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Abstract 

Background  Genome-wide association studies (GWAS) of Alzheimer’s disease (AD) have identified several risk loci, 
but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously dem‑
onstrated that six CSF biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five 
principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) 
identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD 
pathophysiology, and (3) explore potential sex differences.

Methods  We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). 
In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 
common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate 
genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects.

Results  Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 
[inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, 
and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, 
which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are 
associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 
are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associa‑
tions with AD biomarkers.
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Conclusions  These results suggest that pathway and sex-specific analyses can improve our understanding of AD 
genetics and may contribute to precision medicine.

Keywords  Alzheimer’s disease, Dementia, Biomarkers, Cerebrospinal fluid (CSF), Genome-wide association study 
(GWAS), Multivariate analysis, Principal component analysis, Mediation, Structural equation modeling

Background
Alzheimer’sdisease (AD) is a genetically complex disor-
der to which various pathophysiological processes are 
thought to contribute. Amyloid and tau pathology are the 
most well-known, but other processes, such as inflam-
mation and cholesterol metabolism, among many others, 
play important roles in disease development as well [1]. 
Different risk factors may affect AD development by dif-
ferent mechanisms; therefore, patients may develop AD 
due to different combinations of causes and pathways. 
Accurately identifying and distinguishing which molecu-
lar mechanisms play the lead role on an individual basis 
is therefore crucial for etiological research, but also for 
clinical diagnosis, prognosis, and future therapeutic 
approaches.

Cerebrospinal fluid (CSF) biomarkers can provide 
insights into disease mechanisms, often before symp-
toms fully develop [2]. We have previously demonstrated 
the utility of linearly combining different AD CSF bio-
markers into five statistically independent components, 
which likely represent different disease processes and 
which may be more informative than analyzing each CSF 
trait separately [3]. Specifically, we had applied principal 
component analysis (PCA) to data for six CSF biomark-
ers collected in two independent cohorts: the European 
Medical Information Framework for Alzheimer’s Dis-
ease Multimodal Biomarker Discovery (EMIF-AD MBD) 
study [4] and the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [5].

A very similar structure representing five principal 
components (PC) was found in both cohorts and can be 
summarized as follows: [3] the first PC loaded strongly 
on tau and phosphorylated tau (pTau), and moderately 
on neurogranin (Ng) and YKL-40. Tau is a marker of 
neurodegeneration, with pTau being a component of 
neurofibrillary tangles [2, 6], Ng is a marker of synaptic 
functioning [7], while YKL-40 is associated with neuronal 
inflammation and astroglial reaction [2, 8–10]. Thus, this 
PC likely represents tau pathology and associated degen-
erative processes, such as deficits in synaptic function-
ing and elevated inflammation (henceforth referred to 
as “tau pathology/degeneration” (PC1)). The second PC 
loads specifically on Aβ42 only (“Aβ Pathology” PC2), a 
very early and important marker of amyloid deposition in 
the brain [2]. The third PC  loads strongly on neurofila-
ment light chain (NfL), but also moderately on YKL-40, 

and can be interpreted as representing neuronal injury 
and the accompanying inflammatory response (“injury/
inflammation” PC3), as NfL is a component of axons and 
its presence in CSF is a non-specific marker of neuronal 
damage [6]. The fourth PC loads on YKL-40 and only 
weakly on tau and NfL, and therefore can be regarded as 
representing neuronal inflammation and astroglial reac-
tion, not related to AD symptoms (“non-AD inflamma-
tion” PC4). Similarly, the fifth PC loads strongly on Ng 
and weakly on tau, representing synaptic functioning 
mostly independent of the other biomarkers and AD 
symptoms (“non-AD synaptic functioning” PC5). Please 
note, that the PC “names” are used for increased legibil-
ity, but are by necessity reductionist. We do not wish to 
imply that the named biological processes are unique or 
exhaustively describe any given PC.

After establishing the component structure, we applied 
these to search for rare variant associations using whole-
exome sequencing in our previous study [3]. This work 
led to the identification of six genes, in which rare vari-
ants were associated with the CSF PCs. Specifically, we 
identified associations between the injury/inflammation 
component (PC3) and rare variants in IFFO1, DTNB, 
NLRC3, and SLC22A10, as well as between the non-AD 
synaptic functioning component (PC5) and rare vari-
ants in GABBR2 and CASZ [3]. Interestingly, rare variant 
associations with AD risk were simultaneously reported 
for the DTNBlocus in an independent project utilizing 
whole-genome sequencing in AD families and case-con-
trol datasets [11].

In this study, we aimed to extend the previous, rare-
variant analyses to investigate the role of common vari-
ants on the PCA-defined CSF biomarker profiles. While 
previous GWAS in the field have screened for common-
variant associations with single biomarkers [9, 12–15], 
to our knowledge no GWAS combining these CSF bio-
markers in a multivariate framework has been performed 
to date. Multivariate analyses have the advantages of (i) 
allowing a more robust (compared to univariate analyses) 
quantification of different disease pathways, resulting in 
increased statistical power [16, 17] and (ii) enabling to 
differentiate various possible mechanisms of action more 
precisely.

Secondary aims of our study included the identifica-
tion of sex-specific effects and AD mediation pathways. 
AD is more prevalent in women, and CSF biomarkers 
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differentially predict brain and cognitive changes depend-
ing on sex [18, 19]. Furthermore, genetic effects on CSF 
biomarkers may depend on sex as well, e.g., rs34331204 
on chromosome 7p21 was found to have a male-specific 
association with neurofibrillary tangles [20]. It is there-
fore prudent to investigate whether the component 
structure differs between sexes and whether associations 
of PCs with AD or with genetic predictors is sex-depend-
ent. Finally, we performed  mediation analyses to gauge 
whether potential SNP effects on CSF biomarker profiles 
also affect AD risk.

Methods
Participants
The presented work is part of the EMIF-AD project, a 
consortium of European studies investigating the etiol-
ogy of AD and AD biomarkers with the aim to improve 
prognosis and diagnosis [4]. Participants included elderly 
individuals with cognitively unimpaired individuals, 
mild cognitive impairment (MCI), and AD type demen-
tia. Both deep phenotyping (such as brain imaging and 
determination of CSF biomarkers) and genotyping (SNP 
arrays and WES) were performed on a large number of 
EMIF-AD participants [21–23]. The current study uti-
lizes the existing CSF biomarker and SNP array data and 
combines them with a range of statistical methods not 
previously employed on these data. Written informed 
consent was obtained for all assessment before the start 
of the study [4]. The study was conducted in accordance 
to the Declaration of Helsinki and ethical approval was 
obtained from the Ethical Committee of the University of 
Lübeck, as well as local committees of consortium mem-
bers [4]. More details on the recruitment and phenotype 
ascertainment protocols used in the EMIF-AD dataset 
can be found in Bos et al. [4].

To increase the generalizability of effect estimates 
and to increase power to detect new associations, we 
performed all analyses jointly with equivalent CSF bio-
marker and SNP genotype data from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) [5]. Data used in 
the preparation of this article were obtained from adni.
loni.usc.edu. ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael 
W. Weiner, MD. The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging, positron 
emission tomography, other biological markers, and clin-
ical and neuropsychological assessment can be combined 
to measure the progression of MCI and early AD.

The current study utilized two participant selec-
tion paradigms for analysis: first, we selected partici-
pants for whom observations for at least 4 out of the 5 
biomarkers were available. In total, this yielded 1158 
participants to construct and examine the biomarker 

PC scores (Additional file 1: Table S1). Second, we only 
included participants with available SNP array data, who 
were unrelated and of European ancestry. This reduced 
the sample size to 973 participants (Additional file  1: 
Table S2, see also Hong et al. for detailed selection meth-
ods [13]). Overall, both EMIF-AD and ADNI were com-
parable datasets of elderly participants, with a mean age 
at ascertainment of 69 and 75 years, respectively (Addi-
tional file  1: Table  S1). The distributions of diagnostic 
status were similar in both datasets as well, with approxi-
mately half of the sample diagnosed with MCI, while 25% 
presented either no cognitive impairment or with a diag-
nosis of AD (Additional file 1: Table S1).

We further assessed novel findings in the independ-
ent Knight Alzheimer Disease Research Center (Knight-
ADRC) cohort. Applying the same inclusion criteria, we 
selected 786 participants with sufficient genotype and 
phenotype/CSF data. These were on average 69 years old 
and 46.95% male, 21.12% had MCI, and 4.71% AD (Addi-
tional file  1: Table  S3, Additional file  2: Supplementary 
Methods).

Measures
Genotyping, imputation, and quality control (QC)
SNP genotypes were determined using the Infinium 
Global Screening Array (GSA; Illumina, Inc., USA) at the 
Institute of Clinical Molecular Biology (UKSH, Campus-
Kiel) in EMIF-AD and using Illumina’s Omni 2.5  M or 
Human610-Quad arrays in ADNI. Autosomal SNPs in 
both GWAS datasets were processed with the same com-
putational workflow [13], including the imputation of 
untyped variants with MiniMac 3 using the HRC 1.1 ref-
erence panel [24]. Here, we only analyzed common SNPs 
(MAF ≥ 0.01 per study) with sufficient imputation qual-
ity (R2 > 0.30) and SNPs within HWE (p < 5 × 10−6). To 
check for cryptic relatedness, we used the KING-robust 
kinship estimator implemented in PLINK (v2.0) with a 
cutoff of 0.025, which excludes family relationships down 
to the fourth degree. Please see Hong et al. for a detailed 
description of the GWAS methods, QC criteria, and pro-
cessing pipeline [13]. Within Knight-ADRC, participants 
were genotyped using GSA, CoreExome, Illumina 660 K, 
NeuroX2, and OmniExpress arrays. All samples were 
imputed using the TOPMed imputation server and only 
SNPs with an imputation quality of R2 > 0.30 and HWE 
(P ≥ 1*10−6) were kept. Related individuals were identi-
fied through identity by descent (IBD; PLINK (v1.9)) with 
PI_HAT > 0.20 cutoff. For analysis, only samples of Euro-
pean ancestry, as determined by genotype PCs, and SNPs 
with MAF ≥ 0.0001 (0.01%) and 98% call rate were kept. 
For X-chromosome-specific methods, see Additional 
file 2: Supplementary Methods.
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CSF biomarkers
Biomarkers were derived from CSF, as obtained via 
lumbar puncture [3, 5, 23]. For EMIF, the V-PLEX Plus 
AbPeptidePanel 1 Kit was used to measure Aβ, and in the 
case of tau, the INNOTEST ELISA was applied [23]. In 
ADNI, the Elecsys CSF immunoassay and a cobas e 601 
analyzer assessed Aβ and tau concentration [25]. For both 
cohorts, ELISA was applied to assess NfL levels [23, 26]. 
Ng concentration was measured by ELISA in EMIF [23] 
and by electrochemiluminescence in ADNI [27]. ELISA 
was used to measure YKL-40 levels in EMIF [23] and LC/
MRM‐MS proteomics were applied in ADNI [28]. For the 
YKL-40 proteomics data, we z-score standardized two 
ion frequencies with two peptide sequences each and 
averaged the values. In Knight-ADRC, Aβ, tau, and ptau 
levels were measured using Lumipulse G1200 automated 
assay system. NfL, Ng, and YKL-40 levels were obtained 
using the aptamer-based SOMAscan (v4) platform.

Statistical analysis
CSF biomarker PCA, sex differences, and AD associations
The analysis work-flow is summarized in Additional 
file 2: Fig. S1. First, we computed five PCs across all par-
ticipants with sufficient biomarker information. PCs were 
defined as described previously [3] and assigned to spe-
cific functional domains, as described in the introduc-
tion. The PCA was performed on the phenotype level and 
PCs were constructed independent of genotype informa-
tion. Briefly, we first applied a rank-based inverse normal 
transformation within both studies to decrease extreme 
skewness of the observed biomarker levels and to z-score 
standardize their scale across studies [29]. We used the 
missMDA package to determine the optimum number of 
components and account for missing data [30]. Specifi-
cally, we applied leave-one-out cross-validation, remov-
ing one observation at a time and predicting it by a PCA 
model fitted to the rest of the dataset. The model result-
ing in the smallest mean square error of prediction con-
tained five components (PC1-PC5). We then imputed 
missing values to avoid excessive sample size losses and 
potential participation biases. This was achieved using a 
regularized iterative PCA method with five components, 
as implemented in missMDA. Finally, we performed a 
PCA with varimax rotation (an orthogonal rotation) and 
extracted five PC scores with the psych package [31]. All 
analyses were performed in R 4.0.3 [32] We applied the 
same PC loadings to the Knight-ADRC for replication 
purposes of results related to PC4 and PC5.

We have not previously explored to which degree the 
component structure differs between sexes, or whether 
the resulting PCs show sex-dependent associations 
with dementia symptoms. We first repeated PCA in 
both males and females and compared loadings. We 

then tested whether mean PC levels differed between 
sexes. This was achieved by regressing PC scores on sex, 
adjusted for age, five genetic ancestry components, diag-
nostic status (dummy coding MCI and AD), and study 
(ADNI vs EMIF-AD).

In a last step, we used the PC scores as predictor of 
latent AD. Here, latent AD is defined as an underlying 
continuous normally distributed variable, representing a 
range of probability to either have no cognitive impair-
ment, MCI, or AD. Latent AD was estimated by item 
factor analysis [33]. Accordingly, participants with low 
scores (below −1.47SD) are unlikely to display cognitive 
impairment, above −1.47SD and below 0.40SD are most 
likely to suffer from MCI and above 0.40SD have a high 
probability to be affected by AD. To account for potential 
sex differences, we also added a product term between 
PC scores and sex, coded as male = 0 and female = 1. 
The biomarker PC term can therefore be interpreted as 
the association of biomarker PC scores on latent AD in 
males and the interaction term as the female-specific 
effect, i.e., the difference between sexes. These analy-
ses were adjusted for the same covariates as in the main 
analyses, i.e., age, genetic ancestry, and study. We applied 
a structural equation model (SEM) with a weighted least 
square mean and variance adjusted (WLSMV) estima-
tor using Lavaan 0.6–9 [34] to estimate latent AD and 
regress it onto biomarker PCs, sex, their interaction, and 
covariates.

GWAS and meta‑analyses
We performed four sets of GWAS: main-effect GWAS 
analysis (both sexes), male-only GWAS, female-only 
GWAS, and sex interaction analyses. Within each anal-
ysis group, we performed five GWAS, one for each bio-
marker PC, separately for EMIF-AD and ADNI. For all 
GWAS, separate linear regression models were run in 
PLINK [35] to all autosomal and X-linked SNPs passing 
QC. For the X-chromosomal analyses genotype, dos-
age for hemizygous males was coded as 2, to reflect the 
same dosage as homozygous females [36]. The biomarker 
PC scores were treated as outcome, imputed SNP dos-
age (0–2 numbers of effect allele) as main predictor. In 
addition, we included sex and five PCs reflecting genetic 
ancestry as additional covariates in the regression mod-
els. Analyses of the ADNI dataset were additionally cor-
rected for genotyping array. Lastly, GWAS results for 
the EMIF-AD and ADNI were meta-analyzed using 
the inverse variance weighting (i.e., fixed-effect) model 
implemented in METAL [37].

In secondary analyses, we aimed to discover SNP 
effects exclusively found in one sex by running sex-spe-
cific GWAS. In the final model, we added a sex interac-
tion term, representing the difference between the SNP 
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effect in females vs males. In addition to single-variant 
analyses, we also estimated the aggregate effect of all 
SNPs within a protein-coding gene. These analyses were 
performed with MAGMA 1.08 [38] on the FUMA 1.3.7 
platform with default settings [39]. FUMA was also used 
to select independent (R2 ≤ 0.6) genome-wide significant 
(p < 5*10−8) SNPs for further mediation analyses and to 
perform gene-set enrichment analyses on the GWAS top 
hits emerging for each analyzed PC. While the focus was 
on multivariate analyses using PCs as outcome, we also 
performed the same analyses with single biomarkers to 
compare both approaches.

We further estimated the variance explained by loci 
found to be genome-wide significant in the main-effect 
analyses. We computed the difference in R2  between a 
full model including the tested SNP and a baseline model 
with covariates only. We additionally estimated the local 
heritability of the top loci using LAVA 0.1.0 [40]. We 
defined the region of interest as 10 KB down or upstream 

of the gene start/end or SNPs, or in the case of APOE, as 
previously defined [41] (Additional file 1: Table S4). Sin-
gle-SNP, gene-based and local heritability analyses were 
repeated in Knight-ADRC for the novel PC4 and PC5 loci 
showing genome-wide significance in the main discovery 
analyses to assess replication.

Mediation analyses
Independent SNPs, which showed genome-wide signifi-
cant association in any of the GWAS were further tested 
for mediation effects. Specifically, we examined whether 
these SNPs would affect latent AD via their influence on 
biomarker levels. To test this hypothesis, we applied a 
SEM to each SNP. In this SEM, the genetic variant pre-
dicts all biomarker PCs, as well as latent AD directly. 
The biomarker PCs in turn also predict latent AD. See 
Fig.  1  for a path diagram. Sex, age, five genetic ances-
try components, and study were predictors of both CSF 
biomarkers and latent AD, thus all mediation and direct 

Fig. 1  Path model of main findings. This path model summarizes the main-effect mediation model. Circles indicate principal components or latent 
variables, rectangles represent observed variables. Arrows either indicate PC loadings or structural regression paths. Thicker lines correspond 
to stronger loadings, solid structural paths are genome-wide significant (p < 5 × 10−8), and dashed lines are suggestive (p < 0.008). Coefficients 
indicate either the effect of one effect allele on a biomarker PC in SD, or the effect of one SD higher biomarker PC score on latent AD in SD. Note: all 
paths are adjusted for assessment age, sex, genetic ancestry, and study but are omitted from figure
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pathways were statistically adjusted for these poten-
tial confounders. Paths from SNPs to a biomarker were 
multiplied with the path from biomarker to latent AD 
to obtain the mediation effect for that particular PC. We 
also summed all mediation pathways to obtain a total 
mediation estimate elicited by any biomarker. This bio-
marker mediation estimate was further summed with 
the direct effect to estimate the total effect. To aid the 
interpretation of the mediation magnitude, we also pro-
vide an estimate of the proportion of the mediated effect 
(i.e., biomarker mediation/total effect). However, this was 
only possible, when mediated and total effects pointed in 
the same direction. Additional context to the total effect 
is afforded by providing the variants’ effects on AD based 
on a large and independent previous case-control GWAS 
[42].

As some SNPs showed sex-dependent effects, we also 
ran a moderated mediation model to account for sex-spe-
cific mediation. This was achieved by adding a product 
term between SNP dosage and dummy variable for sex 
(female = 1, male = 0), and adding this interaction term as 
predictor of biomarker PCs and latent AD. If no media-
tion pathway differed nominally (p≥ 0.05) between sexes, 
main mediation model results are presented. Otherwise, 
male- and female-specific mediation estimates are pro-
vided, as estimated by the moderated mediation model. 
All mediation analyses were estimated with WLSMV in 
lavaan [34].

Comparison to rare variant results
As outlined in the introduction, we previously identi-
fied several rare variant associations using the same 
biomarker PCA approach in a subset of the EMIF-AD 
individuals analyzed here. Specifically, this pertains 
to associations between IFFO1, DTNB, NLRC3, and 
SLC22A10 and the injury/inflammation component 
(PC3), as well as between GABBR2 and CASZand the 
non-AD synaptic functioning component (PC5) [3]. Here 
we examined, whether common variants—in addition to 
the rare variants already identified—in these genes also 
show associations with the CSF biomarker PCs, using 
both single-variant and gene-based tests as outlined 
above.

Functional characterization and related phenotypes
SNPs were annotated to genes using default settings of 
FUMA, which relies on positional and functional infor-
mation. Given the broad association signal between the 
chromosomal region encompassing GRIN2D and non-
AD synaptic functioning (PC5), we additionally per-
formed fine-mapping analyses to identify the most likely 
causal genes at this locus. To this end, we used a TWAS 

fine-mapping approach [43] as implemented in FOCUS 
0.802 (https://​github.​com/​bogda​nlab/​focus).

Briefly, we examined the association between predicted 
gene expression at the GRIN2D locus with non-AD syn-
aptic functioning (PC5). The GRIN2D locus was defined 
as encompassing chr19:48382575–48466980 (GRCh38/
hg38), starting 10 kb downstream of KDELR1 and 10 kb 
upstream of KCNJ14to cover all lead variants within the 
locus. Prediction weights were previously computed 
based on expression in the dorsolateral prefrontal cor-
tex of ROS/MAP participants with AD, MCI, or healthy 
controls as obtained from the AMP-AD RNAseq Har-
monization Study [44, 45], and processed by Bellenguez 
et al. [46] We chose this dataset as it includes a relatively 
large number of samples of a relevant tissue in a popu-
lation similar to the current study. Prediction quality of 
GRIN2D was sufficient in this dataset, based on signifi-
cant variance explained as estimated with cross-valida-
tion (5.2%, p = 3.6 × 10−8). In total, weights for 13,420 
transcripts with nominally significant heritability esti-
mates were available. We next associated the predicted 
transcripts with non-AD synaptic functioning (PC5) and 
consequently computed the posterior inclusion probabil-
ity (PIP), resulting in a credible gene set. We only consid-
ered genes as likely causal candidates, if they showed an 
association with the outcome on a transcriptome-wide 
significance level (p < 0.05/13,420 < 3.7 × 10−6; |Z|> 4.6).

To further study the impact of GRIN2Don related phe-
notypes, we tested the predicted gene expression for 
association with risk for AD [42, 46], low educational 
attainment [47], low cognitive ability [48], and risk for 
major depressive disorder [49] using summary statistics 
of independent, recent GWAS. Finally, we also attempted 
to compute local genetic correlations between PCs and 
related phenotypes. However, due to low sample sizes, 
this was only possible for TMEM106B and the genetic 
correlation between injury/inflammation (PC3) and AD. 
Similarly, we were not able to investigate genetic correla-
tions between sexes given the even lower sample sizes in 
these subsets.

Multiple testing adjustment
To strike a balance between reliable inference and power, 
we present our findings as primary, secondary, and ter-
tiary results. The primary analyses in this study were the 
GWAS in the full dataset independent of sex. For SNP-
based tests, we apply the conventional genome-wide 
association threshold of p < 5 × 10−8, and for gene-based 
tests, we used Bonferroni’s method to adjust for 19,511 
genes resulting in a threshold of p < 2.3 × 10−6, as rec-
ommended by FUMA. The sex-specific analyses pre-
sent additional tests of related (and non-independent) 
hypotheses, and, thus should be regarded as secondary 

https://github.com/bogdanlab/focus
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and more exploratory analyses. For the mediation analy-
ses, we applied an alpha of 0.05/6 = p < 0.0083, adjusting 
for six potential mediation or direct pathways. See Addi-
tional file 2: Supplementary Methods for full description 
of the multiple testing adjustment strategy.

Results
CSF biomarker PCs
Analogous to our previous study [3], the six AD CSF 
biomarkers tested here could be combined into five 
consistent components across datasets and analytical 
subsamples. The PC structure was very similar across 
the EMIF-AD and ADNI datasets (Additional file  1: 
Table  S5); therefore, all subsequent PC analyses were 
based on a combined discovery sample to maximize sam-
ple size and reduce study heterogeneity. In this study, we 
extended our analyses to examine whether the CSF bio-
marker PCs’ loadings, their mean levels, or associations 
with latent AD differ by sex. Generally, PC loadings were 
consistent across males and females (Table 1). NfL loaded 
0.06 higher on tau pathology/degeneration in females 
when compared to males (0.25 vs 0.19). A similar pat-
tern was observed for pTau, which loaded 0.07 higher on 
Injury/Inflammation (0.18 vs 0.11) in women vs men. All 
other loading differences were below 0.04 and therefore 
classified as “indifferent” between sexes. Based on these 
observations, we used the common loadings as estimated 
across both sexes for further analyses.

While the component structure was very simi-
lar between sexes in general, we observed dif-
ferences in mean levels. When adjusting for age, 
diagnostic status, and study, females showed 0.21SD 
(SE = 0.06, p = 6.3 × 10−4) higher scores on non-AD syn-
aptic functioning. In contrast, injury/inflammation was 
−0.40SD (SE = 0.05, p = 2.7 × 10−13) lower in females. 
Tau pathology/degeneration, Aβ pathology, and non-
AD inflammation did not show differences in mean lev-
els across sexes when accounting for multiple testing 
(p < 0.05/5 = 0.01).

Finally, we examined the association of the biomarker 
PCs with latent AD, including potential sex interac-
tions (Additional file  1: Table  S6). 1SD higher levels in 
tau pathology/degeneration or injury/inflammation 
were associated with 0.41SD and 0.40SD higher latent 
AD levels in males. Females had a stronger association 
with 0.43SD and 0.44SD, respectively, but the differ-
ence was not significant (p > 0.5). Higher brain Aβ accu-
mulation is reflected in lower CSF Aβ values; therefore, 
higher Aβ pathology scores were associated with lower 
AD occurrence in both males and females (β =  − 0.34SD 
and β =  − 0.45), although the difference between sexes 
was not significant (p = 0.13). Non-AD inflammation 
and non-AD synaptic functioning did not significantly 

associate with latent AD, when adjusting for five tests 
(i.e., all p > 0.01). Due to lack of evidence for sex-differ-
ential associations, all subsequent analyses are performed 
under the assumption that associations between PCs and 
latent AD are invariant across sexes.

GWAS
In our GWAS analyses, we tested 7,433,949 autosomal 
and X-linked SNPs. For gene-based tests, we assessed 
19,511 protein-coding genes. For all outcomes and analy-
ses, lambda was below 1.05 and QQ-plots showed no evi-
dence of noteworthy genome-wide inflation (Additional 
file 2: Fig. S2). GWAS results are visualized as Manhattan 
plots for main (Fig. 2), sex stratified (Fig. 3), sex interac-
tion analyses (Additional file 2: Fig. S3), and gene-based 
tests (Additional file  2: Fig. S4). Results of independent 
SNPs showing genome-wide significance are summarized 
in Table  2. Their effect on AD risk by mediation analy-
sis using CSF biomarker PCs are displayed in Table  3. 
Finally, gene-based results are depicted in Table  4. We 
had good to excellent power to detect SNPs with a βof 
0.30 and a minor allele frequency (MAF) of at least 10% 
[50]. For less common SNPs (< 5%), we only had power to 
detect SNPs with a β of 0.65 or higher (Additional file 2: 
Fig. S5).

Main analyses
In the main analyses, none of the SNPs showed genome-
wide significant association with the tau pathology/
degeneration component (PC1). In contrast, seven inde-
pendent SNPs in the APOE locus showed genome-wide 
significant associations with the Aβ pathology com-
ponent (PC2). Specifically, the C allele of the lead SNP 
rs429358 (which is also known as the ε4-allele) was 
associated with −0.50SD lower PC scores (SE = 0.04, 
p = 1.3 × 10−29, MAF = 0.30).

Regarding the injury/inflammation component (PC3), 
transmembrane protein 106B (TMEM106B), tagged 
by lead intronic SNP rs2302634, showed strong and 
genome-wide significant associations: the T allele at 
this variant predicted +0.26SD (SE = 0.04, p = 1.3 × 10−9, 
MAF = 0.42) higher injury/inflammation scores.

In case of the non-AD inflammation compo-
nent (PC4), two loci reached genome-wide signifi-
cance: chitinase 3 like 1 (CHI3L1) on chromosome 
1 and a new region on chromosome 9p21.3 with 
lead SNP rs145791381 (located in an intergenic 
region). CHI3L1 encodes the YKL-40 protein and 
two independent SNPs in or near this gene showed 
genome-wide significant associations with the 
non-AD inflammation PC: the strongest effect was 
observed for intronic variant rs7551263 (T allele: 
β =  − 0.39SD, SE = 0.05, p = 5.7 × 10−17, MAF = 0.16; 
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Fig.  4). The second signal in CHI3L1 was elicited by 
SNP rs10399931 located < 160  bp upstream of CHI3L1 
(T allele: β =  − 0.33SD, SE = 0.06, p = 6.0 × 10−9, 
MAF = 0.24). Both SNPs are independent (r2 = 0.04 in 
our study and D’ = 0.71 in European population [39]) 
and therefore probably represent two separate signals. 
In a previous work [13], both SNPs were directly asso-
ciated with CSF YKL-40 levels and can therefore be 

considered cis pQTLs (i.e., protein quantitative trait 
loci) of this protein.

Another SNP reaching genome-wide significance in the 
main-effect analyses was the intergenic SNP rs145791381 
on chr. 9p21.3. The T allele of this variant was associ-
ated with lower scores on the non-AD inflammation 
component (PC4, β =  − 1.01SD, SE = 0.18, p = 6.0 × 10−9, 
MAF = 0.02). Despite the strength of the association in 

Fig. 2  Manhattan plot (main-effect model). Results from GWAS of five CSF biomarker PC across both sexes. Each row represents a different PC 
as outcome. X-axis represents each chromosome and the y-axis the p-value of the SNP association with the outcome on a −log10 scale. All analyses 
were adjusted for sex, genetic ancestry, and SNP array. Red line indicates genome-wide significance threshold (p = 5 × 10−8). Yellow line indicates 
suggestive threshold (p = 1 × 10−6). Vertical lines point towards genome-wide significant loci based on any model. P-values below 1 × 10−10 were 
winsorized to 1 × 10−10

Fig. 3  Manhattan plot (sex stratified). Results from GWAS of five CSF biomarker PC for males and females separately. Each row represents a different 
PC as outcome. Per outcome, results for males are depicted at the bottom and for females at the top. X-axis represents each chromosome 
and the y-axis the p-value of the SNP association with the outcome on a −log10 scale. All analyses were adjusted for genetic ancestry and SNP array. 
Red line indicates genome-wide significance threshold (p = 5 × 10−8). Yellow line indicates suggestive threshold (p = 1 × 10−6). Vertical lines point 
towards genome-wide significant loci based on any model. P-values below 1 × 10−10 were winsorized to 1 × 10−10

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Fig. 4  Regional plots for TMEM106B, CHI3L1, and GRIN2D. Each plot displays the p-values of SNP associations in either TMEM106B, CHI3L1, or GRIN2D 
loci. Statistics are derived from two studies. Orange dots represent p-values of association with biomarker PCs estimated in this study and back dots 
represent p-values of association with AD, as estimated in a separate GWAS on 1 million participants (Wightman et al. [42]). Regional plots were 
created with snpxplorer.net
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the primary GWAS, this potential association signal was 
elicited by a “singleton variant” (i.e., there was no “trail” 
of correlated variants showing similar association evi-
dence). The missing trail of correlated variants may be the 
result of this variant’s low minor allele frequency which 
substantially reduces the number of variants in strong LD 
in this particular region. Given the fact that this variant 
was not associated with the non-AD inflammation PC4 
in Knight-ADRC (β = 0.07SD, SE = 0.35, p = 0.84), we 
have put no further emphasis on this finding throughout 
the remainder of the manuscript.

Lastly, no single SNP showed genome-wide significant 
association with the non-AD synaptic functioning com-
ponent (PC5). However, this PC showed evidence for 
genome-wide significant association in the gene-based 
GWAS analyses highlighting the glutamate receptor gene 
GRIN2D, based on aggregated test statistics across 110 
SNPs located between 19:48,898,132 and 19:48,948,188 
(Z =  + 4.63, p = 1.8 × 10−6) (Table 4). The lead SNP within 
this gene was rs8111684 in the 3’ UTR region of the 
GRIN2D gene (β =  + 0.19SD, SE = 0.05, p = 9.8 × 10−5, 
MAF = 0.26). Interestingly, the genomic regions flanking 
the gene both p-ter and q-ter showed more significant 
single  SNP associations. As these variants are located 
outside of the gene, they were not considered in the 
gene-based tests (Fig.  4). Notwithstanding, we included 
two additional SNPs from this adjacent region for further 
characterization: rs275844 and rs3107911. The strong-
est single-SNP association in the locus was elicited by 
rs3107911, located in the intron of the gene KCNJ14 
(β =  − 0.31SD, SE = 0.06, p = 5 × 10−7, MAF = 0.15) and 
approx. 16  kb q-ter of GRIN2D (Fig.  4). The lead vari-
ant explained 2.2% of the variance and the GRIN2D 
locus as a whole explained 3% (p = 0.009) of the variance 

in non-AD synaptic functioning (PC5). See Additional 
file 1: Table S4 for local heritability and estimates of the 
variance explained for all loci.

Comparison of the PCA-based GWAS results with 
GWAS analyses run on individual biomarkers revealed 
that the PCA phenotype led to a higher statistical sup-
port (i.e., smaller P-values) in about half (i.e., 10 out of 
21) of the top hits of the main-effect analyses (Additional 
file  1: Table  S7). This pattern was observed for 4 of the 
5 computed PCs, i.e., all but PC2 (Aβ pathology). Only 
for this latter PC all (n = 8) single biomarker results con-
sistently showed stronger statistical support than the 
PCA-based GWAS. In contrast, comparing results for 
non-AD inflammation (PC4) vs. single biomarker analy-
ses using YKL-40 levels, the associations tended to be 
much stronger for the PCA-based analyses. These analy-
ses support our general hypothesis that combining sin-
gle biomarkers by PCA can increase power (and perhaps 
specificity) in the context of genetic association analyses, 
but this gain in power appears to be outcome-dependent.

Lastly, we compared the results of our primary GWAS 
meta-analyses which were computed using fixed-effect 
models to analyses using random effects models (Addi-
tional file  1: Table  S8). This comparison revealed that 
in all but one (i.e., rs12670437) analyses the statistical 
support of our top GWAS findings was highly compa-
rable, suggesting that the choice of statistical model for 
the meta-analyses does not appreciably change our top 
GWAS findings.

Post‑GWAS analyses on main‑effect results
Our main efforts in the post-GWAS analyses concen-
trated on the further characterization and replication 
of the novel association between non-AD synaptic 

Table 4  Results of gene-based tests. Results from gene-based tests with MAGMA representing the joint effects of common SNPs 
within the named gene (NB: for PC1 no genome-wide significant gene-based results were observed)

Chr chromosome, Start/End SNPs between start and end were considered, Nsnps number of SNPs included in test, Z Z test statistic, p p-value

Outcome Gene Chr Start End Nsnps Z P

Genome-wide significant genes

  Aβ Pathology (PC2) APOE 19 45409011 45412650 6 7.91 1.3E−15

  Injury/Inflammation (PC3) TMEM106B 7 12250867 12282993 182 5.75 4.6E−09

  Non-AD Inflammation (PC4) CHI3L1 1 203148059 203155877 28 4.53 2.9E−06

  Non-AD Synaptic Functioning (PC5) GRIN2D 19 48898132 48948188 110 4.63 1.8E−06

Comparison with rare-variant hits

  Injury/Inflammation IFFO1 12 6647541 6665239 46 0.50 0.307

  Injury/Inflammation DTNB 2 25600067 25896503 385 −1.11 0.867

  Injury/Inflammation NLRC3 - - - - - -

  Injury/Inflammation SLC22A10 11 62905339 63137190 564 −1.79 0.963

  Non-AD Synaptic Functioning GABBR2 9 101050391 101471479 1445 1.41 0.079

  Non-AD Synaptic Functioning CASZ1 1 10696661 10856707 387 0.32 0.374
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functioning and markers in the GRIN2D region. These 
analyses yielded independent support of the involve-
ment of GRIN2D in AD in many but not all analyses. 
First, our original GWAS was performed in two inde-
pendent datasets (EMIF-AD and ADNI) and we note 
that the GRIN2D signal is quite consistent in both 
datasets (both in terms of effect size and statistical 
support; Additional file  1: Table  S9a). Second, TWAS 
analyses combining large eQTL (i.e., brain from ROS/
MAP) and GWAS summary statistics on AD risk and 
related brain phenotypes, support our conclusion of a 
relevant association signal in the GRIN2D region and 
suggest that the molecular effects may be mediated 
by affecting the expression on GRIN2D (see section 
“ Functional characterization and related phenotypes”, 
Additional file  1: Table  S10). Third, while analyses in 
the Knight-ADRC dataset revealed no strong asso-
ciation signals between markers in GRIN2D and PC5 
(Additional file  1: Table  S9b), we note that three out 
of seven top GRIN2D SNPs from our primary analyses 
(i.e., all showing P < 1 × 10−5 in our GWAS) were not 
available in the Knight-ADRC data and could hence 
not be tested. Although these (and other) top markers 
were lacking, we were able to assess local heritability 
metrics in this region and observed evidence that the 
remaining markers explain a significant portion of PC5 
variance (6.3%, p = 0.0002) in the Knight-ADRC data 
(Additional file  1: Table  S4). Furthermore, inspection 
of all available 228 SNPs in the Knight-ADRC dataset 
in the general GRIN2D region (i.e., within the 100-kb 
interval from chr19: 48,365,921–48,465,818) revealed 
the strongest association between exons 7 and 12 of 
the GRIN2D gene, but no other gene in the region 
(best SNP: rs74459994; P-value = 1.6 × 10−3; Addi-
tional file  1: Table  S9c). Furthermore, genetic effects 
in the Knight-ADRC individuals showed a trend in the 
same direction as in EMIF/ADNI with a genetic corre-
lation of 0.42 (95% CI [− 0.46; 1.00], p = 0.30) between 
discovery and replication. While the wide confidence 
interval does not allow for generalized statements 
about the consistency of effects, the positive genetic 
correlation provides descriptively more context to 
local heritability estimates being the consequence of 
genetic effects in the same direction in both discovery 
and replication.

In summary, our extensive replication analyses pro-
vide considerable—but not unequivocal—independent 
support for a significant association with markers in the 
GRIN2D region and several AD-relevant phenotypes. 
Notwithstanding the supporting evidence and its com-
pelling functional candidacy, the GRIN2D association 
should be considered preliminary until it is more fully 
characterized in future work.

Sex‑specific effects
Several additional SNPs showed genome-wide signifi-
cance only in the male or female subsamples (genome-
wide significant sex-stratified p-value (p)), or a sex 
interaction effect (genome-wide significant interac-
tion term p-value (pint)). For instance, rs114211800, 
an intronic variant of the non-coding RNA gene 
LOC105377684 on chromosome 5q33.3 showed strong 
association with the injury/inflammation component 
(PC3) in males (β =  − 1.23SD, SE = 0.22, p = 1.7 × 10−8), 
but not in females (β =  − 0.11SD, SE = 0.26, p = 0.69, 
pint = 0.002, MAF = 0.02). Similarly, the intergenic SNP 
rs12670437 (chromosome 7q11.23) was strongly asso-
ciated with non-AD inflammation in male participants 
(β =  − 1.20SD, SE = 0.22, p = 2.4 × 10−8), but not in 
females (β =  + 0.20SD, SE = 0.21, p = 0.33, pint = 0.0001, 
MAF = 0.02). Vice versa, rs140169162, located in an 
intron of the MYO1D gene on chromosome 17q11.2, 
showed highly specific effects on the component cap-
turing tau pathology/degeneration (PC1) in females 
(β =  + 1.61SD, SE = 0.30, p = 4.9 × 10−8), but not in 
males (β =  − 0.02SD, SE = 0.26, p = 0.94, pint = 0.0003, 
MAF = 0.02). Likewise, for the component tagging 
non-AD inflammation (PC4), rs16974493 (inter-
genic, chr. 13q33.3) and rs150326618 (intergenic, chr. 
14q22.1) were only genome-wide significant in females 
(rs16974493: β =  − 0.97SD, SE = 0.17, p = 2.2 × 10−8; 
rs150326618: β =  + 1.39SD, SE = 0.25, p = 2.6 × 10−8), 
but not in males (rs16974493: β =  + 0.18SD, SE = 0.22, 
p = 0.42, pint = 0.005, MAF = 0.03; rs150326618: 
β =  + 0.09SD, SE = 0.24, p = 0.72, pint = 0.001, 
MAF = 0.02).

In addition to these sex-specific results, the sex inter-
action models revealed two SNPs eliciting significant 
evidence for sex interaction reflecting their opposite 
effects in males vs. females: rs1638675 (intergenic, 
chr. 10q25.3) and rs56194026 (approx. 2  kb upstream 
of ARID3B on chr. 15q24.1). For SNP rs1638675, the A 
allele showed a negative association with Aβ pathol-
ogy in males (β =  − 0.33SD, SE = 0.07, p = 1.0 × 10−6), 
but positive in females (β =  + 0.18SD, SE = 0.06, 
p = 4.2 × 10−3, pint = 3.5 × 10−8, MAF = 0.43). In case of 
rs56194026, the association was sex-dependent for the 
injury/inflammation component (PC3) where the C 
allele showed a negative effect in males (β =  − 0.50SD, 
SE = 0.12, p = 1.6 × 10−5), but a positive effect in females 
(β =  + 0.41SD, SE = 0.12, p = 5.3 × 10−4, pint = 4.7 × 10−8, 
MAF = 0.08).

Finally, we highlight a suggestive sex difference for 
rs2302634 in TMEM106B. The effect of this SNP on 
the component capturing injury/inflammation (PC3) 
was approximately twice as large in males compared to 
females (βmale =  + 0.34SD vs βfemale =  + 0.18SD), although 
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this difference did not attain statistical significance 
(p = 0.06).

Mediation analyses
Our main GWAS main analyses identified several loci 
showing highly significant association with the biomarker 
PCs defined for this study. As three of the five biomarker 
PCs are independently associated with diagnostic status, 
this raises the questions as to whether the SNP effects 
on PC levels also significantly impact AD development. 
Overall, we observed two distinct mediation patterns: (1) 
SNPs that affect AD either via alteration in both the Aβ 
pathology and tau pathology/degeneration components 
(APOE) or (2) SNPs that affect AD via the injury/inflam-
mation PC only (TMEM106B and CHI3L1).

In the case of APOE, the rs429358 ε4 allele was asso-
ciated with a 0.39SD higher latent AD score (SE = 0.06, 
p = 4.6 × 10−12). The mediation model suggests that this 
adverse effect can be partitioned into three pathways: 
(1) Approximately one third is attributable to media-
tion via the Aβ pathology component (PC2), (2) nearly 
one quarter of the SNP effects were due to mediation via 
the tau pathology/neurodegeneration component (PC1), 
while (3) the remaining almost 50% were due to pathways 
not represented by any of the measured biomarker PCs 
(Table 3).

The mediation analyses also suggested that increases 
in injury/inflammation scores (PC3) due to the T allele 
in SNP rs2302634 (TMEM106B) resulted in a signifi-
cant increase of latent AD (β =  + 0.07SD, SE = 0.02, 
p = 1.2 × 10−5). Furthermore, we did not find evidence 
that TMEM106B affects AD by any other pathway, 
either measured or unmeasured. The positive media-
tion effect is consistent with the strong positive total AD 
risk effect for rs2302634 (+ Z = 5.38, p = 7.3 × 10−8), and 
overall genome-wide significant association with AD 
risk recently described by two GWAS [42, 46]. The local 
genetic correlation between injury/inflammation scores 
(PC3) and AD was 0.92 (95% CI 0.50–1.00, p = 0.001) and 
0.98 (95% CI [0.60–1.00], p = 0.0004) based on summary 
statistics from the same GWASs. See Fig. 4 for a regional 
plot visualizing associations between TMEM106B with 
the biomarker PC and previously reported associations 
with AD.

The SNP rs7551263 in the intron of CHI3L1 was pri-
marily associated with the component capturing non-AD 
inflammation (PC4). As this PC did not correlate with 
latent AD, we also found no evidence for mediation of AD 
risk via this pathway. However, rs7551263 was also nomi-
nally associated with the injury/inflammation component 
(PC3) (T allele: β =  + 0.21SD, SE = 0.06, p = 2.3 × 10−4) 
and showed evidence for mediation through this pathway 
(β =  + 0.05SD, SE = 0.02, p = 4.0 × 10−4). Interestingly, the 

T allele was negatively associated with non-AD inflam-
mation (PC4), so our results suggest that while the T 
allele decreases levels of non-AD inflammation bio-
marker profiles this has no measurable protective effect 
on latent AD. At the same time, this allele significantly 
increases injury/inflammation profiles, which results in a 
significantly higher AD risk.

Comparison to rare variant results
In contrast to our previous work based on WES-derived 
rare variants in a subset of the EMIF-AD dataset ana-
lyzed here [3], we found no evidence for an association 
between the analogous CSF biomarker components and 
common variants in the genes previously highlighted (i.e., 
IFFO1, DTNB, NLRC3, SLC22A10, GABBR2, and CASZ). 
Similarly, combining common SNP effects in gene-based 
tests did not reveal any significant associations at these 
loci either (Table 4). Together, these results suggest that 
common variants (MAF ≥ 0.01) do not appreciably con-
tribute to the rare variant association signals identified 
earlier by our group.

Functional characterization and related phenotypes
The fine-mapping analyses on the lead PC5 associa-
tion identified three genes through which SNPs in the 
GRIN2D locus may affect non-AD synaptic function-
ing (PC5). Specifically, results of the TWAS analyses 
suggest that GRIN2D SNPs lower synaptic functioning 
(i.e., lead to higher non-AD synaptic functioning PC5 
scores) by decreasing expression of ZSWIM9 (Z =  − 5.57, 
p = 1.3 × 10−8) and GRIN2D (Z =  − 5.03, p = 1.5 × 10−7), 
as well as by increasing the expression of SLC17A7 
(Z =  + 4.74, p = 1.1 × 10−6). The same expression profile, 
i.e., a predicted decrease of GRIN2D and ZSWIM9 lev-
els but increased SLC17A7 levels, was also associated 
with increased risk for AD, lower educational attain-
ment, lower cognitive ability, and higher risk of major 
depressive disorder across several independent stud-
ies (Additional file  1: Table  S10). The statistically most 
robust associations were observed for decreased lev-
els of GRIN2D and AD, as well as increased ZSWIM9 / 
decreased SLC17A7 levels and educational attainment 
(Additional file 1: Table S10).

Finally, we used the PCA-based GWAS results as 
input for gene-set enrichment analyses as implemented 
in FUMA. While these revealed a few interesting path-
ways and biological processes of potential relevance to 
AD (e.g., “regulation of macrophage chemotaxis” for PC4 
[non-AD inflammation], “negative regulation of glial 
cell proliferation” & “neuronal differentiation” for PC3 
[injury/inflammation], and “regulation of lipid transport” 
for PC2 [Aβ Pathology]), we note that only one (“protein 
localization to ciliary transition zone” [PC2]) remained 
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significant after multiple testing correction by FDR 
(Additional file 1: Table S11).

Discussion
In this work, we comprehensively explored the influence 
of common variants on multivariate combinations of AD 
CSF biomarkers representing different disease processes. 
In addition to confirming several previously reported 
GWAS loci, we identified one new region (containing 
GRIN2D and other plausible candidate genes) show-
ing strong association with synaptic functioning in an 
elderly population. Furthermore, our results provide evi-
dence for the presence of numerous loci with sex-specific 
effects.

Arguably the most interesting finding of our main 
GWAS analyses is the discovery of genome-wide signifi-
cant gene-based association with variants in GRIN2D on 
chromosome 19q13.33 and the non-AD synaptic func-
tioning component (PC5), mainly driven by Ng levels. 
Interestingly, SNPs in the chromosomal regions imme-
diately flanking GRIN2D showed an even stronger asso-
ciation with non-AD synaptic functioning than variants 
within GRIN2D itself, possibly suggesting that gene 
expression rather than gene (dys)function may be the 
lead mechanism underlying this potential association, 
a notion that is  also supported by our TWAS findings. 
Based on predicted gene expression by TWAS, the results 
suggest that the PC5-associated SNPs may lower synap-
tic functioning by decreasing levels of GRIN2D, but they 
may also affect other nearby genes ZSWIM9 (decreased 
expression) and SLC17A7 (increased expression).

GRIN2Dencodes the GluN2D subunit of the gluta-
mate receptor NMDAR, which plays an important role in 
learning and memory [51]. While mutations in GRIN2D-
have been reported to cause epileptic encephalopathy 
[51], this gene’s role in AD and other traits is less clear. 
While some recent data suggest that GRIN2DmRNA 
expression is lower in the temporal cortex of AD cases 
according to the AMP-AD project [52], there are no 
strong GWAS-based association signals reported in this 
region of chromosome 19 and relevant cognitive traits 
in the GWAS catalog (https://​www.​ebi.​ac.​uk/​gwas/​regio​
ns/​chr19:​48361​628-​48476​971), except for an association 
with self-reported mathematical ability. Look-up of our 
two lead variants in the GRIN2D region (i.e., rs275844 
and rs3107911) in summary statistics of two recent AD 
GWAS suggest a weak association for rs275844 in only 
one of the GWAS (p = 0.03) [42]. Our mediation analyses 
did not identify significant effects on latent AD, either, 
suggesting no or weak association of the locus with 
AD  risk. In contrast, the association evidence between 
predicted gene expression and brain-related outcomes by 
TWAS was very consistent. Risk for AD, low educational 

attainment, low cognitive ability and risk for major 
depressive disorder were all related to lower  GRIN2D 
expression (and the expression of two other nearby 
genes).

Besides implying the GRIN2D locus in synaptic func-
tioning, the current study also provides further insights 
into how other known AD loci may affect disease risk. 
This was made possible by our multivariate approach 
which allowed for the quantification and disentangle-
ment of different mediator mechanisms. Specifically, in 
the mediation analyses, we observed two CSF biomarker 
profiles associated with AD, which are determined by 
two different gene sets. The first profile (PC1 and PC2) 
is characterized by decreased amyloid and increased tau, 
as well as increased Ng and YKL-40 levels, but not NfL. 
This component was most strongly associated with SNPs 
in the APOEregion, in particular the well-known AD risk 
variant ε4. Our data suggest that the association with 
this variant may increase AD risk by being a catalyst for 
amyloid deposition or as inhibitor of amyloid clearance, 
represented here by the Aβ pathology PC. The resulting 
amyloid aggregation is thought to cascade into several 
neurodegenerative processes, involving formation of tau 
tangles, loss of synaptic functioning and inflammation 
[53]. Astonishingly, our results suggest that combina-
tions of Aβ, tau, Ng, and YKL-40 assessments are able to 
capture most of these neurodegenerative processes trig-
gered by the APOE locus, as they mediated 54–79% of 
the APOESNP effects. However, it is important to note 
that the four CSF biomarkers captured by PC1 and PC2 
are not sufficient to explain all genetic risk effects on 
AD. The second most relevant CSF biomarker pattern 
in that regard was the injury/inflammation component 
(PC3) represented by increased NfL and YKL-40 levels. 
PC3 levels are statistically independent of the changes in 
amyloid and tau levels (captured by PC1 and PC2), typi-
cally observed in AD, but associated with AD diagnostic 
status to a similar degree. Given prior knowledge of the 
non-specificity of NfL with respect to AD pathogenesis 
[6], we interpret this pattern to represent an independ-
ent non-AD-specific neurodegenerative pathway for 
dementias in general. Genetically, our results suggest that 
this pathway is not determined by variants in the APOE 
locus, but instead by variants in TMEM106B and poten-
tially CHI3L1. TMEM106B affects neuronal loss [54] and 
has been convincingly associated with risk for at least 
two forms of dementias, i.e., fronto-temporal dementia 
(FTD) [54] and AD [13, 42, 55]. Here, the lead variant for 
TMEM106B is rs2302634, which is in perfect LD (r2= 1) 
with the lead variant from our recently published NfL-
specific GWAS in the same two datasets (i.e., rs7797705) 
[13]. Both variants are in either perfect (r2 = 1) or near-
perfect (r2 = 0.98) LD with the lead variant reported to be 

https://www.ebi.ac.uk/gwas/regions/chr19:48361628-48476971
https://www.ebi.ac.uk/gwas/regions/chr19:48361628-48476971
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a risk factor for FTD, i.e., rs1990622, suggesting that the 
signal underlying PC3 (this study) and risk for FTD (pre-
vious work) are strongly correlated and may be elicited 
by the same underlying causal variant. CHI3L1 encodes 
the YKL-40 protein and we and others have previously 
demonstrated that common and possibly rare variants 
at this locus represent cispQTLs of CSF YKL-40 [3, 13]. 
The novel results from our current study suggest that 
CHI3L1 variants may be associated with increased neu-
ronal injury and inflammation leading to a heightened 
AD risk. We note, however, that the associations between 
CHI3L1 and injury/inflammation (PC3) showed opposite 
effect directions from those between CHI3L1 and non-
AD inflammation (PC4). Comparisons with univariate 
analyses of YKL-40 suggest, that the single biomarker 
analyses do not allow to distinguish between clinically 
relevant YKL-40 levels co-occurring with NfL and non-
clinically relevant variation, and thus may mask these 
complex relationships. This may result in underestimated 
effect sizes and emphasizes the advantages of apply-
ing a multivariate approach. In addition, it is important 
to emphasize that the association signals elicited by the 
CHI3L1 variant for the mediation effect of PC3 on AD 
risk (i.e., rs7551263; Table 3) are not correlated (r2 = 0.04) 
with the lead CHI3L1 variants of the PC4 main effect 
(e.g., rs10399931; Table  2). Interestingly, both variants 
were highlighted as pQTL of YKL-40 in previous work 
from our group [13].

Additional insights resulted from the sex-stratified 
analyses which revealed several SNPs either showing 
associations in only one sex stratum, or opposite effects 
in males and females. As examples, we highlight two 
such SNPs: First, rs140169162 is located in an intron 
of MYO1D and showed strong association with tau 
pathology/neurodegeneration (PC1) with evidence for 
a mediation effect on latent AD, but only in the female 
subsample. Interestingly, SNPs in MYO1Dhas been found 
to have a female-specific effect on hernias, as well [56]. 
Despite its apparent sex-specificity previous work has 
nominated MYOD1as a potential drug target for AD 
according to predictive network analysis [57, 58]. The 
encoded protein, myogenic differentiation 1, is involved 
in myelin sheath formation [59] and both common [60] 
and rare [61] variants have been associated with autism, 
supporting MYO1D’s role in neural development and 
functioning.

Second, rs56194026 is located near ARID3Band was 
associated with injury/inflammation (PC3), with strong 
but opposite effects in males vs. females. The gene 
encodes AT-rich interaction domain 3B, a DNA-bind-
ing protein from the ARID family of proteins which 
are involved in embryonic patterning, cell lineage gene 
regulation, cell cycle control, transcriptional regulation, 

and possibly in chromatin structure modification [62]. 
Samyesudhas et  al. [63] recently suggested a relevant 
role of this protein in AD development, as ARID3Bis 
expressed in response to the amyloid precursor pro-
tein intracellular domain and neuronal injury. However, 
it remains unclear why SNPs near this gene would have 
opposite effects in males and females. Possibly, this is 
related to the higher mean NfL levels in males, or the 
genes’ proposed function as regulator of sex-biased 
expression [64].

A major strength of our study is the application of mul-
tivariate analyses based on five CSF biomarker profiles 
and the estimation of mediation effects. Studying com-
ponent patterns of different biomarker combinations 
allows to shed new light and provide new insights on how 
common genetic variants affect biomarkers and AD risk 
beyond their effects on the levels of single biomarkers. 
In the context of our study, PCA-based GWAS analyses 
showed stronger associations when compared to single 
biomarkers for all PC phenotypes except PC2. Further 
support for the multivariate approach stems from our 
results with YKL-40 and Ng which show different associ-
ation patterns, depending on whether or not they co-vary 
with the levels of other biomarkers. The inclusion of the 
X-chromosome and examination of sex differences are 
additional strengths of our study. While no SNPs on the 
X-chromosome attained genome-wide significance, we 
identified several SNPs showing sex-specific effects. This 
highlights the importance of modeling sex interactions, 
especially for biomarkers with pronounced differences in 
mean levels.

In addition to these strengths, we note the following 
potential limitations. First, while our sample size is gen-
erally large for a CSF biomarker study, it is small com-
pared to GWAS of other complex traits, including recent 
GWAS in the AD field [42, 46]. Second, the sample size 
limitation is aggravated in the sex-specific analyses and 
SNPs with low MAF, which need to be interpreted with 
caution and require further replication. Third, we only 
studied individuals of European descent. It remains 
unclear whether and to which degree our results are 
relevant also in non-European ancestries. It is well-
known, for instance, that the APOErisk effects on AD 
are ancestry-dependent [65, 66]. Fourth, it is important 
to emphasize, that our mediation analyses are based on 
the assumption that the analyzed CSF biomarkers reflect 
pathological processes that precede and cause AD symp-
toms. An alternative—and often times equally plausi-
ble—interpretation is that the uncovered SNPs affect 
AD symptoms independently of biomarker levels and 
that the component associations observed here actu-
ally reflect a consequence of AD pathogenesis. While the 
specificity of the mediation results using certain PCs but 
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not others generally supports the assumed causal direc-
tions, longitudinal studies, e.g., on MCI conversion, are 
needed to confirm the findings of this arm of our pro-
ject. Fifth, we note that one of our lead signals, i.e., the 
association between the non-AD synaptic functioning 
PC (mainly driven by Ng levels) and variants in GRIN2D, 
only showed strong evidence for association in two out of 
three CSF biomarker datasets. While additional analyses 
(e.g., TWAS using several AD-relevant phenotypes, local 
heritability estimates) generally support the GRIN2D 
association, this signal should be considered preliminary 
until assessed in additional datasets of sufficient size. 
Sixth, our primary GWAS analyses were performed with 
five independent CSF biomarker phenotypes. In agree-
ment with common practice in the GWAS field [67–69], 
we did not adjust for testing multiple traits in our study, 
but define genome-wide significance at the conventional 
threshold of 5 × 10−8. Accounting for all five traits would 
theoretically lead to a study-wide alpha level of 1 × 10−8, 
which is surpassed by all identified GWAS main effects 
except those at GRIN2D (for which the smallest SNP-
based P-value is 5 × 10−7). Thus, the decision to refrain 
from adjusting for trait multiplicity does not change any 
of the main conclusions of our study.

Conclusions
In summary, in this first multivariate CSF biomarker 
GWAS, we observed at least one novel locus showing 
strong and convincing association with non-AD specific 
biomarker patterns. The results also suggest the pres-
ence of two distinct mediation pathways, by which com-
mon SNPs may affect AD risk. One pathway is related to 
amyloid and tau pathology and is mostly determined by 
APOE SNPs. The second pathway is related to increased 
neuronal injury and inflammation, captured by NfL and 
YKL-40. Genetically, this latter pathway is mostly driven 
by variants in TMEM106B and CHI3L1. Pathway-aware 
genetic studies with larger sample sizes and in more 
diverse ancestries are needed to further understand the 
complex etiology of AD and to translate genetic informa-
tion to personalized medicine approaches.
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