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A Hankel operator Hϕ on the Hardy space H2 of the unit circle with analytic 
symbol ϕ has minimal norm if ‖Hϕ‖ = ‖ϕ‖2 and maximal norm if ‖Hϕ‖ = ‖ϕ‖∞. 
The Hankel operator Hϕ has both minimal and maximal norm if and only if |ϕ|
is constant almost everywhere on the unit circle or, equivalently, if and only if ϕ
is a constant multiple of an inner function. We show that if Hϕ is norm-attaining 
and has maximal norm, then Hϕ has minimal norm. If |ϕ| is continuous but not 
constant, then Hϕ has maximal norm if and only if the set at which |ϕ| = ‖ϕ‖∞ has 
nonempty intersection with the spectrum of the inner factor of ϕ. We obtain further 
results illustrating that the case of maximal norm is in general related to “irregular” 
behavior of log |ϕ| or the argument of ϕ near a “maximum point” of |ϕ|. The role 
of certain positive functions coined apical Helson–Szegő weights is discussed in the 
former context.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

This paper along with its antecedent [2] grew out of a desire to understand the cases of equality in the 
most basic norm estimates for Hankel operators in the classical setting of the unit circle T of the complex 
plane. We equip as usual T with normalized Lebesgue arc length measure and define the Hardy space Hp

for 1 ≤ p ≤ ∞ as the subspace of Lp = Lp(T ) consisting of the functions whose Fourier coefficients are 
supported on {0, 1, 2, . . .}. To define Hankel operators, we let H2 denote the subspace of L2 consisting of 
the complex conjugates of functions in H2, and we let P and P stand for the orthogonal projections from 
L2 to respectively H2 and H2. Every symbol ϕ in H2 induces a (densely defined) Hankel operator

Hϕf := P (ϕf) (1)
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from H2 to H2. We have plainly

‖ϕ‖2 ≤ ‖Hϕ‖ ≤ ‖ϕ‖∞, (2)

and our problem is to identify, in terms of function theoretic properties of ϕ, the cases of equality in either 
of these norm estimates. The Hankel operator Hϕ is said to have minimal norm if the lower bound in (2)
is attained and maximal norm if the upper bound in (2) is attained.

A function I in H2 is inner if |I| = 1 almost everywhere on T . It is plain that Hϕ has both minimal 
and maximal norm if and only if ‖ϕ‖2 = ‖ϕ‖∞. The latter equality is equivalent to the assertion that |ϕ| is 
constant almost everywhere on T or, equivalently, that ϕ = CI for a constant C and an inner function I. 
Minimal norm Hankel operators were recently investigated by the first-named author who established the 
following result.

Theorem 1 ([2, Thm. 1]). If Hϕ has minimal norm, then Hϕ has maximal norm.

We will say that the Hankel operator Hϕ is norm-attaining if there is a function g in the unit sphere of 
H2 such that ‖Hϕ‖ = ‖Hϕg‖2. To place our results in context, we begin with the following observation. 
The proof is similar to that of a result of Adamjan, Arov, and Krĕın (see [1] or e.g. [7, Thm. 1.4]).

Theorem 2. If Hϕ is norm-attaining and has maximal norm, then Hϕ has minimal norm.

Since compact operators are norm-attaining, it follows from Hartman’s theorem [4] and a result of Sarason 
[8, Thm. 1 (iv)] that if the symbol ϕ has vanishing mean oscillation, then Hϕ is norm-attaining. In particular, 
if ϕ is continuous on T and Hϕ has maximal norm, then ϕ = CB for a constant C and a finite Blaschke 
product B. If ϕ = CI for a constant C and an inner function I, then Hϕ is plainly norm-attaining with 
g = I. We refer to [9] for a description of the symbols generating norm-attaining Hankel operators.

In view of this preliminary discussion, it remains to identify those maximal norm Hankel operators that 
are not minimal norm Hankel operators. The main purpose of this paper is to initiate the study of such 
operators.

We begin by recasting our problem in function-theoretic terms via Nehari’s theorem [6], which states 
that

‖Hϕ‖ = inf
ψ∈L∞

{
‖ψ‖∞ : Pψ = ϕ

}
(3)

for every symbol ϕ in H2. Let H∞
0 denote the subspace of H∞ of functions vanishing at the origin. It follows 

from (3) that Hϕ has maximal norm if and only if

‖ϕ‖∞ = inf
f∈H∞

0
‖ϕ− f‖∞. (4)

We will say that ϕ is saturated if (4) holds. Some terminology is required to state our results. The super-level 
sets and sub-level sets of a bounded function ϕ are defined, respectively, as

L+
ϕ (δ) :=

{
eiθ ∈ T : |ϕ(eiθ)| ≥ ‖ϕ‖∞δ

}
,

L−
ϕ (δ) :=

{
eiθ ∈ T : |ϕ(eiθ)| < ‖ϕ‖∞δ

}
,

where 0 ≤ δ ≤ 1. As usual, we factor ϕ as ϕ = ΦI, where I is an inner function and Φ is an outer function 
determined by |ϕ| on T (see (13) below). Note that L±

ϕ = L±
Φ , since |I| = 1 almost everywhere on T . Recall 

that an inner function I may be written as I = BS, where B is a Blaschke product and S is a singular 
inner function. The spectrum of I, denoted by σ(I) in what follows, is the subset of T defined as the union 
of the accumulation points of the zeros of B and the support of the singular measure associated to S.
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So far, we have seen that functions in H∞ of constant modulus are always saturated and that functions 
in H∞ that have vanishing mean oscillation on T , are saturated if and only if they have constant modulus. 
By a theorem of Sarason [8, Thm. 3], a simple criterion for ϕ to have vanishing mean oscillation is that 
|ϕ| be continuous on the closed unit disc. Note in particular that in this case σ(I) = ∅. Our second result 
is the following complete description of saturated functions in H∞ that have continuous but not constant 
modulus on T .

Theorem 3. Suppose ϕ = ΦI is a function in H∞ such that |ϕ| is continuous but not constant on T . Then 
ϕ is saturated if and only if L+

Φ(1) ∩ σ(I) 	= ∅.

It is not difficult to construct examples of saturated functions in H∞ that are not of the form ϕ = CI

from Theorem 3. One of the simplest possibilities is ϕ = ΦI, for

Φ(z) = 1 + z and I(z) = exp
(
z + 1
z − 1

)
.

Here it is plain that L+
Φ(1) ∩ σ(I) = {1}, so it follows from Theorem 3 that ‖Hϕ‖ = ‖ϕ‖∞ = ‖Φ‖∞ = 2.

Theorem 3 is a consequence of two general results, the first of which reads as follows.

Theorem 4. Suppose that ϕ = ΦI is in H∞. If for every 0 < δ < 1 the interior of L+
Φ(δ) has nonempty 

intersection with σ(I), then ϕ is saturated.

Before stating our next result, which is a partial converse to Theorem 4, we recall that a positive function 
w on T is a Helson–Szegő weight if

w = exp(u + ṽ), (5)

where u and v are in L∞ and ‖v‖∞ < π/2. In (5) and in what follows ṽ denotes the conjugate function of v. 
In our problem, we only need the bound on v at points where |ϕ| is close to ‖ϕ‖∞. We therefore make the 
following definition: A bounded function w is an apical Helson–Szegő weight if there exists some 0 < δ < 1
such that

w = exp(u + v), (6)

where u is in L∞, v is in L1, and

ess sup
L+

w(δ)
|ṽ| < π

2 . (7)

Note that we have changed ṽ to v when going from (5) and (6), because the global condition on w is now just 
that logw be integrable. Clearly, an ordinary bounded Helson–Szegő weight is also an apical Helson–Szegő 
weight, but the converse is far from true. When w is an apical Helson–Szegő weight, logw may for example 
fail to have bounded mean variation. When we wish to specify for which 0 < δ < 1 the estimate (7) holds, 
we will say that w is an apical Helson–Szegő weight at level δ.

Theorem 5. Suppose that ϕ = ΦI is in H∞ and that there exists some 0 < δ < 1 such that

(i) |ϕ| is an apical Helson–Szegő weight at level δ;
(ii) the interior of L−

Φ(δ) is nonempty and includes σ(I).

Then ϕ is not saturated.
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Condition (i) of Theorem 5 requires |ϕ| to be, in an essential way, bounded away from 0 close to the 
points at which it is near its maximum. The precise degree of nonvanishing, however, may be rather less 
severe than that of an ordinary Helson–Szegő weight, as we will exemplify below.

Our final theorem exhibits a type of vanishing near a maximum point of |ϕ| that does indeed guarantee 
that ϕ be saturated. In this result, we use the notation Γ(ϑ) for the arc Γ(ϑ) := {eiθ : |θ| ≤ ϑ} with 
0 < ϑ ≤ π.

Theorem 6. Suppose that ϕ is a function in H∞ such that

lim
ϑ→0+

ess sup
Γ(ϑ)∩L−

ϕ (1)
|ϕ| = 0 (8)

and that there exists a sequence (ϑn)n≥1 with ϑn → 0+ such that

|Γ(ϑn) ∩ L−
ϕ (1)| ≥ a|Γ(ϑn)| and |Γ(ϑn) ∩ L+

ϕ (1)| ≥ b|Γ(ϑn)| (9)

for positive constants a and b. Then ϕ is saturated.

One may think of Theorem 6 as a counterpart to Theorem 4, with the discontinuity in the argument 
(represented by a point in σ(I)) replaced by a particular kind of discontinuity in log |ϕ|. Unfortunately, 
however, this counterpart is only of a rudimentary nature, and we are for example far from having a full 
description of saturated outer functions that are discontinuous at only one point.

The next section contains the proofs of the results stated above, while the third and final section of the 
paper presents a brief discussion of possible next steps in the investigation of saturated functions in H∞.

2. Proofs

In preparation for the proof of Theorem 2, we record the following consequence of the Cauchy–Schwarz 
inequality and the upper bound in (2). If ϕ is a nontrivial function in H∞ and g is in the closed unit ball 
of H2, then the function

f := ‖ϕ‖−1
∞ gHϕg

is in the closed unit ball of H1.

Proof of Theorem 2. We may assume without loss of generality that ‖ϕ‖∞ 	= 0. If Hϕ is norm-attaining 
and has maximal norm, then there is some g in the unit sphere of H2 such that

‖ϕ‖2
∞ = ‖Hϕ‖2 = ‖Hϕg‖2

2 =
〈
Hϕg,Hϕg

〉
=

〈
ϕg,Hϕg

〉
=

〈
gHϕg, ϕ

〉
, (10)

where we used the definition of Hϕ from (1). Since g is a nontrivial function in H2 and Hϕg is a nontrivial 
function in H2, we find that f = ‖ϕ‖−1

∞ gHϕg is a nontrivial function in the closed unit ball of H1. We 
deduce from this and (10) that

‖ϕ‖∞ = 〈f, ϕ〉 ≤ ‖f‖1‖ϕ‖∞ ≤ ‖ϕ‖∞,

which implies that 〈f, ϕ〉 = ‖f‖1‖ϕ‖∞. Since f is a nontrivial function in H1, it can only vanish on a 
subset of T of measure 0. This means that ϕ = ‖ϕ‖∞f |f |−1 almost everywhere on T and consequently that 
ϕ = CI for a constant C 	= 0 and an inner function I. It follows that ‖ϕ‖2 = ‖ϕ‖∞, and hence Hϕ has 
minimal norm. �
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As Theorem 3 relies on both Theorem 4 and Theorem 5, we will establish the latter two results first. 
Before we proceed with the proof of Theorem 4, we will recall a few results (which can be found e.g. in [3, 
Sec. II.6]) on analytic continuation of functions in Hardy spaces across T . Suppose that f is a function in 
H1 and that Γ is an open arc on T . If f is analytic across Γ, then both its inner factor I and its outer factor 
F are analytic across Γ. Moreover, an inner function I is analytic across each open arc Γ on T which does 
not intersect the spectrum σ(I).

Proof of Theorem 4. We will argue by contradiction and assume that there is some f in H∞
0 such that 

‖ϕ − f‖∞ < ‖ϕ‖∞. The left-hand side of this inequality is plainly nonzero, so there is some 0 < ε < 1 such 
that

‖ϕ− f‖∞ = ε‖ϕ‖∞. (11)

We will choose δ := (1 + ε)/2. Since the interior of L+
Φ(δ) is assumed to have nonempty intersection with 

σ(I), there is an open arc Γ in L+
Φ(δ) that has nonempty intersection with σ(I). We know that |ϕ| ≥ δ‖ϕ‖∞

on Γ by definition, so it follows from (11) that |f | ≥ (1 − ε)/2‖ϕ‖∞ almost everywhere on Γ. It is also plain 
that ‖f‖∞ ≤ (1 + ε)‖ϕ‖∞. Expanding |ϕ − f |2 and using these estimates, we deduce from (11) that

|Argϕf | ≤ arccos 1 − ε

4 <
π

2 (12)

almost everywhere on Γ. Let ν be the harmonic function in the unit disc defined by the boundary values

ν :=
{
−Argϕf, on Γ;
0, on T \ Γ.

The function g := exp(−ν̃+ iν) is analytic in the unit disc and maps the unit disc to a cone in the right-half 
plane due to (12). Consequently, g is in H1. By construction, the H1 function h := ϕfg is positive on Γ, 
whence it is analytic across this arc (see e.g. [3, Lem. IV.1.10]). In particular, the inner factor of h is analytic 
across Γ. This means that I (the inner factor of ϕ) is also analytic across Γ, since σ(I) is a subset of the 
spectrum of the inner factor of h. We have arrived at a contradiction since σ(I) has nonempty intersection 
with Γ. �

Recall (from e.g. [3, Sec. II.5]) that the outer factor of ϕ = ΦI can be recovered from the modulus of ϕ
on T by the formula

Φ(z) = exp

⎛⎝ π∫
−π

eiθ + z

eiθ − z
log |ϕ(eiθ)| dθ2π

⎞⎠ . (13)

In particular, if |Φ| = |ϕ| is a Helson–Szegő weight, then it follows from (5) and (13) that

Φ = exp(u + iũ + ṽ − iv),

where u and v are in L∞ with ‖v‖∞ < π/2. Similarly, if |Φ| = |ϕ| is an apical Helson–Szegő weight at level 
δ, then it follows from (6) and (13) that

Φ = exp(u + iũ + v + iṽ),

where u is in L∞ and ṽ satisfies (7).
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Proof of Theorem 5. Our task is to construct a function f in H∞
0 such that

‖ϕ− f‖∞ < ‖ϕ‖∞. (14)

To satisfy the requirement that f be in H∞
0 , we consider functions of the form f(z) = zg(z) for g in H∞. 

The function g will consist of two factors arising from, respectively, the inner and outer factors of ϕ = ΦI. 
We begin with I. By assumption, there is some 0 < δ < 1 such that σ(I) is a subset of the interior of L−

Φ(δ). 
Being a nonempty open set, the latter set can be written as a union of open arcs. By compactness of σ(I), 
we may pick a finite collection of such arcs that covers σ(I). Letting Γ denote the union of these arcs, we 
may define the argument of h(z) := zI(z) as a C∞ function on T \Γ. Consequently, since Γ is a finite union 
of open arcs, we may find a C∞ function ν on T such that

ν = − arg h

on T \Γ. Since ν is smooth, the function g1 := exp(−ν̃ + iν) is in H∞ and |g1| is bounded below on T . For 
the outer part of ϕ, we use the assumption that |Φ| be an apical Helson–Szegő weight at level δ and choose 
g2 := exp(−u − iũ). Since u is in L∞, it follows that g2 is in H∞ and that |g2| is bounded below on T . Set

f := εzg1g2,

for some ε > 0. If ε ≤ (1 − δ)‖ϕ‖∞/(2‖g1‖∞‖g2‖∞), then |ϕ − f | ≤ (1 + δ)/2‖ϕ‖∞ on L−
Φ(δ). Conversely, 

since L+
Φ(δ) is contained in T \ Γ we have∣∣ϕ− f

∣∣ =
∣∣|ϕ| − εe−iṽ|g1||g2|

∣∣
on L+

Φ(δ) by construction. Using (7) and the fact that both |g1| and |g2| are bounded below on T , it follows 
that there is some sufficiently small ε > 0 such that |ϕ −f | < ‖ϕ‖∞ almost everywhere on L+

Φ(δ). Combining 
the estimates on L−

Φ(δ) and on L+
Φ(δ), we see that (14) holds. �

The following sufficient condition for being an apical Helson–Szegő weight may be of some independent 
interest. We will primarily apply it in the proof of Theorem 3.

Lemma 7. Suppose w is a bounded positive function on T such that logw is integrable and fix 0 < δ < 1. If 
there is an ε in (0, δ) such that

dist
(
L+
w(δ), L−

w(ε)
)
> 0, (15)

then w is an apical Helson–Szegő weight at level δ.

Proof. We may assume without loss of generality that ‖w‖∞ = 1. We set

uR := max(logw,−R) and vR := R + min(logw,−R)

for R > 0. Note that uR is in L∞ for each fixed R. Since logw is integrable, we have plainly that vR is in 
L1 for each fixed R and that ‖vR‖1 → 0 when R → ∞. Let ER := {θ ∈ [−π, π] : eiθ ∈ L−

w(e−R)}. We see 
from the definition of vR that

ṽR(eit) = p.v.
∫

cot
(
t− θ

2

)
vR(eiθ) dθ

2π .

ER
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We pick R so large that e−R ≤ ε. It now follows that there is a constant C > 0, which only depends on the 
distance in (15), such that |ṽR| ≤ C‖vR‖1 on L+

w(δ). Writing w = exp(uR + vR) for R sufficiently large, we 
see that w is an apical Helson–Szegő weight at level δ. �
Proof of Theorem 3. We first note that if L+

Φ(1) ∩σ(I) 	= ∅, then Theorem 4 applies so that ϕ is saturated. 
On the other hand, if L+

Φ(1) ∩ σ(I) = ∅, then we use that |Φ| = |ϕ| is continuous and that σ(I) is closed 
to infer that there exists a 0 < δ < 1 such that we also have L+

Φ(δ) ∩ σ(I) = ∅. Since |Φ| is assumed to be 
nonconstant, we may also assume that L−

Φ(δ) is nonempty. By the continuity of |Φ|, we find that L−
Φ(δ) is 

itself an open set that includes σ(I). In order to apply Theorem 5, it therefore remains to check that |Φ|
is an apical Helson–Szegő weight at level δ. However, this follows at once from the continuity of |Φ| and 
Lemma 7. �

We require two preliminary results for the proof of Theorem 6. The first is the following direct consequence 
of (4).

Lemma 8. If ϕ is saturated, then so is Iϕ for any inner function I.

Proof. Suppose that Iϕ is not saturated. Then there is a function f in H∞
0 such that ‖Iϕ − f‖∞ < ‖Iϕ‖∞. 

However, this is equivalent to ‖ϕ − If‖∞ < ‖ϕ‖∞, so ϕ is not saturated. �
The second preliminary result follows from Muckenhoupt’s theorem [5].

Lemma 9. Let w be a Helson–Szegő weight. Then there exists a positive constant C and 1 < p < 2 such that∫
Γ

w ≤ C
|Γ|p
|E|p

∫
E

w,

for every arc Γ and every measurable set E ⊆ Γ.

Proof. Since w is a Helson–Szegő weight, or equivalently an (A2) weight, we know that w satisfies the (Ap)
condition for some 1 < p < 2 (see e.g. [3, Cor. VI.6.10 (b)]). The stated result then follows by an application 
of Muckenhoupt’s theorem (see [5] or e.g. [3, Thm. VI.6.1]) to the function χE . �

We will appeal to Lemma 9 several times in the proof of Theorem 6. However, it is only in its final 
application that it matters that we use the (Ap) condition for some 1 < p < 2 and not simply the (A2)
condition. In the proof of Theorem 6 we will locally adopt the notation f � g, which means that there is a 
positive constant B such that |f(x)| ≤ Bg(x) for all relevant x. The constant B will be allowed to depend 
on ϕ.

Proof of Theorem 6. By Lemma 8, it is sufficient to consider the case that ϕ is outer. We argue by contra-
diction and assume that there is some f in H∞

0 and some 0 < ε < 1 such that

‖ϕ− f‖∞ = ε‖ϕ‖∞.

As in the proof of Theorem 4, it follows that

|f | ≥ (1 − ε)‖ϕ‖∞ and |Arg(ϕf)| ≤ arccos
(

1 − ε

1 + ε

)
<

π

2

hold almost everywhere on L+
ϕ (1). Moreover, if
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ν :=
{
−Arg(ϕf), on L+

ϕ (1);
0, on L−

ϕ (1),

then g := exp(−ν̃ + iν) is in H1. Clearly, |g| is a Helson–Szegő weight by (5), and the H1 function h := ϕfg

is positive on L+
ϕ (1). Since f is in H∞

0 , we know that h(0) = 0. We may therefore write h = u + iv with 
u = −ṽ.

We next set

En := Γ(ϑn) ∩ L−1
ϕ (1) and Fn := Γ(ϑn) ∩ L+

ϕ (1)

and claim that ∫
En

|u| � ess sup
En

|ϕ|
∫
Fn

|u|. (16)

To verify this, we first use the trivial estimate ‖f‖∞ ≤ (1 + ε)‖ϕ‖∞ ≤ 2‖ϕ‖∞ to see that

|u| ≤ |h| = |ϕfg| ≤
(

ess sup
En

|ϕ|
)

2‖ϕ‖∞|g| (17)

on En. We next use that En is a subset of Γ(ϑn) and then apply Lemma 9 with respect to the subset Fn of 
Γ(ϑn) to infer that ∫

En

|g| ≤
∫

Γ(ϑn)

|g| �
∫
Fn

|g| ≤ 1
(1 − ε)‖ϕ‖2

∞

∫
Fn

|u|. (18)

Here we used the assumption that |Fn| ≥ b|Γ(ϑn)| from (9) and, in the final estimate, that

|h| ≥ (1 − ε)‖ϕ‖2
∞|g|

almost everywhere on L+
ϕ (1) and that h = u on L+

ϕ (1). Now (16) follows from (17) and (18).
We next claim that if n is sufficiently large, then∫

Fn

|u| �
∫
En

|u|. (19)

If we can establish (19), then we would be done since (16) and (19) together contradict the assumption (8). 
(Note that the left-hand side of (19) is nonzero for each fixed n ≥ 1 since u is positive on Fn and |Fn| > 0.)

To prove (19), we start by writing u = u0 + u1, where u0 is the conjugate function of −vχΓ(2ϑn). By the 
weak-type L1 bound for the conjugate function, we find for λ > 0 that

|{|u0| > λ}| � 1
λ
‖vχΓ(2ϑn)‖1 ≤ 1

λ
‖hχΓ(2ϑn)∩L−1

ϕ (1)‖1, (20)

where we first used that v ≡ 0 on L+
ϕ (1) and then that |v| ≤ |h|. By the same argument as used to establish 

(16) above, we obtain next that

‖hχΓ(2ϑn)∩L−1
ϕ (1)‖1 �

(
ess sup

Γ(2ϑn)∩L−
ϕ (1)

|ϕ|
)∫

|u|. (21)

Fn
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By (8), we can choose n so large that the essential supremum in (21) is as small as we wish. In particular, 
we will let n be so large that (20) and (21) together give

|{|u0| > λ}| ≤ min(a, b)
2πλ

∫
Fn

|u|. (22)

We set λn := cϑ−1
n

∫
Fn

|u| for a constant c > 0 to be chosen later and apply (22) in combination with the 
estimate |Fn| ≥ bϑn/π from (9) to infer that

|Fn ∩ {|u0| ≤ λn}| ≥ bϑn/(2π). (23)

Using that |u| ≥ (1 − ε)‖ϕ‖2
∞|g| almost everywhere on L+

ϕ (1), then Lemma 9 and (23), and finally that 
‖u‖∞ ≤ 2‖ϕ‖2

∞|g|, we obtain ∫
Fn∩{|u0|≤λn}

|u| �
∫

Γ(ϑn)

|g| ≥
∫
Fn

|g| �
∫
Fn

|u|. (24)

Let C denote the total implied constant in the chain of inequalities (24), which we stress does not depend 
on our upcoming choice of c. By the estimate u1 ≥ u − |u0|, the fact that u = |u| on L+

ϕ (1), and (24), we 
find that ∫

Fn∩{|u0|≤λn}

u1 ≥
∫

Fn∩{|u0|≤λn}

(
|u| − λn

)
≥

(
1
C

− c
|Fn ∩ {|u0| ≤ λn}|

ϑn

)∫
Fn

|u|.

Since |Fn| ≤ |Γ(ϑn)| = ϑn/π, we can choose c ≤ π/(2C) to ensure that∫
Fn∩{|u0|≤λn}

u1 ≥ 1
2C

∫
Fn

|u| (25)

for all sufficiently large n. The next step is to estimate the difference u1(eit) − u1(1) for |t| ≤ ϑn. Setting 
In := {2ϑn < |θ| ≤ π}, we have

u1(eiθ) = −p.v.
∫
In

cot
(
t− θ

2

)
v(eiθ) dθ

2π .

We decompose In into the dyadic intervals In,k := {2kϑn ≤ |θ| ≤ 2k+1ϑn} for k = 1, 2, . . . , K and note that 
if |t| ≤ ϑn and θ is in In,k, then ∣∣∣∣cot

(
t− θ

2

)
− cot

(
−θ

2

)∣∣∣∣ � 1
ϑn2k .

Consequently,

|u1(eit) − u1(1)| �
K∑

k=1

1
ϑn2k

∫
Γ(2k+1ϑn)

|v|.

To estimate this integral, we use first that v is supported on L−
ϕ (0) and then that |v| ≤ |h| to see that
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∫
Γ(2k+1ϑn)

|v| ≤ 2‖ϕ‖∞

(
ess sup

Γ(2k+1ϑn)∩L−
ϕ (1)

|ϕ|
) ∫

Γ(2k+1ϑn)

|g|.

We appeal to Lemma 9 and obtain that

∫
Γ(2k+1ϑn)

|g| �
(
|Γ(2k+1ϑn)|

|Fn|

)p ∫
Fn

|g| ≤
(

2k+1

b

)p 1
(1 − ε)‖ϕ‖2

∞

∫
Fn

|u|.

Combining these estimates, we find that

|u1(eit) − u1(1)| �

⎛⎝ 1
ϑn

∫
Fn

|u|

⎞⎠ K∑
k=1

2k(p−2) ess sup
Γ(2k+1ϑn)∩L−

ϕ (1)
|ϕ|.

The sum goes to 0 as n → ∞, as can be seen by using (8) for, say, 2k+1ϑn ≤
√
ϑn. We can therefore assume 

that

|u1(eit) − u1(1)| ≤ π

8Cϑn

∫
Fn

|u|

for |t| ≤ ϑn and all sufficiently large n, where C is the constant in (25). Inserting this estimate in (25) and 
using that |Fn| ≤ ϑnπ, we find that

u1(1) ≥ 3π
8Cϑn

∫
Fn

|u| and u1(eit) ≥
π

4Cϑn

∫
Fn

|u|

for |t| ≤ ϑn and all sufficiently large n. We finally choose c = π/(8C) in the definition of λn to ensure that∫
En

|u| ≥
∫

En∩{|u0|≤λn}

|u| ≥
∫

En∩{|u0|≤λn}

u1

2 ≥ a

16C

∫
Fn

|u|.

In the final estimate we also used that |En ∩ {|u0| ≤ λn}| ≥ aϑn/(2π) which follows from (9) and (22), 
similarly to how we established (23) above. This completes the proof of (19). �
3. Concluding remarks

Falling short of giving a full description of the saturated functions in H∞, we would like to conclude the 
paper by proposing two problems that may be more manageable.

Problem 1. Describe the outer functions in H∞ that are saturated.

By Theorem 4, an outer function ϕ fails to be saturated if there is a 0 < δ < 1 such that |ϕ| is an apical 
Helson–Szegő weight at level δ and the interior of L−

ϕ (δ) is nonempty. It is natural to ask which, if any, of 
these two conditions may also be necessary for ϕ not to be saturated.

At any rate, it would be desirable to get a better understanding of apical Helson–Szegő weights. We will 
motivate our second problem, which deals with such weights, by presenting the example alluded to below 
Theorem 4. To this end, let U be an open subset of T with 0 < |U | < 1. Then U is a finite or countable 
union of pairwise disjoint open arcs
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U =
⋃
n≥1

Γn.

For 0 < ε ≤ 1, we let εΓn denote the open arc concentric to Γn with |εΓn| = ε|Γn|. We will say that U is 
thin if

sup
eiθ∈T\U

∑
n≥1

|Γn|
dist

(
eiθ, 1

2Γn

) < ∞. (26)

The set 
⋃

n≥1
{
eiθ : 2−n < θ < 2−n + abn

}
for 0 < a ≤ 1 and 0 < b ≤ 1/2 is for example thin if and only 

if b < 1/2.
Let eiθn be the midpoint of Γn. For a positive number κ, we define the weight

wκ(eiθ) :=

⎧⎨⎩
(

|θ−θn|
π|Γn|

)κ

, eiθ ∈ Γn;

1, eiθ ∈ T \ U.

We make two observations. First, in the most interesting case, when there are infinitely many arcs Jn, we 
have

dist
(
L+
w(δ), L−

w(ε)
)

= 0

for all 0 < δ < ε < 1, so Lemma 7 is of no help. Second, it is clear that wκ is a Helson–Szegő weight if and 
only if 0 < κ < 1. In contrast, however, we will now prove the following.

Claim. If U is thin, then wκ is an apical Helson–Szegő weight at level 1/2 for every κ > 0.

Proof of Claim. There is a number εκ > 0 such that if 0 < ε ≤ εκ, then εΓn is a subset of L−
w(1/4) for all 

n ≥ 1. Set Uε :=
⋃

n≥1 εΓn,

uε :=
{

0, on Uε;
logw, on T \ Uε,

and vε := logw − uε. A computation shows that∫
εΓn

|vε| ≤ Cκε| log ε||Γn|,

with C independent of κ and ε. By the definition of ṽε and the assumption that (26) holds, we therefore 
find that there is a constant C independent of κ and ε such that

|ṽε| ≤ Cκε| log ε|

on J−
w (1/2). Hence w = exp(uε + vε) is the required representation of w for all ε sufficiently small. �

The above proof along with that of Lemma 7 suggests the following problem.

Problem 2. Is it true that w is an apical Helson–Szegő weight if and only if wκ is an apical Helson–Szegő 
weight for all positive numbers κ?
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In other words, we ask if (7) could be replaced simply by

ess sup
L+

w(δ)
|ṽ| < ∞. (27)

This would, in particular, imply that w is an apical Helson–Szegő weight whenever logw has bounded mean 
oscillation.

One could object that we may construct more sophisticated examples for which it would be less straight-
forward to find v such that the left-hand side of (27) is arbitrarily small. However, one should also take into 
account that our construction of v is rather simple-minded in either of the cases treated above.
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