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Abstract

In the continuous endeavour to understand the origin of the paradoxically abundant sub-
stance known as dark matter, there are few particle theories who dominate the spotlight
quite as much as the proposed mechanisms of freeze-out and freeze-in. Since freeze-in con-
cerns processes within high-temperature plasmas in the early universe, it becomes critical to
accurately account for the detailed thermal behaviour of in-medium effects. The following
thesis studies one of these effects; namely that of resonant intermediate particle production.

Specifically, we consider the effects of intermediate Higgs bosons going on-shell in a scalar
singlet model of dark matter. The question becomes, how do we distinguish internal Higgs
bosons that go briefly on-shell from the physical Higgs bosons that are already present in the
surrounding plasma? To address this, we turn to the Breit-Wigner scheme and use thermal
quantum field theory to derive the Breit-Wigner decay rate, ΓBW, at finite temperatures.

We show how to calculate two-loop corrections to ΓBW for both final-state scalars and
fermions. Through this, we establish several useful notions of how to perform higher-order
thermal loop calculations – both analytically and numerically.

Although an expression for ΓBW already exists in the literature, we show that our result
corrects the existing one at leading order and beyond. We argue that the origin of these
discrepancies lies in the conventional freeze-in/out collision operators featuring an inherently
non-field-theoretical thermal structure. As such, we propose a new collision operator which
is calculable through thermal quantum field theory.

Additionally, we present a new approach to real-time thermal quantum field theory. It is
derived through an extension of a superselection rule from zero to finite temperatures and
results in the same generating functional and observables as a conventional approach. It
completely avoids the Keldysh contour while naturally explaining the origin of the doubling
of degrees of freedom one encounters in real-time thermal field theory.
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Chapter 1

Introduction

Out of the numerous challenges facing modern physics, few have been as elusive as the
questions regarding the nature of dark matter (DM). The earliest hints towards the existence
of this invisible substance were based on discrepancies between observed orbital velocities
in galaxies compared to the amount of visible matter [1, 2]. Today there exists a plethora
of sophisticated experimental evidence for dark matter on cosmological scales [3–8], like
observations of large-scale structures and the cosmic microwave background, to name a
few. Despite a scientific consensus of DM existence, extensive evidence and comprehensive
experimental and theoretical endeavours, the questions of both the nature and origin of DM
still remain unanswered. Some of the only qualities we can say for certain that DM possesses
are:

(i) Except through gravity, DM does not interact noticeably with Standard Model (SM)
particles or itself.

(ii) DM is stable on cosmological timescales [9].

(iii) The DM must be “cold”, i.e. non-relativistic, in order to allow for the observed struc-
tures of today [10, 11].

(iv) The DM relic abundance is large: ΩDMh
2 = 0.120± 0.001 [6].

Although one can certainly one appreciate the difficulties of trying to describe a substance
subject to these restrictions, the search for a comprehensive DM model has not been a lost
cause. For example, even though the DM conundrum is based in cosmological observations,
this has not prevented the development of sophisticated models of DM as a particle theory.
Since cosmological observations have previously been helpful in determining questions in
particle physics, like constraining the masses and number of neutrino species in the Standard
Model [12], a hope is that the accurately measured dark matter relic density may be used
to address critical questions about physics beyond the Standard Model.

Of the numerous particle explanations for DM production, few have garnered as much
attention as the freeze-out mechanism [13] and the freeze-in mechanism [14]. We will go into
much more detail about them in Chapter 2, but their underlying idea is that DM belongs
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to an “invisible sector” of particles which coupled noticeably with the visible SM sector in
the early, hot universe. As space expanded and the universe cooled, these sectors eventually
decoupled and the DM density “froze” at a constant value, which we today measure to be
ΩDMh

2 = 0.120± 0.001 [6].
Though the freeze-out scheme originally garnered much attention due to the so-called

“WIMPmiracle” [15], a lack of experimental evidence of freeze-out has recently shifted much of
the focus onto the freeze-in mechanism [16–20]. Since the freeze-in process generally happens
at much larger temperatures than freeze-out, the detailed high-temperature behaviour of the
thermal medium (the plasma) itself must be properly accounted for. This will be the main
focus of this thesis, as we show how to adapt the notion of a Breit-Wigner decay rate to
finite temperatures, and use it to account for resonant s-channel behaviour of intermediate
unstable Higgs bosons in a DM scalar singlet model of freeze-in [21–23].

Although the finite-temperature Breit-Wigner (BW) rate has previously been derived
in the literature [23], this thesis presents an alternate approach based in thermal quantum
field theory which gives corrections to the existing expression.

1.1 Thesis Overview

We begin Chapter 2 by introducing the necessary background. This includes an introduction
to both the freeze-out and freeze-in mechanisms, and illustrations of how to apply them
through the Boltzmann equation. We then show how to derive the BW decay rate found in
ref. [23], which will serve as a benchmark for the BW decay rate we then set out to derive
for ourselves.

In Chapter 3, we define the founding principles of the BW scheme by deriving the BW
decay rate at zero temperature before extending these ideas to finite temperatures, T > 0.
Since the BW rate will be used to account for resonant behaviour of unstable particles,
Chapter 3 focuses on viewing the BW scheme through the lens of resonance and instability.
Lastly, we show how the concept of a “decay rate” must be altered when working within a
plasma compared to at zero temperature.

The goal of Chapter 4 is to calculate the BW decay rate at finite temperatures. We start
out by considering quantum field theory (QFT) at T = 0: We show how the introduction of
a superselection rule to the states satisfying the on-shell requirement p2 = m2 can be used
to calculate decay rates at zero temperature. By extending this superselection rule to T > 0,
we show how to perform the same calculations at finite temperatures, and use this to derive
a master formula, Eq. (4.77), for the BW decay rate in a plasma. In a new heuristic approach
to thermal field theory, we use this superselection rule to derive the entire formalism of
real-time thermal QFT and associated concepts like the Kubo-Martin-Schwinger condition
[24, 25], finite temperature cutting rules [26–28] and the doubling of degrees of freedom in
the real-time formalism [29, 30].

In Chapter 5, we show that our master formula, Eq. (4.77), gives corrections to the
results of ref. [23] at leading order (LO) in the case of final-state particles of different masses.
At next-to-leading order (NLO) and beyond, our result are fundamentally different from
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theirs. In Section 5.3 we perform numerical two-loop calculations of the BW decay rate.
We discuss our results in Chapter 6, and address the analytical aspects of our approach.

Here, we show that our approach to real-time thermal QFT reproduces the results of Weldon
[31], and we discuss what is “wrong” with the derivation of the BW rate in ref. [23]. Using
the insight gained from this discussion, we conclude the chapter by proposing a new field-
theoretic collision operator, Eq. (6.13), to be used in freeze-in/out calculations. Finally, we
present our conclusions and an outlook in Chapter 7.

1.2 Notations and Conventions

We will use natural units:

c = ℏ = kB ≡ 1, (1.1)

i.e. c = 299792458 m · s−1 = 1, ℏ = h/2π = 1.054572 × 10−34 m2 · s−1 · kg = 1 and
kB = 1.380649× 10−23 m2 · s−2 · kg ·K−1 = 1. In this system, the mass of a particle is equal
to its rest energy, and

[time] = [length] = [energy]−1 = [mass]−1 = [temperature]−1. (1.2)

Energy will be given in electronvolts (eV), wherein 1 eV = 1.60218× 10−19 joules.
The conventions for the tensors used in this thesis are

• 3-vectors are written in lower case boldface, v, and 3-vector components as vi (Latin
indices).

• 4-vectors are written in lower case, p, with components pµ = (p0,p) (Greek indices).

• Matrix components are denoted Mµν (Latin or Greek indices).

We use the (+,−,−,−) signature such that the product between four-vectors is denoted
p · q ≡ gµνpµqν = p0q0 − p · q.

Since position, xµ, and momentum, pµ, are conjugate variables under the Fourier trans-
form, the Fourier transformed of a spatial function F (x) will implicitly be denoted F (p). In
d dimensions, this becomes

F (p) =

∫
ddxF (x)eip·x and F (x) =

∫
ddp

(2π)d
F (p)e−ip·x. (1.3)

The unit step function (also known as the Heaviside function) and the sign function are
defined as

θ(x) ≡
{
1 x ≥ 0,

0 x < 0,
and ϵ(x) ≡

{
+1 x > 0,

−1 x < 0,
, (1.4)

respectively.
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Chapter 2

Background

In this chapter, we outline the relevant background for the remainder of the thesis; primar-
ily that of dark matter production in an expanding universe, the freeze-out and freeze-in
mechanisms and the scalar singlet model [21, 22, 32–34]. Then, by utilizing the Boltzmann
equation and following the procedure outlined by ref. [23], we show how to implement the
freeze-in process for a scalar singlet model and how to derive their expression for the BW
decay rate, will serve as a benchmark for our own derivation in later chapters.

We will not go into extensive detail about the thermal and statistical aspects of the
background material. For a more detailed introduction to these topics, please refer to the
Reference Guide.

2.1 Dark Matter Relic Density

Here, we show the procedure for calculating the DM relic density, ΩDMh
2, through the

Boltzmann equation:

d

dt
(a3nχ) = a3C[fχ], (2.1)

where χ is a DM particle, C[fχ] is the collision operator for all processes that do not conserve
the number of χ particles, a is the scale factor1 and nχ is the DM number density which is
related to the DM phase space density, fχ, through

nχ(t) =

∫
dΠpfχ(p, t), (2.2)

for dΠp being the phase space measure which accounts for all physical degrees of freedom.
The quantity a3nχ(t), which appears on the LHS of the Boltzmann equation in Eq. (2.1),
is known as the comoving DM number density, and accounts for the number of particles

1For example, a = 0 corresponds to an infinitely dense, singular universe, while a → ∞ to a universe
where curvature and matter becomes negligible.
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present in a region of expanding spacetime. On the RHS of the Boltzmann equation, we
have the collision operator

C[fχ] = −⟨σannv⟩(n2χ − n2χ,eq), (2.3)

where ⟨σannv⟩ is the velocity averaged total DM annihilation cross-section and nχ,eq is the
DM number density in equilibrium (found by integrating Eq. (2.6)). We can actually re-write
the Boltzmann equation of Eq. (2.1) into a more convenient form by introducing the unitless
parameter x ≡ mχ/T as a measurement of time in an expanding (and cooling) universe and
defining the Hubble rate as H ≡ 1

a
da
dt , giving:

dYχ
dx

=
−sx
H
⟨σannv⟩

(
Y 2
χ − Y 2

χ,eq

)
, (2.4)

where s ∝ a−3 is the DM entropy density, and we changed variables to the DM abundance
Yχ ≡ nχ/s. If this is integrated up to x→∞, we get the DM abundance of today, Y 0

χ , which
is related to the observable DM relic density through

ΩDMh
2 = 2.755× 1010

mχ

100GeV

2

Nχ
Y 0
χ , (2.5)

where Nχ = 2 (1) for self-conjugate (not self-conjugate) DM particles [23].

2.1.1 Qualitative Evolution

By simply studying the Boltzmann equation, we can actually say a lot about the qualitative
evolution of nχ(x). We start by noting the phase space distribution of a thermalized particle

fχ,eq(ω) ≡
1

eω/T − εχ
, (2.6)

where ω is the χ-energy measured in the plasma rest frame and εA ≡ +1(−1) if A is a boson
(fermion). From Eq. (2.2), it follows that the number density in a thermalized (equilibrium)
system, nχ,eq(x), decreases exponentially as temperature decreases, as illustrated by the red
line in Figure 2.1. Next, from the collision operator in Eq. (2.3), the Boltzmann equation
in Eq. (2.1) tells us that nχ,eq acts as an “attractor” – if n2χ > n2χ,eq, the comoving density
decreases, while if n2χ < n2χ,eq, it increases. Since nχ,eq(x) eventually decreases exponentially
as x increases, it follows (regardless of initial conditions) that nχ(x) is always an upper
bounded function and that its bound decreases as x grows. The size of the RHS of Eq. (2.1)
is therefore doomed to diminish as x grows. Depending on the size of ⟨σannv⟩, the RHS of
Eq. (2.1) eventually vanishes compared to the LHS.2 The point at which the RHS starts to
vanish compared to the LHS is called the point of “chemical decoupling”, xf . At xf , the
change in a3nχ quickly ceases and the comoving density becomes constant, i.e. “frozen”. The

2To be more accurate, this argument is actually made by writing the LHS of Eq. (2.1) as a3ṅχ + 3Hnχ
and comparing the scale of H to the RHS.
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x = mχ/T

Yχ ∝ a3nχ

1

nχ,eq

Figure 2.1: Qualitative illustration of DM comoving number densities as a function of x.
The red line shows the evolution of the equilibrium density, which eventually decreases
exponentially. The freeze-out process is illustrated by the solid lines: The dark sector starts
out in equilibrium and follows the equilibrium curve until the point of chemical decoupling,
whereafter it freezes. In freeze-in (as illustrated by the dashed line), the DM starts out with
a negligible number density, but since DM is produced via the visible sector, the density is
slowly drawn towards equilibrium. Before it manages to equilibrate, chemical decoupling
happens – freezing the DM value. For both the freeze-out and freeze-in curves, the arrows
indicate the effect of increasing the cross-section ⟨σannv⟩.

Boltzmann equation therefore predicts that the DM density of an expanding and cooling
universe necessarily freezes at a constant value.

This is an inevitable quality of a thermal system in a cooling universe and has nothing
to do with the inherent properties of the system in question. We have made no assumptions
about the particle populations, their detailed interaction picture, energy scales or even the
initial conditions on nχ, yet the comoving density necessarily freezes. This is the origin
behind the naming of freeze-out and freeze-in, and the primary difference between the two
processes are simply which assumptions they make regarding the initial value of nχ(x) and
the size of the SM-DM coupling g.

2.1.2 Freeze-out

In the freeze-out scheme, it is assumed that in the early, hot universe, the SM sector the DM
sector were in thermal equilibrium, i.e. nχ = nχ,eq. Since equilibrium acts as an “attractor”,
the comoving DM density therefore initially followed the red curve in Figure 2.1. Per
the analysis in the previous subsection, the larger the cross-section ⟨σannv⟩, the later the
unavoidable point of chemical decoupling. This means that for larger SM-DM couplings,
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nχ(x) stays on the equilibrium curve longer before it freezes – as illustrated by the arrow and
solid lines in Figure 2.1. By comparing to the observed DM relic density, one can determine
a value for the SM-DM coupling g.

It turns out that if one lets g and mχ be on the scale of the weak force, then even the
simplest of freeze-out models predict a DM relic density within the order of magnitude of
the observed value [35]. This explanation of the relic density through a freeze-out process
and weakly interacting massive particles (WIMPs) is known as the WIMP-miracle and has
served as a large motivating factor for the freeze-out mechanism. The WIMP-miracle has
sparked a large scale search for so-called “WIMP candidates” as any particle theory that
featured WIMPs could seemingly get DM production for free. Unfortunately, a null-result
from direct, indirect and collider WIMP searches has cast doubt on the applicability of
freeze-out [15, 16]. Although initially promising, the freeze-out mechanism has yet to prevail
as the de facto explanation of DM production.

2.1.3 Freeze-in

Originally proposed as an alternative to freeze-out [14], the freeze-in mechanism has proven
itself as a worthy candidate in the pursuit of the DM origin. In the freeze-in scheme, it is
assumed that the DM density in the very early universe is negligibly small; nχ ≪ nχ,eq, to
the point where we can take nχ ≈ 0 at early times. Additionally, one assumes that the SM
and DM sectors couple so feebly that they were never in equilibrium.3 These two assumptions
imply that the dominating process in the early universe, although feeble, is SM→ DM. This
causes the DM density to increase, as shown by the dashed lines in Figure 2.1. The larger
⟨σannv⟩ is, the faster the DM density will increase, as indicated by the arrow on the dashed
lines in Figure 2.1. For small enough cross-sections, the RHS of Eq. (2.1) vanishes before
DM manages to reach equilibrium; freezing the density earlier than in a typical freeze-out
process. For this reason, DM produced via freeze-in is usually warmer than that produced
via freeze-out.

In the cases where the SM-DM coupling g (and hence, ⟨σannv⟩) is not small enough, the
DM density may actually manage to reach equilibrium before xf , effectively putting it back
on the freeze-out path. It is therefore imperative that g is sufficiently small for the freeze-in
scheme to be applicable. Due to the feeble strength at which the two sectors couple, the DM
particles within the freeze-in scheme are referred to as feebly interacting massive particles
(FIMPs).

In many ways, freeze-in can be viewed as the opposite process to freeze-out. For example,
as illustrated in Figure 2.1, increasing g will give a smaller freeze-out relic abundance, but
a larger freeze-in abundance. Additionally, freeze-out is not dependent on the conditions of
the DM prior to the freeze mechanism due to thermal equilibrium, while freeze-in assumes
the initial condition nχ = 0. Furthermore, due to the small x at which freeze-in production
(mostly) happens, the freeze-in scheme is often highly sensitive to large temperatures [36,

3From the anisotropies of the CMB, it has been confirmed that the visible sector indeed was in thermal
equilibrium with itself at early times [12], but there is no such evidence to suggest the same for the dark
sector.
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37]. As previously stated, in-medium plasma corrections become especially relevant at these
temperatures, and accounting for such corrections will be the main focus of this thesis.

In order to illustrate the implementation of a freeze-in process, we will initially be
following the procedure outlined in ref. [23]. In Section 6.4 we will present an alternative
approach. The DM production processes of interest in ref. [23] are those of 2→ 2 processes
ψψ → χχ, where ψ and χ are SM and DM particles, respectively.4 We take the two DM
particles to have the on-shell 4-momenta pµ = (Ep,p) and pµ′ = (E′

p,p
′) and the SM

particles to have kµ = (Ek,k) and k
µ′ = (E′

k,k
′). The collision operator then takes the form

[23]

C[fχ] =
1

Nψ

∫
dΠtot(2π)

4δ(4)(p+ p′ − k − k′)

×
[
|Mψψ→χχ|2fψ(Ek)fψ(E

′
k)
(
1 + f̃χ(Ep)

)(
1 + f̃χ(E

′
p)
)

− |Mχχ→ψψ|2fχ(Ep)fχ(E
′
p)
(
1 + f̃ψ(Ek)

)(
1 + f̃ψ(E

′
k)
)]

,

(2.7)

where we have defined, for the sake of neatness,

dΠtot ≡
d3p

(2π)32Ep

d3p′

(2π)32E′
p

d3k

(2π)32Ek

d3k′

(2π)32E′
k

(2.8)

and f̃i ≡ εifi, where fi denotes the thermal phase space distribution of a particle i and
Nψ = 2(1) if ψ is self-conjugate (not self-conjugate). We have also adopted a convention
which sums over all internal degrees of freedom in the matrix elements. The second line in
Eq. (2.7) accounts for the production of χ while the third subtracts the χ annihilation. The
factors f and (1+ f̃) implement the statistical in-medium effects of Pauli blocking and Bose
enhancement.

Since the SM bath is thermalized, ψ follows a Bose-Einstein or Fermi-Dirac distribution:

fψ(ω) =
1

eωβ − εψ
, (2.9)

where β ≡ 1/T and ω is the particle energy measured in the plasma rest frame. Though we
do not know the distribution of the DM, the freeze-in scheme lets us infer that

1. fχ ≪ 1: The DM phase space density remains very small.5

2. fχ ≪ g: The DM abundance stays sub-thermal.

4In the case of fermion fields, we of course substitute for the appropriate conjugate fields.
5Recall fχ = 0 for very early times.
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Collectively, these assertions let us set fχ = 0 in Eq. (2.7), giving:

Cfreeze-in[fχ] =
1

Nψ

∫
dΠtot(2π)

4δ(4)(p+ p′ − k − k′)|Mψψ→χχ|2fψ(Ek)fψ(E
′
k). (2.10)

Hence, the collision operator in the freeze-in regime is independent of the DM phase space
distribution. Eq. (2.10) is distinguishably different from the form of the general collision
operator, cf. Eq. (2.7), and since the latter is a more studied scenario, it would allow for
a more model-independent implementation of the freeze-in collision operator if we could
rewrite Cfreeze-in[fχ] in a way similar to a typical collision operator.

Ref. [23] proposes a solution to this predicament. It starts by employing the rewrite

fψ(Ek)fψ(E
′
k) = fMB

χ (Ep)f
MB
χ (E′

p)(1 + f̃ψ(Ek))(1 + f̃ψ(E
′
k)), (2.11)

where we have defined the Maxwell-Boltzmann distribution fMB
i (ω) ≡ exp(−ωβ). Then,

assuming CP invariance, |Mψψ→χχ|2 = |Mχχ→ψψ|2, the freeze-in collision operator can be
written as

Cfreeze-in[fχ] = (2.12)

(2π)4

Nψ

∫
dΠtotδ

(4)(p+p′−k−k′)|Mχχ→ψψ|2fMB
χ (Ep)f

MB
χ (E′

p)(1 + f̃ψ(Ek))(1 + f̃ψ(E
′
k)).

Comparing this to the third line of Eq. (2.7), we note that this collision operator takes the
form of (minus) the contribution from DM annihilation to a collision operator where the
DM follows a Maxwell-Boltzmann distribution. In other words, the conventional freeze-in
scheme in Eq. (2.10) is equivalent to studying the collision operator for DM annihilation
where the DM follows a Maxwell-Boltzmann distribution. Moving forward, we will therefore
be working with Eq. (2.12).

2.2 The Higgs Portal and Resonance

So far, we have made very few assumptions – not even a model has been specified. Since a
Lagrangian is required to calculate |Mχχ→ψψ|2, this is about to change.

Still following the approach of ref. [23], we will primarily concern ourselves with processes
mediated by a Higgs portal – a scheme wherein the SM and DM sectors are linked via the
Higgs field. One way of realizing a Higgs portal is through what is called a scalar singlet
DM model [21, 22, 32–34]. This model follows from a pretty general setting wherein the dark
sector contains a stable (obeying a Z2 symmetry) real singlet scalar, S. Since the Lagrangian
contains all (renormalizable) terms obeying the symmetries of the theory, we necessarily
have

L ⊃ −1

2
µ2SS

2 − 1

2
λhSS

2|H|2, (2.13)
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Higgs

←→
SM DM

Figure 2.1: The idea behind the Higgs portal, where the Higgs field acts as a mediator
between the two otherwise disconnected SM and DM sectors. The concept of “portals” and
mediators connecting otherwise disconnected sectors is not unique to the scalar singlet DM
model, e.g. supersymmetry breaking in the Minimal Supersymmetric Standard Model [38,
39]

where H is the complex scalar which obtains a vacuum expectation value, v0 = 246.2 GeV,
and induces electroweak symmetry breaking (EWSB). The two terms in Eq. (2.13) are
in fact the only renormalizable terms allowed by general symmetry arguments [32]. After

EWSB, the dark scalar, S, obtains the mass mS =
√
µ2S + 1

2λhSv
2
0 and couples to the Higgs

boson, h, through

LEWSB ⊃ −
1

2
m2
SS

2 − 1

4
λhSS

2h2 − 1

2
λhSv0S

2h. (2.14)

Under the assumptions of the freeze-in mechanism, the dark and visible sectors couple
extremely feebly, implying a very small λhS .

Since the Higgs field couples to most SM particles, it necessarily follows that a scattering
process may have initial states in the dark sector and final states in the visible sector. This
means that the scalar singlet DM model allows us to calculate matrix elements likeMχχ→ψψ

required for the collision operator. These processes must be mediated by the Higgs field, as
illustrated in Figure 2.1.

We will therefore primarily concern ourselves with the effective interaction-terms

LI = −gϕχχ− λϕψψ, (2.15)

where λ is some coupling, ϕ and χ are real scalars and ψ is a SM particle.6 The Higgs portal
is then recovered in the case of g = 1

2λhSv0 and ϕ→ h, χ→ S. In sum, by only asserting the
existence of a single DM scalar singlet, a theory compatible with DM production through
freeze-in/out emerges.

In accordance with ref. [23], the 2 → 2 processes which we will be considering are
therefore the ones of the form χχ→ ϕ→ ψψ. Letting

√
s be the c.o.m energy, we can write

6Again, in the fermionic case, an appropriate conjugation of ψ is required.
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the Matrix element required for Eq. (2.12) as

Mχχ→ψψ(s) = (2.16)

=Mχχ→ϕ(s)iD(s)Mϕ→ψψ(s), (2.17)

where a “blob” indicates a sum of all perturbative corrections, and

Mχχ→ϕ(s) = , Mϕ→ψψ(s) = , (2.18)

and

iD(s) = =
i

s− m̃2
ϕ +Π(s)

(2.19)

is the two-point correlator of ϕ, Π(s) is the ϕ self-energy, i.e. sum of all 1PI diagrams and
m̃ϕ is the bare mass of ϕ. Not to be confused with the physical mass mϕ, the bare mass is
the parameter of the quadratic ϕ term of the Lagrangian: L ⊃ 1

2m̃
2
ϕϕ

2. The physical mass is
related to the bare mass through any mass renormalization scheme of choice [40–42]. One
such scheme is that of the real pole mass, which will be explored in Chapter 3. Using the
real pole mass scheme, the physical mass is defined through m̃2

ϕ = m2
ϕ +ReΠ(m2

ϕ).
In ref. [23], the pole mass is used in conjunction with the Breit-Wigner (BW) framework

wherein one defines a quantity known as the Breit-Wigner decay rate

mϕΓBW ≡ ImΠ(m2
ϕ). (2.20)

The extent to which ΓBW is an actual decay rate will be discussed in Eq. (3.3), but for now
it suffices to think of ΓBW as the total decay rate of ϕ. The takeaway is that we can take
Π(s) ≈ Π(m2

ϕ) in the domain s ≈ m2
ϕ, meaning a good approximation to the correlator

Eq. (2.19) in this domain is

iD(s)
s∼m2

ϕ≈ iGBW(s) ≡ i

s−m2
ϕ + imϕΓϕ

, (2.21)

where iGBW is known as the Breit-Wigner propagator. The BW propagator is an invaluable
tool in theoretical particle physics, because by “simply” measuring the mass and decay rate
of a particle, one can substitute the (otherwise complicated) correlator D(s) for GBW(s).
In the case of scalar particles, the square matrix element in Eq. (2.12) can therefore be
approximated as7

|Mχχ→ψψ|2 =
|Mχχ→ϕ|2|Mϕ→ψψ|2
(s−m2

ϕ)
2 +m2

ϕΓ
2
BW

, (2.22)

7In the case of particles of non-zero spin, additional internal degrees of freedom must be accounted for
when squaring the matrix elements – see ref. [43]. Also note that we are only considering s-channel processes,
as the procedure differs in the t- and u-channels.

11



within the domain s ∼ m2
ϕ. This domain is known as the domain of resonance, named so

due to the similarities between Eq. (2.22) and the universal resonance curve [44]

I(ω) ∝ 1

(ω − Ω)2 + (σ/2)2
, (2.23)

where Ω is the resonant frequency and σ is known as the width of the resonance. Note that
I(ω) has its maximal values for ω ∼ Ω and that its maximal value increases as σ decreases.
A similar behaviour is expressed in Eq. (2.22) for s ∼ m2

ϕ, hence the naming of the “domain
of resonance”. We will discuss further implications of resonance in Chapter 3.

In the limit ΓBW → 0, the denominator in Eq. (2.22) behaves like a Dirac δ-function

1

(s−m2
ϕ)

2 +m2
ϕΓ

2
BW

ΓBW≪mϕ≈ π

mϕΓBW
δ(s−m2

ϕ), (2.24)

which is known as the narrow-width approximation (NWA). The δ(s − m2
ϕ) tells us that

resonant particles in the NWA are indistinguishable from on-shell particles.
This last remark is so important that we state it twice: highly stable8 off-shell resonant

particles as just as physical as on-shell particles. At zero temperature this is an interesting
piece of insight, but in a finite temperature plasma we encounter a complication: In the
domain of resonance, how are we to distinguish intermediate resonant on-shell Higgs particles
from existing Higgs particles within the plasma? Equivalently, how are we to distinguish the
ψ produced in χχ→ ϕ→ ψψ from those produced in a 1→ 2 process ϕ→ ψψ? Are they
different processes or is the former a concatenated version of the latter? Since the plasma is
a soup of interacting particles, both processes will necessarily take place. If we wish to study
the rate of DM production within a plasma, these questions must be addressed, otherwise
we risk over- or underestimating the actual production rate.

Ref. [23] claims that these complications can be accounted for by adopting a BW propa-
gator with an appropriate temperature-dependent ΓBW. They also show how to derive this
temperature-dependent ΓBW through the freeze-in collision operator of Eq. (2.12): Assuming
CP symmetry |Mχχ→ϕ|2 = |Mϕ→χχ|2, we can write Eq. (2.12) in the plasma frame under
the NWA as

1

Nψ

∫
d3p

(2π)32Ep

d3p′

(2π)32E′
p

|Mϕ→χχ|2fMB
χ (Ep)f

MB
χ (E′

p)
π

ω
δ(ω−Ep−E′

p) (2.25)

× 1

2mϕΓBW

∫
d3k

(2π)32Ek

d3k′

(2π)32E′
k

δ(4)(p+p′−k−k′)|Mϕ→ψψ|2(1 + f̃ψ(Ek))(1 + f̃ψ(E
′
k)),

where ω is the ϕ energy. At this point, a discussion regarding the importance of reference
frames is long overdue. We want to calculate amplitudes in the centre-of-mass (c.o.m) frame,
because it is usually the easiest frame to work in, and it is the frame in which cross-sections
are usually stated. Unfortunately, the energies which appears in the thermal bath distribution
functions, fA, are defined in the plasma rest frame. By Lorentz transforming to the frame

8In the sense that they satisfy mΓBW ≪ 1
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where the plasma moves with a relative 4-velocity uµ, the correct thermal distribution to
use for a particle A with 4-momentum kµ is instead fA(k

µuµ), where

kµuµ = ω cosh η + cos θ sinh η|k|. (2.26)

Here, η is the rapidity (which is related to the Lorentz factor through γ = cosh η) and θ is the
spatial angle between u and k. If the spin-averaged amplitude |Mχχ→ψψ|2 has no angular
dependence, it turns out that we can factorize the cross-section required for Cfreeze-in[fχ] in
the plasma frame as [23]

σplasma
χχ→ψψ = Iψψ(γ, s)× σc.o.mχχ→ψψ, (2.27)

where

Iψ1ψ2(γ, s) ≡
1

2

∫ 1

−1
dcos θ (1 + f̃ψ1(u · k))(1 + f̃ψ2(u · k)). (2.28)

This factorization will allow us work with cross-sections defined in the c.o.m frame, while
still respecting the fact that it is different from the plasma rest frame. Of the two amplitudes
in Eq. (2.25), we need only concern ourselves with converting |Mϕ→ψψ|2 to the c.o.m frame,
as |Mϕ→χχ|2 only has relevant contributions at tree-level because we have assumed g ∝ λhs
so small that the dark scalars never enter into equilibrium with the visible sector. Assuming
|Mϕ→ψψ|2 to be angularly independent, we can convert the second line in Eq. (2.25) to
c.o.m quantities, giving

1

Nψ

∫
d3p

(2π)32Ep

d3p′

(2π)32E′
p

|Mϕ→χχ|2fMB
χ (Ep)f

MB
χ (E′

p)
π

ω
δ(ω − Ep − E′

p)

× Γϕ→ψψ

ΓBW
Iψψ(γ, s),

(2.29)

where

Γϕ→ψ1ψ2 =
1

2mϕ

∫
d3k

(2π)32Ek

d3k′

(2π)32E′
k

δ(4)(p+ p′ − k − k′)|Mϕ→ψ1ψ2 |2 (2.30)

is the standard decay rate for ϕ→ ψ1ψ2, calculated with ordinary T = 0 QFT in the c.o.m
frame.

Finally, in order to obtain an expression for ΓBW, ref. [23] realizes that in the domain of
resonance, the collision operator for ψψ → ϕ→ χχ should agree with the collision operator
of ϕ→ χχ

1

Nχ

∫
d3p

(2π)32Ep

d3p′

(2π)32E′
p

|Mϕ→χχ|2 fMB
χ (Ep)f

MB
χ (E′

p)
π

ω
δ(ω − Ep − E′

p)× (1 + f̃ϕ(ω)),

(2.31)
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in a system where χ follows a Maxwell-Boltzmann distribution. By demanding Eq. (2.29)
and Eq. (2.31) agree under the NWA, the authors get that

ΓBW =
1

1 + fϕ(ω)

∑
ψ1ψ2

Γϕ→ψ1ψ2Iψ1ψ2(γ, s), (2.32)

where the sum is over all relevant heat bath particles, ψi.
This is a reasonable expression, as the thermal factors within the sum serve to include

the effect of Bose enhancement/Pauli blocking while the overall factor of 1/(1+ fϕ(ω)) is to
account for the fact that the total decay rate is a difference between decay and production
rates. Even though this lets us construct a BW decay rate at finite temperatures, there are
some issues which must be addressed:

1. So far, we have not justified why the BW rate is a useful tool when accounting for
intermediate particles going on-shell. Without motivation, we simply claimed that using
the BW propagator equipped with a finite-temperature ΓBW will help us avoid over-
or underestimating the production rates in a plasma. For an accurate implementation
of a freeze-in process, it would be highly beneficial if we had a detailed understanding
of how the BW scheme works and what ΓBW actually is.

2. According to Eq. (2.32), the finite-temperature BW decay rate can be written as a
T = 0 rate multiplied by some thermal factors. Meanwhile, thermal QFT is an existing
framework [29, 30, 45] which allows for the calculation of rates at finite temperature.
Within this framework, loop-order processes have a highly non-trivial temperature
dependence [26, 46]. It is therefore näıve to expect that such intricate temperature
corrections can be accounted for by merely multiplying the T = 0 rate by some thermal
factors. To tree-level, however, thermal QFT is structurally similar to QFT at T = 0,
meaning there is a good chance that Eq. (2.32) at least holds at LO.

We will cover point 1 in the following chapter where we work intimately with the BW decay
rate and the BW propagator in order to get an intuitive understanding of their affiliations to
resonant particle behaviour. Point 2 will be addressed in Chapters 4 and 5 where we derive
a different expression for ΓBW which corrects the one derived by ref. [23] while staying true
to thermal QFT. In Section 6.4 we will discuss what went “wrong” with the derivation of
Eq. (2.32).
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Chapter 3

Breit-Wigner Decay Rates

The aim of this chapter is to understand how unstable particles behave differently from stable
particles, and how this is related to the BW propagator. Even though we are ultimately
interested in ΓBW at T ≥ 0, we will start by exploring the case of T = 0. This will allow
us to establish an intuition behind the general BW scheme and why it is related to the
decay of resonant particles. Using this intuition, we will thereafter extend our results to
finite temperatures and explore the behaviour of ΓBW at T ≥ 0.

While exploring the effects of off-shell resonant behaviour at T = 0, we will show that
we naturally encounter the BW scheme, and we show why the Breit-Wigner propagator

GBW(q2) =
1

q2 −m2 + imΓBW
, (3.1)

is a good approximation for the correlator near resonance. The purpose of our approach is
primarily to illustrate exactly how the BW scheme accounts for the resonant behaviour of
unstable particles. As a consequence, our derivation of the BW propagator will be much more
tedious than a conventional procedure, like the one in Chapter 24 of ref. [40]. Conventionally,
one firstly derives Eq. (3.1) and then proceed to illustrate how it expresses the resonant
behaviour of unstable particles. Instead, we will do the opposite. We will start by studying
how a stable particle differs from an unstable one and then attempt to express this behaviour
through the lens of an approximated propagator, which in turn ends up matching Eq. (3.1).

The underlying idea of our approach will be to define an unstable particle as a pertur-
bation of a stable particle. To do this, we must first understand the behaviour of stable
particles.

3.1 Stable Particles and Their Mass

The Lorentz group, O(1, 3), is the group of all Lorentz transformations on Minkowski-space.
The (smaller) set of causally preserving Lorentz transformations is a subgroup known as
the proper orthochronous Lorentz group SO+(1, 3). In addition to the Lorentz group, one is
typically also interested in the group of spacetime translations: R(1, 3). These two groups
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can be combined into the full symmetry group on spacetime, P ≡ SO+(1, 3)⋉R(1, 3), known
as the Poincaré group after Henri Poincaré.

In his seminal 1939 paper, Eugene Wigner showed that all fundamental particles may
be identified as irreducible representations of the Poincaré group [47]. He showed that each
such representation is uniquely identified by two numbers: a positive real number (mass)
and a positive integer times 1/2 (spin). Hence, any type of particle is uniquely identified
solely from its mass and spin! Mathematically, this two-number classification comes from
the fact that the Poincaré algebra contains two Casimir operators, the eigenvalues of which
uniquely identify a specific representation [48]. These operators are PµP

µ and WµW
µ where

Pµ is the 4-momentum operator and

Wµ ≡
1

2
εµνρσJ

νρP σ (3.2)

is the Pauli-Lubanski pseudovector. Here, εµνρσ is the four-dimensional antisymmetric Levi-
Civita symbol and Jνρ is the relativistic angular momentum tensor [49]. Informally, one
may say that PµP

µ originates from R(1, 3) and corresponds to the on-shell requirement
p2 = m2, while WαW

α originates from SO+(1, 3) and corresponds to helicity or spin. For
an introduction to viewing particles as representations of the Poincaré group, see ref. [42].

It must be emphasized that the values of mass and spin may not be derived from theory,
but must be experimentally measured. A conventional approach to determiningm2 is through
the pole mass: the mass of stable particles are experimentally measured through the poles of
scattering amplitudes [40]. To motivate this, consider for example the tree-level contribution
to the amplitude of forward scattering ϕϕ→ ϕϕ in a ϕ3 theory:

σ ∼
∣∣∣∣∣ q

∣∣∣∣∣
2

∼ 1

|q2 −m2 + iϵ|2 , (3.3)

which clearly has a pole at q2 = m2. In order to experimentally measure the mass of ϕ, it
appears that we need only locate the pole of its propagator through scattering amplitudes.
However, measurements of scattering amplitudes contain contributions from all orders, not
just tree-level. We must therefore instead define the mass through the pole of the full
two-point correlator:

D(q2) ≡
q

. (3.4)

The celebrated Källén-Lehmann spectral representation [50, 51] lets us describe the singular
behaviour of D(q2) through a real-valued and positive distribution ρ(µ2) (called the spectral
density) as

D(q2) =

∫ ∞

0
dµ2

ρ(µ2)

q2 − µ2 + iϵ
. (3.5)
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two-particle states

µ2

ρ(µ2)
on-shell states

m2

bound states

(2m)2

Figure 3.1: Singular behaviour of the spectral density ρ(µ2). There is a single pole for on-
shell particles at µ2 = m2, a couple bound states just below ∼ (2m)2 and a spectrum of
unbounded states above (2m)2. This figure is inspired by Figure 7.2 in ref. [41].

The idea behind ρ(µ2) is that it contains the locations where D(q2) is singular. According
to the pole mass scheme, this means that ρ describes the locations of all physical on-shell
states which the interacting theory may produce. Peskin and Schroeder [41] argue that the
shape of the spectral density ρ(µ2) is similar to that of Figure 3.1, with a pole at exactly
µ2 = m2, several poles at bound states just below µ2 ∼ (2m)2 and a continuum of poles for
possible two-particle states at µ2 ≥ (2m)2. This continuous spectrum comes from the fact
that in an unbounded two-particle system you can always take the particles to have opposite
momenta, allowing the system to exist at any arbitrary c.o.m energy, µ2. Technically, this
spectrum comes from a branch cut in the correlator D. Letting EB be energy of the bound
state with the lowest energy, Figure 3.1 shows that the singular behaviour of D may be
moddeled through ρ as

ρ(µ2) = δ(µ2 −m2) + (nothing else until µ2 ≥ E2
B). (3.6)

The Källén-Lehmann spectral representation therefore implies that D(q2) always takes the
form

D(q2) =
1

q2 −m2 + iϵ
+

∫ ∞

E2
B

dµ2
ρ(µ2)

p2 − µ2 + iϵ
, (3.7)

where m2 is the physical mass of the particle that appears as a pole in the amplitude of
scattering experiments. This way, we define the physical mass of a particle to be the first
pole of its two-point correlator.
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3.2 Unstable Particles and Their Mass

Now that we have defined the mass of particles through the Poincaré group and the two-
point correlator, we turn to consider unstable particles. The inherent randomness of particle
decay means that a decay process is irreversible, meaning there must exist certain Poincaré
transformations under which the field of an unstable particle is not symmetric. In contrast
to a stable particle, an unstable particle can therefore, at best, be a representation of a
semigroup of P [52]. In making a particle unstable, we are therefore breaking the symmetry
of the Poincaré group – specifically the translation symmetry from R(1, 3) is broken. Since
PµP

µ originates in R(1, 3), the only Casimir left in the broken Poincaré group is WαW
α.

Since PµP
µ is no longer a Casimir, this effectively means that the on-shell requirement does

not hold for unstable particles: p2 ̸= m2, i.e. unstable particles are not associated with a
specific mass.9

The probability for an unstable particle to exist decreases exponentially with time, and
in this context it is commonly said that “the longer lifetime a particle has, the more precisely
one can determine its mass”. Motivated by this, we can informally state that an unstable
particle with lifetime τ has its mass “more sharply defined” than one of lifetime < τ . A
stable particle has an infinite lifetime and an infinitely sharp mass. Limiting our studies to
unstable particles of large lifetimes, we should therefore be able to consider instability as
a perturbation of stability by slightly decreasing the “sharpness” of the mass of a stable
particle.

We can associate the “sharpness” of a stable particle mass with the δ(µ2 − m2) in
Eq. (3.6).10 We can reduce this “sharpness” by replacing the δ with a different distribution
of finite width centred on µ2 = m2. To do this, first take note of the Sochocki-Plemelj
theorem, which says that

lim
ϵ→0+

1

x± iϵ = P 1

x
∓ iπδ(x), (3.8)

where P denotes the Cauchy principal value. From Eq. (3.5) we then get

ρ(q2) = − 1

π
Im
{
D(q2)

}
. (3.9)

Since the infinitesimal width of ρ(q2) at q2 = m2 comes from the imaginary part ofD(q2), and
Eq. (3.7) tells us the imaginary component of D(q2) is introduced through the infinitesimal ϵ,
we propose to make the distribution “less sharp” by considering the substitution ϵ→ ϵ̄ ∈ R,
where 0 < ϵ̄≪ 1 is a small but finite value.

Effectively, we are creating a perturbed ρ, centred around a sharp particle mass q2 = m2.
Hence, the approximation will only be accurate for q2 ∼ m2, i.e. the domain of resonance

9Of course, since Wigner’s classification only holds for non-interacting particles, it comes as no surprise
that the adaptation to unstable particles behaves differently.

10The “(nothing else until µ2 ≥ E2
B)” is irrelevant for this discussion as it lies outside the domain of

resonance.
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q2

ρ̄

ϵ̄ = 0.1
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Figure 3.1: Plot of ρ̄(q2; ϵ̄) (centred on different q2) for three different ϵ̄. The sharpness of ρ̄
increases as ϵ̄ decreases.

discussed in Chapter 2. Since the effects of bound- and two-particle states are likely to lay
outside the domain of resonance, we need only consider the first term of Eq. (3.7) as relevant
to our perturbation, giving us the approximated two-point correlator for an unstable particle
near resonance:

Ḡ(q2; ϵ̄) ≡ 1

q2 −m2 + iϵ̄
, 0 < ϵ̄≪ 1. (3.10)

Similarly, we define the approximated (perturbed) spectral density as

ρ̄(q2; ϵ̄) ≡ − 1

π
Im Ḡ(q2; ϵ̄). (3.11)

Figure 3.1 illustrates how the sharpness of ρ̄ increases as ϵ̄ decreases. In the case of ϵ̄→ 0,
we have ρ̄ → δ(q2 − m2) – agreeing with the sharp mass case of Eq. (3.6). The domain
of resonance can therefore be loosely identified as the domain where ρ̄(q2; ϵ̄) ≳ O(1). By
Figure 3.1, the larger ϵ̄ is, the larger this domain is, but since our approach only holds for
ϵ̄≪ 1, it must follow that only small domains are physically applicable to this model.

In our above discussion of stable particles, we said that “ρ describes the locations of all
physical on-shell states which the interacting theory may produce”. Since ρ̄ is a generalization
of ρ that accounts for resonant unstable particles, we claim that ρ̄ implements the effect
that off-shell states have within the interacting theory. As shown in Figure 3.1, this effect is
largest in the domain of resonance. In other words, the fact that ρ̄(q2; ϵ̄) ̸= 0 for q2 ̸= m2

means that resonant particles can give physical contributions similarly to on-shell particles,
but Figure 3.1 tells us that the size of this contribution diminishes rapidly outside the
domain of resonance.
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3.2.1 Determining ϵ̄

The goal of this subsection is to derive an expression for ϵ̄ which may be perturbatively
determined such that the object Ḡ(q2; ϵ̄) can be used in calculations. To do so, we must
first determine the properties of ϵ̄. The whole idea behind introducing ϵ̄ was for it to mimic
the behaviour of the limit ϵ → 0+, while still maintaining a finite value. As such, we will
only keep terms up to O(ϵ̄ 1), effectively taking ϵ̄2 = 0. As a consequence, from the series
expansion of a function F (z) around some x ∈ C, we have

F (x± iϵ̄) = F (x)± iϵ̄F ′(x), (3.12)

where F ′(x) denotes the derivative of F at x. Note that this only holds when F is analytic
around x, which is a risky assumption when working with correlators. Luckily, the functions
which we will apply Eq. (3.12) to are analytical in their respective domains. It should also
be mentioned that ϵ̄ is necessarily real, because Eq. (3.10) tells us that a finite imaginary
component would be interpreted as a shift of the mass of the particle, meaning the pertur-
bation would no longer be centred on q2 = m2. We will also assume that ϵ̄ is constant in
q2.

In order to determine ϵ̄, we will identify Ḡ(q2; ϵ̄) with the function that it aims to imitate:
the two-point correlator D(q2). This correlator satisfies the Dyson equation [53]

D(q2) = GF (q
2) +GF (q

2)Π(q2)D(q2) (3.13)

⇒ D(q2) =
1

G−1
F (q2) + Π(q2)

, (3.14)

where GF (q
2) is the time-ordered (Feynman) propagator and Π(q2) is the self-energy. For

reasons that will shortly become apparent, we will pass to the analytically continued Ḡ(z; ϵ̄)
and D(z) for z ∈ C, the former being a trivial extension of Eq. (3.10) while the latter always

exists by the Osterwalder-Schrader theorem [54]. In order to assert Ḡ(z; ϵ̄)
!
= D(z), we need

only impose that they are equivalent Green’s functions, i.e. that they solve the same system
of equations, giving:

z −m2 + iϵ̄
!
= G−1

F (z) + Π(z). (3.15)

The LHS is a first order polynomial in z, meaning the RHS must also be. Hence, we need only
assert that the two sides share equal kernels and first derivative in z. The latter requirement
yields that

1
!
=

d

dz

[
G−1
F (z) + Π(z)

]
∀ z ∈ C. (3.16)

Requiring the kernels to match we get that the LHS of Eq. (3.15) is zero at z = m2 − iϵ̄,
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giving

0
!
= G−1

F (m2 − iϵ̄) + Π(m2 − iϵ̄) (3.17)

(3.12)
= G−1

F (m2) + Π(m2)− iϵ̄ d
dz

[
G−1
F (z) + Π(z)

]
z=m2 (3.18)

(3.16)
= G−1

F (m2) + Π(m2)− iϵ̄. (3.19)

This illustrates our need to pass to the analytically continued expressions. Since ϵ̄ and
G−1
F (m2) are real,11 we end up with two equations:

0 = G−1
F (m2) + ReΠ(m2), (3.20)

ϵ̄ = ImΠ(m2). (3.21)

We note that Eq. (3.20) is equivalent to the real pole mass definition which we briefly
encountered in Chapter 2: Letting the free Lagrangian be L0 = 1

2ϕ(∂
2+ m̃2)ϕ, with m̃ being

the bare mass, we get G−1
F (m2) = m2 − m̃2, giving

m̃2 = m2 +ReΠ(m2). (3.22)

We have therefore extended the definition of the stable pole mass of Section 3.1 to hold
for unstable particles. In accordance with resonance theory and Eq. (2.23), the resonant
“frequency” of Ḡ(q2; ϵ̄) (i.e. D(q2)) is the physical pole mass, m2. For a further discussion of
the real pole mass, see ref. [40].

Through Eq. (3.21), we have finally illustrated the relationship that the self-energy has
with unstable particles: The larger ImΠ(m2) is, the more unstable the particle is. This hints
at some relation between ϵ̄ and the decay rate of a particle. Indeed, by our definition in
Section 3.4, we have

ϵ̄ = ImΠ(m2) = mΓBW. (3.23)

In other words, the approximated propagator becomes

Ḡ(q2; ϵ̄ = mΓBW) = GBW(q2), (3.24)

meaning we have showed that the BW scheme is the technique which naturally accounts
for resonant unstable particles. Crucially, this result is non-perturbative! If we calculate the
self-energy to any order O(λn), then Ḡ(q2;mΓBW) is the order-appropriate approximation
to the correlator D(q2) which accounts for off-shell resonance.

3.3 The Breit-Wigner Decay Rate

This begs the question, what does ImΠ(m2) have to do with a decay rate? Why have we
defined it to be mΓBW? At first glance, there are some hints which point towards a relation

11More specifically, Im
{
G−1
F (m2)

}
= 0+ is not a finite, real number.
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between ΓBW and the decay rate of a particle. For example, we have already noted that our
approximation is most accurate when ϵ̄ ≪ 1, which corresponded to a very long lifetime.
Since the mean lifetime is inversely proportional to the total decay rate, it follows that a
small ϵ̄ implies a small decay rate as well. In this section, we formalize this relationship.

Diagrammatically, we can write

mΓBW = Im
{

Π
}
. (3.25)

This can be compared to the results of the optical theorem – derived in Appendix A.1, which,
for an unstable scalar A, says

ImMA→A = Im

{ }
(3.26)

= Im
{

+ Π + Π Π + . . .
}
. (3.27)

This tells us that ΓBW is calculated by amputating the forward scattering diagramMA→A

and taking the imaginary part. By “amputating” we mean in the sense of the LSZ reduction
formula [55], which tells us that contributions to the S-matrix only come from diagrams
whose external lines are amputated [40, 41]. Therefore, ΓBW must be equivalent to the
rate that is calculated through the S-matrix, i.e. the physical decay rate. For example, the
probability of a state decays like exp(−tΓBW) [42]. The claim made back in Section 2.2 of
ΓBW being the total decay rate is therefore perfectly accurate.

The natural question then becomes, what is the interpretation of the imaginary com-
ponent of the non-amputated forward scattering diagram, ImMA→A? Since we associate
the amputated diagram with an externally connected process, it is reasonable to interpret
ImMA→A ≡ mΓvirt as the “decay rate” of an internal (virtual) particle. Of course, a virtual
particle is not physical and is therefore not compatible with a real decay process, so Γvirt

may not be viewed as an inverse mean lifetime the way ΓBW can. We can instead formalize
the relationship that Γvirt has with the physical ΓBW through Eq. (3.27), which can be
expressed as a geometric series:

ImMA→A = Im
{
Π(m2) + Π(m2)(iGF (m

2))Π(m2) + . . .
}

(3.28)

= Im

{
Π(m2)G−1

F (m2)

G−1
F (m2)− iΠ(m2)

}
. (3.29)

If Π(m2) contains terms of order O(λℓ) and higher, we have

ImMA→A = ImΠ(m2) +O(λ2ℓ), (3.30)

meaning there always exists some order O(λ<2ℓ) to which we have Γvirt = ΓBW. At this
order, the virtual decay rate may be thought of as identical to the physical decay rate of the
particle. This approximation holds particularly well in a weakly coupled theory with λ≪ 1,
as higher order terms are heavily suppressed.
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Having established how ΓBW is related to the physical decay rate, it would next be highly
beneficial if we could also interpret it through the lens of resonance. This would help us
in our endeavour to understand the role of ΓBW in accounting for the resonant behaviour
of off-shell particles. To address this, we turn to ρ̄(q2; ϵ̄) as it is the object responsible for
implementing the resonant behaviour of off-shell particles. From Eq. (3.11), we get

ρ̄
(
q2; ImΠ(m2)

)
=

1

π

ImΠ(m2)

(q2 −m2) + (ImΠ(m2))2
. (3.31)

In the limit ϵ̄ → 0 (i.e. ImΠ → 0), we have ρ̄(q2; ϵ̄) → δ(q2 − m2) = ρ(q2) which is the
probability that a stable particle of momentum qµ gives a physically measurable contri-
bution. At finite ϵ̄, ρ̄(q2; ϵ̄) extends this behaviour to resonant off-shell particles, meaning
we can interpret Eq. (3.31) as the probability that an off-shell particle gives a measurable
contribution.

So far, this chapter has only considered zero-temperature behaviour. By assuming the
construction of ρ̄ extends to finite temperatures,12 we get that ΓBW at T > 0 is the quantity
which through Eq. (3.31) gives the probability for an off-shell particle to exist in a plasma.
In other words, at T > 0, ΓBW is a measure of the contribution from off-shell particles in a
plasma – an interpretation in agreement with the one presented by Weldon in ref. [31]. This is
a fairly reasonable result, and shows how the BW scheme accounts for resonant intermediate
particles in a plasma. This thermal interpretation is, however, rather disconnected from
the behaviour of ΓBW as a rate – what does Eq. (3.31) have to do with the pace at which
some process occurs? Up to this point, we have intentionally refrained from discussing the
interpretation of ΓBW at T > 0 as a rate, because thermal rates turn out to be inherently
different from their zero-temperature counterparts.

3.4 Rates at Finite Temperatures

The discussion of how to treat and interpret decay and production rates at finite temperatures
is not a new one [29, 31, 45, 56]. In a finite temperature plasma, the nature of rates varies
drastically from that at zero temperature. At first glance, there are two key differences to
notice:

(i) In collider experiments of non-thermal processes, we have intimate control over initial
and final states in experiments – we pride ourselves in being able to identify exactly
which processes have occurred in a scattering experiment. At finite temperatures,
however, this ability is lost since an idle plasma is able to induce conditions for a
multitude of processes by itself. For example, in Section 2.2 we witnessed the ambiguity
in identifying whether the process χχ → ϕ → ψψ or ϕ → ψψ occurred during
resonance.

12We will justify this claim in Section 4.3.
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(ii) In QFT at T = 0, the “background” upon which experiments are performed is the
vacuum which has no real (on-shell) particles present. At finite temperatures, the
interactions we wish to study are indistinguishable from the background (the plasma);
the background itself consists of physical interactions. We can therefore not view a
thermal process as one happening on top of an empty background in the same manner
as at zero temperature.

If we wish to account for these differences, we must stop speaking in terms probabilities
and rates of individual processes and instead speak in terms of the accumulative effect of
all relevant scattering processes. In a plasma, the interpretation of the “rate of A → B”
becomes meaningless, as there is no way to distinguish the A involved in this process from
the one that is involved in the process of, say, C → A in the surrounding plasma. This aligns
with the principles of a statistical model wherein the relevance of the individual is negligible.
By accumulating all individual processes we can instead study the full system.13

In order to address the differences between rates at zero and finite temperatures,14 let
us start by considering a simple thermalized plasma where only two scalars, say ϕ and ξ,
exist. The ϕ decay ϕ → ξξ will happen at a rate Γd whose phase space is Bose enhanced
by (1 + f̃ξ)(1 + f̃ξ). Since real ξ are also part of the plasma, ϕ will also be produced by the
inverse decay ξξ → ϕ at a rate Γp with phase space enhanced by fξfξ. It then follows that
the phase space distribution of ϕ changes like [31]

∂fϕ
∂t

= −fϕΓd + (1 + f̃ϕ)Γp, (3.32)

which is a fairly reasonable result to anyone familiar with thermal phase spaces and their
Bose enhancement/Fermi blocking. However, a highly non-trivial result of Weldon’s is that
the imaginary part of the ϕ self-energy Π(ω) satisfies15

ImΠ(ω) = ω[Γd − Γp], (3.33)

where ω is the energy of ϕ measured in the plasma rest frame.
Clearly, if we define the finite-temperature BW decay rate to be ΓBW ≡ Γd − Γp, then

Eq. (3.33) bears a strong resemblance to Eq. (2.20). We will therefore take the BW decay
rate at finite temperature to be the imaginary component of the self-energy, just like at
T = 0. This means that the finite-temperature BW decay rate amounts to subtracting a
production rate from a decay rate – a rather reasonable result.

Unfortunately, this is where the similarities between ΓBW at T = 0 and T ̸= 0 begin to
fade as additional oddities in the finite temperature case become apparent [31]:

13Note that there does exist cases where one is interested in studying individual processes in a plasma,
for example when probing a plasma in a particle accelerator. This is however very different from the case at
hand, where we are interested in studying the behaviour of the plasma that filled the early universe which
was very much not subject to collider experiments (hopefully).

14This procedure mainly follows that of the seminal 1983 work by H. Weldon in ref. [31].
15Due to Weldon’s choice of convention, his original expression features an additional minus sign in front

of ω, cf. Eq. (1.1) of ref. [31].
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(iii) If ϕ is a fermion, the imaginary self-energy comes out to be ImΠ(ω) = ω[Γd + Γp],
meaning the total rate is ΓBW = Γd− εϕΓp for arbitrary spin. The “natural definition”
of subtracting decay from production is therefore lost. We will discover the origin
behind this awkward sign difference in Section 6.2.

(iv) The plasma provides a specific frame relative to which the energy of ϕ, ω, is defined.
It is in this frame that ϕ follows the distribution fϕ(ω). We are therefore not free
to pick the frame of ϕ at leisure without at least Lorentz transforming fϕ out of the
plasma frame. This is in contrast to Eq. (2.20) where the mϕ can always be seen as
the energy in the ϕ rest frame. The ω-dependence of ΓBW(ω) is therefore non-trivial at
finite temperatures – a quality which ref. [23] claims is expressed through Iψ1ψ2(γ, s)
in Eq. (2.32).

(v) If ΓBW ̸= 0 truly behaved like a decay rate, we would expect the number of ϕ particles
to diminish or increase over time. This is clearly not the case, as there will always be
a constant population of ϕ present in the thermalized plasma.

This last point is especially important in understanding the difference between rates at zero
and finite temperature: At T = 0, we think of particle decays as processes which reduce the
number of initial-state particles. In a thermalized plasma, the rate at which the number of
ϕ particles decreases must be identical to the rate at which it increases – otherwise there
would not be an equilibrium. A thermal rate is therefore not something which describes the
change in a particle population over time.

The question of “what is the rate of the specific process ϕ→ ξξ” is not physically mean-
ingful in a plasma. Although nothing is preventing us from sitting down and mathematically
calculating the “rate” of this process using thermal theory, there is no way to measure it in
a plasma experiment. We can only observe the accumulative effect of all relevant processes.
Compare this to at T = 0 where we can calculate the rate of ϕ → ξξ and prepare an
experiment to measure it in.

Mathematically, ΓBW at T ≥ 0 is therefore nothing but the imaginary part/discontinuity
of the ϕ self-energy. At T = 0, this quantity exactly matches the decay rate of ϕ, but at finite
temperatures not so much. In Weldon’s own words [31]: “The purpose [. . .] is to compute
ImΠ for T ̸= 0 and organize it into a recognizable form as the square of an amplitude,
integrated over phase space but weighed with certain statistical factors appropriate to a
thermal distribution.” ΓBW is thus a quantity which reproduces the decay rate in the limit
T → 0, and is structurally identical to how one would expect a decay rate to look at finite
temperatures. However, due to the statistical nature of a thermalized plasma, the notion of
“a rate” can not be carried over from zero to finite temperatures.

This is an interesting yet slightly distressing result – what on earth is ΓBW at T > 0 if
is not a rate of decay? It certainly has the dimensions of a rate and is structurally identical
to how one would expect a rate to look at finite temperatures, so what gives? This dilemma
can be traced back to the fact that a rate describes a temporal change in a system, while
equilibrium systems are notoriously unchanging with time; two seemingly incompatible
notions. Luckily, all hope is not yet lost because through our statistical analysis in Chapter 1
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we know that the Boltzmann equation lets us describe the temporal behaviour of thermal
systems. We established that whenever the thermal distribution of a particle population is
knocked out of equilibrium, it is quickly attracted back towards the equilibrium distribution.
It turns out that this behaviour is also expressed in the dynamics of Eq. (3.32): For small
deviations from thermal equilibrium, the solutions to Eq. (3.32) are16 [31]

fϕ(ω, t) =
1

eωβ − εϕ
+ c(ω)e−tΓBW , (3.34)

where c(ω) is some arbitrary function. It follows that any thermal distribution function
which is knocked slightly out of equilibrium is quickly pulled back in – the speed of which
depends on the size of ΓBW. We can therefore think of ΓBW as an equilibration rate which
tells us how quickly a system is pulled into equilibrium.

This interpretation actually emphasizes a crucial notion about thermal systems. Although
statements like “an equilibrium system is unchanging” are true on a statistical scale, they
undermine the fundamental idea that a plasma is continually undergoing processes which
slightly edge it away from equilibrium. The plasma is not static (and does not want to stay
static), yet it wants to stay in an (on average) unchanging state. In order to satisfy both of
these desires, some temporal process must constantly make sure that (1) reactions happen
and (2) reactions always favour a push towards equilibrium. The object which quantifies
this behaviour is ΓBW. This can, for example, be seen through Eq. (3.34), which tells us how
quickly a perturbed equilibrium system returns to equilibrium, but also through Eq. (3.32),
which shows that it becomes harder to push fϕ further away from equilibrium. In Section 6.2,
we will discuss how the interpretation of ΓBW as an equilibration rate can be unified with
its role in accounting for off-shell resonance.

As this chapter comes to a conclusion, we summarize our main results. Starting with
ideas from the Poincaré group, we showed how to introduce the concept of instability into
the two-point correlator of a field. The natural way of going about this was by making the
mass of a stable particle “less sharp” by widening the infinitely sharp spectral function, ρ.
This led us to the revelation that ImΠ(m2) was the width of a new (less sharp) spectral
function ρ̄, through which we reproduced the known BW propagator, Eq. (3.24). We then
discovered that at T = 0, mΓBW = ImΠ(m2) must be the total decay rate of a particle
while at T > 0, ImΠ(ω) is related to the probability that an off-shell particle exists in a
plasma through Eq. (3.31). After an analysis of the behaviour of rates at finite temperatures,
we found that ΓBW does not behave like a decay rate in the traditional sense, which we
reconciled by introducing the concept of an equilibration rate.

In all, the primary takeaway from this chapter is that the quantity which we now set out
to calculate at finite temperature is ImΠ(ω). To do so, we require the formalism of thermal
quantum field theory.

16This solution only applies if the temperature is constant with time. Weldon also shows that ΓBW ≥ 0,
cf. Eq. (2.34) in ref. [31].
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Chapter 4

Thermal Field Theory

In the previous chapter, we established that in order to account for resonant s-channel
particles in a plasma, we need “only” calculate ImΠ(ω) at finite temperature. The goal of
this chapter is to formulate a method that allows for this calculation. Meanwhile, we will
end up deriving an alternative approach to the formalism of real-time thermal field theory
and associated principles.

Just like in Chapter 3, our approach is based on exploring the consequences which the
on-shell requirement, p2 = m2, has for physical particles. We will start with a study at T = 0
in order to lay the fundamental groundwork before extending our ideas to T ≥ 0.

4.1 Superselection Rules

For m > 0, there are two disconnected hyperboloids in Minkowski space which satisfy
p2 = m2, as illustrated in Figure 4.1. Let us assume for the moment that states with p0 < 0
exist in full analogy to the usual states with p0 > 0 and that they share the same properties
as the latter (except for relations that involve the sign of p0). We label the set of states
with p0 > 0 as the B+ branch, and states with p0 < 0 as the B− branch. According to the
Feynman-Stueckelberg interpretation of antiparticles [57], we can define the physical energy
of a state on B− as E ≡ −p0 > 0, and consider it as a state of the corresponding anti-particle
[58].

If p2 ≥ 0, the sign of p0 is invariant under the proper orthochronous Lorentz group
SO+(1, 3).17 Hence, any future(past) directed timelike or null 4-vector will remain future(past)
directed under SO+(1, 3) (this is not the case for p2 < 0). In other words, no operation
in SO+(1, 3) may take a four-vector with p0 > 0 to one with p0 < 0 and vice versa. The
kinematics of a theory is therefore restricted to a single branch at a time, and we will assume
that this notion extends to the dynamics as well.

In other words, a system on B+ can not evolve to a system on B− and vice versa. For this
reason, the B− branch is often discarded or forgotten until it is needed. It turns out that, in
our endeavour to model a thermal plasma, it will be advantageous to actually include both

17A great discussion on this can be found in ref. [58].
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p

p0

B+

B−

Figure 4.1: Light-cone in momentum space illustrating the two branches satisfying p2 = m2

for m ̸= 0. The branches of positive- and negative p0 are labelled B+ and B−, respectively.

branches in our model from the very beginning. In this section, we will therefore construct a
formalism which allows for the inclusion of B− without affecting the known, well-established
physics on B+ and while avoiding headaches like “negative energy” and mixing between
branches.

Since the Hamiltonian, H, is the generator of time evolution, the fact that states on
B+ may not evolve to states on B− means that the inner product ⟨±|H |∓⟩ vanishes for
all |±⟩ ∈ B± on different branches. Mathematically speaking, this is known as a selection
rule [59]. Crucially, this selection rule implies that S-matrix elements for scattering between
the two branches vanish: ⟨±|S |∓⟩ = 0, meaning a system with p0 > 0 may never scatter
to a system with p0 < 0, and vice versa. This amounts to requiring that a particle can not
scatter into its corresponding anti-particle.

What about states which do not lay purely in B+ or B−? That is, states which are a
linear combination of states on different branches. A state like α |electron⟩+ β |positron⟩ is
unphysical unless α = 0 or β = 0, as any other values would allow for violation of conservation
of internal quantum numbers. We will therefore assume that no physical state may take the
form |+⟩+ |−⟩, where |±⟩ ∈ B±. This is known as a superselection rule (SSR) [60, 61] and
has several implications: Firstly, ⟨±|O |∓⟩ = 0 for all physical observables O, which implies
the above-mentioned selection rule ⟨±|H |∓⟩ = 0. This effectively says that no measurement
may make a physical system switch branches. Secondly, B+ and B− must be orthogonal
spaces and the Hilbert space of all physical states that satisfy p2 = m2 decomposes as

H = H+ ⊕H−, (4.1)

where H± ≡ B± are known as the two superselection sectors.
However, why do we want to introduce a SSR? At T = 0, contributions from different

branches necessarily never mix, so our efforts seem rather redundant. At T > 0, this will turn
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out to no longer be the case. When we extend the SSR to finite temperatures in Section 4.2,
we show that the two branches end up interacting non-trivially.

Nevertheless, the way we formally introduce the SSR into QFT is by constructing a
countable set of self-adjoint projection operators Pi on H, which satisfy

PiPj = 0 for i ̸= j,
∑
i

Pi = 1 and PiPi = Pi , (4.2)

such that all observables commute with Pi [60]. In order to find such projection operators,
we take inspiration in our assumption that H+ = B+ and H− = B− are orthogonal spaces,
and in the completeness relations for on-shell one-particle states that satisfy ±p0 > 0:

1
±
1-particle =

∫
d4p

(2π)4
(2π)δ(p2 −m2)θ(±p0) |p⟩⟨p| . (4.3)

The completeness relation on the Hilbert space of all on-shell one-particle states is then
1
+
1-particle+1

−
1-particle = 11-particle. A similar procedure can be performed for the Hilbert space

of n-particle states. This lets us extend the completeness relation to the full Hilbert space
of all on-shell states |X⟩ ≡ |p1p2 . . .pn⟩ as

1
± ≡

∑
X

∫
dΠ±

X |X⟩⟨X| , (4.4)

where the sum is over single- and multi-particle states X,18 and we define the phase space
measure19 of the state X on H± as

dΠ±
X ≡

∏
j∈X

d4pj
(2π)4

(2π)δ(p2j −m2)θ(±p0j ). (4.5)

We can explicitly check that 1+ and 1
− satisfy the requirements in Eq. (4.2): Firstly, the

orthogonality of B± implies that 1±1∓ = 0. Secondly, using θ(x) + θ(−x) = 1, we have

1
+ + 1

− =
∑
X

∫ ∏
j∈X

d4pj
(2π)4

(2π)δ(p2j −m2)

 |X⟩⟨X| = 1, (4.6)

which follows from the completeness relation on H as the space of all states satisfying
p2 = m2. Lastly, for single-particle states (the extension to multi-particle states can be

18Technically, the sum in Eq. (4.4) is over all inequivalent phase space configurations. This will become
important later when we consider identical final state particles which amounts to multiplying the phase space
by the appropriate symmetry factor.

19The terms “phase space”, “phase space measure” and “volume element” are often used interchangeably.
We will primarily be calling it a measure, as the term “phase space” already refers to R(1, 3) and the term
“volume element” can be rather imprecise.
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shown from this)

1
±
1-particle1

±
1-particle =

∫
dΠ±

XdΠ
±
Y ⟨X|Y ⟩ |X⟩⟨Y | (4.7)

=

∫
d3pX

(2π)32EX

d3pY
(2π)32EY

2EY (2π)
3δ(3) (pX − pY ) |X⟩⟨Y | (4.8)

=

∫
d3pX

(2π)32EX
|X⟩⟨X| (4.9)

= 1
±
1-particle. (4.10)

Therefore, 1+ and 1
− are projection operators which introduce the SSR that separates the

two sectors H+ and H−. For a practical illustration on how to use 1+ and 1− in calculations,
see the derivation of the generalized optical theorem in Appendix A.1.

4.1.1 SSR and CPT

It turns out that the behaviour of the two sectors, H+ and H−, is closely linked to the
inherent CPT symmetry of QFT. Here, CPT is the combination of a simultaneous charge
conjugation, C, parity transformation, P, and time reversal, T. Though other combinations
of C,P and T need not be exact symmetries [62–64], the CPT theorem says that any Lorentz
invariant local QFT with Hermitian Hamiltonian must be exactly symmetric under CPT
[42, 65]. The antiunitarity of CPT means that it relates the S-matrix of some process to the
S-matrix of the reverse process where particles are replaced by their anti-particles and all
spatial spin components reversed [42]. By the Feynman-Stueckelberg interpretation, we may
therefore take the effect of a CPT transformation on the S-matrix to be

⟨A+|S |B+⟩ CPT→ ⟨B−|S† |A−⟩ for all |A±⟩ , |B±⟩ ∈ H±. (4.11)

We can therefore interpret a CPT transformation as a change of sectors. The inherent CPT
invariance of QFT then tells us that the two sectors have identical physics. In terms of
matrix elements, the CPT transformations becomes (up to a phase)

MA→B
CPT→ MCPB→CPA, (4.12)

where the subscript CPX indicates that we reverse all spin z-components and replace particles
by their anti-particles in a state X [42]. The time-reversal part of CPT is indicated through
the switching of the initial- and final states in the matrix element subscript.

Before we proceed to working at finite temperatures, it becomes important to re-clarify
the difference between branches and sectors. The former are always B± (the set of all on-shell
states satisfying ±p0 > 0) while the latter are H± (the orthogonal spaces into which the
Hilbert space of all states satisfying p2 = m2 decomposes under the SSR). At T = 0 these
two turn out to be equivalent, but (as we shall soon see) this will no longer be the case as
T > 0.
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4.2 Finite Temperature

We will now extend the ideas of the previous section to finite temperatures. The procedure
shown in this section is by no means perfectly formal, but it nevertheless succeeds as a
proof of concept while defining the most important ideas. To the best of our knowledge, an
extension of the SSR of the previous section to T > 0 has not been done in the literature
before.

At T = 0, the SSR was implemented through the operators 1±, which were defined via
the phase space measure in Eq. (4.5). Our extension of the SSR to T ≥ 0 will therefore
be done by defining 1±T≥0 through a thermal phase space measure. This thermal measure
will be constructed by modifying the T = 0 measure to be valid at finite temperatures.
Importantly, the T = 0 measure in Eq. (4.5) is the same for both bosons and fermions. Since
the spin-statistics theorem [66, 67] says that bosons and fermions behave differently in a
statistical (e.g. thermal) setting, we expect that the extended T ≥ 0 measure should differ
not only in a T -dependence, but also in a spin-dependence. The extension to T ≥ 0 can be
found by noting three important qualities of a finite-temperature system:

1. Particles and anti-particles behave identically under the spin-statistics theorem. It
is therefore expected that any thermal effects we add to our phase space should be
independent of whether the phase space describes a particle or an anti-particle. Since
the only possible difference between these two cases can be the sign of p0, we will take
the additional thermal structure to be introduced through nA(p0) ≡ fA(|p0|),20 where
fA(p0) is the thermalized phase space distribution of a particle A, like in Eq. (2.9).

2. We want only on-shell particles to be measurable within the plasma, and can therefore
expect the extension to feature a factor of δ(p2−m2), just like in Eq. (4.5). If we want
to include the effects of unstable particles without a sharp mass, we can do this later
through a BW propagator, like we discovered in Chapter 3.

3. The thermal measure should reproduce Eq. (4.5) in the limit T → 0. Since nA(p0)→ 0
as T → 0, this means that the thermal correction should be added to Eq. (4.5)
(the alternative would have been multiplication). Effectively, we are creating a linear
combination of all different constraints which we want our phase space volume element
to be subject to.

Together, this motivates the thermal phase space measure

dΠ±
X,T≥0 ≡

∏
j∈X

d4pj
(2π)4

(2π)δ(p2j −m2
j )
[
θ(±p0j ) + ñj(p

0
j )
]
, (4.13)

as this expression satisfies the three points above, except in the appearance of

ñj(ω) ≡ f̃j(|ω|) =
εj

e|ω|β − εj
, (4.14)

20nA(p0) must not be confused with the number density of Eq. (2.2) which shares an unfortunately similar
labelling.
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instead of the promised nj(ω). This is only a sign-change in the fermionic case, and is as
hard to motivate as the definition ΓBW = Γd − εϕΓp, which we encountered in Section 3.4.
The factor of [θ(±p0j ) + ñj(p

0
j )] is ubiquitous in thermal theory – more commonly known

when expressed as

θ(+p0) + ñj(p0) = ϵ(p0)(1 + f̃j(p0)), (4.15)

θ(−p0) + ñj(p0) = ϵ(p0)f̃j(p0). (4.16)

These are the factors used in the suppression of the phase space due to Pauli blocking/Bose
enhancement, so it is only natural that they appear in the volume element of our thermal
phase space. Had we used nj(ω) instead of ñj(ω) in Eq. (4.13), these blocking/enhancement
terms would be different and not match those required by the spin-statistics theorem, but
we shall see the true reason behind its appearance in Chapter 6. In the case of fermionic
states, a sum over spin should be included in Eq. (4.13), cf. Eq. (4.17) in ref. [26]. For a
broader discussion on the structure of the thermal phase space, see ref. [56].

At T = 0, we used that the superposition |+⟩+ |−⟩ for |±⟩ ∈ H± = B± is non-physical in
order to argue for the orthogonality of the two Hilbert spaces with phase space measures dΠ±.
Since dΠ±

T≥0 seems to be the appropriate extension of these measures to finite temperatures,
we will assume that the exact same procedure is possible at T ≥ 0. In other words, the
finite-temperature Hilbert spaces H±

T≥0 are orthogonal spaces with phase space measures

dΠ±
T≥0. In order to fully implement a SSR at T ≥ 0, we may therefore at first be tempted

to proceed as we did at T = 0 by defining a set of self-adjoint operators as

1
±
T≥0

?≡
∑
X

∫
dΠ±

X,T≥0 |X⟩⟨X| . (4.17)

While this definition would indeed satisfy 1±T≥01
∓
T≥0 = 0, it unfortunately does not satisfy the

other requirements of Eq. (4.2). It turns out that this is a manifestation of the conventional
inner product normalization21

⟨p|k⟩ = 2Ep(2π)
3δ(3)(p− k), (4.18)

where Ep ≡
√
|p|2 +m2. Under this inner product, it is straightforward to confirm that

(1+T≥0 + 1
−
T≥0) |p⟩ = (1 + 2ñ(Ep)) |p⟩ , (4.19)

meaning 1
+
T≥0 + 1

−
T≥0 is not the identity operator. Instead, we should use the thermal

normalization

⟨p|k⟩ = 2Ep

1 + 2ñ(Ep)
(2π)3δ(3)(p− k), (4.20)

21Here, we take |k⟩ to be an excited vacuum state – analogous to at T = 0. As a result, we view the
plasma as a statistical collection of many excited vacuum states.
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which produces Eq. (4.18) in the limit T → 0. If we adapt this normalization, we indeed
recover 1+T≥0+1

−
T≥0 = 1T≥0, where 1T≥0 is the identity operator on the space of all physical

plasma states. However, in order to keep the behaviour of our T > 0 theory as similar to
the known behaviour at T = 0, it is not advantageous to alter a concept as fundamental as
normalization. We will therefore instead scale the identity operators themselves according
to22

1
±
T≥0 ≡

∑
X

∫
dΠ±

X,T≥0

1 + 2ñX(ωX)
|X⟩⟨X| , (4.21)

where ωX ≡
∑

j∈X k
0
j . This is equivalent to choosing the normalization in Eq. (4.20) because

we are literally scaling the size of the unit quantity. Meanwhile, it will allow us to continue
using the T = 0 inner product in Eq. (4.18) while still having 1+T≥0 + 1

−
T≥0 = 1T≥0. Lastly,

a similar procedure as in the previous section yields 1±T≥01
±
T≥0 = 1

±
T≥0. In all, the operators

in Eq. (4.21) satisfy the requirements of Eq. (4.2), meaning they are projection operators
which implement a SSR at finite temperatures. The full Hilbert space of states that satisfy
p2 = m2 and are part of a thermal plasma is therefore HT≥0 ≡ H+

T≥0 ⊕H−
T≥0.

At T = 0, we implemented the SSR by first constructing the space of all on-shell states
H and then splitting it into H+ and H−. At T > 0, we did the reverse by first defining H±

T≥0

and then piecing them together to form the full Hilbert space of physical plasma states,
HT≥0. But what exactly is this “plasma state space”? Since 1+T≥0 + 1

−
T≥0 = 1T≥0 is the

identity operator on HT≥0, we can uncover what HT≥0 is by observing

1T≥0 = 1
+
T≥0 + 1

−
T≥0 (4.22)

=
∑
X

∫ ∏
j∈X

d4pj
(2π)4

(2π)δ(p2j −m2
j )

 |X⟩⟨X| . (4.23)

All thermal factors cancel, and we are left with the same identity operator as at T = 0
(cf. Eq. (4.6)). In other words, the Hilbert space of all physical on-shell states is temperature
independent: HT≥0 = H. When we go from studying systems at T = 0 to systems in a
plasma with T > 0, the only thing that changes is the way H decomposes into its SSR
sectors.

This marks one of the most important differences between the SSR at T = 0 and at
T > 0: At finite temperatures we have23 H± ̸= B±. This can explicitly be seen from
Eq. (4.13), where the presence of ñj(p0) implies that the phase space measure dΠ+

X now
gets contributions from p0 < 0, and dΠ−

X from p0 > 0. A finite-temperature system with

22One may ask why we do not simply absorb the awkward factor of 1/(1+2ñX(ωX)) into the definition of
dΠ±

T≥0 and recover the simple structure of Eq. (4.17). While viable, this would negate the arguments we used
to construct the phase space measure in the first place. It is rather comforting that the Pauli blocking/Bose
enhancement structure emerges naturally within the phase space measure itself. One is free to choose where
to put this awkward factor, but we found Eq. (4.21) to be the most convenient choice.

23Henceforth, we will drop the subscript “T ≥ 0” and instead let the temperature dependence be implicit.
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p0 > 0 will therefore not consist exclusively of states within a single sector. Aware of this
insight, we can formalize the relationship which the phase space measure in Eq. (4.13) has
with the Pauli blocking/Bose enhancement structure by making the following observations:

dΠ+
X

p0>0
=

∏
j∈X

d3pj
(2π)32Ej

[
1 + f̃j(Ej)

]
, dΠ−

X

p0<0
=

∏
j∈X

d3pj
(2π)32Ej

[
1 + f̃j(Ej)

]
,

dΠ+
X

p0<0
=

∏
j∈X

d3pj
(2π)32Ej

f̃j(Ej), dΠ−
X

p0>0
=

∏
j∈X

d3pj
(2π)32Ej

f̃j(Ej),

(4.24)

where we defined the energies as Ej ≡ |p0j |. If we for a minute forget the additional factor of εj

in f̃j compared to the expected fj (in Appendix F we will argue that f̃j actually is the correct
choice for our thermal measure), we observe that the appropriate blocking/enhancement
terms arise naturally in the phase space measures when individually evaluated at p0 > 0 and
p0 < 0. This tells us that states on H± carry the thermal blocking/enhancement structure
of initial states when ±p0 < 0. Similarly, states on H± carry the thermal structure of final
states when ±p0 > 0. We will use this insight later in Section 6.4 when constructing a new
collision operator with appropriate thermal blocking/enhancement factors.

How then are we to interpret particles and anti-particles at finite temperatures? Through
Eq. (4.24), we observe that if the sign of p0 makesH+ follow an initial(final)-state suppression,
it will make states on H− follow a final(initial)-state suppression. Therefore, if we take H+ to
contain particles and H− to contain anti-particles, we recover the idea of particles and anti-
particles have opposite notions of the direction of time in a process (we formally prove this in
Section 4.3). This extends the Feynman-Stueckelberg interpretation to finite temperatures,
where we take states on H− to be anti-particles of states on H+, and the energies are always
positive E ≡ |p0|. In the limit T → 0, this recovers the existing Feynman-Stueckelberg
interpretation since limT→0H± = B±.

At T = 0, we arrived at the interpretation that a CPT transformation amounted to
“switching SSR sectors”, and that the inherent CPT symmetry implied physically indistin-
guishable sectors. At T ≥ 0, we will assume that a CPT transformation still switches
between states in the sectors H±.24 We therefore expect our thermal theory to express a
CPT-invariance in the same manner as at T = 0, meaning results like Eq. (4.11) will be
taken to hold at all temperatures. The CPT interpretation was more straightforward at
T = 0 where we just happened to have H± = B±. We must therefore be careful, as this may
impose a bias towards concluding a relationship between CPT and B±. Instead, we claim
that this relationship in reality is between CPT and H±.

4.2.1 The Thermal BW Decay Rate

With the SSR at finite temperature in place, we can derive the optical theorem through a
similar procedure as at T = 0; see Appendix A.2. Eq. (A.13) lets us calculate the imaginary

24It might be possible to prove this statement through a more rigorous treatment of the CPT operator
with respect to superselection rules. Unfortunately, that is outside the scope of this project.
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component of forward scattering amplitudes,MA→A. However, in order to calculate ΓBW,
we are interested in (the imaginary part of) Π(ω) – notMA→A. Luckily, in Section 3.3, we
concluded that the former is the amputated diagram of the latter. This means that if we
substitute the matrix elementsMA→X in Eq. (A.13) for ones where the external A-line is
amputated, we should get the imaginary component of the self-energy instead of the forward
scattering. We denote matrix elements where the external A is amputated byMA→X , giving

ΓBW(p) =
1

2ωA

1

1 + f̃A(ωA)

∑
X

∫
dΠ+

X(2π)
4δ(4)(pA − pX)|MA→X |2. (4.25)

This expression will finally let us calculate the BW decay rate at finite temperatures. Since
Wick’s theorem is well-defined at finite temperature [29, 68, 69], the matrix elementsMA→X

in Eq. (4.25) are still constructed from contractions between field operators. In order to

calculate these matrix elements, we therefore have to establish what contractions like AxAy,
i.e. the propagators, are at finite temperature.

4.3 Thermal Propagators

Usually, the thermal propagators are derived from an analytical continuation of imaginary-
time thermal QFT and the Keldysh contour [26, 29, 30, 46], but we will show that they can
also appear as an artefact of the SSR and choice of phase space.

Our approach to deriving the thermal propagator will be to first find an expression for
the two-point correlator using the Källén-Lehmann spectral representation and then pick
the free-field spectral function. We will be considering the case of A being a scalar field, and
the extension to fermions and vectors will be stated at the end.

The primary difference between QFT at T = 0 and our approach at T ≥ 0, is that we
have taken the phase space measure to be as in Eq. (4.13) instead of as in Eq. (4.5). As long
as we keep the SSR in mind, the approach to deriving the T ≥ 0 correlator should be the
same as at T = 0 but with the phase space volume element substituted by Eq. (4.13). Much
of the derivation is therefore identical to the one done at T = 0 by Schwartz in Chapter 24
of ref. [40].

We define the time-ordered correlator as

iD(x− y) ≡ ⟨Ω|T{A(x)A(y)} |Ω⟩ (4.26)

= θ(x0 − y0) ⟨Ω|A(x)A(y) |Ω⟩+ θ(y0 − x0) ⟨Ω|A(y)A(x) |Ω⟩ , (4.27)

where |Ω⟩ is the vacuum state25 and T{. . . } indicates the conventional time-ordering. The
finite-temperature vacuum expectation value of A(x)A(y) can be expressed as

⟨Ω|A(x)A(y) |Ω⟩ = ⟨Ω|A(x)(1+ + 1
−)A(y) |Ω⟩ = ⟨A(x)A(y)⟩+0 + ⟨A(x)A(y)⟩−0 , (4.28)

25The reason why we are considering propagation on top of vacuum and not on top on, say, a plasma-
background, is that we are viewing the full plasma as a statistical collection of excited vacuum states,
cf. footnote 21.
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where ⟨A(x)A(y)⟩±0 ≡ ⟨Ω|A(x)1±A(y) |Ω⟩. Inserting into Eq. (4.27), the time-ordered cor-
relator is then

iD(x− y) = θ(x0 − y0)
[
⟨A(x)A(y)⟩+0 + ⟨A(x)A(y)⟩−0

]
+ θ(y0 − x0)

[
⟨A(y)A(x)⟩+0 ⟨A(y)A(x)⟩−0

]
.

(4.29)

Now, since H = H+ ⊕H− is subject to a SSR, we know that a state on H+ may not evolve
to one on H−, and vice versa. In other words, A propagates independently on each sector.
Eq. (4.29) therefore describes two types of propagation – one on H+ and one on H−. We
can formalize this by defining the sector-unique correlators

iD±(x− y) ≡ θ(x0 − y0) ⟨A(x)A(y)⟩±0 + θ(y0 − x0) ⟨A(y)A(x)⟩±0 . (4.30)

Using the same arguments as Schwartz in Chapter 24 of ref. [40], we have

⟨A(x)A(y)⟩±0 =
∑
X

∫
dΠ±

Xe
−ipX ·(x−y) |⟨Ω|A(0) |X⟩|2 , (4.31)

⟨A(y)A(x)⟩±0 =
∑
X

∫
dΠ±

Xe
−ipX ·(y−x) |⟨Ω|A(0) |X⟩|2 . (4.32)

By adding these two together under Eq. (4.30), we get

iD±(x− y) =
∫

d4q

(2π)4
e−iq(x−y)

∑
X

∫
d4pX
(2π)4

(2π) |⟨Ω|A(0) |X⟩|2 (2π)4δ(4)(q − pX)

×
[ ±i
q2 −m2

X ± iϵ
+ 2πñA(q0)δ(q

2 −m2
X)

] (4.33)

=

∫ ∞

0
dµ2(2π)iG±(x− y;A;µ2)ρ(µ2), (4.34)

where

iG±(x− y;µ2) ≡
∫

d4q

(2π)4
e−iq(x−y)

[ ±i
q2 − µ2 ± iϵ + 2πñA(q0)δ(q

2 − µ2)
]

(4.35)

is the thermal propagator for a scalar A with “mass” µ and spectral density26

ρ(µ2) ≡
∑
X

∫
d4pX
(2π)4

δ(µ2 −m2
X)(2π)

4δ(4)(q − pX) |⟨Ω|A(0) |X⟩|2 (4.36)

=
∑
X

δ(µ2 −m2
X) |⟨Ω|A(0) |X⟩|2 . (4.37)

26This is technically abuse of notation, because ρ(µ2) depends on qµ which is an integral-parameter in the
definition of iG±(x− y;µ2). These equalities are therefore only true when ρ(µ2) is part of the d4q-integral
contained in the definition of iG±(x− y;µ2).
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Note that the spectral density is temperature- and sector independent. This suffices as a
justification for the claim made in Section 3.3 that the extension of ρ̄ to finite temperature
holds, because this extension can be done identically to at T = 0. Nevertheless, inserting
the free thermal spectral function, ρ0(µ

2) = δ(µ2 − m2), into Eq. (4.34) finally gives the
momentum-space thermal propagator of a scalar, A:

iG±(p) =
±i

p2 −m2
A ± iϵ

+ 2πñA(p0)δ(p
2 −m2

A). (4.38)

We observe that iG−(p) = (iG+(p))∗,27 making iG− the reverse time-ordered propagator.
In other words, time-ordering is opposite on H− compared to on H+, proving that our
extension of the Feynman-Stueckelberg interpretation to T > 0 indeed features particles and
anti-particles with different directions of time. Since CPT switches SSR sectors and includes
a time reversal, it is only natural that time-ordering on H+ and H− differ.

The form of Eq. (4.38) is that of a T = 0 propagator with a thermal correction term.
This correction only “activates” when the particle goes on-shell, which we take to mean
that only on-shell particles may be part of a plasma.28 Using the Sochocki-Plemelj theorem,
Eq. (3.8), we have

iG+(p) = P i

p2 −m2
+ π(1 + 2ñ(p0))δ(p

2 −m2) (4.39)

= P i

p2 −m2
+ π

(
[θ(p0) + ñ(p0)] + [θ(−p0) + ñ(−p0)]

)
δ(p2 −m2), (4.40)

which, when compared to the phase space measure in Eq. (4.13), explicitly illustrates that
propagation of on-shell particles on H+ is a mix of propagation on both B+ and B−.

In the fermionic or vector boson case, the procedure is principally identical. Any addi-
tional tensor structure will enter our expressions through the inner products in Eq. (4.31)
and Eq. (4.32), meaning the thermal corrections appear in an identical manner to how they
did for scalars. For a fermionic field A, we therefore have [29, 71]

iG+(p) = (/p+mA)

[
i

p2 −m2
A + iϵ

+ 2πñA(p0)δ(p
2 −m2

A)

]
, (4.41)

while for a vector boson, we have

iG+
µν(p) =

(
−gµν + (1− ξ) pµpν

p2

)[
i

p2 −m2
A + iϵ

+ 2πñA(p0)δ(p
2 −m2

A)

]
. (4.42)

Using these propagators, we can calculate the (amputated) matrix elementsMA→X required
to determine the BW decay rate in Eq. (4.25).

27In the case of propagators of arbitrary spin, the complex conjugation refers only to the ±i in the
numerator and ±iϵ and not to group- or Dirac indices [26, 70].

28As previously stated, resonant off-shell contributions are accounted for via the BW scheme.
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4.3.1 The Thermal BW Propagator

We have not yet established what the BW propagator looks like at finite temperatures.
Näıvely, one would expect that since the time-ordered scalar propagator at T ≥ 0 takes the
form Eq. (4.38), the scalar BW propagator at finite temperature should be

iGBW(p)
?
=

i

p2 −m2 + imΓBW
+ 2πñ(p0)δ(p

2 −m2), (4.43)

as this is the most trivial extension of the T = 0 BW propagator. However, due to the
δ(p2 −m2) in Eq. (4.43), this form violates the ideas we thoroughly explored in Chapter 3
regarding an unstable particle having a “less sharp” mass than a stable particle. The δ in
Eq. (4.43) would imply that only particles of sharp masses may contribute to the plasma,
but as discussed at the end of Chapter 3, the idea behind the thermal BW propagator is
to account for thermal effects of unstable resonant particles with non-sharp mass. In order
to get to the appropriate BW propagator, we must instead “widen” the infinitely sharp
δ(p2 −m2) appearing in Eq. (4.39). To do this, note that, when compared to the T = 0
time-ordered propagator

iGF (p) = P
i

p2 −m2
+ πδ(p2 −m2), (4.44)

Eq. (4.39) simply corresponds to a re-scaling δ(p2−m2)→ (1+2ñ(p0))δ(p
2−m2) in GF (p).

This means that if we simply re-scale our distribution space by the appropriate factor, the
finite temperature BW propagator will end up in the familiar form

Ḡ(p2; ϵ̄) =
1

p2 −m2 + iϵ̄
, (4.45)

which would be in accordance with the “widening of a resonance curve”-approach of Chap-
ter 3. Luckily, we have already implemented this re-scaling when we chose the identity
operators in Eq. (4.21) instead of Eq. (4.17). At finite temperature, we therefore still have

GBW(p2) = Ḡ(p2; ImΠ(ω)). (4.46)

Lastly, since Π(ω) becomes temperature dependent, it follows that the location of the real
pole mass, Eq. (3.22), is different from at T = 0. From this we can adopt the concept of a
“thermal mass”, m(T ), into our propagators. Though this is an interesting in concept in its
own regard, we will not discuss thermal masses at any length in this thesis.

4.4 Cutting Rules at Finite Temperature

Having established how the finite-temperature propagators behave, we can start calculating
the matrix elements in Eq. (4.25) requried for ΓBW. In this section, we show how the
concept of finite temperature cutting rules (first derived by Kobes and Semenoff in ref. [26])

38



emerges from the thermal theory which we have been constructing. The idea behind this
cutting scheme is that it allows us to view the product of matrix elementsMA→XM

†
A→X

in Eq. (4.25) as a single higher-order diagram. At zero temperature, these reduce to the
celebrated Cutkosky cutting rules [72] which state that there is a one-to-one correspondence
between the way that we can cut a loop diagram and the ways in which intermediate particles
can go on-shell in the same diagram. At finite temperature, it will turn out that this one-to-
one correspondence vanishes, and we will have to adapt the cutting rules accordingly.

The theory in which we will be illustrating these cutting rules in is the one relevant to
the freeze-in process, i.e. the scalar singlet model in Eq. eq. (2.15), where we take ψ to be a
scalar state the fermionic/vector behaviour later. The extension to arbitrary theories should
be apparent. At LO, the only process to consider is ϕ→ ψψ, which means that the BW rate
is

ΓBW(p) =
1

2ω

1

1 + fϕ(ω)

∫
dΠ+

ψ1
dΠ+

ψ2
Mϕ→ψψM

†
ϕ→ψψ(2π)

4δ(4)(p− k − q) (4.47)

where pµ is the 4-momentum of ϕ, and kµ and qµ are the 4-momenta of the two final state
ψ. The lowest order contribution to this expression comes from the diagram

Mϕ7→ψψ = +O(λ2) = −iλ+O(λ2), (4.48)

where dashed lines indicate ϕ and solid lines indicate ψ. To O(λ2), the integral required to
calculate ΓBW is therefore∫

d4k

(2π)4
d4q

(2π)4
(−iλ) [θ(k0) + ñψ(k0)] 2πδ(k

2 −m2
ψ)

× (+iλ) [θ(q0) + ñψ(q0)] 2πδ(q
2 −m2

ψ)

× (2π)4δ(4)(p− k − q),

(4.49)

where the thermal factors come from the phase space measures dΠ+
ψ1

and dΠ+
ψ2
. We notice

that if we define

QA(k) ≡ [θ(k0) + ñA(k0)] 2πδ(k
2 −m2

A), (4.50)

then we can write Eq. (4.49) as∫
d4k

(2π)4
d4q

(2π)4
(−iλ)Qψ(k)(+iλ)Qψ(q)× (2π)4δ(4)(p− k − q). (4.51)

If we simply pretend that QA(k) is a propagator, this expression looks an awful lot like that
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of a one-loop diagram:29

k

q

=

∫
d4k

(2π)4
d4q

(2π)4
(−iλ)iGF (k)(−iλ)iGF (q)× (2π)4δ(4)(p− k − q). (4.52)

The main difference between this expression and Eq. (4.51) is the sign in front of one of
the iλ. In order to view Eq. (4.51) as a loop-diagram, we can therefore pretend that there
exists another type of vertex (which we will indicate with a circle around that vertex) which
contributes +iλ instead of the usual−iλ. This means that we can diagrammatically represent
the integral in Eq. (4.51) as30


×



†
=

k

q

. (4.53)

On the RHS, propagation from a non-circled to a circled vertex is given by Qψ(p) (equiva-
lently, propagation from a circled to a non-circled vertex is given by Qψ(−p)), the non-circled
vertex contributes a −iλ and the circled contributes a +iλ. In other words, we can view
the integral over the product of matrix elements in Eq. (4.25) as a single matrix element
constructed from circled and non-circled vertices with propagation through QA(k). To O(λ2),
the BW rate can then be written

ΓBW =
1

2ω

1

1 + f̃ϕ(ω)
×
(

+O(λ4)
)
. (4.54)

To properly illustrate this idea, let us consider a higher-order contribution to the same
process. Denoting byM(n) the O(λn) order contribution to the full matrix element, i.e.M =∑

nM(n), we takeM(1)
ϕ→ψψ to be as in Eq. (4.48) and

M(3)
ϕ→ψψ =

k1

k2

↓k3 (4.55)

= (−iλ)3
∫

d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

iG+
ψ (k1)iG

+
ψ (k2)iG

+
ϕ (k3)

× (2π)12δ(4)(p−k1−k2)δ(4)(k1−k3−q)δ(4)(k2+k3−k)
(4.56)

29Unless noted otherwise, all momentum flows from the left to the right in the following diagrams.
30The sharp corners in this diagram are merely an artistic choice to emphasize that the diagram comes

from a diagrammatic product. This notation for multiplying together finite-temperature diagrams was first
developed by Kobes and Semenoff in ref. [26].
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where iG+
A(k) is the thermal propagator of a field A (which we found in Section 4.3). Then,

one of the O(λ4) contributions to ΓBW in Eq. (4.54) is∫
dΠ+

ψ1
dΠ+

ψ2
M(1)

ϕ→ψψ

(
M(3)

→ψψ

)†
(2π)4δ(4)(p− k − q) (4.57)

=

∫
d4k

(2π)4
d4q

(2π)4
d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

(−iλ)(iλ)3Qψ(k)Qψ(q)iG−
ψ (k1)iG

−
ψ (k2)iG

−
ϕ (k3)

× (2π)16δ(4)(p−k1−k2)δ(4)(k1−k3−q)δ(4)(k2+k3−k)δ(4)(p−k−q).

This expression also resembles that of a loop-diagram with circled and non-circled vertices.
Particularly, if we define the propagator between circled (non-circled) vertices to be iG−

A

(iG+
A), we note that we can diagrammatically represent the above product as


×

 † = k

q

k1

k2

↓k3 . (4.58)

This means that we can include one of the NLO contributions to the BW rate as

ΓBW =
1

2ω

1

1 + f̃ϕ(ω)
×

 + +O(λ4)

 . (4.59)

It turns out that this diagrammatic representation extends to all orders of λ, and that for every

productM(n)
ϕ→ψψ

(
M(m)

ϕ→ψψ

)†
, a corresponding loop-diagram consisting of circled and non-

circled vertices exist. Although it is not difficult to convince oneself that this is true, we refer
to ref. [26] for a more formal treatment of this claim. Hence, rather than viewing the integral
required to calculate ΓBW as consisting of the product of two diagrams, we can instead
consider a single diagram consisting of circled and non-circled vertices and propagators
G+
A(k), G

−
A(k), QA(k), QA(−k) – one for each of the 22 different ways of connecting circled

and non-circled vertices. We will refer to the diagrams constructed from circled and non-
circled vertices that can be viewed as diagrammatic products of two diagrams as compound
diagrams.

The compound diagram in Eq. (4.58) is one example of a family of similar compound
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diagrams which also appear at NLO: ×



†
= , (4.60)


×



†
= , (4.61)


×



†
= . (4.62)

In general, we observe that the effect of conjugating a diagram is to flip it along the vertical
axis and circle all internal vertices. When this conjugate is multiplied by a non-conjugated
diagram, the two are “glued” together in the most intuitive manner – forming a compound
diagram. By our above definitions, these compound diagrams can then be calculated through
the following set of rules (known as the finite temperature cutting rules):

• Non-circled vertices contribute a factor −iλ, circled vertices contribute a factor +iλ.

• Propagation from a non-circled to a circled vertex is given by QA(k),

• Propagation from a circled to a non-circled vertex is given by QA(−k),

• Propagation between two non-circled vertices is given by iG+
A(k),

• Propagation between two circled vertices is given by iG−
A(k),

In the case of arbitrary spin, QA(k) becomes31

QA(k) ≡ [θ(k0) + ñA(k0)] 2πδ(k
2 −m2

A)×


1 A is a scalar,

(/k +mA) A is a fermion,(
−gµν + (1− ξ) kµkν

k2

)
A is a vector boson.

(4.63)

Although derived through a phase space subject to a SSR, these cutting rules align with
those found in the literature [26–29, 73]. The question then becomes, can we construct a
QFT which reproduces these compound diagrams? That is, can we create a field theory
with Feynman rules that allows for 4 types of propagation and 2 types of vertices? If so, we
can just simply consider the diagrams permitted by this theory rather than painstakingly
“gluing” together different matrix elements, like we have been doing so far.

31The representation-specific structures, like Dirac matrices and the spacetime metric, appear due to
contractions with final states.

42



4.5 Thermal Quantum Field Theory

If we want to describe four types of propagation between two different types of vertices,
a natural suggestion is to collect them into a 2 × 2 propagator with components iGab for
a, b ∈ {1, 2}, which describes the propagation from a vertex of type a to a vertex of type
b. By diagrammatically representing a vertex of type 1 (2) as non-circled (circled), the 4
types of propagation outlined in the cutting rules of the previous section can be expressed
through the 2× 2 propagator as

iGab(k) ≡
(
iG+

A(k) QA(−k)
QA(k) iG−

A(k)

)
ab

. (4.64)

By the results of Section 4.3, we know that a field A decomposes into a component A+

which acts on states in H+ and propagates with iG+
A, and into A− acting on H− and

propagating with iG−
A. This behaviour is expressed by the diagonal components iG11 and

iG22, respectively, and we will be addressing the interpretation of the off-diagonal elements
iG12 and iG21 shortly.

In order to reproduce the cutting rules of the previous section, we will therefore consider
the free generating functional

Z0[j1, j2] ∝ exp

{
− i
2

∫
d4xd4yja(x)Gab(x− y)jb(y)

}
, (4.65)

where j1 and j2 are source currents which couple to A+ and A−, respectively. In order to
extend this to an interacting theory, we must determine how the interaction terms of the
Lagrangian, LI [A+, A−], look. This is not a trivial task, because even though we may know
how the full field A couples, we have not defined how its components, A+ and A−, couple.
Firstly, the SSR forbids scattering from one sector to another, meaning A+ and A− do not
couple to each other. This means that LI must take the form LI [A+, A−] = L+I [A+]+L−I [A−],
for some functionals L+I and L−I . Secondly, we want circled vertices to be identical to non-
circled vertices up to a factor of −1, meaning we must have L+I = −L−I ≡ V as functionals.32

Thus, the full generating functional at finite temperature is

Z[j1, j2] ∝ exp

{
−i
∫

d4x

[
V
(

δ

iδj1(x)

)
− V

(
δ

iδj2(x)

)]}
Z0[j1, j2], (4.66)

which is the generating functional in real-time thermal QFT [29, 30, 46, 74–76]. It can be
explicitly checked that the Feynman rules of this theory exactly match those of the cutting
rules in the previous section.

In contrast to a usual derivation of real-time thermal QFT, we have not really claimed
that Eq. (4.66) is the correct description of a general field in a thermal plasma. Instead, we
merely observed a pattern in the product of matrix elements in Eq. (4.25) and formalized

32This is, of course, assuming real coupling constants. Although any CP-invariant theory has real coupling
constants, an appropriate conjugation is required in the case of complex couplings.
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them in a diagrammatic manner through cutting rules. The theory described in Eq. (4.66)
is simply artificially constructed in order to produce Feynman rules akin to the cutting
rules. Despite this, the results of our approach matches those of the conventional methods
which aim to be a general field theoretic description of a thermalized system. Using analytic
continuation one can even prove that Eq. (4.66) reproduces the generating functional of
imaginary-time thermal QFT, and by extension, the partition function of a thermal system
[29, 46, 75] (cf. Appendix E). There is a lot to be said about how our approach to deriving
real-time thermal QFT compares to a conventional approach, which we explore in Section 6.1.

Before proceeding, we must discuss the elephant in the room; the off-diagonal elements
of the 2 × 2 propagator iGab seem to imply that fields may propagate from one sector to
another even though the SSR is implemented to directly prevent this. To address this, it
helps to look at the behaviour of iGab in the T → 0 limit (here in the case of A being a
scalar):

lim
T→0

iGab(k) =

(
iGF (k) θ(−k0)2πδ(k2 −m2

A)
θ(+k0)2πδ(k

2 −m2
A) (iGF (k))

∗

)
ab

. (4.67)

In this limit, the off-diagonal elements carry step functions which fix the sign of p0, e.g. the
propagation of A+ → A− carries θ(+k0). Thus, if we attempt an inter-sector scattering like

H+ H−k
, (4.68)

where the initial states lie on H+ and the final states on H−, the integrand will contain the
product θ(+k0)θ(−k0) = 0. Such scattering processes therefore do not contribute.

At T > 0, the presence of ñA(k0) in the off-diagonals invalidates the argument used for
T = 0. Luckily, the SSR makes sure that any S-matrix for inter-sector scattering vanishes,
meaning the process in Eq. (4.68) does vanish. What does not vanish, however, is internal
inter-sector propagation, e.g. a particle may propagate from H+ to H− and back to H+ via
internal propagation. Since the SSR only claims to disallow certain measurable processes,
we must reach the conclusion that internal particles are indeed allowed to switch sectors.
This is only natural because internal particles have no on-shell requirement, meaning they
do not submit to any single sector. At T = 0 this effect vanishes due to conservation of
momentum, but at T > 0 the effect becomes quite prevalent.

This may seem rather paradoxical; we claim that only internal (off-shell) particles are
subject to inter-sector propagation, but this propagation features a factor δ(p2−m2), putting
them on-shell. The resolution is that such internal processes are not measurable. Although our
theory technically predicts inter-sector scattering, the SSR will always make sure that no such
process is measured. This is comparable to how gauge invariant theories technically predict
the production of ghost particles, but the spin-statistics theorem prevent such processes
from ever being measured.

While on this topic, we should scrutinize how literally we can interpret all 4 components
iGab as propagators. This 2× 2 “propagator” was constructed solely in order to reproduce
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the cutting rules of the previous section, and even through the results of Section 4.3 tell us
that iG11 = iG+

A and iG22 = iG−
A indeed are propagators, we are still “pretending” as if

iG12(k) = QA(−k) and iG21(k) = QA(k) are propagators. However, if we look at Eq. (4.31)
for a free spectral function, ρ0(q

2;A) = δ(q2 −m2
A), we see that

⟨A(x)A(y)⟩±0 =

∫
d4k

(2π)4
e−ik(x−y)QA(±k). (4.69)

In position-space this means that the time-ordered propagators can be written as

iG±
A(x− y) = θ(±(x0 − y0))QA(x− y) + θ(±(y0 − x0))QA(y − x), (4.70)

meaning QA(k) and QA(−k) were actually propagators all along! It is therefore appropriate
to claim that all components iGab indeed are propagators. Furthermore, from Eq. (A.8), we
get the Kubo-Martin-Schwinger relation [24, 25, 29, 30]: QA(k) = εAe

ik0βQA(−k).

4.6 What is Cutting?

So far, we have not really justified why we call the rules which we based our thermal QFT
on for “cutting” rules. In this section, we will rationalize this naming and outline the ideas
behind the concept of cutting, both at zero- and finite temperature.

By looking at the compound diagrams on the RHS of Eq. (4.58), Eq. (4.60), Eq. (4.61)
and Eq. (4.62), we observe that the circled vertices form a connected set in the sense that we
can draw a connected line vertically through all the lines propagated by QA (and through
these lines only!) such that all circled vertices will be to the right of this line, and all
non-circled to the left:

, ,

, .

(4.71)

Since a compound diagram (by definition) is a product of a diagram and a conjugated
diagram, its leftmost vertex (the one connected to the external initial state) must always
be non-circled and its rightmost vertex (the one connected to the external final state)
must always be circled. From this and Eq. (4.71), it appears that there is a one-to-one
correspondence between the ways that we can cut a loop diagram and the ways we can
construct compound diagrams. In other words, for the above example, there are only 4
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topologically different ways of vertically cutting through the diagram

(4.72)

and there are only 4 ways of circling its vertices while creating the above-mentioned connected
sets. We therefore propose that, instead of thinking in terms of “ways to circle a diagram”,
we can think in terms of “ways to cut a diagram” – hence the naming of cutting rules.

How can we be sure that this notion extends to arbitrary compound diagrams? As a
matter of fact, we can not ! Although all compound diagrams must have its rightmost vertex
circled and leftmost non-circled, we cannot generalize the notion of cutting to all compound
diagrams. Take for example the 4 additional compound diagram which our theory, Eq. (2.15),
produces at O(λ4):

, ,

, .

(4.73)

Of these, only the three first are cuttable. In the last diagram, there is no way to draw a
vertical line through the QA lines while keeping circled vertices to the right and non-circled
to the left. The notion of “cutting” therefore breaks down in this case. The above proposal
is therefore wrong. We must think in terms of ways to circle compound diagrams.

At zero temperature, one can show that this uncuttable diagram vanishes: As T → 0 we
have QA(k) → θ(k0)2πδ(k

2 −m2
A), meaning cut particles must have k0 > 0 when flowing

from the left to the right side of the cutting line. The specific arrangement of circled and non-
circled vertices in the last diagram of Eq. (4.73) therefore violates conservation of momentum
in at least one vertex, meaning the diagram vanishes. At T = 0, this ends up being the case
for all compound diagrams where the circled and non-circled vertices do not form connected
sets [77]. In other words, at T = 0, every non-zero compound diagram can be viewed as one
that has been physically “cut” through its QA lines. These are the well-established cutting
rules at zero temperature [72, 77].

At finite temperature, however, this is no longer the case, as the appearance of ñA(k0)
in QA(k) means that k0 is no longer restricted to be purely positive when flowing from the
left to the right side of the cutting line. As such, the last diagram in Eq. (4.73) is non-zero
at finite temperatures, meaning we cannot view all possible non-zero compound diagrams as
ones that can be “cut” the way we can at T = 0. Nevertheless, it is convention to stick with
the naming of “cutting rules” at finite temperatures even though the concept of “cutting”
breaks down.
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The awkward behaviour of this “uncuttable” compound diagram can be traced back to
the diagrammatic product which it originates from:33

×
 † = . (4.74)

Noticeably, this is the only compound diagram we have studied so far that comes from a
product of diagrams which do not contain only non-circled vertices – none of the other
diagrams in Eq. (4.71) nor Eq. (4.73) feature circled vertices in their diagrammatic product
representation. The reason is that the diagram

(4.75)

is simply not one which can be calculated asMA→X in the QFT used for the matrix elements
in Eq. (4.25). The fact that this diagram appears is a direct consequence of our formulation
of a thermal QFT (cf. Eq. (4.66)) whose Feynman rules are designed to match the cutting
rules. In other words, by switching to the 2× 2 propagator and real-time thermal QFT, we
end up producing more diagrams than we intended to.

The question then becomes, should we include such uncuttable compound diagrams
when they were not part of our original plan? This problem was first encountered by Kobes
and Semenoff in 1985 when they derived the thermal cutting rules for the very first time [26].
They discovered that, at T > 0, the sum of all cuttable compound diagrams feature ill-defined
distributions, like products of identical δ-functions. If, however, one also includes the non-
cuttable compound diagrams, like Eq. (4.75), into this sum, all such ill-defined distributions
cancel, giving a well-behaved expression. At zero temperature, such a cancellation also hap-
pens between the three cuttable diagrams in Eq. (4.73), but at finite temperature, additional
ambiguous terms arise in these three diagrams that do not cancel among themselves. For a
more in-depth discussion that extends to higher orders, see ref. [26].

In order to maintain well-defined expressions, we will therefore include uncuttable com-
pound diagrams in our calculations. Accumulatively, these diagrams make up the A+ → A−
self-energy

ΠA21(p) ≡
p

, (4.76)

meaning the BW decay rate in Eq. (4.25) can be written on the compact form

ΓBW =
1

2ω

1

1 + f̃A(ω)
ΠA21(p), (4.77)

where ω is the A energy in the plasma frame. This equation constitutes one of our central
results, as we can finally start calculating ΓBW at finite temperatures.

33This is under the interpretation that conjugating a circled vertex turns it into a non-circled vertex.
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Chapter 5

Calculating Decay Rates at T ≥ 0

In this chapter, we will calculate ΓBW for the theory in Eq. (2.15) to both one- and two-loop
order, where the majority of the maths required for the latter has been moved to Appendix B.
By calculating the BW rate we can compare it to the one derived by ref. [23] in Eq. (2.32).

In the following expressions, we will allow for ψ to be either a scalar or a fermion. In
order to avoid having to write one explicit expression for each case, the following expressions
will be written in a manner that easily allows one to extract both the fermionic and the
bosonic expressions. Any expression which contains red symbols is a fermionic one, and to
recover the bosonic one, simply remove the red symbols in the most intuitive manner. For
example, the fermionic expression f(x)g(x)h(x) becomes the bosonic expression f(x)h(x).
The Feynman diagrams will be drawn with scalar lines as the extension to fermionic lines is
trivial.

It should also be mentioned that if ψ is a scalar (fermion), then the coupling λ has mass
dimension 1 (0). In the scalar case, this makes the interpretation of the coupling constant
dependent on the relevant energy scale.

5.1 One-Loop Order

It is in our interest to first consider the case where ϕ couples to two different particles, ψ1

and ψ2 through LI ⊃ −λϕψ1ψ2, because the existing BW decay rate in Eq. (2.32) claims
to hold for different final state particles. Later, we will focus on ψ1 = ψ2.

5.1.1 Different Final States: ψ1 ̸= ψ2

In the following, ψ1 and ψ2 are taken to be of the same particle type (boson or fermion)

with mψ2 > mψ1 . At LO, the only contribution to Πϕ21 is

Πϕ21 =

ψ2

ψ1

+O(λ4), (5.1)
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where one of the solid lines indicates ψ1 with internal momentum kµ and the other indicates
ψ2 with internal momentum qµ. Using Eq. (4.77), we get

ΓBW(p) =
λ2

2ω

1

1 + fϕ(ω)

∑
ψ1ψ2

∫
d4k

(2π)3
d4q

(2π)3
(2π)4δ(4)(p−k−q)δ(k2 −m2

ψ1
)δ(q2 −m2

ψ2
)

× ϵ(kµuµ)ϵ(qµuµ)(1 + f̃ψ1(k
µuµ))(1 + f̃ψ2(q

µuµ)) (5.2)

×(−4)(kµqµ +mψ1mψ2)

where we used the identity in Eq. (4.15) and εψ1εψ2 = +1. To continue, let us focus on the
interplay between the two on-shell δ’s; we have

δ(k2 −m2
ψ1
)δ(q2 −m2

ψ2
) =

1

4Eψ1Eψ2

[δ(k0−Eψ1) + δ(k0+Eψ1)] [δ(q0−Eψ2) + δ(q0+Eψ2)] ,
(5.3)

where Eψ1 and Eψ2 are the ψ1 and ψ2 energies, respectively, in the frame where the plasma
moves with a relative 4-velocity uµ. The cross term δ(k0 + Eψ1)δ(q0 + Eψ2) in Eq. (5.3)
vanishes due to the δ(4)(p − k − q) in ΓBW. The two cross terms δ(k0 ± Eψ1)δ(q0 ∓ Eψ2)
imply that p0 = ∓(Eψ1−Eψ2). Since ϕ is on B+, we have p0 > 0, meaning one of these cross
terms must vanish while the other survives. Since mψ2 > mψ1 , it follows that the cross term
δ(k0 − Eψ1)δ(q0 + Eψ2) vanishes because it would imply p0 < 0. Thus, the only surviving δ
cross terms are δ(k0 − Eψ1)δ(q0 − Eψ2) and δ(k0 + Eψ1)δ(q0 − Eψ2), giving

ΓBW(p) =
λ2

2ω

1

1 + fϕ(ω)

∑
ψ1ψ2

∫
d3k

(2π)32Eψ1

d3q

(2π)32Eψ2

(2π)4δ(3)(p− k− q)

×
[
δ(p0 − Eψ1 − Eψ2)

(
1 + f̃ψ1(k

µuµ)
)
k0=Eψ1

(
1 + f̃ψ2(q

µuµ)
)
q0=Eψ2

×(−4) (Eψ1Eψ2 − k · q−mψ1mψ2)

+ δ(p0 + Eψ1 − Eψ2)f̃ψ1(−kµuµ)k0=−Eψ1

(
1 + f̃ψ2(q

µuµ)
)
q0=Eψ2

×(−4) (−Eψ1Eψ2 − k · q−mψ1mψ2)

]
.

(5.4)

Here, we used the identity 1+f̃A(ω)+f̃A(−ω) = 0 in order to rewrite the thermal suppressions
inside the square brackets. Looking at the structure of these phase space suppressions, we see
that the factor (1 + f̃ψ1(k

µuµ))(1 + f̃ψ2(q
µuµ)) corresponds to a phase space where both ψ1

and ψ2 are final states: ϕ→ ψ1ψ2. The factor f̃ψ1(−kµuµ)(1+ f̃ψ2(q
µuµ)) is equivalent to ψ1

being an initial state and ψ2 a final state: ϕψ1 → ψ2. For example, the Lorentz transformed
energy

(kµuµ)k0=Eψ1 = Eψ1u0 − kiui
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indicates a ψ1 leaving the vertex with 3-momentum k, while

−(kµuµ)k0=−Eψ1 = Eψ1u0 − (−ki)ui

can be thought of as an initial ψ1 entering the vertex with momentum −k. We can associate
one such process to each of the 4 possible δ cross terms in Eq. (5.3):

δ(k0 − Eψ1)δ(q0 − Eψ2) −→ ϕ→ ψ1ψ2, (5.5)

δ(k0 − Eψ1)δ(q0 + Eψ2) −→ ϕψ2 → ψ1, (5.6)

δ(k0 + Eψ1)δ(q0 − Eψ2) −→ ϕψ1 → ψ2, (5.7)

δ(k0 + Eψ1)δ(q0 + Eψ2) −→ ϕψ1ψ2 → |Ω⟩ , (5.8)

where |Ω⟩ represents a vacuum state. Due to conservation of momentum, the processes in
Eq. (5.6) and in Eq. (5.8) are forbidden (the former is not allowed because mϕ+mψ2 > mψ1).
This means that, out of all the possible processes involving ψ1, ψ2 and an initial ϕ, the
expression in Eq. (5.4) accounts for all kinematically allowed processes: ϕ → ψ1ψ2 and
ϕψ1 → ψ2. Usually, we do not have to account for additional processes in our calculations,
but luckily all contributions from the latter process vanishes as T → 0. This can be seen by
going to the plasma frame where f̃ψ1(−kµuµ)k0=−Eψ1 = f̃ψ1(Eψ1) which vanishes as T → 0.

Why must we suddenly account for additional processes at T > 0? The reason for this
was already argued for in Section 3.4 where we concluded that if we want ΓBW to actually
behave like a rate at finite temperatures, we must consider the accumulative effect of all
relevant processes. Supposedly then, these processes are ϕ → ψ1ψ2 and ϕψ1 → ψ2. In a
plasma, the background is indistinguishable from the foreground, and there is a population
of ψ1 present for ϕ to interact with, meaning the process ϕψ1 → ψ2 necessarily occurs. At
zero temperature, the background upon which a lone ϕ propagates does not contain any ψ1

to couple with – hence the exclusion of such a process when calculating ΓBW at T = 0.
It is important to mention that the identification of the terms of Eq. (5.4) with different

ϕ processes through their phase space suppression is merely an interpretation and should
be applied with caution. According to Eq. (4.25), all matrix elements used to calculate ΓBW

are of the form ϕ → X, which excludes ϕψ1 → ψ2. A more faithful interpretation of the
appearance of new non-zero δ cross-terms at T > 0 is that, since B+ contains states from
both H+ and H−, we must account for the four different ways that ψ1 and ψ2 can be put in
these sectors. The four possible ways of putting ψ1 and ψ2 in H+ and H− correspond to the
four processes in Eq. (5.5) to Eq. (5.8). Out of these four, only two satisfy conservation of
4-momentum for a time-like mediator ϕ. This is further supported by the above-mentioned
interpretation that the 3-momentum of the incoming ψ1 in the process ϕψ1 → ψ2 is −k,
which indicates a backwards trajectory when ψ1 is on H− – in agreement with the Feynman-
Stueckelberg interpretation of anti-particle-processes happening in reverse compared to
particle processes.

The necessity of including additional processes was first mentioned by Weldon in ref. [31].
Here, he assigns the reason behind the appearance of this extra process as due to an additional
cut in the ϕ self-energy that is not present at T = 0. The discontinuity across this cut is purely
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imaginary and behaves like any other thermal rate. We can therefore associate B± ̸= H±

at T > 0 with the appearance of an additional cut along the self-energy. What is more,
Eq. (5.4) is organized exactly in the manner which Weldon desired (cf. Section 3.4); ΓBW is
structurally identical to how one would expect a decay rate to look at finite temperatures.

The BW decay rate derived by ref. [23] in Eq. (2.32) does not account for the process
ϕψ1 → ψ2. In their derivation, they instead operate under the notion that since the specific
decay process is ϕ → ψ1ψ2, then the rate at which the ϕ population decreases is given by
that process alone. At zero temperature this is a correct notion because there ΓBW truly is
a decay rate, but at finite temperatures we have established that this is no longer the case.
If we remember to include the process ϕψ1 → ψ2 while deriving Eq. (2.32), we get

ΓBW =
1

1 + fϕ(ω)

∑
ψ1 ̸=ψ2

[
Γϕ→ψ1ψ2Iψ1ψ2(γ, s) + Γϕψ1→ψ2I

ψ1

ψ2
(γ, s)

]
, (5.9)

where ΓA→B is the T = 0 rate for the process A→ B and

Iψ1

ψ2
(γ, s) ≡ 1

2

∫ 1

−1
dcos θ f̃ψ1(k

µuµ)(1 + f̃ψ2(q
µuµ)). (5.10)

This expression agrees with the one we derived in Eq. (5.4). Given slight modifications, the
BW decay rate derived in ref. [23] therefore agrees with ours to the lowest order.

Actually, the ideas behind the derivation in ref. [23] must be tweaked a slight bit more
than just including the process ϕψ1 → ψ2. If we näıvely include this process with the
traditional phase space suppressions, then Iψ1

ψ2
would be defined through fψ1 instead of

through f̃ψ1 – leading to a sign-difference in the fermionic case. It is exactly this difference
between working in terms of fA instead of in terms of f̃A which leads to the awkward sign-
differences between scalar and fermion processes, like the one we struggled to motivate in
the definition of ΓBW back in Section 3.4. Working in terms of f̃A avoids having to motivate
the pesky sign-differences which otherwise would appear depending on spin. We shall see
another example of this in Section 6.2.

5.1.2 Identical Final States: ψ1 = ψ2

Here, we consider the case of identical final state particles: ψ1 = ψ2 ≡ ψ. In the ϕ rest-frame,
we have p = 0⇒ k = −q⇒ Eψ1 = Eψ2 ≡ Eψ. The δ(p0+Eψ1−Eψ2) appearing in the term
corresponding to the process ϕψ1 → ψ2 in Eq. (5.4) thus becomes δ(p0). For any non-zero p0,
we therefore do not get any contribution from this term. This is rather reasonable, because
the process ϕψ → ψ is not kinematically viable for a time-like massive ϕ. If ψ is a scalar,
we multiply the phase space by a symmetry factor of 1/2, but not if ψ is a fermion, giving

ΓBW(p) = 2
1

2

λ2

2ω

1

1 + fϕ(ω)

∑
ψ

∫
d4k

(2π)32Eψ

d4q

(2π)32Eψ
(2π)4δ(4)(p−k−q)

× δ(k0 − Eψ)δ(q0 − Eψ)(1 + f̃ψ(k
µuµ))(1 + f̃ψ(q

µuµ))

×(−4)
(
E2
ψ − k · q−m2

ψ

) (5.11)
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This BW decay rate matches the one derived in ref. [23] to LO.

5.2 Two-Loop Order

Here, we will construct ΓBW to O(λ4) in the case of identical final states. Up to O(λ4), the
possible compound diagrams are

Πϕ21 =

+ + + +

+ + + +

+ O(λ6)

(5.12)

We identify two classes of compound diagrams; ones corresponding to vertex corrections
(second line of Eq. (5.12)) and ones corresponding to ψ self-energy corrections (third line of
Eq. (5.12)). We will consider one class at a time.

5.2.1 Vertex Corrections

The four diagrams to calculate here are

M1 = , M2 = ,

M3 = , M4 = .

(5.13)

Their sum can be written as

Mvertex =M1 +M2 +M3 +M4 (5.14)

= −λ4
∫

d4k

(2π)4
d4l

(2π)4
(−tr {Z}) [N1 +N2 −N3 −N4] , (5.15)

where

tr {Z} ≡ tr
{
(/k +mψ)(/l +mψ)(/l − /p+mψ)(/k − /p+mψ)

}
(5.16)

= 4
[
k · l(4m2

ψ + p2)− l · p(k2 + 3m2
ψ)− k · p(l2 + 3m2

ψ)

+m2
ψ(k

2 + l2 + p2) + k2l2 +m4
ψ

] (5.17)
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and

N1(k, l) ≡Wψ(k)W
+
ψ (l)W−

ψ (l − p)Wψ(k − p)Wϕ(k − l),
N2(k, l) ≡W+

ψ (k)W ∗
ψ(l)W

∗
ψ(l − p)W−

ψ (k − p)W ∗
ϕ(k − l),

N3(k, l) ≡W+
ψ (k)W ∗

ψ(l)W
−
ψ (l − p)Wψ(k − p)W−

ϕ (k − l),
N4(k, l) ≡Wψ(k)W

+
ψ (l)W ∗

ψ(l − p)W−
ψ (k − p)W+

ϕ (k − l),

(5.18)

for

WA(k) ≡
i

k2 −m2
A + iϵ

+ 2πñA(k0)δ(k
2 −m2

A), (5.19)

W±
A (k) ≡ [θ(±k0) + ñA(k0)] 2πδ(k

2 −m2
A). (5.20)

Note that tr {Z} is symmetric under k ↔ l and that N1(k, l) = (N2(l, k))
∗ and N3(k, l) =

(N4(l, k))
∗. Hence,

Mvertex = −λ4
∫

d4k

(2π)4
d4l

(2π)4
(−tr {Z})2 [Re {N1} − Re {N3}] . (5.21)

We have performed such two-loop vertex calculations in Appendix B.

5.2.2 Self-Energy Corrections

Here, we consider the contribution from the four self-energy diagrams:

MSE = + + + + . . . (5.22)

= , (5.23)

where the upper line with a “blob” defines the ψ+ → ψ− correlator, D21(k):

iD21(k) = + + + + + . . .
(5.24)

By defining the correlator with n 1PI insertions as34

iD
(n)
21 (k) ≡ Π Π

n times

, (5.25)

34D
(n)
11 (k), D

(n)
12 (k) and D

(n)
22 (k) are defined similarly, but with different initial- and final vertex circlings.
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where the 1PI insertion considers all possible circlings of vertices, we can write

iD21(k) =
∞∑
n=0

iD
(n)
21 (k). (5.26)

Note that iD
(0)
ab (k) = iGab(k) is just the b→ a thermal propagator. Using this construction,

we can write the contribution to MSE, with n and m 1PI insertions on respectively the
upper and lower lines in the loop of Eq. (5.23), as

M(nm)
SE (p) ≡ (−iλ)(+iλ)

∫
d4k

(2π)4
(−1)tr

{
iD

(n)
21 (k)iD

(m)
12 (p− k)

}
, (5.27)

For example, the sum of all two-loop contributions in Eq. (5.22) corresponds toM(10)
SE .

Next, we establish a procedure which greatly simplifies the calculation of Eq. (5.27) for
arbitrary n and m. The thermal 2 × 2 propagator iGab of a field A, can be diagonalized
through a Bogoliubov transformation as [29, 46, 70]

iGab(k) = Uac(k0)

(
iGF (k) 0

0 (iGF (k))
∗

)
cd

Udb(k0), (5.28)

where iGF (k) is the T = 0 time-ordered propagator of A and

U(k0) ≡
(
[θ(k0) + εAθ(−k0)]

√
1 + ñA(k0) εAe

−βk0/2
√
nA(k0)

eβk0/2
√
nA(k0) [θ(k0) + εAθ(−k0)]

√
1 + ñA(k0)

)
. (5.29)

Through the Dyson equation [53], Le Bellac [29] shows that by defining a quantity Π̄A(k)
which is related to the A+ → A+ self-energy, ΠA11, through

Re
{
Π̄A(k)

}
≡ Re

{
ΠA11(k)

}
, Im

{
Π̄A(k)

}
≡ ϵ(k0)

1 + 2f̃A(k0)
Im
{
ΠA11(k)

}
, (5.30)

then we can perform the same diagonalization procedure to D
(n)
ab as

iD
(n)
ab (k) = Uac(k0)

(
iD̃(n)(k) 0

0
(
iD̃(n)(k)

)∗)
cd

Udb(k0), (5.31)

where

iD̃(n)(k) =

(
n∏
i=1

[
iGF (k)(−iΠ̄A(k))

])
iGF (k). (5.32)

Hence, we can write the two correlators in Eq. (5.27) as (for n > 0)35

iD
(n)
21 (k) = U21(k0)U11(k0)iD̃

(n)(k) + U22(k0)U21(k0)(iD̃
(n)(k))∗ (5.33)

= ϵ(k0)(1 + f̃A(k0))2Re
{
iD̃(n)(k)

}
, (5.34)

iD
(n)
12 (k) = ϵ(k0)f̃A(k0)2Re

{
iD̃(n)(k)

}
. (5.35)

35Again, the conjugations do not apply to Dirac indices.
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These may be inserted into Eq. (5.27), which through Eq. (5.32), allows us to express

M(nm)
SE (p) in terms of the ψ+ → ψ+ self-energy Πψ11. Therefore,M

(10)
SE becomes

M(10)
SE =λ2

∫
d4k

(2π)4
ϵ(k0)(1 + f̃ψ(k0))(−1)tr

{
2Re

{
iD̃(1)(k)

}
Qψ(k − p)

}
. (5.36)

Why have we gone through all the trouble of rewritingMSE in terms of Πψ11? There are two
main benefits:

1. Through the theory in Eq. (4.66), we can calculate Πψ11(k) and insert its value directly
into Eq. (5.36). For example, ref. [46] has calculated this exact quantity to O(λ2) for
both scalar and fermion ψ, which we can insert into Eq. (5.36) to obtain the O(λ4)
expression. In the fermionic case, inserting Πψ11(k) is slightly more complicated than
the scalar case due to non-trivial angular dependences, which we have shown how to
account for in Appendix C. Depending on the situation, it might be beneficial to have
the option of calculating Πψ11(k) separately from ΓBW.

2. When looking at Eq. (5.22), one may be concerned that the diagrams feature ill-defined
products of distributions, like δ(k2−m2

A)× δ(k2−m2
A) – so-called “pinching singular-

ities”. From the above construction, we observe that the final expression for iD
(n)
ab (k)

(and hence,M(nm)
SE ) contains no such products. Meanwhile, products of propagators,

iGF (k) (which appear in Eq. (5.32)), are well-defined through the identity [29]

lim
ϵ→0

1

(x+ iϵ)n+1
= P 1

xn+1
− iπ (−1)

n

n!

dn

dxn
δ(x). (5.37)

This proves the claim we made back in Section 4.6 that ΠA21(ω) is only well-defined
once the sum of all compound diagrams has been taken.

The identity in Eq. (5.37) will prove to be rather troublesome when we later perform
numerical integrals, as the integral

∫
dxP 1

x2
diverges. In order to fix this, we use a

regularization procedure outlined in Appendix D.

A takeaway from this and the previous section is that the BW decay rate derived by ref. [23]
only agrees with our result to LO (given a few modifications to their approach). At NLO
and beyond, our expressions feature thermal dependencies not present in Eq. (2.32).

5.3 Numerical Calculations

Although the ΓBW which we have derived may analytically disagree with the one derived in
ref. [23], we can not yet claim any physical relevance of our expression before we observe how
it behaves physically. As such, we turn to calculating and evaluating the two-loop corrections
to ΓBW derived in the previous section.

It is no secret that thermal loop calculations become very complicated, very quickly.
For example, the first time the fermion self-energy Πψ11 was fully analytically calculated
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to one-loop order was as recently as in 2021 [46]. As such, we can not expect to be able
to fully analytically solve the two-loop integrals required to calculate ΓBW to O(λ4). The
few analytical integrals that we can hope to perform are further complicated by the fact
that the thermal distribution functions are defined in the plasma frame, while analytical
calculations are the easiest to perform in the c.o.m frame. This introduces an awkward
angular dependence through Eq. (2.26). In all, it turns out that in order to calculate ΓBW

to O(λ4), we will have to perform several numerical triple integrals over highly irregular
and oscillatory integrands.

Unfortunately, I made a mistake in the analytical two-loop calculations. I forgot that the
expression in Eq. (5.21) and Eq. (5.36) are given in the plasma frame, and simply assumed
that one could pass to the c.o.m frame where pµ = (p0, 0, 0, 0) without having to Lorentz
transform the thermal distribution functions, like we have done in Eq. (5.11).36 Effectively,
this mistake discards any physical effect induced by the fact that the c.o.m frame and the
plasma frame are two very distinct frames. Analytically, this mistake actually ended up
reducing the above-mentioned triple integrals to be only double integrals, which in turn
made the numerical implementation way easier than if the mistake had not been made. By
the time the mistake was discovered, there was not enough time left in the project to extend
these double integral calculations to their correct triple integral counterparts. Since the focus
of this thesis is on the analytical aspects of thermal physics and features rather theory-heavy
work, it is likely that time simply would not have sufficed for a complete numerical triple
integration anyway.

Therefore, instead of simply discarding the erroneous results, we decided to see if we
could potentially extract some physical data from them – like the order to which ΓBW scales
with T or the relevance of the O(λ4) terms compared to the O(λ2) terms, and so on. The
hope is that, somewhere in the parameter space, our erroneous result will carry attributes
of the true physical behaviour. A priori, there is no reason why this should be the case,
since our mistake is quite a severe one. It is therefore up to us to study our results and
a posteriori determine whether they are worthy of physical interpretation or if they are
consistently nonsensical. As such, the remainder of this section illustrates how a numerical
analysis of the two-loop calculations would go, had they been implemented correctly.

We will take ψ to be a scalar with mψ < mϕ as this trivializes some angular dependences.
The (erroneous) one-loop contributions to ΓBW then becomes (cf. Eq. (5.11))

ΓBW(p0) =
λ2

32πmϕ

1

1 + fϕ(p0)

∑
ψ

θ(p0 − 2mψ)
[
1 + f̃ψ

(p0
2

)]2√
1− 4m2

ψ/p
2
0. (5.38)

In Appendix B we show how to perform the calculations required at O(λ4), resulting in the

36This mistake only concerns the explicit two-loop calculations performed in Appendix B. All the other
results presented in this thesis should be correct in their respective frames.
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O(λ4)-order corrections:

Πϕ21(p0)
O(λ4)
= Mvertex(p0) +MSE(p0)

= MN1
vertex(p0) +MN2

vertex(p0) +M
(10)
SE (p0),

(5.39)

whereMN1
vertex(p0) andMN2

vertex(p0) are given in Eq. (B.10) and Eq. (B.18), respectively, and

M(10)
SE (p0) =

λ4

(2π)3
1

16p20

∫
R\[−mψ ,mψ ]

dy

∫
R\[−mϕ,mϕ]

dx θ (j(x, y))P 1

(y + p0/2)2

× ϵ(x)ϵ(y)ϵ(x+ y + p0)f̃ϕ(x)f̃ψ(y)(1 + f̃ψ(x+ y + p0)),

(5.40)

where j(x, y) ≡ 2
√
x2 −m2

ϕ

√
y2 −m2

ψ − |(x+ y + p0)
2 − x2 − y2 +m2

ϕ|.
Matters are complicated by the appearance of a UV divergence in the integrand ofM(10)

SE

at y = −p0/2. In Appendix D we regularize and renormalize our expressions in order to make
this UV divergence disappear. Note that, due to Eq. (5.37), a renormalization procedure
would have been required even if we had not made the error mentioned above. The approach
of Appendix D should therefore be considered valid in the correct approach as well.

In calculatingM(10)
SE we used a procedure mostly identical to the one used in Appendix B.2

by calculating each of the diagrams in Eq. (5.22). As stated at the end of Section 5.2.2, we

could instead have used the existing expression for Πψ11(k), found in ref. [46], and simplified
the calculations. However, we found that the above-mentioned renormalization procedure
became much more painless if we simply did all the calculations manually. The process was
alleviated by the result of Section 5.2.2 which told us that all pinching singularities must
cancel – effectively letting us take δ(k2 −m2

A)× δ(k2 −m2
A) = 0 in the calculations.

The (renormalized) physical BW decay rate (cf. Eq. (D.7)) can then be written as

Γphys
BW (p0, T ) = A(p0, T )λ̃

2
R +B(p0, T )λ̃

4
R +O(λ̃6R), (5.41)

where we have introduced the dimensionless renormalized coupling constant λ̃R ≡ λR/mϕ,
37

and defined

A(p0, T ) ≡ m2
ϕΓ

(2)
BW(p0, T ), (5.42)

B(p0, T ) ≡ m4
ϕ

(
Γ
(4)
BW(p0, T )− Γ

(4)
BW(mϕ, 0)

)
, (5.43)

for Γ
(n)
BW being the λ̃nR-order contribution to ΓBW. That is, Γ

(2)
BW is given by Eq. (5.38) and

Γ
(4)
BW is calculated through Eq. (5.39), where we have also included a symmetry factor of 1/2

into the latter due to the identical final state scalars. By splitting A and B into their T = 0
and T > 0 parts, A0(p0), B

0(p0) and Aβ(p0, T ), B
β(p0, T ), respectively, we get 4 different

quantities of varying interest:

37The reason behind this is that it is easier to work in terms of dimensionless couplings. The scaling was
done with respect to mϕ as this is the relevant energy scale for p0 in the domain of resonance. If ψ were a
fermion, λR would already be dimensionless and would not require scaling.
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• A0(p0) is trivially (mϕ times) the known LO decay rate at T = 0,

• Aβ(p0, T ) has already been studied in the literature [23],38

• B0(p0) is cancelled by the renormalization conditions (cf. Eq. (D.7)),

• Bβ(p0, T ) is non-trivial.

When performing numerical computations we are therefore the most interested in studying
Bβ(p0, T ). Since contributions from Bβ are suppressed by a factor λ̃2R relative to that of
A, one would initially suspect that the effects from Bβ are, at best, miniscule. However,
due to the non-trivial temperature dependence of Bβ , we can not immediately say whether
B(p0, T )λ̃

4
R is larger or smaller than A(p0, T )λ̃

2
R at any given temperature.

An interesting question is then of when

|B(p0, T )|λ̃4R
|A(p0, T )|λ̃2R

≳ 1 (5.44)

holds. To answer this, we will aim to find a temperature T∗ such that, for some λ̃R,∣∣∣∣B(p0, T )

A(p0, T )

∣∣∣∣ ≥ λ̃−2
R ∀ T ≥ T∗ . (5.45)

If T∗ exists, then at temperatures above it, the O
(
λ̃4R
)
terms of Γphys

BW actually dominate over

the O
(
λ̃2R
)
terms.

5.3.1 Results

The numerics are computed using Mathematica 13.0, and we will be working in units of
the Higgs boson mass mϕ = 125.25± 0.17 GeV [78]. By plotting T∗ as a function of p0 for
different λ̃R, we can understand how the higher-order thermal corrections behave. We start
by studying how our expressions depend on τ ≡ log10(T/mϕ) through

Y (τ) ≡ log10

∣∣∣∣B(p0, 10
τmϕ)

A(p0, 10τmϕ)

∣∣∣∣ . (5.46)

We plot Y (τ) for several p0 in the domain of resonance in Figure 5.1. We observe that at
around T ≈ 5mϕ, Y (τ) has a drastic drop, but as τ increases past this, it appears to behave
rather linearly. We can utilize this behaviour and try to approximate

Y (τ) ≈ aτ + b (5.47)

for τ ≳ 2. The coefficients a and b are listed in Table 5.1 for several p0 in the domain of
resonance and mψ = 0.1mϕ. We observe that a ≈ 1 and b ≈ −1.2 – except in the case of

38Due to the mistake we made, our Aβ(p0, T ) will not really be the same as the one in ref. [23], but any
physical qualities which we are hoping remain intact should be the same.
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Figure 5.1: Plot of Y (τ) for mψ = 0.1mϕ, illustrating that the linear behaviour of Eq. (5.47)
only appears as T becomes large.

p0 = 0.92. We see no reason as to why the point of p0 = 0.92 should merit any physical
significance or odd behaviour. Simulations with other parameters yielded no such behaviour,
which is why we regard the data point at p0 = 0.92 as a numerical anomaly, and we lend no
physical reason to its behaviour. Unfortunately, due to our implementation of the double
integral in Mathematica 13.0, we were unable to get any specific uncertainties for the
coefficients themselves, which inhibited us from performing a typical χ2 test on our linear
fit. The R2-value39 of all these linear fits was R2 = 0.999, except in the case of p0 = 0.92
which yielded R2 = 0.840. Disregarding the numerical anomaly, this tells us that as T grows
very large, Y (τ) behaves almost indistinguishably from a linear function.

Using the fit Y (τ) = aτ + b for τ ≥ 2, we can find T∗ as a function of p0 and λ̃R:

T∗(p0, λ̃R) = 10
− b(p0)
a(p0) × λ̃

− 2
a(p0)

R (5.48)

Since a(p0) and b(p0) are rather constant in p0, (cf. Table 5.1) it follows that, for a fixed λ̃R,
T∗(p0, λ̃R) will likely be of constant order of magnitude as a function of p0. This behaviour
is illustrated in Figure 5.2 for λ̃R = 10−6, 10−7, 10−8, 10−9, again for mψ = 0.1mϕ.

From Table 5.1 we observe that a ≈ 1. Curiously, all a-values are slightly less than 1.
A priori one would expect an a ≈ 1 to take values both slightly above and below 1. The
reason behind this behaviour is that only in the limit T → ∞ is a = 1. At any finite (yet
large) T , contributions from lower order T -terms will still contribute somewhat. This can be
seen through the plot in Figure 5.1 where the non-linear contributions to Y (τ) are relevant

39The R2 value (also known as the coefficient of determination) quantifies the amount of variability
between a data set and a proposed fit. Here, a value of R2 = 1 corresponds to 0% variation and a perfect fit.
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p0 a b

0.90 0.992 -1.17

0.91 0.997 -1.22

0.92 0.987 -0.536

0.93 0.992 -1.19

0.94 0.994 -1.20

0.95 0.992 -1.20

0.96 0.991 -1.16

0.97 0.993 -1.21

0.98 0.992 -1.21

0.99 0.989 -1.20

p0 a b

1.00 0.999 -1.25

1.01 0.988 -1.20

1.02 0.990 -1.21

1.03 0.994 -1.23

1.04 0.990 -1.25

1.05 0.989 -1.22

1.06 0.992 -1.23

1.07 0.988 -1.20

1.08 0.994 -1.23

1.09 0.988 -1.21

1.10 0.987 -1.21

Table 5.1: Linear fit of Eq. (5.47) for mψ = 0.1mϕ. The temperatures used in the fit
are τ = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. For the Hadamard regularization, we used ξ = 10−4 and
ξ = 8× 10−5.
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Figure 5.2: Plot of T∗(p0, λ̃R) for λ̃R = 10−6, 10−7, 10−8, 10−9. We observe that the magnitude
of T∗ is rather constant in p0, except for at the numerical anomaly at p0 = 0.92.
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at smaller T . Therefore, a will always approach 1 from below. Had we performed the same
study for the size of the three-loop contributions compared to B(p0, T ), we would also expect
any linear coefficient to converge from below.

Nevertheless, a ≈ 1 implies that ∣∣∣∣B(p0, T )

A(p0, T )

∣∣∣∣ ∼ T 1, (5.49)

which means that B(p0, T ) increases faster with temperature than A(p0, T ).
This is certainly a weird and unexpected behaviour – it seems to imply that we can

always make the NLO term relevant by simply increasing the temperature. By extending a
similar analysis to a generic loop order, it follows that we should be able to make any term
of arbitrary order dominate over the preceding ones by simply turning up the temperature.
The absurdity of this result can most likely be linked back to the mistake we made regarding
the thermal distribution functions in the c.o.m frame. As mentioned, a crucial consequence
of this mistake is that it discards any physical effect induced by the fact that the c.o.m- and
the plasma frame are two very distinct frames. These effects become especially relevant in
the high-T regime which Eq. (5.49) claims to describe. In a plasma, each c.o.m energy (p0 in
the c.o.m frame) has a probability of occurring, which depends on the thermal distribution
and T . For example, in a plasma following a Bose-Einstein distribution, the average c.o.m
energy is proportional to the temperature, ⟨p0⟩ ≈ 2.71T [79].40 By dimensional analysis,
the RHS of Eq. (5.49) should be scaled by a factor of 1/p0. Since our error removed any
dependence of the c.o.m frame relative to the plasma, it is only reasonable to expect that in
order to account for our mistake we should substitute 1/p0 for 1/⟨p0⟩, giving a temperature-
independent ratio between B(p0, T ) and A(p0, T ), which is far more reasonable. Another
consequence of our mistake is that Eq. (5.49) does not account for the fact that the further
away that a p0 is from the average ⟨p0⟩, the less likely it is to occur in the statistical plasma.
Since ⟨p0⟩ scales with the temperature, the contributions from the domain of resonance
p0 ∼ mϕ in a high-temperature plasma should be even further suppressed than Eq. (5.49)
implies.

We must therefore conclude that our mistake makes our numerical results useless in the
high-temperature regime. It might turn out that the mistake is more forgiving in the case of
low temperatures. However, even if this turned out to be the case, it is highly likely that no
new insight would have been gained from such a study, since the low-T case just approaches
the known ΓBW at T = 0. It is therefore very probable that the mistake we made earlier
greatly affects the extent to which we can interpret our results as physical.

Therefore, we are unfortunately unable to present any physically interpretable numerical
two-loop results. While regrettable, this does not mean that our numerical study was a
complete failure, as we established several useful notions, for example how to account for two-
loop UV-divergences through the renormalization scheme outlined in Appendix D. Concepts
like Hadamard regularization and the physical BW rate of Eq. (D.7) can be used in a

40This result follows from a numerical calculation of the average energy in a plasma following the Bose-
Einstein distribution: ⟨E⟩ =

∫
dΠphysE/(exp(Eβ)− 1) in the relativistic regime, T ≫ m.
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physically accurate two-loop computation in the future. Hopefully, the trials and tribulation
we have gone through may lay the foundation for such a calculation.

It should not go unmentioned that several months was spent on this numerically fruitless
endeavour, during which we had to overcome hurdles like highly oscillatory integrands, fragile
principal values, singular poles, numerical inaccuracies, stubborn ξ-values, code parallelization
and slowly converging double-integrals. We can safely say that the numerical results of this
section are very accurate and represent exactly what we set out to calculate at the end of
Section 5.3. Luckily, we were able to detect the mistake we made, and we tried to extract
some physical results from the erroneous data. When this proved infeasible, we identified
exactly why our results were wrong and how this was a direct manifestation of our mistake.
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Chapter 6

Discussion

While it is regrettable that we did not get to present or discuss any numerical results, there
is still plenty to be said about the analytical results of this thesis, which will be the aim of
this chapter. We will start by discussing the differences between our approach to thermal
QFT (cf. Chapter 4) and the conventional approaches to real- and imaginary-time thermal
QFT. Thereafter, we will continue the discussion regarding rates at finite temperature and
relate the numerous interpretations we have had of ΓBW throughout this thesis. From this,
we turn to an exploration of how the differences between B± and H± manifest themselves
at finite temperatures. Finally, we aim to contextualize the work that we have done – how
does one use our results in a freeze-in calculation? We also address why our BW decay rate
disagrees with the one in ref. [23].

6.1 The Many Formalisms of Thermal Quantum Field Theory

To the best of our knowledge, the extension of the T = 0 SSR to T > 0 and the derivation of
real-time thermal QFT in Chapter 4 has not been done before in the literature. This raises
the question of how the approach to real-time thermal QFT in Chapter 4 (which we will
call the SSR approach), differs from the conventional approaches to thermal QFT.

Conventionally, real-time thermal QFT starts by first deriving the imaginary-time for-
malism of thermal QFT (which we have briefly outlined in Appendix E) and then performing
an analytical continuation of its generating functional to real times. This is clearly a fun-
damentally different approach to real-time thermal QFT than the SSR approach, but since
they both result in the same generating functional, Eq. (4.66), they must produce the same
observables. There are therefore three different formalisms/approaches to thermal QFT to
consider – the existing, conventional approaches of real- and imaginary-time thermal QFT,
and the SSR approach to real-time thermal QFT. In this section we scrutinize the SSR
approach and uncover both its disadvantages and advantages as a formalism of thermal
QFT.

A downside to the SSR approach is that uncuttable compound diagrams (like the last one
in Eq. (4.73)) do not appear naturally through the optical theorem at finite temperatures.
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They merely appear as a consequence of defining a QFT with Feynman rules matching the
T ≥ 0 cutting rules. We decided upon their inclusion by arguing that their exclusion would
lead to ill-defined expressions.41 In the conventional approach, there is no such ambiguity,
as the full theory of Eq. (4.66) naturally appears during the analytic continuation from
imaginary- to real-time. In fact, this analytical continuation actually yields a larger set of
viable propagators than the SSR approach:

iGab(k) =

(
iG+

A(k) eσk0QA(−k)
e−σk0QA(k) iG−

A(k)

)
, (6.1)

where σ ∈ [0, β] [28, 29, 68, 74]. This σ appears due to an ambiguity in the contour along
which one takes the analytical continuation of the imaginary-time generating functional. It
turns out that the formal requirements (set by the mathematical rules of analytic continuation
and the Osterwalder-Schrader theorem [54]) which this contour, C, must obey are:

(i) C starts from a large, negative real value, −t0 → −∞, and follows the real axis to t0,

(ii) C then goes from t0 down to some t0 − iσ, where 0 ≤ σ ≤ β,

(iii) C then goes back, parallell to the real axis, to −t0 − iσ,

(iv) C lastly goes vertically down to −t0 − iβ.

For a more in-depth discussion of this analytical continuation and the origin of these rules, see
refs. [29, 74, 75]. This type of contour is called a Keldysh contour [74, 80], and is illustrated
in Figure 6.1. In order to arrive at the generating functional in Eq. (4.66), one has to argue
that the contributions from the vertical segments in the Keldysh contour (points (ii) and
(iv) above) can be factored out of the analytical continuation of the generating functional.
There exist “proofs” for why this is sometimes allowed [74, 75], but in general it is difficult to
argue for and motivate. Since we make no such assumption/argument in the SSR approach,
it comes as no surprise that the theory derived in Chapter 4 does not explicitly feature a σ.
This is not really a loss for the SSR approach, because it turns out that all Green’s functions
(and hence, observables) are independent of σ [29]. Although we could technically introduce
a σ into the SSR approach by taking the propagator to be as in Eq. (6.1), it becomes highly
unclear exactly what σ is supposed to represent when it is not related to a Keldysh contour.
The only σ-values that see any use in the literature are σ = 0, which corresponds to the SSR
formalism, and σ = β/2, which yields a symmetric propagator and can be used as a quick
argument for why T = 0 counterterms renormalize the T > 0 theory (see Section 3.5 of
ref. [29]). It is therefore not really crucial that a real-time thermal QFT features a non-zero
σ.

41There is a potential analogy here to how soft collinear IR divergences at T = 0 are cancelled only once
a sum of experimentally indistinguishable processes has been taken. The fact that a similar cancellation also
appears in thermal processes might be a manifestation of our experimental inability to tell individual thermal
processes apart, which we discussed thoroughly in Section 3.4.
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Re t
Im t

Figure 6.1: The Keldysh contour, along which the analytical continuation of the imaginary-
time generating functional is taken in order to create a real-time thermal QFT. This contour
illustrates the origin of the contour parameter σ in the conventional real-time formalism.
Here, t0 →∞.

When compared to the imaginary-time formalism, the SSR approach fares as well as
the conventional real-time approach. The main downside of both real-time formalisms is
the presence of a 2 × 2 propagator which greatly increases the number of diagrams and
processes to consider. In imaginary-time, there is only a single propagator, but the presence
of a discrete energy spectrum (see Appendix E) means that perturbative calculations are
done through sums over energies instead of through integrals.42 Nevertheless, a clear ben-
efit of the imaginary-time formalism is that its core principles are more directly based in
statistical concepts – it is defined directly through a partition function, which we illustrate
in Appendix E. As such, in the imaginary-time formalism, all statistical quantities have
their corresponding QFT quantity, like the free energy is the statistical counterpart of the
field-theoretical self-energy. The imaginary-time formalism therefore stays much more true
to its statistical foundations, while the main statistical aspect of the SSR approach is that
of the thermal phase space distributions in Eq. (4.13).

There are also a multitude of benefits to the SSR approach. In a conventional derivation
of real-time thermal QFT, the appearance of the 2 × 2 propagator is often regarded as a
surprising result and a mathematical quirk. It feels somewhat arbitrary that at some point
into the derivation, one has to “double the degrees of freedom” in order to make the analytical
continuation from imaginary- to real-time work. In the SSR approach, however, the doubling
is a result of the careful inclusion of both SSR sectors since the very beginning. As a matter
of fact, since the finite-temperature SSR is an extension of the T = 0 SSR, the doubling
can be linked all the way back to the fact that the on-shell requirement p2 = m2 has two
hyperboloid solutions in Minkowski space – B+ for p0 > 0 and B− for p0 < 0, cf. Figure 4.1.
Since the BW scheme (per Chapter 3) is also based on the on-shell requirement p2 = m2, the

42Actually, there exists analytical tricks which lets one convert these sums into integrals [29, 30, 75], but
the resulting expressions are still very different from the ones we are used to for a continuous energy spectrum.
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SSR approach is therefore more intimately related to the BW rate and its role in accounting
for off-shell resonance. Had we simply derived ImΠ(ω) at T > 0 using the conventional
real-time formalism, we would technically have ended up with the same result as Eq. (4.77).
However, the relationship which ΓBW shares with the off-shell behaviour of unstable particles
would not be as apparent, which is critical to our understanding of the BW rate at finite
temperatures.

6.2 Understanding Rates

In our endeavour to understand what ΓBW is, we have encountered several interpretations.
On the one hand, the derivation of the BW scheme in Chapter 3 uncovered that ΓBW is
related to the probability that an off-shell resonant particle exists in a heat bath through
Eq. (3.31); in agreement with Weldon [31]. On the other hand, we also established that ΓBW

may be seen as the equilibration rate which tells us how quickly a perturbed equilibrium
system returns to equilibrium; also in agreement with Weldon [31]. The only thing that
is lacking is the link between these two interpretations – how can ΓBW be both of these,
seemingly unrelated, things at the same time?

At the foundation of the equilibration-interpretation of ΓBW are the quantities of Γd and
Γp, which are related to the evolution of the phase space distributions through Eq. (3.32).
We are therefore interested in addressing how Γd and Γp are related to the SSR approach.
To explore this, consider a thermalized plasma with two particle populations, A and B. In
Section 3.4 we stated a result of Weldon’s which says that the thermal BW decay rate of A
is [31]

ΓBW = Γd − εAΓp, (6.2)

and we motivated this by the bosonic case reducing to “decay minus production”. Clearly,
this motivation fails in the fermionic case, and that is because this motivation is not a valid
one at all: If we were actually subtracting production from decay in a thermalized system,
we should get 0. There simply can not be any net production/decrease in either A or B in
a thermalized system.

To illustrate what is actually going on, we will take both A and B to lie on B+, meaning
they decompose into two sets of populations A+, B+ ∈ H+ and A−, B− ∈ H−. Since we
have two sets of populations that cannot mix (by the SSR), it is only reasonable that we
must have two rates as well. We therefore claim that Γd is the rate of A+ → B+, while Γp
is that of A− → B−. To prove this, we start by using Weldon’s definitions of Γd and Γp for
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B being a state of n particles |B⟩ = |B1⟩ ⊗ |B2⟩ · · · ⊗ |Bn⟩ [31]:43

Γd(ω) =
1

2ω

∫ n∏
i=1

(
d3pBi

(2π)32EBi
(1 + εBifBi(EBi))

)
|MA→B|2, (6.3)

Γp(ω) =
1

2ω

∫ n∏
i=1

(
d3pBi

(2π)32EBi
fBi(EBi)

)
|MB→A|2, (6.4)

where ω is the energy of the A population in the plasma frame. Compare this to the BW
rate, Eq. (4.25), which the SSR approach predicts:

ΓBW(ω) =
1

2ω

1

1 + f̃B(ω)

∫
dΠ+

B|MA→B|2 (6.5)

=
1

2ω

(
1− εBe−ωβ

)∫
dΠ+

B|MA→B|2 (6.6)

(A.8)
=

1

2ω

∫
dΠ+

B|MA→B|2 −
1

2ω

∫
dΠ−

B|MB→A|2. (6.7)

If we demand that all the n states which make up B satisfy p0 > 0, i.e. |B⟩ ∈ (B+)⊗n, we
have

dΠ+
B =

n∏
i=1

(
d3pBi

(2π)32EBi
(1 + εBifBi(EBi))

)
, (6.8)

dΠ−
B = εB ×

n∏
i=1

(
d3pBi

(2π)32EBi
fBi(EBi)

)
, (6.9)

meaning Eq. (6.7) gives

ΓBW(ω) = Γd − εBΓp, (6.10)

reproducing Weldon’s result in Eq. (6.2). The awkward summing/subtracting of Γd and
Γp therefore has nothing to do with accumulation of decay- and production rates, but is
instead a decomposition of ΓBW into the rates on two different SSR sectors. The labelling
as “production” and “decay” is therefore rather misleading. It follows that the quantities
Γd and Γp correspond to the rates of the two distinct processes A+ → B+ and A− → B−,
respectively. Since these are different processes concerning different populations, there is no
reason why their sum should vanish, hence why the argument used to motivate Eq. (6.2) is
invalid. Since Γd and Γp determine the evolution of the phase space distribution through
Eq. (3.32), we have successfully illustrated how the interpretation of ΓBW as an equilibration
rate also fits into the SSR approach.

Furthermore, Eq. (6.10) illustrates a point we made at the end of Section 5.1.1, where
we claimed that if we chose to work in terms of the “thermal” distribution functions f̃A

43Henceforth, for the sake of brevity, we have chosen to absorb a factor of (2π)4δ(4)(pA − pB1 · · · − pBn)
into the square matrix element |MA→B |2.
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instead of fA (and likewise ñA instead of nA), then awkward sign-differences (like the one in
Eq. (6.10)) are always absorbed into our expressions. Consider, for example, Γd in Eq. (6.3)
and Γp in Eq. (6.4): The former is already expressed in terms of εBifBi = f̃Bi , but the
latter is not. If we multiply a factor of εB into the definition of Γp, we instead get the neat
expression ΓBW = Γd − Γp. Although this can be interpreted (somewhat misleadingly) as
decay minus production, the minus-difference is really a result of the Feynman-Stueckelberg
interpretation, where we take states on H− to propagate backwards in time relative to H+.
Since these rates are odd in their temporal components, it follows that the sign of Γp is
opposite to that of Γd. In other words, we are technically adding the rates from two sectors
but the Feynman-Stueckelberg interpretation introduces a sign-difference between them.

Another example of the usefulness of working in terms of f̃ instead of f can be seen in
the evolution of the phase space distribution, Eq. (3.32), which may be written in terms of
f̃ as (again multiplying a factor of εB into the definition Γp):

∂f̃A
∂t

= −f̃AΓd + (1 + f̃A)Γp. (6.11)

As a bonus, this too illustrates the fact that the signs of Γp and Γd differ under addition –
here with the temporal component explicitly visible on the LHS.

6.3 Branch versus Sector

In this section, we discuss the differences between working in terms of particles on the two
branches B± (the set of all on-shell states satisfying ±p0 < 0) and particles on the two
sectors H± (the orthogonal spaces into which the full Hilbert space decomposes under the
SSR). In deriving Eq. (6.10) we had to assume that all single-particle states which make up
B lie on B+. Since any other assumption would yield a different result than Eq. (6.10), it
follows that Weldon must have (inadvertently) made the same assumption when deriving
the same result. In the context of particle physics, this is an extremely reasonable (and
often trivialized) assumption – “of course” do we want our particles to be on the B+ branch!
But in the context of finite-temperature SSR, this is a distinct and explicit choice that we
have just made which must be justified. We have actually made this assumption once before
without justifying it or even discussing other options: When deriving the optical theorem
at finite temperatures in Appendix A.2, we also took the final states to be on B+, and it is
about time we scrutinize this choice.

In other words, when calculating ΓBW for A → B, we actually have two choices: One
where A,B are onH+, which we will call ΓH+

BW, and the one which we derived in Appendix A.2

where A,B are on B+, which we will call ΓB+

BW. It then follows that

ΓB+

BW

ΓH+

BW

= 1 + εAe
−βω, (6.12)

which is a non-perturbative result. We observe that the two rates agree in the limit T → 0,
and that for T > 0, the discrepancies vanish as ω grows. This is very reasonable since both
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of these cases imply a system with negligible thermal effects, i.e. approaching the case of
H+ = B+. Since both ΓB+

BW and ΓH+

BW are valid choices for the BW decay rate, it begs the
question of which one we should use in the BW propagator when we want to account for
off-shell resonant particles?

The answer depends on the type of system we are studying. One example is that of accel-
erator experiments with quark-gluon plasmas, where individual cold particles are radiated
from the T > 0 plasma.44 Since the radiated particles are non-thermal upon measurement,
the SSR which they are subject to is the one at T = 0 with H± = B±. Therefore, the final
(measured) state of such a process must lie in B+ (or B− depending on your convention).
Conservation of momentum implies that the initial state too lies in B+. In this case, it may
therefore be more appropriate to work in terms of states on B+ and use ΓB+

BW as the BW
decay rate.

Then when do we use ΓH+

BW? In this case, both the initial and final states are in H+,
making it the appropriate rate to use when the entire process is contained within the plasma.
For example, ΓH+

BW is the most appropriate choice for the annihilation DM→SM in a freeze-
out process, since the decay starts and ends within the same plasma. In freeze-in, however,
the visible and dark sectors are not thermalized. For a freeze-in DM production ψψ → χχ,
it might therefore be the most appropriate to actually work in terms of B+. However, in
Section 2.1.3 we saw that we can view the scalar singlet DM freeze-in process through the
lens of DM annihilation χχ → ϕ → ψψ (cf. Eq. (2.12)). Here, the intermediate resonant
Higgs decay ϕ → ψψ is thermalized. Since this is the process whose decay rate we have
been primarily concerned with in thesis, we propose that a more appropriate choice for
the BW decay rate to use in such resonance calculations is ΓH+

BW. Since freeze-in typically

happens at much larger temperatures than freeze-out, the difference between ΓH+

BW and ΓB+

BW

is much more noticeable in the freeze-in scheme. For an accurate freeze-in implementation
it is therefore important to properly assert which BW decay rate one works with.

6.4 Contextualizing Applications

In the freeze-in scheme, the dark sector is not thermalized, while the visible sector is. When
we decompose the DM annihilation χχ → ϕ → ψψ into χχ → ϕ and ϕ → ψψ, like in
Eq. (2.22), we create an awkward mixing of in- and out-of-equilibrium processes. Since most
of our work so far has been on processes that are either fully thermalized or not thermalized
at all, it becomes unclear how to interpret processes that are a combination of the two. When
calculating ΓBW, we have intentionally ignored the process χχ → ϕ as it is not perfectly
clear how to combine this non-thermal process with the thermal process of ϕ → ψψ. For
example, if we add the rates of these two together, will the result still be interpretable as an
equilibration rate? Seeing as ΓBW behaves so intrinsically differently at T = 0 and T > 0,
it is not even clear if we can add these rates together and expect a physically consistent
answer. Furthermore, according to our definition of the particle/anti-particle duality at

44Ref. [76] discusses applications of thermal QFT to the study of quark gluon plasmas.
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finite temperatures, it seems that the freeze-in dark- and visible sectors may operate under
different notions of particles and anti-particles. In order to account this, one will have to
explore how the SSR sectors of different statistical systems interact.

Luckily, in the context of freeze-in, the feebleness of the SM-DM coupling asserts that
contributions from χχ→ ϕ are very small, meaning the above concerns are likely negligible
when calculating the BW rate of ϕ. It is nevertheless highly desirable that these problems
be addressed, which is a possible avenue of future analysis.

6.4.1 Applying the BW Rate

Although we derived an expression for ΓBW at T ≥ 0, we have not really addressed how to
use it to calculate the DM relic density. We have indirectly implied that our ΓBW should
simply be inserted into Eq. (2.22) instead of the one which ref. [23] uses. If this were the
full story then it must mean that the BW rate in Eq. (2.32) (which we will call Γ′

BW) is
the wrong rate to insert into the very expressions from which it was derived – a rather
unintuitive statement.45 We must therefore scrutinize the reasons why ΓBW and Γ′

BW differ
beyond LO.

From the collision operator in Eq. (2.7), we see that the Bose enhancement/Pauli blocking-
terms are responsible for all thermal aspects of the entire collision operator, while |M|2 is
responsible for all QFT aspects. Since Bose enhancement and Pauli blocking are inherently
quantum mechanical (QM) effects46 and |M|2 is calculated at T = 0, it should follow that
ref. [23] implements a thermal behaviour that is not inherently field-theoretical. Since we
derived ΓBW with thermal QFT and since QFT generally reproduces the effects of QM at
LO, it is no surprise that ΓBW = Γ′

BW holds at this order only.
We should therefore expect that the difference between ΓBW and Γ′

BW only increases
with temperature, as it is in the high-energy regime where the differences between QFT and
QM become important. Accounting for these effects therefore becomes especially important
for a UV-dominated freeze-in process. This, in addition to the above discussion of whether
to use ΓH+

BW or ΓB+

BW in resonant decay calculations, are two new areas in which the freeze-in
mechanism is sensitive to temperatures and in-medium effects.

To summarize, if we want a field-theoretic approach to the freeze-in/out mechanisms,
we must substitute the collision operator in Eq. (2.7) for an object from thermal QFT – a
theory that, by its very name, accounts for both thermal- and field-theoretic aspects at the
same time. It is in this new collision operator that we should equip the BW propagator with
our newly derived ΓBW.

45This does not mean that it is wrong to substitute Γ′
BW for ΓBW in the expressions derived by ref. [23].

More than likely, this would still increase the accuracy of a DM relic calculation. It just means that there is
a nuance to the situation.

46To be specific, the thermal distribution functions fA(k0) come from classical statistical physics, but the
notion of final-states being suppressed/enhanced by 1 + f̃A comes from QM.
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6.4.2 The Collision Operator

In Appendix F we show how the idea behind the initial/final state thermal suppression47

factors of f and 1+ f̃ emerge as a result of the SSR and the thermal phase space measure –
a rather important result. When describing thermal processes, one conventionally multiplies
the T = 0 phase space by one of these factors depending on if it describes an initial- or final
state. Under this conventional notion, it is not clear if the phase space of internal on-shell
particles should be suppressed by f or by 1+ f̃ , as they have no notion of being “initial” or
“final”. This is the reason why higher-order thermal QFT processes simply cannot have their
thermal components factored out, like Eq. (2.7) suggests. In the SSR approach, on the other
hand, all thermal aspects are introduced through the thermal measure in Eq. (4.13) which
carries no notion of states being “initial” or “final”. The SSR approach therefore completely
discards the notion of distinguishing between initial- and final state suppressions, and is
instead only interested in which sector an on-shell particle belongs to.

Using this insight, we can propose a collision operator for the process A → B which
respects thermal QFT:

C =

∫
dΠAB |MA→B|2, (6.13)

where MA→B is calculated with the Feynman rules of real-time thermal QFT and dΠAB
is the measure of the thermal phase space consisting of on-shell A and B.48 This collision
operator takes the exact form one would expect – it is simply an integral over a plasma
phase space times a scattering amplitude. In Section 4.2 we found that the Hilbert space of
thermal on-shell states is the same as the Hilbert space of on-shell states at T = 0, i.e. dΠAB
is simply the term in the square brackets in Eq. (4.23). In fact, by rewriting this term it can
be shown that

dΠAB =
1

1 + 2ñAB(ω)

(
dΠ+

AB + dΠ−
AB

)
(6.14)

= dΠ+
AB − dΠ−

AB, (6.15)

where dΠ±
AB are the thermal phase space measures of A and B on H±, as given by Eq. (4.13).

Assuming CP symmetry, the proposed collision operator can then be written as

C =

∫
dΠ+

AB |MA→B|2 −
∫

dΠ−
AB |MB→A|2. (6.16)

This collision operator is starting to look a lot like one wherein we subtract “production”
from “decay”. In fact, we can produce this exact structure by simply letting (due to the same
reasons that we struggled to motivate in Appendix F) |A⟩ ∈ (B+)⊗n and |B⟩ ∈ (B−)⊗m
be n- and m-particles states on different branches. For example, the collision operator in

47For the sake of brevity, we say “suppression” in place of “Bose enhancement/Pauli suppression”.
48This measure also absorbs all symmetry factors and other relevant degrees of freedom.
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Eq. (2.7) can then be recovered by letting |A⟩ = |ψψ⟩ and |B⟩ = |χχ⟩, which gives:

C =

∫
dΠ+

ψψχχ|Mψψ→χχ|2 −
∫

dΠ−
ψψχχ|Mχχ→ψψ|2 (6.17)

=

∫
dΠtot(1 + f̃ψ(Ek))(1 + f̃ψ(E

′
k))(1 + f̃χ(−Ep))(1 + f̃χ(−E′

p)) |Mψψ→χχ|2

× ε(Ek)ε(E
′
k)ε(−Ep)ε(−E′

p)

−
∫

dΠtotf̃ψ(Ek)f̃ψ(E
′
k)f̃χ(−Ep)f̃χ(−E′

p) |Mχχ→ψψ|2

× ε(Ek)ε(E
′
k)ε(−Ep)ε(−E′

p)

(6.18)

=

∫
dΠtot

[
|Mψψ→χχ|2fψ(Ek)fψ(E

′
k)
(
1 + f̃χ(Ep)

)(
1 + f̃χ(E

′
p)
)

− |Mχχ→ψψ|2fχ(Ep)fχ(E
′
p)
(
1 + f̃ψ(Ek)

)(
1 + f̃ψ(E

′
k)
)]

,

(6.19)

where the energies Eq ≡ |q0| are defined according to the finite-temperature Feynman-
Stueckelberg interpretation and dΠtot is the same as in Eq. (2.8). Since thermal QFT
produces the same results as non-thermal QFT to tree-level, this expression exactly matches
the collision operator in Eq. (2.7) at LO.

The collision operator in Eq. (6.13) therefore reproduces the expected collision operator
structure while still being a field-theoretic object. However, as previously discussed, when a
process is contained entirely within a plasma, it is the most natural to work with states on
H+ instead of B+. In this case, the contribution from the H− sector vanishes, meaning the
collision operator would reduce to ∫

dΠ+
AB |MA→B|2. (6.20)

The notion of having to subtract “production” processes from “decay” processes is no longer
needed, as there is only contribution from a single sector. The suppression factors of the
initial and final states are inherently built into the physical phase space dΠ+

AB, as illustrated
in Appendix F. The appropriate thermal suppressions of internal on-shell particles are
accounted for via the propagators used in the thermal QFT Feynman rules.

This begs the question of why this seemingly simple collision operator has not been
proposed before, as its matrix elements are calculable with the existing formalism of real-
time thermal QFT. We believe that there are two main reasons:

1. Without the SSR, it is very hard to justify working in terms of states on H± instead
of the well-established and conventional approach of using states on B±. Since iG±

(which appear in the real-time thermal QFT Feynman rules) are the propagators of
particles on H±, it would be wrong to use the thermal QFT formalism for processes
on B+ without at least considering a change of basis.
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2. The notion of phase space suppressions that are specific to initial and final states
is completely abandoned. Instead, we have a phase space measure which only cares
about which sector a state is in. Since this behaviour follows from the newly derived
finite temperature SSR, it is reasonable that this idea has not been implemented in a
collision operator before.

Unfortunately, we have not had a time to explore the proposed collision operator beyond
this point.
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Chapter 7

Final Remarks

Here, we state the final remarks of this thesis. We summarize the work that we have done
as well as concisely state our main results. Finally, we mention a couple avenues of future
work and research.

7.1 Summary of Work

The work done in this thesis can largely be split into four categories:

Understanding Rates at Finite Temperature
In order to account for the resonant behaviour of intermediate Higgs bosons in a freeze-
in scalar singlet model, we were quickly drawn towards the odd behaviour of rates in a
thermalized system. A large focus was put on interpreting exactly what a rate is – both
at zero- and at finite temperatures. To explore this, we derived the BW scheme by first
studying how unstable particles differ from stable ones and then expressing their differing
behaviour through the lens of an approximated propagator. We showed how the notion of a
non-sharp mass emerged and that the BW propagator was the appropriate tool to implement
this behaviour. This allowed us to build an intuition of the BW rate at finite temperature
as an object directly related to the probability that an off-shell particle exists in a plasma.

We were also interested in the role which ΓBW plays as an actual rate, for which we
turned to its interpretation as an equilibration rate. How exactly this notion of “equilibration”
fitted into the SSR scheme was not perfectly clear until Section 6.2, where we derived several
of Weldon’s results (cf. ref. [31]) and showed how they all fit into the SSR scheme. Here,
we discovered that the concepts of the rate of “decay” Γd and “production” Γp can be
completely abandoned in the SSR approach.

Creating a Field-Theoretic Thermal BW Rate
Although an expression for ΓBW already existed in the literature [23], we observed several
oddities in its definitions. We therefore set out to derive the BW rate ourselves through
thermal QFT. In doing so, we encountered the optical theorem at finite temperatures and
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established the thermal cutting rules. At LO, we showed how to recreate the BW rate found
in ref. [23] (given slight modifications to their approach). At NLO, we created expressions
for the vertex- and self-energy corrections for both final-state fermions and scalars. For the
self-energy corrections, we showed that all pinching singularities cancel and introduced a
scheme which let you calculate n-loop expressions using n−1-loop results. In Appendix C,
we showed how to account for non-trivial angular behaviour when inserting these expressions
for fermions.

We also discussed the reason for why our ΓBW differed from the one derived in ref. [23],
and concluded upon the latter featuring a thermal structure that was not inherently field-
theoretical. In order to fix this, the collision operator itself must be altered, and we proposed
the form of Eq. (6.13).

Studying Thermal QFT
We started the chapter on thermal QFT by studying a superselection rule at zero temperature.
The ideas behind this SSR were then extended to finite temperatures, where we discovered
that the sectors into which the SSR splits the Hilbert space of on-shell particles are different at
T = 0 and T > 0. The fact that B± ̸= H± at T > 0 was then built upon for the remainder of
the thesis to re-derive known concepts like the Kubo-Martin-Schwinger condition, thermal
propagators, finite temperature cutting rules and the generating functional of real-time
thermal QFT. We also quickly explored the consequences which the CPT invariance of QFT
has for the SSR.

Although initially presented as a heuristic derivation of real-time thermal QFT, the SSR
approach proved to be a reliable resource in understanding the behaviour of thermal systems
in general. It let us reproduce and interpret the results of Weldon [31] in a manner which
completely discards phase space suppression/enhancements that are unique to initial- and
final states. Even though it produces the same observables as the conventional real-time
thermal QFT, the SSR approach was derived without referring to the Keldysh contour while
still providing a natural interpretation of the doubling of degrees of freedom.

Numerical Calculations
Since our ΓBW differed fundamentally from the one existing in the literature, we wanted
to compare how these differences were expressed quantitatively. We spent a lot of time
on a numerical implementation of the two-loop order contributions to ΓBW, but due to an
unfortunate mistake made during analytical calculations, we were unable to produce any
physically interpretable results. This numerical endeavour was however not a complete waste
of time, because we established methods for numerical renormalization and regularization
that would be useable in an accurate calculation.

7.2 Review of Key Results

There are three main results of this thesis:
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Correcting the Existing BW Rate
Since the beginning of this project, a main focus has been to derive a field-theoretic expression
for ΓBW in order to support or refute the heuristically derived BW rate in ref. [23]. The
ΓBW in Eq. (4.77) therefore constitutes one of our main results. Although the imaginary
component of forward scattering at finite temperatures has been considered before, we have
been focusing on its role in accounting for resonant intermediate particles. From Eq. (4.77),
we showed that the existing BW rate lacked the contribution from certain processes at LO,
and that it outright disagreed with our expression past LO.

We argued that the LO discrepancies were due to the existing expression not accounting
for all relevant processes possible in the plasmas. As such, we showed that by slightly
adjusting the existing approach to include these additional processes, the two rates agree at
LO. Beyond this order, the differences were due to our rate being calculated with thermal
field theory, while the existing expression featured a temperature dependence that was not
inherently field-theoretical.

The SSR Approach to Real-Time Thermal QFT
Another of our main results is that of the SSR approach to real-time thermal QFT. While its
observables can be shown to be identical to those produced by a conventional approach, it
succeeds in illustrating the origin of the (otherwise abstruse) doubling of degrees of freedom
in real-time thermal QFT. By choosing to work with states exclusive to H+ instead of B+, it
shows how we can dispose of notions like “different phase space suppressions for initial and
final states” and “accumulation of production and decay rates as ΓBW = Γd−Γp”. The SSR
also allowed for a natural extension of the optical theorem and the Feynman-Stueckelberg
interpretation to finite temperatures.

A Field-Theoretic Collision Operator
Our third and final result is that of the proposed collision operator in Eq. (6.13). It builds
upon the ideas of the SSR approach by considering how the full phase space measure can
be split into contributions from the two sectors H+ and H− (cf. Eq. (6.16)). From this, we
showed how the structure of the well-established collision operator in Eq. (2.7) emerges by
choosing to work with states in B±. If we wish for an accurate freeze-out/in calculation, it
is likely that this collision operator will appropriately account for field-theoretic thermal
behaviour.

7.3 Further Work

Throughout this thesis we have several times hinted at potential avenues of further research:

Numerical Two-Loop Calculations.
An accurate two-loop study of our ΓBW would shed some light on whether the shift to a field-
theoretic collision operator is merited at all, since it might turn out that any corrections are
negligible in the relevant part of the physical parameter space. This time, it would be highly
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favourable if the calculations were done without making any mistakes. Since the two-loop
expressions in Section 5.2 also hold for final state fermions, it would also be interesting to see
a fermionic study and compare it to the scalar results. As mentioned, the renormalization
and regularization ideas of Appendix D will still be applicable for such a study.

Formalizing the SSR Approach
It would be interesting to continue exploring the ideas underlining the SSR approach. For
this type of work, there are two especially prominent avenues of work: (1 ) Making the
“derivation” of the SSR approach in Chapter 4 more mathematically formal. Here, one could
also attempt to formalize the relationship between the SSR and CPT, like hinted at in
Section 4.1.1. (2 ) Continue exploring how the SSR approach may be used in interpretations
of thermal systems. For example, it would be nice to see if the contour parameter σ has an
interpretation faithful to the SSR approach, or a further study of the differences between
working with states on H± instead of on B±. Additionally, we have primarily focused on
in-equilibrium processes, but it would be beneficial to extend the ideas of the SSR to the
out-of-equilibrium case, as this has been previously analysed in the conventional real-time
approach [80, 81]. This would also make it easier to address the concerns outlined at the
start of Section 6.4 regarding how to account for a mixing of in- and out-of-equilibrium
processes.

Due to a lack of time, we were unable to justify in Appendix F why inter-branch scattering
processes produce the known thermal phase space suppression of initial- and final states.
Since the applicability of the proposed collision operator relies on this type of scattering, an
explanation is sorely needed.

The Collision Operator
We ended Chapter 6 on a cliffhanger, as time did simply not suffice to continue exploring the
consequences of the proposed field-theoretic collision operator in Eq. (6.13). Exploring such
collision operators is the next clear step in the search for a more accurate freeze-in/out DM
relic density prediction. What remains to be seen is if the field-theoretic collision operator
for a freeze-in Higgs portal would still allow for the decomposition and factorization of
the process ψψ → ϕ → χχ into ψψ → ϕ and ϕ → χχ, like done in Eq. (2.22). Due to
the non-trivial behaviour of higher-order real-time thermal QFT, such a factorization will
likely not be possible, so one should explore how to adapt the notion of s-channel resonant
behaviour to finite-temperature systems.
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Appendices

Appendix A

The Optical Theorem

A.1 Zero Temperature

In this appendix, we will derive the T = 0 optical theorem for states on H± = B±.
Decomposing the S-matrix as S ≡ 1+ iT , unitarity implies i(T † − T ) = T †T . Acting

on T †T with initial and final states, we get

⟨f | T †T |i⟩ = ⟨f | T †(1+ + 1
−)T |i⟩ (A.1)

=
∑
X

∫
dΠ+

X ⟨f | T † |X⟩⟨X| T |i⟩+
∑
X

∫
dΠ−

X ⟨f | T † |X⟩⟨X| T |i⟩ . (A.2)

We will take our initial and final states to lie within the same sector, that is, |f⟩ , |i⟩ ∈ H±.
From the SSR, it then follows that the inner product ⟨f | T † |X⟩ (equivalently, ⟨X| T |i⟩)
vanishes for |X⟩ ∈ H∓, meaning one of the sums in Eq. (A.2) must also vanish, giving the
generalized optical theorem

i ⟨f±| (T † − T ) |i±⟩ =
∑
X

∫
dΠ±

XM
†
X→fMi→Xδ

(4)(pf − pX)δ(4)(pi − pX)(2π)8, (A.3)

where |A±⟩ indicates a state in H±, and ⟨B| T |A⟩ ≡ (2π)4δ(4)(pA − pB)MA→B. In our
endeavour to calculate imaginary components of self-energies, will are especially interested
in the case of forward scattering, |f±⟩ = |i±⟩ ≡ |A±⟩:

ImMA±→A± =
1

2

∑
X

∫
dΠ±

X(2π)
4δ(4)(pA−pX)|MA±→X |2. (A.4)

One of the key takeaways from this demonstration at T = 0 is that the effects from one of
the branches always vanishes from physical quantities.
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A.2 Finite Temperature

In this appendix, we show how to derive the optical theorem for T ≥ 0 through the finite-
temperature SSR outlined in Section 4.2.

Instead of deriving the generalized optical theorem (like we did at T = 0, cf. Eq. (A.3)),
we will immediately proceed to consider the case of forward scattering, i.e. identical initial
and final states |i⟩ = |f⟩ ≡ |A⟩. Assuming |A⟩ to have p0 > 0, i.e. |A⟩ ∈ B+, |A⟩ must have
components on both H+ and H− (since B± ̸= H±), labelled |A+⟩ and |A−⟩, respectively.
Using that unitarity implies i(T † − T ) = T †T , we sandwich T †T between ⟨A| and |A⟩,
giving

⟨A| i(T † − T ) |A⟩ = ⟨A| T †(1+ + 1
−)T |A⟩ (A.5)

=
∑
X

∫
dΠ+

X

1 + 2ñX(ωX)
⟨A+| T † |X⟩⟨X| T |A+⟩

+
∑
X

∫
dΠ−

X

1 + 2ñX(ωX)
⟨A−| T † |X⟩⟨X| T |A−⟩ .

(A.6)

To proceed, the first thing to note is that, for a one-particle state, j, we have

dΠ−
j = dΠ+

j εje
−βk0j , (A.7)

which we will later see is equivalent to the Kubo-Martin-Schwinger condition [24, 25]. For
multiparticle states, X, we therefore have

dΠ−
X = dΠ+

X

∏
j∈X

εje
−βk0j = dΠ+

XεXe
−βωX , (A.8)

where εX ≡
∏
j∈X εj . Due to the δ’s in Eq. (4.13), εXe

−βωX can be pulled out of the phase
space integral. The second thing to note is the property of Eq. (4.11), which implies

⟨A−| T † |X−⟩ ⟨X−| T |A−⟩ CPT→ ⟨A+| T † |X+⟩ ⟨X+| T |A+⟩ . (A.9)

Where |X±⟩ is the component of |X⟩ on H±. The SSR and the antiunitarity of CPT [42]
then implies that

⟨A−| T † |X⟩ ⟨X| T |A−⟩ = ⟨A+| T † |X⟩ ⟨X| T |A+⟩ . (A.10)

À propos, this is the reason why the total decay rate of a particle is exactly equal to that of
its anti-particle. Combined, Eq. (A.8) and Eq. (A.10) imply the equality∫

dΠ−
X

1 + 2ñX(ωX)
⟨A−| T † |X⟩⟨X| T |A−⟩ =∫

dΠ+
X

1 + 2ñX(ωX)
εXe

−βωX ⟨A+| T † |X⟩⟨X| T |A+⟩
(A.11)
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Thus, we get the finite temperature expression

⟨A| i(T † − T ) |A⟩ =
∑
X

1 + εXe
−βωX

1 + 2ñX(ωX)

∫
dΠ+

X ⟨A+| T † |X⟩ ⟨X| T |A+⟩ , (A.12)

where we pulled the terms dependent on ωX out of the integral. This is the optical theorem
at finite temperature. By the definition ⟨B| T |A⟩ ≡ (2π)4δ(4)(pA−pB)MA→B, we can write
Eq. (A.12) as

ImMA→A =
1

2

∑
X

1 + εAe
−βωA

1 + 2ñA(ωA)

∫
dΠ+

X(2π)
4δ(4)(pA − pX)|MA→X |2. (A.13)
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Appendix B

Scalar Two-loop Vertex Calculations

In this appendix, we show how to tackle the integrals in the vertex corrections of Eq. (5.21)
in the case of ψ being a scalar with mψ < mϕ. Unfortunately, as mentioned at the start of
Section 5.3, I made a mistake when performing the calculations in this appendix (all ana-
lytical expressions outside this appendix should be correct). I took the thermal distribution
functions to be f(k0) in the c.o.m frame, when in reality they should have been f(kµuµ)
where uµ is the 4-velocity at which the plasma moves in the c.o.m frame. Due to the mistake,
our final answer will only feature single- and double integrals, when in reality it should have
also featured triple integrals. The calculations in this appendix are therefore technically
wrong, but they do feature ideas and approaches which would be equally useful in a correct
approach.

In the c.o.m frame, we have pµ = (p0, 0, 0, 0), meaning the only angular dependence of
the integrand inMvertex comes from the product k · l = rt cosα, where r ≡ |k|, t ≡ |l| and
α is the angle between k and l in the plane they span. We can therefore write

Mvertex = − 4λ4

(2π)6

∫
dk0 dr dl0 dt dcosα r

2t2 [Re {N1} − Re {N3}] , (B.1)

where we used
∫
dΩkdΩl F (k · l) = 4π · 2π

∫ 1
−1 dcosα F (rt cosα) and N1 and N3 are defined

in Eq. (5.18). We separate the above integral into contributions from the terms featuring
N1 and N3, respectively, as

Mvertex =MN1
vertex +MN3

vertex, (B.2)

and solve each separately. In the following, define ωr ≡
√
r2 +m2

ψ and ωt ≡
√
t2 +m2

ψ.
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B.1 Contributions from Re {N1}
First, we note that we can factor out the δ’s appearing in the integrand ofMN1

vertex as

MN1
vertex = − 4λ4

(2π)6

∫
dk0 dr dl0 dtdcosα δ(l

2 −m2
ψ)δ((l − p)2 −m2

ψ)

×
[
δ(h)A1 + δ(k20 − ω2

r )B1 + δ((k0 − p0)2 − ω2
r )C1

+ δ(h)δ(k20 − ω2
r )δ((k0 − p0)2 − ω2

r )D1

]
,

(B.3)

where h(k0, l0, r, t, α) ≡ (k − l)2 −m2
ϕ = (k0 − l0)2 − r2 − t2 + 2rt cosα−m2

ϕ and

A1(k0, l0, r, t) ≡ −4π3r2t2[θ(l0) + ñψ(l0)][θ(p0 − l0) + ñψ(p0 − l0)]

× (1 + 2ñϕ(k0 − l0))P
1

k20 − ω2
r

P 1

(k0 − p0)2 − ω2
r

,
(B.4)

B1(k0, l0, r, t, α) ≡ −4π3r2t2[θ(l0) + ñψ(l0)][θ(p0 − l0) + ñψ(p0 − l0)]

× (1 + 2ñψ(k0))P
1

h(k0, l0, r, t, α)
P 1

(k0 − p0)2 − ω2
r

,
(B.5)

C1(k0, l0, r, t, α) ≡ −4π3r2t2[θ(l0) + ñψ(l0)][θ(p0 − l0) + ñψ(p0 − l0)]

× (1 + 2ñψ(k0 − p0))P
1

h(k0, l0, r, t, α)
P 1

k20 − ω2
r

,
(B.6)

D1(k0, l0, r, t) ≡ 4π5r2t2[θ(l0) + ñψ(l0)][θ(p0 − l0) + ñψ(p0 − l0)]
× (1 + 2ñϕ(k0 − l0))(1 + 2ñψ(k0))(1 + 2ñψ(k0 − p0)).

(B.7)

By extracting the δ’s in Eq. (B.3) this way, we can trivialize several integrals. Particularly,
we can write the product of δ’s in the first line of Eq. (B.3) as

δ(l2 −m2
ψ)δ((l − p)2 −m2

ψ) =
1

4ω2
t

[δ(l0 − ωt) + δ(l0 + ωt)] [δ(l0−p0−ωt) + δ(l0−p0+ωt)] .

Next, since all α-dependence lies in h(k0, l0, r, t, α), it follows that the dcosα integrals can
be performed by employing the two identities∫ 1

−1
dcosα δ(h(k0, l0, r, t, α)) = θ

(
2rt−

∣∣(k0 − l0)2 − r2 − t2 −m2
ϕ

∣∣)P 1

2rt
, (B.8)∫ 1

−1
dcosα P 1

h(k0, l0, r, t, α)
= P ln

∣∣∣∣∣(k0 − l0)2 − (r − t)2 −m2
ϕ

(k0 − l0)2 − (r + t)2 −m2
ϕ

∣∣∣∣∣P 1

2rt
, (B.9)

where, in the last expression, both the fraction and the logarithm are principal values.
From this, it follows that the contributions from the term featuring D1 vanishes, while the
contributions from the B1 and C1 terms can be shown to be identical. The calculations
required to show this are tedious although rather straightforward to perform and are not
listed here.
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In all, this gives

MN1
vertex =

λ4

8p0(2π)3
θ(p0 − 2mψ)

(
1 + f̃ψ

(p0
2

))2 [
∫
R\[ p02 −mϕ, p02 +mϕ]

dk0

(
1 + 2ñϕ

(
k0 −

p0
2

))
P 1

p0(2k0 − p0)

× P ln

∣∣∣∣(r2− − c2(k0))(r2+ − c1(k0))(r2− − c1(k0))(r2+ − c2(k0))

∣∣∣∣
− 2

∫
R\[−mψ ,mψ ]

dk0 (1 + 2ñψ(k0))P
1

p0(2k0 − p0)
(B.10)

× P ln

∣∣∣∣∣∣∣
(
k0 − p0

2

)2 − (√k20 −m2
ψ − 1

2

√
p20 − 4m2

ψ

)2
−m2

ϕ(
k0 − p0

2

)2 − (√k20 −m2
ψ + 1

2

√
p20 − 4m2

ψ

)2
−m2

ϕ

∣∣∣∣∣∣∣
]

where

r± =
1

2

√
p20 − 4m2

ψ ±
√(

k0 −
p0
2

)2
−m2

ϕ, (B.11)

c1(k0) = k20 −m2
ψ, (B.12)

c2(k0) = (k0 − p0)2 −m2
ψ. (B.13)

B.2 Contributions from Re {N3}
We can write the integrand of (B.1) containing Re {N3} as

MN3
vertex = − 4λ4

(2π)6

∫
dk0 dr dl0 dt dcosα δ(k

2 −m2
ψ)δ((l − p)2 −m2

ψ)δ((k − l)2 −m2
ϕ)

×
[
A3 + δ(l20 − ω2

t )δ((k0 − p0)2 − ω2
r )D3

]
(B.14)

where

A3(k0, l0, r, t) ≡ −r2t2(2π)3[θ(k0) + ñχ(k0)][θ(p0 − l0) + ñχ(p0 − l0)]

· [θ(l0 − k0) + ñϕ(l0 − k0)]P
1

l20 − ω2
t

P 1

(k0 − p0)2 − ω2
r

,
(B.15)

D3(k0, l0, r, t) ≡ −r2t28π5[θ(k0) + ñχ(k0)][θ(p0 − l0) + ñχ(p0 − l0)]
· [θ(l0 − k0) + ñϕ(l0 − k0)](1 + 2ñχ(l0))(1 + 2ñχ(k0 − p0)).

(B.16)

Here, all angular dependence is contained entirely within the δ((k − l)2 −m2
ϕ). The dcosα

integral is therefore trivialized through Eq. (B.8). It also follows that, the contribution from
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the term featuring D3 vanishes due to non-overlapping θ-functions. Only the A3 term is
non-vanishing, which results in the double-integral

MN3
vertex =

λ4

2(2π)3

∫
R\[−mψ ,mψ ]

dk0

∫
R\[p0−mψ ,p0+mψ ]

dl0

{
P 1

p0(2l0 − p0)
P 1

p0(p0 − 2k0)
(B.17)

× θ
(
2
√
(k20 −m2

ψ)((l0 − p0)2 −m2
ψ)− |2l0(p0 − k0)− p20 + 2m2

ψ −m2
ϕ|
)

× [θ(k0) + ñψ(k0)][θ(p0 − l0) + ñψ(p0 − l0)][θ(l0 − k0) + ñψ(l0 − k0)]
}

Performing the substitutions x ≡ −k0 and y ≡ l0 − p0, we get

MN3
vertex =

λ4

2(2π)3

∫
R\[−mψ ,mψ ]

dxdy

{
P 1

p0(p0 + 2x)
P 1

p0(p0 + 2y)
θ (j(x, y))

× ϵ(x)ϵ(y)ϵ(x+ y + p0)f̃ψ(x)f̃ψ(y)(1 + f̃ψ(x+ y + p0))

}
, (B.18)

where j(x, y) ≡ 2
√
(x2 −m2

ψ)(y
2 −m2

ψ)−|2(p0+x)(p0+y)−p20+2m2
ψ−m2

ϕ|. The benefit of
this substitution is that the integrand is symmetric under x↔ y, meaning it does not matter
numerically which integral we perform first. This means that if θ(j(x0, y0)) = 0 for some
(x0, y0), then we also have θ(j(y0, x0)) = 0. Unfortunately, we are unable to analytically
carry on any further. In order to perform the remaining two integrals numerically, it helps
to divide the domain of integration into regions where the integrand is zero due to the
θ (j(x, y)) and where it is non-zero. To do this, we solve j(x, y±(x)) = 0 for y±(x) as

y±(x) ≡
1

2(p0(p0 + 2x) +m2
ψ)

[
(p0 + x)(m2

ϕ − 2m2
ψ − p0(p0 + 2x))

±
√(

x2 −m2
ψ

)(
m4
ϕ + p20(p0 + 2x)2 − 2m2

ϕ(2m
2
ψ + p0(p0 + 2x))

)]
.

(B.19)

By integrating over domains bounded by y±, the effect of the θ(j(x, y)) may be accurately
accounted for numerically.
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Appendix C

Fermionic Two-loop Self-Energy
Calculations

Here, we show how to account for angular dependences when inserting a pre-calculated
Πψ11(k) into Eq. (5.27) when ψ is a fermion, where Πψ11 is the ψ+ → ψ+ self-energy:

Πψ11(k) =
ψ

k − p

p

ϕ

+O(λ4). (C.1)

Calculating quantities like Πψ11(k) is usually easier if one chooses a reference frame like
kµ = (k0, 0, 0, k3). Unfortunately, since the k

µ in Eq. (5.27) is not connected to external legs,
we are not allowed to freely pick such a frame. In the scalar case, this is no issue since all
scalar quantities are angularly independent. For fermions, we must either calculate Πψ11(k)
in a frame where kµ = (k0, k1, k2, k3) (which can very quickly become complicated), or we
must rotate the answer for kµ = (k0, 0, 0, k3) into an arbitrary frame and insert the rotated
expression. This appendix shows how to do the latter.

In the frame where kµ = (k0, 0, 0, k3), the Dirac structure of Πψ11(k) takes the form
(cf. Section 10 of ref. [46])

Πψ11(k) = U + γ0V + γ3W + /kY, (C.2)

where U ,V,W,Y are some scalar functions of k0 and |k| = k3. In order to rotate Eq. (C.2),
we consider the rotation matrices

Λ ≡


1 0 0 0
0 cosβ sinβ sinα sinβ cosα
0 0 cosα − sinα
0 − sinβ cosβ sinα cosβ cosα

 , (C.3)

where α ∈ [0, 2π], β ∈ [0, π] are the angles of rotation around the x- and y-axis, respectively.
Since Λ is a spatial rotation, it is also a Lorentz transformation: Λ ∈ SO(3) ⊂ SO+(1, 3).
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Hence, in order to rotate Eq. (C.2), we can utilize that γµ transforms under the appro-
priate Lorentz representation as Λ(γµ) = Λ µ

ν γν , while the scalar functions U ,V,W,Y are
rotationally invariant. We get

Λ
(
Πψ11
)
= U + Λ 0

µ γ
µV + Λ 3

µ γ
µW + /kY = /X + U , (C.4)

where

X µ ≡
(
V + k0Y , Λi3(W + |k|Y)

)
. (C.5)

Hence, rather than inserting Πψ11(k) into Eq. (5.27), we insert /X+U . The trace which appears
in Eq. (5.36) then becomes

tr
{
(/k +mψ)( /X + U)(/k +mψ)(/k − /p+mψ)

}
(C.6)

= 4
[
Um3

ψ +m2
ψX · (3k − p)− 2(k · p)(X · k + Umψ) + k2(X · (k + p) + 3Umψ)

]
,

where

X · k = k0(V + k0Y)− |k|(W + |k|Y), X · p = p0(V + k0Y) + (W + |k|Y)Λ 3
i p

i,

k · p = k0p0 + |k|Λ 3
i p

i, k · k = k20 − |k|2.
(C.7)

Since Λ 3
i carries all the angular dependence of the d4k-integral in Eq. (5.36), we note that if

we take p = 0 (i.e. pick the ϕ c.o.m. frame), the trace becomes angularly independent since
all terms with Λ 3

i vanish. This trivializes the angular integrals in Eq. (5.36) and concludes
our illustration.
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Appendix D

Regularization & Renormalization at
Finite Temperature

A complication in calculating ΓBW to O(λ4) is that it diverges. Specifically, the dy integral
in Eq. (5.40) diverges due to the 1/(y+ p0/2)

2. To assert finiteness of ΓBW, we must employ
a renormalization scheme.

Analytically renormalizing thermal QFT is (principally) rather straightforward. It turns
out that the counterterms which make the theory finite at T = 0 also make the theory finite
at T > 0 [29]. The reason is that finite temperature effects do not modify the theory at
distances ≪ 1/T , meaning the UV divergences are the same as those at T = 0. For a more
rigorous treatment of renormalization at finite temperature, see ref. [75] and Chapter 11 of
ref. [82].

Numerically, however, matters become more complicated. Although the appropriate
counterterms can be calculated, it is not obvious how to treat the cancellation of infini-
ties between diverging loops and counterterms numerically. For example, assuming a 1/ϵ
divergence in some loop integral, the analytical cancellation works like

lim
ϵ→0+

∫ (
divergent

loop

)
− 1

ϵ
= finite. (D.1)

How is one supposed to implement this behaviour numerically and extract the singularities
when all numerical quantities are inherently finite?

To start, we can write the diverging dy integral in Eq. (5.40) as

M(10)
SE (p0) ≡

∫ ∞

−∞
dyF (y, p0)P

1

(y + p0/2)2
, (D.2)

where F (y, p0) is implicitly defined through Eq. (5.40).49 The divergence appears because
the integral is evaluated infinitesimally close to the pole at y = −p0/2 and the integrand
is not antisymmetric about this pole. It would converge if we instead integrated over the
domains (−∞,−p0/2 − ξ] and [−p0/2 + ξ,∞), for some arbitrarily small ξ > 0. If we can

49Instead of having the dy integral be over R \ [−mψ,mψ], like in Eq. (5.40), we have instead taken the
boundaries to be ±∞ and included a factor of θ(y2 −m2

ψ) in F (y).
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parametrize the divergence of Eq. (D.2) for small ξ, we may numerically extract the divergent
part through a finite ξ.

This type of regularization is known as Hadamard regularization [83, 84], wherein

H
∫ b

a
dy

f(y)

(y − c)2 = lim
ξ→0+

{∫ b

a
dy f(y)

(y − c)2
[(y − c)2 + ξ2]2

− π

2ξ
f(c)

− 1

2
f(c)

(
1

b− c −
1

a− c

)}
,

(D.3)

for any function f(y) that is infinitely differentiable at y = ξ for a < ξ < b and H denotes the
Hadamard finite-part. In order to work with dimensionless parameters, we will henceforth
pass to ξ/mϕ → ξ. For a numerical implementation of Hadamard regularization, we will
consider finite a finite ξ ≪ 1. Like any (correctly implemented) regularization scheme, the
Hadamard finite-part should not depend on our choice of ξ. If we pick a ξ that is “too
large”, we will be removing not just the divergence from our integral, but also finite, physical
contributions. As ξ grows, we therefore expect to eventually observe some ξ-dependence in

HM(10)
SE . Meanwhile, if ξ is “too small” and approaches our numerical working precision, we

should observe divergence with no inherent ξ-dependence. This can be seen from Eq. (D.3),
since any number smaller than our working precision will be treated numerically as ≈ 0.

Hopefully, we can find a “Goldilocks zone” wherein ξ is small enough for HM(10)
SE to be

constant in ξ but large enough for HM(10)
SE to converge.

This behaviour is exactly what we find if we plotHM(10)
SE (p0) as a function of ξ for different

p0 – see Figure D.1 for T = 1000mϕ and Figure D.2 for T = 10mϕ. Both figures illustrate
that the Goldilocks zone emerges from the chaotic low-ξ zone and that a ξ-dependence
appears as ξ grows past this zone. These two plots indicate that only the upper bound of
the Goldilocks zone is temperature dependent, and that the behaviour towards the lower
area of the Goldilocks zone is constant in T . Calculations at other temperatures, working
precisions and p0 seemed to confirm this.

If we take this result as truth, it illustrates our earlier claim about T = 0 counterterms
renormalizing the theory at all temperatures: Say we had infinite working precision; then the
lower bound of the Goldilocks zone would be an infinitesimal. Since changing the temperature
may only alter the upper bound of the Goldilocks zone, any change in temperature may
never exclude an infinitesimal ξ from the Goldilocks zone, giving a temperature-independent
regularization. If we take the concept of “infinite working precision” as an analogy to
working analytically, we recover that an analytical Hadamard regularization is temperature
independent. When performing numerical calculations, we will therefore be picking ξ in the
lower area of the Goldilocks zone.

Having asserted the finiteness of our expressions, we must also impose renormalization
conditions. Although we are technically only interested in its imaginary component, we
will impose the renormalization conditions on the full physical self-energy, Πphys(p0). These
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Figure D.1: Plot of the Hadamard finite-part, HM(10)
SE /λ4, from Eq. (5.40), here for mψ =

0.2mϕ, T = 1000mϕ and four different p0 in the domain of resonance. As ξ2 becomes smaller
than the numerical working precision (which in this case is ∼ 10−9), the ξ-dependence
becomes sporadic and unpredictable due to the ξ2 in the denominator of Eq. (D.3). The
Goldilocks zone seems to start somewhere after ξ ∼ 10−5, where the Hadamard finite-part
is temporarily independent of ξ.
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Figure D.2: Plot of HM(10)
SE /λ4, like Figure D.1 but with T = 10mϕ. The Goldilocks zone

appears to be smaller at T = 10mϕ than at T = 1000mϕ. The effect of decreasing the
temperature therefore appears to be to lower the upper bound of the Goldilocks zone.
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conditions are the same as the ones which we encountered all the way back in Chapter 3:50

Re
{
Πphys(mϕ)

}
= 0,

Im
{
Πphys(mϕ)

}
= mϕΓ

phys
BW .

(D.4)

How then is Πphys(mϕ) related to the quantity Π(p0) which we have been using so far? To
answer this, we utilize the above claim that T = 0 counterterms also renormalize the theory
at T > 0: We start by imposing a renormalization condition on the coupling by introducing
the renormalized coupling constant, λR, defined at T = 0 to be

p0=mϕ,T=0

≡ iλR, (D.5)

we then have Γphys
BW (mϕ, 0) ∼ λ2R. An expression which satisfies the conditions in Eq. (D.4)

is then

Πphys(p0, T ) ≡ Π(p0, T )−Π(mϕ, 0) + imϕΓ
phys
BW (mϕ, 0). (D.6)

Denoting by Γ
(n)
BW(p0, T ) the coefficient of the λn-term in the (non-renormalized) BW decay

rate, i.e. ΓBW =
∑

n Γ
(n)
BWλ

n
R, we can pass to the renormalized coupling, λ→ λR, and write

Γphys
BW (p0, T ) = Γ

(2)
BW(p0, T )λ

2
R +

[
Γ
(4)
BW(p0, T )− Γ

(4)
BW(mϕ, 0)

]
λ4R +O(λ6R). (D.7)

This is the physical BW decay rate which obeys the renormalization conditions.

50Since we are free to pick the bare mass at leisure, we pick it to equal the real pole mass m̃ϕ
!
= mϕ.
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Appendix E

Imaginary-Time Thermal Quantum Field
Theory

In addition to the real-time thermal QFT focused on in this thesis, imaginary-time thermal
QFT is also a frequently used formalism (sometimes known as the Matsubara formalism). In
this appendix, we quickly outline the principles behind this formalism – for a more extensive
treatment, see the Reference Guide.

The starting point of the imaginary-time formalism is the partition function for a ther-
malized system

Z(β) = Tr{e−βĤ} =
∫

dq ⟨q| e−βĤ |q⟩ , (E.1)

where the |q⟩ form an orthogonal basis for the Hilbert space and Ĥ is the Hamiltonian. Using
path formalism, we can write the probability amplitude of a state |ϕa⟩ at t = 0 transitioning
into a state |ϕb⟩ at t = t′ as

⟨ϕb| e−iĤt
′ |ϕa⟩ =

∫ ϕ(t=t′)=ϕb

ϕ(t=0)=ϕa

Dϕ exp
{
i

∫ t′

0
dt

∫
d3x L

}
. (E.2)

If we näıvely treat the e−βĤ = e−i(−iβ)Ĥ in Eq. (E.1) as an operator which translates
states by an imaginary time −iβ, we are tempted to define a complex time τ ≡ it and set
t′ = −iβ in Eq. (E.2). Using this, we can write Z(β) as an integral over transition amplitudes
|ϕ(τ = 0)⟩ → |ϕ(τ = β)⟩, giving

Z(β) =

∫
dϕ ⟨ϕ| e−βĤ |ϕ⟩ =

∫ ϕ(τ=β)=ϕ

ϕ(τ=0)=ϕ
Dϕ exp

{∫ β

0
dτ

∫
d3x L

}
. (E.3)

This partition function bears a strong resemblance to the generating functional of a Euclidean
QFT:

ZE[j] =

∫
Dϕ exp

{
−
∫
d4xE (LE + jϕ)

}
, (E.4)
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evaluated at j = 0. Here, xµE = (τ,x) and the Euclidean Lagrangian LE ≡ −L(τ = it)
is (minus) the Minkowski Lagrangian evaluated at the imaginary time τ = it. We can
therefore make the generating functional and the partition function agree by asserting that
the boundary conditions in the Dϕ integrals in Eq. (E.4) and Eq. (E.3) are the same. This
implies that

• Bosonic fields are periodic in imaginary-time: ϕ(τ = β) = ϕ(τ = 0),

• Fermionic fields are anti -periodic: ψ(τ = β) = −ψ(τ = 0).

The anti-periodicity of fermionic fields follow from their anti-commutativity [29, 30]. To
adhere to the dτ integral in Eq. (E.3), we must also take the imaginary time, τ , to be
bounded: τ ∈ [0, β].

In all, this implies an equality between the partition function (a statistical object) and
the generating functional (a QFT object) subject to the above restrictions:

Z(β) = ZE . (E.5)

The LHS is related to statistical observables like the average energy, ⟨E⟩ = 1
ZTr{Ĥe−βĤ}, the

free energy, F = −T lnZ, and the entropy, S = −∂F
∂T . Meanwhile, the RHS is a field-theoretic

object calculated through its Lagrangian, Feynman rules and the S-matrix. Combined, they
form a thermal theory expressed in the formalism of a quantum field theory. Using the
generating functional, we can perturbatively calculate these statistical observables, meaning
they all have field-theoretic counterparts. For example, the free energy corresponds to the
self-energy Π(ω) [30], which has been a central quantity in this thesis.

The biggest difference between imaginary-time thermal QFT and a traditional Euclidean
QFT, is that the former is bounded in its time domain. In turn, this implies a discrete energy
spectrum. Any 4-dimensional momentum-space integral will therefore instead feature a sum
over discrete energies called the Matsubara frequencies [85].

Clearly, this formalism is very different from the real-time formalism we derived in
Chapter 4. One can, however, show that the two theories are physically equivalent; from
the Osterwalder-Schrader theorem [54], it follows that there exists a unique analytical
continuation between real- and imaginary-time thermal QFT. The two theories therefore
share Green’s functions, and by extension, observables. It is therefore a matter of personal
taste and situational applicability which formalism one should use. However, due to the
complicatedness of having to work with a 2× 2 propagator in real-time thermal QFT, the
imaginary-time formalism is often the go-to choice for actually performing calculations.
Unfortunately, the fact that its physics does not take place in Minkowski space, means that
it is more detached from physical principles than the real-time formalism is.
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Appendix F

Deriving Conventional Phase Space
Suppressions

In this appendix, we use the SSR approach to derive the notion of initial states being
suppressed/enhanced by f while final states are suppressed/enhanced by 1 + f̃ . Of course,
QM tells us that this is simply just how the phase spaces of initial and final states behave,
but it is nevertheless a bit strange that a plasma cares whether a state is at the beginning
or at the end of a process.

To illustrate the relation these factors have with the SSR approach, we will again repro-
duce a result of Weldon’s, similarly to what we did for Γd and Γp in Section 6.2. According
to Weldon [31],51 in a plasma which contains three sets of particle populations, A,B and C,
then the rate at which A “decays” to B when C is also present in the plasma, is

Γd =
1

2ω

∫ n∏
i=1

(
d3pBi

(2π)32EBi
(1 + εBifBi(EBi))

) m∏
i=1

(
d3pCi

(2π)32ECi
fCi(ECi)

)
|MAC→B|2,

while the rate at which A is “produced” is

Γp =
1

2ω

∫ n∏
i=1

(
d3pBi

(2π)32EBi
fBi(EBi)

) m∏
i=1

(
d3pCi

(2π)32ECi
(1 + εCifCi(ECi))

)
|MB→AC |2,

where B and C are n- and m-particle states, respectively. Again, for the sake of brevity, we
have absorbed a factor of (2π)4δ(4)(pA + pC − pB) into the square matrix element.

In order to reproduce this result in the SSR approach, we must make an assumption that
is rather hard to justify. As of now, we will motivate it by the fact that it “simply produces
the correct result”, and return to it at the end of this appendix: Consider the BW rate of
the process A→ BC, where we let |B⟩ ∈ (B+)⊗n and |C⟩ ∈ (B−)⊗m, i.e. we let B consist of
n states with p0 > 0 and C of m states with p0 < 0. The BW rate for the process A→ BC

51These are not Weldon’s exact words, but an equivalent restatement.
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then becomes (using the identities of Eq. (4.24) to rewrite the thermal measures):

ΓBW =
1

2ω

∫ n∏
i=1

(
d3pBi

(2π)32EBi

(
1 + f̃Bi(EBi)

)) m∏
i=1

(
d3pCi

(2π)32ECi
f̃Ci(ECi)

)
|MA→BC |2

− 1

2ω

∫ n∏
i=1

(
d3pBi

(2π)32EBi
f̃Bi(EBi)

) m∏
i=1

(
d3pCi

(2π)32ECi

(
1 + f̃Ci(ECi)

))
|MBC→A|2

=εCΓd − εBΓp. (F.1)

The last equivalence follows from the fact that |MA→BC |2 = |MAC→B|2.52 If we again
choose to absorb all factors of ε into the definitions of Γd and Γp (i.e. we use f̃ instead of f
in their definitions), this again recovers ΓBW = Γd − Γp. This tells us that taking the phase
space suppressions of initial and final states to be f̃ and 1 + f̃ , respectively, is equivalent
to considering a scattering process where the final states are not on a single branch. At
zero-temperature, inter-branch scattering is not permitted, but at finite temperatures it
is perfectly allowed. The initial/final state phase space suppression factors are therefore
nothing but the thermal measures, Eq. (4.13), evaluated for states in B+ or B−, cf. Eq. (4.24).

Of course, this result relies on the assumption that |B⟩ and |C⟩ are states on different
branches. At this point in time, we are unable to present a physical reason behind why this
produces the phase space suppressions which QM predicts – it simply does. However, keep
in mind that this is not the first time that we have had to include unexpected processes
which flip our preconceived notions about which states are initial and which are final: In
Section 5.1.1, we saw that the approach of ref. [23] overlooked the process ϕψ1 → ψ2, and
that this process differed in its initial- and final states compared to the process we thought
we were studying, ϕ→ ψ1ψ2. It is therefore very likely that the requirements |B⟩ ∈ (B+)⊗n
and |C⟩ ∈ (B−)⊗m are artefacts of some intricate aspect of the plasma containing A,B and
C which we have simply not yet considered.

Lastly, we address a supposed discrepancy whose discussion we postponed back in Sec-
tion 4.2. All of our initial-state suppressions feature f̃A instead of fA, the latter of which
is the expected suppression from statistical physics. At first, this may seem to lead to a
sign-change in the fermionic case, but it actually turns out that by using f̃A instead of
fA, we are accounting for a sign-change that would otherwise happen later down the road.
To see this, compare Weldon’s expressions for the discontinuity of the boson and fermion
self-energies, Eq. (2.20) and Eq. (2.25), respectively, in ref. [31].53 In these expressions, all
fermion phase space distribution functions feature an additional minus sign compared to the
bosonic functions. Weldon addresses this at the very end of Section II B, where he claims
that, in general, fermion initial state suppressions feature an additional minus sign in the
final expression for the discontinuity. Since he also proves that this discontinuity is nothing
but the imaginary component of the self-energy, it follows that our use of f̃A instead of fA

52To see this for a one-particle state C, note that the only thing that differs in the matrix elements
MA→BC and MAC→B is whether the field of C is contracted to an initial or final state. The equality then

follows from
(
C|C⟩

)†
= ⟨C|C̄, where C̄ is the appropriately conjugated field.

53Note that Weldon denotes the thermal phase space distribution functions (our fA) as nA.
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results in the correct expression. By using the phase space measure in Eq. (4.13) we are
preemptively accounting for this sign change.
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References and Bibliography

Reference Guide

Several references make themselves noteworthy in the context of this thesis:

• Ref. [23] (Bringmann et al., 2022 ) is the paper which inspired our search for ΓBW at
finite temperature. It is recommended to read at least Sections 1 and 2 of this paper
in order to understand the context in which we are working.

• The collective content of ref. [29] (M. L. Bellac, 1996 ), ref. [30] (M. Laine and A. Vuori-
nen, 2022 ) and ref. [75] (N. P. Landsman and Ch.G. van Weer, 1987 ) constitute a
comprehensive and detailed introduction to working with thermal QFT, both in the
real- and in the imaginary-time formalisms. These are recommended to readers inter-
ested in learning the conventional approach to thermal QFT, as well as applications
in various areas of physics.

• Ref. [76] (Ghiglieri et al., 2021 ) and ref. [46] (T. Lundberg and R. Pasechnik, 2021 ) are
articles which feature a modern review of the field of thermal QFT today. The former
focuses on perturbative applications in QCD while the latter performs analytical one-
loop calculations in the real-time formalism which can be used to simplify calculations
of the two-loop self-energy contributions to ΓBW, as shown in Section 5.2.2.

• Ref. [31] (H. A. Weldon, 1983 ) is a celebrated paper in thermal field theory which
lays the groundwork for concepts such as thermal production- and decay rates. A large
focus of this thesis is on reproducing Weldon’s results through the lens of SSR, as
most of modern thermal QFT builds upon his results.

• For a more formal treatment of the finite-temperature cutting rules, see ref. [26]
(R. L. Kobes and G. W. Semenoff, 1986 ), and to understand the context which this
paper is building upon, see the original derivation of the cutting rules at T = 0 in
ref. [72] (R. E. Cutkosky, 1960 ).

• For a more comprehensive description of the relevant cosmological background outlined
in Chapter 2, see ref. [79] (E. Kolb and M. Turner, 1990 ). Additionally, see ref. [20]
(Bernal et al., 2017 ) for a modern review of freeze-in.
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