadata. For most re-
searchers, the fundamental challenge in data analysis can
often be centered on how to understand and interpret the
information in the abundance tables especially within the
context of different experimental factors and annotations.
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Downstream analysis of resistome data can be separated
into four main categories: (i) composition profiling––to vi-
sualize and characterize the resistome based on approaches
developed in community ecology, such as alpha diversity,
rarefaction curves or ordination analysis; (ii) functional
profiling––to analyze resistome profiles at different func-
tional categories (e.g. drug class, mechanism), thus gain-
ing better insights on their collective functional capabili-
ties; (iii) comparative analysis––to identify features having
a significant differential abundance between studied condi-
tions; and (iv) integrative analysis––to integrate the resis-
tome and taxonomic data to understand the complex inter-
play and potential associations between microbial ecology
and AMR. The computational methods and approaches to
perform such analysis are fairly diverse and require deep
understanding and programming skills, representing signif-
icant barriers for their broader and exploratory applications
(16). The first category of analysis can be more straightfor-
ward to perform, but the last three are challenging.

Fundamental challenges within the different categories
relate to the fact that metagenomic data is often character-
ized by differences in library sizes, sparsity, over-dispersion
and compositionality (17,18). Hence, it is critical to normal-
ize the data to achieve comparable and meaningful results
(18–20). To deal with uneven library sizes, researchers of-
ten employ two common normalization approaches prior
to analysis: subsampling the reads in each sample to the
same number (rarefying) or rescaling the total number of
reads in each sample to a uniform sum (using proportions).
The former may entail loss of valuable information, while
the latter could lead to issues related to data composi-
tionality (21). To overcome such challenges, sophisticated
scaling methods based on log-ratio transformations have
been proposed (22,23). To identify differentially abundant
genes, the development of statistical models that account
for features of metagenomic data or the use of methods
to transform data to have distributions that fit standard
test assumptions is generally recommended (19). For in-
stance, the metagenomeSeq algorithm incorporates cumu-
lative sum scaling (CSS) normalization and a zero-inflated
Gaussian (ZIG) mixture model to reduce false positives and
improve statistical power for differential abundance analy-
sis (24,25). It has also been demonstrated that algorithms
developed for RNA-seq data such as edgeR and DESeq2,
along with their respective normalization methods, outper-
form other approaches used for metagenomic abundance
data (20,25,26). These standard strategies are widely em-
ployed, but do not explicitly account for the compositional
nature of whole metagenomic sequencing data (27,28). To
address this issue, promising Compositional Data Analysis
(CoDA) approaches have been proposed (29,30).

Nonetheless, there is no one statistical method suitable
for all types of metagenomic datasets (20,26). The best
results are achieved from a trade-off between data char-
acteristics (sample or group size, sequencing depth, ef-
fect sizes, genes abundances, etc.) and the normalization
method, incorporated with the coupled exploratory and
comparative analysis (31). Therefore, various statistical and
normalization methods are required for different metage-
nomic datasets, analyses and research questions addressed
(6,19,25,26,31). However, most of the approaches have been

implemented as R packages. Although flexible, learning R
in order to use these methods can be challenging for most
clinicians and researchers.

In the second category, functional profiling, the anno-
tated resistome abundance profiles are analyzed by mapping
ARGs either to the respective class of drugs to which they
confer resistance (Class-level) or to their underlying molec-
ular mechanism of resistance (Mechanism-level). Analyzing
resistomes at such high level categories enables researchers
to gain more biological, actionable and functional insights
together with a better understanding of their data. How-
ever, these functional levels and categories, along with their
classification scheme, vary considerably between AMR ref-
erence databases (15). Additionally, depending upon the
database used for annotation, users need to manually col-
lect and curate such information and then generate sep-
arate abundance tables for each functional level. Hence,
collecting appropriate functional annotation information
for hundreds of ARGs in resistomes for functional pro-
filing and further downstream analysis can be confusing,
arduous, time-consuming and error-prone. Some of these
databases may also provide information regarding the mi-
crobial hosts that harbor or carry these reference ARGs. In-
formation about such relationships can be complex as one
microbe can carry multiple ARGs and single ARGs can in
turn be present across multiple microbes. To explore such
intricate ‘multiple-to-multiple’ relations, one option is to
use a network-based visualization method. However, such
visual exploration support is not present in current resis-
tome analysis tools.

To address these gaps as well as to meet recent advances in
resistome data analysis, we have developed ResistoXplorer,
a user-friendly, web-based, visual analytics tool, to assist
clinicians, bench researchers and interdisciplinary groups
working in the AMR field to perform exploratory data anal-
ysis on abundance profiles and resistome signatures gener-
ated from AMR metagenomics studies. The key features of
ResistoXplorer include:

1. Support of a wide array of common as well as advanced
methods for composition profiling, visualization and ex-
ploratory data analysis;

2. Comprehensive support for various data normalization
methods coupled with standard as well as more recent
statistical and machine learning algorithms;

3. Support of a variety of methods for performing verti-
cal data integrative analysis on paired datasets (i.e. tax-
onomic and resistome abundance profiles);

4. Comprehensive support for ARG functional annota-
tions along with their microbe and phenotype asso-
ciations based on data collected from >10 reference
databases;

5. A powerful and fully featured network visualization for
intuitive exploration of ARG-microbe associations, in-
cluding functional annotation enrichment analysis sup-
port.

Collectively, these features consist of a comprehensive
tool suite for exploratory downstream analysis of data gen-
erated from AMR metagenomics studies. ResistoXplorer is
freely available at http://www.resistoxplorer.no.
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MATERIALS AND METHODS

Design and implementation

ResistoXplorer is implemented based on Java, R and
JavaScript programming languages. The framework is de-
veloped based on the Java Server Faces technology using
the PrimeFaces (https://www.primefaces.org/) and Boots-
Faces (https://www.bootsfaces.net) component library. The
network visualization uses the sigma.js (http://sigmajs.org/)
JavaScript library. Additionally, D3.js (https://d3js.org/)
and CanvasXpress (https://canvasxpress.org/) JavaScript li-
braries are utilized for other interactive visualization. All
the R packages for performing back-end analysis and visu-
alization are mentioned in the ‘About’ section of the tool.
At the start of the analysis, a temporary account is created
with an associated home folder to store the uploaded data
and analysis results. All the analysis results will be returned
in real-time. Upon completing their analysis session, users
should download all their results. The system is deployed on
a dedicated server with four physical CPU cores (Intel Core
i5 3.4GHz), 8GB RAM and Ubuntu 18.04 LTS was used as
the operation system. ResistoXplorer has been tested with
major modern browsers such as Google Chrome, Mozilla
Firefox, Safari and Microsoft Internet Explorer.

Program description and methods

ResistoXplorer consists of three main analysis modules.
The first is the ‘ARG List’ module that is designed to explore
the functional and microbial hosts associations for a given
list of ARGs of interest. The second is the ‘ARG Table’ mod-
ule, which contains functions for analyzing resistome abun-
dance profiles generated from AMR metagenomics stud-
ies. Lastly, the ‘Integration’ module enables users to per-
form integrative analysis on the paired taxonomic and re-
sistome abundance profiles to further explore potential as-
sociations coupled with novel biological insights and hy-
potheses. Figure 1 represents the overall design and work-
flow of ResistoXplorer. We recommend users to try out
our example datasets to get familiar with the basic steps
and key features of the tool before proceeding with anal-
ysis of their own data. ResistoXplorer also contains manu-
als and a comprehensive list of frequently asked questions
to assist users to easily navigate through different analysis
tasks.

RESULTS AND DISCUSSION

Data upload and processing

Overview of data inputs. The three analysis modules (ARG
List, ARG Table and Integration) are represented as three
interactive buttons in ResistoXplorer. Users must choose an
analysis path based on their input. The input can be up-
loaded in two different ways––by entering a list of ARGs or
by uploading an ARG abundance table along with a sam-
ple metadata file containing group information. In the latter
case, the files can be uploaded as a tab-delimited text (.txt)
or in comma-separated values (.csv). Further, users must
also provide the annotation information of ARGs either by
uploading a file (.txt or .csv) or by just selecting the same

database used for their annotation during upstream anal-
ysis. Additionally, the Integration module requires users to
also upload a taxa abundance table in the same formats. The
taxonomic and functional annotation files are optional in
case of integrative analysis. Users can go to the correspond-
ing ‘Manuals’ and ‘Data Format’ section, or download the
example datasets for more details.

ARG-functional annotations collection. The annotation
information and the classification scheme for reference
ARGs (or sequences) are collected from nine widely
used generalized AMR databases: CARD (32), ResFinder
(33), MEGARes (15,34), AMRFinder (35), SARG (36),
DeepARG-DB (37), ARGminer (38), ARDB (39) and
ARG-ANNOT (40). Further, this annotation information
is organized into tables containing the reference ARGs in
rows and their functional annotation levels across columns
for each of the databases. The headers (names) for refer-
ence ARGs are annotated as in the chosen database. Some
of the annotation levels having multiple functional cate-
gory assignments for ARGs were removed from the tables
to avoid false counts inflation during downstream anal-
ysis. Additional manual curation for functional category
naming and data redundancies were performed in some of
the databases. Further, we also structured functional an-
notation information from the BacMet (41) database and
antimicrobial peptide (AMP) resistance gene dataset (42)
to enable users to perform functional profiling and down-
stream analysis of antibacterial biocides/metals and AMP
resistance genes abundance profiles. It should be noted that
ResistoXplorer does not perform any functional annotation
of sequencing data. The tables are stored in RDS file format
for less storage space and fast retrieval of data. Users can
use these tables to analyze their resistome profile directly
at different functional levels rather than manually collect-
ing the annotation information from their corresponding
database. The ‘Data Format’ and ‘About’ pages provide a
detailed description on the format, structure of annotation
table and database statistics, together with the links to allow
users to download the annotation structure (‘Downloads’
section) available for the individual database.

Data filtration and normalization. By default, features
with zero read count across all the samples or only present
in one sample with extremely low count (e.g. 2) are removed
from downstream analysis based upon statistical and bi-
ological approximations. Also, features present in only a
small percentage of samples (e.g. 20%) with very few counts
(e.g. 2) cannot be discriminated from sequencing errors or
low-level contamination. It is also considered difficult to
interpret their significance with respect to the whole com-
munity. By default, such low-quality features are filtered
based on sample prevalence and their abundance levels to
improve the comparative analysis. The default values are
those used by the other tools and mostly found in the lit-
erature (43,44). Users can also choose to remove low abun-
dant features by setting a minimum count cutoff based on
their mean or median value. Conversely, some features re-
main constant in their abundances throughout the experi-
mental conditions or across all the samples. These features
are implausible to be informative in the comparative analy-
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Figure 1. ResistoXplorer flow chart. ResistoXplorer accepts resistance gene list and ARG/taxa abundance tables as input data. Three successive steps are
performed: data processing, data analysis and result exploration. The accompanying web interface offers a varied suite of options, and generates several
tables and graphics to enable users to intuitively go over the data analysis tasks.

sis. Users can exclude such low variant features based on
their inter-quantile ranges, standard deviations or coeffi-
cient of variations (43). Removing those uninformative fea-
tures can increase the statistical power by reducing multiple
testing issues during differential analysis (45). The filtered
data is used for most of the downstream analysis except al-
pha diversity and rarefaction analysis. In case of integrative
analysis, users can also choose to apply different data filtra-
tion criteria for both taxonomic and resistome abundance
data.

After data filtering, users must perform data normal-
ization to remove the systematic variability between sam-
ples. Currently, ResistoXplorer offers three categories of
data normalization––rarefying, scaling and transforma-
tion, based on various widely used methods for metage-
nomic abundance data (25). In addition, ResistoXplorer
supports other normalization methods like centered log-
ratio (clr) and additive log-ratio (alr) transformation to fa-
cilitate compositional data analysis. The choice of method
is dependent upon the type of analyses to be performed
(20,31). The normalized data is used for exploratory data
analysis including ordination, clustering and integrative
analysis. Users can explore different approaches and visu-
ally investigate the clustering patterns (i.e., ordination plots,
dendrogram and heatmap) to determine the effects of differ-
ent normalization methods with regard to the experimen-
tal factor of interest. The total sum scaling (TSS) normal-
ization is recommended for such type of analysis and has
been set as the default option in ResistoXplorer (20,46,47).
Also, comparative analysis using different approaches is
performed on normalized data. However, each of these ap-
proaches will use its own specific normalization procedure

due to the lack of benchmark study evaluating which nor-
malization methods should be combined with the differ-
ent statistical approaches to achieve best performance for
identifying differentially abundant genes (26). For example,
the relative log expression normalization is used for DE-
Seq2, and the centered log-ratio transformation is applied
for ALDEx2. In the integrative analysis module, taxonomic
and resistome datasets are normalized using the same ap-
proach.

Composition profiling

Visual exploration. ResistoXplorer allows users to visu-
ally explore the resistome based on various intuitive visu-
alization approaches used for metagenomic data. For in-
stance, users can visualize resistome abundance data while
simultaneously showing the functional hierarchical rela-
tionships and connectivity between features using an in-
teractive sankey diagram, zoomable sunburst or treemap
graphics (Figure 2C). In case of treemap, users can click a
particular rectangular block of interest to further inspect its
compositions at a lower functional level. The abundances
can be represented as either absolute counts or relative pro-
portions. However, such visualizations are more suitable for
resistome profiles having an acyclic and hierarchical func-
tional annotation structure. Abundance profiles can also
be viewed at different functional levels using other com-
mon visualizations such as stacked area or stacked bar plot
(Figure 2A). The plot is organized by experimental factors
to help visualize the differences in resistome composition
across different conditions.
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Figure 2. Example outputs from composition profiling panel of ARG Table module in ResistoXplorer. (A) A stacked bar chart showing class level resistance
abundance profiles across samples. (B) A box plot summary of the Shannon diversity index at mechanism level in different treatment groups across sampling
time points. (C) A Sankey diagram showing the resistome abundance profile of treated (left) and untreated (right) cattle group at hierarchical functional
levels including class, mechanism and group. (D) A rarefaction curve showing the number of unique ARGs identified in each sample as a function of
sequence sample size.

Diversity profiling. The resistome diversity profiling is im-
plemented mainly based on the R vegan and phyloseq
packages (48,49). Currently, users can perform alpha diver-
sity (within-sample) analysis using eight common richness
and/or evenness-based diversity measures. Since the Chao1
measure performs well and is recommended for estimating
ARG diversity (50), it has been set as a default one in Re-
sistoXplorer. The results are represented in the form of a
dot plot for individual samples and box plots for each sam-
ple group (Figure 2B). The corresponding statistical signifi-
cance is calculated automatically using either parametric or
non-parametric tests. The analysis can be performed at dif-
ferent functional levels based on the available annotations.
Additionally, the reliability of estimated diversity in sam-
ples can be assessed through rarefaction curves in which
the number of unique features (ARGs) identified is plotted
against the sequence sample size (Figure 2D).

Ordination analysis. The ordination analysis function al-
lows users to explore and visualize the similarities or dis-
similarities between samples based on their composition
at different functional levels. The dissimilarity can be cal-
culated using five non-phylogenetic-based quantitative or
qualitative distance measures. Since the different types of
distance measures have specific niches and can affect the

outcomes and the interpretation of the analysis, it is rec-
ommended by several authors to apply different measures
to better understand the factors underlying composition
differences (6,51,52). Currently, three widely accepted or-
dination methods are supported, including principal coor-
dinate analysis (PCoA), non-metric multidimensional scal-
ing (NMDS) and principal component analysis (PCA). In
particular, users can follow a CoDA ordination approach
by performing PCA on the centered log-ratio transformed
data. The corresponding statistical significance is calculated
using one of the three common multivariate statistical test-
ing methods. Permutational multivariate analysis of vari-
ance (PERMANOVA) was set as the default option (53).
By default, ordination analysis is performed using PCoA
on a most widely used Bray–Curtis dissimilarity metric and
assessed using PERMANOVA. The results are represented
as both 2D and 3D sample plots. The samples visualized
in these ordination plots are colored based on metadata or
their alpha diversity measures to help users identify any un-
derlying patterns in the datasets (Figure 3B).

Comparative analysis

Differential abundance testing. This section enables users
to perform statistical testing to identify features that are
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Figure 3. Illustration of core resistome and ordination analysis results in ResistoXplorer. (A) A heatmap showing the core resistome of cattle analyzed at
class level. (B) A 3D PCA plot with sample colors based on time points. (C) A 3D PCoA plot with sample colors with regards to different treatment groups
and time points.

significantly different in abundance across sample groups.
ResistoXplorer supports standard tests, such as DESeq2
(22), edgeR (23), metagenomeSeq (24), LEfSe (54), as
well as more recent CoDA univariate analysis approaches
such as ALDEx2 (55) and ANCOM (56). DESeq2 and
edgeR are broadly used and generally considered as ro-
bust and powerful parametric statistical approaches for
datasets with small group and equally distributed library
sizes (18,20,25,26). They fit a generalized linear model and
assume that read counts follow a negative binomial dis-
tribution to account for the features of count data. In
contrast, the metagenomeSeq, with its recommended CSS
normalization, has substantially higher performance with
larger group sizes (26,48). LEfSe uses the standard non-
parametric tests for statistical significance coupled with lin-
ear discriminant analysis to assess the effect size of differen-
tially abundant features. The CoDA methods perform sta-
tistical testing on the log ratios of features rather than their
actual count abundances to deal with the compositional na-
ture of sequencing data. ALDEx2, for instance, performs
parametric or non-parametric statistical tests on log-ratio
values from a modeled probability distribution of the data
and returns the expected values of statistical tests along
with effect size estimates. ANCOM tests the log-ratio abun-
dance of all pairs of features for differences in means using
non-parametric statistical tests. By default, the Benjamini–
Hochberg correction is used for all approaches to control

the false discovery rate across significant genes. The differ-
ential analysis can also be performed at different functional
levels.

The results from the differential analysis are displayed as
a table. By default, the result table will show a maximum
of 500 top features ordered according to their adjusted P-
values. The significant features (if present) are automatically
highlighted in orange color. Further, users can also see a
boxplot summary for any feature of interest by just click-
ing the ‘Details’ icon. Since different statistical approaches
may generate divergent P-values, it is often recommended to
compare and visualize results using more than one statisti-
cal approach, as to increase confidence in the interpretation
of results.

Machine learning-based classification. Prediction of mi-
crobiome signatures using machine learning algorithms has
been gaining more recognition and shown to perform well in
recent resistome data analyses and classifications (7,57,58).
ResistoXplorer provides two such powerful supervised clas-
sification methods––Random Forest (59) and Support Vec-
tor Machine (SVM). Both can be applied to resistome data
for identification of potential biomarkers. In particular, the
Random Forest algorithm uses an ensemble of classification
trees (forest), with final class prediction based on the ma-
jority vote of the ensemble. As the forest is constructed, it
can provide an unbiased estimate of prediction errors by ag-
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gregating cross-validation results using bootstrapped sam-
ples. Random forest also measures the importance of each
feature based on the increase of the prediction errors when
it is randomly shuffled. Alternatively, the SVM algorithm
uses a training set of samples separated into classes to iden-
tify a hyperplane in higher dimensional feature space that
generates the largest minimum distance (margin) between
the samples that belongs to different classes (60). ResistoX-
plorer’s SVM analysis is performed using recursive feature
selection and sample classification via linear kernel (61).
The features used by the best model are considered to be
important and ranked based on their frequencies of being
selected in the model. Figure 4D shows the classification
performance of SVM with regards to decreasing number of
features (variables).

Other features. There are several other valuable functions
implemented in ResistoXplorer for exploratory analysis of
resistome data. Users can perform core resistome analy-
sis to detect core sets of features present in samples or
sample groups based on their abundance and prevalence
level (Figure 3A). ResistoXplorer also supports commonly
used correlation analysis and hierarchical clustering. The
results from hierarchical clustering can be visualized using
heatmaps (Figure 4A) and dendrograms (Figure 4B). For
publication purposes, all visualizations can be downloaded
as either Scalable Vector Graphics (SVG) or Portable Doc-
ument Format (PDF) files.

Integrative analysis

The main goal of this module is to explore and unveil poten-
tial hidden correlations between the microbiome and resis-
tome using a variety of integrative data analysis approaches.
Such analyses have been increasingly used to explore the as-
sociations between the bacteria and ARGs in different envi-
ronments (11,62,63). Currently, ResistoXplorer offers sev-
eral advanced and commonly used univariate and multivari-
ate statistical methods for data integration and correlation
analysis. All these analyses are performed on filtered and
normalized datasets.

Global Similarity analysis. This section allows users to de-
termine the overall similarity between the microbiome and
resistome dataset using two multivariate correlation-based
approaches: Procrustes analysis (PA) and Coinertia analysis
(CIA). The datasets used for such analysis can be normal-
ized using scaling and/or transformation approaches to ac-
count for uneven library sizes and compositional data. The
analysis can be performed at various functional and tax-
onomic levels based on available annotations. These func-
tions currently support five common distance measures.
The ordinations from the distance matrices can be calcu-
lated using either PCoA, PCA or NMDS. By default, both
these analyses are being assessed employing widely used
PCoA on a Bray–Curtis distance metric. In case of PA, the
microbiome ordination is scaled and rotated onto the re-
sistome ordination to minimize the sum of squared differ-
ences between the two ordinations. For the CIA, the mi-
crobiome and resistome ordination are constrained so that
the squared covariances between them are maximized to

measures the congruence between datasets. The results are
represented using both 2D and 3D ordination plots, where
samples are colored and shaped based on the datasets (Fig-
ure 5A). Users can also color the samples based on differ-
ent experimental factors to identify some patterns or gain
biological insights. The corresponding similarity coefficient
and P-value from both these analyses are estimated auto-
matically to assess the strength and significance of the asso-
ciation between the two datasets. The similarity coefficient
ranges from 0 and 1, with 0 suggesting total similarity and 1
total dissimilarity between the two datasets. Users can per-
form both Procrustes and Coinertia analysis to gain more
confidence by evaluating the congruency of the results.

Omics data integration approaches. ResistoXplorer of-
fers other multivariate projection-based exploratory ap-
proaches, such as regularized canonical correlation analy-
sis (rCCA) and sparse partial least square (sPLS) for the
integration of microbiome and resistome data. These ap-
proaches aim at highlighting the correlations between high
dimensional ‘omics’ datasets. They are implemented pri-
marily based on the R mixOmics package (64). By default,
both the datasets are normalized during such analyses using
their recommended normalization technique (i.e. clr trans-
formation). Users can choose or tune the number of com-
ponents and regularization parameters for rCCA. In the
case of sPLS, all variables are selected in both datasets by
default. In addition to sample plots, other variable plots
like clustered image maps (Figure 5C) and correlation circle
plots (Figure 5D) are displayed to facilitate the interpreta-
tion of the complex correlation structure between datasets.

Pairwise microbe-ARG correlation analysis. This section
enables users to determine if there are strong relationships
(co-occurrence patterns) between individual microbial taxa
(microbiome) and ARGs (resistome) using univariate corre-
lation analysis. Users can perform such analysis using four
different types of classical and more recent approaches, in-
cluding Spearman, Pearson, CCLasso and Maximal Infor-
mation Coefficient. Since the Spearman correlation anal-
ysis is most commonly used in resistome studies (65) and
seems to perform overall better than other approaches in
identifying pairwise associations between omics data, it has
been present as a first choice in ResistoXplorer (66). In
particular, features (ARGs or taxa) that are not present in
half of the samples across all the groups are removed to
eliminate an artificial association bias before performing
Spearman correlation analysis (65,67). By default, these ap-
proaches (except CCLasso) use the microbiome and resis-
tome relative abundances (proportions) for correlation in-
ference, while the CCLasso is based on log-ratio normal-
ization of microbiome and resistome compositional data.
Due to the lack of consensus on each approach in differ-
ent conditions, it is recommended to compare results from
multiple methods (66,44). The analysis can be conducted on
taxa at their different taxonomic annotations (i.e. phylum,
genus and species) and on resistome at different functional
levels (e.g. class, mechanisms, ARG, etc.) based on available
annotations. Users can select strong and significant pairwise
correlations using a combination of absolute correlation co-
efficients and adjusted P-value. The results are represented
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Figure 4. Example outputs from clustering analysis and machine learning-based classifications in ARG Table module of ResistoXplorer. (A) A clustered
heatmap showing the variation of resistome abundance at group level in samples organized based on time point. (B) A dendrogram showing the clustering
of samples with colors based on treatment and time point. (C and D) A graphical summary of the classification performance on different treatment groups
using the Random Forests and SVM algorithm, respectively.

as a co-occurrence network (Figure 6A) with each node in-
dicating either a microbial taxon or a resistance determi-
nant (ARG). The nodes can be sized based on their network
topological measures (degree and betweenness). Users can
double click on a node to highlight its corresponding cor-
related nodes in a network. The width and color of an edge
indicate the strength and direction of the correlation be-
tween two nodes. The nodes are colored as well as shaped
according to the dataset. The underlying correlation matri-
ces and network centrality-based measures are also avail-
able to download.

ARGs-microbial host network exploration

The module offers users the possibility to understand
the complex ‘multiple-to-multiple’ relations between ARGs
and microbial hosts, using an advanced network-based vi-
sual analytics system. It is straightforward to identify key
players from a network perspective, for instance, by look-
ing for those ARGs that are found in multiple microbes or

by identifying those microbes that simultaneously contain
multiple ARGs of interest.

ARG-microbial host association data collection. ResistoX-
plorer currently supports four reference databases (Res-
Finder (33), CARD (32), ARDB (39) and BacMet (41))
and a recently published AMP dataset (42) for network-
based microbial host associations exploration of ARGs.
These primary databases contain direct or indirect informa-
tion regarding the microbial host for the reference ARGs.
In the latter case, the information on microbial host as-
sociated with each of the reference ARGs has been col-
lected from their corresponding GenBank accession num-
ber using a combination of text mining and manual cu-
ration, like in ResFinder and ARDB. Further, this infor-
mation has been manually annotated to improve name
readability and remove redundancy. Moreover, the avail-
able functional annotation information of ARGs was also
collected and organized into sets to facilitate enrichment
analysis.
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Figure 5. Example outputs from Integration module of ResistoXplorer. (A) A 3D NMDS plot from Procrustes analysis with samples shape and color
with regards to datasets. (B) A 3D PCoA plot from Coinertia analysis, with the length of lines connecting two points indicating the similarity of samples
between two datasets. (C) A clustered image heatmap showing the correlations between and among taxa (phylum level) and ARGs (group level). (D) A
correlation circle plot showing the correlation structure of features (taxa/ARGs) present in two datasets.

ARG–microbial host association table and network creation.
The uploaded list of ARGs are searched against the selected
target database. This list can comprise significant ARGs de-
tected in differential abundance testing or ARGs identified
through high-throughput qPCR. The results will be repre-
sented as an association table with each row corresponding
to a particular reference ARG (sequence) and its potential
microbial host. When available, the table also provides other
association information along with hyperlinks to the corre-
sponding GenBank Accession number and PubMed liter-
ature. Users can directly remove each row by clicking the
delete icon in the last column to keep only high-quality as-
sociations supported by literature or experimental evidence.
The resulting ARG-host associations are used to build the
default networks. Since not all the nodes will be connected,
this approach may lead to the generation of multiple net-
works. The statistics of nodes and edges are provided for
users to have an overview of the size and complexity of the
generated networks. Further, users can also filter the nodes
based on their topological measures (degree and between-
ness) in case of large networks for better interpretation.

Network visualization and functional analysis. The result-
ing networks are visualized using HTML5 canvas and
JavaScript-based powerful and fully featured visualization
system. This system is implemented based on a previously

published visual analytics tool (68). It is comprised of three
main components: the central network visualization area,
the network customization and functional analysis panel on
the left, and the right panel containing a node table (Figure
7). Users can intuitively visualize and manipulate the net-
work in the central area using a mouse with a scroll wheel.
For example, users can scroll the wheel to zoom in and out
the network, hover the mouse over any node to view its
name, click a node to display its details on the bottom-right
corner or double click a node to select it. The horizontal
toolbar to the top exhibits basic functions to manipulate
the network. The first is the color picker to enable users to
choose a highlight color for the next selection. Users can
also select and drag multiple nodes by using the dashed
square icon in the toolbar.

The network customization panel provides various op-
tions to configure the general visualization features of the
default network or to specify the range of mouse opera-
tion. The ‘Layout’ option enables users to perform auto-
matic network layout using different algorithms; the ‘Back-
ground’ option enables users to select between a white and
black background. The range of mouse operations during
highlighting and dragging-and-dropping can be varied us-
ing the ‘Scope’ option. For instance, in ‘single node’ mode,
only the node which has been clicked or dragged will be
highlighted or affected, whereas all the nodes that are being
selected by the users will be affected in the ‘all highlights’
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Figure 6. Illustration of pairwise correlation analysis results. (A and B) A co-occurrence network showing the strong and significant pairwise correlations
between taxa (phylum level) and ARGs (class level) identified using Spearman and Pearson correlation analysis, respectively.

Figure 7. A screenshot of ResistoXplorer network visual analytics system. The view is divided into three main compartments with the network visualization
(toolbar on top) at the center, the node table on the right and the network customization panel together with functional annotation table on the left. Users
can easily highlight and manually organize different groups of nodes based on either their annotations or connectivity patterns. It is straightforward to
identify those ARGs that are found in multiple microbes, or those microbes that simultaneously contain multiple ARGs of interest.

mode. Additionally, the ‘Download’ option allows users to
either save the current network in different formats or to
download the network file in GraphML format for visual-
ization in other software. The node table on the right panel
displays the ARGs and their microbial hosts along with cor-
responding network topological measures. The correspond-
ing abundance values, if available, will also be presented in
the last column. Users can directly click on any row of inter-
est to select, and the network view will automatically zoom
to the related node. The bottom right panel provides more

detailed info related to the node(s) being highlighted or cur-
rently selected on the network.

ResistoXplorer also supports functional enrichment
analysis of the ARGs present within the current network
using hypergeometric tests. This approach coupled with the
network visualization system has the potential to provide
better interpretation of AMR resistance mechanisms and
inform on possible dissemination routes of ARGs. The cat-
egories or levels at which enrichment analysis can be per-
formed will be based on the initially selected database. The
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enrichment analysis results are shown as a table on the left
panel. By clicking on a row of the result table, users can
highlight all nodes related to an enriched function within
the network. There are also several other options and func-
tionalities present, which allow users to intuitively explore,
manipulate and customize the ARG-microbial host associ-
ation networks.

Use case

To illustrate the functionality of the tool, we have se-
lected two recent resistome studies with publicly available
metagenomic datasets (69,70). These datasets have been
mounted as an example sets in the ‘ARG Table’ module
of our tool. In Doster et al. (70), the authors have ex-
amined the effects of tulathromycin (antimicrobial drug)
on gut microbiome and resistome using commercial feed-
lot cattle. Two groups of cattle were used, with one un-
treated group and the other treated with metaphylaxis. Fe-
cal samples were collected from 15 cattle within each group
at two time points––baseline (Day 1) and after 11 days
(Day 11). Shotgun sequencing was performed on the ex-
tracted metagenomic DNA, and reads were aligned by the
authors to MEGARes and custom Kraken database for re-
sistome and microbiome characterization. The resulting re-
sistome abundance profile is uploaded to the ARG Table
module of ResistoXplorer for further downstream analysis
and exploration. Since the reads were annotated using the
MEGARes database, we have directly selected the precom-
piled functional annotation information of the correspond-
ing database to annotate and classify ARGs (gene acces-
sions) at higher functional levels. All the ARGs are mapped
and classified at three functional hierarchical levels––class,
mechanism and group as per the MEGARes classification
scheme. We first compared the resistome alpha diversity
at the mechanism level; the Shannon diversity indices of
the treatment group decrease over time, but the diversity
changes are not prominent in the untreated group (Figure
2B). The composition profiling is carried out to explore and
represent the gut resistome of cattle. As shown in Figure
2A, the resistome composition at the class level is domi-
nated mainly by the ARGs that confer resistance to tetracy-
cline and the macrolide-lincosamide-streptogramin (MLS)
class of antibiotics in all the samples. The hierarchical com-
position profiling using the Sankey diagram showed that
almost all of the ARGs that belongs to tetracycline-class
confer resistance through ribosomal protection proteins. In
contrast, most of the ARGs that belong to the MLS-class
confer resistance through macrolide efflux pumps. More-
over, the resistome composition at different functional lev-
els was quite similar between treated and untreated cattle
(Figure 2C). The ordination analysis at AMR mechanism
level using PCA (CoDA-based) and PCoA indicated that
the resistome composition of treated and untreated groups
were significantly different between time points (ANOSIM:
R = 0.49, P-value < 0.05; Figure 3B and C). We also per-
formed differential abundance testing on fecal resistome
profile using metagenomeSeq and ALDEx2 (CoDA-based)
at class, mechanism, and group level. No significant features
were found to be differentially abundant between treatment
groups using both these methods at all levels. All these anal-
yses confirm and replicate the previous findings and results

of the original publication. We also performed additional
analyses of the data to highlight the utility and exploratory
capabilities of ResistoXplorer. The rarefaction curve anal-
ysis indicated that enough sequencing depth was achieved
to describe the ARG richness in all the metagenomic sam-
ples (Figure 2D). The heatmap showed that most of the fea-
tures (except TETQ, MEFA, TETW and TETO) at group
level have a very low abundance and sparse representation
across all the 60 samples. The distinct abundance pattern of
TET40 group is observed when comparing the Day1 with
Day11 for both the treatment groups (Figure 4A). The hi-
erarchical clustering analysis showed that samples belong-
ing to both treated and untreated groups are clustered effec-
tively based on time points (Figure 4B). The ARGs belong-
ing to tetracyclines and MLS classes comprise the core re-
sistome in cattle, based on their abundance and prevalence
level (Figure 3A). Additionally, both Random Forest and
SVM algorithms suggested that the treatment groups could
not be predicted with high accuracies based on the resis-
tome profiles of fecal samples, confirming the findings that
tulathromycin does not seem to influence the gut resistome
in cattle (Figure 4C and D).

Furthermore, the bacterial and ARG abundance profiles
are uploaded to the Integration module of ResistoXplorer
to explore the relationship between the fecal microbiome
and resistome in cattle. The application of Procrustes anal-
ysis suggested that there were no significant overall similar-
ities between the resistome and bacterial abundance profile
(M2 = 0.23, P-value > 0.05; Figure 5A). However, the re-
sults from Coinertia analysis indicated that resistome and
bacterial composition are moderately correlated with sta-
tistical significance (RV coefficient = 0.47, P-value < 0.05;
Figure 5B). To deal with the result discrepancies between
approaches, we also investigated the pairwise associations
between individual taxa (microbiome) and ARGs (resis-
tome) using Spearman and Pearson correlation analysis.
The results showed that no significant and strong pairwise
correlations (criteria: absolute correlation coefficient > 0.7;
adjusted P-value < 0.05) were identified between any taxa
(phylum level) and ARG (group level) (Figure 6A and B),
suggesting that the gut resistome was not correlated and
structured by bacterial composition.

Comparison with other tools

A variety of tools or pipelines have been developed in recent
years to support resistome analysis of metagenomic data
(15,33,36,37,71,72). Most of these tools have been designed
primarily for raw reads processing and annotation, with
limited or no support for interactive visual exploration and
downstream analysis. ResistoXplorer complements these
tools and resources by providing real-time visual analytics
experience along with comprehensive support for statisti-
cal, visual and exploratory analysis on the metagenomic re-
sistome data. AMR++ Shiny (15) is a web-based R/shiny
application dedicated for basic exploratory and statistical
analysis of metagenomic resistome and microbiome data.
More recently, resistomeAnalysis (67) R package also sup-
ports visualization, comparative and integrative analysis of
resistome abundance profile. Based on the detailed compar-
isons among those tools (Table 1), it is clear that ResistoX-
plorer offers a unique set of features and functions with
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Table 1. Comparison of ResistoXplorer with other web-based tools (except resistomeAnalysis R package) supporting downstream analysis of metage-
nomic resistome data

Tools ResistoXplorer AMR++ Shiny resistomeAnalysis WHAM!

Platform Web-based Web-based + locally
installable

R package Web-based

Registration No No No
Data processing
Data input Abundance tables Abundance tables Abundance tables Abundance tables

(Biobakery + EBI)
Functional
annotation

User-defined + collected from
>10 AMR databases

MEGARes CARD User-defined

Filtering Abundance, variance Abundance (quantile) Variance
Normalization Scaling, transformation, rarefying CSS, rarefying TSS, proportion Proportion, clr
Composition profiling
Visual profiling Stacked bar plot, stacked area,

sankey diagram, zoomable
sunburst, treemap

Stacked bar plot Stacked bar plot Interactive stacked
bar plot

Alpha diversity Multiple Richness
Ordination analysis PCoA, NMDS & PCA (2D & 3D) PCA & NMDS

(Bray–Curtis) (2D)
PCoA (2D)

Comparative analysis
Differential analysis DESeq2, metagenomeSeq,

EdgeR, LEfSe, ALDEx2,
ANCOM

metagenomeSeq DESeq2 ALDEx2

Classification Random Forests, SVM
Other functions Heatmaps, dendrogram,

correlation, core resistome, alpha
rarefaction curves

Heatmaps, Alpha
rarefaction bar plots

Heatmaps, dendrogram,
correlation, core resistome

Interactive
Heatmaps,
correlation

Integrative analysis Procrustes, Coinertia, rCCA,
sPLS, Spearman, Pearson,
CCLasso, MIC

Spearman Visual comparisons

Gene (ARG) List
exploration

ARG-microbial host network
visual analytics & functional
analysis

ResistoXplorer: http://www.resistoxplorer.no
AMR ++ Shiny: https://github.com/lakinsm/amrplusplus-shiny
resistomeAnalysis (R package): https://github.com/blue-moon22/resistomeAnalysis
WHAM!: https://ruggleslab.shinyapps.io/wham v1/
Note: Tools exclusively dedicated for sequence annotations are not included.

regards to comprehensive statistical and exploratory data
analysis, visualization, integrative data analysis and ARG-
microbial network visual analysis.

Limitations and future directions

The ARG table module can be used for visualization
and analysis of resistome profiles characterizing differ-
ent genetic determinants present within an AMR refer-
ence database. However, ResistoXplorer does not allow
users to choose multiple precompiled functional annota-
tion databases to analyze the entire ecologies (antimicrobial
drugs, biocide, metal and other resistance drivers) of resis-
tance determinants. More importantly, the functional an-
notations collected in ResistoXplorer mainly depend on the
information and classification scheme present in the origi-
nal databases. Hence, there might still be some acyclic and
hierarchical functional annotation structure in databases,
which users need to curate for accurate count-based anal-
yses. The biocuration of ARGs and their functional an-
notation structure for the supported databases is beyond
the scope of the study. Although some of the supported
databases are no longer updated, such as ARDB and ARG-
ANNOT (5,6), excluding them would have limited the pos-
sibility of exploring and analyzing previous datasets, as well
as a variety of present studies that still use them. In re-

gard to the ARG-microbial host associations module, these
are limited by the type and quality of information avail-
able in the databases. Currently, ResistoXplorer offers lim-
ited functionalities and features for vertical data integration
and pairwise correlation analysis. As most of the advanced
approaches for performing this type of analysis on multidi-
mensional datasets are based on computationally intensive
re-sampling (cross-validation) and permutation-based ap-
proaches to calculate statistical significance, which adds lay-
ers of complexity and computational power demands, that
is often challenging for a real-time interactive web applica-
tion. In future versions, we plan to continuously update and
expand our database and analysis support for exploration
of mobilome, virulome and other resistance determinants
of relevance in AMR metagenomic studies.

CONCLUSION

Whole metagenomic sequencing studies are providing un-
paralleled knowledge on the diversity of resistomes in the
environment, animals and humans, and on the impact of in-
terventions, such as antibiotic use (7–12,67,69). Currently,
such studies and data analyses are mainly exploratory in
nature. In spite of the continuous development of many
new statistical approaches, there is no exclusive method
that unfailingly performs well, as demonstrated by several
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benchmarking studies (20,25,26,46). Indeed, it has been re-
cently suggested that metagenomic analysis should be ex-
plored comparatively using different available approaches
(31). However, this is a time consuming task and requires
knowledge and bioinformatics training on the implemen-
tation of each statistical method employed. Therefore, it
is critical to assist researchers and clinical scientists in the
field to easily explore their own datasets using a variety of
approaches, in real-time and through interactive visualiza-
tion, to facilitate data understanding and hypothesis gener-
ation. ResistoXplorer meets these requirements by offering
comprehensive support for composition profiling, statisti-
cal analysis, integrative analysis and visual exploration of
resistome data. Conversely, such analysis is entirely depen-
dent on the comprehensiveness and quality of the AMR ref-
erence databases (5,6). Hence, the use of continuously up-
dated and curated databases with a simple, acyclic and hi-
erarchical functional annotation scheme is desired for accu-
rate downstream analysis. Lastly, ResistoXplorer will con-
tinuously be updated to follow the advancements in ap-
proaches for resistome analysis. We believe ResistoXplorer
will have the potential to find large applicability as a useful
resource for researchers in the field of AMR.
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