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SMOOTHED PROJECTIONS IN FINITE ELEMENT
EXTERIOR CALCULUS

SNORRE H. CHRISTIANSEN AND RAGNAR WINTHER

Abstract. The development of smoothed projections, constructed
by combining the canonical interpolation operators defined from
the degrees of freedom with a smoothing operator, have proved to
be an effective tool in finite element exterior calculus. The advan-
tage of these operators is that they are L2 bounded projections,
and still they commute with the exterior derivative. In the present
paper we generalize the construction of these smoothed projections,
such that also non quasi–uniform meshes and essential boundary
conditions are covered. The new tool introduced here is a space
dependent smoothing operator which commutes with the exterior
derivative.

1. Introduction

Differential forms and exterior calculus represents an area of growing
importance for the understanding of the finite element method. This
was first recognized by Bossavit [5], where the equivalence between
the Nedelec H(curl) elements [10, 11] and the Whitney forms [13] is
pointed out. The relation between exterior calculus and finite element
discretizations, in particular for electromagnetic problems, are also dis-
cussed by Hiptmair [7, 8, 9], and further developed in [1, 2, 3, 4]. The
theory presented here is closely related to the presentation given in [4].

By combining the canonical interpolation operators onto the stan-
dard finite element spaces of exterior calculus with a suitable smoothing
operator one can obtain modified operators with desirable properties.
More precisely, these modified interpolation operators are projections,
they commute with the exterior derivative, and they are L2 bounded.
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This is in contrast to the canonical interpolation operators, defined di-
rectly from the degrees of freedom, which are only defined for functions
with higher order regularity. As a consequence of the construction of
the new projections the proper mixed finite element discretizations of
the Hodge Laplacian problem is easily seen to be stable without ap-
pealing to extra regularity. This means that a technical problem, fre-
quently encountered in earlier studies of mixed finite element methods,
is avoided. Furthermore, the new projections are essential for establish-
ing that the discretization preserves the dimensions of the cohomology
groups.

A theory for such smoothed projections, highly influenced by earlier
contributions of Christiansen [6] and Schöberl [12], is presented in [4,
Section 5]. However, the analysis given in [4] of these smoothed pro-
jections is not developed in full generality. First of all, the analysis
given there requires so called quasi–uniform meshes, a condition well
known to be undesired in many practical computations. Secondly, the
theory given in [4] only treats the spaces of differential forms which
are without restrictions of the traces on the boundary of the domain.
In other words, the theory only treats boundary value problems with
natural boundary conditions, while problems with essential boundary
conditions are not covered. The purpose of the present paper is to gen-
eralize the construction done in [4] so that we allow non quasi–uniform
meshes, and such that essential boundary conditions are covered.

In Section 2 we recall some basic properties of exterior calculus,
while the construction of the spaces of discrete differential forms is
outlined in Section 3. The new tool introduced here, compared to the
theory developed in [4], is a space dependent smoothing operator which
commutes with the exterior derivative. This operator is introduced and
discussed in Section 4. The construction of the smoothed projections is
then completed in Section 5, and the main theoretical results are also
derived here. Corresponding results for the case of essential boundary
conditions are then presented in Section 6.

2. Notation and preliminaries

The notation used in this paper corresponds closely to the notation
used in [4], and we refer to this paper and references given there for
more details on exterior calculus. In particular, if T ⊂ Rn then Pr(T )
denotes the set of scalar polynomials of degree less than or equal to
r defined on T , and we will use Bδ(x) ⊂ Rn to denote the ball with
centre at x and radius δ. Furthermore, if X and Y are normed linear
spaces then L(X; Y ) is the space of bounded linear operators from X
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to Y , and ‖ · ‖L(X,Y ) denotes the corresponding norm. Throughout the
paper we will assume that Ω is a fixed bounded polyhedral domain in
Rn with boundary ∂Ω. The symbol Altk is used to denote the set of
alternating k–forms on Rn. Hence, Altk is a linear space of dimension(

n
k

)
. The exterior product, or the wedge product, maps Altj×Altk into

Altj+k. For ω ∈ Altj, η ∈ Altk, and given vectors v1, v2, . . . , vj+k ∈ Rn

the exterior product ω ∧ η ∈ Altj+k is given by

(ω ∧ η)(v1, . . . , vj+k)

=
∑

σ

(sign σ)ω(vσ(1), . . . , vσ(j))η(vσ(j+1), . . . , vσ(j+k)),

where the sum is over all permutations σ of {1, . . . , j + k}, for which
σ(1) < σ(2) < · · ·σ(j) and σ(j + 1) < σ(j + 2) < · · ·σ(j + k). If dxi ∈
Alt1 is given by dxi(ej) = δij, where {e1, e2, . . . , en} is the standard

basis for Rn, then a basis for Altk is given by

{dxσ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k) |σ ∈ Σ(k, n)},

where Σ(k, n) is the set of increasing maps {1, 2, . . . , k} → {1, 2, . . . , n}.
We will use Λk(Ω) to denote the space of smooth k–forms on Ω, i.e.

Λk(Ω) := C∞(Ω; Altk). Hence, any element ω ∈ Λk(Ω) has a unique
representation of the form

(2.1) ωx =
∑

σ∈Σ(k,n)

aσ(x)dxσ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k),

where a is a scalar smooth function, i.e. a ∈ C∞(Ω). The corresponding
space C(Ω; Altk) will be denoted CΛk(Ω). The exterior derivative d :
Λk(Ω) → Λk+1(Ω) is given by

d(
∑

σ

aσdxσ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k))

=
∑

σ

n∑
i=1

∂aσ

∂xi

dxi ∧ dxσ(1) ∧ dxσ(2) ∧ · · · ∧ dxσ(k).

The exterior derivative has the property that d◦d = 0, and the classical
de Rham complex is given by the maps and the spaces

Λ0(Ω)
d−→ Λ1(Ω)

d−→ · · · d−→ Λn(Ω).

Furthermore, the exterior derivative satisfies the Leibniz rule

(2.2) d(ω ∧ η) = dω ∧ η + (−1)jω ∧ dη, ω ∈ Λj(Ω), η ∈ Λk(Ω).
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A key tool, which we will use repeatedly in the analysis below, is the
pullback of differential forms. If φ is a smooth map from Ω ⊂ Rn to
Ω′ ⊂ Rm then the pullback φ∗ : Λk(Ω′) → Λk(Ω) is given by

(φ∗ω)x(v1, v2, . . . , vk) = ωφ(x)(Dφx(v1), Dφx(v2), . . . , Dφx(vk)),

where the linear map Dφx : Rn → Rm is the derivative of φ at x. The
pullbacks commute with the exterior derivative, i.e.

φ∗(dω) = d(φ∗ω), ω ∈ Λk(Ω′).

Furthermore,
φ∗(ω ∧ η) = φ∗ω ∧ φ∗η.

We also recall that if

ω = adx1 ∧ dx2 ∧ · · · ∧ dxn ∈ Λn(Ω)

then
∫

Ω
ω is defined to be the ordinary multiple integral of the function

a over Ω. As a consequence, if φ : Ω → Ω′ ⊂ Rn is an orientation
preserving diffeomorhism then

(2.3)

∫
Ω

φ∗ω =

∫
Ω′

ω, ω ∈ Λn(Ω′).

If ω ∈ Λn−1(Ω) then the formula (2.3) can also be used to define the
integral of the trace of ω, Tr ω, over the boundary ∂Ω. Here Tr ω
corresponds to an alternating (n − 1)–form on ∂Ω acting on tangent
vectors. Stokes’ theorem now takes the form

(2.4)

∫
Ω

dω =

∫
∂Ω

Tr ω, ω ∈ Λn−1(Ω).

Combining Stokes’ theorem and the Leibniz rule (2.2) we also obtain
the integration by parts identity

(2.5)

∫
Ω

dω ∧ η = (−1)k−1

∫
Ω

ω ∧ dη +

∫
∂Ω

Tr ω ∧ Tr η,

for ω ∈ Λk(Ω) and η ∈ Λn−k−1(Ω).
The Hilbert space L2Λk(Ω) ⊃ Λk(Ω) can be identified as all ω of

the form (2.1), where the functions aσ are elements of L2(Ω). The
corresponding inner product is given by

〈ω, η〉L2Λk =
∑

σ∈Σ(k,n)

aσbσ,

where η =
∑

σ bσdxσ(1) ∧ · · · ∧ dxσ(k). Similarly, the Sobolev space
HsΛk(Ω) consists of all ω of the form (2.1), where aσ ∈ Hs(Ω), while
the space HΛk(Ω) is defined by

HΛk(Ω) = {ω ∈ L2Λk(Ω) | dω ∈ L2Λk+1(Ω) }.
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Note that we have HΛ0(Ω) = H1Λ0(Ω), HΛn(Ω) = L2Λn(Ω), and in
general H1Λk(Ω) ⊂ HΛk(Ω) ⊂ L2Λk(Ω). The L2 de Rham complex, or
the Sobolev version of the de Rham complex, is the sequence of maps
and spaces given by

(2.6) HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω).

We recall from [4, Section 2] that the map ω 7→ Tr ω is continuous as
a map from HΛk(Ω) to H−1/2Λk(∂Ω). As a consequence, the space

H̊Λk(Ω) ⊂ HΛk(Ω) given by

H̊Λk(Ω) = {ω ∈ HΛk(Ω) | Tr ω = 0 }
is well defined. The corresponding de Rham complex, involving these
spaces with essential boundary conditions, takes the form

(2.7) H̊Λ0(Ω)
d−→ H̊Λ1(Ω)

d−→ · · · d−→ H̊Λn(Ω).

3. Discrete differential forms

In finite element exterior calculus we are constructing proper discrete
subcomplexes of the complexes (2.6) and (2.7). In order to define
these finite element spaces we will assume that the polyhedral domain
Ω is partitioned into a finite set of n-simplices T . These n-simplices
determine a simplicial decomposition of Ω, i.e. their union is the closure
of Ω, and the intersection of any two is either empty or a common
subsimplex of each. Adopting the terminology of the two-dimensional
case, we will refer to T as a triangulation of Ω.

We consider a family of triangulations {Th} of Ω indexed by the
discretization parameter

h = max
T∈Th

hT , where hT = diam T.

We assume that the discretization parameter runs over a set of positive
values bounded from above, and accumulating at zero. Furthermore,
the family {Th} is assumed to be shape regular, i.e. there exists a
mesh regularity constant Cmesh > 0, independent of the triangulation
Th, such that

(3.1) hn
T ≤ Cmesh|T |, T ∈ Th,

where |T | denotes the volume of the simplex T . However, no quasi–
uniformity condition is assumed, i.e. there is no uniform bound on
h/hT , for T ∈ Th.

The discrete spaces which we will consider will consist of piecewise
polynomial differential forms, i.e. the elements reduce to polynomial
differential forms on each simplex T . The space PrΛ

k(T ) is simply given
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as all functions of the form (2.1), where the coefficients aσ ∈ Pr(T ).
Hence, we obtain

dimPrΛ
k(T ) =

(
n + r

n

)(
n

k

)
=

(
r + k

k

)(
n + r

n− k

)
.

As an alternative to these complete polynomial spaces of degree r, we
can also consider the spaces P−

r Λk(T ), for r ≥ 1. These spaces are
given as

P−
r Λk(T ) = Pr−1Λ

k(T ) + κPr−1Λ
k+1(T ).

Here κ : Pr−1Λ
k+1(T ) → PrΛ

k(T ) is the Kozul operator defined by

(κω)x(v1, v2, . . . , vk) = ωx(x, v1, . . . , vk)

for v1, v2, . . . , vk ∈ Rn. It can be seen that P−
r Λ0(T ) = PrΛ

0(T ),
P−

r Λn(T ) = Pr−1Λ
n(T ), and in general Pr−1Λ

k(T ) ⊂ P−
r Λk(T ) ⊂

PrΛ
k(T ). Furthermore,

dimP−
r Λk(T ) =

(
r + k − 1

k

)(
n + r

n− k

)
.

We refer to [4] for more details.
For any simplex T ∈ Rn we let ∆j(T ) denote the set of subsimplexes

of dimension j, while ∆(T ) is the set of all subsimplexes. The spaces
PrΛ

k(T ) and P−
r Λk(T ) are intimately connected through their degrees

of freedom. In fact, if ω ∈ PrΛ
k(T ) then ω is uniquely determined by

the functionals

(3.2)

∫
f

Trf ω ∧ η, η ∈ P−
r+k−dim fΛ

dimf−k(f), f ∈ ∆(T ).

Here Trf ω is the trace of ω on the subsimplex f , and we have adopted
the convention that PrΛ

k(f) and P−
r+1Λ

k(f) is taken to be the empty
set if r is negative. Furthermore,

∫
f
Trf ω ∧ η = ωx if dim f = 0 and

f is equal to a vertex x. It can be seen that the number of linearly
independent functionals, or degrees of freedom, is exactly equal to the
dimension of the space PrΛ

k(T ), see [4, Section 3]. Similarly, for ω ∈
P−

r Λk(T ) a set of linearly independent degrees of freedom is given as

(3.3)

∫
f

Trf ω ∧ η, η ∈ Pr+k−dim f−1Λ
dimf−k(f), f ∈ ∆(T ).

An important property of the degrees of freedom (3.2) and (3.3) is that
for any f ∈ ∆(T ), with dim f ≥ k, Trf ω is determined by the degrees
of freedom associated to f and its subsimplexes.

If Th is a triangulation of Ω we let ∆j(Th) denote the set of subsim-
plexes of dimension j of all T ∈ Th, and ∆(Th) is the set of subsimplexes
associated with Th. The space PrΛ

k(Th) ⊂ L2Λk(Ω) is defined to be the
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set of all ω such that ω|T ∈ PrΛ
k(T ) for all T ∈ Th, and such that Trf ω

is continuous for all f ∈ ∆n−1(Th). The space P−
r Λk(Th) ⊂ L2Λk(Ω)

is defined similarly by replacing PrΛ
k(T ) with P−

r Λk(T ). The spaces
PrΛ

k(Th) and P−
r Λk(Th) are in fact subspaces of HΛk(Ω), cf. [4, The-

orem 5.1].
We will frequently use Λk

h to denote subspaces of HΛk(Ω) which are
of the form PrΛ

k(Th) or P−
r Λk(Th). Furthermore, Λk

h(T ) will be the
corresponding polynomial space on the simplex T ∈ Th. The degrees
of freedom given by (3.2) or (3.3) define an interpolation operator Ih :
CΛk(Ω) → Λk

h by the requirement that F (Ihω) = F (ω) for all the
functionals F associated with all f ∈ ∆(Th). Alternatively, if Th consist
of a single simplex T we write IT instead of Ih. We will refer to the
operators Ih as the canonical interpolation operators derived from the
degrees of freedom. A key property of these interpolation operators is
that they commute with the exterior derivative, i.e.

(3.4) Ih ◦ d = d ◦ Ih

if the spaces Λk
h and Λk+1

h are properly chosen. In fact, the relation
(3.4) holds for all the four possible choices where Λk

h = PrΛ
k(Th) or

Λk
h = P−

r Λk(Th), and Λk+1
h = P−

r Λk+1(Th) or Λk+1
h = Pr−1Λ

k+1(Th),
cf. [4, Theorem 5.2]. Hence, by combining such choices of spaces we
obtain a discrete de Rham complex and a commuting diagram of the
form

Λ0(Ω)
d−→ Λ1(Ω)

d−→ · · · d−→ Λn(Ω)yIh

yIh

yIh

Λ0
h

d−→ Λ1
h

d−→ · · · d−→ Λn
h.

However, the diagram above does not have all the desired properties.
Since the Sobolev spaces HΛk(Ω) frequently occur as the natural so-
lution space for weak formulations of partial differential equations, a
more useful diagram is of the form

(3.5)

HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω)yΠh

yΠh

yΠh

Λ0
h

d−→ Λ1
h

d−→ · · · d−→ Λn
h,

where the operators Πh are bounded projections from HΛk(Ω) onto
Λk

h. The canonical interpolation operators Ih do not have this prop-
erty, since the functions in HΛk(Ω) do not have well–defined traces on
all elements of ∆j(Th) for j ≥ k. Therefore, there is a need for a con-
struction of such operators. As we have already stated above, such a
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construction is done in [4] for the case of quasi–uniform triangulations.
The operators Πh defined in Section 5 below generalizes this construc-
tion to the non quasi–uniform case. Furthermore, the case of essential
boundary conditions is treated in Section 6.

Remark. Modified interpolation operators which are both bounded on
the spaces HΛk(Ω) and commutes with the exterior derivative were
first constructed in [12] in the three dimensional case. The approach
taken there was to average the canonical interpolation operators Ih

with respect to perturbations of the triangulation Th. An alternative
approach, using a standard smoothing operator constructed by a con-
volution, was then proposed in [6]. A key ingredient is to introduce a
two parameter family of smoothing operators. The construction was
based on a combination of smoothing and cut–off operators on the ref-
erence macroelements, and allows for non quasi–uniform meshes, but
does not provide an operator which commutes exactly with the exte-
rior derivative. On the other hand, the construction of [4] was based on
a corresponding regularization by convolution in the physical domain.
This approach provides an operator which commutes with the exte-
rior derivative, but requires a quasi–uniform mesh. The construction
given below leads to exact commutativity and allows non quasi–uniform
meshes. �

It will be convenient to introduce a Lipschitz continuous function
gh : Ω → R+ to represent the variation of hT = diam T for T ∈ Th. In
fact, the function gh will be piecewise linear with respect to the mesh
Th, and is determined by setting

gh(x) =
1

|Th(x)|
∑

T∈Th(x)

hT , x ∈ ∆0(Th).

Here Th(x) = {T |T ∈ Th, x ∈ T }, and |Th(x)| is the number of ele-
ments in Th(x). Clearly, gh(x) ≤ h, and it is a consequence of the shape
regularity (3.1) that there exist positive constants c0, c1, independent
of h, such that

(3.6) c0gh(x) ≤ hT ≤ c1gh(x), x ∈ T ∈ Th.

In fact, this bound will also hold for all x in the simplexes of Th which
intersect T , and this bound will be used below. Furthermore, there is
a positive constant Lmesh, depending on Cmesh, such that

(3.7) |gh(x)− gh(y)| ≤ Lmesh|x− y|, x, y ∈ Ω,

i.e. the functions {gh} are uniformly Lipschitz continuous. To see this
just observe that since gh is piecewise linear (3.7) will follow if the
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bound can be established when x, y ∈ ∆0(Th) and connected by an
edge in ∆1(Th). However, in this case the bound follows by the shape
regularity (3.1).

Remark. We note that the function gh(x), introduced above, in general
will depend on x even if the family of triangulations {Th} is quasi–
uniform. However, in this case there is a constant C ′

mesh > 0, indepen-
dent of x and Th, such that h ≥ gh(x) ≥ C ′

meshh, and the construction
below could as well be carried out with gh(x) replaced by the constant
h. In this case the smoothing operator Rε

h, defined by (4.2) below, will
reduce to a standard convolution, and the projections Πh, which will be
defined in Section 5, correspond exactly to the projections introduced
in [4]. �

4. Space dependent smoothing

Throughout the two next sections the notation Λk
h ⊂ HΛk(Ω) is used

to denote a finite element space of differential forms which is either of
the form PrΛ

k(Th) or P−
r Λk(Th), and Ih will denote the associated

canonical imterpolation operator. The construction of the smoothed
projection operators given in [4] was based on operators of the form

Ih ◦Rε
h ◦ E,

where Rε
h is a smoothing operator defined by convolution with a mol-

lifier function, and E is an extension operator. The main difference
here, from the discussion given in [4], is that the smoothing operator
is space dependent.

4.1. The extension operator. We will define an extension operator
E mapping HΛk(Ω) into HΛk(Ω̃). Here Ω̃ ⊃ Ω̄, where Ω̄ is the closure
of Ω.

Since the domain Ω is a bounded polygonal Lipschitz domain we can
use standard techniques, involving local coordinates and a partition of
unity, to construct a smooth vector field X defined on Rn satisfying
|X(x)| ≤ 1 on Rn, and

X(x) · n(x) ≥ CΩ > 0, x ∈ ∂Ω.

Here n is the outer unit normal vector on the boundary ∂Ω, and CΩ

is a constant which depends on the domain Ω. Consider the curves
z(t) = z(t; x) defined by

(4.1)
d

dt
z = X(z), z(0) = x.
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From the properties of the vector field X it follows that there is a t0 > 0
such that z(t; x) ∈ Rn\ Ω̄ for 0 < t ≤ t0 and z(t; x) ∈ Ω for −t0 ≤ t < 0
for any x ∈ ∂Ω. Define Ωi ⊂ Ω and Ωo ⊂ Rn \ Ω̄ by

Ωi =
⋃

−t0<t<0

z(t; ∂Ω) and Ωo =
⋃

0<t<t0

z(t; ∂Ω).

The map Ψ : Ωo ∪ ∂Ω → Ωi ∪ ∂Ω given by Ψ(z(t; x)) = z(−t; x) for
0 ≤ t < t0 and x ∈ ∂Ω is a Lipschitz continuous bijection, with the
additional property that that Ψ(x) = x on ∂Ω.

The desired extension operator E is defined by a reflection with
respect to the boundary ∂Ω. We let Ω̃ = Ω̄ ∪ Ωo and define E :
HΛk(Ω) → HΛk(Ω̃)) by

(Eω)x = (Ψ∗ω)x, x ∈ Ωo.

This operator clearly maps L2Λk(Ω) boundedly into L2Λk(Ω̃), and since
d ◦ Ψ∗ = Ψ∗ ◦ d we have E ∈ L(HΛk(Ω), HΛk(Ω̃)). Finally, note
that there exists an ε0 > 0 such that Bε(x) ⊂ Ω̃ for any x ∈ Ω and
0 < ε ≤ ε0.

4.2. The smoothing operator. The extension operator introduced
above will be used to define smoothing operators, Rε

h, depending on the
mesh Th and a positive parameter ε. Let B1 = B1(0) = {y ∈ Rn | |y| ≤
1 }. For a given x ∈ Ω, y ∈ B1, and 0 < ε ≤ ε0 define functions
Φεy

h : Ω → Ω̃ by

Φεy
h (x) = x + εgh(x)y.

The smoothing operator Rε
h : L2Λk(Ω) → CΛk(Ω) is defined by

(4.2) (Rε
hω)x =

∫
B1

ρ(y)((Φεy
h )∗Eω)x dy.

Here E is the extension operator introduced above, and ρ ∈ C∞(Ω) is
a fixed mollifier function satisfying

0 ≤ ρ(x) ≤ 1, supp(ρ) ⊂ B1,

∫
B1

ρ(y) dy = 1.

The property that Rε
h commutes with the exterior derivative, i.e. d ◦

Rε
h = Rε

h◦d, is an immediate consequence of the corresponding property
for the pullbacks (Φεy

h )∗ and the extension operator E. Furthermore,
since εgh(x) is strictly positive and Lipshitz continuous we can conclude
that Rε

h(L
2Λk(Ω)) ⊂ CΛk(Ω), cf. Lemma 4.1 below.
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4.3. Scaling. If T ∈ Th we let Th(T ) := {T ′ ∈ Th |T ′ ∩ T 6= ∅ } be the
macroelement in Th determined by T . Furthermore, if T ∩ ∂Ω = ∅ we
let T ? denote the corresponding domain, i.e.

T ? =
⋃

T ′∈Th(T )

T ′,

see the left part of Figure 1. If T ∩ ∂Ω 6= ∅ the domain T ? is further

Figure 1. The macroelement Th(T ) and the domain T ?

associated with the shaded simplex T . To the left T is
an interior simplex, while T intersects the boundary to
the right.

extended to also include

{x ∈ Ω̃ \ Ω | dist(x, T ) ≤ hT },

see the right part of Figure 1. It follows from the shape-regularity
assumption (3.1) that we can assume that ε0 can be chosen sufficiently
small such that Φεy

h (x) ∈ T ? for all x ∈ T ∈ Th, all h, and 0 ≤ ε ≤ ε0.
Let F (x) = FT (x) = (x − x0)/hT where x0 is the first vertex of

T . Thus F maps T onto a simplex T̂ with a vertex at the origin and
diameter bounded above and below by positive constants depending
only on Cmesh. It also maps T ? onto T̂ ? := F (T ?). Furthermore, we let

T (T̂ ) be the set of n simplexes which defines T̂ ?, i.e.

T (T̂ ) = {F (T ′) |T ′ ∈ Th(T ) }.

The operator R̂ε
h = F ∗−1Rε

hF
∗ : L2Λk(T̂ ?) → L2Λk(T̂ ) can be iden-

tified with a corresponding smoothing operator in the space of scaled
variables. In fact, a crucial property of this operator is that it can be
properly bounded independently of h. We find that

(4.3) (R̂ε
hω)x = (F ∗−1Rε

hF
∗ω)x =

∫
B1

ρ(y)((Φ̂εy
h )∗Êω)x dy
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for ω ∈ L2Λk(T̂ ). Here, Ê = F ∗−1EF ∗ and the map Φ̂εy
h : T̂ → T̂ ? is

given by

Φ̂εy
h (x) = x + εĝh(x)y,

where the scaled mesh functions ĝh are given by ĝh(x) = h−1
T gh(F

−1x).
Observe that (3.6) implies that the functions ĝh are bounded from
above and below uniformly with respect to T ∈ Th and h. Further-
more, by (3.7) the functions ĝh are Lipschitz continuous, with Lipschitz

constant Lmesh. As a consequence, the matrices DΦ̂εy
h , for 0 < ε ≤ ε0

and y ∈ B1, satisfy

(4.4) |DΦ̂εy
h − I| ≤ εLmesh

on T̂ , where | · | is the matrix operator norm.
We obtain the following bound, which is uniform with respect to

T ∈ Th and h, on the scaled smoothing operator R̂ε
h.

Lemma 4.1. For each ε ∈ (0, ε0] there is a constant c(ε), independent
of T ∈ Th and h, such that

‖R̂ε
h‖L(L2Λk(T̂ ?),CΛk(T̂ )) ≤ c(ε).

Proof. Throughout this proof ε ∈ (0, ε0] is fixed. As T ∈ Th and h

vary the configuration of simplices in T̂ ? varies over a compact set,
and hence it is sufficient to show the desired estimate for any single
simplex T with a fixed macroelement neighbourhood T ?, cf. the proof
of Theorem 5.3 of [4].

Let x ∈ T̂ be fixed. For ω ∈ L2Λk(T̂ ?), and fixed unit vectors
v1, v2, . . . vk ∈ Rn, we obtain from (4.3) and (4.4) that

|(R̂ε
hω)x(v1, . . . , vk)|2 = |

∫
B1

ρ(y)((Φ̂εy
h )∗Êω)x(v1, . . . , vk) dy|2

≤
∫

B1

|((Φ̂εy
h )∗Êω)x(v1, . . . , vk)|2 dy

= (δ)−n

∫
Bδ(x)

|Êωz((DΦ̂εy
h )v1, . . . , (DΦ̂εy

h )vk)|2 dz

≤ c‖ω‖2
L2Λk(T̂ ?)

,

where z = Φ̂εy
h (x), δ = εĝh(x) and Bδ(x) is the ball with centre

at x and radius δ. This shows the proper uniform bound on R̂ε
h in

L(L2Λk(T̂ ?), CΛk(T̂ )). �

Remark. Note that Lemma 4.1 will still be true if the extension operator
E is taken to be extension by zero outside Ω. �
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In addition to the smoothing operator R̂ε
h we will need a smooth

translation map Γ̂ε : T̂ † → T̂ ?, where the domain T̂ † is such that

T̂ ⊂ T̂ † ⊂ T̂ ?.

More precisely, we will assume that

(4.5) |Γ̂ε(x)− x|, |DΓ̂ε(x)− I| ≤ cε,

where the constant c is independent of T ∈ Th, h and ε. Hence, it is
consistent to assume in addition that

(4.6) Bεĝh(x)(x) ⊂ T̂ ?, x ∈ T̂ †, and T̂ ⊂ Γ̂ε(T̂ †)

for ε sufficiently small.

Lemma 4.2. Let ω ∈ HΛk(T̂ ?) with ω|T ′ ∈ W 1
∞Λk(T ′) for T ′ ∈ T (T̂ ).

There is a constant c, independent of T ∈ Th and h and ε, such that

‖IT̂ (I − Γ̂ε∗R̂ε
h)ω‖L2Λk(T̂ ) ≤ c ε

∑
T ′∈T (T̂ )

‖ω‖W 1
∞(T ′)

for ε sufficently small. Here the map Γ̂ε is assumed to satisfy (4.5) and
(4.6).

Proof. Recall that the space Λk
h(T̂ ) is either of the form PrΛ

k(T̂ ) or

P−
r Λk(T̂ ). As a consequence, the canonical interpolation operator IT̂

is determined by moments with respect to the subsimplexes f of T̂
with dim f ≥ k. More presicely, it is enough to show that for a given
f ∈ ∆(T̂ ), with dim f ≥ k, and η ∈ Λdim f−k(f) we have

(4.7) |
∫

f

(I − Γ̂ε∗R̂ε
h)ω ∧ η| ≤ c ε

∑
T ′∈T (T̂ )

‖ω‖W 1
∞(T ′)

for all ω ∈ HΛk(T̂ ?) such that ω|T ′ ∈ W 1
∞Λk(T ′) for T ′ ∈ T (T̂ ). Here

the constant c is independent of ε and ω, but it is allowed to depend
on the test function η.

Let us first note that if dim f = 0, so that f is equal to a vertex x,
then k = 0 and ω is continuous at x. Furthermore, the estimate (4.7)
follows from the bound

|ωx − ωz| ≤ |x− z|
∑

T ′∈T (T̂ )

‖ω‖W 1
∞(T ′).

To show the bound (4.7) when dim f > 0 we will decompose the face
f into fε and f \ fε, where

fε = {x ∈ f | dist(x, ∂f) ≥ Cε}.
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Here the constant C > 0 is chosen such that for any point x ∈ fε,
the set Γ̂ε(Bε(x)) will only intersect the elements of T (T̂ ) which has f
as a subsimplex. A consequence of this construction is that if x ∈ fε,
y ∈ B1, z = Γ̂ε ◦ Φ̂εy

h (x) and v1, v2, . . . , vk are unit tangent vectors to f ,
then it follows from (4.4) and (4.5) that

|ωx(v1, . . . , vk)− ωz(D(Γ̂ε ◦ Φ̂εy
h )v1, . . . , D(Γ̂ε ◦ Φ̂εy

h )vk)|

≤ (|x− z|+ |D(Γ̂ε ◦ Φ̂εy
h )− I|)

∑
T ′∈T (T̂ )

‖ω‖W 1
∞(T ′)

≤ c ε
∑

T ′∈T (T̂ )

‖ω‖W 1
∞(T ′).

However, this implies that

|
∫

fε

(I − Γ̂ε∗R̂ε
h)ω ∧ η| ≤ c ε

∑
T ′∈T (T̂ )

‖ω‖W 1,∞(T ′),

where the constant c is independent of ε and ω. Finally, it is straight-
forward to see that

|
∫

f\fε

(I−Γ̂ε∗R̂ε
h)ω∧η| ≤ |

∫
f\fε

ω∧η|+|
∫

f\fε

Γ̂ε∗R̂ε
hω∧η| ≤ cε‖ω‖L∞Λk(T̂ ?).

Hence we have verified the bound (4.7) when dim f > 0. This completes
the proof. �

5. The smoothed projection

The canonical interpolation operator Ih and the smoothing operators
Rε

h introduced above will be used to define a projection operator Πh

onto the finite element space Λk
h which are uniformly bounded with

respect to h in both L2Λk(Ω) and HΛk(Ω). The following results,
which corresponds to Lemma 5.4 of [4], is crutial for this construction.

Proposition 5.1. For each ε ∈ (0, ε0] there exists a constant c(ε) such
that

‖IhR
ε
h‖L(L2Λk(Ω),L2Λk(Ω)) ≤ c(ε)

for all h.

Proof. As above we let T ? = ∪{T ′ |T ′ ∈ Th(T ) } denote the macroele-
ment associated with T ∈ Th. We shall write Λk

h(T ) and Λk
h(T

?) for
the space of restrictions of elements of Λk

h to T or T ?. Now the shape
regularity property implies bounded overlap of the T ?, so∑

T∈Th

‖ω‖HsΛk(T ?) ≤ c‖ω‖HsΛk(Ω).
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Therefore, to complete the proof it suffices to show that

(5.1) ‖IT Rε
h‖L(L2Λk(T ?),L2Λk(T )) ≤ c(ε)

with c(ε) uniform over T ∈ Th and over h.
Let F (x) = FT (x) = (x−x0)/hT , where x0 is the first vertex of T , be

a scaling of T as described in Section 4 above. Thus F maps T onto a
simplex T̂ with a vertex at the origin and it maps T ? onto T̂ ? := FT (T ?).

Then F ∗−1IT F ∗ : Λk(T̂ ) → Λk
h(T̂ ) is just the canonical interpolation

operator IT̂ onto the polynomial space Λk
h(T̂ ). In particular, IT̂ ∈

L(CΛk(T̂ ), L2Λk(T̂ )), and, as in the proof of Lemma 4.1 above, the

compactness of the simplices T̂ implies that the corresponding operator
norm is bounded independently of T ∈ Th and h. Furthermore,

‖IT Rε
h‖L(L2Λk(T ?),L2Λk(T )) = ‖F ∗−1IT Rε

hF
∗‖L(L2Λk(T̂ ?),L2Λk(T̂ ))

= ‖IT̂ R̂ε
h‖L(L2Λk(T̂ ?),L2Λk(T̂ )),

where we recall that R̂ε
h = F ∗−1Rε

hF
∗. Hence, since IT̂ is uniformly

bounded in L(CΛk(T̂ ), L2Λk(T̂ )), the desired bound (5.1) follows from
Lemma 4.1. �

Due to Proposition 5.1 the operators IhR
ε
h map L2Λk(Ω) onto Λk

h

and they are uniformly bounded with respect to h for a fixed ε >
0. However, these operators are not projections since they are not
invariant on Λk

h. The next result, which generalizes Lemma 5.5 of [4],
will be essential to modify the operators IhR

ε
h into projections.

Proposition 5.2. There exists a constant c, independent of ε and h
such that

‖I − IhR
ε
h|Λk

h
‖L(L2Λk

h,L2Λk
h) ≤ c ε.

for 0 < ε ≤ ε0. Here ‖ · ‖L(L2Λk
h,L2Λk

h) denotes the L2 operator norm of

an operator Λk
h → Λk

h.

Proof. As in the proof of Proposition 5.1 above it is enough to show the
estimate locally, i.e. the desired result will follow from a local bound
of the form

‖I − IT Rε
h‖L(L2Λk

h(T ?),L2Λk
h(T )) ≤ c ε,

where the constant c is uniform with respect to T ∈ Th and h. Define
the scaling F (x) = FT (x) = (x− x0)/hT as above. Then

‖I − IT Rε
h‖L(L2Λk

h(T ?),L2Λk
h(T )) = ‖I − IT̂ R̂ε

h‖L(L2Λk
h(T̂ ?),L2Λk

h(T̂ )).
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We therefore conclude that the desired estimate will follow if we can
show that

(5.2) ‖I − IT̂ R̂ε
h‖L(L2Λk

h(T̂ ?),L2Λk
h(T̂ )) ≤ c ε.

However, if ω ∈ Λk
h(T̂

?) then IT̂ ω = ω|T̂ and by the compactness of the

macroelements Th(T̂ ) we have∑
T ′∈T (T̂ )

‖ω‖W 1
∞(T ′) ≤ c‖ω‖L2Λk

h(T̂ ?).

Therefore, the bound (5.2) follows directly from Lemma 4.2 with Γ̂ε

taken to be the identity map. �

It follows from Proposition 5.2 that there is an ε1, 0 < ε1 ≤ ε0 such
that the operator IhR

ε
h|Λk

h
is invertible for 0 < ε ≤ ε1, and such that its

inverse, J ε
h, satisfies

‖J ε
h‖L(L2Λk

h,L2Λk
h) ≤ 2.

Furthermore, the operator J ε
h commutes with the exterior derivative d.

For the rest of the discussion of this section we fix ε ∈ (0, ε1]. The
smoothed interpolation operator Πh : Λk

h → Λk
h is now defined by

Πh = J ε
hIhR

ε
h.

By construction, this operator is a projection (Π2
h = Πh), it com-

mutes with the exterior derivative d, and it is uniformly bounded in
L(L2Λk(Ω), L2Λk(Ω)). Furthermore, since it commutes with d it is also
uniformly bounded in L(HΛk(Ω), HΛk(Ω)). As in Theorem 5.6 of [4]
we also obtain the convergence result below.

Corollary 5.3. The projections Πh are uniformly bounded operators
in L(L2Λk(Ω), L2Λk(Ω)) and L(HΛk(Ω), HΛk(Ω)), and commute with
the exterior derivative d. Moreover, for all ω ∈ L2Λk(Ω), Πhω → ω in
L2 as h → 0.

Remark. By using the bounds on the best approximation given in The-
orem 5.3 of [4] we can also obtain rate of convergence results for the
projection error. If PrΛ

k(Th) ⊂ Λk
h then

‖ω − Πhω‖L2Λk(Ω) ≤ chs‖ω‖HsΛk(Ω), ω ∈ HsΛk(Ω), 0 ≤ s ≤ r + 1,

cf. Theorem 5.6 of [4]. �
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6. Essential boundary conditions

The purpose of this section is to construct projection operators, cor-
responding to the operators Πh constructed in Section 5 above, but for
the case of essential boundary conditions. As above, the finite element
space Λk

h is either of the form PrΛ
k(Th) or P−

r Λk(Th), but in this case

we also assume that Λk
h is a subspace of H̊Λk(Ω). The smoothing op-

erators Rε
h, introduced in Section 4, will be a key component of the

construction. However, in the present section we assume that the ex-
tension operator E, appearing in the definition (4.2), is taken to be the
extension by zero outside Ω.

The vector field X = X(x), introduced in Section 4 above, will be
used to define a family of domains {Ωε

h} such that Ω ⊂ Ωε
h, and such

that Ωε
h converges to Ω as ε or h tend to zero. It follows from the

properties of the vector field X that there are fixed positive constants
δ and t1 such that the balls Bt(x + δtX(x)) are entirely in Rn \ Ω for
all x ∈ ∂Ω and 0 < t ≤ t1. We let

Ωε
h = {x + δtX(x) |x ∈ Ω, t = εgh(x) },

and Γε
h : Ω → Ωε

h is the corresponding map given by

Γε
h(x) = x + δεgh(x)X(x).

It follows that Rε
h maps the space H̊Λk(Ω) boundedly into the space

C̊Λk(Ωε
h) ≡ H̊Λk(Ωε

h)∩CΛk(Ωε
h). Furthermore, Γε∗

h maps C̊Λk(Ωε
h) into

C̊Λk(Ω). Therefore, we can conclude that the composition Γε∗
h ◦ Rε

h is

in L(H̊Λk(Ω), C̊Λk(Ω)), and, as a consequence, the map

Ih ◦ Γε∗
h ◦Rε

h

is in L(H̊Λk(Ω), H̊Λk(Ω)). Here Ih is the canonical interpolation oper-
ator onto Λk

h.
In order to obtain the proper bounds on the operator Ih ◦Γε∗

h ◦Rε
h we

consider the scaling of the map Γε
h, i.e. we consider Γ̂ε

h = F ◦Γε
h ◦F−1,

where F (x) = FT (x) = (x− x0)/hT is the scaling map associated with
T ∈ Th. More explicitly,

(6.1) Γ̂ε
h(x) = x + (δεgh(x̌)/hT )X(x̌),

where x̌ = F−1(x). Since gh(x)/hT and the Lipschitz constant of gh

are bounded independently of T ∈ Th, h, and ε, it follows that the map
Γ̂ε

h satisfies

(6.2) |Γ̂ε
h(x)− x|, |DΓ̂ε

h(x)− I| ≤ c ε,
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where the constant is independent T ∈ Th, h, and ε. Also observe
that we can choose ε sufficiently small such that there is a domain T̂ †,
T̂ ⊂ T̂ † ⊂ T̂ ?, with the properties that

Bεĝh(x)(x) ⊂ T̂ ?, x ∈ T̂ † and T̂ ⊂ Γ̂ε
h(T̂

†).

Therefore, we have seen that the map Γ̂ε
h satifies the estimates (4.5)

and (4.6).

Proposition 6.1. For ε sufficiently small there exists a constant c(ε)
such that

‖IhΓ
ε∗
h Rε

h‖L(L2Λk(Ω),L2Λk(Ω)) ≤ c(ε)

for all h.

Proof. The proof follows from a minor variation of the proof of Propo-
sition 5.1 given above. As above we introduce the scaling F (x) =
FT (x) = (x − x0)/hT for each T ∈ Th, and we observe, in parallel
to the proof above, that the desired bound will follow if we can show
that ‖IT̂ Γ̂ε∗

h R̂ε
h‖L(L2Λk(T̂ ?),L2Λk(T̂ )) is bounded uniformly with respect to

T ∈ Th and h. Let the domain T̂ †, T̂ ⊂ T̂ † ⊂ T̂ ?, be as above. As in
the proof of Proposition 5.1 we can conclude that

‖R̂ε
h‖L(L2Λk(T ?),CΛk(T̂ †)) and ‖IT̂‖L(CΛk(T̂ ),L2Λk(T̂ ))

is bounded uniformly with respect to T ∈ Th and h. Furthermore, the
operator Γ̂ε∗

h is uniformly bounded in L(CΛk(T̂ †), CΛk(T̂ )), since this
operator corresponds to a translation along smooth curves, cf. (6.2).
This completes the proof. �

Proposition 6.2. There exists a constant c, independent of ε, δ and h
such that

‖I − IhΓ
ε∗
h Rε

h‖L(L2Λk
h,L2Λk

h) ≤ c ε

for ε sufficiently small. Here ‖ · ‖L(L2Λk
h,L2Λk

h) denotes the L2 operator

norm of an operator Λk
h → Λk

h.

Proof. Since the map Γ̂ε
h satisfies the estimates (4.5) and (4.6), we can

argue, as in the proof of Proposition 5.2 above, and conclude from
Lemma 4.2 that

‖(I − IT̂ Γ̂ε∗
h R̂ε

h)ω‖L2Λk(T̂ ) ≤ c ε
∑

T ′∈T (T̂ )

‖ω‖W 1
∞(T ′) ≤ c′ ε‖ω‖L2Λk(T̂ ?)

for any ω ∈ Λk
h. Hence the desired result follows in complete analogy

with the proof of Proposition 5.2. �
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It is a consequence of Proposition 6.2 that the operator IhΓ
ε∗
h Rε

h

restricted to Λk
h is invertible for ε sufficiently small. Fixing such an ε

we define the smoothed projection as

Πh = J ε
hIhΓ

ε
hR

ε
h,

where J ε
h = (IhΓ

ε
hR

ε
h|Λk

h
)−1. As in the previous section we obtain the

following bound for the projection error.

Corollary 6.3. The projections Πh are uniformly bounded operators
in L(L2Λk(Ω), L2Λk(Ω)) and L(H̊Λk(Ω), H̊Λk(Ω)), and commute with
the exterior derivative d. Moreover, for all ω ∈ L2Λk(Ω), Πhω → ω in
L2 as h → 0.
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