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Abstract

This master’s thesis utilizes a Higgs effective field theory framework to
contribute to the advancement of research regarding the inclusion of
dimension 8 operators in effective field theories. By integrating dimension
8 operators into the Higgs effective field theory framework, an updated
Wilson Coefficient dictionary is presented, offering a potentially enhanced
parameterization of the Higgs coupling to Standard Model matter fields. The
investigation identifies various dimension 8 operators that influence the Higgs
normalization and fermion mass shifts, accompanied by the introduction of
necessary field and mass redefinitions. The thesis concludes by discussing
the potential implications and relevance of these findings for future research
in the field.
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Chapter 1

Prelude

With the upcoming launch of the High-Luminosity Large Hadron Collider (HL-LHC)
located at CERN, it is imperative that we improve upon already existing Effective Field
Theory (EFT) models to be able to have better predictive capabilities with the influx
of new data. The Large Hadron Collider (LHC) is the world’s most powerful particle
accelerator, and the upgrade of the HL-LHC aims to boost the integrated luminosity
by a factor of 10 beyond the original LHC luminosity. With the increased luminosity,
rare and elusive physics phenomena will hopefully become more commonly observed and
will allow scientists to delve deeper into fundamental questions about particle physics.
Outstanding questions in particle physics include the properties of the Higgs boson, and
the existence of dark matter, or potential new particles and forces beyond those currently
described by the Standard Model (SM) of particle physics.

The primary motivation behind this master’s thesis stems from the immense potential
of future data influx to facilitate a more comprehensive exploration of the Higgs boson.
By delving into the detailed study of its properties concerning potential deviations from
the predictions of the SM, we aim to gain deeper insights. These deviations can be
effectively characterized by employing an EFT framework.

Currently, EFTs are limited to operators of mass dimension 6 [9]. However, it
is valuable to investigate the possibility of extending the EFT framework to include
dimension 8 operators, enabling a more accurate parameterization of potential deviations
in the Higgs boson coupling to SM matter fields. This enhanced framework not only has
the potential to improve the predictive capabilities of EFTs for the existing data from
the LHC, but also becomes indispensable when considering the forthcoming HL-LHC
with its anticipated higher integrated luminosity.

Dimension 8 operators have already demonstrated their impact on Drell-Yan angular
distributions, energy and angular dependencies in β- decay, and they introduce a new
class of flavor diagonal CP-odd operators that break time reversal, but not parity [2][19].
The objective of this master thesis is to expand upon an existing EFT framework by
integrating dimension 8 operators that describe the coupling of the Higgs boson to
SM matter fields. By doing so, we anticipate obtaining an updated EFT Lagrangian
that provides a more refined set of Wilson coefficients, facilitating a more precise
parameterization of deviations from the SM. This updated framework holds potential not
only for the current luminosity of the LHC but also for future applications, particularly
with the more sensitive HL-LHC.
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Chapter 1. Prelude

1.1 Problem Statement

EFTs with Power Counting (PC) rules that restrict operators to mass dimension 6,
along with dimension 6 operators, have already received extensive coverage in scientific
literature, as evident from references such as [9], [21], and [23]. In contrast, research
on EFTs capped at dimension 8 remains relatively sparse. The scarcity of research
on the effects of dimension 8 operators poses a challenge for this master thesis. This
lack of exploration can be attributed to two primary factors: the extensive nature of
the dimension 8 operator set and the limited sensitivity of the current particle collider
datasets to high-dimension operators.

The vastness of the dimension 8 operator set presents a formidable task, making it
complex to comprehensively study and understand the effects associated with these
operators within the EFT framework. Moreover, the current limited sensitivity of
particle colliders pose practical constraints on probing the specific signatures and
manifestations of dimension 8 operators.

However, this master thesis aims to propose a viable framework in which the
Effective Lagrangian incorporates the most relevant dimension 8 operators, carefully
selected to accurately parameterize both present and future deviations from the SM. By
addressing these research gaps, this thesis intends to contribute to the understanding and
advancement of EFTs with dimension 8 operators, shedding light on their significance
in effectively characterizing deviations from the SM.

This master thesis hopes to answer the three following research questions:

Question 1: Is it possible to expand current EFTs with dimension 8 operators,
and obtain a Wilson Coefficient (WC) dictionary better suited to parameterize
new physics (NC)?

Question 2: Will the updated EFT framework and Updated WC dictionary
contribute to a better parametrization of new physics?

Question 3: What are the implications and applications of such an updated EFT
framework?

In order to best answer these research questions, the following five main objectives
are proposed:

Objective 1: Present a comprehensive description of the current EFTs capped at
dimension 6 and the dimension 6 Warsaw Basis[23].

Objective 2: Expand the constraints on the EFT operator set to also include the
most relevant dimension 8 operators for Higgs physics.

Objective 3: Derive the effective Lagrangian after spontaneous symmetry
breaking (SSB).

Objective 4: Use the effective Lagrangian after SSB to derive an updated WC
dictionary.
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1.2. Scope and Limitations

Objective 5: Use the updated WC dictionary and Pesking-Takeuchi parameters
[38] to explore the potential of dimension 8 operators and the potential for future
work.

The purpose of these five objectives is twofold: to provide answers to the research
question posed and to assist the reader in efficiently understanding and evaluating the
findings of this master’s thesis.

1.2 Scope and Limitations

This master thesis encounters several limiting factors that warrant consideration. The
primary constraint is the scarcity of research surrounding the inclusion of dimension 8
operators in effective field theories. Although some articles, [18] and [33], provide initial
insights into the potential of dimension 8 operators, the body of work in this specific
area remains relatively limited. Notably, there is currently no dimension 8 equivalent
to the well-established irreducible dimension 6 operator basis, known as the Warsaw
basis. However, [33] serves as the closest available reference and has been invaluable in
informing and guiding this master thesis’s progress.

The scope of this master thesis will be significantly constrained as it does not involve
matching the derived theoretical framework with experimental data. This limitation
primarily arises from time constraints associated with the challenging task of matching
such a large effective Lagrangian with potential unknown interactions, which would
pose difficulties in modeling within software packages like FeynRules and MadGraph.
Consequently, this master thesis does not have the opportunity to empirically validate
whether the mathematical framework developed herein represents an improvement over
previous effective theories that adhere to Power Counting rules restricting operators to
mass dimension 6.

1.3 Thesis outline

This section provides a concise overview of the structure of this master thesis, along with
an explanation of the rationale behind its organization.

Part 1: Introduction, Problem Statement, and Thesis outline focus on establishing
why there is a need for an EFT with PC rules restricting the operators to mass dimension
8, and the outlining of the master thesis.

Part 2: Part 2 of the thesis focuses on providing the necessary background of the
theoretical framework employed to achieve the goals outlined in the Problem Statement
1.1.

The chapter titled Effective Operators offers a comprehensive background on the
fundamental building blocks utilized to expand the Standard Model. It delves into
the theoretical foundations and principles behind effective operators, exploring their
significance and role in extending the existing framework.

The subsequent chapter, Exploring the Effective Lagrangian Before and After
Electroweak Symmetry Breaking, aims to construct the physical effective dimension 8
Lagrangian. This chapter details the process of incorporating dimension 8 operators

5



Chapter 1. Prelude

into the Lagrangian and investigates the implications of these operators both before and
after the electroweak symmetry breaking.

Part 3: Part 3 aims to answer the questions and objectives laid out in section 1.1.
The main chapters here are:

Results: The results and findings will be presented here.

Discussion: The implications and synthesis of the results will be presented

Conclusion: Here the reader will be presented with a final summary of the findings,
as well as a foundation for future work and applications.

As this master thesis primarily focuses on deriving a theoretical framework, the
results presented will mainly consist of a discussion regarding the usefulness of
the theoretical framework introduced in Part 2, specifically in Section 6 (Effective
Lagrangian Before and After Electroweak Symmetry Breaking). It is important to note
that since the framework is not applied or matched to experimental data, the results
primarily exist at a theoretical level.

The results chapter summarizes the findings and discoveries made throughout Part
2. It will provide a comprehensive overview of the implications and potential significance
of the derived theoretical framework. While the results are predominantly theoretical
in nature, they contribute to the understanding and advancement of the field, paving
the way for future experimental verification and validation of the framework. Due to
the theoretical nature of the results, the background in itself does answer some of the
research questions. These results will be more succinctly summarized in Chapter 8.

The final part of the thesis is dedicated to the Appendices. The Appendices are
further divided into two segments. The appendices A, B, and C serve as a compilation
of various derivations of mathematical statements utilized throughout the master thesis.
It includes detailed explanations and calculations that support the theoretical framework
and analysis presented in the main body of the thesis.

On the other hand, appendices E, D and F specifically focus on the derivation of
all relevant dimension 6 and dimension 8 operators and the SM terms that undergo
modification under the phenomenon of electroweak symmetry breaking (EWSB). This
section provides a comprehensive and systematic account of the derivation process,
offering insight into the theoretical and mathematical formulations underpinning the
research.

6
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Chapter 2

The Standard Model

2.0.1 Foundational Terminology: An Introduction to Key Concepts and
Vocabulary

This section serves as a brief introduction to clarify the meanings of challenging or
complex terms used in this master’s thesis. It provides a general understanding to help
readers build intuition and readiness for extensive usage.

Throughout this master thesis, Operator is extensively employed to describe
contractions of various fields in the SM. Generally, operator refers to higher-order
contractions of fields, surpassing mass dimension four while maintaining gauge and
Lorentz invariance. Occasionally, "term" and "operator" are used interchangeably.
"Term" primarily pertains to the regular SM field contractions equal to or lower than
mass dimension 4. These contractions of SM fields constitute kinetic or interaction
terms. It is important to note that certain operators when the covariant derivative is
expanded, yield multiple contributions to several interactions.

The term Mass Dimension essentially describes the number of fields contracted
with each other. When an operator or an SM term has a low mass dimension, it implies
it involves a small number of fields. Depending on the specific fields being contracted, it
could be a kinetic term or an interaction term. In common literature, mass dimension
is often described more generally in terms of units of power or inverse mass, given that
units of c = ℏ = 1 are used, resulting in quantities being measured in power units. For
example, the mass dimension of a quantity A would be expressed in terms of power units
Ex, where four-momentum and mass have energy E to the power of +1, while position
has power +1. Although this latter description will not be extensively elaborated upon in
this master thesis, the mass dimension of an operator becomes important when deriving
the building blocks for constructing higher-order operators and employing PC rules to
impose restrictions on the mass dimension of operators.

A Lagrangian is a model used to describe the dynamics and interactions of
particles. It comprehensively represents the physics governing a system, incorporating
kinetic energy, potential energy, and particle interactions. In everyday scenarios, a
Lagrangian can be employed to describe simple systems like a pendulum. In this case,
the Lagrangian captures information about the pendulum’s motion, position (height),
and external forces, deriving equations that describe its swinging behavior. In particle
physics, the Lagrangian serves a similar purpose by encompassing a wide range of
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Chapter 2. The Standard Model

information. However, in this context, the Lagrangian must also account for various
physics phenomena such as quantum numbers, symmetries, conservation laws, and more.

Group describes operators that satisfy specific selection criteria. These criteria
could include the mass dimension of the operator, its field content, and other relevant
factors. The operators within the group are characterized as one-point disconnected
vertex diagrams. Even if operators within the group contain Covariant Derivatives or
expanded flavor or generation indices, they are still referred to as operators within the
group, even though they can be seen as a collection of operators when expanded.

Hypercharge
Hypercharge is a quantum number briefly discussed, primarily in how conservation

laws associated with hypercharge constrain the structure of specific operators.
Hypercharge characterizes the electric charge of particles and is closely connected to
the U(1) symmetry group. It is also related to electric charge.

Wilson Coefficients are the parameters that quantify the contributions of different
terms in the operator product expansion, i.e, the expansion of the SM Lagrangian with
higher order operators. WCs are fundamental constants that govern the strength of
interactions between different fields or particles.

2.1 Introduction to the Standard Model

In the SM of particle physics context, numerous valid approaches exist for defining the
SM Lagrangian. In this master’s thesis, inspiration is drawn from the articles[9], [11],
and [23]. The SM Lagrangian is a fundamental mathematical formulation encompassing
the elementary particles’ dynamics and interactions. Throughout this master thesis, the
SM will be defined as (2.1)

LSM = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν +
∑

ψ=q,u,d,ℓ,e
ψ̄i ̸ Dψ

+ (DµH)† (DµH)− λ
(
H†H − 1

2v
2
)2

+
(1

2ΨT
LChHΨL + h.c.

)
.

(2.1)

The notation used here aligns with the references mentioned above. The symbolsGµν ,
Wµν , and Bµν represent the gauge field strength tensors associated with the respective
symmetry groups. The indices A and I take on values within specified ranges, such
as I = 1, 3, 4 and A = 1, . . . , 8, corresponding to the generators of their corresponding
symmetry group. These gauge bosons are spin-1 particles and are associated with the
gauge group of the SM, namely SU(3)C×SU(2)L×U(1)Y . Here, the subscript C denotes
color, L denotes weak isospin, and Y represents the U(1)Y hypercharge generator.
Additionally, H signifies the Higgs field, ψ represents fermions characterized by spin-
1
2 , v is the vacuum expectation value (VEV) of the Higgs field which acts to break
electroweak symmetry and is defined as

〈
H†H

〉
= v2/2, with v = 256GeV. C is the

charge conjugation matrix.

The covariant derivative associated with a local SU(3)C×SU(2)L×U(1)Y symmetry
is

10



2.1. Introduction to the Standard Model

Dµ = ∂µ − ig1YBµ − ig2Wµ − ig3Gµ.

The field strength tensors, denoted by boldface symbols, possess a specific
mathematical structure that aligns with that of a compact Lie group. This distinction
arises because the generators of an abelian group, wherein the generators commute,
can be represented simply as numerical quantities. However, in the case of non-abelian
groups such as SU(2), the field strength tensors exhibit a more intricate framework.
Notably, the irreducible generators of the SU(2) group are represented by a set of
hermitian 2× 2 matrices known as the Pauli matrices

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1 .

)

Within the framework of the SU(3) group, the generators are represented by a set
of hermitian 3 × 3 matrices known as the Gell-Mann matrices. Similar to the Pauli
matrices in SU(2), these matrices play a crucial role in characterizing the transformation
properties and dynamics associated with the SU(3) symmetry group.

The field tensors Wµ and Gµ are composed of three and eight vector fields,
respectively. These vector fields correspond to each generator’s respective group,
pointing in different directions within the abstract space associated with the group[39].
The field tensors can be seen as linear combinations of these vector fields, encapsulating
the gauge bosons and their interactions governed by the SU(3) symmetry.

It is worth noting that the Gell-Mann matrices, along with the associated field
tensors, serve as essential tools in the study of Quantum Chromodynamics, which
describes the strong interaction among quarks and gluons within the framework of the
Standard Model[39].

Gµ = Gaµt
a, ta = λa

2 , Wµ = W a
µ t
a, ta = σa

2 , Bµ = BµY.

The fermionic sector of the SM comprises three generations of leptons (ei and νi) and
quarks (ui and di), where the index i runs over the three generations, namely i = 1, 2, 3.
Within the fermion sector, the three-component generation indices are contracted with
the fermion mass matrix, while h is the matrix of Yukawa couplings.

In terms of their representation under the symmetries of the Standard Model, the
right-handed quarks and leptons are singlet states, while the left-handed quarks and
leptons form SU(2) doublet states. Consequently, the complete Lagrangian of the
Standard Model encompasses implicit sums over the 3-component generation indices,
color indices, the 2-component Pauli matrices associated with SU(2) doublet states, the
field tensors Wµ, and the Higgs doublet H. The matter contents are more compactly
summarized in table ref 2.1.

The Yang-Mills field strength tensors, denoted by F = Wµν ,Gµν , along with
the abelian field strength tensor Bµν , and their respective covariant derivatives, are
formulated in the equations 2.2[23]
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Chapter 2. The Standard Model

Gµν = ∂µGν − ∂νGµ + ig3 [Gµ,Gν ] ,
Wµν = ∂µWν − ∂νWµ + ig2 [Wµ,Wν ] ,
Bµν = ∂µBν − ∂νBµ,

DρGµν = ∂ρGµν + ig3 [Gµ,Gν ] ,
DρWµν = ∂ρWµν + ig2 [Wµ,Wν ] ,
DρBµν = ∂ρBµν .

(2.2)

An important relation that will be utilized in deriving several operators in the unitary
gauge is the commutation of two covariant derivatives, which yields the field strength
tensor Aµν of the gauge field multiplied by the coupling constant.

[Dµ, Dν ]ψ(x) = ig(Aµν)ψ. (2.3)

The derivation of Eq 2.3 can be found in Appendix F Section 11.6.2.

This same definition holds for non-abelian theories as well. However, in non-abelian
theories, the generators of the symmetry group do not commute. This arises from the
non-commutativity of the group generators [Aµ,Aν ] = [Aaµta, Abνtb] = AµAν [tatb], and
we get an extra factor of [ta, tb] = ifabctc. f is the structure constant of the symmetry
group, i.e., constants are coefficients that characterize the non-commutative behavior
of generators in a Lie algebra. The inclusion of structure constant belonging to the
symmetry group of the field is important, as shown in Eq 2.4.

[Dµ, Dν ] = gfabcAbµνt
c. (2.4)

Writing the fields in component form proves to be advantageous in several aspects.
Firstly, it provides a clearer understanding of how the fields transform under gauge
transformations. By explicitly expressing the components, it becomes evident how the
fields change under the symmetries imposed by the gauge group.

Additionally, representing the fields in component form facilitates the examination
of their coupling patterns. It becomes easier to discern how different fields are coupled
to each other, mainly when dealing with higher-order operators involving multiple fields.

Moreover, when deriving the equations of motion (EOM) for the gauge fields and the
Higgs field, the various equations 2.5, 2.6 and 2.7 are useful[23].

Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν , (DρGµν)a = ∂ρG

a
µν − gsfabcGbρGcµν , (2.5)

W a
µν = ∂µW

a
ν − ∂νW a

µ − gfabcW b
µW

c
ν , (DρWµν)a = ∂ρW

a
µν − gfabcW b

ρW
c
µν , (2.6)

Bµν = ∂µBν − ∂νBµ, DρBµν = ∂ρBµν . (2.7)

The numbers fabc aforementioned structure constants. These structure constants
satisfy the Jacobi identity [39]. In the case of the SU(2) symmetry group, the structure
constants correspond to the Levi-Civita symbol.

2.2 Hypercharge Constraints, Group Representations, and
Matter Content

This section briefly explains the underlying principles that justify the inclusion of certain
higher-order operators. It is important to note that all higher-order operators in the
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2.2. Hypercharge Constraints, Group Representations, and Matter Content

Higgs Effective Field Theory (HEFT) adhere to the same constraints and possess the
same matter content as the SM, which is required for being a part of the SMEFT
framework.

By adhering to the same matter content and symmetry group structure as the SM,
HEFT ensures consistency and compatibility with the fundamental principles of the
underlying theory. Table 2.1[31][20] provides an overview of how the fields in the SM
under different symmetry group transformations.

SU(3)C SU(2)L U(1)Y SU(2)l × SU(2)r
q 3 2 1

6

(
1
2 , 0
)

u 3 1 −2
3

(
1
2 , 0
)

d 3 1 1
3

(
1
2 , 0
)

l 1 2 −1
2

(
1
2 , 0
)

e 1 1 1
(

1
2 , 0
)

H 1 2 1
2 (0, 0)

G 8 1 0 (1, 0)
W 1 3 0 (1, 0)
B 1 1 0 (1, 0)

Table 2.1: Transformations of SM fields under different symmetry group transformations

The representations indicated in the table, such as 3, 2, and 1, signify how a field
transforms within the corresponding symmetry group. Specifically, a field represented
by a triplet (3) transforms under a symmetry group as a triplet, a field defined by a
doublet (2) transforms as a doublet and a field represented by a singlet (1) remains
invariant under the given symmetry group transformation.

Understanding these field representations is crucial when justifying the structure
of various operators. For instance, the operators must adhere to specific constraints
related to hypercharge. By examining Table 2.1, one can observe the transformations of
the fields and identify the constraints associated with the operators.

It is worth noting the distinction between the field q and the individual up and down
quarks (u and d) in Table 2.1. While u and d are also quarks, the table clearly illustrates
that the up and down quarks transform as singlets, meaning they remain invariant under
SU(2)L transformations. In contrast, the remaining quarks transform as left-handed
doublets. This distinction is significant and reflects why the SM Lagrangian and various
calculations throughout the master thesis differentiate between these quarks.
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Chapter 3

Introduction to Effective Field Theory

EFT is a theoretical framework used to describe physical phenomena at a specific energy
scale or distance scale.

EFTs are useful both in particle physics and fields such as condensed matter physics,
as it is often not practical or even possible to directly calculate the behavior of a system
using its fundamental microscopic laws. EFT offers a more tractable alternative by
providing a simpler, effective theory, which captures the essential physics at the energy
or distance scale of interest while ignoring the microscopic details that are not relevant.

Constructing an EFT involves identifying the relevant degrees of freedom and the
symmetries that govern their interactions. These degrees of freedom can be elementary
particles, collective excitations, or other entities that effectively describe the system’s
behavior. The symmetries, such as conservation laws, gauge symmetries, or spacetime
symmetries, provide essential constraints on the form of the effective theory.

Once the relevant degrees of freedom and symmetries are identified, one can write
down a Lagrangian or an action that describes the system’s dynamics. This Lagrangian
contains a set of parameters known as coupling constants, which encode the strength of
the interactions between the degrees of freedom.

The coupling constants, known as the WCs, need to be determined through
experimental measurements by matching the effective theory to the underlying more
fundamental theory. This ensures that the effective theory correctly captures the physics
of the underlying theory within a given energy or distance scale.

One important note is that since EFTs aim to capture the low-energy phenomena
of a fundamental UV theory, it is only valid up to a particular energy scale. For the
EFT to remain valid, the dynamics and interactions it describes must occur at energies
involved much smaller than the scale at which new degrees of freedom or interactions
become relevant.

3.1 SMEFT vs HEFT

One important clarification is needed to make sure the distinction between Standard
Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT)
is clear. HEFT shares similarities with SMEFT in using WCs as parameters in the
Lagrangian to determine the strength of higher-order operators. These coefficients,
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Chapter 3. Introduction to Effective Field Theory

similar to those in SMEFT, can be constrained through experimental measurements.
The critical difference lies in the contexts in which these two EFTs are applied.

SMEFT is chosen when studying broad aspects of the SM and exploring potential
new interactions that may affect low-energy phenomena within a particular energy scale.
On the other hand, if the focus is on the properties of the Higgs boson, such as its
production rates, decay rates, and interactions with other SM particles (i.e., the Higgs
sector), the most appropriate framework to describe these properties is HEFT. The
difference between the two lies in their scopes and emphasis.

3.2 Higgs Effective Field Theory

HEFT is a framework utilized to describe low-energy phenomena within the Standard
Model that pertain to the Higgs sector, and any Beyond Standard Model (BSM) states
associated with the Higgs boson.

The HEFT is constructed out of higher-dimensional operators, where the operators
are built from only SM fields. These operators describe interactions between SM particles
and potential new heavy particles. The assumed Higgs boson is embedded in an SUL(2)
Higgs doublet. HEFT is a subset of SMEFT, and since this thesis aims to parameterize
the Higgs boson coupling to SM fields, the entirety of SMEFT is unnecessary.

The mathematical formulation of the HEFT Lagrangian is given in Eq 3.1[10]:

LHEFT = LSM +
∞∑
d=5

∑
i

c
(d)
i

Λd−4O
(d)
i . (3.1)

LSM is the SM Lagrangian. Although the LSM is denoted "SM" it is not quite
correct to say that LSM is equal to the SM Lagrangian, as the higher order operators
from the operator product expansion(OPE) would affect it. Section 6.5 on fermion mass
shift, Higgs renormalization and Z mass shift shows how the OPE necessitates field
and mass redefinitions. The OPE is summed over every mass dimension d, and every
possible operator allowed by the symmetries of the theory. The coefficient in front of
each operator, ci is the Wilson coefficient divided by the energy scale. O is the effective
operator.

Since new particles are expected to be heavier than the VEV, they do not affect
current collider experiments. These Beyond Standard Model (BSM) states are integrated
out of the theory since they do not represent propagating particles. The effects of these
heavy new states are encoded into the coefficients of the higher dimensional operators,
which are determined through a process known as "matching". Matching essentially
matches the HEFT onto a complete theory where the BSM states are included. Matching
allows the HEFT to make predictions regarding the low-energy behavior, independently
of the details of the underlying physics. Section 10.3 briefly outlines the matching theory
and how one would apply it. While the matching procedure is essential for determining
the WCs and quantifies the importance of the new physics, it is not the focus of this
thesis.
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3.2. Higgs Effective Field Theory

The HEFT Lagrangian is required to follow the same rules governing the SM. This
requirement mandates that the effective operators must also be invariant under the SM
gauge group SUc(3)× SUL(2)× UY (1), follow baryon/lepton conservation, and Lorentz
invariance.

L5 and L7 consists only of operators of odd mass dimension, which are not allowed
since the operators must contain only interactions conserving lepton(L) and baryon(B)
number as is a requirement in the SM. Operators of even mass dimension are the only
ones that are of interest since they do not violate B and L conservation). As the operators
increase in mass dimension, they are more and more suppressed by the energy scale Λ.
[O6] is suppressed by a factor of 1

Λ2 and [O]8 are suppressed by a factor of 1
Λ4 .

When deciding the contents of L6 and L8 there are three rules.

(1) Power Counting

(2) Symmetry requirements

(3) Particle content

The most crucial rule is power counting. This rule limits the number of possible
operators the EFT can have by imposing that the operators be restricted by their
dimensionality. From just symmetry requirements we can build an infinite number of
possible operators. PC rules allow us to neglect operators severely suppressed by factors
of 1

Λ . The consensus is to use operators of mass dimension 6. However, with the potential
for future high-energy collider experiments, the effects of higher-order operators, such
as those of mass dimensions eight and above, may become increasingly important to
consider. As such, there is value in exploring their potential already.

With the number of operators we can have limited by the total mass dimension of
d = 8, there are also symmetry requirements to be met. Symmetry requirements limit
the number of possible ways the effective operators can be structured. The symmetries
of the standard model have been measured with high precision. Hence, any violation
of these symmetries has to happen at extremely high energies or are minimal violations
of the SM [6] [15]. Therefore it is highly motivated that these symmetries should also
govern the structure of the effective operators.

Lastly, one has to define the particle content of the HEFT. The particles in the HEFT
are the fields with dynamic degrees of freedom. All particles with mass m << Λ are
included as dynamical degrees of freedom, while all particles with m ≈ Λ are integrated
out of the theory and can not propagate. These non-propagating states are the BSM
states we integrated out to obtain the expression for the effective Lagrangian. The
fields making up the effective Lagrangian are the four gauge bosons W±, Z, which carry
the weak interaction, gluons G, which carry the strong interactions, and the photon γ
carrying the electromagnetic interactions. The unique force carrier is the scalar Higgs
boson H, which differs from the other by being a scalar field with spin-0 while the
others have spin-1. The gauge bosons, Higgs scalar field, and fermions make up the
matter content of both SM and effective operators.

The challenge will be to use all three rules to find and group all the different
combinations of allowed effective operators.
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Chapter 3. Introduction to Effective Field Theory

The different effective operators have already been extensively covered in the
literature. Two well-known sets of operators called the HISZ-set1 and the Strongly
Interacting Light Higgs (SIHL)-set, are often referred to as basis but are, in-fact in-
complete sub-sets (HISZ) or over-complete sets ( SIHL) of operators in L6[11]. It
took over 20 years after the first complete set of 80 operators was published [13] by
W. Buchmuller and D. Wyler before it was realized that not all 80 operators are
linearly independent and could be reduced using EOM and field re-definitions. The
first full and non-redundant operator basis for L6 (disregarding flavor structure and
hermitian conjugation as in the work by W. Buchmuller and D. Wyler ) were published
in [23]. The full and non-redundant operator basis found by B. Grzadkowski is now
known as the Warsaw basis[11]. These different bases are equivalent in that you can
transform them into each other through EOM and field re-definitions. However, they
put different constraints on the Wilson coefficients resulting in a slight deviation from
SM experimental data for the bases.

Both the Warsaw basis and the SHIL basis are used to derive the final effective
Lagrangian.

3.3 Advanced EFT (

This section hopes to highlight the various advanced aspects of EFT, which are not
discussed in this master thesis. One important way of determining the relevance of your
EFT is "Running the Renormalization Group Equation." This is not done in this thesis,
as this is difficult. Running the RGE involves solving the statement that the bare2

Lagrangian does not depend on the energy scale[12], as shown in Eq 3.2.

0 = Λ d

dΛL
(n) bare . (3.2)

From this statement, one can derive the beta-function[12], which encodes how the
EFT Lagrangian’s parameters depend on the energy scale Λ.

Λ d

dΛL
(n) = B(n) (3.3)

The beta function captures the effects of quantum corrections and the
renormalization process. By solving Eq 3.3, we can determine how the couplings and
parameters evolve from high-energy to lower-energy scales. In the context of EFTs, 3.3
is important for understanding the scale dependence of the WCs. As the β-function
3.3 encodes how the parameters of the effective Lagrangian depend on scale, if β > 0,
then you have a coupling constant that grows in strength and becomes strongly coupled
at high energies. The opposite is true for β < 0. The former is known as a "running
coupling," where the coupling grows as the energy scale increases. Diving deeper into
scale dependence would be an exciting adventure, but this master thesis focuses on
relating the EFT to a more fundamental theory by establishing the coefficients of the
EFT operators without considering its scale dependence.

1Named after Hagiwara K, Ishihara S, Szalapski R, Zeppenfeld D, who first used it in the article [24]
2Bare is a reference to a Lagrangian, which has not had its heavy fields integrated out
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3.3. Advanced EFT (

Integrating out heavy fields

Integrating out heavy states in an EFT refers to the process of eliminating the degrees
of freedom associated with high-energy or heavy particles from the theory. These heavy
particles do not appear in the final effective Lagrangian. The "integrating out" step is
done by creating an effective action Eq 3.43, S

Seff
Λ [ϕL] = − ln

[∫
DϕHe−SΛ0 [ϕL+ϕH ]

]
(3.4)

By rewriting the action as Eq 3.4, a low-energy description is obtained where the
fields ϕ are separated into low-energy source fields ϕL to the high-energy fields ϕH .

3This is taken from Problem Set 9, in the course FYS-5120 Advanced Quantum Field Theory, held
by Lasse Lorentz Braseth, Jonas Eidesen
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Chapter 4

Effective Operators

4.1 Introduction

Let’s clarify our objectives before selecting the dimension-6 and dimension-8 operators
to incorporate into our final effective Lagrangian. Specifically, our goal is to identify the
relevant operators from the set of dimension-6 and dimension-8 operators, L6 +L8, that
are most effective in characterizing deviations in the Higgs coupling to SM matter fields.
To do this, we must first define the various operators and their fundamental building
blocks.

4.2 Mass Dimension of Matter Content in the Standard Model

To define the various effective operators in HEFT, it is necessary first to establish the
mass dimension of the "building blocks" that make up the operators. These building
blocks are the matter content of the SM Lagrangian, which includes various fields
representing particles such as quarks, leptons, and gauge bosons. Knowing the mass
dimension of these building blocks, we can construct higher-order operators that capture
the interactions between these fundamental particles at energy scales beyond the SM.

The action, S =
∫
Ld4x must be dimensionless, meaning that the Lagrangian density

must be of dimension (mass)4. To determine the mass dimensions of the different fields
and operators in the Lagrangian, we can use the kinetic terms of QED as a reference.
Using the kinetic terms of the QED Lagrangian, we can determine that the gauge boson
Aµ and the partial derivative must have [Aµ] = [∂µ] = 1. This allows us to establish the
mass dimensions of other fields and operators that appear in the Lagrangian.

To determine the mass dimensions of fields in interacting theories, we can begin
by considering the free Lagrangian of scalar fields. (∂ϕ)2 is the free Lagrangian for
scalar fields, from which it is clear that [ϕ] = 1. Similarly for the free theory of fermions,
LDirac = ψ̄(i∂−m)ψ it is clear that fermions must have [ψ] = 3

2 . These mass dimensions
are a starting point for determining the mass dimensions of more complex interacting
theories. For an interacting theory involving only scalars, the allowed interaction terms
are[39]

µϕ3, λϕ4.
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Chapter 4. Effective Operators

µ is a coupling constant with mass dimension [µ] = 1 whilst λ is dimensionless
coupling constant. We are only considering renormalizable interactions where the
coupling constants are dimensionless or have [µ] > 0. Non-renormalizable interactions,
on the other hand, have coupling constants with negative mass dimension, making
the theory increasingly sensitive to higher energy scales and less predictive[39].
Renormaliazability is required for a theory to predict observables with precision, which
is also why there is a cut-off scale to our effective theory to ensure our theory is valid.

Fermions cannot self-interact because it would violate Lorentz invariance and lead to
a mass dimension of 9

2 . Therefore, the only allowed interaction for fermions is through
the Yukawa term:

gψ̄ψϕ.

g is a coupling constant. There exist similar interactions which can be constructed
out of Weyl and Majorana spinors[39]. We now have all the necessary building blocks
we need to construct our higher-order dimensional terms. The

[ψ] = 3
2 , [Aµ] = 1, [Aµν ] = 2, [ϕ] = 1, [∂µ] = 1, [Dµ] = 1.

Here, Aµ represent the different gauge bosons, while their respective field strength
tensors are denoted by Aµν . The fermionic fields, which include the leptonic and quark
fields, are collectively represented by the symbol ψ.

Before identifying potential dimension 8 operators, we will start by classifying all
possible dimension 6 operators. We will use the same notation. When defining the
operators Oxxxx, the different x’s represent either fermions ψ (which could be up, down,
top, e, l, ν etc), the different gauge bosons G,B,W , the Higgs field H or the covariant
derivative D.

Beginning with the easiest dimension 6 operators, we can combine the scalar
gauge singlet H†H with any dimension-4 operator from the SM. The only dimension-4
operators in the SM are the kinetic terms for the gauge bosons

−1
4G

A
µνG

Aµν ,
1
4W

I
µνW

Iµν ,
1
4BµνB

µν ,

the Yukawa interaction terms(1
2ΨT

LChHΨL + h.c.
)
,

and lastly the four point scalar interaction term

1
2(H†H)(H†H).

These operators combined with the scalar gauge singlet H†H gives the various
dimension-6 terms

OH†H =
(
H†H

)3
, ODDH†H =

(
H†H

)
(DµH)† (DµH)

OH†HG =
(
H†H

)
GaµνG

µνa, OH†HB =
(
H†H

)
BµνB

µν

OH†HW =
(
H†H

)
W k
µνW

µνk, OH†H =
(
H†H

)
ψTLHψR + h.c.
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4.3. SM Equations of motion

The normalization has not been accounted for. These are only a handful. Before
writing down the specific structure of each operator, the general structure of the group
will be derived. But before we write the various groups, we will first see how equations
of motion (EOM) help simplify them.

4.3 SM Equations of motion

Equations of motion are vital as they will be used to reason why several of the upcoming
dimension 6 and dimension 8 groups are empty. Using these equations of motion, derived
from the principle of least action, several operators are reduced to a simpler form. A
simpler form follows the same reasoning as in [23], which is by reducing the number of
covariant derivatives or gauge bosons corresponding to a lower operator class or group.

The classical equations of motion are derived by varying the action with respect to
the different fields in the theory. Since we are only interested in the EOM for the SM
fields, there are four different EOMs to be obtained from varying the action with respect
to the four Standard Model fields

δS

δBi
= 0. (4.1)

Where Bi ∈ {H,W,G,B}, and i = {1 . . . 4} is the index which runs over the different
fields. From the principle of least action, we obtain the Euler-Lagrange equations by
expanding the above condition[39]

δS

δBi
=
∫
d4x

{
∂L
∂Bi

δBi − ∂µ

(
∂L

∂ (∂µBi)

)
δBi + ∂µ

(
∂L

∂ (∂µBi)
δBi

)}
= 0. (4.2)

The last term is just a surface integral, leaving us with the Euler-Lagrange equations
of a field

∂L
∂Bi
− ∂µ

(
∂L

∂ (∂µBi)

)
= 0. (4.3)

Plugging in the different SM fields, we obtain three equations of motion for the
gauge fields, and one for the Higgs field. We will use the gauge fields EOM to reduce
the operators in H2D4, H2AD2, and A2D2. See Appendix 11.1 for a closer look at how
they are derived.

We will not take into account higher-order terms when varying the SM with respect
to the different fields. Accounting for higher-order terms when varying the SM with
respect to a field would lead to complex calculations which is not the focus of this thesis.
For a brief discussion regarding this issue see section ??. The various equations of motion
we obtain after varying the Standard Model with respect to each field are[23]

(DµDµH)j = m2Hj − λ
(
H†H

)
Hj − ēΓ†

el
j + εjkq̄

kΓuu− d̄Γ†
dq
j ,

(DρGρµ)A = gs
(
q̄γµT

Aq + ūγµT
Au+ d̄γµT

Ad
)
,

(DρWρµ)I = g

2
(
φ†i

↔
D

I
µφ+ l̄γµτ

I l + q̄γµτ
Iq
)
,

∂ρBρµ = g′Yφφ
†i

↔
Dµ φ+ g′ ∑

ψ∈{q,l}
Yψψ̄γµψ.

(4.4)
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From the above equations, we see how we are able to reduce the groupsH2D4, H2AD2

and A2D2 by replacing DA or DDH in the groups with the definitions given in 4.4,
transferring them to other fermionic subgroups by removing the number of covariant
derivatives and gauge fields.

4.4 Covariant Derivatives and Field Combinations of Dimension-
6 Operators

To list all possible operators, we must consider their power counting first. We will
later justify the specific structure of the operators based on their compliance with gauge
invariance, Lorentz invariance, and lepton and baryon conservation principles. For the
various fields, we will use the following notation: field strength tensors (A), fermions
(ψ), covariant derivatives (D), and the scalar field (H). The possible operators will be
grouped, with various allowed combinations of fields and covariant derivatives restricted
by power counting. All the possible groups of dimension 6 operators are listed in Table
4.1[23]

A3 Aψ2H D2H4 AD4 H2D4

A2H2 ψ2H3 ψ2H2D A2D2 ψ2AD
AH4 ψψψψ H6 H2D2A

Table 4.1: All possible dimension 6 groups which only obey PC rules

Dimension-5 operators are excluded due to their failure to conserve B and L.
Furthermore, purely bosonic dimension-5 terms are strictly prohibited since they require
uncontracted covariant derivatives or an odd number of scalar fields, which would violate
SU(2)L tensor product constraints. This is because [A] = 2 and [D] = [H] = 1, and any
dimension-5 operator would need to contain an odd number of these fields or derivatives,
which cannot be contracted to form a Lorentz-invariant term. [23].

In Table 4.1, not every allowed combination of fields and covariant derivatives
contains any operators. For example, AD4 and AH4 do not include operators. Although
AH4 has an even number of scalar fields, the antisymmetric nature of the field strength
tensors and the absence of any object that can contract with the lone field strength
tensor without making it a higher than dimension 6 term breaks Lorentz invariance.

AD4 has no elements simply because all the elements can be simplified by using a
commutator between covariant derivatives to promote all the operators to the D2A2

group. As shown in eq 2.3, one way of defining the field strength tensor is through the
covariant derivative:

[Dµ, Dν ] ∼ Aµν .
The commutator above, therefore, promotes every single AD4 operator to the A2D2

by turning two derivatives into one bosonic field[23].

The groups H2D4, H2AD2, A2D2, and ψ2AD are also empty since every single
operator can be redefined/reduced using classical EOM. The groups are reduced to
either a purely fermionic group, or to one of the four following groups

A3, A2H2, H6, H4D2.
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4.5. Systematic Classification of Dimension 6 Effective Operators (Explain assumption of gauge
invariance)

4.5 Systematic Classification of Dimension 6 Effective Operat-
ors (Explain assumption of gauge invariance)

The structure of this section is inspired by [23]. After seeing how various operators in
the above groups can be reduced, we are left with the groups A3, H6, H4D2, ψ2H3,
A2H2, ψ2AH,H2ψ2D, and ψψψψ.

We have already found several different operators by adding the scalar gauge singlet
H†H to all dimension 4 terms. These operators are just 6 out of 59 established
independent dimension-6 operators from [23].

To better understand the operators, i.e., why they are structured the way they are,
the dimension-6 groups will be presented in tables listing their respective operators.
Under each table, the operator’s structure will be explained. In contrast, the vast number
of dimension-8 operators precludes us from explicitly enumerating them. Nonetheless,
systematically breaking down each group enhances our understanding of the operators’
validity. Such knowledge becomes especially crucial when dissecting complex dimension-
8 operators.

We start by examining the A3 group, which comprises only gauge fields. Since there
are an odd number of gauge fields, the field indices must be contracted with the structure
constant of the symmetry group. Below are all the possible A3 operators.

OGGG = fabcGaνµ G
bρ
ν G

cµ
ρ

OG̃GG = εabcG̃aνµ G
bρ
ν G

cµ
ρ

OWWW = fabcW aν
µ W bρ

ν W
cµ
ρ

OW̃WW = εabcW̃ aν
µ W bρ

ν W
cµ
ρ

Table 4.2: A3.

These are all possible three boson operators allowed for by PC. All the operators
also have contracted indices, meaning they are Lorentz invariant. The absence of any
A3 operator constructed out of only B fields is due to the inability to build any Lorentz
invariant object using its structure constant. It is important to note that not all tensors
with contracted indices are Lorentz invariant. In this case, they are Lorentz invariant as
both Gµν and Wµν are constructed out of gauge fields that follow Lorentz transformation
rules.

The field strength tensors contracted with each other give a Lorentz invariant
quantity. Two tensors contracted with respect to Lorentz indices will always give a
Lorentz invariant quantity, i.e., a Lorentz scalar. The term with a tilde above its field
strength tensor is a dual-tensor, which follows the same convention as in [23].

Next up is the group A2H2 as shown in Table 4.3. We can form the group A2H2 by
combining one scalar gauge singlet with the three gauge-invariant kinetic energy terms
in the Standard Model Lagrangian. By doing so, we can obtain all the acceptable terms
under this group. As we will see, other operators can contain such a gauge singlet, but
these operators belong to other operator groups.

In A2H2, one operator also mixes the field strength tensors W a
µν and Bµν . W -field

and B-field can mix as they belong to the electroweak symmetry group. Gµν , however,
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Chapter 4. Effective Operators

belongs to another gauge group and therefore can not mix with Bµν and Wµν .

OH†HG = H†HGaµνG
aµν

OH†HG̃ = H†HG̃aµνG
aµν

OH†HW = H†HW a
µνW

aµν

OH†HW̃ = H†HW̃ a
µνW

aµν

OH†HB = H†HBµνB
µν

OH†HB̃ = H†HB̃µνB
µν

OHHWB = H†taHW a
µνB

µν

OHHW̃B = H†taHW̃ a
µνB

µν

Table 4.3: A2H2.

Since the operators in A2H2 are constructed from gauge-invariant terms from the
Standard Model Lagrangian, gauge invariance is preserved in all operators. Additionally,
there are no uncontracted Lorentz indices in the operators, ensuring that Lorentz
invariance is preserved.

The groups H6 and H4D2 are small and only contain one and two operators,
respectively. The group H6 can only have the operator (H†H)3, since any other
combination of H-fields where two and two Higgs fields are not contracted in a scalar
gauge singlet would break Lorentz-invariance. The only different combination is H†taH.

The structure of the Higgs field is that of an SU(2) doublet with representation
(1

2 , 1) with 1
2 being third component of weak isospin and 1 being weak hypercharge. The

fermion fields always come in pairs, with one being conjugated so that total hypercharge
vanishes[23]. All other combinations of fields, dual-fields, or complex conjugated fields,
would break hypercharge constraints. Hypercharge constraint requires that the sum
of the hypercharges of the fields in any interaction must be conserved. Therefore the
combination of non-zero hypercharge fields in Table 4.3 is the only combination that
does not violate hypercharge conservation.

The two operators in H4D2 are rather complex, but both of these two operators
can be derived using a Fierz identity and an EOM. As with all the other operators up
until now, these operators are constructed out of already-known SM operators. Taking
a scalar gauge singlet and adding the operator from the SM containing two derivatives,
i.e., the kinetic term for the scalar Higgs field, we get Table 4.4[23].(

φ†τ Iφ
) [

(Dµφ)† τ I (Dµφ)
](

φ†φ
) [

(Dµφ)† (Dµφ)
]

Table 4.4: H4D2.

These operators are already gauge- and Lorentz invariant by the same reasoning as
the previous group A2H2. From these two operators we are able to obtain the operators
in Table 4.5. These operators are derived using the Fierz-identity

τ Ijkτ
I
mn = 2δjnδmk − δjkδmn,

and the EOM for the hypercharge U(1) field. See Appendix 11.2 for the derivation
of the two operators.
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4.5. Systematic Classification of Dimension 6 Effective Operators (Explain assumption of gauge
invariance)

Fierz identities are a helpful tool for eliminating redundant operators. In Table 4.4,
we can see that only two operators are present, as all other potential operators can be
obtained using the Fierz identity or an EOM on these two operators. Fierz identities
greatly simplify calculations.

O□H†H =
(
H†H

)
□
(
H†H

)
O2DH†H =

(
H†DµH

)⋆ (
H†DµH

)
Table 4.5: H4D2.

The next three groups introduce fermion currents mixed with scalar and bosonic
fields: ψ2AH, ψ2H3, and ψ2H2D.

The group ψ2AH consists of one fermion current in the form of ψ̄pσµνψr (where
p and r are generation indices), and σ represents the antisymmetric product of the
Dirac matrices, along with the Higgs field and one gauge boson. The sigma matrix
is needed to combine the Lorentz indices of the two fermionic fields and to ensure
that the operator has the correct Lorentz transformation properties. The fields must
be structured similarly to the Yukawa interactions in the Standard Model to conserve
hypercharge. For dimension-six operators involving scalar and tensor fermionic currents,
the number of associated Higgs fields is always odd. This implies that the fermionic
currents must be arranged in isospin doublets. The way these currents are written are
either ψ̄1ψ2 and ψ̄1σµνψ2. The form of the fermion current must be ψ̄1σµνψ2, for the
sigma to be contracted with a Higgs or a gauge field.

The operators can include any of the three gauge bosons as long as the bosons are
contracted with their respective isospin triplets and color octets. Groups with scalar
and tensor fermionic currents are always associated with an odd number of Higgs fields
due to power counting constraints. Consequently, groups with an odd number of Higgs
fields force the fermion currents to be isospin doublets. [23]

There are three different currents that can be contracted with three different bosons,
but the gluonic field cannot create leptonic fields. On the other hand, both the Bµν and
Wµν bosons can couple to leptonic fields and quark fields. Table 4.6 lists all possible
operators that can arise from these combinations. In the subscripts of the operators,
the fermion current is denoted as either e, u, or d to indicate the type of current that it
represents.

OeHW =
(
l̄pσ

µνer
)
τaHW a

µν

OeHB =
(
l̄pσ

µνer
)
HBµν

OuH̃G = (q̄pσµνur) taH̃Gaµν
OuH̃W = (q̄pσµνur) τaH̃W a

µν

OuH̃B = (q̄pσµνur) H̃Bµν
OdHG = (q̄pσµνdr) taHGaµν
OdHW = (q̄pσµνdr) τaHW a

µν

OdHB = (q̄pσµνdr)HBµν

Table 4.6: ψ2AH.

Again, all operators maintain Lorentz invariance as there are no uncontracted Lorentz
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Chapter 4. Effective Operators

indices.

The next group, ψ2H3, combines Yukawa interactions with a scalar gauge singlet.
As with the group of Yukawa-like interaction, ψ2AH, the current in ψ2H3 must be an
isospin doublet and a color singlet on the form ψ̄1ψ2.

The scalar fields in the ψ2H3 group are also subject to hypercharge constraints. As
we know, the scalar gauge singlet H†H has a hypercharge of zero, as the hypercharge
of the Higgs fields cancels, while the remaining scalar field should be either conjugated
or un-conjugated based on the hypercharge of the fermion current. Table 4.7 shows the
possible operators in the ψ2H3 group.

Oe3H =
(
H†H

) (
l̄perH

)
Ou3H =

(
H†H

) (
l̄purH

)
Od3H =

(
H†H

) (
l̄pdrH

)
Table 4.7: ψ2H3.

The operators listed in the table are not all possible operators in the ψ2H3 group
due to the constraint imposed by combining scalar gauge singlet into isospin doublets,
which is necessary for maintaining gauge invariance. The scalar gauge singlet has a total
hypercharge of zero, and any additional scalar field combined with it must also have a
total hypercharge of zero to conserve hypercharge. Therefore, the possible combinations
of scalar fields with the scalar gauge singlet are restricted, and only a subset of potential
operators are allowed. The creation of doublet scalar fields is unique, and combinations
such as H†H̃ are zero1.

The next group of operators we will examine is ψ2H2D. This group is characterized
by two scalar fields, two fermion fields, and one covariant derivative.

If the covariant derivative acts on the fermion current, then using classical equations
of motion, every operator in this group can be transformed into another group. Thus,
the covariant derivative must act on one of the two scalar fields to maintain uniqueness.

It is essential to emphasize that the operators must be Hermitian. According to
Weinberg [43], the action must be real, and thus, Lagrangian operators must satisfy
the constraint of being hermitian. This constraint ensures that the observables are real
and physically meaningful. To simplify the notation and account for the hermiticity
of operators, we use the symbol ↔ Dµ, which includes the hermitian conjugate of the
operator in the scalar part of the Lagrangian.

Without gauge bosons, the fermion current cannot change the type or generation of
fermions. As a result, only three distinct fermion currents can appear in the ψ2H2D
group of operators. The complete list of operators in this group is presented in table 4.8.
It should be noted that the current notation used in the previous group is also applicable
here, except for the last operator in the current, which involves mixing between up and
top quarks.

Four-fermion operators are of no value when considering HEFT, so they will not be
listed. Next up is the classification of dimension 8 operators. Dimension 8 operators

1H†
j H̃j = εja (φa)⋆ εjk

(
φk
)⋆ = 0
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4.6. Covariant Derivatives and Field Combinations of Dimension-8 Operators

O2Hl =
(
H†i

↔
Dµ H

) (
l̄pγ

µlr
)

O2Hl =
(
H†i

↔
D
a

µ H

)(
l̄pt

aγµlr
)

O2HL =
(
H†i

↔
Dµ H

)
(ēpγµer)

O2Hq =
(
H†i

↔
Dµ H

)
(q̄pγµqr)

O2Hq =
(
H†i

↔
D
a

µ H

)
(q̄ptaγµqr)

O2Hu =
(
H†i

↔
Dµ H

)
(ūpγµur)

O2Hd =
(
H†i

↔
Dµ H

) (
d̄pγ

µdr
)

O2Hud =
(
H†i

↔
Dµ H

)
(ūpγµdr)

Table 4.8: ψ2H2D.

consist of a vast set of operators and will not be discussed at the same length as the
dimension-6 case.

4.6 Covariant Derivatives and Field Combinations of Dimension-
8 Operators

The SM, on its own, consists of 14 operators. If we limit the PC rules to dimension 6,
there are 59 additional independent operators[23]. Furthermore, considering PC rules
restricted dimension-8 operators, the total number of independent operators reaches
a staggering 44,807 (disregarding flavor variations for both operator sets)[33]. The
effective Lagrangian can include these additional operators to describe various physical
phenomena better and provide insights into fundamental physics beyond the SM. Four-
fermion operators are useless when considering HEFT, so they will not be listed. Next
up is the classification of dimension 8 operators. Dimension 8 operators consist of a vast
set of operators and will not be discussed at the same length as the dimension-6 case.

It is unnecessary to write down all 44807 operators, as we are only interested in
improving the parametrization of the deviation in the Higgs coupling to SM matter
fields. Of those 44807 operators, as we will see later, there are only a handful of relevant
bosonic ones. As with dimension 6 operators, most operators, including flavor variations,
are unimportant when describing Higgs physics.

The dimension-8 operators that contribute to the Higgs coupling involve interactions
between the Higgs field and some SM fields. When exploring the extensive set of
dimension-8 operators, it is crucial that we carefully consider only those that are relevant
to the task at hand. Including irrelevant operators in our analysis would lead to
unnecessary complexity in our calculations when calculating the Lagrangian in unitary
gauge and would ultimately not improve parametrization. But before delving into the
structure of the various dimension-8 operators and their significance, it is essential to
ask: what is the motivation for including them in our analysis?

Several interesting interactions can only be described by dimension 8 operators. A
few of these include light-by-light scattering and the contribution dimension 8 operators
can have to electroweak precision measurements (EWPM)[33]. Dimension-8 operators
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Chapter 4. Effective Operators

can also contribute to improving the U -parameter, which is a parameter introduced by
Peskin and Takeuchi to describe new physics in the electroweak sector and quantify
electroweak radiative corrections [38]. Section 7.1 introduces electroweak radiative
corrections in greater detail.

The article by Murphy [33] was consulted for the discussion of different dimension-8
operators.

When classifying the different dimension-8 operators, we can get a couple of apparent
groupings by just expanding some existing ones with simple dimension two operators,
such as the scalar Higgs singlet H†H.

Adding the scalar gauge singlet to the group H6 results in the group H8. Using the
same arguments as for H6, it becomes apparent that there can be only one operator
in H8, namely (H†H)4. This operator represents the self-interaction of the Higgs field.
However, even at order 1

Λ2 , the Higgs self-interaction operator ((H†H)3) is considered to
be of little practical use because current experimental precision is not sensitive enough
to detect it [9].

Table ?? illustrates how the addition of various objects to the existing dimension-6
groups creates dimension-8 groups

We will discuss every dimension-8 group below. The eight tree diagrams below show
how one can obtain a dimension-8 group by adding one gauge boson A (blue), two
covariant derivatives D (green), or two Higgs fields H (red) to a dimension-6 group. The
tree diagram provides a general overview of all possible dimension-8 groups, some of
which make significant contributions to the dimension-8 Lagrangian.

A3

A4 A3H2

Figure 4.1: Expanding group A3. Notably
one branch is empty

A2H2

A2H2D2 A3H2 A2H4

Figure 4.2: Expanding A2H2

ψ2H3

ψ2H3D2 ψ2H3A ψ2H5∗

Figure 4.3: Expanding ψ2H3

ψ2AH

ψ2AHD2 ψ2A2H ψ2AH3∗

Figure 4.4: Expanding ψ2AH. One branch
is overlaping with ψ2H3

Not all the dimension 8 groups are presented here. Some groups are expanded by
one scalar field and one covariant derivative, which is not covered by the diagrams.
Additionally, it is impossible to include two covariant derivatives in the A3 group, as
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4.7. Classifying Dimension-6 Operators

H4D2

H4D4 H4AD2 H6D2

Figure 4.5: Expanding H4D2

ψ4

ψ4D2 ψ4A ψ4H2

Figure 4.6: Expanding ψ4

H6

H6D2 H6A H8∗

Figure 4.7: Expanding H6

ψ2H2D

ψ2H2D3 ψ2AH2D ψ2H4D

Figure 4.8: Expanding ψ2H2D

such terms can be reduced to other groups using EOM. The use of EOM to demonstrate
the reduction of different groups was previously demonstrated in the classification of the
dimension 6 operators.

Two groups are not included in the tree diagrams, namely ψ4HD and ψ2A2D. The
former group is obtained by adding one covariant derivative and one gauge field to the
four-fermion group. The latter is obtained by combining a fermion current with two
gauge fields and one covariant derivative.

Some groups can lead to the same operators when adding either a Higgs field or a
gauge field. For example, the H6D2 group can be obtained by adding two covariant
derivatives to the dimension 6 H6 group or two Higgs fields to the H4D2 group. This
overlap results from exploring different ways to obtain the dimension-8 groups by adding
various combinations of fields/derivatives with dimension 2.

The groups marked with an asterisk indicate that the only addition to the dimension
6 operators is the scalar gauge singlet (H†H). While this article will not provide a
systematic grouping and explanation of all the dimension 8 operators, similar to what was
done with the dimension 6 operators, as this is beyond the scope and goal of the article.
Instead, we focus on the relevant dimension 8 operators, drawn mainly from [33], and
further explanation will be provided for those pertinent operators to the parametrization
of the Higgs coupling to matter fields.

4.7 Classifying Dimension-6 Operators

We will begin by choosing the dimension 6 operators for our effective Lagrangian. In
this regard, we will adopt the same dimension 6 Lagrangian as utilized in the work of
[43]. However, we will provide a more detailed explanation for the specific selection
of operators than presented in [43]. Furthermore, we will demonstrate the complete
calculations of the Lagrangian in unitary gauge. Every higher-order operator in unitary
gauge can be found in Appendix H 11.6 .

The work of [43], which has inspired this article, relied on various key assumptions
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in selecting an effective Lagrangian for calculating constraints on the Higgs couplings.

A contrast between their approach and ours is the exclusion of dimension-8
operators. It is yet to be determined whether including such operators can enhance
the parametrization of the deviation in Higgs coupling to SM matter fields. Moreover,
they made additional assumptions, such as disregarding the operator (H†H)3, as the
experimental precision is not yet refined enough to account for the Higgs self-coupling.

The operators in L6 that will contribute to the parametrization involve at least
one Higgs field. Initially, the relevant groups containing Higgs fields are identified as
H6, H4D2, ψ2AH, ψ2H2D, and ψ2H3. However, it is important to note that not all
operators containing a Higgs field will necessarily contribute to the parametrization.

The dynamics of EWSB have been experimentally investigated by LEP1 (Large
Electron-Positron Collider), which has provided strong evidence that the EWSB
dynamics are weakly-coupled, thus indicating the existence of a light Higgs boson
[21]. This light Higgs boson is responsible for the weakly-coupled Higgs self-interaction
dynamics [21]. The EFT of the SIHL has already been extensively studied, and the
low-energy effective Lagrangian corresponding to SILH is the same as the previously
mentioned SILH Lagrangian.

The SILH Lagrangian, along with the inclusion of the terms ∆F1 and ∆F2 containing
2-fermion vertex and 2-fermion dipole operators, respectively, has proven to be valuable
for comparing to the Warsaw basis since it solely contains operators describing Higgs
physics [21]. One notable distinction is the reformulation of the operators in the H2AD2

group in the Warsaw basis into the two groups H4D2 and ψ2H2D. The H4D2 group
poses no issue since the operators in the Warsaw and SILH bases are the same. However,
the reduction of the H2AD2 group in the Warsaw basis introduces vertex corrections
and changes to the Fermi constant due to the presence of fermion currents [16].

As the corrections introduced by the reduced operators in the H2AD2 group can be
cumbersome, it is preferable to employ the original operators. While other bases may
be utilized, modifying Fermi constants requires incorporating a four-fermion operator,
as demonstrated in [4].

Next, we will go over every group to decide which operators can be cut for the final
description of the effective Lagrangian.

The H6 group comprises the Higgs self-coupling operator (H†H)3. However,
detecting Higgs self-interaction is already a challenging task [27], and detecting a six-fold
interaction is not feasible with the current LHC luminosity. Thus, omitting this operator
from the final effective Lagrangian description is reasonable.

H4D2: The group H4D2 contains only two operators:
(
H†DµH

)⋆ (
H†DµH

)
and 1

2

(
H†H

)
□
(
H†H

)
. We will employ a different structure of the operator

1
2

(
H†H

)
□
(
H†H

)
. This operator can be rewritten according to a field-redefinition

as [21] lays out, to the SHIL operator 1
2∂µ

(
H†H

)
∂µ
(
H†H

)
2. The SHIL version is

2The Warsaw operator and the SHIL operator both stem from the same operator before EOM in the
Warsaw case and a field redefinition in the SHIL case.
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4.7. Classifying Dimension-6 Operators

preferable, as it is easier to see how the operator would affect the canonical kinetic
Higgs term. 1

2∂µ
(
H†H

)
∂µ
(
H†H

)
effects also the Higgs self-interactions[22], while(

H†DµH
)⋆ (

H†DµH
)

is responsible for interactions between the Higgs field and gauge
bosons.

ψ2H3 : The operators in this group are also relevant, as the Higgs field is coupled to
Standard Model fermions. Although EWPM heavily constrains fermion-currents coupled
to gauge bosons[9], not allowing for any Higgs physics, these operators do not have
any gauge-fermion coupling. These operators are, therefore, theoretically helpful, as
they modify the Yukawa interactions and can affect the Higgs couplings to fermions.
However, the current LHC luminosity may limit the experimental sensitivity to these
operators. Therefore, their relevance depends on future colliders’ experimental reach
and sensitivity.

The Higgs boson is responsible for giving mass to the fermions through the Yukawa
interaction, which couples the Higgs field to the fermions. The strength of the coupling
is proportional to the mass of the fermion, which means that the Higgs interaction is
most prominent with heavy fermions. This makes the top quark particularly relevant for
Higgs physics since it is the heaviest of the quarks. As the mass of the fermion decreases,
the likelihood of producing a Higgs boson also decreases.

The operators in this group and their dimension 8 equivalents induce a shift in
fermion mass. This shift will be examined in 6.5.

A2H2 : This group is essential to include as it impacts the Higgs boson’s coupling
to all Standard Model gauge fields.

ψ2AH : The operators in this group involve fermion currents coupled to gauge
bosons, which are already tightly constrained by EWPM. Consequently, the effect of
adding higher order operators of this form is negligible [7]. It is not reasonable to
assume that entire groups of operators can be cut just due to them being constrained by
EWPM. One motivating factor for the inclusion of dimension 8 operators is that they
increase experimental sensitivity to the new physics, which could be found even with the
stringent constraints on the electroweak sector. However, relaxing the assumption that
fermion currents coupled to gauge bosons could allow for new Higgs physics would open
up too many operators that could be included in the final Lagrangian. Assuming that the
fermion currents coupled to gauge bosons are overly constrained, even for dimension 8
operators, is a reasonable assertion supported by the precedent set in [7]. Additionally,
for practical reasons, constructing a Lagrangian that covers all groups with fermion
currents would result in a large and too complex expression to put into unitary gauge.

ψ2H2D : As previously explained, the incorporation of fermion currents instead
of the original group H2AD2 before reduction by the equations of motion results in
an undesired change of the Fermi constant. This necessitates the introduction of a
four-fermion operator to compensate for the change. To circumvent the need for the
four-fermion operator, it is more convenient to utilize the original form without fermion
currents.

A3 : This group consists solely of gauge fields, representing boson propagators and
boson self-interactions that do not affect Higgs physics. In this thesis, our focus is not
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on purely bosonic operators or those that result in an interaction involving three or more
gauge bosons after being subjected to unitary gauge.

In the next section, we will explore various dimension 8 operators and, in the end,
settle for a dimension 8 Lagrangian.

4.8 Key Considerations and Selection Criteria for Dimension-8
Operators

Although the anticipated yield of incorporating dimension 8 operators with current LHC
data is low, their utility is expected to increase with the advent of the HL-LHC. As the
HL-LHC becomes operational, the collision rate of protons in the collider will increase,
leading to more precise measurements and greater sensitivity to new physics phenomena.
As a result, dimension 8 operators are anticipated to become more valuable.

A complete dimension-8 basis has been established in existing literature [33], but
the quantitative impact of dimension-8 operators still needs to be discovered [18].
Nonetheless, the inclusion of dimension-8 operators is essential to obtain reliable and
accurate results in certain instances. For instance, calculating the physical cross-section
over suitable phase space necessitates the involvement of dimension-8 operators as
the O( 1

Λ2 ) contributions cancel, thereby relying on the contributions of dimension-8
operators to evaluate the cross-section [35]. Furthermore, dimension-8 operators serve a
crucial role in describing the U-parameter.

As mentioned earlier, new physics phenomena that initially occur at dimension-8,
such as photon-photon scattering or new physics effects such as ZZγ coupling, represent
further examples where dimension-8 operators may play an essential role [18]. However,
exploring whether dimension-8 operators may contribute to the parametrization of the
Higgs to SM matter fields constitutes an exciting expedition.

Selecting relevant dimension-8 operators poses two main challenges. The primary
and most crucial challenge involves determining which operators should be included
among the hundreds available to parametrize the Higgs coupling to SM matter effectively.
Even when disregarding flavor symmetries, choosing a limited number of dimension-8
operators remains daunting.

The second issue pertains to the impact of these dimension-8 operators on canonical
renormalization, fermion mass terms, and various corrections, including the modification
to the Z-boson mass, which is already present at dimension-6. These matters will be
addressed in the subsequent section. When selecting the various dimension-8 operators,
existing constraints from dimension-6 operators will also be extended to encompass
dimension-8 operators.

It is reasonable to assume that if any of the dimension 6 groups presented in section
4.6 are excluded, the corresponding sister groups in the tree diagrams should also be
excluded for similar reasons. The inclusion of too many dimension-8 operators can lead
to unnecessary complexity in calculations. Therefore, the group of dimension-8 operators
used will be carefully selected based on their potential impact on Higgs physics and their
level of constraint. The less constrained operators with the greatest potential to affect
Higgs physics will be prioritized. The restraints we put on dimension-6 operators were
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Constraint 1: Detection of Higgs self-interactions poses a significant challenge
due to their small cross-section.

Constraint 2: The current experimental precision at the LHC may not be
sufficient to reveal the effects of higher-order operators.

Constraint 3: At least one Higgs field is required in order for the operator to
parametrize Higgs physics.

Constraint 4: Interactions heavily constrained by EWPM, limit the potential
impact of higher-order operators where fermion currents are coupled to gauge
bosons.

These assumptions are crucial in determining the relevant dimension-8 operators
to include. However, additional constraints must be considered when selecting these
operators. Certain heavily constrained operators can potentially be transformed into
less constrained ones using equations of motion and field redefinitions.

Given that the term (H†H)3 has already been removed due to experimental precision,
the same is done to (H†H)4. Therefore, the Higgs field’s VEV remains unaltered.
Consequently, the Higgs potential in its current form is deemed valid without requiring
any further modifications

To achieve our ultimate objective of parameterizing the constraints on BSM physics
using the STU -parameters, it is crucial to recognize that the U -parameter is solely
influenced by dimension-8 operators. On the other hand, dimension-6 operators provide
the primary contributions to S and T [33]. We will employ the traditional notation for
the STU parameters, as defined in [9].

Building upon previous restrictions, the following groups have been excluded: H8,
all two-fermion, and four-fermion operators(except Yukawa-like operators). This leaves
us with a bunch of bosonic operators to consider. Another reason fermionic operators
are excluded is that the dictionary we are expanding upon does not have any fermionic
interactions other than those provided by the SM Lagrangian.

Bosonic operators are more manageable to consider than fermionic ones, and we
already know which interactions to look for. These interactions will be defined in chapter
6. Due to time constraints not every single bosonic operator will be considered. Only
bosonic operators of similar structure to ones already used in the effective Lagrangian
will be used not to make calculations too complex.

This leaves us with the following four groups to pick our dimension-8 operators from
A2H4, AH4D2, H6D2, and ψ2H5 + h.c. . The group A2H2D2 was cut, as you would
only get propagators or three gauge bosons interactions from the group. Groups that
are purely or almost completely bosonic are also excluded.

The possible operators are three from the group A2H4, three from the group
ψ2H5 + h.c. and lastly, two from the group AH4D2. The two operators in group H6D2

contribute to a new redefinition of the Higgs field, while the operators in ψ2H5 + h.c.
contribute to a broader shift in fermion mass. It is pretty fascinating how we started
with 44,807 [9] operators and narrowed it down to only 89 relevant bosonic operators,
plus three fermionic operators without gauge bosons. Of these 89 operators, only 18 of
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them are relevant in this analysis. All the other operators have been excluded based on
containing too many gauge bosons ( W , G, or B). This accounts for 67 of the 89 bosonic
operators, which are purely bosonic or contain three or more gauge bosons. Of the 22
operators left, one is the pure Higgs self-coupling term, which is excluded, and three
more are excluded to prevent another correction to the Z-mass. This leaves us with 18
bosonic operators + 3 Yukawa-like operators to build our Lagrangian from. Operators
in dual space are not shown in the effective Lagrangian.

The dimension-8 operators that are most likely to affect the Higgs coupling to
standard model matter fields are those included in the effective Lagrangian 4.5

L8 = cr
(
H†H

)2 (
DµH

†DµH
)

+ cq
(
H†H

) (
H†τ IH

) (
DµH

†τ IDµH
)

+

(
H†H

)2

v2

((
cl l̄perH

)
+
(
cuq̄purH̃

)
+ (cdq̄pdrH)

)
+
(
H†H

)2
GAµνG

Aµν +
(
H†H

)2
W I
µνW

Iµν

+
(
H†H

)2
BµνB

µν +
(
H†H

) (
DµH†τ IDνH

)
W I
µν

+
(
H†τ IH

) (
H†τJH

)
W I
µνW

Jµν +
(
H†H

) (
H†τ IH

)
W I
µνB

µν(
H†H

) (
DµH†DνH

)
Bµν (4.5)

The first line is included as these dimension-8 operator will alter the canonical
renormalization of the Higgs field again. The second line will cause an even broader
shift in the fermion mass. Correct normalization is given in the next chapter.
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Chapter 5

Higgs Mechanism

5.1 Understanding the Significance of the Higgs Mechanism

The Higgs mechanism is a process whereby the symmetry of the SU(2)L×U(1)Y group
is spontaneously broken, resulting in the emergence of a residual symmetry in U(1)em.
Although the overall symmetry remains preserved, the ground state, or vacuum state, no
longer adheres to this symmetry and instead adopts a non-zero VEV. The requirement
of invariance under SU(2)L × U(1)Y and renormalizability necessitates that the Higgs
potential takes the specific form[32]

V (H) = −µ2H†H + λ
(
H†H

)2
.

A non-zero VEV occurs when µ2 > 0, where λ represents the quartic coupling
strength. When µ2 > 0, the vacuum expectation energy of the scalar field is given
by ⟨H⟩ =

√
µ2

2λ . To break the symmetry, obtaining a symmetry-breaking VEV for the
scalar field is necessary. This can be achieved through the use of the unitary gauge

⟨H⟩ →
(

0
v+h√

2

)
.

The choice of gauge used in the Higgs mechanism is not inherently significant. The
choice of gauge introduces a minimal number of scalar degrees of freedom by eliminating
the Goldstone boson through the gauge transformation in 5.1

Aµ → A′
µ = Aµ − ∂µχ. (5.1)

Considering the general gauge field A as having "absorbed" the Goldstone boson χ is
conceptually helpful. In the SU(2)L×U(1)Y theory, three Goldstone bosons correspond
to the three broken generators of the gauge group. As a result, all three Goldstone
bosons are absorbed and contribute to the mass of the three heavy fields, W±, and Z,
with only one remaining massless photon.

The final phenomenological Lagrangian will necessarily include the W± and Z fields,
as opposed to the W and B fields present before symmetry breaking. This is because the
specific gauge chosen, the unitary gauge, generates massive fields via symmetry breaking,
resulting in the emergence of the physical W± and Z fields in the final Lagrangian. The
following section will delve into the physics of electroweak symmetry breaking, exploring
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how the Higgs mechanism takes our effective Lagrangian from an unphysical one to a
physical one which can be used to further explore and define the WCs.
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Chapter 6

Exploring the Effective Lagrangian
Before and After Electroweak Sym-
metry Breaking

6.1 Electroweak Symmetry Breaking: A Key Component of the
Standard Model

This chapter investigates the impact of the unitary gauge and EWSB on dimension 6
and dimension 8 operators and the SM Lagrangian. The dimension 6 and dimension
8 operators will be presented as comprehensive Lagrangians denoted by L6, L8, L6,h,
L8h, depending on whether they consist solely of dimension 6 operators or dimension 8
operators, and if they are dependent on the Higgs field expansion h.

Initially, the Lagrangians will be introduced in their "pure" or unphysical form, which
refers to the previously discussed operators in Chapter 4, but with the correct coefficients
preceding each operator, as per the conventions established in [9]. Subsequently, each
Lagrangian will undergo calculations and be presented in the unitary gauge in the
subsequent chapter. The computations in the unitary gauge can be found in Appendices
11.6.3, 11.6.7, and 11.3, with the latter addressing the mechanisms through which the
SM Higgs sector and fermions acquire mass via EWSB.

Towards the end of the chapter, the effects of certain operators and necessary field
re-definitions will be presented.

6.2 Effective Lagrangian Pre-Electroweak Symmetry Breaking

The WCs and the energy scale will be restored before each operator to provide a complete
notation. For conciseness, only the matter content will be listed as subscripts for each
Wilson coefficient. To avoid redundancy, subscripts for repeated operators will not be
capitalized. After omitting the gauge group A3 and the four-fermion group ψψψψ, and
rewriting the group ψ2AH, the resulting dimension-6 effective Lagrangian, excluding
CP-violating parts, can be expressed as follows:
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L6 = c̄T
2Λ2

(
H†DµH

)⋆ (
H†DµH

)
+ c̄h

2Λ2∂µ
(
H†H

)
∂µ
(
H†H

)
+
[(
H†H

) c̄Hle
Λ2

(
l̄perH

)
+ c̄Hqu

Λ2

(
H†H

) (
q̄purH̃

)
+ c̄Hqd

Λ2

(
H†H

)
(q̄pdrH) + h.c

]
+ c̄HB

Λ2

(
H†H

)
BµνB

µν + c̄HG
Λ2

(
H†H

)
GaµνG

aµν + c̄HW
Λ2

(
H†σi

←→
DµH

)
(DνWµν)i

+ c̄Hb
Λ2

(
H†←→DµH

)
(∂νBµν) + c̄w

Λ2 (DµH)† σi (DνH)W i
µν

+ c̄b
Λ2 (DµH)† (DνH)Bµν .

(6.1)

Lagrangian 6.2 uses the normalization convention of [9] which adopts the convention
of [16], where the new-physics scale is absorbed into the Wilson-coefficient. The kinetic
term is also altered from the Warsaw basis and the SILH basis in [16][21] has been used.
The SHIL basis is again more useful here, as it is easier to calculate the SHIL operator
in unitary gauge.

L6 is presented in 6.2 with the convention where the energy scale cut-off is the weak-
scale VEV and the W -boson. Only operators that contain "light" fields, or electroweak
fields, are cut-off at the electroweak scale of the Higgs field’s VEV. All other operators
are cut-off at the mass of the heavy, weak force mediating W -boson.

L6 = c̄T
2v2

(
H†DµH

)⋆ (
H†DµH

)
+ c̄h

2v2∂µ
(
H†H

)
∂µ
(
H†H

)
+
[(
H†H

) c̄Hle
v2

(
l̄perH

)
+ c̄Hqu

v2

(
H†H

) (
q̄purH̃

)
+ c̄Hqd

v2

(
H†H

)
(q̄pdrH) + h.c

]
+ c̄HBg

2
1

m2
W

(
H†H

)
BµνB

µν + c̄HGg
2
3

m2
W

(
H†H

)
GaµνG

aµν + c̄HW g
2
2

m2
W

(
H†σi

←→
DµH

)
(DνWµν)i

+ c̄Hbg1
2m2

w

(
H†←→DµH

)
(∂νBµν) + c̄wg2

2m2
W

(DµH)† σi (DνH)W i
µν

+ c̄bg1
m2
W

(DµH)† (DνH)Bµν .

(6.2)

There are a few CP-violating operators that do contain Higgs physics which are not
included in the Lagrangian above. CP-violation is an inherent property of the SM, as
it is one of the Sakharov conditions required for baryogenesis[34][41]. Therefore, it is
reasonable to assume that there would also be dimension-6 operators that violate CP.

It can be shown that every operator constructed out of dual gauge fields is CP-odd.
This can be attributed to dual gauge fields giving rise to a non-zero axial current Jµ5
with non-zero divergence [36]. Further, the divergence, along with the correct boundary
conditions used by ’t Hooft, demonstrated that U(1)A is not a true symmetry of QCD,
and that the QCD vacuum is more complex [36]. As a result, operators with dual
tensors are CP-odd. Table ?? presents various CP-violating operators that can affect
Higgs physics. This table is identical to the one provided in [23].
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A2H2 H2AD2( Originally ψ2HA Warsaw basis )

H†HG̃AµνG
Aµν (DµH)† σa (DνH) W̃ a

µν

H†HW̃ a
µνW

aµν (DµH)† (DνH) B̃µν
H†HB̃µνB

µν

H†τaHW̃ a
µνB

µν

Table 6.1: Dimension-6 CP violating operators

In the Warsaw basis, dual gauge tensors do not exist in the group ψ2HA due to
the Bianchi identity (DρÃρµ = 0), which eliminates all of them. However, as we are
not using the Warsaw basis but the SHIL basis[16][21] for this particular group, it is
essential to note that they have a different form before the reduction. The form used in
the table above is H2AD2, where the original CP-even operators with a non-dual gauge
field have been replaced with a dual gauge tensor, resulting in them being CP-odd.

Two operators from the SIHL basis are also eliminated by the Bianchi identity, leaving
us with only two CP-odd operators from this group. Out of these CP-odd operators,
two of them are not included in the table above. With this information, we are now able
to construct the complete Lagrangian, consisting only of dimension-6 terms, including
both CP-violating and CP-conserving terms.

L6 = c̄T
2v2

(
H†DµH

)⋆ (
H†DµH

)
+ c̄h

2v2∂µ
(
H†H

)
∂µ
(
H†H

)
+
[(
H†H

) c̄Hle
v2

(
l̄perH

)
+ c̄Hqu

v2

(
H†H

) (
q̄purH̃

)
+ cHqd

v2

(
H†H

)
(q̄pdrH) + h.c

]
c̄HBg

2
1

m2
W

(
H†H

)
BµνB

µν + c̄HGg
2
3

m2
W

(
H†H

)
GaµνG

aµν + c̄HW g
2
2

m2
W

(
H†σa

←→
DµH

)
(DνWµν)a

+ c̄Hbg1
2m2

w

(
H†←→DµH

)
(∂νBµν) + c̄wg2

2m2
W

(DµH)† σa (DνH)W a
µν

+ c̄bg1
m2
W

(DµH)† (DνH)Bµν

+ ic̃HGg
2
3

m2
W

H†HG̃aµνG
aµν + ic̃HBg

2
1

m2
W

H†HB̃µνB
µν + ic̃wg2

m2
W

(DµH)† σa (DνH) W̃ a
µν

+ ic̃bg1
m2
W

(DµH)† (DνH) B̃µν .

(6.3)

The dimension-8 operators that are most likely to affect the Higgs coupling to
standard model matter fields are those included in Lagrangian L8 6.4
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L8 = c̄r
2v4

(
H†H

)2 (
DµH

†DµH
)

+ c̄q
2v4

(
H†H

) (
H†τ IH

) (
DµH

†τ IDµH
)

+

(
H†H

)2

v2

((
c̄l l̄perH

)
+
(
c̄uq̄purH̃

)
+ (c̄dq̄pdrH)

)
+ c̄gg

2
3

m4
W

(
H†H

)2
GAµνG

Aµν + c̄gg
2
2

m4
W

(
H†H

)2
W I
µνW

Iµν

+ c̄gg
2
1

m4
W

(
H†H

)2
BµνB

µν + ic̄DHW g2
2m4

W

(
H†H

) (
DµH†τ IDνH

)
W I
µν

+ c̄HWW g
2
2

m4
w

(
H†τ IH

) (
H†τJH

)
W I
µνW

Jµν + c̄WBg1g2
m4
w

(
H†H

) (
H†τ IH

)
W I
µνB

µν

+ ic̄gg
2
1

m4
W

(
H†H

) (
DµH†DνH

)
Bµν .

(6.4)
The first line of dimension-8 operators is included to account for their effects on the

canonical re-normalization of the Higgs field. Similarly, the second line of dimension-
8 operators leads to significant shifts in the fermion mass. Therefore, it is crucial to
consider both types of operators in our analysis. The normalization convention follows
that of the dimension 6 Lagrangian [9] which follows the convention of [16]. [21] is also
useful in determining correct normalization.

6.3 Effective Lagrangian Post-Electroweak Symmetry Breaking

In this section, we will consider our Lagrangian in unitary gauge, which corresponds to
choosing the Higgs field to be only real. This choice eliminates mixing terms and ensures
that the fields appearing in the Lagrangian after SSB are the actual physical fields. We
will expand our Lagrangian as a power series around the physical Higgs fields h, using
only linear expansions for simplicity. Another reason to use a linear Higgs expansion is
that we aim to derive our updated WC dictionary using the same Lagrangian in [9]. [9]
includes the Higgs field expansion up to order O(h2) due to the LHC experiments not
being sensitive to multi-Higgs production.

First, let us examine how EWSB introduces the three massive weak force fields and
one massless photon field. After SSB, the massive electroweak sector takes on the form:

Lmass = 1
2m

2
W

[(
W 1
µ

)2
+
(
W 2
µ

)2
]

+ 1
2m

2
Z

(
cWW

3
µ − sWBµ

)2
(6.5)

In the electroweak sector after SSB, the W , and Z bosons acquire mass through the
Higgs mechanism, with mass given by gv

2 and v
2
√
g2 + g′2, respectively. Appendix 11.3

provides a detailed explanation of how these mass terms are derived.

The kinetic part looks the same, however since we have done the following field
re-definitions, represented as a rotation in the original vector boson plane1,(

Zµ
γµ

)
=
(
cW −sW
sW cW

)(
W 3
µ

Bµ

)
, (6.6)

1γµ is used instead of Aµ to keep in line with the notation in [9]
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and

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (6.7)

Where cw and sw are shorthand for sine and cosine of the weak mixing angle θW .
Fields appearing in the Lagrangian are the charged W± bosons and the neutral Z boson.
The photon field in the physical will be The Higgs mechanism also gives mass to fermions.
However, due to chiral symmetry, left-handed and right-handed fermions transform
differently under the SU(2) gauge group, making a standard mass term forbidden before
SSB. After SSB, fermions can appear as standard mass terms in the Lagrangian.

We will consider the effective Lagrangian after SSB in three parts. First, we will
write down the SM Lagrangian 6.8, then the dimension-6 Lagrangians 6.9 and 6.10, and
lastly, the dimension-8 Lagrangians 6.10 and 6.11. This stepwise approach facilitates
understanding how the Standard Model Lagrangian and the higher-order Lagrangian
change when using the unitary gauge. It is worth noting that the higher-order operators
may become considerably intricate when evaluated in the unitary gauge.

We will also write down the Higgs-dependent parts of L6, 6.10, and L8, 6.11,
independently before combining them into a single Higgs-dependent Lagrangian, denoted
as Lh 6.12. Note that Lh will have new Wilson coefficients that encapsulate the
contributions of the Wilson coefficients belonging to L6,h and L8,h. These relations
will be used later in the updated WC dictionary.

LSM =− 1
4G

a
µνG

aµν − 1
2W

+
µνW

−µν − 1
4ZµνZ

µν − 1
4BµνB

µν + ψL
i
i ̸ DψiL + ψR

i
i ̸ DviR

+ m2
W

2 W+
µ W

−µ + m2
Z

2 (1− c̄T )ZµZµ − (muūLuR +mdd̄LdR +me l̄LlR + h.c).
(6.8)

The strong sector of the SM is unaffected by EWSB and thus remains unchanged. As
for the fermion terms, they have been expressed as a linear combination of left-handed
and right-handed fields, as is always possible for a chiral theory[39]. The mixing terms
between left and right-handed fields vanish as PLPR = 0. Furthermore, the mass terms
have been written out explicitly.

The next step is to consider the dimension-6 Lagrangian in unitary gauge. The
explicit calculations of dimension 6 operators in unitary gauge can be found in appendices
11.6.5 and 11.6.4. The dimension 6 Lagrangian after SSB is then expressed as [9]

L6 = 2c̄HB tan2 θW
(
s2
wZµνZ

µν + c2
wγµνγ

µν − 2swcwZµνγµν
)

+ 2c̄HG
g2
S

g2GµνG
µν + CP-Odd

+ c̄HbZ
µ∂ν

(
tan2 θWZµν − tan θWγµν

)
+ CP-Odd

+ c̄HW
(
tan θWZµ∂νγµν + Zµ∂νZµν +WµDνW †

µν + h.c.
)

+ CP-Odd .

(6.9)
Omitted from this Lagrangian are the purely bosonic contributions stemming from

the WCs cb and cw. Furthermore, each operator presented above also possesses a CP-odd
counterpart, in which a dual-field strength tensor replaces one of the gauge bosons. The
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portion of the dimension-6 Lagrangian that is reliant on the Higgs field can be expressed
as

L6,h = c̄HW
h

v
(tan θwZµ∂νγµν + Zµ∂Zµν)− c̄HW

h

v
WµDνW †

µν

+ 4cHG
g2

3
g2

2

(
h

v

)
GaµνG

aµν + 4c̄HB
(
h

v

)(
s2
wγ

2
µν − 2s2

w

sw
cw
γµνZ

µν + s4
w

c2
w

Z2
µν

)

− c̄Hb
h

v

(
tan θwZµ∂νγµν − tan θ2

wZ
µ∂νZµν

)
− 2c̄w

v

h

v
(tan θwZµνγµν + ZµνZµν)

− 2c̄w
h

v
(tan θwZµ∂νγµν + Zµ∂νZµν) + 2c̄w

h

v
WµDνW †

µν

− 2c̄b
h

v

(
sw
cw
Zµνγµν −

s2

c2
w

ZµνZµν

)
− 2c̄b

h

v

(
sw
cw
Zµ∂νγµν −

s2
w

c2
w

Zµ∂νZµν

)
.

The dimension-8 Lagrangian after SSB can be expressed as 6.10

L8 = 4c̄HHG
g2

3
g4

2
GaµνG

aµν + c̄WW

g2
2

(
WµνW

µν + s2
wγ

2
µν + swcwγµνZ

µν + Z2
µν

)
+ c̄HHB

(
4s

2
w

g2
2
γ2
µν − 8tan2 θW cW sw

g2
2

cwswγµνZ
µν + 4tan2 θW s

2
W

g2
2

Z2
µν

)

+ 2 c̄DHW
g2

2
(tan θwZµνγµν + ZµνZµν)

+ 16 c̄HWW

g2
2

(
2γµνZµνcwsw + c2

wZµνZ
µν + s2

wγµνγ
µν
)

− 4c̄HWB

g2
2

(
s2
wγµνγ

µν + tan θw
(
c2
w − s2

w

)
Zµνγ

µν − s2
wZµνZ

µν
)

+ CP-Odd .

(6.10)

The last term "CP-odd" refers to the CP-odd part of the entire Lagrangian. As every
single operator can be represented in the same way by its dual counterpart (Except
operators with the structure AµDνÃµν as these dual tensors cancel by the Bianchi
identity. It is easier just to write CP-odd at the end. The Higgs-dependent part of
the dimension-8 Lagrangian is expressed as 6.11
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L8,h = 8c̄HHG
g2

3
g4

2

h

v
GaµνG

aµν

+ 8c̄HHB
h

v

(
s2
w

g2
2
γµνγ

µν − 16tan θW s2
w

g2
2

γµνZ
µν + tan2 θW s

2
w

g2
2

ZµνZ
µν

)

+ 4 c̄WW

g2
2

h

v

(
WµνW

µν + s2
wγµνγ

µν + 2swcwγµνZµν + ZµνZ
µν
)

+ 8 c̄DHW
g2

2

h

v
(tan θwZµνγµν + ZµνZµν + tan θw (Zµ∂νγµν + Zµ∂νZµν))

+ 32 c̄DHW
g2

2

h

v

(
WDW 3

)
− 16 c̄DHB

g2
2

h

v

(
tan θwZµDνγµν + tan θwZµνγµν − tan2 θwZ

µDνZµν − tan2 θwZ
µνZµν

)
+ 45 ic̄HWW

g2
h

v

(
2cwswγµνZµν + c2

wZµνZ
µν + s2

wγµνγ
µν
)

+ 16c̄HWB

g2
2

h

v

(
s2
wγµνγ

µν + tan θw
(
c2
w − s2

w

)
Zµνγ

µν − s2
wZµνZ

µν
)
.

(6.11)
For a detailed derivation of dimension-6 and dimension 8 operators in unitary gauge,

see appendix 11.6. The Higgs-dependent Lagrangian denoted as Lh, is constructed to
ensure that each interaction appears only once, and all contributions are aggregated into
a new WC for that specific interaction.

Our objective is to strengthen the current parametrization on coupling the Higgs
to SM matter fields by utilizing not only dimension 6 operators but also dimension 8
operators. To achieve this goal, we will adopt the same Higgs-dependent Lagrangian
employed in [9].This is to prevent the introduction of any novel interactions that
can only be described by contributions from dimension 8 operators. We employ the
same Lagrangian with identical interactions. While it may be reasonable to speculate
whether introducing new interactions could improve parameterization, time constraints
necessitate our focus on existing interactions.

The final Higgs dependent Lagrangian, incorporating the effects of both dimension 6
and 8 operators, and integrating their contribution into novel WCs, is presented in 6.12

Lh = h

v
(2cWm2

WW
†
µW

µ + cZm
2
ZZµZ

µ −
∑

f=u,d,l
mf f̄ (cf + iγ5c̃f ) f

− 1
2cWWW

†
µνW

µν − 1
4cZZZµνZ

µν − 1
4cγγγµνγ

µν − 1
2cZγγµνZ

µν + 1
4cggG

a
µνG

aµν + CP-Odd

−
(
κWWW

µDνW †
µν + h.c.

)
− κZZZµ∂νZµν − κZγZµ∂νγµν). (6.12)

The final Lagrangian encompasses all operators that parameterize the Higgs coupling
in our theory. To derive this Lagrangian, we have collected all contributions to a specific
interaction, which are now represented by the newly defined Wilson coefficients: cWW ,
cZZ , cFF , cw, cz, cγ , cZγ , cGG, κW , κZ , and κZγ . The fermion mass parameter mf is
important to remember is now redefined according to equation 11.26. To establish the
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relationship between the new and old coefficients, we have compared the Lagrangians
L6,h 6.10, L8,h6.11 to the same Lagrangians but before SSB.

However, the updated dictionary would not be complete without incorporating
dimension-8 operators. To avoid creating two separate dictionaries, as previously
mentioned, only dimension-8 operators that contribute to the pre-existing interactions
have been incorporated. Nevertheless, this requirement imposes an arbitrary threshold
on which dimension-8 operators are included, which warrants further review in future
research.

The new WCs represent the cumulative contribution of other WCs to a specific inter-
action, i.e., the operators that contribute to each ZµνZµν , Zµνγµν , γµνγµν ,W †

µνW
µν , Zµ∂µZµν , Z

µ∂νγµν ,W
µDνW †

µν ,
and the conventional SM terms. While these interactions do not encompass the entirety
of the effective field theory, other interactions are simply modified standard model terms
resulting from the inclusion of dimension-8 operators or the unitary gauge.

The relationship between the various dimension-8 WCs and the newly defined WCs
outlined above is depicted in the next section.

6.4 WC Dictionary

The dictionary of WCs, frequently referenced in this thesis, refers to the comprehensive
collection of WCs that encapsulate all contributions to specific physical interactions. By
"physical," it simply denotes the interaction obtained after implementing the unitary
gauge. In addition to the SM interaction terms, the effective operators yield higher-
order interactions such as ZµνZµν , Zµνγµν , γµνγµν , W †µνWµν , Zµ∂µZµν, Zµ∂νγµν , and
WµDνW †

µν , as mentioned in the previous section. Together with the SM interactions,
these interactions constitute the entirety of the dictionary.

The original version of the dictionary, which does not include any dimension 8
interactions, can be found in the seminal article [9].

The new dictionary will expand the already established Wilson coefficients in [9]. All
WCs before SSB are labeled with an overhead bar, while WCs after SSB are not.

In a general overview, the first three interactions ZµνZµν , Zµνγµν , γµνγµν could
potentially capture deviations relating to the scattering and productions of Z bosons and
photons. The next two interactions can capture low-energy phenomena in the EWSB
sector, related to the production of Higgs and Higgs decays. The last operator describes
the kinetic mixing between Z and γ bosons. The kinetic mixing term is important as
it can modify the coupling strengths of Z and γ bosons to fermions, which could lead
to deviations from the standard model. This mixing operator is also important for the
production and decay of the Higgs bosons in loop diagrams involving fermions. In the
description of the STU parameters, there are no loop corrections involving fermions,
as we are only interested in the description of electroweak oblique corrections to gauge
bosons. Another more obscure consequence of this last operator is its ability to affect
dark matter searches, as dark-matter particles can interact with the Z and γ bosons
through Z-γ mixing. However, the last consequence, although exciting, will not be
further explored in this thesis[42].
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In this master thesis, we are looking to further expand the dictionary in [9] by
adding contributions from dimension 8 operators. The new and updated dictionary, 6.14,
will not contain any new interactions. This is mostly done to better compare the two
dictionaries in future work, and introducing new interactions with only contributions
from dimension 8 operators could give an unreliable result. There is one missed
opportunity by excluding potential valuable new interactions, which is the opportunity
to describe the U parameter better, as the U parameter is heavily affected by higher
order operators[33]. The dictionary 6.13 shows only the contribution from dimension 8
WCs.

cW = − c̄q + c̄r
4

cf = − c̄q + c̄r
4 + Re (c̄f )

c̃f = Im (c̄f )

cZ = − c̄q + c̄r
4

cWW = 4
g2
c̄WW

cZZ = 8tan2 θW s
2
w

g2
2

c̄HHB + 4
g2

2
c̄WW + 8

g2
2
c̄DHW + 16

g2
2

tan θw c̄DHB + 45

g2
2
c2
w c̄HWW + 16

g2
2
sw c̄HWB

cγγ = 8s
2
w

g2
2
c̄HHB + 8s

2
w

g2
2
c̄WW + 45 s

2
w

g2
2
c̄HWW + 16 s2

w

g2 c̄HWB

cZγ = 27 tan θws2
w

g2
2

c̄HHB + 8swcw
g2

c̄WW + 8tan θw
g2

c̄DHW + 16tan θw
g2

2
c̄DHB + 2× 45 swcw

g2
2
c̄HWW

cgg = 8g
2
3
g4

2
c̄HHG

κZγ = 8tan θw
g2

c̄DHW + 16tan θw
g2

2
c̄DHB

κZZ = 8tan θw
g2

2
c̄DHW + 16tan θw

g2
2

c̄DHB

κWW = 32
g2

2
c̄DHW

(6.13)

The revised and enhanced dictionary, now accounting for contributions from both
dimension-6 and dimension-8 operators, is presented in 6.142.

2The dictionary in the original article incorporates a minus sign in front of the WCs of order
operators. Therefore some minus signs are flipped in comparison to the appendix. The original article
also normalizes the WCs which have not been accounted for in this updated dictionary
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cW = 1− 1
2 c̄h + 1

4 (c̄q + c̄r)

cf = 1− 1
2 c̄h + 1

4 (c̄q + c̄r)

c̃f = 2 Im (c̄f )

cZ = 1− 1
2 c̄h + 1

4 (c̄q + c̄r)− c̄T

cWW = 4c̄HW −
4
g2
c̄WW

cZZ = 4
(
c̄HW + s2

w

c2
w

c̄HB − 4s
4
w

c2
w

c̄γ

)

+ 8
g2

(
−s

4
w

c2
w

c̄HHB −
1
2 c̄WW − c̄DHW − 2 tan θw c̄DHB − 27c2

w c̄HWW + 2sw c̄HWB

)

cγγ = −16s2
w c̄γ + 8s

2
w

g2

(
−c̄HHB − c̄WW − 27c̄HWW − 2c̄HWB

)
cZγ = 2sw

cw

(
c̄HW − c̄HB + 8s2

w c̄γ
)

+ 8
g2

2

(
23 s

4
w

c2
w

c̄HHB − swcw c̄WW − tan θw c̄DHW + 2 tan θw c̄DHB − 44swcw c̄HWW

)

κZγ = −2sw
cw

(c̄HW + c̄W − c̄HB − c̄B) + 8tan θw
g2

2
(−c̄DHW + 2c̄DHB)

κZZ = −2
(
c̄HW + c̄W + s2

w

c2
w

c̄HB + s2
w

c2
w

c̄B

)
+ 8tan θw

g2
2

(−c̄DHW − 2c̄DHB)

κWW = −2 (c̄HW + c̄W )− 32
g2

2
c̄DHW (6.14)

The WCs representing the equivalent CP-odd operators, which differ by the field
exchange A1µνA

µν
2 → A1µνÃ

µν
2 , is left out to reduce clutter as they appear exactly the

same 3. One notable point is that all the dimension 8 contributions, as a consequence of
the factor 1

Λ4 , introduce a factor 1
g2

2
. The consequences of this factor and whether or not

it restricts or reduces the importance of the dimension 8 contributions will be discussed
in section 8.2. Other aspects of this updated dictionary, such as its potential impact on
the STU parameters and future research, are discussed in section 8.4 and 10.4.

6.5 Exploring the Effects of Higher Order Operators on Fermion
Mass, Higgs Field, and the Z-Mass

When introducing higher-order terms to the SM Lagrangian, it is important to note
that the first two lines in the dimension 6 and dimension 8 Lagrangians, as shown in
equations 6.3 and 6.4, have significant consequences on Higgs renormalization, Z boson
mass, and fermion mass. Specifically, we will examine how the Wilson coefficients ch,
cq, and cr impact the canonical renormalization of the Higgs, how the Wilson coefficient
cT affects the Z mass (though this contribution is ultimately already negligible at order

3c̃f is kept as this is the only coefficient which is not similar after changing to dual fields
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1
Λ2 ), and how the higher order Yukawa-like terms cause a shift in the masses of the
fermions. Appendices 11.5, 11.4 and 11.6.6 provide greater insight into the calculations
behind these effects.

Impact of Higher Order operators on the canonical normalization of the kinetic Higgs
term

To begin, let us examine the impact of the operator c̄h
2v2∂

µ
(
H†H

)
∂µ
(
H†H

)
on

the canonical renormalization of the kinetic Higgs term. To restore canonical
renormalization, it is necessary to rescale the field expansion around the VEV to account
for this higher-order term. When expressed in the unitary gauge, the term ch takes the
form

c̄h
2v2∂µ(1

2v
2 + hv + 1

2h
2)∂µ(1

2v
2 + hv + 1

2h
2) = 1

2 c̄h(∂µh)2 . . . .

Where the ellipsis represents higher-order terms. This term contributes a factor of
1
2ch to the kinetic term in the Lagrangian, which becomes 1

2(∂µh)2+ ch
2 (∂µh)2. To remove

this contribution, a field redefinition of the form h→ h√
1+ch

is performed. This rescaling
affects the decay widths of all Higgs particles, as noted in [9].

The dimension 8 operator cr
(
H†H

)2 (
DµH

†DµH
)

and cq
(
H†H

) (
H†τ IH

) (
DµH

†τ IDµH
)

necessitates another re-scaling of the Higgs field.

The kinetic part of the Higgs Lagrangian now gets in addition to ch, the contributions
cr and cq as:

Lkin = 1
2 (∂µh)2 + ch

2 (∂µh)2 + cq
8 (∂µh)2 + cr

8 (∂µh)2 (6.15)

Which is also re-scaled away by a similar field redefinition for the Higgs field:

h→ h√
1 + ch + 1

4 (cq + cr)
(6.16)

Once more, the rescaling of the Higgs field will contribute to an even broader decay
width of the Higgs particle. Additionally, it will result in a slight modification of the
dictionary, where the WCs cq and cr will be added to all the WCs that parameterize the
masses of the fermions4, Z and W bosons.

Impact of Higher Order operators on Fermion Mass

The Yukawa-like terms induce a shift in the mass of the fermions as described in [9].

The WCs, which are complex numbers, are often split into their real and imaginary
parts to understand better the physical implications of the resulting mass shift in
fermions. It is important to note that the contribution to the mass shift may not
be equally distributed between the real and imaginary parts. The real part of the
Wilson coefficient describes the magnitude of the coupling strength between the effective

4With the exception of c̃f

49



Chapter 6. Exploring the Effective Lagrangian Before and After Electroweak Symmetry Breaking

field theory operators and SM particles. In contrast, the imaginary part characterizes
the CP-violating phase of the coupling. Although in some cases, such as the specific
calculations described below, the contribution to the mass shift from both the real and
imaginary parts of the Wilson coefficient may be equal, the contributions may generally
differ depending on the specific model. Therefore, it is crucial to scrutinize the model
to determine the correct contributions from each part. Nonetheless, even when the
contributions are equal, it remains essential to split the Wilson coefficient into its real
and imaginary parts to understand the underlying physics of the model fully. Equation
6.17 shows the SM Yukawa terms as well as the higher-order Yukawa-like operators
introduced by the OPE

yffLHfR + H†H

v2 c̄fyffLHfR +
(
H†H

v2

)2

c̄fyffLHfR + h.c. . (6.17)

When the Higgs field is set to its vacuum expectation value, it causes an additional
shift in the fermion mass, which is given by 3

4 [Re (c̄f ) + iγ5 Im (c̄f )]. This results in a
new effective fermion mass 6.18

m∗
f = mf

[
1 + 3

4 [Re (c̄f ) + iγ5 Im (c̄f )]
]
. (6.18)

In comparison to [9], the dimension 8 operators have caused an additional shift in the
fermion mass by a factor of 1

2 [Re (c̄f ) + iγ5 Im (c̄f )]]. To incorporate this new effective
fermion mass, modifications must be made to the effective Lagrangian to account for
m∗
f . After this change in mass, the effective Lagrangian contains Yukawa-like terms that

appear after EWSB as 6.19

→ m∗
ffLfR + h

v
m∗
f f̄ [1 + 2 [Re (c̄f ) + iγ5 Im (c̄f )]] f +O

(
h2

v2

)
. (6.19)

The shift in fermion mass will have an impact on the relationships between various
Wilson couplings listed in the dictionary of WCs.

Impact of Higher Order operators on the Z-boson mass

The mass of the Z boson is affected by the dimension 6 operator c̄T
2v2

(
H†←→DµH

) (
H†←→DµH

)
.

Similar to the previously discussed operators ch, cq, and cr, the mass term in the Lag-
rangian is altered by −1

2m
2
ZcTZ

µZµ. However, due to the strict constraints on the S
and T parameters at current experimental limits, it is necessary to set cT to zero, as
noted in [9].

Since the up-to-date experimental limits already motivate setting cT to zero at
dimension 6, there is no need to examine further if any dimension 8 could further alter
the Z boson mass term. This will be further discussed in the conclusion part of this
thesis.
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Peskin-Takeuchi Parameters

This chapter will briefly cover the STU parameters. The Peskin-Takeuchi parameters,
also known as the electroweak precision observables, are a set of quantities used to
measure the agreement between theoretical predictions and experimental observations.
They were introduced by Mark E. Peskin and Tatsu Takeuchi in the early 1990s and
have since played a crucial role in testing the validity of the electroweak theory[28][37].

7.1 Exploring the STU -parameters

The Peskin-Takeuchi parameters quantify deviations of a theory from the tree-level
predictions of the Standard Model in the electroweak sector. These parameters arise
primarily from quantum corrections at the loop level, which contribute to the self-
energies of the weak vector and scalar bosons. Therefore, a nonzero value of the Peskin-
Takeuchi parameters would indicate the presence of new physics beyond the SM in the
electroweak sector.

Measurements of the STU parameters play an important role in testing the validity
of the SM and searching for new physics phenomena, as large STU parameters indicate
large deviations from expected measurements.

Specifically, the STU parameters constrain the self-energies of the W , Z, and photon
bosons[9]. In the limit where the scale of new physics MNP is much greater than
the electroweak scale MEW , and the gauge group remains SU(2)L × U(1)Y , oblique
corrections become the dominant corrections resulting from new physics[9][37]. In a
HEFT, these criteria are always satisfied, as an effective field theory on the electroweak
scale would break down if the scale of new physics is close to the electroweak scale.

The STU parameters are defined as the difference in the first-order correction to the
two-point functions of the W , Z, and photon bosons. Specifically, they are defined as
the differences between Πγγ , ΠγZ , ΠZZ , and ΠWW , as given by the equations 15-17 in
[28].

S ≡ − 8π
M2
Z

[
Π3Y

(
M2
Z

)
−Π3Y (0)

]
(7.1)

T ≡ 4π
c2s2M2

Z

[Π11(0)−Π33(0)] (7.2)

U ≡ 16π
M2
W

[
Π11

(
M2
W

)
−Π11(0)

]
− 16π
M2
Z

[
Π33

(
M2
Z

)
−Π33(0)

]
. (7.3)
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The self-energy is the leading-order correction to the propagator, and it represents
the effects of virtual particles that can interact with the propagating particle. In the
context of the STU parameters, the "two-point functions" refer specifically to the self-
energies of the W , Z, and photon bosons, represented as loop diagrams.

The loop diagrams below represent these self-energies, which are the leading
corrections defined by the STU parameters. These corrections are essential because
their magnitude indicates the presence of new physics beyond the Standard Model.

Z

Z

h

Z

Figure 7.1: Z − Z/h− Z

Z

γ

h

Z

Figure 7.2: Z − γ/h− Z

W

W

h

W

Figure 7.3: W −W/h−W

γ

γ

h

γ

Figure 7.4: γ − γ/h− γ

γ

Z

h

γ

Figure 7.5: γ − Z/h− γ

Z

Z

h

γ

Figure 7.6: Z − Z/h− γ

Z

γ

h

γ

Figure 7.7: Z − γ/h− γ

S measures the disparities between hypercharge and third weak isospin. These
disparities occurs at q2 = MZ and q2 = 0. q2 is the momentum transfer squared in
the two-fermion scattering process(Two-fermion scattering generates the gauge boson
for which the loops are corrections to). The disparity the S-parameter measures is that
from the theoretical value of the mixing angle. A large S would, therefore, signify a large
disparity of mixing between hypercharge and weak isospin, meaning there is potential
for new physics (i.e., new interactions or particles).

T measures the strength of the interaction between the W and Z boson, and
by extension the deviation from the ρ-parameter. The ρ-parameter is important to
determine the structure of the Higgs-sector[26]. At tree level, the experimental value
is unity, signifying the deeper custodial symmetry in the Higgs sector. This custodial
symmetry, represented by the ρ-parameter, which is a ratio between the masses of the W
mass and Z mass, and the strength of the interaction between them, is an exact symmetry
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when the ρ-parameter is close to unity. This symmetry is a residual symmetry left over
after the spontaneous symmetry breaking of the electroweak symmetry group, and it
prevents higher-order radiative corrections. That is why it is significant if the ρ deviates
from unity, as this would suggest that the custodial symmetry is broken and allows
for potential new physics in the higher-order radiative corrections. These higher-order
radiative corrections would be the loop diagrams above. If T deviates from unity, it
would suggest that the symmetry between W and Z is broken. If T is positive, the
broken symmetry favors the W -boson[26].

T depends strongly on the number of Higgs doublets and their hypercharges.
U , although similar to T , U quantifies the contribution caused by differences in mass

by the weak force carrying W and Z to the weak isospin symmetry[26].

7.2 STU -parameters and the WC dictionary

One way of using the updated WCs would be to get a better description of observables,
such as cross-section and branching ratio.

The interesting observables would be the relative decay widths and relative
cross-section production of Higgs into two vector bosons, known as Vector Bosons
Fusion (VBF), or to a fermion-anti-fermion pair at tree level. The STU -parameters, with
its updated description using contributions from dimension 8 operators, would hopefully
constrain the value of the Higgs boson couplings to vector bosons at one loop level, with
their respective diagrams given in section 7.1.

The formulas for relative cross-section production and the on-shell decay rate of the
Higgs boson as given in [9], are

Br(h→ XX)
Br(h→ XX)SM

= ΓXX
ΓXX,SM

Γtot,SM
Γtot

relative CS production, (7.4)

µ̂Y HXX = σY H
σSMYH

Br(h→ XX)
Br(h→ XX)SM

Higgs Signal Strength. (7.5)

Equations 7.4 and 7.5 show the branching ratio, Br(h → XX) of Higgs decaying
into some final state XX. The final state is either a fermion-antifermion pair or a
vector boson. The denotation SM refers to the branching ratio in the SM, absent of
any new physics effect. ΓXX is the decay width. It quantifies the rate at which the
Higgs boson decays into the final state XX. Γtot is the total decay width of the Higgs
boson, considering all possible decay channels. Equation 7.4 compares the branching
ratios and decay widths in the presence of new physics, to those predicted by the SM.
µ̂Y HXX is the signal strength ratio for the process Y H, which is equal to unity in the SM.
σY H is the cross-section for Y H, i.e., the probability for a final state Y H. The effect
of higher-order operators is to shift the Higgs decay rates and production cross-sections
from their SM values, allowing for the parameters of our effective Lagrangian to be
constrained by comparing the theoretical rates to the SM rates. This method is known
as the matching procedure, where we match higher-order operators’ parameters (Wilson
coefficients) onto the underlying theory, which would be the SM.
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Chapter 8

Results

At the outset of this master’s thesis, when the subject of effective field theories was
largely unfamiliar, the ultimate objective was somewhat ambiguous. However, as the
study progressed and the vastness of the field was explored, a clear goal emerged:
the production of updated Wilson coefficients that could serve as a framework for
improving predictions by matching the theory with the latest experimental data. This
goal materialized in the three research questions introduced in the introduction. Also,
in the introduction, four main objectives were created to answer the proposed research
questions sufficiently. Throughout this study, Wilson coefficients have been an intriguing
topic, and delving further into their intricacies has proven challenging and fascinating.
This result section will present the findings of the four main objectives in an effort to
try and answer the three research questions.

I am gratified to have produced an updated and comprehensive dictionary 6.4 of
effective field theory that encompasses the most relevant contributions from dimension
6 and, most significantly, dimension 8 operators within the boundaries presented in
this thesis. Along the way, this study has uncovered several dimension 8 operators
that impact the canonical normalization of the Higgs field and contribute to a shift
in fermion mass. Though these findings may appear minor in the overall context, the
ability to calculate the necessary field and mass redefinitions required to account for these
operators was both surprising and satisfying. Although the significance of these results
may seem relatively modest, the calculations presented in Section 6.5 are nevertheless
fascinating, particularly given the apparent complexity of the dimension 8 operators set
at the outset of this study.

While it would be highly rewarding to continue this study and apply the updated
dictionary framework to analyze the STU parameters and implement the matching
procedure, such endeavors lie beyond the scope of this master’s thesis

8.1 Updated Dictionary with Dimension 6 and 8 Coefficients

The principal findings of this master thesis, are the novel contributions to the Wcs in
Section 6.4. Specifically, we extended the analysis beyond the previously considered
dimension-6 operators, incorporating the effects of dimension-8 operators. This novel
inclusion enables us to identify previously unexplored contributions that affect the
behavior of the theory at higher energy scales.
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8.2 Influence of 1
g2

on Dimension 8 Contributions

One interesting discovery is that since dimension 8 operators are suppressed quadratically
by the energy scale, as we can see in equation 3.1, a factor of 1

g2
or 1

g2
2

1 emerges before
each WC associated with a dimension 8 operator. In contrast, no such factor appears in
front of any WC corresponding to a dimension 6 operator. This factor, representing the
inverse coupling strength, is a distinct characteristic found in the WC dictionary and
contributes to the enhanced influence of dimension 8 operators.

The presence of the inverse coupling strength factor, as observed in the analysis,
leads to an amplification of the contribution from dimension 8 operators within the
overall theoretical framework. This observation presents an intriguing and somewhat
paradoxical finding since dimension 8 contributions are typically expected to be
suppressed by the energy scale rather than indirectly enhanced by it. The implications
of this unexpected phenomenon will be thoroughly examined and critically discussed in
the discussion section. It raises an intriguing point of contention that warrants further
investigation and analysis to better understand the underlying mechanisms.

8.3 Field redefinition result

Another interesting discovery made during this research is how various dimension 8
operators also affect canonical Higgs normalization and fermion mass. At the start of
this thesis, how various dimension 8 operators could affect aspects such as canonical
renormalization, fermion, and Z mass normalization was a mystery, as it was believed
there were so many to choose from. However, it was quickly realized that although
the overall difference in the size of the dimension 6 and dimension 8 operator set was
extreme, the groups which contributed to changes in normalization and mass were not
expanded.

Failing to account for the contributions arising from field redefinitions in the case
of the Higgs field and mass redefinition for the fermion can lead to several significant
issues. Among the consequences is the potential impact on the accuracy of predictions
for specific physical observables, including the production rate of Higgs bosons in high-
energy collisions. Furthermore, the neglected field redefinitions can also influence the
interactions between the Higgs field and other particles, causing modifications in their
masses and couplings.

The effects of field redefinitions are not mere formalities, and their inclusion
is necessary for a complete and accurate understanding of the underlying physics.
Neglecting these contributions may lead to inconsistencies in the theoretical framework,
such as divergences in perturbative calculations or violations of unitarity. Therefore,
it is vital to consider the necessary field redefinitions and mass redefinitions, to ensure
reliable and consistent predictions of physical observables.

This is because the higher-order operators introduce new degrees of freedom (new
1This factor comes from the definition of mW
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non-propagating heavy particles ) that need to be properly accounted for in the
renormalization procedure.

8.4 Impact of Updated Wilson Coefficient Dictionary on STU
Parameters

It is difficult to say how well the updated WCs would impact the STU parameters
without performing the matching procedure and data analysis. However, we will
try to speculate somewhat on the impact it may have, and specifically on the U -
parameter,which is proportional to the ratio of the Higgs mass to the Z boson mass
[cite] , as this is "extra" sensitive for dimension 8 operators.

Dimension 8 operators contribute to the U -parameter through loop corrections.
These corrections would involve either top quarks or heavy new particles running in
the loop. These corrections would create slight deviations U from its value in the SM.

What specific deviation one would get from our theoretical framework and choice of
dimension 8 operators

8.5 Summary

In this chapter, we have presented the outcomes obtained from the incorporation of
dimension 8 operators into an effective field theory Lagrangian that describes Higgs
physics. The outcomes encompass an enhanced Lagrangian denoted as Lh, which
incorporates updated WCs. Additionally, we will provide a concise overview of the field
re-definitions, the revised WC dictionary, and the discoveries pertaining to dimension 8
operators, along with the accompanying factor 1

g2 . The significance and pertinence of
these findings will be thoroughly examined and discussed in the subsequent chapter.

During the investigation of dimension 8 operators for the incorporation of Lh, a
crucial field re-definition was implemented for the Higgs field, accompanied by a mass
shift to accommodate the inclusion of dimension 8 operators. In summary, the revised
definitions for the mass and the Higgs field can be stated as follows:

h→ h√
1 + ch + cq + cr

and for the fermion mass

m∗
f = mf

[
1 + 3

4 [Re (c̄f ) + iγ5 Im (c̄f )]
]
.

The WC dictionary was also updated with these new contributions from dimension
8 operators:
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cW = − c̄q + c̄r
2

cf = − c̄q + c̄r
2 + Re (c̄f )

c̃f = Im (c̄f )

cZ = − c̄q + c̄r
2

cWW = 4
g2
c̄WW

cZZ = 8tan2 θW s
2
w

g2
2

c̄HB + 4
g2

2
c̄WW + 8

g2
2
c̄DHW + 16

g2
2

tan θw c̄DHB + 45

g2
2
c2
w c̄HWW + 16

g2
2
sw c̄WB

cγγ = 8s
2
w

g2
2
c̄HB + 8s

2
w

g2
2
c̄WW + 45 s

2
w

g2
2
c̄HWW + 16 s2

w

g2c̄WB

cZγ = 27 tan θws2
w

g2
2

c̄HB + 8swcw
g2

c̄WW + 8tan θw
g2

c̄DHW + 16tan θw
g2

2
c̄DHB + 2× 45 swcw

g2
2
c̄HWW

cgg = 8g
2
3
g4

2
c̄HG

κZγ = 8tan θw
g2

c̄DHW + 16tan θw
g2

2
c̄DHB

κZZ = 8tan θw
g2

2
c̄DHW + 16tan θw

g2
2

c̄DHB

κWW = 32
g2

2
c̄DHW

The factor 1
g2 emerges as a coefficient preceding each WC belonging to a dimension 8

operator. This factor holds significant meaning in terms of determining the relevance of
incorporating dimension 8 operators in relation to dimension 6 operators. It elucidates
how the inclusion of dimension 8 operators is influenced by and compared to the effects
of dimension 6 operators.
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Discussion

In this chapter, we will discuss whether or not we sufficiently accomplished our main
objectives, in order to best answer our desired research questions. In addition to
discussing the research questions and objectives, we will also discuss some of the
choices made throughout the master thesis, such as the validity of dimension 8 operator
constraints, which ones we decided to cut, and the rationale for our dimension 8 operator
choice. At the very end, we will summarize various choices that could be improved in
hindsight, and how this could impact future work.

9.1 Scaling of Wilson Coefficients with inverse coupling

This result is rather strange and hard to fit with the rest of the theory, as WCs with more
and more factors of 1

g2
actually become more and more relevant. Intuitively this does

not make sense, as in equation 3.1, the higher dimension operators are suppressed by the
energy scale. However, when that energy scale is the electroweak energy scale, factors
of 1

g2
are introduced when converting the energy scale according to the mathematical

formulation for mW in Section 11.6.2 into essentially factors of 1
g2

.

This does not square with the intuition that the operators of higher mass dimension,
i.e. interactions which involve more fields and therefore have more powers of energy or
momentum in their expressions compared to lower-dimensional operators, should become
more and more suppressed.

But due to the inverse coupling being a number larger than one, the contributions
from higher order operators actually grow and grow. Also, it is important to consider
the concept of running couplings1, where the values of coupling constants evolve with
the energy scale. As the energy scale increases, the inverse coupling constant becomes
larger and larger. Consequently, at higher energy scales, the contribution from dimension
8 operators becomes increasingly relevant despite their inherent higher suppression at
lower energies. For deeper insight into this issue, one would have to solve and study the
scaling behavior of the coupling constant, by solving the β-function 3.3.

The presence of dimension 8 contributions in the WC dictionary with factors of
inverse coupling strength, which seem to enhance these contributions even at lower
energies, raises a question beyond the sole influence of running couplings. While running

1The concept of running couplings have not been extensively covered in this thesis, but briefly touched
upon in the section on more advanced concepts of EFTs
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couplings explain the increased relevance of dimension 8 operators at higher energy
scales, they fall short in explaining the specific observation of inverse coupling strength
factors amplifying dimension 8 contributions at seemingly lower energies.

9.2 Rationale for Dimension 8 Operator Choice

One of the primary challenges encountered in this master thesis was the vast number
of available dimension 8 operators to choose from. At the outset, there was a concern
that identifying the correct or optimal operator for Higgs physics would be akin to
finding a needle in a haystack. Therefore, it was of utmost importance to establish the
crucial constraint that fermion currents coupled to the electroweak gauge bosons impose
significant limitations, rendering many effective operators irrelevant.

In order to overcome this challenge and ensure the selection of meaningful operators,
the extension of constraints from dimension 6 operators to also encompass dimension 8
operators became a key consideration. The validity and applicability of such constraints
will be thoroughly discussed in 9.3, where an evaluation of the validity of constraints for
dimension 6 operators in the context of dimension 8 operators will be presented.

The specific constraint applied, focusing on neglecting operators with fermion
currents coupled to the electroweak gauge bosons, proved to be instrumental in
streamlining the analysis within this master thesis. By excluding this subset of operators,
a significant portion of the dimension 8 operator space was effectively rendered negligible,
allowing the research to primarily focus on bosonic operators. The reduction in
complexity brought about by this constraint made the selection process more manageable
and facilitated a more targeted investigation.

Among the remaining set of dimension 8 operators, several groups were identified
as particularly relevant and deserving of further exploration. These groups include
A2H4, ψ2H5+ h.c, AH4D2, and H6D2. By selecting these specific groups, the analysis
could concentrate on operators involving combinations of Higgs fields, gauge bosons, and
derivatives. Other operators that either involved an excessive number of gauge bosons or
introduced entirely new interactions not already encompassed by the existing dictionary
were deemed irrelevant for the purposes of this analysis.

Among the valid groups of operators, certain operators were excluded from further
analysis for specific and evident reasons. One such example is the Higgs sextuple
operator, which contributes to the decay of a Higgs boson into five other Higgs bosons.
This decay process is currently considered to be highly improbable to detect, both at
present and in the foreseeable future. Consequently, the operators belonging to this
group were deemed impractical to investigate within the scope of this research.

Another example is the group of operators denoted as H4D4. Although
mathematically intriguing, as this group has the potential to alter the canonical mass of
the Z boson, further examination was not pursued. This decision was based on the fact
that the corresponding WC cT , which represent the dimension 6 equivalent operator, was
set to zero. As a result, no additional exploration was conducted to ascertain whether
the inclusion of dimension 8 operators would modify this aspect.
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Following the application of these specific exclusions, the resulting set of dimension
8 operators proved to be reasonably manageable. This was particularly advantageous
considering that the effective Lagrangian needed to be computed in unitary gauge. The
manageable nature of the remaining operators allowed for a thorough calculation of
each pertinent dimension 8 operator in unitary gauge. This comprehensive calculation,
coupled with an updated Wilson coefficient dictionary, forms a crucial aspect of this
thesis and serves as one of its focal points.

9.3 Evaluating the Validity of Constraints(Mangler mye)

This section focuses on investigating the diverse constraints that have been employed to
restrict the number of dimension 8 operators, as well as the critical decisions that have
been made in this regard. We will delve into several pivotal choices. Furthermore, we will
explore the exclusion of operators affecting the Z-mass, the rationale behind disregarding
operators involving three or more gauge bosons, and the structural organization of the
dictionary. By conducting a thorough examination of these choices and constraints, our
aim is to provide a comprehensive understanding of the fundamental principles that have
guided the development of this specific study.

The key assumption made in order to reduce the number of relevant dimension 8
operators was to extend the existing constraints that determine the relevant dimension 6
operators. However, the validity of this approach in applying the same set of constraints
to both dimension 6 and dimension 8 operators raises important questions. Can we
confidently assert that the constraints governing dimension 6 operators should also
govern dimension 8 operators?

This is a critical aspect that requires careful evaluation. While there may be some
overlap in the constraints that apply to both dimension 6 and dimension 8 operators, it
may not be guaranteed that the same set of constraints will be applicable to both cases.
The higher-dimensional operators may introduce new phenomena or exhibit different
behavior that necessitates distinct constraints.

Constraint 1: The detection of the sole Higgs self-interaction term, (H†H)3, already
poses a significant challenge with the current detection equipment at the LHC[9]. This
term represents the trilinear interaction of the Higgs boson. Given this difficulty, it is
reasonable to assume that detecting and studying higher-order interactions, such as the
sole dimension 8 Higgs sextuple interaction term (H†H)4, may be even more challenging.
Therefor the operator (H†H)4 is also excluded from the theory.

Constraint 2: Constraint 2 in this master thesis is a general constraint based on
experimental precision. In the referenced EFT [9], the Lagrangian is limited to operators
of mass dimension 6. In this thesis, the constraint is expanded to include operators
of mass dimension 8 in the effective Lagrangian. Currently, the scientific consensus
primarily focuses on EFTs limited to operators of mass dimension 6, with only a few
articles exploring specific dimension 8 operators.

Constraint 3: Constraint 3 focuses on including only higher-order operators that
are relevant for describing Higgs physics, and hence, only operators containing Higgs
fields are relevant.
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Constraint 4: The exclusion of fermionic operators or operators with fermion
currents coupled to electroweak gauge bosons is a critical constraint in this analysis.
The decision to exclude these operators is motivated by the recognition that their
contributions would be tightly constrained by the wealth of existing electroweak precision
data. Expanding this constraint to also cover dimension 8 operators is reasonable, as
dimension 8 operators that contain fermion currents coupled to gauge bosons would
also be subject to the same electroweak precision constraints. There are however some
considerations.

The inclusion of higher-order operators, such as dimension 8 operators, in an EFT
introduces new constraints on the theory as demonstrated in the article referenced as [19].
While it is reasonable to assume that there may exist dimension 8 operators that could be
fermionic in nature but not constrained by existing electroweak precision measurements,
it is challenging to identify these operators without matching the theory to experimental
data.

One can also argue that the presence of such constraints indicates the need for
operators that are more sensitive, as they would be able to capture smaller deviations
from the SM. While the contributions from dimension 6 operators may be too large to fit
within the existing constraints, the inclusion of more sensitive operators, such as certain
dimension 8 operators, could potentially parametrize these smaller deviations.

It is worth considering whether it is necessary to include these more sensitive
operators or if the focus should be on parametrizing sectors where there is a greater
potential for deviation and the emergence of new physics. This decision depends on
the specific research goals and the extent to which the chosen operators can effectively
capture the desired phenomena.

Excluding three gauge bosons and structure of the WC dictionary: The
reason why three gauge bosons interactions or more does not appear is because the
original dictionary in [9] also excluded interactions with three or more gauge bosons.
Therefore the updated dictionary presented in this thesis has also excluded interaction
terms with three or more gauge bosons as we did not want to include any new interactions
other than the ones in the original article.

The interactions in the original WC dictionary, ZµvZµv, Zµvγµv, γµvγµvW †
µvW

µv,

Zµ∂µZµv, Z
µ∂vγµv, and WµDvW †

µv, along with the SM terms, encompass all relevant
dynamics and interactions associated with the Higgs boson.

9.4 Omitted Dimension 8 Operators

The decision to exclude the group of dimension 8 operators capable of modifying the
canonical Z-mass in a similar manner to the Higgs canonical renormalization and fermion
mass shift was based on several factors. First, the existing EFT framework described
in the article [9] already includes an operator that supplements the coefficient cT to the
Z-mass. While this operator is present, it is assumed to have a negligible impact.

Furthermore, the exclusion of these dimension 8 operators can be justified by
considering the tree-level constraints resulting from the current experimental limits on
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the S and T parameters. These parameters are quantities used to quantify potential
deviations from the SM in EWPM. The experimental constraints on the S and T
parameters set bounds on the contribution of new physics effects to the Z-mass, and
therefore, operators that significantly modify the Z-mass would likely be in conflict with
these constraints.

The referenced article [9] provides evidence to support the aforementioned
assumption. The underlying rationale is that the corrections stemming from dimension
8 operators would also be subject to the most recent experimental limits for S and
T . Nonetheless, this may not be entirely valid, given that the S and T parameters
are parameterized around a fixed U value at the tree level, which happens to be zero.
However, as mentioned earlier, the U parameter obtains specific contributions from
different dimension 8 operators. This is a consequence of the U parameter’s objective to
quantify the impact of new particles, which is precisely what we aim to detect through
higher-order operators, or at the very least, the low-energy effects of these heavier new
particles.

It is possible that if the U -parameter is not fixed at zero, then non-propagating
heavy particles which contributed to the coupling between the Z boson and fermions,
could loosen the constraints around the T -parameters, which could be parametrized by
the set of operators which we just justified the exclusion of. However, this is hard to say
without knowing exactly how dimension 8 operators would alter the U -parameter, both
at current experimental data, and future data.

9.5 SHIL vs Warsaw basis

In retrospect, it would have been advantageous to utilize the operator structure of the
SHIL basis from the outset, particularly considering the main objective of this master
thesis, which is to parameterize Higgs physics. The SHIL basis consists of operators
designed explicitly to describe Higgs physics. However, due to the incompleteness of
the SIHL basis [23] and our intention to extend the power counting rules to encompass
dimension 8 operators, which the SHIL basis does not encompass, it proved valuable to
embark on a comprehensive exploration of the various potential dimension 6 operators
and their possible extensions to dimension 8, as elaborated upon in Section 4.6. By
adopting a systematic classification in the form of diagrams, we were able to avoid the
potential oversight of significant dimension 8 operators that might have been missed had
we solely expanded a subset of operators to dimension 8.

9.6 Normalization convention

When deciding the correct coefficient in front of each operator in 6.4 and 6.3 both [21]
and [16] were consulted. The challenge was deciding the correct coefficient in front of
the dimension 8 operators, as [33] only discussed the Lorentzian and gauge structures.
In the end, the Lagrangian 6.4 is normalized by adding the energy scale, 1

Λ4 (Λ could be
either v or mW depending on the fields involved), and one coupling constant for each
respective field. There could be some inconsistencies regarding whether a factor of 1

2
should be included or not. In the end, the dimension 8 Lagrangian 6.4 tries to emulate
the normalization convention of the dimension 6 Lagrangian 6.3,
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9.7 Look back at the Problem Statement

When embarking on this master thesis, three central research questions were formulated
to provide a clear direction for the study. Additionally, five main objectives were
established to guide the research and ensure its successful completion. In this section,
the focus is on evaluating whether these research questions were effectively addressed
and if the objectives were successfully achieved.

9.7.1 Questions 1 and 2

The initial inquiry pertains to the feasibility of augmenting current EFTs with operators
of dimension 8. In chapter 6, our study successfully expands the existing EFT by
incorporating dimension 8 operators. Initially, identifying the pertinent dimension 8
operators proved to be a challenge. However, Chapter 6 offers a potential set of operators
that, upon application of constraints, appear to be justifiable. For an evaluation of the
validity of these constraints, please refer to Section 9.3. Notably, Chapter 6 solely
provides a theoretical framework that could potentially yield improvements through
the implementation of the matching procedure. However, due to time limitations,
the matching procedure was omitted, as explained in Section 1.2. Objectives one
through four were established to address the primary question, and all objectives were
successfully accomplished. The first objective was fulfilled in Section 4, while the second
objective spanned multiple sections. Section 4.8 introduced the proposed constraints,
and presented the outcomes of applying these constraints to the set of dimension 8
operators.

The third objective entailed establishing the expanded Lagrangian of the EFT after
SSB. The primary challenge here involved deriving each effective operator following
the system’s SSB and expressing the effective Lagrangian in unitary gauge. The
comprehensive collection of higher-order operators in unitary gauge can be found in
Appendix 11.6. While [9] presents the final effective Lagrangian up to dimension 6
in unitary gauge, it lacks explicit calculations for each individual operator, which are
provided in Appendix 11.6.3. Calculating each dimension 8 operator in unitary gauge
proved to be a more arduous task. The explicit calculations of dimension 8 operators in
unitary gauge can be found in Section 11.6.7. The resulting EFT Lagrangian is presented
in Section 6.3 as a theoretical framework with potential implications for future research.

Objective four aims to utilize the effective Lagrangians L6, L6,h, L8, and L8,h, as
presented in Section 6.3, to establish an expanded dictionary incorporating contributions
from dimension 8 operators. This was accomplished by comparing the various
Lagrangians L6, L6,h, L8, and L8,h in a manner similar to [9]. In Section 6.3, a new
effective Lagrangian Lh (Equation 6.12) is presented, encompassing the contributions
from each Lagrangian L6, L6,h, L8, and L8,h through new WCs, namely cW , cZ , cf ,
cWW , cZZ , cγγ , cZγ , cgg, κWW , κWγ , and κZZ . These coefficients represent the
interactions ZµvZµv, Zµvγµv, γµvγµν , W †

µνW
µv, Zµ∂µZµv, Zµ∂vγµv, and WµDvW †

µν .
While Lh is the same Higgs-dependent Lagrangian presented in [9], it now incorporates
contributions from dimension 8 operators in its WCs. It is based on these updated WC
coefficients that we present the revised dictionary in Section 6.4, either as an equation
or a table (e.g., 6.14). For further discussion on the relevance of the chosen dimension 8
operator set, the validity of constraints, and the omitted dimension 8 operators, please
refer to Sections 4.8, 9.3, and 9.4, respectively.
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Objectives one through four have successfully achieved their aim of addressing the
primary research question. However, the second research question inquires whether this
accomplishment ultimately leads to an improved parametrization of the Higgs coupling to
SM matter fields. This specific question remains unanswered within this master’s thesis,
as explained in Section 1.2. To adequately address this question, the matching procedure
must be conducted, which involves establishing a connection between the theoretical
framework presented here and experimental data. An approach to accomplishing this
task is outlined in Section 10.2.

Upon the completion of this master’s thesis, the final objective, objective five, remains
incomplete. Objective five aimed to utilize the derived framework in this thesis to
not only construct an updated WC dictionary but also establish a match between
the theoretical framework and experimental data. The potential of this framework is
discussed in Section 10.2 as part of the future directions and further research possibilities.

9.7.2 Question 3

Given the scope and limitations of this master’s thesis, the task of bridging the gap
between theory and experiment was not undertaken. However, it is crucial to emphasize
that outlining the uses and implications of the presented theoretical framework remains
a central focus of this thesis. To address this objective, the final research question is
proposed in order to provide the best possible answer. Objective five primarily revolves
around addressing this last question, and one approach to parametrize new physics and
the Higgs boson coupling to SM matter fields is through the utilization of the STU -
parameters, as discussed in chapter 7. In chapter 7, a brief introduction to the basics
of the Peskin-Takeuchi parameters is provided, albeit without an extensive theoretical
background on the STU -parameters. Furthermore, Section 8.4 presents the final results
related to the third research question. Nevertheless, due to the scope and limitations
of this master’s thesis, the answer to this final research question remains unanswered,
with only a surface-level discussion regarding the potential impact of the theoretical
framework.

Two notable outcomes of the theoretical framework, although not central to the
research questions, are presented in sections 8.3 and 8.2. These results were serendipitous
discoveries made during the course of the research and provide intriguing insights.

Section 8.3 discusses the significance of incorporating field redefinitions and mass
shifts when including dimension 8 operators to achieve accurate predictive results.
Failing to consider these field redefinitions neglects the potential influence of higher-
order operators on the Higgs normalization and fermion mass. The exclusion of changes
in the Z-boson mass, as stated in [9], is attributed to the already stringent constraints
imposed by the STU parameters, which do not allow for deviations in the Z-boson mass.
However, as the HL-LHC is launched in the future, reassessing this exclusion may become
necessary. It is worth noting that the exclusion of changes in the Z-boson mass in this
master’s thesis could be seen as over-extending the existing constraints on dimension 6
operators to also encompass dimension 8 operators. Nonetheless, considering the current
constraints on the STU parameters outlined in [9], as well as the precision of current
experimental data from which these constraints are derived, it appears to be a reasonable
choice.
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9.8 Summary

The investigation revealed that despite the initial size of the dimension 8 operator set,
a significant portion of operators were ultimately excluded based on the constraints
proposed in Section 4.8. This outcome played a critical role in the remainder of the
master’s thesis, as it enabled the completion of comprehensive calculations for the
dimension 8 operators in unitary gauge. The selection criteria for dimension 8 operators
were based on the rationale presented in [9], while acknowledging that expanding the
criteria in this manner presents remaining challenges. However, determining the accuracy
and validity of this expansion necessitates the completion of the matching procedure
outlined in Section 10.2.

The validity of certain constraints raises questions, given the inherent challenge
of definitively determining which EFT and dimension 8 operators can effectively
parametrize deviations, and which dimension 8 operators may become more constrained
in specific sectors with the introduction of new data. The expansion of constraints
to encompass dimension 6 operators, as proposed in [9], is a matter that warrants
reconsideration in future research, as new data may necessitate the inclusion of operators
containing, for example, dipole fermion couplings. Conversely, certain exclusions appear
entirely reasonable, such as the dimension 8 Higgs sextuple coupling, which is unlikely to
be discovered even with the implementation of the HL-LHC or any subsequent upgrades.

It is crucial to emphasize that the incorporation of dimension 8 operators must
be driven by empirical evidence. The assessment of their significance and validity
hinges upon the comparison between theoretical predictions that incorporate these
operators and experimental data. Only through this iterative process of refinement
and verification can we comprehensively evaluate the true impact and sensitivity of
dimension 8 operators.

The exclusion of certain dimension 8 operators aligns with the summary of the
rationale behind the selection of dimension 8 operators and does not warrant repetition.
Dimension 8 operators capable of modifying the Z-boson mass were ultimately
disregarded, as even at dimension 6, such operators faced significant constraints imposed
by the STU -parameters, particularly the T -parameter. However, the validity of this
exclusion in light of future data remains uncertain and subject to reassessment.

In regards to the research questions, question one was sufficiently answered, and a
comprehensive theoretical framework has been sufficiently laid out in sections 6.3, 6.4.

Question 2 is open-ended, and requires a deep dive into various Mathematica
packages presented in the section on Future Directions, 10.2, which would require going
beyond the scope of this master thesis.

Question 3 is answered in the sense that it gives a theoretical way of applying the
framework in section 10.2. The results as presented in 8.3 and 8.4 also lays out how the
results found are necessary and important in future research. Objective 5 was intended
to complement research question 3 and provide a comprehensive answer. However, this
master’s thesis primarily focused on presenting the theoretical framework rather than
its direct application. As a result, the actual utilization of the framework, along with
its potential future applications, remains an area for further exploration.
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Conclusion

In this chapter, we will present the remaining work and obstacles, and reflect on the
results. A novel way of how one could solve the remaining work and unanswered
questions will also be presented.

10.1 Summary

The conclusion will commence by restating and address the research objectives outlined
in section 1.1. Additionally, the conclusion will provide insights on potential avenues for
applying the presented framework as discussed in sections 10.2, 10.3, and 10.4.

Objective 1: Present a comprehensive description of the current EFTs capped at
dimension 6 and the dimension 6 Warsaw Basis.
A comprehensive depiction of dimension 6 operators and the Warsaw basis was
provided in Sections 4.7. This discussion was built upon the theoretical foundation
established in Sections 4.2, 4.3, and 4.4. Having established the classification and
rationale for these operators, the EFT Lagrangian, Lh, originally presented in [9],
was subsequently recapitulated in Section 6.2.

Objective 2: Expand the constraints on the EFT operator set to also include the
dimension 8 operators most relevant for Higgs physics.
Section 4.7 provides a comprehensive analysis of dimension 6 operators, applying
the selection criteria outlined in [9]. Building upon this foundation, the selection
criteria were expanded to encompass the dimension 8 operators discussed in Section
4.8. The resulting dimension 8 Lagrangian, presented as operators in Equation 4.5
in Section 4.8, effectively covers the most pertinent operators for parametrizing
Higgs physics, as determined by the extended operator selection criteria.

Objective 3: Derive the effective Lagrangian after SSB
The final Higgs-dependent effective Lagrangian, represented by Equation 6.12 in
Section 6.3, captures the contributions from higher-order operators specifically
pertaining to the interaction under consideration in our WC dictionary. It is
important to note that the Lagrangian 6.12 may warrant future revision to
encompass additional types of interactions beyond those included in our current
framework. Furthermore, it is crucial to emphasize that this final EFT Lagrangian,
Lh, solely represents the higher-order extensions and should be combined with
LSM , as Lh already incorporates all the necessary operators for obtaining the
updated WC dictionary.
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Objective 4: Use the effective Lagrangian after SSB to derive an updated WC
dictionary.
The updated WC dictionary, presented in Section 6.4, was derived by utilizing
the post-SSB effective Lagrangians L6,h (Equation 6.10) and L8,h (Equation 6.11).
By combining all the contributions to the interactions outlined in Section 6.4, we
obtained a final effective Lagrangian denoted as Lh 6.12. This updated effective
Lagrangian Lh builds upon the framework presented in the article [9], incorporating
the additional contributions from L8,h.

Objective 5: Use the updated WC dictionary and Peskin-Takeuchi parameters to
explore the potential of dimension 8 operators, and the potential for future work.
The updated WC dictionary was not matched onto experimental data, however,
the impact and potential work were discussed in Section 10.2.

10.2 Future Directions

A promising approach to advance further would be to establish a correlation between
the revised STU -parameters and empirical evidence. This would enable us to determine
whether integrating dimension 8 operators in Higgs physics parameterization would be
beneficial. In the following section, a succinct outline of the methodology that can be
employed will be laid out, along with a description of the potential implications for my
master’s thesis.

10.3 Bridging the Gap between Theory and Experiment

"Bridging the gap" between theory, and data in the context of this master thesis, would
be to use the updated Wilson coefficients to get a better description of the observables
as the novel description in Section 7.2 outlines. This section will briefly go over how one
could do this using various numerical tools.

Useful tools to numerically evaluate and generate these decay widths include
implementation of the effective model in FeynRules [3], where we could use the
Mathematica package for the generation and visualization of Feynman diagrams and
amplitudes called FeynArts [25]. The tree-level and one-loop diagrams could then be
read by another Mathematica package FormCalc[1], which calculates and returns data
suited for further analysis. The latest versions of these packages are the FeynArts
version 3, along with FormCalc version 9.

Exploring the use of these packages could be an intriguing endeavor, albeit
challenging given their complexity and size. Mastery of these packages is essential to
utilize them effectively.

The utilization of MadGraph[5] and FeynRules allows for the derivation of precise
descriptions pertaining to the decay rates and cross-section production of VBF processes.
These descriptions can be expressed through the use of equations 10.1 and 10.2. It
is important to note that the presented formulas serve as a mere exemplification of
the use of various Mathematica packages, and as such, they are not all-encompassing.
Specifically, the contributions stemming from dimension 6 and dimension 8 operators are
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excluded, given that we cannot currently match our theoretical models to experimental
data, and consequently, we are unable to accurately weigh the contributions from these
operators.

To further elaborate, the integration of MadGraph and FeynRules provides a
powerful computational tool that permits the analysis of various high-energy physics
phenomena, including those related to VBF processes. The resulting formulas are
constructed through the use of complex mathematical expressions that account for
various contributing factors, including cross sections and decay rates. However, in
the absence of matching our theory to experimental data, it is currently impossible
to accurately determine the precise contributions of certain dimension 6 and dimension
8 operators. As a result, these contributions are not included in the presented formulas.

The matching procedure involves aligning the Ultra-Violet(UV) theory with the full
underlying theory or the infrared (IR) theory in the low energy spectra. High energy
operators that describe new physics appear as deviations from the SM observables.
The relative cross-section and decay rate formulas, given as 10.1 and 10.2 provide a
general overview of the final expression. The success of the matching procedure depends
on the ability to identify and integrate these contributions with precision through a
comprehensive understanding of the underlying physics and experimental data

(
σ

σSM

)
= cSM + cd=6 + cd=8, (10.1)

( Γ
ΓSM

)
= cSM + cd=6 + cd=8. (10.2)

The purpose of equations 10.1 and 10.2 is to demonstrate that, following the
application of the theoretical framework and the comparison and matching of the theory
to comprehensive underlying data obtained from experiments, the resulting observables
are described using the WCs associated with higher-order operators.

10.4 Significance and Applications

The specific goal of this thesis was to lay the groundwork of how one could integrate
dimension 8 operators into an effective field theory, and how these dimension 8 operators
would alter the various Wilson coefficients already established [9].

The value and impact of this work, as well as the contributions of dimension 8
operators, can only be fully assessed by fitting the theoretical framework to experimental
data. Until this fitting is completed, the precise extent of the contributions of dimension
8 operators and the implications of this work for particle physics research remains
uncertain. However, the integration of dimension 8 operators into the theoretical
framework holds significant potential. Thus, this work represents a valuable step
forward in the ongoing effort to develop more comprehensive models describing low-
energy phenomena. Ultimately, the impact of this work will depend on the ability
to successfully integrate dimension 8 operators into the theoretical framework and to
rigorously test these predictions against experimental data.

An intriguing area of study that I aimed to contribute to through my work
is the determination of the energy scales at which the inclusion of dimension 8
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operators becomes necessary. While there are indications from theoretical results that
contributions from these operators may be suppressed, a definitive determination of
the energy scale at which such contributions become necessary requires a detailed
analysis of the weighting of the parameters in the effective Lagrangian following
fitting to experimental data. Without such an analysis, it is impossible to state with
certainty when the inclusion of dimension 8 operators is required for a comprehensive
understanding of the underlying physical processes.
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11.1 Appendix A

11.1.1 EOM in the SM

The EOM for the Higgs field follows the same procedure. Although when deriving
the EOM for the Higgs field, it is easier to use the Euler-Lagrange equations which
incorporate the covariant derivative. As shown [30], the E-L equations maintain their
familiar structure but with the partial derivative has been replaced by a covariant one:

∂L
∂H

= Dµ

(
∂L

∂ (DµH)

)
(11.1)

The Higgs part of the SM Lagrangian is where the Yukawa interaction term is split
into quarks and leptons[14]

LHiggs = |DµH|2 − λ
(
H†H − 1

2v
2
)2

+
(
huij ūRiqLjH + hdij d̄RiqLjϵabH

∗
b + heij ēRilLjϵabH

∗
b + hnijn̄RilLjH + h.c

)
.

(11.2)

Varying the Lagrangian above with respect to the Higgs field gives:

−λ(H†H)H + q̄jY †
uuϵjk + d̄Ydqk + ēYelk +m2H†H = DµDµH, (11.3)

DµDµH = q̄jY †
uuϵjk + d̄Ydqk + ēYelk +m2H†H − λ(H†H)H. (11.4)

One way of deriving the EOM for non-abelian fields is by using the conserved currents
of the system. The conserved currents for non-abelian terms, with a covariant derivative,
looks like this

DµAµν = g · jν . (11.5)

Where the different SM currents of fields are given as[8]

jAµ =
∑

ψ=u,d,q
ψ̄tAγµψ, (11.6)

jIµ = 1
2 q̄t

Iγµq + 1
2 ℓ̄t

Iγµℓ+ 1
2H

†i
↔
D
I

µ H, (11.7)

jµ =
∑

ψ=u,d,q,e,ℓ
ψ̄yiγµψ + 1

2H
†i

↔
Dµ H. (11.8)

Equation 11.6 is the current belonging to the gluonic field, 11.7 is the current
belonging to the weak field, and the last current 11.8 is for the hypercharge field.
Combining these currents with equation 11.5, gives the remaining EOM the gauge
fields[23]
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(DρGρµ)A = g3
(
q̄γµT

Aq + ūγµT
Au+ d̄γµT

Ad
)
, (11.9)

(DρWρµ)I = g2
2

(
H†i

↔
DI
µ H + l̄γµτ

I l + q̄γµτ
Iq

)
, (11.10)

∂ρBρµ = g1YHφ
†i

↔
Dµ H + g′ ∑

ψ∈{l,e,q,u,d}
Yψψ̄γµψ. (11.11)
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11.2 Appendix B

11.2.1 Derivation of operators in group H4D2

Using the Fierz-identity [23] we can "split" the operator into two operators. To see this
more clearly, the indies are written out explicitly :

(
H†taH

) [
(DµH)† ta (DµH)

]
=
(
H†
i t
a
ijH

j
) [

(DµH)†
k t
a
kl (DµH)l

]
=
(
H†
iH

j
) [

(DµH)†
k t
a
ijt

a
kl (DµH)l

]
=
(
H†
iH

j
) [

(DµH)†
k (2δilδkj − δijδkl) (DµH)l

]
=
(
HiH

j
)

(DµH)k (2δilδkj) (DµH)l −
(
HiH

j
)

(DµH)k (δijδkl) (DµH)l
= 2

(
HiH

k
)

(DµH)k (δil) (DµH)l −
(
HiH

i
)

(DµH)k (δkl) (DµH)l
= 2

(
HlH

k
)

(DµH)k (DµH)l −
(
HiH

i
)

(DµH)k (DµH)k
= 2

(
HlH

k
)

(DµH)k (DµH)l −
(
HiH

i
)

(DµH)k (DµH)k
= 2Hl (DµH)lH

k (DµH)k −
(
HiH

i
)

(DµH)k (DµH)k
= 2

(
H†DµH

)⋆ (
H†DµH

)
−
(
H†H

) [
(DµH)† (DµH)

]
And as we can see, both operators

(
H†taH

) [
(DµH)† ta (DµH)

]
and

(
H†H

) [
(DµH)† (DµH)

]
are just one Fierz transformation away.

To establish the relationship between the operators 1
2

(
H†H

)
DµH

†DµH and
1
2

(
H†H

)
(DµD

µ)H†H, we can use the Leibniz rule. The application of the Leibniz
rule proceeds as follows:

1
2(H†H)(DµD

µ)H†H = 1
2(H†H)Dµ((DµH†)H +H†(DµH))

1
2(H†H)(DµD

µ)H†H = 1
2(H†H)Dµ(DµH†)H + 1

2(H†H)Dµ(H†(DµH)).

Proceeding from this point, I will now derive the expression for the operator I initially
began with, namely 1

2

(
H†H

)
DµH

†DµH, by solving the aforementioned equation. The
steps involved in obtaining the desired expression are as follows:

1
2(H†H)DµH

†DµH = 1
2(H†H)(DµD

µ)H†H − 1
2(H†H)Dµ((DµH†)H). (11.12)

(11.13)

We can utilize the EOM for the Higgs field, which is provided in the article referenced
as [9] and derived in Appendix A

(DµDµH)j = m2Hj − λ
(
H†H

)
Hj − q̄jh†

uuϵjk + d̄hdqk + ēYelk (11.14)
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By substituting 11.14 into the relation 11.12, we obtain the desired operator 11.15
and various additional terms[23].

1
2(H†H)DµH

†DµH = 1
2(H†H)(DµD

µ)H†H − 1
2(H†H)Dµ((DµH†)H)

= 1
2(H†H)(DµD

µ)H†H − 1
2(H†H)Dµ(DµH†)H − 1

2(H†H)(DµH
†)DµH

= 1
2(H†H)(DµD

µ)H†H − 1
2(H†H)Dµ(DµH†)H + 1

2(H†H)(Hj − λ
(
H†H

)
Hj

− q̄jh†
uuϵjk + d̄hdqk + ēhelk)H

= 1
2(H†H)(DµD

µ)H†H − 1
2(H†H)Dµ(DµH†)H + 1

2(H†H)HjH − λ1
2(H†H)

(
H†H

)
HjH

− 1
2(H†H)ψ2H

= 1
2(H†H)(DµD

µ)H†H − 1
2(H†H)(DµD

µ)H†H − 1
2(H†H)(Dµ(DµH

†)H) + 1
2(H†H)HjH

− λ1
2(H†H)

(
H†H

)
HjH − 1

2(H†H)ψ2H

= 1
2(H†H)(DµD

µ)H†H − ψ2H3 +H6 +m2H4 + E (11.15)

It is worth noting the steps taken in this process1:

• In transitioning from the first line to the second line, the Leibniz rule was applied
to the second term of the equation.

• From the second line to the third line, the EOM for the Higgs field was employed.

• The final line presents a potential approach for resolving the remaining operator.
Using the Leibniz rule again on the second-to-last line makes it possible to
obtain two equal operators and one residual operator. After canceling the
two equal operators in the second last line, we obtain the desired operator
1
2(H†H)(DµD

µ)H†H, along with other various operators and terms. E is operators
which vanish due to the EOM[23]

1Some sloppy interpretation of parenthesis may have occurred during the calculation of this process
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11.3 Appendix C

11.3.1 The basics of EWSB

The fields W± and Z acquire mass thru the symmetry breaking of the electroweak group.
The mass terms come from the kinetic part of the Higgs Lagrangian:

| (DµH) |2 = 1
23

∣∣∣∣∣(2∂µ + ig1Bµ + ig2Wµ)
(

0
v

)∣∣∣∣∣
2

= 1
23 |i|

2
∣∣∣∣∣
(
vg2

2(W 1
µ − iW 2

µ)
v(g1Bµ − ig2W

3
µ

)∣∣∣∣∣
2

= 1
23 v

2
(
g2

2(W 1
µ − iW 2

µ)2

(g1Bµ − ig2W
3
µ)2

)
= 1

23 v
2
(
g2

2(W 1
µ − iW 2

µ)(W 1
µ + iW 2

µ)
(g1Bµ − ig2W

3
µ)2

)
. (11.16)

The field expansion around the VEV is set to zero, as we are only interested in
studying how the fields acquire mass. We recognize the mass term for a scalar field with
a complex conjugate H†H namely the two charged weak force mediating bosons W±

µ ≡
1√
2

(
W 1
µ ∓ iW 2

µ

)
, and the neutral gauge boson defined as Zµ ≡ 1√

g2
1+g2

2

(
g2W

3
µ − g1Bµ

)
.

The mass of these two fields is given by the coefficient in front of the mass term,
1
2mW = 1

2( (gv)2

22 ), and the same for the heavy neutral field Z, mZ = v
2
√
g2 + g′2. There

is a fourth gauge field of-course, the photon field with mass mγ = 0, and structure
γµ ≡ 1√

g2
1+g2

2

(
g1W

3
µ + g2Bµ

)
. The relation gi

√
g1+g2

, i = 1, 2 is known as the Weinberg
angle. The Weinberg angle often written in shorthand as just cos θW for i = 2, or sin θW
for i = 1. We have broken the symmetry by implementing the unitary gauge, creating
3 Goldstone bosons. These Goldstone bosons comes from the three scalar degrees of
freedom, which end up giving the weak gauge bosons their longitudinal component [17]
[29] [40].

The Higgs mechanism also gives rise to fermion masses. Fermion mass terms without
the Higgs mechanism mixes right and left handed fields(remembering that chiral fields
can always be written as a sum of a right and left handed field)[39]

ψ̄ψ = ψ†PLγ0PRψ + ψ†PRγ0PLψ = ψ̄LψR + ψ̄RψL. (11.17)
The right and left handed fields change under different SU(2) representations and

have distinct U(1) charges. This mismatch causes the mass term to not be invariant. In
order to fix this, we have to use Yukawa interaction terms where an left-handed fermion
SU(2) doublet is contracted with the Higgs SU(2) doublet:

LY uk = −yf
(
ψ̄LHψR + ψ̄RH

†ψL
)

(11.18)

Where ψL is some left handed doublet. The electron mass for example, after
symmetry breaking:

Lm = − yf√
2

[(
ν̄e ē

)
L

(
0
v

)
eR + ēR

(
0 v

)( νe
e

)]
= −me (ēLeR + ēReL) = −meēe (11.19)

Where the electron mass is recognized as me = yfv√
2 . The electron mass term is now

invariant in our effective Lagrangian, along with the mass terms of the other fermions.
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11.4 Appendix D

11.4.1 Derivation of Fermion Mass Shift

All Yukawa-like operators induce a shift in the masses of the fermions as per the
procedure outlined in [9]. By adding the dimension 8 Yukawa operators to the SM
Yukawa operators, and dimension 6 Yukawa operators, the Yukawa interaction part of
our EFT can now be represented as

yffLHfR + H†H

v2 c̄fyffLHfR +
(
H†H

v2

)2

c̄fyffLHfR + h.c. . (11.20)

Setting the Higgs field to its VEV, the resulting shift in fermion mass can be
attributed to the Higgs field. The WCs, which are complex numbers, can be decomposed
into their real and imaginary parts, as shown below. The WCs are split into real and
imaginary parts in order to interpret better the physical meaning of the mass shift better.
The real and imaginary part have different physical interpretations, and the contribution
to the shift in fermion mass is not equally split between the real and imaginary part.
The real part of the Wilson coefficent describe the magnitude of the coupling strength
between the EFT operators and SM particles, while the imaginary part describes the
CP-violating phase of the coupling.

→ 1√
2
yffLfR(v + h) + 1

2
√

2
yffL [Re(c̄f ) + iγ5 Im(c̄f )] fR

(v + h)3

v2

+ 1
4
√

2
yffL [Re(c̄f ) + iγ5 Im(c̄f )] fR

(v + h)5

v4 + h.c. (11.21)

→ 1√
2
yfvfL

(
1 + [Re(c̄f ) + iγ5 Im(c̄f )]

2 + [Re(c̄f ) + iγ5 Im(c̄f )]
4

)
fR

+ hyf√
2
f̄

[
1 + 3

2 [Re (c̄f ) + iγ5 Im (c̄f )] + 5
4 [Re (c̄f ) + iγ5 Im (c̄f )]

]
f +O

(
h2

v2

)
(11.22)

→ 1√
2
yfvfL

[
1 + 3

4 [Re(c̄f ) + iγ5 Im(c̄f )]
]
fR

+ hyf√
2
f̄

[
1 + 11

4 [Re (c̄f ) + iγ5 Im (c̄f )]
]
f +O

(
h2

v2

)
(11.23)

The mass of a fermion is determined by the interaction-strength between the fermion
and the Higgs field, as represented by the Yukawa coupling constant yf

2 for that
particular fermion. The mass term without including any effective operators looks like
mf = yfv√

2 , however when including effective operators, the mass shifts with and extra
Re (c̄f ) + iγ5 Im (c̄f ) in comparison to [9]. This gives a total shift in the fermion mass

m∗
f = mf

[
1 + 3

4 [Re (c̄f ) + iγ5 Im (c̄f )]
]

(11.24)

The equation above is then rewritten to account for the shift in fermion mass, by
expressing it in terms of m∗

f . In order to make it easier to see the change between the
2One notational error was discovered here upon the final reading. yf should be h.
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two masses mf and m∗
f , the above equation will be explicitly written out in terms of

mf , before shifting to m∗
f

→ mffL

[
1 + 3

4 [Re (c̄f ) + iγ5 Im (c̄f )]
]
fR

+ h

v
mf f̄

[
1 + 11

4 [Re (c̄f ) + iγ5 Im (c̄f )]
]
f +O

(
h2

v2

)
(11.25)

Rewriting the above expression to express it in terms of the effective mass m∗
f , which

incorporates the shift, for use in the final effective Lagrangian(Here there is one unsolved
problem. After the article rewrites the expression, it seem they are left with a factor
[Re(c̄f )+iγ5 Im(c̄f )]2

2 to much. I the below calculation, I rewrite it how i see it correct, I.e
not changing much about the h

v term. Also state somewhere that γ5 allows to keep track
of the chiral properties of the interactions in the theory.):

→ m∗
ffLfR + h

v
m∗
f f̄ [1 + 2 [Re (c̄f ) + iγ5 Im (c̄f )]] f +O

(
h2

v2

)
(11.26)
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11.5 Appendix E

11.5.1 Higgs Canonical Renormalization

This appendix provides an exposition on the impact of the two dimension-8 operators,
comprising solely of two covariant derivatives and the remaining Higgs fields, on the
canonical renormalization of the Higgs.

cr
2v4

(
H†H

)2 (
DµH

†DµH
)

+ cq
2v4

(
H†H

) (
H†τ IH

) (
DµH

†τ IDµH
)

= cr
8v4 (v2 + 2vh+ h2)2(∂µh∂µh) + cq

8v4 (v2 + 2vh+ h2)
(
(v + h)τ3(v + h)

)
(∂µhτ3∂µh)

= cr
8v4 (v4 . . . )2(∂µh∂µh) + cq

8v4 (v2 . . . )
(
−(v + h)2

)
(−∂µh∂µh)

= cr
8v4 v

4(∂µh∂µh) + cq
8v4 v

4(∂µh∂µh) = 1
8
(
crv

4(∂µh)2 + cqv
4(∂µh)2

)
= v4

8v4 [cr(∂µh)2 + cq(∂µh)2] = 1
8[cr + cq](∂µh)2. (11.27)

The kinetic part of the Higgs now Lagrangian get in addition to ch, the contributions
cr and cq

Lkin = 1
2 (∂µh)2 + ch

2 (∂µh)2 + cq
8 (∂µh)2 + cr

8 (∂µh)2

= 1
2

(
1 + ch + 1

4(cq + cr)
)

(∂µh)2 (11.28)

Which is also re-scaled away by a similar field redefinition for the Higgs field, by
using a Maclaurin series expansion, 1√

1+x = 1− x
2 + 3x2

8 −
5x3

16 . . . up to order O(c̄2)

h→ h√
1 + ch + 1

4(cq + cr)
≈ 1

2

(
1 + ch + 1

4(cq + cr)
)
h. (11.29)
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11.6 Appendix F

11.6.1 In-Depth Calculations of Operators in Unitary Gauge

This appendix presents a comprehensive summary of all calculations for each operator in
unitary gauge. The appendix is organized in a chronological order in reference to their
occurrence in the main text. Each operator in the principal Lagrangians, namely, L6,
L8, L6,h, and L8,h, will be presented in this section in unitary gauge. LSM only contains
the kinetic part of the Higgs field, and the Higgs self-interaction terms responsible for
EWSB. These terms in unitary gauge are explained and calculated in the chapter Higgs
mechanism, and its corresponding appendix.

11.6.2 Useful Mathematical Formulas and Assumptions

Prior to delving into complex calculations, it is beneficial to first introduce a series of
useful mathematical relations and assumptions. These relations will greatly facilitate
our calculations in unitary gauge, simplifying the process and enabling a more efficient
approach.

Two assumptions will be made. Firstly, non-linear Higgs operators may be
disregarded, thereby excluding every operator containing h2. This simplification
significantly reduces the complexity of the calculations. Secondly, it will be assumed
that operators with an even number of covariant derivatives may be transformed into
the field strength tensor Zµν , as established in eq 2.3.

We will also use these important mathematical relations:

mZ = mW

cW
= g2v

2cW
(11.30)

mW = g2v

2 (11.31)
g1
g2

= sin θW
cos θW

= tan θW (11.32)

cos θW = g2√
g2

2 + g2
1

(11.33)

(
H†H

)
= 1

2
[
0 v + h

] [ 0
v + h

]
= (v + h)2 = 1

2(v2 + 2vh+ h2) (11.34)
(
H†H

)2
= 1

4(v4 + 2v3h+ 2v2h2 + 4v2h2 + 4vh3 + h4) (11.35)

Dµ = ∂µ + ig1B
µ + ig2W

ata = . . .
i√

g2
1 + g2

2

(g1B
µ + g2W

3)

= i
√
g2

1 + g2
2Z

µ (11.36)√
g2

1 + g2
2

g2
= 1
cW

(11.37)

Along with the proof for equation 2.3
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[Dµ, Dν ]ψ(x) = Dµ(Dνψ)−Dν(Dµψ)
= (∂µ + igAµ)(∂νψ + igAνψ)− ((∂ν + igAν)(∂µψ + igAµψ))
= ∂µ(∂νψ) + ig(∂µAνψ) + igAµ∂νψ − g2AµAµ

− (∂ν(∂µψ) + ig(∂νAµψ) + igAν∂µψ − g2AνAν)
= (∂µ(∂νψ)− ∂ν(∂µψ)) + ig((∂νAµψ)−Aν∂µψ)
+ g2(−AµAν +AνAµ)

(11.38)

The first and last term in the last line cancels as partial derivatives commute, and
fields in distinct positions in space also commute. Therefore are left with the definition
of a field strength tensor 11.39 (in this case, just a general one, which will primarily be
used for the Z-boson when calculating Lagrangians in unitary gauge), times an imaginary
number and a coupling constant

[Dµ, Dν ]ψ = ig(Aµν)ψ, (11.39)

The last two relations Eq 11.36 and Eq 11.37 along with the definition of the mass
of the W boson, 11.31 are used extensively throughout this appendix. One important
note is that the relationship between the physical Z and γ fields and unphysical W and
B fields, derived in appendix 11.3 , is used to obtain the desired interactions in the
dictionary.

Each operator will be calculated twice, first without the Higgs field and then with it.
As some of the operators are similar, there will be redundant calculations, which will be
performed once and subsequently referenced where necessary. Since each operator can
contribute to a different interaction, in cases where only a specific part is of interest,
the remainder of the equation will be temporarily disregarded and represented by the
ellipsis symbol .

Given that the Higgs self-coupling terms from both dimension 6 and dimension 8
have been excluded, the unmodified Higgs Vacuum Expectation Value of 246 GeV is
utilized as the scale for the light fields below. Conversely, for the heavier bosons, the
energy scale is defined as mW .

There are only six possible interactions, excluding the terms that contribute to
altering various Standard Model terms, such as the operators changing fermion mass, Z
mass, and Higgs renormalization. These six interactions form the basis of our dictionary,
namely ZµνZµν , Zµνγµν , γµνγµν , W †

µνW
µν , Zµ∂µZµν , Zµ∂νγµν , and WµDνW †

µν .
Therefore, we have a clear understanding of the type of interaction that we want our
higher-order operators to contribute to.

11.6.3 Dimension 6 operators

11.6.4 L6 operators without Higgs field

cHW
(
H†σi

←→
DµH

)
(DνWµν)i
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ic̄HW g2
2m2

W

(
H†σiDµH + (DµHσi)†H

)
(DνWµν)i

= ic̄HW g2
4m2

W

[ 0
v + h

]†

σiDµ

[
0

v + h

]
+Dµ†(

[
0

v + h

]†

σi)
[

0
v + h

] (DνWµν)i

= ic̄HW g2
4m2

W

[ 0
v + h

]† [0 1
1 0

]
Dµ

[
0

v + h

]
+Dµ†(

[
0

v + h

]† [0 1
1 0

]
)
[

0
v + h

] (DνWµν)1

+ i

[ 0
v + h

]† [0 −i
i 0

]
Dµ

[
0

v + h

]
+Dµ†(

[
0

v + h

]† [0 −i
i 0

]
)
[

0
v + h

] (DνWµν)2

+ i

[ 0
v + h

]† [1 0
0 −1

]
Dµ

[
0

v + h

]
+Dµ†(

[
0

v + h

]† [1 0
0 −1

]
)
[

0
v + h

]](DνWµν)3

= ic̄HW g2
4m2

W

([
v + h 0

]
Dµ

[
0

v + h

]
+Dµ†(

[
v + h 0

]
)
[

0
v + h

])
(DνWµν)1

+ i

([
−i(v + h) 0

]
Dµ

[
0

v + h

]
+Dµ†(

[
−i(v + h) 0

]
)
[

0
v + h

])
(DνWµν)2

+ i

([
0 −(v + h)

]
Dµ

[
0

v + h

]
+Dµ†(

[
0 −(v + h)

]
)
[

0
v + h

])
(DνWµν)3

= ic̄HW g2
4m2

W

[([
v + h 0

] [ 0
Dµ(v + h)

]
+ (
[
Dµ†(v + h) 0

]
)
[

0
v + h

])
(DνWµν)1

+ i

([
−i(v + h) 0

] [ 0
Dµ(v + h)

]
+ (
[
−iDµ†(v + h) 0

]
)
[

0
v + h

])
(DνWµν)2

+ i

([
0 −(v + h)

] [ 0
Dµ(v + h)

]
+ (
[
0 −Dµ†(v + h)

]
)
[

0
v + h

]) ]
(DνWµν)3

= ic̄HW g2
4m2

W

(
−(v + h)Dµ(v + h)− (v + h)Dµ†(v + h)

)
(DνWµν)3

Collecting all terms containing no Higgs field

= ic̄HW g2
4m2

W

(v2Dµ − v2Dµ†) (DνWµν)3

To calculate the contributions to the interactions Zµ∂µZµν and Zµ∂νγµν , it is
necessary to expand the first covariant derivative and substitute it with the Z-field using
the field definition introduced in the appendix. We also use the equation mW = g2v

2 in
addition to our definition of the W -field, which is provided in the appendix pertaining
to the fundamentals of EWSB, throughout this appendix.
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= ic̄HW
g2

(Dµ) (DνWµν)3

= ic̄HW
g

(Dµ)(Dν(sWγµν + cWZµν))

= ic̄HW
g

(∂µ + ig1B
µ + ig2W

ata)(sWDνγµν + cWD
νZµν)

=
ic̄HW

√
g2

1 + g2

g2
2

((. . . i√
g2

1 + g2
2

(g1B
µ + g2W

3)−Dµ†)(sWDνγµν + cWD
νZµν))

= − c̄HW
cw

((. . . Zµ)(sWDνγµν + cWD
νZµν)) = −c̄W (Zµ)(tan θwDνγµν +DνZµν))

= c̄HW (tan θwZµDνγµν + ZµDνZµν)
= c̄HW (tan θwZµ∂νγµν + Zµ∂νZµν)

From the second to last line, only the partial derivative term remains, as we are not
interested in the three-gauge boson interaction.

The interaction WµDνW †
µν arises from the contribution of the complex conjugated

covariant derivative. Calculating this term involves certain subtleties. In particular, in
accordance with the established set of relations in [9], the final interaction involves the
complex conjugation of the W -field strength tensor. At present, it is merely assumed
that the complex conjugation can be flipped over to the field strength tensor.

− ic̄HW g2
4m2

W

(
v2Dµ†

)
(DνWµν)3 = −ic̄HW (. . .− ig2W

µ)†DνWµν

= c̄HWW
µDνW †

µν

In the above equation, we used mW = gv
2 .

It is also a mystery as to why we allow for three gauge bosons here(as the covariant
derivative also contains a W ).

cHG
(
H†H

)
Ga
µνG

aµν

cHGg
2
3

2m2
W

(
H†H

)
GaµνG

aµν = cHGg
2
3

2m2
W

(v2 + 2vh+ h2)GaµνGaµν ≡
cHGg

2
3

2m2
W

(v2 + 2vh)GaµνGaµν

= cHGg
2
3v

2

2v2g2

22

GaµνG
aµν = 2cHG

g2
3
g2G

a
µνG

aµν

c̄HB
(
H†H

)
BµνB

µν
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c̄HBg
2
1

m2
W

(
H†H

)
BµνB

µν = c̄HBg
2
1

2m2
W

(v2 + 2vh+ h2)(cWγµν − sWZµν)2

= c̄HBg
2
1

2m2
W

(v2 + 2vh+ h2)(c2
Wγ

2
µν − 2γµνsWZµν + s2

WZ
2
µν)

= c̄HBg
2
1v

2

2m2
W

(c2
Wγ

2
µν − 2γµνsWZµν + s2

WZ
2
µν)

= 2c̄HBg2
1

g2
2

(c2
Wγ

2
µν − 2γµνsWZµν + s2

WZ
2
µν)

= 2c̄HB tan2 θW (c2
Wγ

2
µν − 2γµνsWZµν + s2

WZ
2
µν)

Here we used the first instance of the relation g1
g2

= tan θW .

c̄Hb
(
H†
←→
DµH

)
(∂νBµν)

ic̄Hbg1
2m2

W

(
H†←→DµH

)
(∂νBµν)

= ic̄Hbg1
4m2

W

([
0 v + h

]
Dµ

[
0

v + h

]
+ (Dµ†

[
0 v + h

]
)
[

0
v + h

])
(∂νBµν)

= ic̄Hbg1
4m2

W

(
v2Dµ + v2Dµ† + vhDµ + vDµ†h

)
(∂νBµν)

Considering only the covariant derivative which is not complex conjugated:

= ic̄Hbg1
4m2

W

(
v2Dµ

)
(∂νBµν) = ic̄Bg1

4m2
W

v2Dµ(∂ν(cwγµν − sWZµν))

= ic̄Hbg1
g2

2
(∂µ − ig1Y B

µ − ig2Wµ) (∂ν) (cWγµν − sWZµν)

Remembering that we have defined the Zµ field as Zµ ≡ 1√
g2+g2

(
gW 3

µ − g′Bµ
)

=
ic̄Hbg1

√
g2 + g2

2

g2
2

(. . . i√
g2 + g2

2

(
g2W

3
µ − g1Bµ

)
)(∂ν) (cWγµν − sWZµν)

= − c̄Hb tan θw
cw

(. . . Zµ)(∂ν) (cwγµν − swZµν)

= c̄HbZ
µ∂ν

(
tan θw

sw
cw
Zµν − tan θw

cw
cw
γµν

)
= c̄HbZ

µ∂ν
(
tan θ2

wZµν − tan θwγµν
)

Where we have used the relations
√
g2

1+g2
2

g2
= 1

cw
, and g1

g2
= tan θw.
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cw (DµH)† σi (DνH)W i
µν

icwg2
m2
W

(DµH)† σi (DνH)W i
µν = icwg2

2m2
W

[
0 Dµ†(v + h)

]
σi
[

0
Dµ(v + h)

]
W i
µν

= icwg2
2m2

W

[
0 Dµ†(v + h)

] [0 1
1 0

] [
0

Dµ(v + h)

]

+
[
0 Dµ†(v + h)

] [0 −i
i 0

] [
0

Dµ(v + h)

]

+
[
0 Dµ†(v + h)

] [1 0
0 −1

] [
0

Dµ(v + h)

]

= icwg2
2m2

W

[
Dµ†(v + h) 0

] [ 0
Dµ(v + h)

]

+
[
iDµ†(v + h)

] [ 0
Dµ(v + h)

]

+
[
0 −Dµ†(v + h)

] [ 0
Dµ(v + h)

]

= icwg2
2m2

W

(v2Dµ†Dν + vDµ†Dνh+ vDµ†hDν)

= icwg2
2m2

W

(v2Dµ†Dν)W 3
µν

Three gauge bosons interactions are of no interest. However, it is important to note
that the WC cw does contribute when we do not ignore the Higgs field.

c̄b (DµH)† (DνH)Bµν

ic̄bg1
m2
W

(DµH)† (DνH)Bµν = ic̄bg1
m2
W

(v2Dµ†Dν + vDµ†Dνh+ vDµ†hDν)Bµν

= ic̄bg1
m2
W

(v2Dµ†Dν)Bµν

As we only end up with the interaction term of three bosons again, we deem it
appropriate to disregard them. However, this Wilson coefficient, along with Cw, will
become significant when we also take into account the Higgs-field later on.

11.6.5 L6 operators with one Higgs field

In this section, we shall keep the expansion of the Higgs field, denoted by the symbol h,
while neglecting any terms beyond O(h2). It is worth noting that the VEV is a scalar
quantity and, since no partial derivatives act on h, we can extract a common factor of
h
v in front of the operators. Although there are terms where the partial derivative acts
on h these are not relevant to our theory and can be disregarded.
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cHW
(
H†σi

←→
DµH

)
(DνWµν)i

ic̄HW g2
4m2

W

((
−(v + h)Dµ(v + h)− (v + h)Dµ†(v + h)

)
(DνWµν)3

= − ic̄HW g2
4m2

W

(hvDµ + vDµ†h) (DνWµν)3

= − ic̄HW
v2g2

(hvDµ + vDµ†h) (DνWµν)3 = − ic̄HW
g2

h

v
(Dµ(DνWµν)3) + . . .

The ellipsis symbol denotes the terms that involve the complex conjugated covariant
derivative, which will be employed subsequently. Similar to the reasoning presented in
the preceding section, it can be demonstrated that the covariant derivative simplifies to
a partial derivative:

= −ic̄HW

√
g2

1 + g2
2

g2

h

v
ZµDν(swγµν + cwzµν)

= −ic̄HW
h

v
ZµDν(tan θwγµν + zµν)

= −ic̄HW
h

v
(tan θwZµ∂νγµν + Zµ∂Zµν)

We also require WDW † terms. To acquire a complex conjugated W -field, we
must examine the term containing the complex conjugated covariant derivative. The
methodology for obtaining WDW † terms is similar to that outlined in the preceding
section for the same operator, but now with a h

v factor in front.

ic̄HW g

4m2
W

(vDµ†h) (DνWµν)3 = i
c̄HW
g2

h

v
(. . . g2W

µ)†DνWµν

= −c̄HW
h

v
WµDνW †

µν

cHG
(
H†H

)
Ga
µνG

aµν

cHGg
2
3

2m2
W

(2vh)GaµνGaµν = 4cHG
g2

3
g2

2

(
h

v

)
GaµνG

aµν

c̄HB
(
H†H

)
BµνB

µν
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c̄HBg
2
1

m2
W

(
H†H

)
BµνB

µν = c̄HBg
2
1

2m2
W

(2vh)
(
c2
wγ

2
µν − 2cwswγµνZµν + s2

wZ
2
µν

)
(11.40)

= 4c̄HB
g2

1
g2

2

(
h

v

)
(c2
Wγ

2
µν − 2cwsWγµνZµν + s2

WZ
2
µν) (11.41)

= 4c̄HB
(
h

v

)
(s2
wγ

2
µν − 2s2

w

sw
cw
γµνZ

µν + s4
w

c2
w

Z2
µν) (11.42)

c̄Hb
(
H†
←→
DµH

)
(∂νBµν)

ic̄Hbg1
4m2

W

(
vhDµ + vDµ†h

)
(∂νBµν)

= 4ic̄Hbg1
4m2

W

(vhDµ + vDµ†h)∂ν (cwγµν − swZµν)

Interactions that involve contracting the photon-field and a partial derivative with
either Zµν or γµν are prohibited as they violate U(1)-symmetry[9]. However, these are
not the sole interactions that can be obtained from this operator. It is still possible
to obtain interactions that involve Zµ∂ν contracted with either a γµν or Zµν . In this
context, we will focus solely on the non-complex conjugated covariant derivative.

ic̄Hbg1
4m2

W

(vhDµ)∂ν (cwγµν − swZµν)

= −
c̄Hbg1

√
g2

1 + g2
2

2

g2
2

h

v
(. . . Zµ)∂ν (cwγµν − swZµν)

= −c̄Hb
h

v

(
tan θwZµ∂νγµν − tan θ2

wZ
µ∂νZµν

)

cw (DµH)† σi (DνH)W i
µν

The complexity of this operator stems from its reliance on both complex conjugated
covariant derivatives and covariant derivatives squared. Specifically, this operator
contributes to six distinct interactions, as demonstrated in the previous section where
the calculation of DHDH was presented:

ic̄wg2
2m2

W

(
vDµ†Dνh+ vDµ†hDν

)
W 3
µν

= 2ic̄w
g2

h

v

(
Dµ†Dν +Dµ†Dν

)
W 3
µν

= −
2c̄w

√
g2

1 + g2
2

g2

h

v
(Zµν)W 3

µν = i2c̄w h
v

(Zµν)(tan θwγµν + Zµν)

= −2c̄w h
v

(tan θwZµνγµν + ZµνZµν)
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Of the two Dµ†Dν terms, one makes a notable contribution to both the Zγ and ZZ
interactions.

2ic̄w
g2

h

v

(
Dµ†Dν

)
W 3
µν

The operator
(
H†σi

←→
DµH

)
(DνWµν)i shares the same computational characteristics

as this, with the exception of the complex conjugation present on one of its covariant
derivatives. At first glance, this distinction may suggest that the operator would
contribute to a distinct interaction; however, since we have neglected the contribution of
three gauge boson interactions, the covariant derivative reduces to a partial derivative
anyways.

= −
2c̄w

√
g2

1 + g2
2

g2

h

v

(
(. . . Zµ)

(
sWD

ν†γµν + cWD
ν†Zµν

))

= −2c̄w
h

v

√
g2

1 + g2
2

g2
(Zµ)

(
Dν†γµν + cwD

ν†Zµν
)

= −2c̄w
h

v

(
tan θwZµDν†γµν + ZµDν†Zµν

)
= −2c̄w

h

v
(tan θwZµ∂νγµν + Zµ∂νZµν)

While the calculations presented may not make it immediately evident, the complex
conjugated covariant derivative does not act upon the unconjugated derivative, and
interchange of their positions does not alter the expression. To maintain consistency
with the notation presented in [9], the indices were also swapped when the covariant
derivatives were interchanged. This swapping of indices is acceptable, as they are
summed over.

2ic̄w
g2

h

v

(
Dµ†Dν

)
W 3
µν = 2ic̄w

g2

h

v
(. . .+ ig2W

µ)†DνWµν

= 2c̄w
h

v
WµDνW †

µν

c̄b (DµH)† (DνH)Bµν

In the preceding section, DHDH was computed. This operator bears close
resemblance to the preceding one, with the difference being the B-field instead of the
W -field. The interactions contained within this operator are identical to the previous
one, save for WDW and WW as a result of the substitution of the fields. The output
of the preceding operator will be utilized.
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2ic̄bg1
g2

2

h

v

(
Dµ†Dν +Dµ†Dν

)
Bµν

= −
2c̄bg1

√
g2

1 + g2
2

g2
2

h

v
(. . . Zµν)(cwγµν − swZµν)

= −2c̄b
h

v
(sw
cw
Zµνγµν −

s2

c2
w

ZµνZµν)

The remaining contributions to κ are

= −
2c̄bg1

√
g2

1 + g2
2

g2
2

h

v

(
(. . . Zµ)

(
cwD

ν†γµν − swDν†Zµν
))

= −
2c̄bg1

√
g2

1 + g2
2

g2
2

h

v

(
cwZ

µDν†γµν − swZµDν†Zµν
)

= −2c̄b
h

v

(
sw
cw
ZµDν†γµν −

s2
w

c2
w

ZµDν†Zµν

)

= −2c̄b
h

v

(
sw
cw
Zµ∂νγµν −

s2
w

c2
w

Zµ∂νZµν

)

11.6.6 Correction to the Z mass

Correction to the Z Boson Mass Arising from the Interaction Term
c̄T
(
H†
←→
DµH

) (
H†
←→
DµH

)

c̄T
2v2

(
H†←→DµH

) (
H†←→DµH

)
= c̄T

4v2

([
0 v + h

]
Dµ

[
0

v + h

]
+ (Dµ

[
0 v + h

]
)
[

0
v + h

])2

= c̄T
4v2

(
2v2Dµ + vhDµ + vDµh

)2

= c̄T
4v2 (2v2Dµ)2 = 2v2c̄T (Dµ)2

= v2c̄T (∂µ − ig1Y B
µ − ig2Wµ)(∂µ − ig1Y Bµ − ig2Wµ)

= −v2(g2
1 + g2

2)c̄T (. . . Zµ)(. . . Zµ)

To achieve a correction to the Z-mass, it is necessary for the coefficient in front to
be equivalent to mZ = mW

cw
= g2v

2cw
. This can be obtained by employing the definition(

g2
1 + g2

2
)

= g2
cw

= −v
2g2

2
cw

c̄T (. . . Zµ)(. . . Zµ) = −m2
ZcTZ

µZµ
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11.6.7 Dimension 8 operators

Similar to the calculation of dimension 6 operators in unitary gauge, the dimension 8
operators will also be divided into two sections. In the first section, the contribution of
the Higgs field is neglected, while in the subsequent section, it is taken into account.

11.6.8 L8 operators without a Higgs field

cHHG
(
H†H

)2
Ga
µνG

aµν

cHHGg
2
3

2m4
W

(
H†H

)2
GaµνG

aµν = cHGg
2
3v

4

4v4g4

24

GaµνG
aµν = 4cHHG

g2
3
g4

2
GaµνG

aµν

c̄HHB
(
H†H

)2
BµνB

µν

c̄HHBg
2
1

4m4
W

(
H†H

)2
BµνB

µν = 4c̄HHB
tan2 θW
g2

2

(
c2
Wγ

2
µν − 2cwswγµνZµν + s2

WZ
2
µν

)
= c̄HHB

(
4s

2
w

g2
2
γ2
µν − 8tan2 θW cW sw

g2
2

cwswγµνZ
µν + 4tan2 θW s

2
W

g2
2

Z2
µν

)

c̄WW

(
H†H

)2
W I
µνW

Iµν

c̄WW g
2
2

4m4
W

(
H†H

)2
W I
µνW

Iµν = c̄HW g
2
2

16m4
W

(
v4 + 2v3h . . .

)
W I
µνW

Iµν

= c̄WW g
2
2

16m4
W

(
v4 + 2v3h

)
(W 1

µνW
1µν +W 2

µνW
2µν +W 3

µνW
3µν)

= c̄WW g
2
2v

4

16m4
W

(W 1
µνW

1µν +W 2
µνW

2µν +W 3
µνW

3µν)

= c̄WW

g2
2

(WµνW
µν + (swγµν + cwZµν)2

= c̄WW

g2
2

(WµνW
µν + s2

wγ
2
µν + swcwγµνZ

µν + Z2
µν)

c̄DHW
(
H†H

) (
DµH†τ IDνH

)
W I
µν
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ic̄DHW g2
2m4

W

(
H†H

) (
DµH†τ IDνH

)
W I
µν = ic̄DHW g2

8m4
W

(v2 + 2vh . . . ) (−Dµ(v + h)Dν(v + h))W 3
µν

= − ic̄DHW g2v
4

8m4
W

DµDνW 3
µν −

ic̄gg2v
3h

2m4
W

DµDνW 3
µν . . .

= −
ic̄DHW g2v

4
√
g2

1 + g2
2

8m4
W

Zµν(swγµν + cwZµν)

= 2 c̄DHW
g2

2
(tan θwZµνγµν + ZµνZµν)

c̄DHB
(
H†H

) (
DµH†DνH

)
Bµν

ic̄DHBg1
2m4

W

(
H†H

) (
DµH†DνH

)
Bµν = ic̄gg1

2m4
W

(v2 + 2vh . . . )(DµDν(v2 + 2vh . . . ))Bµν

= ic̄DHBg1v
4

2m4
W

DµDνBµν = 8 ic̄gg
2
1

g2
2
DµDν(cwγµν − swZµν)

= 8 ic̄DHBg1
g2

2
DµDν(cwγµν − swZµν)

Once again, we obtain three gauge bosons or propagators, which are not relevant to
our current analysis. However, the operator becomes significant when the Higgs field is
incorporated into the system.

c̄HWW

(
H†τ IH

) (
H†τJH

)
W I
µνW

Jµν

This operator contributes to the interaction WW by the same logic as previously,
and γγ, γZ, ZZ .

c̄HWW g
2
2

m4
W

(
H†τ IH

) (
H†τJH

)
W I
µνW

Jµν = c̄HWW g
2
2

m4
W

(−(v + h))4W 3
µνW

3µν

The above expression involves expanding the sums, yet only the term where I = J =
3 can survive. Otherwise, if either I or J does not correspond to the index that yields
the third Pauli matrix, then the product of the Higgs doublets and Pauli matrices would
evaluate to zero.(

H†τ I=1,2H
) (
H†τJ=1,2H

)
= 0,

[
0 v + h

] [ 0 1/(−i)
1(i) 0

][
0

v + h

]
=
[
1/(−i)(v + h) 0

][ 0
v + h

]
= 0.

The W 3W 3 term enables us to derive the interactions between gamma particles and
Z particles.
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= 16 c̄HWW

g2
2v

4

(
−(v4 + 4v3h . . . )

)4
((swγµν + cwZµν)2)

= 16 c̄HWW

g2
2

((swγµν + cwZµν)2) = 16 c̄HWW

g2
2

(2γµνZµνcwsw + c2
wZµνZ

µν + s2
wγµνγ

µν)

cHWB

(
H†H

) (
H†τ IH

)
W I
µνB

µν

cHWBg1g2
m4
W

(
H†H

) (
H†τ IH

)
W I
µνB

µν = −cHWBg1g2
m4
W

(v2 + 2vh+ h2)2(swγµν + cwZµν)(cwγµν − swZµν)

= −cHWBg1g2
m4
W

(v2 + 2vh+ h2)2(swcwγµνγµν − s2
wγµνZ

µν + c2
wZµνγ

µν − cwswZµν2) −cHWBg1g2v
4

m4
W

(swcwγµνγµν + (c2
w − s2

w)Zµνγµν − cwswZµνZµν)

= −4cHWB

g2
2

g1
g2

(swcwγµνγµν + (c2
w − s2

w)Zµνγµν − cwswZµνZµν)

= −4cHWB

g2
2

(s2
wγµνγ

µν + tan θw(c2
w − s2

w)Zµνγµν − s2
wZµνZ

µν)

ϵIJK
(
H†τ IH

) (
DµH†τJDνH

)
WK
µν

ϵIJK
(
H†τ IH

) (
DµH†τJDνH

)
WK
µν

The term in question is complex in nature, since it incorporates a third-order tensor
known as the Levi-Civita permutation symbol. Specifically, the value of the permutation
symbol is positive (+1) for even permutations, negative (-1) for odd permutations, and
zero when any of the indices are equal3.

= ϵ123a1b2c3 − ϵ132a1b3c2

+ ϵ213a2b1c3 − ϵ231a2b3c1

+ ϵ312a3b1c2 − ϵ321a3b2c1

= ϵ123
(
H†τ1H

)1 (
DµH†τ2DνH

)
W 3
µν − ϵ132

(
H†τ1H

) (
DµH†τ3DνH

)
W 2
µν

+ ϵ213
(
H†τ2H

) (
DµH†τ1DνH

)
W 3
µν − ϵ231

(
H†τ2H

) (
DµH†τ3DνH

)
W 1
µν

+ ϵ312
(
H†τ3H

) (
DµH†τ1DνH

)
W 2
µν − ϵ321

(
H†τ3H

) (
DµH†τ2DνH

)
W 1
µν

Most of the terms in the equation evaluate to zero, owing to the off-diagonal elements
of the first two Pauli matrices. The only non-zero terms are those that involve the third
Pauli matrix.

3This operator is not included in the final Lagrangian, but is kept in the appendix due to to it
evaluating to zero, which I found odd
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= ϵ123
(
H†τ1H

) (
DµH†τ2DνH

)
W 3
µν − ϵ132

(
H†τ1H

) (
DµH†τ3DνH

)
W 2
µν

+ ϵ213
(
H†τ2H

) (
DµH†τ1DνH

)
W 3
µν − ϵ231

(
H†τ2H

) (
DµH†τ3DνH

)
W 1
µν

+ ϵ312
(
H†τ3H

) (
DµH†τ1DνH

)
W 2
µν − ϵ321

(
H†τ3H

) (
DµH†τ2DνH

)
W 1
µν = 0?

11.6.9 L8 operators with a Higgs field

c̄HHG
(
H†H

)2
Ga
µνG

aµν

cHHGg
2
3

2m4
W

(
H†H

)2
GaµνG

aµν = 8cHHG
g2

3
g4

2

h

v
GaµνG

aµν

c̄HHB
(
H†H

)2
BµνB

µν

c̄HHBg
2
1

4m4
W

(
H†H

)2
BµνB

µν = 8c̄HHB
h

v

(
s2
w

g2
2
γ2
µν − 16tan θW s2

w

g2
2

γµνZ
µν + tan2 θW s

2
w

g2
2

Z2
µν

)

c̄WW

(
H†H

)2
W I
µνW

Iµν

c̄WW g
2
2

4m4
W

(
H†H

)2
W I
µνW

Iµν = c̄WW g
2
2

16m4
W

(
v4 + 2v3h . . .

)
W I
µνW

Iµν

= c̄WW g
2
2

16m4
W

(
v4 + 2v3h

)
(W 1

µνW
1µν +W 2

µνW
2µν +W 3

µνW
3µν)

= 4 c̄WW

g2
2

h

v
(WµνW

µν + (swγµν + cwZµν)2

= 4 c̄WW

g2
2

h

v
(WµνW

µν + s2
wγ

2
µν + swcwγµνZ

µν + Z2
µν)

c̄DHW
(
H†H

) (
DµH†τ IDνH

)
W I
µν
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ic̄DHW g2
2m4

W

(
H†H

) (
DµH†τ IDνH

)
W I
µν

= ic̄DHW g2
8m4

W

(v2 + 2vh . . . ) (−Dµ(v + h)Dν(v + h))W 3
µν

= − ic̄DHW g2v
4

8m4
W

DµDνW 3
µν −

ic̄gg2v
3h

2m4
W

DµDνW 3
µν . . .

= − ic̄DHW g2v
3h

2m4
W

(DµDν +DµDν)W 3
µν . . .

= c̄DHW g2v
3h

2m4
W

(
√
g2

1 + g2
2(Zµν) + (

√
g2

1 + g2
2Z

µDν))(swγµν + cwZµν)

The reason the Dν was turned into a Z and not a γ, is because γ would break U(1)
symmetry [9].

= c̄DHW g2v
3h

2m4
W

(
√
g2

1 + g2
2(Zµν) + (

√
g2

1 + g2
2Z

µ(∂ν . . . ))(swγµν + cwZµν)

= c̄DHW g2v
3h

2m4
W

√
g2

1 + g2
2 (swZµνγµν + cwZ

µνZµν + (swZµ∂νγµν + cwZ
µ∂νZµν))

= 8 c̄DHW
g2

2

h

v

√
g2

1 + g2
2

g2
(swZµνγµν + cwZ

µνZµν + (swZµ∂νγµν + cwZ
µ∂νZµν))

= 8 c̄DHW
g2

2

h

v
(tan θwZµνγµν + ZµνZµν + (tan θwZµ∂νγµν + Zµ∂νZµν))

As outlined in the reference [9], the dictionary suggests that this operator plays a
role in determining the value of κWW , as it bears similarity to the operator cHW under
unitary gauge.

Further contributions to κWW can also be acquired. To obtain these contributions,
we must utilize the remaining terms of (DµDν)W 3

µν . By ’remaining’, we refer to the
fact that we have already utilized the W 3 particle in the construction to construct Zµ
thereby yielding the Zµ particle, to obtain contributions to κZZ , κZγ , cZγ and cZZ .
However, in order to derive additional contributions, we will employ either the W 1 or
W 2 (or both, which we will collectively denote as W ), and use these particles to form
WDW terms.

ic̄DHW g2
2m4

W

(−4v3h(ig2W . . . )DW 3) = 32 c̄g
g2

2

h

v
(WDW 3)

c̄DHB
(
H†H

) (
DµH†DνH

)
Bµν
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ic̄DHBg1
2m4

W

(
H†H

) (
DµH†DνH

)
Bµν = ic̄gg1

2m4
W

(v2 + 2vh . . . )(DµDν(v2 + 2vh . . . ))Bµν

= ic̄DHBg1v
4

2m4
W

DµDνBµν = 8 ic̄gg
2
1

g2
2
DµDν(cwγµν − swZµν)

= 8 ic̄DHBg1
g2

2
DµDν(cwγµν − swZµν)

= 4 ic̄DHBg1v
3h

2m4
W

DµDνBµν = 16 ic̄gg1
g4

2

h

v
(DµDν +DµDν)(cwγµν − swZµν)

= 16 ic̄DHBg1
g4

2

h

v
(i
√
g2

1 + g2
2(ZµDν + Zµν)cwγµν − swZµν)

= −16 c̄DHB
g2

2
tan θw

√
g2

1 + g2
2

g2
2

h

v
((ZµDν + Zµν)(cwγµν − swZµν)

= −16 c̄DHB
g2

2
tan θw

h

v
((ZµDν + Zµν)(γµν − tan θwZµν)

= −16 c̄DHB
g2

2
tan θw

h

v
(ZµDνγµν + Zµνγµν − tan θwZµDνZµν − tan θwZµνZµν)

= −16 c̄DHB
g2

2

h

v
(tan θwZµDνγµν + tan θwZµνγµν − tan2 θwZ

µDνZµν − tan2 θwZ
µνZµν)

c̄HWW

(
H†τ IH

) (
H†τJH

)
W I
µνW

Jµν

Following similar logic to that employed on the previous operator, this operator
makes a contribution to the WW interaction, as well as to the interactions between γγ,
γZ, and ZZ particles.

c̄HWW g
2
2

m4
W

(
H†τ IH

) (
H†τJH

)
W I
µνW

Jµν = c̄HWW g
2
2

m4
W

(−(v + h))4W 3
µνW

3µν

= 16 c̄HWW

g2
2v

4

(
−(v4 + 4v3h . . . )

)4
((swγµν + cwZµν)2)

= 45 ic̄HWW g
2
2v

3h

g4v4 (2γµνZµνcwsw + c2
wZµνZ

µν + s2
wγµνγ

µν)

= 45 ic̄HWW v
3h

g2
h

v
(2γµνZµνcwsw + c2

wZµνZ
µν + s2

wγµνγ
µν)

cHWB

(
H†H

) (
H†τ IH

)
W I
µνB

µν
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cHWBg1g2
m4
W

(
H†H

) (
H†τ IH

)
W I
µνB

µν = −cHWBg1g2
m4
W

(v2 + 2vh+ h2)2(swγµν + cwZµν)(cwγµν − swZµν)

= −cHWBg1g2
m4
W

(v2 + 2vh+ h2)2(swcwγµνγµν − s2
wγµνZ

µν + c2
wZµνγ

µν − cwswZµν2) 16cHWBg1g2
g4

2v
4 v3h(swcwγµνγµν + (c2

w − s2
w)Zµνγµν − cwswZµνZµν)

= 16cHWB

g2
2

g1
g2

h

v
(swcwγµνγµν + (c2

w − s2
w)Zµνγµν − cwswZµνZµν)

= 16cHWB

g2
2

h

v
(s2
wγµνγ

µν + tan θw(c2
w − s2

w)Zµνγµν − s2
wZµνZ

µν)
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