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So long, and thanks for all the fish
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Abstract

In this thesis we study stochastic optimal control problems for Volterra type
dynamics. To this end, we consider two different approaches: maximum
principle and dynamic programming. We use the maximum principle when
working with time-changed Lévy noise drivers and obtain a sufficient and
necessary optimal condition. We also discuss the two players game setting.
We present the dynamic programming approach in the case of a simplified
continuous Volterra forward equation, where the dependence from the past
is obtained through a convolution kernel. In this case we also provide a
numerical approach for the linear-quadratic case.

Abstract

I denne avhandlingen betrakter vi stokastiske optimale kontrollproblemer
for dynamikk bestemt av Volterralikninger. For å gjennomføre dette benyt-
ter vi to forskjellige tilnærminger: maksimumsprinsippet og dynamisk pro-
grammering. Maksimumsprinsippet blir anvendt for å betrakte tidsendrede
Lévy-støydrivere og vi oppnår med dette en nødvendig og tilstrekkelig
optimal betingelse. Videre diskuterer vi også tilfellet med to spillere. Til
slutt presenterer vi den dynamiske programmeringstilnærmingen under
en forenklet kontinuerlig Volterra-foroverligning, der fortidsavhengigheten
oppnås gjennom en konvolusjonskjerne. I dette siste tilfellet gir vi også en
numerisk tilnærming for det lineær-kvadratiske tilfellet.
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Chapter 1

Introduction

This thesis is a collection of four related papers following this introductory
chapter, where we provide an overview of all the covered topics. All the papers
have the common goal of studying classes of optimal control problems with
Volterra-type forward dynamics, where one aims to find

J(û) = sup
u∈A

J(u), (1.0.1)

where J(u) is a performance functional depending on a forward equation which
describes the state of the system, and A is a set of admissible controls. These
problems naturally arise e.g. when one studies financial markets, portfolio
optimization, optimal advertising, recursive utility, and mean-variance selection
problems (see e.g. [1, 2, 3, 24, 33, 36, 43]). We consider general performance
functionals of the form

J(u) = E

[∫ T

0
F (t,Xu(t), u(t))dt+G(Xu(T ))

]
, (1.0.2)

where the underlying forward process has dynamics given by

Xu(t) = X0 +
∫ t

0
b(t, s,Xu(s), u(s))ds+

∫ t

0
σ(t, s,Xu(s), u(s))dW (s)

+
∫ t

0

∫
R0

γ(t, s, z,Xu(s), u(s))H̃(ds, dz), (1.0.3)

for some real-valued functions b, σ and γ, and where W and H̃ are the continuous
and discontinuous parts of the noise respectively. Ideally, one would like to
explicitly find both û and J(û) but, as we will see in the following sections, this
is not always possible.

Two main approaches for the study of optimal control problems of the type
(1.0.1)-(1.0.3) are the dynamic programming principle (DPP) and the maximum
principle (MP). In the case where W is a standard Brownian motion and H̃ is a
compensated Poisson random measure, the MP approach for (1.0.1)-(1.0.3) has
been studied by many authors (see [2, 3, 36, 43, 44] to cite a few), whereas the
DPP for the same problem has been developed only in some particular cases (see
e.g. [1, 6, 29]). This gap between the two approaches is due to the fundamental
need for the Markov property in the DPP approach, usually lacking when dealing
with Volterra dynamics such as the ones in (1.0.3).
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1. Introduction

Historically the DPP and MP approaches have been developed separately
and independently even though they are strictly related. The case where (1.0.3)
does not depend on the past is well known and studied e.g. in [34, 45] and
it can give us some insight on the relation between those apparently different
techniques.
In order to illustrate this connection, we consider the following simplified version
of the optimal control problem (1.0.1)-(1.0.3), where

J(û) = sup
u∈A

J(u) = sup
u∈A

E

[∫ T

0
F (t,Xu(t), u(t))dt+G(Xu(T ))

]
, (1.0.4)

and the dynamics for the forward process Xu is continuous and does not contain
any dependence from the past, i.e.

Xu(t) = X0 +
∫ t

0
b(Xu(s), u(s))ds+

∫ t

0
σ(Xu(s), u(s))dW (s), (1.0.5)

for a standard Brownian motion W (t).

The MP approach, first formulated and derived by Pontryagin, states that
any optimal control along with the optimal state trajectory must solve the
so-called Hamiltonian system (i.e. a forward-backward differential equation)
plus a maximum condition of a function called Hamiltonian. The mathematical
importance of the MP lies in that maximizing the Hamiltonian is much easier than
solving the original control problem and allows us to get a closed-form solution
in certain particular cases. For the optimal control problem (1.0.4)-(1.0.5), the
associated Hamiltonian function is given by the function

H(t, x, u, p, q) : [0, T ] × R × U × R2 −→ R,

where U is a closed convex subset of R and where

H(t, x, u, p, q) = F (t, x, u) + b(x, u)p+ σ(x, u)q,

for p and q two adjoint variables solving the backward stochastic differential
equation (BSDE) {

dp(t) = − ∂H
∂x (t)dt+ q(t)dW (t)

p(T ) = G(Xu(T )).
(1.0.6)

One can then proceed in using a variational approach, derived from the deter-
ministic counterpart of this maximum principle, in order to derive necessary
conditions for the optimality.

On the other hand, the DPP approach, formulated by Bellman, consists in
considering a family of optimal controls with different initial times and states
and establishing relationships among these via the Hamilton-Jacobi-Bellman
(HJB) equation. In order to write such equations, one starts by assuming that
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the control u(t) = u(X(t)) is Markovian and writes the generator Au of the
diffusion Xu as

Auϕ(x) = b
(
x, u(x)

)∂ϕ
∂x

(x) + 1
2σ

2
(
x, u(x)

)∂2ϕ

∂x2 (x).

One can then proceed to formulate the HJB theorem (see Theorem [34, Theorem
5.1]) and obtain an optimal feedback control by taking the maximizer of the
Hamiltonian and using some verification techniques.

The Hamiltonian systems associated with MP are stochastic differential
equations, whereas the HJB equations associated with the DPP are partial
differential equations of second order. In some simple cases such as the one
presented in this section, one is actually able to recover the relationship between
those two. In fact, we have the following result, whose proof can be found in
[34].

Theorem 1.0.1. Define

J(u, s,X0) = E

[∫ T −s

0
f(s+ t,XX0(t), u(t))dt+ g(XX0(T ))

]
, (1.0.7)

where XX0 is the solution of equation (1.0.5) with initial condition X(0) = X0
and put

V (s, x) = sup
u∈A

J(u, s, x).

We remark that V (s, x) solves the HJB equation associated to the problem (1.0.5),
(1.0.7). Assume V (s, x) ∈ C1,3(R2), and there exists an optimal Markovian
control û for problem (1.0.4), with the corresponding solution X̂ to (1.0.5). If
we define

p(t) = ∂V

∂x
(t, X̂(t))

q(t) = σ(t, X̂(t), û(t))∂
2V

∂x2 (t, X̂(t)),

then (p(t), q(t)) solves the adjoint equation (1.0.6).

We want to remark that when dealing with Volterra dynamics, such as the
ones treated in this thesis, is usually very difficult to be able to obtain the
HJB equations due to the non-Markovianity of the system. For this reason the
first step towards an application of the DPP to the optimal control problem
(1.0.1)-(1.0.3) is to recover some form of Markovianity. This approach is feasible
thanks to the recent results in [1, 6, 12, 13, 14] that provide the foundation to the
lift theory for Volterra processes. This consists in rewriting the finite dimensional
forward equation Xu as an element of an infinite dimensional Banach space in
order to recover the Markov property.
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1. Introduction

Our goal throughout this thesis is to provide new contributions to the optimal
control problem (1.0.1)-(1.0.3) in two different directions. On the one hand, we
want to include time-change in the setting as it allows us to gain more flexibility
(as suggested in the study of volatility modelling[4, 9, 27, 38, 39], energy markets
[7], and default models[32]). This is done by considering a driving noise which is
a conditional Lévy process and that can be regarded as a time-changed Lévy
noise with time change given by

Λt(ω) =
∫ t

0
λs(ω)ds, (t, ω) ∈ [0, T ] × Ω, T > 0.

For more details on the time-changed processes at play we refer to Subsection
1.1. On the other hand, we would like to formulate a DPP for (1.0.1)-(1.0.3) via
an infinite dimensional lift, similarly to what has been done in [6] and in [1] for
the linear-quadratic case.

Of course, the above described goals are not achieved without tackling some
challenges. Introducing time-changed Lévy noises as drivers in (1.0.3) means
that one is not able to use the Malliavin calculus to formulate a MP approach
(like in [2, 3, 36]). Our original contribution in that sense, comes then from
considering the non-anticipating derivative (as introduced in [18] and presented
in Subsection 1.2). This approach allows us to circumvent the issues arising from
a form of Malliavin calculus for conditionally independent increments processes
(i.e. the dominion of the derivative) that had been solved e.g. in [3] by taking
the Hida-Malliavin derivative.

By considering a process µ with conditional independent increments in (1.0.3),
the first filtration that one considers is F, the smallest right-continuous filtration
generated by µ, F = {Ft, t ∈ [0, T ]}. Unfortunately, when working under F we
are not able to exploit the perfect stochastic integral representation property (see
e.g. [31] and Paper II for more details). We thus introduce another filtration,
namely G := {Gt, t ∈ [0, T ]}, where Gt := Ft ∨ FΛ is generated by µ and
the entire history FΛ of the time-change processes Λ. This allows us exploit
the conditional Lévy structure of the noise µ to derive a MP for the optimal
control problem (1.0.1) - (1.0.3). Notice that the stochastic control problems
are aimed to be studied under F, and that the enlarged filtration G, which
introduced anticipated information, is used to take advantage of the structure
of the noise. Nevertheless we have also studied the stochastic control under
anticipated information, which is an interesting mathematical problem in itself.

This particular structure of the information at play has been crucial when
considering the 2-players stochastic games in Paper II. There is, in fact a vast
literature on stochastic games among two or more players, see [8, 10, 15, 34, 35,
40, 41, 46] to cite a few and different models. Our model, though, is different
from all of the above cited ones as we take conditional Lévy processes, which are
square integrable martingale random fields both with respect to the filtration G
(and F). Then we exploit the NA-derivative and the filtrations’ interplay like we
did in Paper I to obtain a sufficient MP approach.
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When considering the DPP approach to solve (1.0.1), (1.0.3), we have to
exploit a lift approach to solve optimal control for Volterra dynamics. The
lift to infinite dimensions, in the setting presented here, was first introduced
in [13, 14] in order to recover the Markov property from a finite dimensional
uncontrolled forward Volterra integral equation (FVIE) with dependence from
the past obtained via a deterministic convolution kernel K. This is achieved by
assuming a particular shape for K (see Definition 1.0.2 below) and rewriting the
FVIE in an infinite-dimensional Banach setting. This lift was later exploited in
[1] to solve a linear-quadratic Volterra-type stochastic optimal control problem
where the kernel K can be expressed as Laplace transform of a measure. A
similar approach is also presented in [6] to solve a Volterra-type stochastic
optimal control problem with a Lévy driver by lifting a controlled FVIE to a
Hilbert space.

In the present work, we deviate from the setting in [1] by taking a wider class
of liftable kernels K, which allows us to consider a broader class of FFVIEs and
performance functionals. At the same time, by considering a lift to Unconditional
Martingale Differences (UMD) Banach spaces, we also have a setting which is
not only limited to Hilbert spaces, like in [6]. To the best of our knowledge, this
setting was never considered before for an optimal control problem.

We thus deal with a type of the forward dynamics (1.0.3) that can be written
as

Xu(t) = x(t) +
∫ t

0
K(t− s)b(s,Xu(s), u(s))ds

+
∫ t

0
K(t− s)σ(s,Xu(s))dW (s) t ∈ [0, T ], (1.0.8)

where K is a liftable deterministic convolution kernel (see Definition 1.0.2 below),
W is a standard Brownian motion and the control u only appears in the drift
term of (1.0.8). Notice that the dependence from the past (like in [13]), is
obtained through convolution with the kernel K.

To better explain what are our contribution in this framework, we recall the
definition of a liftable kernel (due to [13]).

Definition 1.0.2. Let Y be a Banach space with dual Y ∗ and denote with
⟨·, ·⟩Y ×Y ∗ the pairing between Y and Y ∗. We say that a kernel K ∈ L2

loc(R+,R)
is liftable if there exist g ∈ Y , ν ∈ Y ∗ and a uniformly continuous semigroup S∗

t ,
t ∈ [0, T ] with generator A∗, acting on Y ∗, such that

• K(t) = ⟨g,S∗
t ν⟩Y ×Y ∗

• S∗
t ν ∈ Y ∗ for all t > 0

•
∫ t

0 ∥S∗
s ν∥2

Y ∗ds < ∞ for all t > 0.

We will also write ⟨·, ·⟩Y ×Y ∗ = ⟨·, ·⟩ when no confusion arises.
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1. Introduction

We can now rewrite Xu(t) in (1.0.8) as

Xu(t) = ⟨g,Zu
t ⟩,

where

Zu
t = ζ0 +

∫ t

0
A∗Zu

τ dτ +
∫ t

0
νbg(τ,Zu

τ , u) +
∫ t

0
νσg(τ,Zu

τ )dWτ , (1.0.9)

for some functions bg and σg defined in Subsection 1.4. Our goal becomes to
solve an infinite dimensional optimal control problem with forward dynamics
given by Z taking values from a Banach space.

Of course, there exists a vast literature on optimal control in infinite di-
mensions (see [25, 26, 33] to cite a few). In our work, though we manage to
introduce some novelty on the optimal control side by working in UMD Banach
spaces. To the best of our knowledge, in fact, an optimal control problem such
as (1.0.1), (1.0.9) had been solved only in Hilbert spaces (see [26]) and solving
it in Banach spaces required to consider a σ not depending on Xu (see [33]) in
(1.0.3). In Paper III, we present a new framework, which allows us to consider
a σ depending on Xu and a particular class of Banach spaces (UMD Banach
spaces) instead of Hilbert spaces.

Our contribution in Paper IV, is then to provide an approach to compute
explicitly the optimal value and optimal control for the problem (1.0.8) where
the optimal performance functional (1.0.1) takes the form

J(u) = E

[
−
∫ T

0
a1u

2(s)ds+ a2X
u(T )

]
,

for a1, a2 in R>0. This is achieved thanks to a simple yet efficient approximation
scheme, which allows us to explicitly determine the convergence rate of the
approximated solution to the exact one.

Open questions and future work

One question comes to mind when reading this first part of the introduction:

"Is it possible to use a lift to solve Volterra equations with a time-changed
Lévy process as a driver?"

Due to the nature of the lift approach and thanks to the extension presented
in [12] and the work of [6], we know that, in general, it is possible to recover
some form of Markovianity for rather general Volterra forward equations with
Lévy drivers. This means, in particular, that considering Lévy subordinators for
the time-change process also works. At this time, to the best of our knowledge,
there are no studies on how to work with an infinite dimensional process with
conditionally independent increments. This is thus a first interesting topic that

6



Processes with conditionally stationary and independent increments

would need some additional research to be carried on. Due to the nature of the
lift presented in [12, 13, 14], though, it is not hard to believe that such a process
could be lifted to a Hilbert or even a Banach space.

When it comes to the optimal control part, there seem to be more issues
to consider. On one hand, [6] managed to solve an optimal control problem
for Lévy driven forward equations lifted to Hilbert spaces. On the other hand,
having a time change such as the one presented in Paper I and Paper II it is
difficult to say if one would need to use techniques of partial/enlarged filtrations
to tackle this problem. Nonetheless, this solving such an optimal control problem
with a lift approach seems particularly engaging, and the answer to weather it is
possible to exploit this approach or not, does not seem obvious.

This introductory chapter is divided as follows: Subsections 1.1 and 1.2 con-
tain technical results on time-changed processes and NA-derivatives. Subsection
1.3 presents an introduction to stochastic games, where we explain how we need
to re-define the concept already introduced here in order to deal with two players
competing against each other. Subsection 1.4 introduces the background for the
infinite dimensional lift in the case of uncontrolled Volterra integral equations of
the form (1.0.8). The scope of those subsections is to provide the reader with the
theoretical tools exploited in the following part. Some of the results presented
here will also be repeated in the papers. Lastly, Subsection 1.5 provides a more
detailed summary of the Papers.

1.1 Processes with conditionally stationary and
independent increments

This subsection aims to introduce the class of processes with conditionally
stationary and independent increments used in Paper I and Paper II as driving
noise. Some of the notions presented here will be repeated in the following part.

We consider a complete probability space (Ω,F , P ) and a time horizon T < ∞
and define the time-space

X := [0, T ] × R :=
(

[0, T ] × {0}
)

∪
(

[0, T ] × R0

)
,

where R0 = R\{0}, and endowed with the Borel σ-algebra BX.
On this space, we take a noise µ, defined as a random field with conditional
stationary independent increments. To this end, we recall the following definitions
due to [28] and [37], respectively.

Definition 1.1.1. Given a càdlàg stochastic real-valued process {Xt, t ≥ 0}
defined on a probability space (Ω,F , P ) adapted to the σ-algebra F = {Ft t ≥
0}, we say that X has conditionally independent increments relative to the
σ-algebra G ⊂ F if, for almost all B ∈ B(R), and 0 ≤ s < t,

P [Xt −Xs ∈ B|Fs ∨ G] = P [Xt −Xs ∈ B|G].

7



1. Introduction

Definition 1.1.2. Let (Ω,F , P ) be a probability space and Λt, t ≥ 0, a non-
negative real-valued stochastic process on (Ω,F , P ), with non-decreasing right
continuous paths and such that Λ0 = 0. Consider FΛ = σ(Λu, u ≥ 0), the
smallest σ-field that makes Λ measurable.
Given a measurable real-valued process Xt, t ∈ [0, T ], defined on (Ω,F , P ), we
say that Xt is a process with conditionally stationary independent increments
with respect to Λt if

1. For any s1 < t1 < ... < sn < tn ∈ [0, T ], and x1, ..., xn ∈ R

P [Xt1−Xs1 ≤ x1, ..., Xtn
−Xsn

≤ xn|FΛ] =
n∏

k=1
P [Xtk

−Xsk
≤ xk|FΛ] a.s.

2. For any 0 ≤ s ≤ t ≤ T and any ζ ∈ R,

E
[
exp {iζ(Xt −Xs)} |FΛ] = ϕ(ζ)Λt−Λs ,

where ϕ is an infinitely divisible characteristic function.

If, for example, we take ϕ(ζ) = exp{eiζ −1}, the process Xt is a conditionally
non-homogeneous Poisson process. If ϕ(ζ) = e−ζ/2, then Xt is a conditional
Wiener process. With this approach we can consider some general processes and
being able to trace them back to some well known cases if we know FΛ. The
following result due to [37] holds:

Theorem 1.1.3. Let Λt, t ≥ 0 be a stochastic process on (Ω,F , P ) as in Definition
1.1.2. Let Y (t), t ≥ 0 be a measurable real-valued process on (Ω,F , P ) with
stationary increments, independent of Λt, and such that Yt has characteristic
function ϕt where ϕ is an infinitely divisible characteristic function.
Then Xt = Y (Λt), t ≥ 0, is a process with conditional stationary independent
increments with respect to Λt.
Vice versa, every process with conditional stationary independent increments is
equal in distribution to a process of the above form.

In order to define random fields as in Definition 1.1.2, we thus need to specify
the process Λ. In our case, we consider the space L of the two dimensional
stochastic processes λ = (λB , λH) such that, for each component k = B,H, we
have that

1. λk
t ≥ 0 P − a.s. for all t ∈ [0, T ],

2. limh→0 P
(
|λk

t+h − λk
t | ≥ ϵ

)
= 0 for all ϵ > 0 and almost all t ∈ [0, T ],

3. E
[∫ T

0 λk
t dt
]
< ∞.

8



Processes with conditionally stationary and independent increments

Let ν be a σ-finite measure on the Borel sets of R0 satisfying
∫
R0
z2ν(dz) < ∞.

Define the random measure Λ on BX by

Λ(∆) :=
∫ T

0
1{(t,0)∈∆}(t)λB

t dt+
∫ T

0

∫
R0

1∆(t, z)ν(dz)λH
t dt, ∆ ⊆ X, (1.1.1)

and denote with ΛB and ΛH the restrictions of Λ to [0, T ] × {0} and [0, T ] × R0
respectively. As in Definition 1.1.2, we introduce the filtration

FΛ =
{

FΛ
t , t ∈ [0, T ]

}
,

where FΛ
t is generated by the values of Λ on the Borel sets of [0, t] × R. Lastly

we put FΛ := FΛ
T . At this point, we can thus define the conditional Gaussian

and the conditional Poisson random measures in the following way.

Definition 1.1.4. The conditional Gaussian measure B (given FΛ) is a signed
random measure on the Borel sets of [0, T ] × {0} satisfying

H1. P
(
B(∆) ≤ x|FΛ) = P

(
B(∆) ≤ x|ΛB(∆)

)
= Φ

(
x√

ΛB(∆)

)
,

x ∈ R,∆ ⊆ [0, T ] × {0}. Here Φ is the cumulative probability distribution
function of a standard normal random variable.

H2. For all disjoint ∆1,∆2 ⊆ [0, T ] × {0}, B(∆1) and B(∆2) are conditionally
independent given FΛ.

The conditional Poisson measure H (given FΛ) is a random measure on the
Borel sets of [0, T ] × R0 satisfying

H3. P
(
H(∆)=k|FΛ)=P

(
H(∆)=k|ΛH(∆)

)
= ΛH (∆)k

k! e−ΛH (∆), k ∈ N,
∆ ⊆ [0, T ] × R0.

H4. For all disjoint ∆1,∆2 ⊆ [0, T ]×{R0}, H(∆1) and H(∆2) are conditionally
independent given FΛ.

Moreover, we assume

H5. B and H are conditionally independent given FΛ.

And lastly, we define the conditional centered Poisson random measure as

H̃(∆) := H(∆) − ΛH(∆), ∆ ⊂ X.

9



1. Introduction

Definition 1.1.5. We define the signed random measure µ on the Borel sets
∆ ⊆ X by

µ(∆) := B (∆ ∩ [0, T ] × {0}) + H̃ (∆ ∩ [0, T ] × R0) .

The random measure µ has conditionally independent values.

Observe that (H1) and (H3) yield

E[µ(∆)|FΛ] = 0, E[µ(∆)2|FΛ] = Λ(∆), ∆ ⊆ X. (1.1.2)

In this settings there are two different types of information flows which arise
naturally. The first one is represented by the filtration

F := {Ft, t ∈ [0, T ]} , Ft :=
⋂
r>t

Fµ
r ,

where Fµ := {Fµ
t , t ∈ [0, T ]} is generated by the values µ(∆), ∆ ⊂ [0, t] × R,

t ∈ [0, T ]. The second information flow of interest is

G := {Gt, t ∈ [0, T ]} , Gt := Fµ
t ∨ FΛ.

The filtration G is right-continuous. Moreover, we notice that GT = FT , G0 = FΛ,
and F0 is trivial. Namely, G includes information on the future values of Λ. For
more details on this framework we refer to [22].

For ∆ ⊆ (t, T ] × R, the conditional independence in (H2) and (H4) allows us
to write

E[µ(∆)|Gt] = E[µ(∆)|Ft ∨ FΛ] = E[µ(∆)|FΛ] = 0. (1.1.3)

Thus (1.1.2) yields the martingale property of µ with respect to G. Moreover,
(H5) gives us

E[µ(∆1)µ(∆2)|Gt] = E[µ(∆1)|FΛ]E[µ(∆2)|FΛ] = 0,

for disjoint ∆1,∆2 ⊆ (t, T ] × R. From the above we see that µ is a martingale
random field with respect to G, see e.g. [19, 22].

Working under G, though, is just a technical choice as G includes information
about the future values of the time-change process Λ. For this reason, we look
at G as the full-information filtration and consider the information available at
time t (namely the filtration F) as partial with respect to G.

Definition 1.1.6. A square integrable martingale random field µ with condition-
ally orthogonal values is a stochastic set function µ(∆), ∆ ⊆ X, on the Borel
sets of X such that

• m(∆) := E[µ(∆)2] = E[Λ(∆)], ∆ ⊆ X,

10



Processes with conditionally stationary and independent increments

• µ is G-adapted,

• µ satisfies the martingale property, (1.1.3)

• µ has conditionally orthogonal values: E[µ(∆1)µ(∆2)|Gt] = 0, for every
disjoint ∆1,∆2 ∈ (t, T ] × R.

Thanks to the tower rule for conditional expectation and (1.1.3) we get that µ
is also a martingale random field with respect to the partial information flow F.

With the above structures, we access the framework of non-anticipating (Itô
type) stochastic integration. For this, we introduce IG ⊆ L2(X× Ω,BX × F ,Λ ×
P ) representing the subspace of the random fields admitting a G-predictable
modification and IF ⊂ IG, the one of F-predictable random fields. Observe that,
for all ϕ ∈ IG, we have that

E
[(∫∫

X
ϕ(s, z)µ(ds, dz)

)2 ]
= E

[ ∫∫
X
ϕ(s, z)2Λ(ds, dz)

]
, (1.1.4)

due to H5 and the martingale property of µ.

Lastly, notice that the random measures B and H are related to a time-
changed Brownian motion and time-changed pure jump Lévy process. To
illustrate this connection, we consider the following processes on [0, T ]:

Bt := B([0, t] × {0}), ΛB
t :=

∫ t

0
λB

s ds,

ηt :=
∫ t

0

∫
R0

zH̃(dsdz), ΛH
t :=

∫ t

0
λH

s ds,

and compute the characteristic functions of B and η. From H1 we get

E
[
eicBt

]
=
∫
R
E
[
eicBt |ΛB

t = x
]
PΛB

t
(dx) =

∫
R
e

1
2 c2xPΛB

t
(dx), c ∈ R,

where PΛB
t

is the probability distribution of the time-change process ΛB
t . Corre-

spondingly, thanks to H3, we have that

E
[
eicηt

]
=
∫
R

exp
{∫

R0

[eiczx − 1 − iczx]ν(dz)
}
PΛH

t
(dx), c ∈ R,

where PΛH
t

is the probability distribution of the time-change process ΛH
t . Indeed,

we recall the following characterization due to [37, Theorem 3.1]:

Theorem 1.1.7. Let Wt, t ∈ [0, T ], be a Brownian motion independent of ΛB

and Nt, t ∈ [0, T ], be a centered pure jump Lévy process with Lévy measure ν
independent of ΛH .
Then B satisfies (H1)-(H2) if and only if Bt = WΛB

t
for any t ≥ 0 and η satisfies

(H3)-(H4) if and only if ηt = NΛH
t

for any t ≥ 0, where the previous inequalities
are in distribution sense.

11



1. Introduction

With this interpretation we have that the processes λ ∈ L represent the stochastic
time-change rate.

1.2 The non-anticipating derivative

In order to obtain the sufficient and necessary optimality conditions in the MP
framework with forward equation driven by time-changed Lévy process, we would
like to exploit some form of Malliavin calculus similarly to what has been done in
[2, 3]. Unfortunately, we cannot directly apply the classical Malliavin calculus as
this is developed for the Brownian motion and Poisson random measures. As a
way to circumvent this issue, one could consider a form of conditional Malliavin
calculus, such as the one presented in [23, 42] and developed for processes such
as the ones introduced in Subsection 1.1.
When applying Malliavin calculus (or the conditional Malliavin calculus) to
optimal control, though, the domain of the Malliavin derivative D1,2 ⊊ L2(P )
constitutes a serious restriction as one does not know in advance whether the
optimal control is going to belong to the correct space or not. In [3], for example,
the authors overcame such issue by using the Hida-Malliavin calculus for the
Brownian motion and centered Poisson random measure. The Hida-Malliavin
calculus is an extension of the classical Malliavin calculus to the white noise
framework (stochastic distributions) but, in our case, we cannot use this approach
since stochastic derivative is not developed for time-changed processes like the
ones in Section 1.1 and is currently a topic for research.

In order to deal with these issues while maintaining the highest possible
generality, we will use NA-derivative D , which can be seen as the adjoint linear
operator to the non-anticipating (Itô) integral and is defined on the whole
L2(P ). The advantage of considering the NA-derivative lies in the possibility
of considering general martingale random fields such as the ones presented in
Section 1.1 and at the same time avoiding any domain restrictions.

In [19], the authors introduced the NA-derivative for martingale random fields
such as the ones presented in Subsection 1.1 by generalizing the work in [18],
where the NA-derivative for L2(P )-martingales was first introduced.

Definition 1.2.1. The NA-derivative D with respect to a martingale random
field µ such as the ones in Definition 1.1.6 is a linear operator defined for all the
elements ζ ∈ L2(P ) as the limit in L2(P × Λ)

Dζ := lim
n→∞

φn, (1.2.1)

of simple G-predictable random fields φn, n ∈ N, defined as:

φn(t, x) :=
Kn∑
k=1

E
[
ζ

µ(∆nk)
E[Λ(∆nk)|Gsnk

]

∣∣∣∣Gsnk

]
1∆nk

(t, x), (t, x) ∈ X.

Here, the Borel sets ∆nk take the form ∆nk := (snk, unk] ×Bnk, k = 1, ...,Kn,
with 0 ≤ snk ≤ unk ≤ T , and Bnk ∈ B where B is any countable semi-ring

12



The non-anticipating derivative

that generates the Borel σ-algebra B(R). Then
⋃

n∈N
⋃Kn

k=1 ∆nk = X. With a
slight abuse of terminology we call the sets ∆nk, k = 1, ...,Kn, a partition of X
with refinement n. Clearly all the sets ∆nk, k = 1, ...,Kn, n ∈ N constitute a
semi-ring generating B(X). For more details we refer to e.g. [18, 23] and the
references therein.

Notice that the NA-derivative allows for an explicit integral representation.
Namely, the integrand is characterized in terms of the very random variable to
represent, the integrator, and the filtration.

Theorem 1.2.2. For any ξ ∈ L2(P ) the NA-derivative Dξ is well defined and
the following stochastic integral representation holds

ξ = ξ0 +
∫∫

X
Dt,zξ µ(dtdz), (1.2.2)

where ξ0 = E
[
ξ|FΛ] satisfies Dξ0 ≡ 0.

The existence and unicity of a stochastic integral representation is well-known
from the Kunita-Watanabe Theorem. Theorem 1.2.2 provides an explicit repre-
sentation to the integrand. The spirit of this result is in line with representations
à la Clark-Haussman-Ocone (CHO), see, e.g. [20], however in that case the noise
is either a Brownian motion or a centered Poisson random measure and the
integrand is characterized in terms of the Malliavin derivative.

We remark that an extension of the Malliavin calculus and CHO representa-
tions to the conditional Brownian and the conditional Poisson cases is provided
in [42].

From (1.2.2), we can see that D is actually the dual of the Itô integral:

Proposition 1.2.3. For all ϕ in IG and all ξ in L2(P ), we have

E
[
ξ

∫∫
X
ϕ(t, z)µ(dt, dz)

]
= E

[∫∫
X
ϕ(t, z)Dt,zξ Λ(dt, dz)

]
.

Also we have the martingale representation theorem:

Theorem 1.2.4. For any square integrable G-martingale Mt, t ∈ [0, T ], the
following representation holds true

M(t) = E[M(T )|FΛ] +
∫ t

0

∫
R

Ds,zM(T )µ(ds, dz).

Remark 1.2.5. Notice that the NA-derivative is continuous in the sense that

ξ = L2(P ) − lim
n→∞

ξn,

which implies that
Dξ = L2(P × Λ) − lim

n→∞
Dξn.
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1. Introduction

1.3 Stochastic games

In Paper II we deal with optimal control for stochastic games between two players.
Similarly to what we do in Paper I, we work with time-changed Lévy drivers and
obtain a sufficient maximum principle in this setting. In Paper II, similarly to
the case presented e.g. in [2] for forward-backward stochastic Volterra integral
equations and in [15] for stochastic games, we add some extra complexity to the
system. This is done by allowing the players to have their own risk evaluation
Yi, i = 1, 2 modeled as a BSDE depending on both the forward equation Xu and
the control u. The players will thus take the current state of the market and
their perceived risk into account when maximizing their performance functional
Ji(u), i = 1, 2.

The aim of this subsection is to provide a small introduction to stochastic
games between N players. Hereafter we consider a simple case where we assume
that at each time t ∈ [0, T ] the players act on a system whose state X can be
influenced through their actions. For more details on stochastic games we refer
to, e.g., [8] and [34]. The main difference with the setup of a stochastic control
problem (which can be regarded as a 1-player game) is the fact that the set of
admissible strategies and the performance functionals are of a different nature
and need to be re-introduced. In this case, in fact, players have to consider
also the choices of others when trying to maximize their own functionals, which
leads to the introduction of equilibria in the game. To this end we start by
defining what an admissible strategy is, and give different definitions of optimality
following the work in [8].

Definition 1.3.1. Given a N -players game, denote with A1, ..., AN the sets
of actions that players 1, ..., N can take at any point in time. Typically Ai,
i = 1, ..., N is a compact metric space or a subset of an Euclidean space. We
also denote with Ai, i = 1, ..., N its corresponding Borel σ-field.
The set of admissible strategies is denoted with A. The elements u ∈ A are N -
tuples u := (u1, ..., uN ) where each ui = (ui

t)0≤t≤T , i = 1, ..., N is an Ai-valued
process satisfying some measurability and integrability conditions.

In these games, each player is associated with his own performance functional
J i defined as

J i(u) = E

[∫ T

0
F i(t,Xu(t), u(t))dt+Gi(Xu(T ))

]
, i = 1, ..., N.

The goal of each player is to maximize his own performance functional.

Definition 1.3.2. A set of admissible strategies û := (û1, ..., ûN ) ∈ A is said to
be Pareto optimal if there is no u = (u1, ..., uN ) ∈ A such that

∀ i ∈ {1, ..., N} J i(û) ≥ J i(u),
∃ i0 ∈ {1, ..., N} J i0(û) > J i0(u).

14



Volterra lift

Definition 1.3.3. A set of admissible strategies û := (û1, ..., ûN ) ∈ A is said to
be a Nash equilibrium for the game if

∀ i ∈ {1, ..., N} ∀ u ∈ A, J i(û) ≤ J i(û−i, ui),

where (û−i, ui) := (û1, ..., ûi−1, ui, ûi+1, ..., ûN ).

The notion of Pareto optimality is natural in problems of optimal allocation
of resources. A strategy is Pareto optimal if there is no strategy that makes
every player at least as well off and at least one player strictly better off. On
the other hand the Nash equilibrium definition implies that no player has any
incentive in changing his current strategy as long as the other players do not
change their choices. In Paper II we assume that the Nash equilibria for our
games exist and propose a maximum principle approach to find them.

Notice also that, when dealing with several players, the structure of the
information available at time t ∈ [0, T ] may vary from player to player. In
general, in fact, there is no reason why different players should have access to
the same information. In light of that, we consider subfiltrations E(i)

t ⊆ Ft,
i = 1, ..., N , t ∈ [0, T ] where Ft is the filtration generated by the driving noise
µ introduced in Subsection 1.1. Each of those sub-filtration represents the
information available at time t ∈ [0, T ] to player i, i = 1, ..., N . We will assume
that the strategies ui are E(i)

t -measurable and exploit the relations between
our filtrations in order to derive optimality conditions based on the available
information.

A particular case of stochastic games is the class of zero-sum games. A
zero-sum stochastic game among N = 2 players is a stochastic game where
J(u) := J1(u) = −J2(u), i.e. a gain for the first player is a loss for the second
one. In other words this means that player 1 wants to maximize J whereas
player 2 will try to minimize it. In this setting, a strategy u = (u1, u2) ∈ A is a
Nash equilibrium for the game if

sup
u1∈A1

inf
u2∈A2

J(u1, u2) = inf
u2∈A2

sup
u1∈A1

J(u1, u2),

i.e. u is a saddle point.

1.4 Volterra lift

As we try to recover the Markov property to apply the DPP for a forward
equation with Volterra dynamics, we need to introduce the infinite dimensional
lift that will allow us to formulate an infinite dimensional problem equivalent to
the finite dimensional one given by (1.0.1), (1.0.8). To this end we introduce here
the infinite dimensional lift first presented in [13] for uncontrolled affine Volterra
processes and then generalized in [12] for uncontrolled Lévy driven processes and,
later on, we present the lift for controlled processes exploited in Paper III and
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1. Introduction

Paper IV. This approach, which widens the setting of [1] and exploited there for
the optimal control of a class of linear-quadratic optimal control problems, allows
us to recover the Hamilton-Jacobi-Bellman (HJB) equations associated with
(1.0.1)-(1.0.3) and derive the optimal value for such optimal control problem.
Contrarily to [1] we do not restrict ourselves to the class of kernels that can be
represented as Laplace transform of a measure and we consider performance
functionals of the form (1.0.1) instead of linear-quadratic ones.
The same inifinite-dimensional lift approach is also presented in [6], where the
authors consider a lift of Lévy-driven processes to Hilbert spaces. In our case,
thanks to [12], we are able to consider a lift to Banach spaces, which allows us to
consider a wider class of kernels. We also notice that, while lifting Lévy driven
processes is possible in the current setting, the optimal control of Banach-lifted
Lévy-driven forward equations is a topic for future research.

We start by presenting the lift approach in the context of [13]. We thus take
uncontrolled linear dynamics for the process X in (1.0.3), i.e.

X(t) = x(t) +
∫ t

0
K(t− s)dV (s), (1.4.1)

with
dV (t) := β(t,X(t))dt+ σ(t,X(t))dW (t).

Here β : [0, T ] × R −→ R and σ : [0, T ] × R −→ R are affine functions with
respect to the second variable and K(t) = ⟨g,S∗

t ν⟩ is a liftable kernel (see
Definition 1.0.2).

In this framework we have that equation (1.4.1) can be rewritten as

X(t) = ⟨g,Z(t)⟩ (1.4.2)

where the dynamics of Z are given by

dZu(t) = A∗Zu(t)dt+ νβ(t, ⟨g,Zu(t)⟩) + νσ(t, ⟨g,Zu(t)⟩)dW (t)

:=
(

A∗Zu(t) + νβg(t,Zu
t ))
)
dt+ νσg(t,Zu

t )dW (t) (1.4.3)

with initial condition Z(0) = ζ0, where x(t) := ⟨g,S∗
t ζ0⟩. Here, for t ∈ [0, T ] and

z ∈ Y ∗ we define βg(t, z) := βg(t, ⟨g, z⟩) and σg(t, z) := σ(t, ⟨g, z⟩). Recall now
the following definition due to [13]:

Definition 1.4.1. Let Y be a completely regular Hausdorff topological space, Z
a Banach space with norm ∥ · ∥Z , and ρ : Y −→ (0,∞) an admissible weight
function, i.e. a function such that the sets KR := {y ∈ Y : ρ(y) ≤ R} are
compact for all R > 0. We define the Banach space Bρ(Y ) as the space

Bρ(Y ;Z) :=
{
f : Y −→ Z : sup

y∈Y
ρ−1(y)∥f(y)∥Z < ∞

}
, (1.4.4)
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Volterra lift

equipped with the norm

∥f∥ρ := sup
y∈Y

ρ−1(y)∥f(y)∥Z .

A family of bounded linear operators Pt : Bρ(Y ) −→ Bρ(Y ) for t ≥ 0 is called
generalized Feller semigroup if

• P0 = I, the identity on Bρ(Y ),

• Pt+s = PtPs, for all t, s ≥ 0

• for all f ∈ Bρ(Y ), and y ∈ Y , limt→0 Ptf(y) = f(y),

• there exists a constant C ∈ R and ε > 0 such that, for all t ∈ [0, ε],
∥Pt∥L(Bρ(Y )) ≤ C

• Pt is positive for all t ≥ 0, i.e. for f ∈ Bρ(Y ), f ≥ 0, we have Ptf ≥ 0.

Then the following result holds

Theorem 1.4.2.

• The stochastic partial differential equation (1.4.3) admits a unique Marko-
vian solution (Zt)t≥0.

• This generalized Feller process allows to construct a probabilistically weak
and analytically mild càg solution of (1.4.1), i.e. in particular the point
evaluations satisfy

Zt(x) = ζ0(t+ x) +
∫ t

0
K(t− s+ x)dV (s),

are càg, and for every initial value the semimartingale V can be constructed
on an appropriate probabilistic basis.

• For all ζ0 ∈ Y ∗ the corresponding jump diffusion stochastic Volterra equa-
tion,

Zt(0) = ζ0(t) +
∫ t

0
K(t− s)dV (s)

admits a probabilistically weak solution with càg trajectories.
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Suppose now that the dynamics for the forward process X includes a control
u and follows:

Xu(τ) = x(τ) +
∫ τ

t

K(τ − s)
[
β(s,Xu(s)) + σ(s,Xu(s))R(s,Xu(s), u(s))

]
ds

+
∫ τ

t

K(τ − s)σ(s,Xu(s))dW (s)

:= x(τ) +
∫ τ

t

K(τ − s)dV u(s), τ ∈ [t, T ] (1.4.5)

where

dV u(s) =
[
β(s,Xu(s)) + σ(s,Xu(s))R(s,Xu(s), u(s))

]
ds+ σ(s,Xu(s))dW (s).

(1.4.6)
Defining ζ as an element in Y ∗ such that x(τ) =: ⟨g,S∗

τ ζ⟩ (see Remark 1.4.3
below) we can now rewrite (1.4.5) as follows:

Xu(τ) = x(τ) +
∫ τ

t

K(τ − s)dV u(s)

= ⟨g,S∗
τ ζ⟩ +

∫ τ

t

⟨g,S∗
τ−sν⟩dV u(s)

=
〈
g,S∗

τ ζ +
∫ τ

t

S∗
τ−sνdV

u(s)
〉

=: ⟨g,Zu
τ ⟩, (1.4.7)

where Zu
τ := S∗

τ ζ +
∫ τ

t
S∗

τ−sνdV
u(s). One can then check that Zu

τ follows the
dynamics:

Zu
τ = S∗

t ζ +
∫ τ

t

A∗Zu
s ds+

∫ τ

t

νdV u(s), (1.4.8)

In fact, we have that∫ τ

t

A∗Zu
s ds =

∫ τ

t

A∗
[
S∗

s ζ +
∫ s

t

S∗
s−vνdV

u(v)
]
ds

= eA∗τζ − eA∗tζ +
∫ τ

t

∫ τ

v

A∗eA∗(s−v)νdsdV u(v)

= eA∗τζ − eA∗tζ +
∫ τ

t

eA∗(τ−v)νdV u(v) −
∫ τ

t

νdV u(v)

= Zu
τ − eA∗tζ −

∫ τ

t

νdV u(v),

and, rearranging the terms, we obtain (1.4.8). One can then show that, under
suitable hypothesis, (1.4.8) (and thus (1.4.5)) admits a unique solution and that
the Markov property can be retrieved (see Paper III for more details).
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Remark 1.4.3. By defining
B(t,Xu(t), u(t)) := β(s,Xu(s))σ(s,Xu(s))R(s,Xu(s), u(s)),

and exploiting (1.4.7), we actually get that the function x(τ) = ⟨g,S∗
t ζ⟩ is given

by the expression

x(τ) = E
[
Xu(τ) −

∫ τ

t

K(τ − s)B(s,Xu(s), u(s))ds
]

=
〈
g,E

[
Zu

τ −
∫ τ

t

S∗
τ−sνB(s,Xu(s), u(s))ds

]〉

We point out that we can also lift forward equations of the form:

Xu(t) = X(0) +
∫ t

0
K(t− s)dV u(s),

for some liftable kernel K and a semimartingale V u with specific hypothesis.
This is done in Paper IV and follows an approach similar to the one above.

To be able to apply infinite dimensional optimal control techniques and
solve the control problem (1.0.1), (1.0.8), we also need to lift the performance
functional J(u) in order for it to take values from Y ∗. This operation is performed
through a change of notation, which actually embodies a shift from a finite to an
infinite dimensional approach. This is performed exploiting (1.4.2) as follows:

J(u) = E

[∫ T

0
F (t,Xu(t), u(t))dt+G(Xu(T ))

]

= E

[∫ T

0
F (t, ⟨g,Zu(t)⟩, u(t))dt+G(⟨g,Zu(t)⟩)

]

:= E

[∫ T

0
F g(t,Zu(t), u(t))dt+Gg(Zu(t))

]
= Jg(u) (1.4.9)

where we defined F g(·, z, ·) := F (·, ⟨g, z⟩, ·) and Gg(z) := G(⟨g, z⟩).
Even though from (1.4.9) we have that J(u) = Jg(u) we write Jg(u) in order to
point out the dependence of the performance functional J from the Banach-valued
process Z.

With this approach we can thus consider the problem of finding
J(û) = sup

u∈A
J(u) = sup

u∈A
Jg(u) = Jg(û),

where the forward dynamics are provided by (1.4.8). We notice that, due to the
nature of the lift presented above, maximizing the finite dimensional process
(1.0.8) with respect to (1.0.1) is equivalent to maximizing the infinite dimensional
process (1.4.8) with respect to (1.4.9). In particular this means that, if we can
solve the HJB equations associated with the lifted problem, we are also able to
find the optimal control û of the original problem.
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1.5 Summary of papers

Paper I Our starting point is an optimal harvesting problem from a population,
the growth of which is modelled by Volterra time dynamics of the type

X(t) = X0+
∫ t

0
(r(t, s) −Ku(s))X(s)ds+

∫ t

0
σ(s)X(s)dB(s), t ∈ [0, T ],

(1.5.1)
and where the performance functional can be regarded as the aggregated
net discounted revenue (see [5]):

J(u) = E

[∫ T

0
e−δ(T −t)X(t)u(t)dt

]
. (1.5.2)

Keeping our motivation in mind, we treat here problems of stochastic
control for general Volterra type dynamics, allowing also for jumps:

Xu(t) = X0 +
∫ t

0
b(t, s, λ, u(s), Xu(s))ds

+
∫ t

0

∫
R
κ(t, s, z, λ, u(s), Xu(s))µ(dsdz), t ∈ [0, T ],

where our goal is to find the optimal control û such that

J(û) = sup
u∈AF

J(u) = sup
u∈AF

E

[∫ T

0
F (t, λt, u(t), Xu(t))dt+G(Xu(T ))

]
,

(1.5.3)
among the set AF of admissible F-adapted controls. We recall that F is
the smallest right continuous filtration to which µ is adapted and that the
noise µ is defined in Definition 1.1.5.

Here the filtration F is regarded as partial with respect to G := F ∨ FΛ,
where FΛ is the filtration generated by the time-change process Λ. In
order to find the optimal controls, similarly to the results in e.g. [2, 3,
36], we introduce the Hamiltonian function related to the problem and
exploit some sort of stochastic derivative. Of course, having a conditional
Lévy process, we exploit the NA-derivative. We study the adjoint BSDE
associated with such a control problem and formulate both a sufficient and
a necessary maximum principle with respect to the information flow F.

We show that in the case of (1.5.1)-(1.5.2), we are able to provide a
characterization of the optimal control û.
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Paper II In this second paper we present a model for stochastic games between
two players. In this setting we have a forward equation given by

X(t) = X0 +
∫ t

0
b(t, s, λs, u(s), X(s))ds

+
∫ t

0

∫
R
κ(t, s, z, λs, u(s), X(s))µ(dsdz),

and two backward equations associated to player i = 1, 2

Yi(s) = hi(X(T )) −
∫ T

t

gi(s, λs, u(s), X(s), Yi(s),Θi(t, s, ·))ds

+
∫ T

t

∫
R

Θi(s, z)µ(dsdz) +
∫ T

t

dMi(s) i = 1, 2. (1.5.4)

The above term Mi, (i = 1, 2) is a martingale orthogonal to µ naturally
appearing in the martingale representation theorem when working with
noises and information flows that do not have the perfect stochastic integral
representation property, see e.g. [31]. Indeed we recall that Kunita-
Watanabe result shows that for a square integrable martingale M as
integrator, and the associated filtration generated

FM =
{

FMt, t∈[0,T ]
}
,

and any square integrable FM
T -measurable random variable ξ admits

representation
ξ = ξ⊥ +

∫
φ dM (1.5.5)

by means of a unique stochastic integrand φ and where ξ⊥ is a stochastic
remainder orthogonal to the stochastic integrals with respect to M. It is
well known that ξ⊥ is a constant (naturally given by E[ξ]) whenever M is
a Gaussian or a centered Poisson random measure, or mixture of the two
and the reference filtration is generated by M, see e.g. [11, 16, 17, 21]. We
say that the representation (1.5.5) is perfect if ξ⊥ is a constant. In this
case the space of all stochastic integrals with respect to M coincides with
L2(Ω,FM

T , P ). This is tightly connected with chaos expansions (see e.g.
[17, 20]). Above u(t) = (u1(t), u2(t)), where ui(t) is the control associated
to player i = 1, 2. The goal of each player is to maximize their own
performance functional, defined as

Ji(u) := E

[∫ T

0
Fi(t, u(t), X(t), Yi(t))dt+ φi(X(T )) + ψi(Yi(0))

]
,

for i = 1, 2. This model can be interpreted as a game on a financial market,
where the forward equation Xu(t) represents the state of the market and
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the two players interact with the forward equation both via their personal
control ui and via their own risk evaluation Y i(t), i = 1, 2.
In this setting we are also going to assume that each player has a different
level of information available. This translates into the model having sub-
filtrations of E(i)

t ⊆ Ft representing the level of knowledge of each player.
Like in Paper I, we exploit the technical interplay between the different
filtrations at hand in order to derive sufficient conditions for the optimality
of the control û. Here we do not restrict ourselves to the zero-sum games,
which are going to be regarded as a particular case. We also present two
possible applications of our model both in the zero and non-zero sum case.
Lastly, we present some conclusive remarks on the use of Volterra-type
BSDE of the form:

Yi(t) = hi(X(T )) −
∫ T

t

gi(t, s, λs, u(s), X(s9), Yi(s9),Θi(t, s, ·))ds

+
∫ T

t

∫
R

Θi(t, s, z)µ(dsdz). t ∈ [0, T ], (1.5.6)

in place of (1.5.4). Due to the nature of the considered information flows,
this is only possible whenever the time-change rates λB and λH in (1.1.1)
are deterministic. We study conditions for the existence and uniqueness of
(1.5.6) in the case where gi is linear, reformulate our optimality conditions
and provide an example.

Paper III In this paper we consider the Volterra optimal control problem of
maximizing the performance functional

J(t, u) = E

[∫ T

t

F (t,Xu(t), u(t))dt+G(Xu(T ))
]
, (1.5.7)

where the underlying forward process has dynamics given by

Xu(τ) = x(τ) +
∫ τ

t

K(τ − s)
[
β(s,Xu

s )ds+ σ(s,Xu
s )R(s,Xu

s , us)ds
]

+
∫ τ

t

K(τ − s)σ(s,Xu
s )dWs, τ ∈ [t, T ] (1.5.8)

Notice also that in this case we assume that the memory effect for our
forward process is obtained by means of a convolution kernel K both in
the drift and volatility.
As anticipated this control problem cannot usually be solved by means of
a DPP due to the non-Markovianity of the system. In order to get around
this issue we exploit the infinite dimensional lift presented in Section 1.4
in order to recover some Markov properties of the system. We are thus
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going to suppose that our kernel is liftable and rewrite the optimal control
problem as

Jg(t, u) := E

[∫ T

t

F g(t,Zu
t , ut)dt+Gg(Zu

T )
]

where the dynamics for Z are given by

dZu
τ = A∗Zu

τ dτ + ν
(
βg(τ,Zu

τ ) + σ(τ,Zu,g
τ )R(τ,Zu,g

τ , uτ )dτ
)

+ νσ(τ,Zu,g
τ )dWτ , τ ∈ [t, T ],

where the definition of g, ν,A∗, βg and σg can be found Subsection 1.4.
Having that Xu(t) = ⟨g,Zu(t)⟩, we study the Markovian lifted optimal
control problem in place of the finite-dimensional one.
Inspired by [26, 33], we propose a dynamic programming principle approach
in the form of the Hamilton-Jacobi-Bellman equations in infinite dimension,
and proceed to derive a method to maximize the infinite dimensional
problem. To this end, being our setting more general then the Hilbert-
space valued problem presented in [26], but slightly less general than
the one introduced in [33], we introduce the Unconditional Martingale
Differences (UMD) Banach spaces (as presented in [30] and the references
therein) in order to obtain some crucial results.
Once we have found the solution to the infinite dimensional problem, we are
able to go back to the original control problem by exploiting (1.4.2). Due
to the nature of our lift for the performance funcional we notice that the
optimal value for the lifted problem and the original one coincide. Moreover,
thanks to a verification theorem, we are able to implicitly characterize the
optimal value û for the lifted infinite-dimensional problem and derive the
corresponding optimal value for the original problem.

Paper IV In this paper we study an optimal advertising problem. We consider
the following simplified version of (1.5.7)-(1.5.8): we take the performance
functional

J(u) = E

[
−
∫ T

0
a1u

2(s)ds+ a2X
u(T )

]
where the dynamics for Xu(t) are provided by

Xu(t) = X0 +
∫ t

0
K(t− s)

(
αu(s) − βXu(s)

)
ds

+ σ

∫ t

0
K(t− s)dW (s), t ∈ [0, T ]

where α, β, σ > 0 are constants the kernel K is in L2[0, T ]. In this
framework we provide an approximation result that allows us to provide a
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lift approach for general h-Hölder continuous kernels. The main novelty of
this paper is in fact the approximation technique that allows us to consider
the approximated forward optimal control problem

Xu
n(t) = X0 +

∫ t

0
Kn(t− s)

(
αu(s) − βXu

n(s)
)
ds

+ σ

∫ t

0
Kn(t− s)dW (s), t ∈ [0, T ],

Jn(u) = sup
u∈L2([0,T ]×Ω)

E

[
−
∫ T

0
a1u

2(s)ds+ a2X
u
n(T )

]
.

and show that both the optimal value and the optimal control of the
original problem are "close" to the optimal value and the optimal control
of the approximated one.
Exploiting the lift approach like we did in Paper III, we reformulate our
problem as an infinite dimensional equivalent one and, due to the simplicity
of this model, we are able to explicitly solve the HJB equations for the
lifted problem. We then obtain that the optimal value Ĵn(ûn) of the
approximated problem converges to the optimal value of the original one.
This, in turn, allows us to compute explicitly the optimal control for the
approximated problem ûn and show that Jn(ûn) converges to the optimal
value of the non approximated problem. We then provide simulations in
several interesting cases, in order to show the effectiveness of our approach
in different scenarios.
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maximum principles
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Lévy noise and maximum principles. Ann Oper Res (2023)

I

Abstract

Motivated by a problem of optimal harvesting of natural resources, we
study a control problem for Volterra type dynamics driven by time-changed
Lévy noises, which are in general not Markovian. To exploit the nature
of the noise, we make use of different kind of information flows within a
maximum principle approach. For this we work with backward stochastic
differential equations (BSDE) with time-change and exploit the non-
anticipating stochastic derivative introduced in [16]. We prove both a
sufficient and necessary stochastic maximum principle.

Keywords: time-change; conditionally independent increments; backward
stochastic Volterra integral equation; maximum principle; stochastic Volterra
equations; non-anticipating stochastic derivative
MSC 2020: 60H10; 60H20; 93E20; 60G60; 91B70;

I.1 Introduction

Optimal harvesting is a fairly classical problem in control theory and it is still a
timely question to address when thinking of sustainability in the management of
natural resources. In this work we deal with a problem of optimal harvesting
from a population, the growth of which is modelled by Volterra time dynamics
of the type

X(t) = X0 +
∫ t

0
(r(t, s) −Ku(s))X(s)ds+

∫ t

0
σ(s)X(s)dB(s), t ∈ [0, T ].

(I.1.1)
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The term r represents the growth rate, the constant K is the catchability
coefficient, and the control u is the fishing effort. The Volterra structure is
inherited from the deterministic analogous models that can be found, e.g., in
[10, 23, 24]. As we can see, this form of time dependence is often used in the
description of fish populations. When considering fish as a commodity, the
modelling of fish population is representing the possible dynamics of offer, in the
interplay between offer and demand. In our work, however, we consider Volterra
stochastic integral equations, which represent a natural extension including the
uncertainty of the environment influencing the population growth. For this we
are motivated by [4, 11].

Our model has an element of novelty with respect to the others presented.
This is given by the nature of the noise B which is associated to a time-changed
Brownian motion. This is well motivated by the clustering effects that such
noises can described. For the description on how time-change helps to described
clustering, we can refer to a first discussion in [25, Chapter IV, 3e] and a more
recent study [35, Chapter 3] in the context of market microstructure. Within
population dynamics the evidence of clustering is largely discussed in the recent
literature in biology and ecology. See just as example [27].

We remark that in the literature of mathematical finance, dynamics of the
form (I.1.1), but with Lévy type noises were used in models [2]. On the other
side, time-change has been suggested in the study of volatility modelling, e.g. [6,
12, 21, 37, 38], energy markets, e.g. [9], and default models, e.g.[29]. Also it is
used in kinetic theory, see e.g. [30].

Keeping our motivation in mind, we treat here stochastic control for general
Volterra type dynamics, allowing also for jumps:

Xu(t) = X0 +
∫ t

0
b(t, s, λs, u(s), Xu(s9))ds

+
∫ t

0

∫
R
κ(t, s, z, λs, u(s), Xu(s9))µ(dsdz), (I.1.2)

where the driving noise µ is given by the random measure
µ(∆) = B(∆ ∩ [0, T ] × {0}) + H̃(∆ ∩ [0, T ] × R0), ∆ ∈ B([0, T ] × R), (I.1.3)

which is the mixture of a conditional Gaussian measure B on [0, T ] × {0} and a
conditional centered Poisson measure H̃ on [0, T ] × R0. Here R0 := R\{0} and
B represents the Borel σ-algebra. Both B and H̃ are set in relationship with a
time-changed Brownian motion and time-changed Poisson measure, respectively,
via Theorem 3.1 in [36] (see also [22]). Note that the coefficients in (I.1.2) may
also depend on the time-change via the process λ.

The time-change processes involved are of the form

Λt(ω) =
∫ t

0
λs(ω)ds, (t, ω) ∈ [0, T ] × Ω,
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(T > 0). Thus the driving noises (which include jumps) are actually beyond the
Brownian and the pure Lévy framework. We abandon noises with independent
increments and effectively deal with quite general but still treatable martingales.

Our goal is to find the optimal control û such that

J(û) = sup
u∈AF

J(u) = sup
u∈AF

E

[∫ T

0
F (t, λt, u(t), Xu(t))dt+G(Xu(T ))

]
, (I.1.4)

among the set AF of admissible F-adapted controls, where F = {Ft, t ∈ [0, T ]}
represents the smallest right-continuous filtration generated by µ.

Optimization problems such as (I.1.2), (I.1.4) are studied, e.g. in [2, 3,
8]. In [2, 3] the authors present also a sufficient maximum principle and the
dynamics include jumps making use of Malliavin calculus. However, being the
restrictions on the domain of the Malliavin derivative extremely serious in the
context of optimal control, the authors have lifted the study into the white noise
framework and work with the Hida-Malliavin calculus on the space of stochastic
distributions. The Hida-Malliavin calculus is taylored for Brownian and for
centered Poisson random noises, hence this approach cannot be taken in our
work since our driving noises are not of the required nature. On the other hand,
in [8], the authors propose a backward SDE approach to solve (I.1.4). This is
possible due to the introduction of memory in (I.1.2) by means of convolution
with a completely monotone kernel which allows for a Markovian representation
of the solution of (I.1.2).

Note that a Malliavin/Skorokhod calculus extension to noises with conditional
independent increments, is proposed in [20] and [39]. By this, however, we cannot
solve the critical issue of the natural restriction of the domains of the involved
operators and a Hida-Malliavin type extension is yet not available in the literature.
Our approach is then to make use of the non-anticipating (NA) derivative. The
NA derivative, introduced in [15] for general martingales and then extended to
martingale random fields in [16], is the dual of the Itô integral and has an explicit
representation in terms of limit of simple integrands in the Itô framework. Also,
the NA derivative provides explicit stochastic integral representations. We stress
that, contrarily to the Malliavin derivative, the domain of the NA derivative is
the whole L2(dP ), thus not creating problems in the context of optimal controls.
To the best of our knowledge this is the first time that the non-anticipating
derivative is used in optimal control problems such as (I.1.4).

Our approach to the optimization problem (I.1.4) is based on the analysis of
the noise and the information flows associated. Indeed, we observe that there
are two filtrations of interest. The first one is the already mentioned F and the
second is the filtration G := {Gt, t ∈ [0, T ]}, where Gt := Ft ∨ FΛ generated by
µ and the entire history FΛ of the time-change processes. Note that while F0 is
substantially trivial, G0 = FΛ. We can regard G as the initial enlargement of F
or, we can see F as partial information with respect to G. With this observation
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in hands, we work out the solution to problem (I.1.4) as an optimization problem
under partial information. In this we have taken inspiration from [32], where the
concept of partial information is however not associated to the properties of the
noise, and from [19], where the dynamics are however not of Volterra type. Also,
for completeness, we show that our techniques provide necessary and sufficient
conditions for the optimization problem

J(û) = sup
u∈AG

J(u) = sup
u∈AG

E

[∫ T

0
F (t, λt, u(t), Xu(t))dt+G(Xu(T ))

]
(I.1.5)

on the set AG of admissible G-adapted controls, where AF ⊂ AG.

The study of maximum principles is associated to a stochastic Hamiltonian
map of the so-called dual variables, which in turn are obtained from the solution of
a backward stochastic equation. In the sequel, we deal with backward stochastic
differential equations (BSDEs) of type

p(t) = ξ(t) +
∫ T

t

g(s, λs, p(s9), q(s, ·))ds−
∫ T

t

∫
R
q(s, z)µ(dsdz), (I.1.6)

under the filtration G. Notice that, these backward equations are not of Volterra
type. This is because our Hamiltonian functional is going to involve also the
NA-derivatives of the adjoint process p. A different approach could have been
to follow the work in [2], where the authors deal with a backward stochastic
Volterra integral equation (BSVIE) of the form:

p(t) = ξ(t) +
∫ T

t

g(s, λs, p(s9), q(t, s, ·))ds−
∫ T

t

∫
R
q(t, s, z)µ(dsdz).

Even though this approach would allow us to work with simpler Hamiltonian
functionals (in the sense that the NA-derivative of p(t) would not be involved)
we would need to assume smoothness conditions with respect to t on q(t, s, z)
and, to the best of our knowledge, is not clear to what extent those properties
are satisfied.

Existence and uniqueness of (I.1.6) can be retrieved from [19]. The study of the
BSDE under G is in itself critically based on the stochastic integral representation
in the form

ξ = ξ0 +
∫ T

0

∫
R
ϕ(s, z)µ(dsdz), (I.1.7)

where ξ0 is G0-measurable and the integrand ϕ is G-predictable. These results
are readily available in terms of their existence in the classical Kunita-Watanabe
Theorem, while the explicit form of ϕ is given by means of the NA derivative in
[15] Theorem 3.1 and [16] Theorem 3.1.
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The paper is organized as follows. In the next section we give a presentation
of the framework providing the necessary details for the random measure µ
and the information flows that we are going to use. In Section 3 we prove
a sufficient maximum principle and in Section 4 the corresponding necessary
maximum principle. Lastly, we show how the results obtained can be applied to
characterise the solution in the optimal harvesting problem associated to the
dynamics (I.1.1).

I.2 The noise and the non-anticipating derivative

Let us consider a complete probability space (Ω,F , P ) and a time horizon T < ∞.
We shall consider the noise on the time-space

X := [0, T ] × R :=
(

[0, T ] × {0}
)

∪
(

[0, T ] × R0

)
,

where R0 = R\{0}. The Borel σ-algebra on X is denoted BX. Let L be the space
of the two dimensional stochastic processes λ = (λB , λH) such that, for each
component k = B,H, we have that

1. λk
t ≥ 0 P − a.s. for all t ∈ [0, T ],

2. limh→0 P
(
|λk

t+h − λk
t | ≥ ϵ

)
= 0 for all ϵ > 0 and almost all t ∈ [0, T ],

3. E
[∫ T

0 λk
t dt
]
< ∞.

The processes λ ∈ L represent the stochastic time-change rate. Let ν be a
σ-finite measure on the Borel sets of R0 satisfying

∫
R0
z2ν(dz) < ∞. We define

the random measure Λ on BX by

Λ(∆) :=
∫ T

0
1{(t,0)∈∆}(t)λB

t dt+
∫ T

0

∫
R0

1∆(t, z)ν(dz)λH
t dt, ∆ ⊆ X. (I.2.1)

Furthermore, denote the restrictions of Λ to [0, T ] × {0} and [0, T ] × R0 by ΛB

and ΛH , respectively. For later use we also introduce the filtration

FΛ = {FΛ
t , t ∈ [0, T ]},

where FΛ
t is generated by the values of Λ on the Borelian sets of [0, t] × R. Set

FΛ := FΛ
T . We recall the following definitions.

Definition I.2.1. The conditional Gaussian measure (given FΛ) B is a signed
random measure on the Borel sets of [0, T ] × {0} satisfying

A1. P
(
B(∆) ≤ x|FΛ) = P

(
B(∆) ≤ x|ΛB(∆)

)
= Φ

(
x√

ΛB(∆)

)
,

x ∈ R,∆ ⊆ [0, T ] × {0}. Here Φ is the cumulative probability distribution
function of a standard normal random variable.
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A2. For all disjoint ∆1,∆2 ⊆ [0, T ] × {0}, B(∆1) and B(∆2) are conditionally
independent given FΛ.

The conditional Poisson measure (given FΛ) H is a random measure on the
Borel sets of [0, T ] × R0 satisfying

A3. P
(
H(∆)=k|FΛ)=P

(
H(∆)=k|ΛH(∆)

)
= ΛH (∆)k

k! e−ΛH (∆), k ∈ N, ∆ ⊆
[0, T ] × R0.

A4. For all disjoint ∆1,∆2 ⊆ [0, T ]×{R0}, H(∆1) and H(∆2) are conditionally
independent given FΛ.

Moreover,

A5. B and H are conditionally independent given FΛ.

Also the conditional centered Poisson random measure is defined as

H̃(∆) := H(∆) − ΛH(∆), ∆ ⊂ X.

Observe that if λB and λH were deterministic, then B would be a Gaussian
process and H a Poisson random measure. Furthermore, B would be a Wiener
process if λB ≡ 1 and H a homogeneous Poisson random measure for λH ≡ 1.

Definition I.2.2. We define the signed random measure µ on the Borel sets
∆ ⊆ X by

µ(∆) := B (∆ ∩ [0, T ] × {0}) + H̃ (∆ ∩ [0, T ] × R0) .

The random measure µ has conditionally independent values, see [22, 36]. Observe
that (A1) and (A3) yield

E[µ(∆)|FΛ] = 0, E[µ(∆)2|FΛ] = Λ(∆), ∆ ⊆ X. (I.2.2)

The random measures B and H are related to a time-changed Brownian
motion and time-changed pure jump Lévy process. To illustrate, consider the
processes on [0, T ]:

Bt := B([0, t] × {0}), ΛB
t :=

∫ t

0
λB

s ds,

ηt :=
∫ t

0

∫
R0

zH̃(dsdz), ΛH
t :=

∫ t

0
λH

s ds,
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and compute the characteristic functions of B and η. From (A1) and (A3) we
have that

E
[
eicBt

]
=
∫
R
E
[
eicBt |ΛB

t = x
]
PΛB

t
(dx) =

∫
R
e

1
2 c2xPΛB

t
(dx), c ∈ R,

where PΛB
t

is the probability distribution of the time-change ΛB
t . Correspondingly,

we have that

E
[
eicηt

]
=
∫
R

exp
{∫

R0

[eiczx − 1 − iczx]ν(dz)
}
PΛH

t
(dx), c ∈ R,

where PΛH
t

is the probability distribution of the time-change ΛH
t . Indeed we

recall the following characterization [36, Theorem 3.1] :

Theorem I.2.3. Let Wt, t ∈ [0, T ], be a Brownian motion independent of ΛB

and Nt, t ∈ [0, T ], be a centered pure jump Lévy process with Lévy measure ν
independent of ΛH . Then B satisfies (A1)-(A2) if and only if, for any t ≥ 0,
Bt

d= WΛB
t

and η satisfies (A3)-(A4) if and only if, for any t ≥ 0, ηt
d= NΛH

t
.

In the sequel we shall consider two types of information flows. The first one
is represented by the filtration

F := {Ft, t ∈ [0, T ]}, Ft :=
⋂
r>t

Fµ
r ,

where Fµ := {Fµ
t , t ∈ [0, T ]} is generated by the values µ(∆), ∆ ⊂ [0, t] ×R, t ∈

[0, T ]. Correspondingly, let FB := {FB
t , t ∈ [0, T ]} denote the filtration generated

by B(∆ ∩ [0, t] × {0}), and FH := {FH
t , t ∈ [0, T ]} the filtration generated by

H(∆ ∩ [0, t] × R0). We remark that, for any t ∈ [0, T ], Fµ
t = FB

t ∨ FH
t ∨ FΛ

t .
See [20].

The second information flow of interest is

G := {Gt, t ∈ [0, T ]}, Gt := Fµ
t ∨ FΛ.

The filtration G is right-continuous, see [19]. Moreover we note that GT = FT ,
G0 = FΛ, and F0 is substantially trivial. Namely, G includes information on
the future values of ΛB and ΛH . In the sequel we shall technically exploit the
interplay between the two filtrations.

For ∆ ⊆ (t, T ] × R, the conditional independence in (A2) and (A4), together
with (I.2.2) yield

E[µ(∆)|Gt] = E[µ(∆)|Ft ∨ FΛ] = E[µ(∆)|FΛ] = 0. (I.2.3)

Moreover, (A5) gives us

E[µ(∆1)µ(∆2)|Gt] = E[µ(∆1)|FΛ]E[µ(∆2)|FΛ] = 0,

for disjoint ∆1,∆2 ⊆ (t, T ] × R. Hence, µ is a martingale random field with
respect to G, see e.g. [16] Definition 2.1:

37



I. Stochastic Volterra equations with time-changed Lévy noise and maximum
principles

Definition I.2.4. A square integrable martingale random field µ with conditionally
orthogonal values is a stochastic set function µ(∆), ∆ ⊆ X such that

• m(∆) := E[µ(∆)2] = E[Λ(∆)], ∆ ⊆ X, defines a variance measure

• µ is G-adapted

• µ satisfies the martingale property (I.2.3)

• µ has conditionally orthogonal values: E[µ(∆1)µ(∆2)|Gt] = 0, for every
disjoint ∆1,∆1 ∈ (t, T ] × R.

It is immediate to see that µ is also a martingale random field with respect to F.

With the above structures, we access the framework of Itô stochastic integra-
tion. For this we introduce IG ⊆ L2(dΛ × dP ) representing the subspace of the
random fields admitting a G-predictable modification and IF ⊂ IG, the one of
F-predictable random fields. Observe that, for all ϕ ∈ IG, we have that

E
[(∫∫

X
ϕ(s, z)µ(dsdz)

)2 ]
= E

[ ∫∫
X
ϕ(s, z)2Λ(dsdz)

]
(I.2.4)

thanks to (A5) and the martingale property of µ.

In this work we shall make use of the non-anticipating derivative introduced
in [16] for martingale random fields.

Definition I.2.5. The non-anticipating derivative (NA-derivative) D is a linear
operator defined for all the elements ζ ∈ L2(dP ) as the limit in L2(dΛ × dP )

Dζ := lim
n→∞

φn, (I.2.5)

of simple G-predictable random fields φn, n ∈ N, defined as:

φn(t, x) :=
Kn∑
k=1

E
[
ζ

µ(∆nk)
E[Λ(∆nk)|Gsnk

]

∣∣∣∣Gsnk

]
1∆nk

(t, x), (t, x) ∈ X.

Here the Borel sets ∆nk take the form ∆nk := (snk, unk] × Bnk, k = 1, ...,Kn,
with 0 ≤ snk ≤ unk ≤ T , and Bnk ∈ B where B is any countable semi-ring
that generates the Borel σ-algebra B(R). Then

⋃
n∈N

⋃Kn

k=1 ∆nk = X. With a
slight abuse of terminology we call the sets ∆nk, k = 1, ...,Kn, a partition of X
with refinement n. Clearly all the sets ∆nk, k = 1, ...,Kn, n ∈ N constitute a
semiring generating B(X) see, e.g. [16] and the references therein.

The NA-derivative allows for an explicit integral representation. Namely the
integrand is characterized in terms of the inputs: the very random variable to
represent, the integrator, and the filtration. See Theorem 3.1 in [16].
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Theorem I.2.6. For any ξ ∈ L2(dP ) the NA-derivative Dξ is well defined and
the following stochastic integral representation holds

ξ = ξ0 +
∫∫

X
Dt,zξ µ(dtdz), (I.2.6)

where ξ0 = E
[
ξ|FΛ] satisfies Dξ0 ≡ 0.

The existence and unicity of a stochastic integral representation is well-known
from the Kunita-Watanabe Theorem. Theorem I.2.6 provides an explicit repre-
sentation to the integrand. The spirit of this result is in line with representations
à la Clark-Haussman-Ocone (CHO), see, e.g. [18]. However in that case the
noise is either a Brownian motion or a centered Poisson random measure and
the integrand is characterized in terms of the Malliavin derivative. We remark
that an extension of the Malliavin calculus and CHO representations to the
conditional Brownian and the conditional Poisson cases is provided in [39] and
[19]. When applying Malliavin calculus to optimal control, the domain of the
Malliavin derivative constitutes a serious restriction as the variables depend on a
control yet to be found. In [1] this was overcome for the Brownian and centered
Poisson cases by using the Hida-Malliavin extension which is an extension of
Malliavin calculus to the white noise framework (stochastic distributions), see
[18]. At present there is no such an extension for time-changed noises hence
the method cannot be used. In this paper we suggest to use the NA-derivative,
which has no restrictions on the domain and it is well defined for all martingales
in L2(dP ) as integrators. Furthermore, from Theorem I.2.6 we can see that D is
actually the dual of the Itô integral:

Proposition I.2.7. For all ϕ in IG and all ξ in L2(dP ), we have

E
[
ξ

∫∫
X
ϕ(t, z)µ(dtdz)

]
= E

[∫∫
X
q(t, z)Dt,zξ Λ(dtdz)

]
.

Also we have the martingale representation theorem:

Theorem I.2.8. For any square integrable G martingale, M(t), t ∈ [0, T ], the
following representation holds true

M(t) = E[M(T )|FΛ] +
∫ t

0

∫
R

Ds,zM(T )µ(dsdz).

For future use we also introduce the space S of the G-adapted stochastic
processes p(t, ω), t ∈ [0, T ], ω ∈ Ω such that

∥p∥S := E
[

sup
0≤t≤T

|p(t)|2
]1/2

< ∞.
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I.3 A sufficient maximum principle with time-change

We are now ready to study the optimization problem (I.1.4) with performance
functional

J(u) = E

[∫ T

0
F (t, λt, u(t), Xu(t))dt+G(Xu(T ))

]
, (I.3.1)

where

F : [0, T ] × [0,∞)2 × U × R × Ω −→ R,
G : R × Ω −→ R,

with U a closed convex subset of R. For all λ ∈ [0,∞)2, u ∈ U , x ∈ R the
process F (·, λ, u, x, ·) is F-adapted and the mapping F (t, λ, u, x) is C1 in x P -a.s.
uniformly w.r.t. t ∈ [0, T ], λ ∈ [0,∞)2, u ∈ U . Also for all x ∈ R, G(x, ·) is
FT -measurable and G is C1 in x P -a.s. uniformly w.r.t. t ∈ [0, T ], λ ∈ [0,∞)2,
u ∈ U . The controlled dynamics of X are given by the equation

Xu(t) = X0 +
∫ t

0
b(t, s, λs, u(s), Xu(s9))ds

+
∫ t

0

∫
R
κ(t, s, z, λs, u(s), Xu(s9))µ(dsdz), (I.3.2)

where X0 ∈ R and the coefficients are given by the mappings

b : [0, T ] × [0, T ] × [0,∞)2 × U × R × Ω −→ R,
κ : [0, T ] × [0, T ] × R × [0,∞)2 × U × R × Ω −→ R.

We assume b(t, ·, λ, u, x, ·) and κ(t, ·, z, λ, u, x, ·) to be F-predictable for all t ∈
[0, T ], λ ∈ [0,∞)2, u ∈ U , x ∈ R and z ∈ R. We also require them to be C2

with respect to t and to x with partial derivatives L2-integrable with respect
to dt× dP and dΛ × dP , respectively. Notice also that we will often drop the
superscript u when it is clear the dependence of X on u.

Later on we can see the coefficients b and κ in a functional setup:

b : [0, T ] × [0, T ] × ΞR2
+

× ΞU × ΞR × Ω −→ R,

κ : [0, T ] × [0, T ] × R × ΞR2
+

× ΞU × ΞR × Ω −→ R,

where we denoted by ΞS the space of measurable function on [0, T ] with values
in S. Then we can interpret the coefficients in (I.3.2) via the evaluation at the
point s ∈ [0, T ]:

b(t, ·, λ·, u(·), Xu(·))(s) = b(t, s, λs, u(s), Xu(s9))
κ(t, ·, z, λ·, u(·), Xu(·))(s) = κ(t, s, z, λs, u(s), Xu(s9)).
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We assume that b and κ are Fréchet differentiable (in the standard topology
of càdlàg paths) with C2 regularity in t, x and u (with the corresponding
derivatives).

In the sequel we assume existence and uniqueness of a solution for (I.3.2).
Sufficient conditions for this are provided in the next result, which is in line with
the study in [2], though there the driving noises are the Brownian motion and
Poisson random measure.

Theorem I.3.1. Assume that:

1. b(t, ·, λ, u, x, ·) and κ(t, ·, z, λ, u, x, ·) are F-predictable for all t ∈ [0, T ], z ∈
R, λ ∈ [0,∞)2, u ∈ U and x ∈ R.

2. b(t, s, λ, u, ·) and κ(t, s, ·, λ, u, ·) are Lipschitz continuous with respect to x,
uniformly in t, s ∈ [0, T ]2, u ∈ U , λ ∈ [0,∞)2, i.e., for all x1, x2 ∈ R,

|b(t, s, λ, u, x1) − b(t, s, λ, u, x2)| + |κ(t, s, 0, λ, u, x1) − κ(t, s, 0, λ, u, x2)|
√
λB

+
(∫

R0

|κ(t, s, z, λ, u, x1) − κ(t, s, z, λ, u, x2)|2ν(dz)
)1/2 √

λH ≤ C|x1 − x2|,

P − a.s.

3. b(t, s, λ, u, ·) and κ(t, s, z, λ, u, ·) have linear growth with respect to x, i.e.,
for all t, s ∈ [0, T ]2, u ∈ U , λ ∈ [0,∞)2, x ∈ R, we have

|b(t, s, λ, u, x)| + |κ(t, s, 0, λ, u, x)|
√
λB

+
(∫

R0

|κ(t, s, z, λ, u, x)|2ν(dz)
)1/2 √

λH ≤ C(1 + |x|),

P − a.s.

Then there exists a unique F-adapted solution to (I.3.2) in L2(dt× dP ).

Proof. The proof follows a classical Picard iteration scheme. Here we provide
the main ideas. Fix u ∈ AF and define inductively

X0(t) := X0

Xn(t) := X0 +
∫ t

0
b(t, s, λs, u(s), Xn−1(s))ds

+
∫ t

0

∫
R
κ(t, s, z, λs, u(s), Xn−1(s9))µ(dsdz), t ∈ [0, T ], n ≥ 1
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Then, for all t ∈ [0, T ] and for all n ≥ 1, we have the following estimate

E
[
|Xn+1(t) −Xn(t)|2

]
≤ 2E

[
t

∫ t

0
|b(t, s, λs, u(s), Xn(s9)) − b(t, s, λs, u(s), Xn−1(s9))|2ds

]

+ 2E
[∫ t

0

∫
R

|κ(t, s, z, λs, u(s), Xn(s9))

− κ(t, s, z, λs, u(s), Xn−1(s9))|2Λ(dsdz)
]
.

By (I.2.1) and using the Lipschitz condition on b and κ, we get

E
[
|Xn+1(t) −Xn(t)|2

]
≤ 2C2E

[
t

∫ t

0
2|Xn(s9) −Xn−1(s9)|ds

]
,

which leads to

E
[
|Xn+1(t) −Xn(t)|2

]
≤ KE

[∫ t

0
|Xn(s9) −Xn−1(s9)|2ds

]
, (I.3.3)

for K := 4TC2. Also, by the linear growth condition 3. on b and κ, we get that

E
[
|X1(t) −X0(t)|

]
≤ Kt(1 +X0)2. (I.3.4)

Combining now (I.3.3) and (I.3.4), we have that

E
[
|Xn+1(t) −Xn(t)|2

]
≤ 2(1 +X0)2(Kt)n+1

(n+ 1)! .

Thus we have that {X(t)n}∞
n=1 is a Cauchy sequence in L2(dP ) and {X(t)n}∞

n=1
is in L2(dP × dt) Taking the limit on n → ∞ gives the solution to (I.3.2). The
uniqueness is obtained by standard arguments and estimates similar to the ones
above. ■

Before moving forward, we need to state a fundamental result that will allow
us to rewrite X in (I.3.2) in differential form. This is due to [34] and it is known
as transformation rule. Hereafter we state the result within our setting.

Lemma I.3.2. (Transformation rule) Assume that for all z ∈ R, λ ∈ [0,∞)2,
u ∈ U , x ∈ R the partial derivative of κ with respect to t (denoted with
∂tκ(t, s, z, λ, u, x)) is locally bounded (uniformly in t) and satisfies

|∂tκ(t1, s, z, λ, u, x) − ∂tκ(t2, s, z, λ, u, x)| ≤ K|t1 − t2|, (I.3.5)

for some K > 0 and for each fixed s ≤ t, λ ∈ [0,∞)2, u ∈ U , x ∈ R.
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Then, the forward equation (I.3.2) can be rewritten in differential notation as

dX(t) =
(
b(t, t, λt, u(t), X(t)) +

∫ t

0
∂tb(t, s, λs, u(s), X(s))ds

+
∫ t

0

∫
R
∂tκ(t, s, z, λs, u(s), X(s))µ(dsdz)

)
dt

+
∫
R
κ(t, t, z, λt, u(t), X(t))µ(dtdz). (I.3.6)

Proof. The proof follows the one in [34]. We report it here for completeness.
Observe that

X(t) =
∫ t

0
b(t, s, λs, u(s), X(s))ds+

∫ t

0

∫
R
κ(t, s, z, λs, u(s), X(s))µ(dsdz)

=
∫ t

0
b(t, s, λs, u(s), X(s))ds+

∫ t

0

∫
R
κ(s, s, z, λs, u(s), X(s))µ(dsdz)

+
∫ t

0

∫
R
κ(t, s, z, λs, u(s), X(s)) − κ(s, s, z, λs, u(s), X(s))µ(dsdz)

Note that

κ(t, s, z, λs, u(s), X(s)) − κ(s, s, z, λs, u(s), X(s))

=
∫ t

s

∂rκ(r, s, z, λs, u(s), X(s))dr

=
∫ t

0
1s≤r∂rκ(r, s, z, λs, u(s), X(s))dr

Then we can apply the Fubini theorem for stochastic integration as in [26] and
we obtain that∫ t

0

∫
R
κ(t, s, z, λs, u(s), X(s)) − κ(s, s, z, λs, u(s), X(s))µ(dsdz)

=
∫ t

0

∫
R

{∫ t

0
1s≤r∂rκ(r, s, z, λs, u(s), X(s))dr

}
µ(dsdz)

=
∫ t

0

{∫ r

0

∫
R
∂rκ(r, s, z, λs, u(s), X(s))µ(dsdz)

}
dr.

The well posedness and the Lebesgue integrability of∫ r

0

∫
R
∂rκ(r, s, z, λs, u(s), X(s))µ(dsdz),

r ∈ [0, t] is achieved in Theorem 3.2 [34] thanks to (I.3.5). ■
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Remark I.3.1. (A link with functional SDEs) Lemma I.3.2, suggests a link
between the Volterra integral equations of the kind (I.3.2) and functional SDEs
(FSDEs). It is in fact clear that, by defining

B(t, λ·, u·, X·, Z·) :=
(
b(t, t, λt, u(t), X(t)) +

∫ t

0
∂tb(t, s, λs, u(s), X(s))ds+ Z(t)

)
,

where

Z(t) =
∫ t

0

∫
R
∂tκ(t, s, z, λs, u(s), X(s))µ(dsdz),

we have that (I.3.2) can be rewritten as

X(t) = X0 +
∫ t

0
B(t, λ·, u·, X·, Z·)dt+

∫ t

0

∫
R
κ(t, t, z, λt, u(t), X(t))µ(dtdz).

(I.3.7)
We notice that (I.3.7) is a functional SDE, so we could have tried to state
an existence result for functional SDEs instead of using Theorem I.3.1. Some
existence results for SDEs such as (I.3.7) are available (see e.g. [5, 13, 14, 28,
33]), but no one of those deals with noises such as µ. While some of those results
(e.g. [13, 28, 33]) present condition that would be too restrictive for the current
setting, we also point out that the results presented in [5, 14] could possibly be
extended to the current framework. Nonetheless, this would require to impose
some Lipschitz and linear growth conditions on b and κ (like in Theorem I.3.1)
and, additionally, to impose a Lipschitzianity condition on ∂tb, not required in
the hypothesis of Theorem I.3.1.

Having discussed the existence of a solution for (I.3.2), we are finally ready
to proceed to our optimization results. We start by introducing the notion of
admissible controls:

Definition I.3.3. The admissible controls for (I.3.2) in the optimization problems
(I.1.4) and (I.1.5) are predictable stochastic processes u : [0, T ] × Ω 7−→ U such
that X in (I.3.2) has a unique strong solution and

E

[∫ T

0
F (t, λt, u(t), X(t))dt+G(X(T )) + |∂xG(X(T ))|2

]
< ∞

We denote AF and AG the sets of F- or G-predictable controls, respectively. We
say that (û, X̂) is an optimal pair if

J(û) = sup
u∈A·

E

[∫ T

0
F (t, λt, u(t), X(t))dt+G(X(T ))

]
, (I.3.8)

where X̂ := X û is as in (I.3.2), and A· is either the set AF or AG.
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Define RG to be the space of G-predictable processes with values in L2(dP ).
We remark that, if y ∈ RG, then the NA-derivative (I.2.5) is also in RG i.e. for
all t, z Dt,zy(·) ∈ RG. In the sequel, when no confusion arises, we will denote
with Dt,0y(·) the NA-derivative with respect to the conditional Brownian motion,
and with Dt,zy(·), z ∈ R0, the NA-derivative with respect to the conditional
Poisson random measure.

In view of the Volterra structure of the dynamics (I.3.2), the system is not
Markovian. We tackle the problem (I.3.8) by the maximum principle approach,
better suited in this case, see e.g. [40]. We introduce the Hamiltonian function:

H : [0, T ] × ΞR2
+

× ΞU × ΞR × RG × ΞZ × Ω −→ R,

as the mapping given by the sum

H(t, λ, u, x, p, q) := H0(t, λ, u, x, p, q) +H1(t, λ, u, x, p, q) (I.3.9)

of the two components

H0(t, λ, u, x, p, q) := F (t, λt, ut, xt) + b(t, t, λt, ut, xt)p(t)
+ κ(t, t, 0, λt, ut, xt)qt(0)λB

t

+
∫
R0

κ(t, t, z, λt, ut, xt)qt(z)λH
t ν(dz)

H1(t, λ, u, x, p, q) :=
∫ t

0
∂tb(t, s, λs, us, xs)ds p(t)

+
∫ t

0

∫
R
∂tκ(t, s, z, λs, us, xs)Ds,zp(t)Λ(dsdz),

where Z is the space of functions q : R −→ R such that

|q(0)|2 +
∫
R0

q(z)2ν(dz) < ∞.

Remark I.3.2. Following up on Remark I.3.1, instead of considering (I.3.2) as
a Volterra equation, we could have taken the FSDE (I.3.7) and, following e.g.
[14], write the Hamiltonian functional for the functional SDE. We notice that,
regardless of the chosen approach, we would still end up with the Hamiltonian
functional (I.3.9).

Associated to H (I.3.9), we introduce a BSDE of the type (I.1.6), which we study
under G:

p(t) =∂xG(X(T )) +
∫ T

t

∂xH(s, λs, u(s), X(s9), p(s9), q(s, ·))ds

−
∫ T

t

∫
R
q(s, z)µ(dsdz), t ∈ [0, T ], (I.3.10)
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where the derivative ∂xH is meant in the Fréchet sense.

Sufficient conditions to guarantee the existence of (I.3.10) on RG × IG can be
found in [19].

Remark I.3.3. Notice that (I.3.10) is actually a BSDE and not a Volterra-type
backward SDE. In fact, the term ∂xH1(t, λ, u,X, p, q) in the driver ∂xH(t, λ, u,X, p, q),
corresponds to

∂xH1(s, λs, u,X, p, q) = ∂x

∫ s

0
∂sb(s, r, λr, u(r), X(r))dr p(s)

+ ∂x

∫ s

0

∫
R
∂sκ(s, r, z, λr, u(r), X(r))Dr,zp(s)Λ(drdz),

which is a function of time s, after integration.

The optimal control problem (I.1.4):

J(û) = sup
u∈AF

J(u) = sup
u∈AF

E

[∫ T

0
F (t, λt, u(t), Xu(t))dt+G(Xu(T ))

]
, (I.3.11)

associated to the performance functional (I.3.1) is treated in the framework of
optimization under partial information. This is inspired by [19], where this
approach is taken for standard time-changed dynamics. In the Volterra case
treated in the present work, the functionals stemming out of (I.3.9) are very
different from the ones in [19]. Indeed we introduce the mapping HF defined for
t ∈ [0, T ], λ ∈ ΞR2

+
, u ∈ ΞU , x ∈ ΞR, p ∈ RG and q ∈ IG as

HF(t, λ, u, x, p, q) := HF
0 (t, λ, u, x, p, q) +HF

1 (t, λ, u, x, p, q)
:= E [H(t, λ, u, x, p, q)|Ft] , (I.3.12)

where

HF
0 (t, λ, u, x, p, q) := F (t, λt, ut, xt) + b(t, t, λt, ut, xt)E[p(t)|Ft]

+ κ(t, t, 0, λt, ut, xt)E[q(t, 0)|Ft]λB
t

+
∫
R0

κ(t, t, z, λt, ut, xt)E[q(t, z)|Ft]λH
t ν(dz)

HF
1 (t, λ, u, x, p, q) :=

∫ t

0
∂tb(t, s, λs, us, xs)ds E[p(t)|Ft]

+
∫ t

0

∫
R
∂tκ(t, s, z, λs, us, xs)E[Ds,zp(t)|Ft]Λ(dsdz)

Notation I.3.4. Given u, û ∈ A·, X, X̂ represent the associated controlled dynam-
ics of (I.3.2) and (p, q), (p̂, q̂) are the corresponding solutions of (I.3.10). From
now on, if no confusion arises, we will use the compact notation:

b(t, s) := b(t, s, λs, u(s), X(s)), b̂(t, s) := b(t, s, λs, û(s), X̂(s)).
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Similarly, for κ, κ̂, F , F̂ , G, Ĝ, we will also write:

Hu(s) := H(s, λ, u,X, p̂, q̂), Hû(s) := H(s, λ, û, X̂, p̂, q̂)

and similarly for HF,u, HF,û, Hu
0 , H û

0 , HF,u
0 , HF,û

0 , Hu
1 , H û

1 , HF,u
1 , HF,û

1 .

Theorem I.3.4. (Sufficient maximum principle with respect to F). Let
λ ∈ L. Let û ∈ AF and assume that the corresponding solutions X̂, (p̂, q̂) of
(I.3.2) and (I.3.10) exist. Assume that

• x 7−→ G(x) is concave.

• For any t, the map

x 7−→ ess supu∈ΞU
HF(t, λ, u, x, p̂, q̂), x ∈ ΞR, (I.3.13)

is concave.

• For all t ∈ [0, T ],

ess supu∈ΞU
HF(t, λ, u, x, p̂, q̂) = HF(t, λ, û, X̂, p̂, q̂). (I.3.14)

Then û is an optimal control for problem (I.3.1) and (û, X̂) is an optimal pair.

Proof. This proof is inspired by both the proof of [3] Theorem 4.1 and [19]
Theorem 6.2. The main difference with [3] is the use of the random measure µ
instead of a Brownian motion and a compensated random Poisson measure, which
requires to abandon the framework of Malliavin calculus. The main difference
with [19] is the Volterra structure of the dynamics for the forward equation
(I.3.2), which lead to more involved stochastic calculus. Recall that û ∈ AF

is a candidate to be optimal and X û is the corresponding solution of (I.3.2).
Choose an arbitrary other u ∈ AF with corresponding controlled dynamics X
and consider J(u) − J(û) = I1 + I2, where

I1 := E

[∫ T

0
F (t, λt, u(t), X(t)) − F (t, λt, û(t), X̂(t))dt

]
, (I.3.15)

I2 := E
[
G(X(T )) −G(X̂(T ))

]
. (I.3.16)

Considering now I1, from the definition of HF
0 we get that,

I1 = E

[∫ T

0

{
HF,u

0 (t) −HF,û
0 (t) − [b(t, t) − b̂(t, t)]E [p̂(t)|Ft]

}
dt

−
∫ T

0

∫
R
[κ(t, t, z) − κ̂(t, t, z)]E [q̂(t, z)|Ft] Λ(dtdz)

]
.
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By the concavity of G, we have

I2 ≤ E
[
∂xG(X̂(T ))

(
X(T ) − X̂(T )

)]
= E

[
p̂(T )

(
X(T ) − X̂(T )

)]
.

We apply the transformation rule (Lemma I.3.2) to rewrite the Volterra forward
dynamics of X as

dX(t) =
(
b(t, t)+

∫ t

0
∂tb(t, s)ds+

∫ t

0

∫
R
∂tκ(t, s, z)µ(dsdz)

)
dt+

∫
R
κ(t, t, z)µ(dtdz).

Also the BSDE p̂ (I.3.10) associated to the optimal pair (û, X̂) in differential
notation is

dp̂(t) = −∂xHû(t)dt+
∫
R
q̂(t, z)µ(dtdz).

Using the Itô formula for the product we obtain

I2 ≤ E

[∫ T

0

{
p̂(t)

((
b(t, t) − b̂(t, t)

)
+
∫ t

0

(
∂tb(t, s) − ∂tb̂(t, s)

)
ds

+
∫ t

0

∫
R

(∂tκ(t, s, z) − ∂tκ̂(t, s, z))µ(dsdz)
)}

dt

−
∫ T

0
∂xHû(t)

(
X(t) − X̂(t)

)
dt+

∫ T

0

{
[κ(t, t, 0) − κ̂(t, t, 0)]q̂(t, 0)λB

t

+
∫
R0

[κ(t, t, z) − κ̂(t, t, z)]q̂(t, z)ν(dz)λH
t

}
dt

]
. (I.3.17)

Now notice that,

E

[∫ T

0

(∫ t

0

∫
R
∂tκ(t, s, z)µ(dsdz)

)
p̂(t)dt

]

=
∫ T

0
E
[(∫ t

0

∫
R
∂tκ(t, s, z)µ(dsdz)

)
p̂(t)

]
dt

=
∫ T

0
E
[∫ t

0

∫
R
∂tκ(t, s, z)Ds,z p̂(t)Λ(dsdz)

]
dt

= E

[∫ T

0

∫ t

0

∫
R
∂tκ(t, s, z)Ds,z p̂(t)Λ(dsdz)dt

]
(I.3.18)

where we have used Fubini’s theorem and the duality formula (Proposition I.2.7).
By substituting (I.3.18) into (I.3.17), and taking the conditional expectation
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given Ft we get that

I2 ≤ E

[∫ T

0

{(
b(t, t) − b̂(t, t)

)
E [p̂(t)|Ft]

+
∫ t

0

(
∂tb(t, s) − ∂tb̂(t, s)

)
ds E [p̂(t)|Ft]

+
∫ t

0

∫
R0

(∂tκ(t, s, z) − ∂tκ̂(t, s, z))E [Ds,z p̂(t)|Ft] Λ(dsdz)
}
dt

−
∫ T

0
∂xHF,û(t)

(
X(t) − X̂(t)

)
dt

+
∫ T

0

∫
R
E [q̂(t, z)|Ft] [κ(t, t, z) − κ̂(t, t, z)]Λ(dtdz)

]
.

Hence

I1 + I2 ≤ E

[∫ T

0

(
HF,u

0 (t) −HF,û
0 (t) +HF,u

1 (t) −HF,û
1 (t) (I.3.19)

− ∂xHF,û(t)
(
X(t) − X̂(t)

))
dt

]

= E

[∫ T

0

(
HF,u(t) − HF,û(t) − ∂xHF,û(t)

(
X(t) − X̂(t)

))
dt

]
≤ 0,

(I.3.20)

dt × dP a.e. by the maximality of û in (I.3.14) and the concavity condition
(I.3.13). Hence J(u) ≤ J(û) and û is an optimal control for (I.3.1). This
conclusion is reached applying a separating hyperplane argument to the concave
map (I.3.13). ■

Notice that a result analogous to Theorem I.3.4 can also be obtained when
working under the initially enlarged filtration G. Though the next result might
not be of direct applicability in view of the anticipated information included in
G, the study has mathematical validity.

Remark I.3.5. The transformation rule under (I.3.5) allows for the use of an
Itô-type formula in the context of Volterra dynamics. If the equation would not
present Volterra structure in the stochastic integral part (i.e. in the coefficient
κ), then the requirement (I.3.5) is clearly lifted.

Proposition I.3.5. (Sufficient maximum principle with respect to G). Let
λ ∈ L. Let û ∈ AG and assume that the corresponding solutions X̂(t), (p̂, q̂) of
(I.3.2) and (I.3.10) exist. Assume that:

• x 7−→ G(x) is concave.
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• For any t, p̂, q̂, the function

x 7−→ ess supu∈ΞU
H(t, λ, u, x, p̂, q̂), x ∈ ξR (I.3.21)

is concave in x.

• For all t ∈ [0, T ],

ess supv∈ΞU
H(t, λ, v, X̂, p̂, q̂) = H(t, λ, û, X̂, p̂, q̂). (I.3.22)

Then û is an optimal control for the problem (I.1.5).

Proof. Once considering the filtration G, the arguments in the proof of Theorem
I.3.4 leading to

J(u) − J(û) ≤ E

[∫ T

0

(
Hu(t) − Hû(t) − ∂xHû(t)

(
X(t) − X̂(t)

))
dt

]
≤ 0

apply directly without conditioning. ■

I.4 Necessary maximum principles with time-change

Hereafter we study necessary conditions to identify the possible candidates for
optimal controls. This can be a useful starting point before applying a verification
theorem to ensure optimality. We remark that our results relax the condition of
concavity present in Theorem I.3.4 and I.3.5. However, we introduce some other
assumptions on the set of admissible controls and the first variation process of
the forward dynamics (I.3.2).

In the literature we find a first version of necessary maximum principle for
Volterra dynamics in [1]. There the driving noises were the Gaussian and the
centered Poisson random measure. Our work goes beyond these noises.
For any t ∈ [0, T ], we consider a random perturbation of the type

β(s) := αt1[t,t+h](s), s ∈ [0, T ], (I.4.1)

where αt is a bounded Ft measurable random variable and h ∈ [0, T − t]. We
make the following assumptions:

1. The set of admissible controls AF is such that, for all u ∈ AF,

u+ εβ ∈ AF,

for all perturbations β as in (I.4.1) and all ε > 0 sufficiently small.
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2. The first variation process χ(t), t ∈ [0, T ], given by the derivative

χ(t) := ∂εX
(u+εβ)|ε=0 (I.4.2)

(see (I.3.2)) exists and is well defined.

3. ∂xb(t, s) and ∂ub(t, s) are well defined and C1 with respect to t with
partial derivatives L2-integrable with respect to dt× dP . ∂xκ(t, s, ·) and
∂uκ(t, s, ·) are well defined and C1 with respect to t with partial derivatives
L2-integrable with respect to dΛ × dP .

4. ∂xκ(t, s, z) and ∂uκ(t, s, z) are such that, for all z ∈ R λ ∈ [0,∞)2, u ∈ U ,
x ∈ R, the partial derivative of ∂xκ + ∂uκ with respect to t is locally
bounded (uniformly in t) and satisfies

|∂t(∂xκ(t1, s, z, )+∂uκ(t1, s, z))−∂t(∂xκ(t2, s, z, )+∂uκ(t2, s, z))| ≤ K|t1−t2|,

for some K > 0 and for each fixed s ≤ t, λ ∈ [0,∞)2, u ∈ U , x ∈ R.

Assumption 2. above implies that

χ(t) =
∫ t

0

(
∂xb(t, s)χ(s) + ∂ub(t, s)β(s)

)
ds

+
∫ t

0

∫
R

(
∂xκ(t, s, z)χ(s) + ∂uκ(t, s, z)β(s)

)
µ(dsdz),

exists and is well defined, whereas assumption 4. ensure us to be able to apply
the transformation rule for χ.

Remark that sufficient conditions that ensure the existence of the first vari-
ation process are that b and κ are in C1(U) uniformly for all s, t ∈ [0, T ]
λ ∈ [0,∞)2, x ∈ R and that (∂xb(t, s)χ(s) +∂ub(t, s)β(s)) and (∂xκ(t, s, z)χ(s) +
∂uκ(t, s, z)β(s)) satisfy the linear growth and lipschitzianity conditions of Theo-
rem I.3.1.

As above we consider the performance functional (I.3.1) with the related
conditions on F and G as in Section I.3. We also continue using the compact
notation there introduced, see Notation I.3.4.

Theorem I.4.1. (Necessary maximum principle with respect to F). Let
λ ∈ L. Suppose that û ∈ AF and the corresponding solutions X̂, (p̂, q̂) of
(I.3.2) and (I.3.10) exist. Assume also that P -a.s. F ∈ C1(U) for all t ∈ [0, T ]
λ ∈ [0,∞)2, x ∈ R. If, for all perturbations β as in (I.4.1), we have that

∂εJ(û+ εβ)|ε=0 = 0, (I.4.3)

then
∂uHF,û(t) = 0. (I.4.4)

The converse also holds true.
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Proof. With (I.4.2), we consider for u ∈ AF and the perturbation (I.4.1),

∂ϵJ(u+ εβ)|ε=0 (I.4.5)

= E

[∫ T

0
(∂xF (t, λt, u(t), X(T ))χ(t) + ∂uF (t, λt, u(t), X(t))β(t)) dt

+ ∂xG(X(T ))χ(T )
]
.

By considering a suitable increasing family of stopping times converging to T as
in [31] Theorem 2.2, we may assume that all the local martingales appearing
here are true martingales. From (I.3.12), the transformation rule (Lemma I.3.2)
and the Itô formula for the product, we find that

E [∂xG(X(T ))χ(T )] = E [p(T )χ(T )]

= E

[∫ T

0
p(t) (∂xb(t, t)χ(t) + ∂ub(t, t)β(t)) dt−

∫ T

0
χ(t)∂xH(t)dt

+
∫ T

0
p(t)

(∫ t

0
(∂t∂xb(t, s)χ(s) + ∂t∂ub(t, s)β(s)) ds

)
dt

+
∫ T

0
p(t)

(∫ t

0

∫
R

(∂t∂xκ(t, s, z)χ(s) + ∂t∂uκ(t, s, z)β(s))µ(dsdz)
)
dt

+
∫ T

0

∫
R
q(s, z)

(
∂xκ(t, t, z)χ(t) + ∂uκ(t, t, z)β(t)

)
Λ(dtdz)

]
.

Now, recalling equality (I.3.18), and taking the conditional expectation under
Ft we get that

E [p(T )χ(T )]

= E

[∫ T

0

{
∂xb(t, t)E [p(t)|Ft] +

∫ t

0
∂x∂tb(t, s)ds E [p(t)|Ft]

+
∫ t

0

∫
R
∂x∂tκ(t, s, z)E [Ds,zp(t)|Ft] Λ(dsdz)

}
χ(t)dt

+
∫ T

0

{
∂ub(t, t)E [p(t)|Ft] +

∫ t

0
∂u∂tb(t, s)ds E [p(t)|Ft]

+
∫ t

0

∫
R
∂u∂tκ(t, s, z)E [Ds,zp(t)|Ft] Λ(dsdz)

}
β(t)dt−

∫ T

0
∂xHF,u(t)χ(t)dt

+
∫ T

0

∫
R

(∂xκ(t, t, z)χ(t) + ∂uκ(t, t, z)β(t))E [q(t, z)|Ft] Λ(dtdz)
]
.
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So that, from (I.3.12), we can write

E

[∫ T

0
(∂xF (t, λt, u(t), X(t))χ(t) + ∂uF (t, λt, u(t), X(t))β(t)) dt

+ ∂xG(X(T ))χ(T )
]

= E

[∫ T

0
∂xHF,u(t)χ(t)dt−

∫ T

0
∂xHF,u(t)χ(t)dt+

∫ T

0
∂uHF,u(t)β(t)dt

]
.

(I.4.6)

Summarizing, equation (I.4.5) together with (I.4.6) and the perturbations in
(I.4.1) give

∂εJ(u+ εβ)|ε=0 = E

[∫ T

0
∂uHF,u(t)β(t)dt

]
= E

[∫ t+h

t

∂uHF,u(s)ds αt

]
,

(I.4.7)
and, for û, (I.4.3) gives

∂εJ(û+ εβ)|ε=0 = 0.

Applying the Fubini theorem to the right-hand side of (I.4.7) and differentiating
at h = 0 we obtain

E
[
∂uHF,û(t) αt

]
= 0,

for all αt bounded and Ft measurable. Hence

E
[
∂uHF,û(t)

∣∣Ft

]
= ∂uHF,û(t) = 0. (I.4.8)

Vice versa, if (I.4.8) holds, we can reverse the argument to obtain (I.4.3). ■

As in Section 3, for the sake of completeness, we propose a necessary maximum
principle under the information flow G. This refers to the optimization problem
(I.1.5). In this case we assume that, for all u ∈ AG, u + εβ ∈ AG for all
perturbations β as in (I.4.1) and ε > 0 sufficiently small.

Proposition I.4.2. (Necessary maximum principle with respect to G). Let
λ ∈ L. Suppose that û ∈ AG and the corresponding solutions X̂, (p̂, q̂) of (I.3.2)
and (I.3.10) exist. Also assume that F ∈ C1(U) for all t ∈ [0, T ] λ ∈ [0,∞)2,
x ∈ R. If, for all perturbations β,

∂εJ(û+ εβ)|ε=0 = 0, (I.4.9)

then
∂uHû(t) = 0. (I.4.10)

Conversely, if (I.4.10) holds, then (I.4.9) is true.
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Proof. The argument in the proof of Theorem I.4.2 leading to

∂ϵJ(û+ ϵβ)|ε=0 = E

[∫ T

0
∂uHû(t)β(t)dt

]
still holds with no need to use conditional expectations. Since û and û+ ϵβ are
G-predictable, we obtain

E

[∫ T

0

{
∂ub̂(t, t)p̂(t) +

∫ t

0
∂u∂tb̂(t, s)dsp̂(t)

+
∫ t

0

∫
R
∂u∂tκ̂(t, s, z)Ds,z p̂(t)Λ(dsdz)

}
β(t)dt

+
∫ T

0

∫
R

(∂uκ̂(t, t, z)β(t)) q̂(t, z)Λ(dtdz)
]

= E

[∫ T

0
∂uHû(t)β(t)dt

]
,

where we have used the definition of H as in (I.3.9). We conclude as in Theorem
I.4.1. ■

I.5 A maximum principle approach in optimal harvesting

We now go back to the optimal harvesting problem within fishery, where the
population dynamics is given by the dynamics (I.1.1). We recall that our starting
point are [10, 23, 24], where the authors consider deterministic Volterra models
to model population growth and, following e.g. [4, 11], we introduce some
random fluctuations that will affect the population growth. Hence, the dynamics
considered are of type (I.1.1):

Xu(t) = X0 +
∫ t

0
(r(t, s) −Ku(s))Xu(s)ds+

∫ t

0
σ(s)Xu(s)dB(s), t ∈ [0, T ],

(I.5.1)
where r(t, s) : [0, T ]2 −→ R, σ(s) : [0, T ] −→ R, K > 0, X0 > 0. Here, B is the
conditional Gaussian measure. We assume that (I.5.1) admits a solution, that
r(t, s) is C2 with respect to both t and s, and that σ is C1 with respect to t and
σ(t) > −1 for all s ∈ [0, T ], z ∈ R. Lastly we assume r(t, s), ∂tr(t, s) and σ(t)
are in L2(dt). For sufficient conditions that guarantee the existence of a solution
of X we refer to Theorem I.3.1. In the context of optimal harvesting of fish, r
represents the growth rate, K the catchability coefficient, and the control u is
the fishing effort.

Let us define

τ := inf{t ∈ [0, T ], such that Xu(t) = 0} ∧ T.

54



A maximum principle approach in optimal harvesting

Then we can see that Xu(t) = 0 for all t ≥ τ . In fact , for 0 ≤ τ ≤ t ≤ T , we
have that (I.1.1) can be rewritten as

X(t) = X0 +
∫ τ

0
(r(τ, s) −Ku(s))X(s)ds+

∫ τ

0
σ(s)X(s)dB(s)

+
∫ t

τ

(r(t, s) −Ku(s))X(s)ds+
∫ t

τ

σ(s)X(s)dB(s)

+
∫ τ

0
(r(t, s) − r(τ, s))X(s)ds

= X(τ) +
∫ t

τ

(r(t, s) −Ku(s))X(s)ds+
∫ t

τ

σ(s)X(s)dB(s)

+
∫ τ

0
(r(t, s) − r(τ, s))X(s)ds.

Being X(0) = X0 > 0 and the process X continuous, we have that X is strictly
positive, up to restricting ourselves to the interval [0, τ ].

Our goal is to characterise the optimal solution to maximization of the
performance functional

J(u) = E

[∫ T

0
e−δ(T −t)X(t)u(t)dt

]
, (I.5.2)

where u ∈ AF, δ > 0. In the context of oprimal harvesting this can be regarded
as the aggregated net discounted revenue, see [7]. Following the approach given
in this work, we consider the Hamiltonian functional (I.3.9), which can be here
rewritten as

Hu(t) = e−δ(T −t)u(t)X(t) +
(
r(t, t) −Ku(t)

)
X(t)p(t) + σ(t)X(t)q(t)λB

t

+
∫ t

0
∂tr(t, s)X(s) −Ku(s)ds p(t),

where the backward dynamics for p are given by

dp(t) = e−δ(T −t)u(t)dt+
(
r(t, t) +

∫ t

0
∂tr(t, s)ds

)
p(t)dt+ σ(t)q(t)λB

t dt

+ q(t)dB(t)
p(T ) = 0. (I.5.3)

Also, we consider the mapping HF in (I.3.12):

HF,u(t) = e−δ(T −t)u(t)X(t) +
(
r(t, t) −Ku(t)

)
X(t)E[p(t)|Ft]

+ σ(t)X(t)E[q(t)|Ft]λB
t +

∫ t

0
∂tr(t, s)X(s) −Ku(s)ds E[p(t)|Ft].
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From Theorem I.4.1 we see that a necessary condition for an admissible control
û to be optimal is that, for all t ∈ [0, T ], ∂uHF,û(t) = 0. Furthermore, from
Theorem I.3.4, being the map (I.3.13) trivially concave, the condition ∂uHF,û(t) =
0 is also sufficient for the maximality. In particular this means that an admissible
control û is optimal if and only if

e−δ(T −t)X̂(t) = KX̂(t)E[p̂(t)|Ft]. (I.5.4)

Namely, for all t ∈ [0, τ ]

E[p̂(t)|Ft] = K−1e−δ(T −t). (I.5.5)

To find a solution to (I.5.3) with respect to the information flow G, we use
a Girsanov change of measure as presented in [17]. Define the measure Q by
dQ = M(T )dP (T ) on GT , where

dM(t) = M(t)σ(t)dB(t)
M(0) = 1. (I.5.6)

An explicit solution for (I.5.6) is obtained by the Itô formula (see [17]) and is
given by

M(t) = exp
{∫ t

0
σ(s)dB(s) −

∫ t

0

1
2σ(s)2λB

s ds

}
, t ∈ [0, T ].

We thus have that, under the measure Q,

dBσ(t) = dB(t) − σ(t)λB
t dt,

is a G-martingale. Equation (I.5.3) can now be rewritten under Q as

dp̂(t) = e−δ(T −t)û(t)dt+
(
r(t, t) +

∫ t

0
∂tr(t, s)ds

)
p̂(t)dt+ q̂(t)dBσ(t)

p̂(T ) = 0. (I.5.7)

Thanks to [19] we know that (I.5.7) admits a unique solution (p̂, q̂) and that the
process p̂ is given by

p̂(t) = EQ

[∫ T

t

exp
{∫ s

t

r̃(v)dv
}
e−δ(T −s)û(s)ds

]
,

where we defined r̃(t) := r(t, t) +
∫ t

0 ∂tr(t, s)ds. We thus obtain that

E

[
p̂(t)|Ft

]
= E

[
1

M(T )

∫ T

t

exp
{∫ s

t

r̃(v)dv
}
e−δ(T −s)û(s)ds

∣∣∣Ft

]
. (I.5.8)

Substituting (I.5.8) in (I.5.5) we obtain a characterization of û(t).
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Paper IV

Optimal control in linear-quadratic
stochastic advertising models with
memory
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IV

Abstract

This paper deals with a class of optimal control problems which arises in
advertising models with Volterra Ornstein-Uhlenbeck process representing
the product goodwill. Such choice of the model can be regarded as a
stochastic modification of the classical Nerlove-Arrow model that allows to
incorporate both presence of uncertainty and empirically observed memory
effects such as carryover or distributed forgetting. We present an approach
to solve such optimal control problems based on an infinite dimensional
lift which allows us to recover Markov properties by formulating an opti-
mization problem equivalent to the original one in a Hilbert space. Such
technique, however, requires the Volterra kernel from the forward equation
to have a representation of a particular form that may be challenging to
obtain in practice. We overcome this issue for Hölder continuous kernels by
approximating them with Bernstein polynomials, which turn out to enjoy
a simple representation of the required type. Then we solve the optimal
control problem for the forward process with approximated kernel instead
of the original one and study convergence. The approach is illustrated
with simulations.
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IV.1 Introduction

The problem of optimizing advertising strategies has always been of paramount
importance in the field of marketing. Starting from the pioneering works of
Vidale and Wolfe [23] and Nerlove and Arrow [18], this topic has evolved into
a full-fledged field of research and modeling. Realizing the impossibility of
describing all existing classical approaches and results, we refer the reader to
the review article of Sethi [21] (that analyzes the literature prior to 1975) and a
more recent paper by Feichtinger, Hartl and Sethi [11] (covering the results up
to 1994) and references therein.

It is worth noting that the Nerlove–Arrow approach, which was the foundation
for numerous modern dynamic advertising models, assumed no time lag between
spending on advertising and the impact of the latter on the goodwill stock.
However, many empirical studies (see, for example, [15]) clearly indicate some
kind of a “memory” phenomenon that is often called the “distributed lag” or
“carryover” effect: the influence of advertising does not have an immediate impact
but is rather spread over a period of time varying from several weeks to several
months. This shortcoming of the basic Nerlove–Arrow model gave rise to many
modifications of the latter aimed at modeling distributed lags. For a long time,
nevertheless, the vast majority of dynamic advertising models with distributed
lags had been formulated in a deterministic framework (see e.g. [21, §2.6] and
[11, Section 2.3]).

In recent years, however, there have been several landmark papers that
consider the Nerlove-Arrow-type model with memory in a stochastic setting.
Here, we refer primarily to the series of papers [13, 14] (see also a more recent
work [16]), where goodwill stock is modeled via Brownian linear diffusion with
delay of the form

dXu(t) =
(
α0X

u(t) +
∫ 0

−r

α1(s)Xu(t+ s)ds+ β0u(t)

+
∫ 0

−r

β1(s)u(t+ s)ds
)
dt+ σdW (t), (IV.1.1)

where Xu is interpreted as the product’s goodwill stock and u is the spending
on advertising. The corresponding optimal control problem in this case was
solved using the so-called lift approach: equation (IV.1.1) was rewritten as a
stochastic differential equation (without delay) in a suitable Hilbert space, and
then infinite-dimensional optimization techniques (either dynamic programming
principle or maximum principle) were applied.

In this article, we present an alternative stochastic model that also takes the
carryover effect into account. Instead of the delay approach described above,
we incorporate the memory into the model by means of the Volterra kernel
K ∈ L2([0, T ]) and consider the controlled Volterra Ornstein-Uhlenbeck process
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of the form

Xu(t) = X(0)+
∫ t

0
K(t−s)

(
αu(s)−βXu(s)

)
ds+σ

∫ t

0
K(t−s)dW (s), (IV.1.2)

where α, β, σ > 0 and X(0) ∈ R are constants (see e.g. [1, Section 5] for more
details on affine Volterra processes of such type). Note that such goodwill dy-
namics can be regarded as the combination of deterministic lag models described
in [11, Section 2.3] and the stochastic Ornstein-Uhlenbeck-based model presented
by Rao [19]. The main difference from (IV.1.1) is the memory incorporated to
the noise along with the drift as the stochastic environment (represented by the
noise) tends to form “clusters” with time. Indeed, in reality positive increments
are likely to be followed by positive increments (if conditions are favourable for
the goodwill during some period of time) and negative increments tend to follow
negative increments (under negative conditions). This behaviour of the noise
cannot be reflected by a standard Brownian driver but can easily be incorporated
into the model (IV.1.2).

Our goal is to solve an optimization problem of the formX
u(t) = X(0) +

∫ t

0 K(t− s)
(
αu(s) − βXu(s)

)
ds+ σ

∫ t

0 K(t− s)dW (s),

J(u) := E
[
−
∫ T

0 a1u
2(s)ds+ a2X

u(T )
]

→ max,
(IV.1.3)

where a1, a2 > 0 are given constants. The set of admissible controls for the
problem (IV.1.3), denoted by L2

a := L2
a(Ω × [0, T ]), is the space of square

integrable real-valued stochastic processes adapted to the filtration generated
by W . Note that the process Xu is well defined for any u ∈ L2

a since, for
almost all ω ∈ Ω, the equation (IV.1.2) treated pathwisely can be considered as
a deterministic linear Volterra integral equation of the second kind that has a
unique solution (see e.g. [22]).

The optimization problem (IV.1.3) for underlying Volterra dynamics has
been studied by several authors (see, e.g. [3, 24] and the bibliography therein).
Contrarily to most of the work in our bibliography, we will not solve such problem
by means of a maximum principle approach. Even though this method allows to
find necessary and sufficient conditions to obtain the optimal control to (IV.1.3),
we cannot directly apply it as we deal with low regularity conditions on the
coefficients of our drift and volatility. Furthermore, such method has another
notable drawback in the practice. In fact, its application is often associated with
computations of conditional expectations that are substantially challenging due
to the absence of Markovianity. Another possible method to solve the optimal
control problem (IV.1.3) is to get an explicit solution of the forward equation
(IV.1.2), plug it into the performance functional and try to solve the maximization
problem using differential calculus in Hilbert spaces. But, even though this
method seems appealing, obtaining the required explicit representation of Xu in
terms of u might be tedious and burdensome. Instead, we will use the approach
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introduced in Paper III-[2] that is in the same spirit of the one in [13, 14, 16]
mentioned above: we will rewrite the original forward stochastic Volterra integral
equation as a stochastic differential equation in a suitable Hilbert space and
then apply standard optimization techniques in infinite dimensions (see e.g. [9,
12]). Moreover, the shape of the corresponding infinite-dimensional Hamilton-
Jacobi-Bellman equation allows to obtain an explicit solution to the latter by
exploiting the “splitting” method from [14, Section 3.3].

We notice that, while the optimization problem (IV.1.3) is closely related to
the one presented in [2], there are several important differences in comparison to
our work. In particular, [2] demands the kernel to have the form

K(t) =
∫
R+

e−θtµ(dθ), (IV.1.4)

where µ is a signed measure such that
∫
R+

(1 ∧ θ−1/2)|µ|(dθ) < ∞. Although
there are some prominent examples of such kernels, not all kernels K are of this
type; furthermore, even if a particular K admits such a representation in theory,
it may not be easy to find the explicit shape of µ. In contrast, our approach
works for all Hölder continuous kernels without any restrictions on the shape
and allows to get explicit approximations ûn of the optimal control û. The lift
procedure presented here is also different from the one used in [2] (although they
both are specific cases of the technique presented in [7]).

The lift used in the present paper was introduced in [7], then generalized in [8]
for the multi-dimensional case, but the approach itself can be traced back to [6].
It should be also emphasised that this method has its own limitations: in order
to perform the lift, the kernel K is required to have a specific representation
of the form K(t) = ⟨g, etAν⟩H, t ∈ [0, T ], where g and ν are elements of some
Hilbert space H and {etA, t ∈ [0, T ]} is a uniformly continuous semigroup acting
on H with A ∈ L(H) and, in general, it may be hard to find feasible H, g, ν
and A. Here, we work with Hölder continuous kernels K and we overcome this
issue by approximating the kernel with Bernstein polynomials (which turn out to
enjoy a simple representation of the required type). Then we solve the optimal
control problem for the forward process with approximated kernel instead of the
original one and we study convergence.

The paper is organised as follows. In section IV.2, we present our approach
in case of a liftable K (i.e. K having a representation in terms of H, g, ν and A
mentioned above). Namely, we describe the lift procedure, give the necessary
results from stochastic optimal control theory in Hilbert spaces as well as derive
an explicit representation of the optimal control û by solving the associated
Hamilton-Jacobi-Bellman equation. In section IV.3, we introduce a liftable
approximation for general Hölder continuous kernels, give convergence results for
the solution to the approximated problem and discuss some numerical aspects
for the latter. In section IV.4, we illustrate the application of our technique with
examples and simulations.
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IV.2 Solution via Hilbert space-valued lift

IV.2.1 Preliminaries

First of all, let us begin with some simple results on the optimization problem
(IV.1.3). Namely, we notice that Xu and the optimization problem (IV.1.3) are
well defined for any u ∈ L2

a.

Theorem IV.2.1. Let K ∈ L2([0, T ]). Then, for any u ∈ L2
a,

1) the forward Volterra Ornstein-Uhlenbeck-type equation (IV.1.2) has a
unique solution;

2) there exists a constant C > 0 such that

sup
t∈[0,T ]

E[|Xu(t)|2] ≤ C(1 + ∥u∥2
2),

where ∥·∥2 denotes the standard L2(Ω × [0, T ]) norm;

3) |J(u)| < ∞.

Proof. Item 1) is evident since, for almost all ω ∈ Ω, the equation (IV.1.2)
treated pathwisely can be considered as a deterministic linear Volterra integral
equation of the second kind that has a unique solution (see e.g. [22]). Next, it is
straightforward to deduce that

E
[
|Xu(t)|2

]
≤ C

(
1 + E

[(∫ t

0
K(t− s)u(s)ds

)2]

+ E

[(∫ t

0
K(t− s)Xu(s)ds

)2]
+ E

[(∫ t

0
K(t− s)dW (s)

)2])
≤ C

(
1 + ∥K∥2

2∥u∥2
2 + ∥K∥2

2

∫ t

0
E
[
|Xu(s)|2

]
ds+ ∥K∥2

2

)
≤ C

(
1 + ∥u∥2

2 +
∫ t

0
E
[
|Xu(s)|2

]
ds

)
.

Now, item 2) follows from Gronwall’s inequality. Finally, E[Xu(t)] satisfies the
deterministic Volterra equation of the form

E[Xu(t)] = −β
∫ t

0
K(t− s)E[Xu(s)]ds+X(0) + α

∫ t

0
K(t− s)E[u(s)]ds
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and hence can be represented in the form

E[Xu(t)] = X(0) + α

∫ t

0
K(t− s)E[u(s)]ds− β

∫ t

0
Rβ(t, s)X(0)ds

− αβ

∫ t

0
Rβ(t, s)

∫ s

0
K(s− v)E[u(v)]dvds

=: X(0) + Lu,

where Rβ is the resolvent of the corresponding Volterra integral equation and
the operator L is linear and continuous. Hence J(u) can be re-written as

J(u) = −a1⟨u, u⟩L2(Ω×[0,T ] + a2(X(0) + Lu), (IV.2.1)

which immediately implies that |J(u)| < ∞. ■

IV.2.2 Construction of Markovian lift and formulation of the lifted
problem

As anticipated above, in order to solve the optimization problem (IV.1.3) we will
rewrite Xu in terms of Markovian Hilbert space-valued process Zu using the lift
presented in [7] and then apply the dynamic programming principle in Hilbert
spaces. We start from the description of the core idea behind the Markovian
lifts in case of liftable kernels.

Definition IV.2.2. Let H denote a separable Hilbert space with the scalar product
⟨·, ·⟩. A kernel K ∈ L2([0, T ]) is called H-liftable if there exist ν, g ∈ H, ∥ν∥H = 1,
and a uniformly continuous semigroup {etA, t ∈ [0, T ]} acting on H, A ∈ L(H),
such that

K(t) = ⟨g, etAν⟩, t ∈ [0, T ]. (IV.2.2)

For examples of liftable kernels, we refer to Section IV.4 and to [7].

Consider a controlled Volterra Ornstein-Uhlenbeck process of the form
(IV.1.2) with a liftable kernel K(t) = ⟨g, etAν⟩, ∥ν∥H = 1, and denote ζ0 := X(0)

∥g∥2
H
g

and
dV u(t) := (αu(t) − βXu(t))dt+ σdW (t).

Using the fact that X(0) = ⟨g, ζ0⟩, we can now rewrite (IV.1.2) as follows:

Xu(t) = X(0) +
∫ t

0
K(t− s)dV u(s)

= ⟨g, ζ0⟩ +
∫ t

0
⟨g, e(t−s)Aν⟩dV u(s)

=
〈
g, ζ0 +

∫ t

0
e(t−s)AνdV u(s)

〉
=: ⟨g, Z̃u

t ⟩,
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where Z̃u
t := ζ0 +

∫ t

0 e
At−sνdV u(s). It is easy to check that, Z̃u is the unique

solution of the infinite dimensional SDE

Z̃u
t = ζ0 +

∫ t

0

(
A(Z̃u

s − ζ0) + (αu(s) − β⟨g, Z̃u
s ⟩)ν

)
ds+

∫ t

0
σνdW (s)

and thus the process {Zu
t , t ∈ [0, T ]} defined as Zu

t := Z̃u
t − ζ0 satisfies the

infinite dimensional SDE of the form

Zu
t =

∫ t

0

(
ĀZu

s − νβ⟨g, ζ0⟩ + ναu(s)
)
ds+

∫ t

0
σνdW (s),

where Ā is the linear bounded operator on H such that

Āz := Az − β⟨g, z⟩ν, z ∈ H. (IV.2.3)

These findings are summarized in the following theorem.

Theorem IV.2.3. Let {Xu(t), t ∈ [0, T ]} be a Volterra Ornstein-Uhlenbeck process
of the form (IV.1.2) with the H-liftable kernel K(t) = ⟨g, etAν⟩, g, ν ∈ H,
∥ν∥H = 1, A ∈ L(H). Then, for any t ∈ [0, T ],

Xu(t) = ⟨g, ζ0⟩ + ⟨g,Zu
t ⟩, (IV.2.4)

where ζ0 := X(0)
∥g∥2

H
g and {Zu

t , t ∈ [0, T ]} is the H-valued stochastic process given
by

Zu
t =

∫ t

0

(
ĀZu

s − νβ⟨g, ζ0⟩ + ναu(s)
)
ds+

∫ t

0
σνdW (s) (IV.2.5)

and Ā ∈ L(H) is such that

Āz := Az − β⟨g, z⟩ν, z ∈ H.

Using Theorem IV.2.3, one can rewrite the performance functional J(u) from
(IV.1.3) as

Jg(u) = E

[
−
∫ T

0
a1u

2(s)ds+ a2⟨g,Zu
T ⟩

]
+ a2⟨g, ζ0⟩, (IV.2.6)

where the superscript g in Jg is used to highlight dependence on the H-valued
process Zu. Clearly, maximizing (IV.2.6) is equivalent to maximizing

Jg(u) − a2⟨g, ζ0⟩ = E

[
−
∫ T

0
a1u

2(s)ds+ a2⟨g,Zu
T ⟩

]
.

Finally, for the sake of notation and coherence with literature, we will sometimes
write our maximization problem as a minimization one by simply noticing
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that the maximization of the performance functional Jg(u) − a2⟨g, ζ0⟩ can be
reformulated as the minimization of

J̄g(u) := −Jg(u) + a2⟨g, ζ0⟩ = E

[∫ T

0
a1u

2(s)ds− a2⟨g,Zu
T ⟩

]
. (IV.2.7)

Remark IV.2.1. Using the arguments similar to the proof of Theorem IV.2.1, it
is straightforward to check that Jg and J̄g are continuous w.r.t. u.

In other words, in case of H-liftable kernel K, the original optimal control
problem (IV.1.3) can be replaced by the following one:Zu

t =
∫ t

0

(
ĀZu

s − β⟨g, ζ0⟩ν + αu(s)ν
)
ds+

∫ t

0 σνdW (s),

J̄g(u) := E
[∫ T

0 a1u
2(s)ds− a2⟨g,Zu

T ⟩
]

→ min,
u ∈ L2

a.

(IV.2.8)

Remark IV.2.2. The machinery described above can also be generalized for
strongly continuous semigroups on Banach spaces, see e.g. [7, 8]. However, for
our purposes, it is sufficient to consider the case when A is a linear bounded
operator on a Hilbert space.

IV.2.3 Solution to the lifted problem

In order to solve the optimal control problem (IV.2.8), we intend to use the
dynamic programming approach as in [10]. A comprehensive overview of this
method for more general optimal control problems can also be found in [9] and
[12].

Denote by σ̃ an element of L(R,H) acting as

σ̃x = xσν, x ∈ R,

and consider the Hamilton-Jacobi-Bellman (HJB) equation associated with the
problem (IV.2.8) of the form{

∂
∂tv(t, z) = − 1

2 Trace
(
σ̃σ̃∗∇2v(t, z)

)
− ⟨∇v(t, z), Āz⟩ − H(t, z,∇v(t, z)),

v(T, z) = −⟨a2g, z⟩,
(IV.2.9)

where by ∇v we denote the partial Gateaux derivative w.r.t. the spacial variable
z and the Hamiltonian functional H : [0, T ] × H × H → R is defined as

H(t, z, ξ) := inf
u∈R

{
a1u

2 +
〈
ξ,−β⟨g, ζ0⟩ν + αuν

〉}
= −α2⟨ξ, ν⟩2

4a1
− β⟨g, ζ0⟩⟨ξ, ν⟩.

Proposition IV.2.4. The HJB equation (IV.2.9) associated with the lifted problem
(IV.2.8) admits a classical solution (in the sense of [10, Definition 3.4]) of the
form

v(t, z) = ⟨w(t), z⟩ + c(t), (IV.2.10)
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where
w(t) = −a2e

−(t−T )Ā∗
g, t ∈ [0, T ], (IV.2.11)

Ā∗ = A∗ − β⟨ν, ·⟩g, and

c(t) = −
∫ T

t

(
βX(0)⟨w(s), ν⟩ + α2

4a1
⟨w(s), ν⟩2

)
ds, t ∈ [0, T ]. (IV.2.12)

Proof. Let us solve the HJB equation (IV.2.9) explicitly using the approach
presented in [14, Section 3.3]. Namely, we will look for the solution in the form
(IV.2.10), where w(t) and c(t) are (unknown) functions such that ∂

∂tv and ∇v
are well-defined. In this case,

∂

∂t
v(t, z) = ⟨w′(t), z⟩ + c′(t), ∇v(t, z) = w(t), ∇2v(t, z) = 0,

and, recalling that ⟨g, ζ0⟩ = X(0), we can rewrite the HJB equation (IV.2.9) as{
⟨w′(t), z⟩ + ⟨z, Ā∗w(t)⟩ + c′(t) − βX(0)⟨w(t), ν⟩ − α2

4a1
⟨w(t), ν⟩2 = 0

⟨w(T ), z⟩ + c(T ) = −⟨a2g, z⟩.

Now it would be sufficient to find w and c that solve the following systems:{
⟨w′(t), z⟩ + ⟨z, Ā∗w(t)⟩ = 0
⟨w(T ), z⟩ + ⟨a2g, z⟩ = 0

;
{
c′(t) − βX(0)⟨w(t), ν⟩ − α2

4a1
⟨w(t), ν⟩2 = 0

c(T ) = 0,
(IV.2.13)

Noticing that the first system in (IV.2.13) has to hold for all z ∈ H, we can solve{
w′(t) + Ā∗w(t) = 0,
w(T ) + a2g = 0

instead, which is a simple linear equation and its solution has the form (IV.2.11).
Now it is easy to see that c has the form (IV.2.12) and

v(t, z) = ⟨w(t), z⟩ + c(t), t ∈ [0, T ].

It remains to note that (IV.2.10)–(IV.2.12) is indeed a classical solution to
(IV.2.9) in the sense of [10, Definition 3.4].

■

Let us now identify v in (IV.2.10)–(IV.2.12) with the value function of the
lifted optimal control problem (IV.2.8) using the result presented in [10, Theorem
4.1].
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Theorem IV.2.5 (Verification theorem). Let v be the solution (IV.2.10)–(IV.2.12)
to the HJB equation (IV.2.9) associated with the lifted optimal control problem
(IV.2.8). Then

1) infu∈L2
a
J̄g(u) = v(0, 0);

2) the optimal control û minimizing J̄g in (IV.2.8) has the form

û(t) = − α

2a1
⟨w(t), ν⟩ = αa2

2a1
⟨g, e(T −t)Āν⟩, (IV.2.14)

where Ā = A − β⟨g, ·⟩ν.

In particular, û given by (IV.2.14) solves the original optimal control problem
(IV.1.2).

Proof. It is straightforward to check that the coefficients of the forward equation
in (IV.2.8) satisfy [10, Hypothesis 3.1] whereas the cost functional J̄g(u) satisfies
the conditions of [10, Hypothesis 3.3]. Moreover, the term −β⟨g, ζ0⟩ν in (IV.2.8)
satisfies condition (i) of [10, Theorem 3.7] and, since v given by (IV.2.10)–
(IV.2.12) is a classical solution to the HJB equation (IV.2.9), condition (ii) of
[10, Theorem 3.7] holds automatically. Finally, it is easy to see that v has
sufficient regularity as required in [10, Theorem 4.1]. Therefore, both statements
of Theorem IV.2.5 immediately follow from [10, Theorem 4.1]. ■

Remark IV.2.3. The approach described above can be extended by lifting to
Banach space-valued stochastic processes. See Paper III for more details.

IV.3 Approximate solution for forwards with Hölder kernels

The crucial assumption in section IV.2 that allowed to apply the optimization
techniques in Hilbert space was the liftability of the kernel. However, in practice
it is often hard to find a representation of the required type for the given
kernel, and even if this representation is available, it is not always convenient
from the implementation point of view. For this reason, we provide a liftable
approximation for the Volterra Ornstein-Uhlenbeck process (IV.1.2) for a general
Ch-kernel K, where Ch([0, T ]) denotes the set of h-Hölder continuous functions
on [0, T ].

This section is structured as follows: first we approximate an arbitrary Ch-
kernel by a liftable one in a uniform manner and introduce a new optimization
problem where the forward dynamics is obtained from the original one replacing
the kernel K with its liftable approximation. Afterwards, we prove that the
optimal value of the approximated problem converges to the optimal value of
the original problem and give an estimate for the rate of convergence. Finally,

136



Approximate solution for forwards with Hölder kernels

we discuss some numerical aspects that could be useful from the implementation
point of view.

Remark IV.3.1. In what follows, by C we will denote any positive constant the
particular value of which is not important and may vary from line to line (and
even within one line). By ∥ · ∥2 we will denote the standard L2(Ω × [0, T ])-norm.

IV.3.1 Liftable approximation for Volterra Ornstein-Uhlenbeck
processes with Hölder continuous kernels

Let K ∈ C([0, T ]), H = L2(R), the operator A be the 1-shift operator acting on
H, i.e.

(Af)(x) = f(x+ 1), f ∈ H,

and denote Kn a Bernstein polynomial approximation for K of order n ≥ 0, i.e.

Kn(t) = 1
Tn

n∑
k=0

K

(
Tk

n

)(
n

k

)
tk(T − t)n−k

=:
n∑

k=0
κn,kt

k, t ∈ [0, T ],
(IV.3.1)

where

κn,k := 1
T k

k∑
i=0

(−1)k−iK

(
iT

n

)(
n

i

)(
n− i

k − i

)
. (IV.3.2)

Observe that

(etA
1[0,1])(x) =

∞∑
k=0

tk

k!
[
Ak

1[0,1]
]

(x) =
∞∑

k=0

tk

k!1[−k,−k+1](x)

and hence Kn is H-liftable as

Kn(t) =
〈
gn, e

tAν
〉
H =

n∑
k=0

κn,kt
k, t ∈ [0, T ],

with gn :=
∑n

k=0 k!κn,k1[−k,−k+1] and ν := 1[0,1].

By the well-known approximating property of Bernstein polynomials, for any
ε > 0, there exist n = n(ε) ∈ N0 such that

sup
t∈[0,T ]

|K(t) −Kn(t)| < ε.

Moreover, if additionally K ∈ Ch([0, T ]) for some h ∈ (0, 1), [17, Theorem 1]
guarantees that for all t ∈ [0, T ]

|K(t) −Kn(t)| ≤ H

(
t(T − t)

n

)h/2
≤ HTh

2h
n− h

2 , (IV.3.3)
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where H > 0 is such that

|K(t) −K(s)| ≤ H|t− s|h, s, t ∈ [0, T ]. (IV.3.4)

Now, consider a controlled Volterra Ornstein-Uhlenbeck process {Xu(t), t ∈
[0, T ]} of the form (IV.1.2) with the kernel K ∈ Ch([0, T ]) satisfying (IV.3.4).
For a given admissible u define also a stochastic process {Xu

n(t), t ∈ [0, T ]} as a
solution to the stochastic Volterra integral equation of the form

Xu
n(t) = X(0) +

∫ t

0
Kn(t− s)

(
αu(s) − βXu

n(s)
)
ds+ σ

∫ t

0
Kn(t− s)dW (s),

(IV.3.5)
t ∈ [0, T ], where Kn(t) =

∑n
k=0 κn,kt

k with κn,k defined by (IV.3.2), i.e. the
Bernstein polynomial approximation of K of degree n.

Remark IV.3.2. It follows from [5, Corollary 4] that both stochastic processes∫ t

0 K(t − s)dW (s) and
∫ t

0 Kn(t − s)dW (s), t ∈ [0, T ], have modifications that
are Hölder continuous at least up to the order h ∧ 1

2 . From now on, these
modifications will be used.

Now we move to the main result of this subsection.

Theorem IV.3.1. Let K ∈ Ch([0, T ]), u ∈ L2
a, and Xu, Xu

n are given by (IV.1.2)
and (IV.3.5) respectively. Then there exists C > 0 which does not depend on n
or u such that for any admissible u ∈ L2

a:

sup
t∈[0,T ]

E
[
|Xu(t) −Xu

n(t)|2
]

≤ C(1 + ∥u∥2
2)n−h.

Proof. First, by Theorem IV.2.1, there exists a constant C > 0 such that

sup
t∈[0,T ]

E[|Xu(t)|2] ≤ C(1 + ∥u∥2
2). (IV.3.6)

Consider an arbitrary τ ∈ [0, T ], and denote ∆(τ) := supt∈[0,τ ] E
[
|Xu(t) −Xu

n(t)|2
]
.
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Then

∆(τ) = sup
t∈[0,τ ]

E

[∣∣∣∣∣
∫ t

0
K(t− s)

(
αu(s) − βXu(s)

)
ds

+
∫ t

0
Kn(t− s)

(
αu(s) − βXu

n(s)
)
ds

+
∫ t

0
σ
(
K(t− s) −Kn(t− s)

)
dW (s)

∣∣∣∣∣
2]

≤ C sup
t∈[0,τ ]

E

[∫ t

0

∣∣∣∣∣(K(t− s) −Kn(t− s)
)
u(s)

∣∣∣∣∣
2

ds

]

+ C sup
t∈[0,τ ]

E

[∫ t

0

∣∣∣∣∣Kn(t− s)
(
Xu(s) −Xu

n(s)
)∣∣∣∣∣

2

ds

]

+ C sup
t∈[0,τ ]

E

[∫ t

0

∣∣∣∣∣Xu(s)
(
K(t− s) −Kn(t− s)

)∣∣∣∣∣
2

ds

]

+ C sup
t∈[0,τ ]

E

∣∣∣∣∣
∫ t

0

(
K(t− s) −Kn(t− s)

)
dW (s)

∣∣∣∣∣
2
 .

Note that, by (IV.3.3) we have that

sup
t∈[0,τ ]

E

[∫ t

0

∣∣∣∣∣(K(t− s) −Kn(t− s)
)
u(s)

∣∣∣∣∣
2

ds

]
≤ Cn−h∥u∥2

2.

Moreover, since {Kn, n ≥ 1} are uniformly bounded due to their uniform
convergence to K it is true that

sup
t∈[0,τ ]

E

[∫ t

0

∣∣∣∣∣Kn(t− s)
(
Xu(s) −Xu

n(s)
)∣∣∣∣∣

2

ds

]
≤ C

∫ τ

0
∆(s)ds

with C not dependent on n, and from (IV.3.3), (IV.3.6) one can deduce that

sup
t∈[0,τ ]

E

[∫ t

0

∣∣∣∣∣Xu(s)
(
K(t− s) −Kn(t− s)

)∣∣∣∣∣
2

ds

]
≤ Cn−h(1 + ∥u∥2

2).

Lastly, by the Ito isometry and (IV.3.3),

sup
t∈[0,τ ]

E

∣∣∣∣∣
∫ t

0

(
K(t− s) −Kn(t− s)

)
dW (s)

∣∣∣∣∣
2
 ≤ Cn−h.

Hence
∆(τ) ≤ Cn−h(1 + ∥u∥2

2) + C

∫ t

0
∆(s)ds,
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where C is a positive constant (recall that it may vary from line to line). The
final result follows from Gronwall’s inequality. ■

IV.3.2 Liftable approximation of the optimal control problem

As it was noted before, our aim is to find an approximate solution to the the
optimization problem (IV.1.3) by solving the liftable problem of the formX

u
n(t) = X(0) +

∫ t

0 Kn(t− s)
(
αu(s) − βXu

n(s)
)
ds+ σ

∫ t

0 Kn(t− s)dW (s),

Jn(u) := E
[
−
∫ T

0 a1u
2(s)ds+ a2X

u
n(T )

]
→ max,

(IV.3.7)
where the maximization is performed over u ∈ L2

a. In (IV.3.7), Kn is the
Bernstein polynomial approximation of K ∈ Ch([0, T ]), i.e.

Kn(t) = ⟨gn, e
tAν⟩, t ∈ [0, T ],

where A ∈ L (H) acts as (Af)(x+1), ν = 1[0,1] and gn =
∑n

k=0 k!κn,k1[−k,−k+1]
with κn,k defined by (IV.3.2). Due to the liftability of Kn, the problem (IV.3.7)
falls in the framework of section IV.2, so, by Theorem IV.2.5, the optimal control
ûn has the form (IV.2.14):

ûn(t) = αa2

2a1
⟨gn, e

(T −t)Ānν⟩, t ∈ [0, T ], (IV.3.8)

where Ān := A−β⟨gn, ·⟩ν. The goal of this subsection is to prove the convergence
of the optimal performance in the approximated dynamics to the actual optimal,
i.e.

Jn(ûn) → sup
u∈L2

a

J(u), n → ∞,

where J is the performance functional from the original optimal control problem
(IV.1.3).

Proposition IV.3.2. Let the kernel K ∈ Ch([0, T ]). Then

sup
n∈N

Jn(u) → −∞ as ∥u∥2 → ∞, (IV.3.9)

J(u) → −∞ as ∥u∥2 → ∞, (IV.3.10)

where ∥ · ∥2 denotes the standard L2(Ω × [0, T ]) norm.

Proof. We prove only (IV.3.9); the proof of (IV.3.10) is the same. Let u ∈ L2
a

be fixed. For any n ∈ N denote

Gn(t) :=
∫ t

0
Kn(t− s)dW (s), t ∈ [0, T ],
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and notice that for any t ∈ [0, T ] we have that

|Xu
n(t)| ≤ X(0) + α

∫ t

0
|Kn(t− s)||u(s)|ds

+ β

∫ t

0
|Kn(t− s)||Xu

n(s)|ds+ σ |Gn(t)|

≤ C

1 +
(∫ T

0
u2(s)ds

) 1
2

+
∫ t

0
|Xu

n(s)|ds+ sup
r∈[0,T ]

|Gn(r)|

 ,

where C > 0 is a deterministic constant that does not depend on n, t or u (here
we used the fact that Kn → K uniformly on [0, T ]). Whence, for any n ∈ N,

E [|Xu
n(t)|] ≤ C

(
1 + ∥u∥2 +

∫ t

0
E [|Xu

n(s)|] ds+ E

[
sup

r∈[0,T ]
|Gn(r)|

])
.

(IV.3.11)

Now, let us prove that there exists a constant C > 0 such that

sup
n∈N

E

[
sup

r∈[0,T ]
|Gn(r)|

]
< C.

First note that, by Remark IV.3.2, for each n ∈ N and δ ∈
(
0, h

2 ∧ 1
4
)

there exists
a random variable Υn = Υn(δ) such that

|Gn(r1) −Gn(r2)| ≤ Υn|r1 − r2|h∧ 1
2 −2δ

and whence
sup

r∈[0,T ]
|Gn(r)| ≤ Th∧ 1

2 −2δΥn.

Thus it is sufficient to check that supn∈N EΥn < ∞. It is known from [5] that
one can put

Υn := Cδ

(∫ T

0

∫ T

0

|Gn(x) −Gn(y)|p

|x− y|(h∧ 1
2 −δ)p+1 dxdy

) 1
p

,

where p := 1
δ and Cδ > 0 is a constant that does not depend on n. Let p′ > p.

Then Minkowski integral inequality yields

(
EΥp′

n

) p

p′
= Cp

δ

E

(∫ T

0

∫ T

0

|Gn(x) −Gn(y)|p

|x− y|(h∧ 1
2 −δ)p+1 dxdy

) p′
p




p

p′

≤ Cp
δ

∫ T

0

∫ T

0

(
E
[
|Gn(x) −Gn(y)|p′

]) p

p′

|x− y|(h∧ 1
2 −δ)p+1 dxdy.

(IV.3.12)
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Note that, by [17, Proposition 2], every Bernstein polynomialKn that corresponds
to K is Hölder continuous of the same order h and with the same constant H,
i.e.

|Kn(t) −Kn(s)| ≤ H|t− s|h, s, t ∈ [0, T ],

whenever
|K(t) −K(s)| ≤ H|t− s|h, s, t ∈ [0, T ].

This implies that there exists a constant C which does not depend on n such
that

E
[
|Gn(x) −Gn(y)|p

′
]

= C

(∫ x∧y

0
(Kn(x− s) −Kn(y − s))2ds

+
∫ x∨y

x∧y

K2
n(x ∨ y − s)ds

) p′
2

≤ C|x− y|p
′(h∧ 1

2 ).

Plugging the bound above to (IV.3.12), we get that

(
E
[
Υp′

n

]) p

p′
≤ C

∫ T

0

∫ T

0
|x− y|(h∧ 1

2 )p−(h∧ 1
2 −δ)p−1dxdy

= C

∫ T

0

∫ T

0
|x− y|−1+δpdxdy

< C,

where C > 0 denotes, as always, a deterministic constant that does not depend
on n, t, u and may vary from line to line.

Therefore, there exists a constant, again denoted by C not depending on n, t
or u such that

sup
n∈N

E [Υn] < C

and thus, by (IV.3.11),

E [|Xu
n(t)|] ≤ C

(
1 + ∥u∥2 +

∫ t

0
E [|Xu

n(s)|] ds
)
.

By Gronwall’s inequality, there exists C > 0 which does not depend on n such
that

E [|Xu
n(T )|] ≤ C(1 + ∥u∥2),

and so
sup
n∈N

Jn(u) ≤ C(1 + ∥u∥2) − ∥u∥2
2 → −∞, ∥u∥2 → ∞.

■
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Theorem IV.3.3. Let K ∈ Ch([0, T ]) and Kn be its Bernstein polynomial approx-
imation of order n. Then there exists constant C > 0 such that∣∣∣Jn(ûn) − sup

u∈L2
a

J(u)
∣∣∣ ≤ Cn− h

2 . (IV.3.13)

Moreover, ûn is “almost optimal” for J in the sense that there exists a constant
C > 0 such that ∣∣∣J(ûn) − sup

u∈L2
a

J(u)
∣∣∣ ≤ Cn− h

2 .

Proof. First, note that for any r ≥ 0

sup
u∈Br

∣∣∣Jn(u) − J(u)
∣∣∣ ≤ C(1 + r2) 1

2n− h
2 , (IV.3.14)

where Br := {u ∈ L2
a : ∥u∥2 ≤ r}. Indeed, by definitions of J , Jn and Theorem

IV.3.1, for any u ∈ Br:∣∣∣Jn(u) − J(u)
∣∣∣ =

∣∣∣E[Xu
n(T ) −Xu(T )]

∣∣∣ ≤ C(1 + ∥u∥2
2) 1

2n− h
2

≤ C(1 + r2) 1
2n− h

2 .
(IV.3.15)

In particular, this implies that there exists C > 0 that does not depend on n
such that J(0) − C < Jn(0), so, by Proposition IV.3.2, there exists r0 > 0 that
does not depend on n such that ∥u∥2 > r0 implies

Jn(u) < J(0) − C < Jn(0), n ∈ N.

In other words, all optimal controls ûn, n ∈ N must be in the ball Br0 and that
supu∈L2

a
J(u) = supu∈Br0

J(u). This, together with uniform convergence of Jn

to J over bounded subsets of L2
a and estimate (IV.3.14), implies that there exists

C > 0 not dependent on n such that∣∣∣Jn(ûn) − sup
u∈L2

a

J(u)
∣∣∣ ≤ Cn− h

2 . (IV.3.16)

Finally, taking into account (IV.3.14) and (IV.3.16) as well as the definition of
Br0 , ∣∣∣J(ûn) − sup

u∈L2
a

J(u)
∣∣∣ ≤

∣∣∣J(ûn) − Jn(ûn)
∣∣∣+
∣∣∣Jn(ûn) − sup

u∈L2
a

J(u)
∣∣∣

≤
∣∣∣J(ûn) − Jn(ûn)

∣∣∣+
∣∣∣Jn(ûn) − sup

u∈Br0

J(u)
∣∣∣

≤ Cn− h
2 .

which ends the proof. ■
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Theorem IV.3.4. Let K ∈ Ch([0, T ]) and ûn be defined by (IV.3.8). Then the
optimization problem (IV.1.3) has a unique solution û ∈ L2

a and

ûn → û, n → ∞,

in the weak topology of L2(Ω × [0, T ]).

Proof. By (IV.2.1), the performance functional J can be represented in a linear-
quadratic form as

J(u) = −a1⟨u, u⟩L2(Ω×[0,T ] + a2(X(0) + Lu),

where L: L2(Ω × [0, T ]) → L2(Ω × [0, T ]) is a continuous linear operator. Then,
by [4, Theorem 9.2.6], there exists a unique û ∈ L2(Ω × [0, T ]) that maximizes
J and, moreover, ûn → û weakly as n → ∞. Furthermore, since all ûn are
deterministic, so is û; in particular, it is adapted to filtration generated by W
which implies that û ∈ L2

a. ■

IV.3.3 Algorithm for computing ûn

The explicit form of ûn given by (IV.3.8) is not very convenient from the imple-
mentation point of view since one has to compute e(T −t)Ānν = e(T −t)Ān1[0,1],
where Ān := A − β⟨gn, ·⟩1[0,1], (Af)(x) = f(x+ 1). A natural way to simplify
the problem is to truncate the series

∞∑
k=0

(T − t)k

k! Āk
n1[0,1] ≈

M∑
k=0

(T − t)k

k! Āk
n1[0,1]

for some M ∈ N. However, even after replacing e(T −t)Ān in (IV.3.8) with its
truncated version, we still need to be able to compute Āk

n1[0,1] for the given
k ∈ N. An algorithm to do so is presented in the proposition below.

Proposition IV.3.5. For any k ∈ N ∪ {0},

Āk
n1[0,1] =

k∑
i=0

γ(i, k)1[−i,−i+1],

where, γ(0, 0) = 1 and, for all k ≥ 1,

γ(i, k) =
{
γ(i− 1, k − 1), i = 1, ..., k∑(k−1)∧n

j=0 (−β)j!κn,jγ(j, k − 1), i = 0.

Proof. The proof follows an inductive argument. The statement for γ(0, 0) is
obvious. Now let

Āk−1
n 1[0,1] =

k−1∑
i=0

γ(i, k − 1)1[−i,−i+1].
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Then

Āk
n1[0,1] = Ān

(
Āk−1

n 1[0,1]

)
=

k−1∑
i=0

γ(i, k − 1)Ān1[−i,−i+1]

=
k∑

i=1
γ(i− 1, k − 1)1[−i,−i+1]

+ 1[0,1](−β)
〈

k−1∑
j=0

γ(j, k − 1)1[−j,−j+1],

n∑
j=0

j!κn,j1[−j,−j+1]

〉

=
k∑

i=1
γ(i− 1, k − 1)1[−i,−i+1] + 1[0,1]

(k−1)∧n∑
j=0

(−β)j!κn,jγ(j, k − 1).

■

Finally, consider

ûn,M (t) := αa2

2a1

〈
gn,

M∑
k=0

(T − t)k

k! Āk
n1[0,1]

〉

= αa2

2a1

〈
n∑

i=0
i!κn,i1[−i,−i+1],

M∑
k=0

k∑
i=0

(T − t)k

k! γ(i, k)1[−i,−i+1]

〉

= αa2

2a1

〈
n∑

i=0
i!κn,i1[−i,−i+1],

M∑
i=0

(
M∑

k=i

(T − t)k

k! γ(i, k)
)
1[−i,−i+1]

〉

= αa2

2a1

n∧M∑
i=0

M∑
k=i

i!κn,iγ(i, k)
k! (T − t)k

= αa2

2a1

M∑
k=0

(
k∧n∑
i=0

i!κn,iγ(i, k)
k!

)
(T − t)k, (IV.3.17)

where κn,i are defined by (IV.3.2) and γ(i, k) are from Proposition IV.3.5.

Theorem IV.3.6. Let n ∈ N be fixed and M ≥ (T − t)∥Ān∥L, where ∥·∥L denotes
the operator norm. Then, for all t ∈ [0, T ],

|ûn(t) − ûn,M (t)| ≤ αa2

2a1
∥gn∥e(T −t)∥Ān∥L

(
1 − e− (T −t)∥Ān∥L

M+1

)
.

Moreover,

sup
t∈[0,T ]

|ûn(t) − ûn,M (t)| ≤ αa2

2a1
∥gn∥eT ∥Ān∥L

(
1 − e− T ∥Ān∥L

M+1

)
→ 0, M → ∞.
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Proof. One has to prove the first inequality and the second one then follows. It
is clear that

|ûn(t) − ûn,M (t)| ≤ αa2

2a1
∥gn∥

∥∥∥∥∥
∞∑

k=M+1

(T − t)k

k! Āk
n1[0,1]

∥∥∥∥∥
and, if M ≥ (T − t)∥Ān∥L, we have that

∥∥∥∥∥
∞∑

k=M+1

(T − t)k

k! Āk
n1[0,1]

∥∥∥∥∥ ≤
∞∑

k=M+1

(
(T − t)

∥∥Ān

∥∥
L

)k

k!

≤ e(T −t)∥Ān∥L

(
1 − e− (T −t)∥Ān∥L

M+1

)
,

where we used a well-known result on tail probabilities of Poisson distribution
(see e.g. [20]). ■

IV.4 Examples and simulations

Example IV.4.1 (monomial kernel). Let N ∈ N be fixed. Consider an optimiza-
tion problem of the formX

u(t) = X(0) +
∫ t

0 (t− s)N
(
u(s) −Xu(s)

)
ds+

∫ t

0 (t− s)NdW (s),

E
[
Xu(T ) −

∫ T

0 u2(s)ds
]

→ max,
(IV.4.1)

where, as always, we optimize over u ∈ L2
a. The kernel K(t) = tN is H-liftable,

tN = ⟨N !1[−N,−N+1], e
tA
1[0,1]⟩,

where (Af)(x) = f(x+ 1), f ∈ H. By Theorem IV.2.5, the optimal control for
the problem (IV.4.1) has the form

û(t) = N !
2 ⟨1[−N,−N+1], e

(T −t)Ā
1[0,1]⟩,

where Ā = A −N !⟨1[−N,−N+1], ·⟩1[0,1]. In this simple case, we are able to find
an explicit expression for e(T −t)Ā∗

1[−i,−i+1]. Indeed, it is easy to see that, for
any i ∈ N ∪ {0}, p ∈ N ∪ {0} and q = 0, 1, ..., N ,

Āp(N+1)+q
1[0,1] =

p∑
j=0

(−1)p−j(N !)p−j
1[−j(N+1)−q,−j(N+1)−q+1]
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and whence

⟨1[−N,−N+1], e
(T −t)Ā1[0,1]⟩

=
〈
1[−N,−N+1],

∞∑
p=0

N∑
q=0

(T − t)pN+p+q

(pN + p+ q)!

p∑
j=0

(−1)p−j(N !)p−j
1[−j(n+1)−q,−j(N+1)−q+1]

〉

=
∞∑

p=0

(T − t)pN+p+N

(pN + p+N)! (−1)p(N !)p

= (T − t)NEN+1,N+1(−N !(T − t)N+1),

where Ea,b(z) :=
∑∞

p=0
zp

Γ(ap+b) is the Mittag-Leffler function. This, in turn,
implies that

û(t) = N !(T − t)N

2 EN+1,N+1(−N !(T − t)N+1). (IV.4.2)

On Fig. IV.1, the black curve depicts the optimal û computed for the
problem IV.4.1 with K(t) = t2 and T = 2 using (IV.4.2); the othere curves
are the approximated optimal controls ûn,M (as in (IV.3.17)) computed for
n = 1, 2, 5, 10 and M = 20.

Figure IV.1: Optimal control of Volterra Ornstein-Uhlenbeck process with
monomial kernel K(t) = t2 (in black) and control approximants ûn,M .

Remark IV.4.1. The solution of the problem (IV.4.1) described in Example IV.4.1
should be regarded only as an illustration of the optimization technique via
infinite-dimensional lift: in fact, the kernel K in this example is degenerate
and thus the process Xu in (IV.4.1) is Markovian. This means that other finite
dimensional techniques could have been used in this case.
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Example IV.4.2 (fractional and gamma kernels). Consider three optimization
problems of the formX

u
i (t) =

∫ t

0 Ki(t− s)
(
αu(s) − βXu(s)

)
ds+

∫ t

0 Ki(t− s)dW (s),

E
[
Xu

i (T ) −
∫ T

0 u2(s)ds
]

→ max,
(IV.4.3)

i = 1, 2, 3,,u ∈ L2
a, where the kernels are chosen as follows: K1(t) := t0.3

(fractional kernel), K2(t) := t1.1 (smooth kernel) and K3(t) := e−tt0.3 (gamma
kernel). In these cases, we apply all the machinery presented in section IV.3
to find ûn,M for each of the optimal control problems described above. In our
simulations, we choose T = 2, n = 20, M = 50; the mesh of the partition for
simulating sample paths of Xu is set to be 0.05, σ = 1, X(0) = 0.

Fig. IV.2 depicts approximated optimal controls for different values of α
and β. Note that the gamma kernel K3(t) (third column) is of particularly
interest in optimal advertising. This kernel, in fact, captures the peculiarities of
the empirical data (see [15]) since the past dependence comes into play after a
certain amount of time (like a delayed effect) and its relevance declines as time
goes forward.

Remark IV.4.2. Note that the stochastic Volterra integral equation from (IV.4.3)
can be sometimes solved explicitly for certain kernels (e.g. via the resolvent
method). For instance, the solution Xu which corresponds to the fractional
kernel of the type K(t) = th, h > 0, and β = 1 has the form

Xu(t) = Γ(h+1)
∫ t

0
(t−s)hEh+1,h+1

(
−Γ(h+ 1)(t− s)h+1) (αu(s)ds+ dW (s)) ,

t ∈ [0, T ], where Ea,b again denotes the Mittag-Leffler function. Having the
explicit solution, one could solve the optimization problem (IV.4.3) by plugging
in the shape of Xu to the performance functional and applying the standard
minimization techniques in Hilbert spaces. However, as mentioned in the in-
troduction, this leads to some tedious calculations that are complicated to
implement, whereas our approach allows to get the approximated solution in a
relatively simple manner.
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(1) K1(t) = t0.3 (2) K2(t) = t1.1 (3) K3(t) = e−tt0.3

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

Figure IV.2: Optimal advertising strategies for control problems with kernels
K1–K3 from Example IV.4.2; plots related to the kernel Ki are contained in
the ith column. Panels (a1)–(a3) depict the graphs of kernels K1–K3; each of
(b1)–(b3) represents a sample path of the corresponding Xu

i (t) under optimal
control with α = 0 (orange) and α = 1 (blue) as well as the approximated
optimal control ûn,M itself (green). Panels (c1)–(c3) show ûn,M for α = 1 (blue),
α = 1.5 (orange) and α = 2 (green; in all three cases β = 1), whereas (d1)–(d3)
plot the behaviour of ûn,M for β = 1 (blue), β = 1.5 (orange) and β = 2 (green;
in all three cases α = 1).
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